Elawyers Elawyers
Washington| Change
Find Similar Cases by Filters
You can browse Case Laws by Courts, or by your need.
Find 49 similar cases
THOMAS BUSSING, MICHAEL CANNEY, DECEMBER MCSHERRY, DAVID MCSHERRY, AND KAREN ORR vs GAINESVILLE RENEWABLE ENERGY CENTER, LLC, AND DEPARTMENT OF ENVIRONMENTAL PROTECTION, 10-007281 (2010)
Division of Administrative Hearings, Florida Filed:Gainesville, Florida Aug. 09, 2010 Number: 10-007281 Latest Update: Mar. 02, 2011

The Issue The issues in this case are whether the Gainesville Renewable Energy Center, LLC (GREC) is entitled to an Air Construction Permit from the Department of Environmental Protection (DEP) for the construction of a net 100-megawatt (MW) biomass-fired electrical power plant in Gainesville, Florida, pursuant generally to state rules that relate to the federal Clean Air Act, 42 U.S.C. §§ 7401, et seq. (Clean Air Act), which is administered by the U.S. Environmental Protection Agency (EPA). Specifically, the issues are whether the proposed project satisfies the requirements of Florida's EPA-authorized air program of Prevention of Significant Deterioration (PSD), as set forth in Florida Administrative Code Rule 62-212.400, and Florida's EPA-delegated air program of National Emission Standards for Hazardous Air Pollutants (NESHAP), as set forth in Florida Administrative Code Rule 62-204.800(10) and (11).

Findings Of Fact Introduction On November 30, 2009, GREC filed with DEP an Application for the construction and operation of a net 100 MW (gross 116 MW), biomass-fired electrical power plant at GRU's Deerhaven power plant complex. GREC seeks to place the biomass plant in service on or before December 31, 2013, which is the deadline for eligibility for a federal renewable-energy grant under the American Recovery and Reinvestment Act of 2009. GREC is a subsidiary of American Renewables, LLC, which develops, builds, and operates renewable-energy power plants. American Renewables, LLC, is jointly owned by affiliates of three corporations that develop, operate, invest, and manage various types of energy projects. American Renewables, LLC, recently obtained permits for a similar biomass plant, also net 100 MW, in Nacogdoches, Texas. This plant, which is expected to begin commercial operation in late 2012, has a power purchasing agreement with Austin Energy, a municipal utility owned by the City of Austin. American Renewables, LLC, recently sold the Nacogdoches plant to a subsidiary of Southern Company. GRU is a municipal utility of the City of Gainesville. GRU owns and operates a power generation, transmission, and distribution system to serve its 93,000 retail customers and its wholesale customers, which include the City of Alachua and Clay Electrical Cooperative, Inc. In addition to owning a 1.4-percent share of the Progress Energy Florida Crystal River Unit Three, GRU owns three power supply facilities with a summer capacity of net 608 MW. Of these, the largest is Deerhaven, which generates net 440 MW. A former mayor of the City of Gainesville, Petitioner Bussing served on the utility committee of the City Commission and participated in utility planning for GRU. Petitioner Bussing lives less than 10 miles from the GREC site and regularly walks outdoors, works in his yard, and bicycles in the area. He enjoys canoeing on local waterways and observing wildlife, such as eagles, hawks, and owls. Identifying himself as a "locavore," Petitioner Bussing favors locally grown food. The other petitioners are similarly situated to Petitioner Bussing. Application The findings in this section are generally based on the Application, although some are also based on the Site Application. According to the Application, the GREC site consists of 131 acres within the Deerhaven site in northwest Gainesville and north central Alachua County--eight miles from downtown Gainesville to the southeast and seven miles from downtown Alachua to the northwest. The Site Application states that the Deerhaven site is within a 1146-acre parcel owned by the City of Gainesville. The Site Application notes that the Deerhaven site includes several units. Unit 1 generates 88 MW by a natural gas or oil-fired steam unit. Unit 2, which was certified in 1978, generates 235 MW (sometimes described as 250 MW) by a pulverized coal-fired unit. Unit 3 generates 76 MW by a natural gas or oil-fired, simple-cycle combustion turbine unit. Deerhaven also includes two 19-MW, simple-cycle combustion turbine units. The Application reports that the GREC site abuts the northwest boundary of the GRU's existing generating facilities at Deerhaven. The Site Application identifies the GRU facilities immediately east of the GREC site as an ash landfill, brine landfill, and large stormwater management pond. Abutting these facilities, immediately to their east, are ash settling ponds and a wastewater treatment sludge disposal cell. Abutting these facilities, immediately to their east, is a large coal pile. A spur of the CSX rail line, which is used for coal deliveries to Deerhaven Unit 2, terminates just south of the GREC site. Except for secondary access roads and unpaved trails, no Deerhaven facilities occupy the GREC site. Immediately west of the GREC site is a site used by the Alachua County Public Works Department for an office and other facilities. Also west of the GREC site is a radio tower and undeveloped land. The southernmost extent of the GREC site fronts on U.S. Route 441, which is lined by intermittent commercial and retail uses in this area. Across U.S. Route 441, over one-half mile from the GREC site, is the nearest residential subdivision, which is called Turkey Creek. The Site Application reports that, in the early 2000s, the City of Gainesville purchased an additional 2328 acres of timberland north and east of the Deerhaven site for buffer and potential expansion. The entire area, including the GREC site, was historically devoted to agriculture and pine silviculture, but the GREC site is now occupied by ditches, swales, altered forested communities, and the roads and trails previously mentioned. By groupings from west to east, the proposed improvements on the GREC site are a fuel-storage area, which consists of four separate wood piles; a parking area, offices, a warehouse, a control room, fire pumps, a water treatment facility, and water tanks; a 50-foot wide band of unoccupied land; a switchyard with a transmission line running to a new GRU switchyard at U.S. Route 441, a switchyard control room, steam turbine, fuel day bins connected to the storage area by a conveyor, a boiler, a 230-foot-high stack, a baghouse, and an aqueous ammonia storage area; and a 53-foot-high cooling tower. These components are concentrated on the north side of the site, farthest from U.S. Route 441, and toward the east side of the site, nearest GRU's Deerhaven operations. The boiler, steam turbine, emissions-control equipment, stack, and cooling tower are 3200 feet northwest of U.S. Route 441 and 2200 feet east of the public works facility. The GREC site will also include roads, an administration building, a warehouse, several stormwater detention ponds, water and wastewater treatment facilities, storage facilities for the fly ash and sand from the BFBB, and two emergency diesel engines. The main components of the GREC facility will be a bubbling fluidized bed boiler (BFBB), which will produce steam to power a conventional steam turbine generator for the production of electricity. Except during startup, when the boiler will consume natural gas until it reaches operating temperatures, the BFBB will burn a wide range of clean, woody biomass fuels in a dense, fluidized sand bed at the bottom of the furnace and also in the area above the bed. GREC will obtain the biomass fuel from forest residue (i.e., material remaining after traditional logging), mill residue (e.g., sawdust, bark, and sander dust), precommercial tree thinnings, used pallets, and urban wood waste (e.g., woody tree trimmings from landscape contractors and power-line clearance contractors). Supplementary fuel will be derived from herbaceous plant matter, clean agricultural residues (e.g., rice hulls and straw, but no animal waste), diseased trees, woody storm debris, whole tree chips, and pulpwood chips. However, GREC will not accept any biomass in the form of treated or coated wood, municipal solid waste, coal, petroleum, coke, tires, or construction and demolition waste, about which some doubt arose at the hearing, so GREC represented that it would not accept construction and demolition debris at the facility. The BFBB will combust one million tons per year (tpy) of biomass. To obtain the fuel, GREC will enter into contracts with suppliers within 75 miles of the site. GREC will incorporate in supplier contracts requirements of sustainability and incentives for good stewardship in silvicultural practices. At offsite locations, suppliers will sort, chip and grind, and screen the biomass to design size. After this primary processing, suppliers will deliver the processed biomass to the GREC facility in 130-150 trucks per day. On average, the facility will unload 12 trucks per hour, although it will be capable of unloading trucks at double this rate. Typically, the GREC facility will be open for biomass deliveries 15 hours per day, six days per week. On arriving at the GREC facility, the trucks will proceed to a drive-through structure, which contains three truck dumpers and three receiving hoppers. From the hoppers, the fuel will be conveyed to a fuel processing system, where a metal detector and magnetic separator will remove ferrous metals, a disc screen will remove oversized chips, and a hammer hog will reduce the oversized chips to the design size of three inches or less. This equipment will be located in an enclosed building with a dust-collection system. After this secondary processing onsite, the fuel is conveyed outside to the fuel storage area where it is stored in piles. One wood pile will have an automatic stacker/reclaimer that will be able to deposit, churn, mix, and remove nearly the entire pile. Another wood pile, conical in shape, has a fixed stacker, and the material will be moved by bulldozers and front- end loaders. This rolling stock will transfer some of the wood chips to a smaller, manual-reclaim pile that will also be contoured by bulldozers and front-end loaders. A fourth, much smaller pile will be maintained for the delivery of presized material, mainly sawdust. As originally sized, the wood piles are intended to store sufficient fuel for 15-20 days of operations. In the Site Application, the automatic stacker/reclaimer pile is specified to be 85 feet high, but, after consultation with the Gainesville Fire Department, as detailed below, GREC agreed to reduce the height of this pile to 60 feet. The fixed stacker pile is 60 feet high, and the manual-reclaim pile is 35 feet high. The automatic stacker/reclaimer pile is 400 feet by 400 feet, and the manual- reclaim pile is 400 feet by 465 feet. GREC will manage the separate wood piles to maintain the fuel's design moisture content, which is about 50 percent, but also to ensure that no portion of the stored wood remains in the pile for too long. In general, GREC intends to use fuel on the basis of first-fuel-in, first-fuel-out, to avoid problems of odor and spontaneous combustion, the latter of which is discussed in detail below. The high combustion temperatures reached by the BFBB and the implementation of the requirement for clean woody fuel will, the Application reports, limit the generation of pollutants. Within the 179-foot-high boiler, fluidizing air will expand the combustion zone in the boiler with high turbulence, intimate solids-to-gas contact and a high heat transfer rate in the bed. Staging or overfire air will assist combustion through openings in the furnace walls. Fluidized bed temperatures will range from 1350 to 1700 degrees. (All temperatures are in Fahrenheit.) Temperatures in the overfire air will be 200 degrees hotter to vaporize the volatile gases, such as carbon monoxide (CO) and volatile organic compounds (VOCs). By staging the combustion in the fluidized bed, the formation of thermally induced nitrogen oxides (NOx) will also be reduced. To enhance the air-pollution controls represented by the effective combustion of clean biomass, the GREC facility will employ three additional measures. First, dry sorbent injection (DSI) will inject into the boiler material that, in addition to the calcium that naturally occurs in the ash, will reduce emissions of sulfur dioxide (SO2), sulfuric acid mist (SAM), hydrogen chloride (HCl), and hydrogen fluoride (HF). Second, a selective catalytic reduction (SCR) system will reduce NOx emissions. The SCR system will use a catalyst and a reactant (ammonia gas) to dissociate NOx into nitrogen gas and water vapor. Third, downstream of the boiler, a fabric filter baghouse will reduce emissions of particulate matter (PM) and particulate matter less than 10 microns in diameter (PM10). (Discussed below, PM2.5 is particulate matter less than 2.5 microns in diameter.) As described in the Site Application, the baghouse will comprise 12 filter compartments, each containing 250-350 bags that are six inches in diameter and 14- to 26-feet long. At the bottom of the baghouse will be a hopper to collect ash. As PM forms on the bags, it will form a filter cake that increases the filtration efficiency of the bags. But once the air pressure drops to specified limits, high-pressure air pulses will be directed, automatically, into each bag, loosening the caked fly ash and depositing it as ash in the hopper below. Fly ash from the boiler will be captured by the baghouse filter. Periodically, the fly ash will be collected dry and transported pneumatically to an onsite storage silo. From there--if needed, after stabilization with water--the ash will be transported--enclosed, if still in dry form--for use as a soil supplement or, if such use is unavailable, to an approved offsite landfill. When ash is transferred to trucks, the trucks are sealed, and the air in the trucks displaced by the ash is transferred back to the silo through a vacuum system. Coarser than fly ash, bottom ash will be landfilled, if relatively coarser grained, and transferred pneumatically to the silo, if relatively finer grained. Solid waste from the GREC facility will be transferred ultimately to the New River regional landfill in Raiford, which has a projected life of more than 50 years at current filling rates. The cooling tower will contain a drift eliminator. The purpose of this device is to capture PM/PM10 that has passed the baghouse. The GREC facility will also control PM/PM10 fugitive emissions by the use of pneumatic systems for the delivery of sand for the fluidized bed and sorbent for the DSI to their separate onsite storage silos. According to the Site Application, the City of Gainesville has identified numerous benefits from the GREC project. These include enhancing the integrity and reliability of the GRU generating system, reducing the average age of the GRU generating system, producing reasonably priced electricity, diversifying fuel sources, avoiding the price fluctuations of fossil fuels, hedging the risks of anticipated carbon-constraint legislation (if biomass is treated preferentially under such legislation), reducing construction and operation risks, reducing open burning of biomass products in forestry operations, reducing landfilling of woody biomass, and supporting the silviculture industry. In support of sound silvicultural practices and ecosystem biodiversity, GREC will require all biomass suppliers to adhere to sustainability principles by conforming to the best management practices (BMPs) of the Florida Division of Forestry and will refuse delivery of stumps (to avoid erosion in the source area) and biomass generated from the conversion of natural forests to plantation forests or from nonnative species, unless the nonnative-species biomass is generated from a forest restoration project. Additionally, GREC will pay premiums of $0.50 and $1.00 per ton to suppliers that comply with more ambitious forest stewardship practices. Among the socio-economic benefits of the GREC facility, the Site Application states that construction will generate $48 million of payroll, largely for local and regional labor, and $160 million in nonengineered construction equipment purchases. Facility operations will result in the employment of 44 fulltime employees, initially earning $4 million annually. NonGREC employment will include truck drivers and operators of wood-processing equipment. The Site Application explains that ambient air quality is a product of meteorology, atmospheric chemistry, and pollution emissions. Meteorology controls the distribution, dilution, and removal of pollutants. Atmospheric chemistry controls the transformation of primary pollutants into secondary pollutants. Primary pollutants are discharged directly from the source and, for GREC, will include NOx, SO2, CO, and PM, or, traditionally, soot, although, as a fugitive emission, PM is better considered as dust from the biomass fuel or ash residue. For GREC, the most important secondary pollutant is ozone, which forms from the combination of NOx and VOCs in sunlight. According to the Site Application, EPA has developed an air quality index that describes air quality in relative terms. Good is the highest rating and means that air pollution poses little or no risk. Moderate means that air pollution may be a moderate health concern to a very small number of persons. Unhealthy for sensitive groups means just that, and healthy groups are unlikely to be affected. Unhealthy means that air pollution may cause everyone to begin to experience health effects, and sensitive groups may experience more serious health effects. The two remaining classifications are very unhealthy and hazardous. For 2007, the EPA classified the air quality in Alachua County as 315 days of good, 44 days of moderate, and 6 days of unhealthy for sensitive groups. For 2008, the EPA classified the number of good days as only 258. In general, the EPA classifies the air quality of Alachua County as good with the main pollutant adversely affecting air quality as ozone. The Application analyzes air emissions in light of national ambient air quality standards (AAQS), Title I, Part A, § 109, Clean Air Act, 42 U.S.C. § 7409; New Source Review (NSR) for PSD (NSR/PSD), Title I, Part C, Clean Air Act, 42 U.S.C. §§ 7470-7492; New Source Performance Standards (NSPS) for sources, by category, that contribute significantly to air pollution, Title I, Part A, § 111, Clean Air Act, 42 U.S.C. § 7411--in particular, 40 CFR Part 60, Subparts A, DA, and IIII; and NESHAP, Title I, Part A, § 112, Clean Air Act, 42 U.S.C. § 7412. As discussed in the Conclusions of Law, PSD pollutants are subject to best available control technology (BACT), and hazardous air pollutants (HAPs) are subject to maximum achievable control technology (MACT). The Application reports that the EPA has established national AAQS for six pollutants: SO2, NO2, CO, lead, ozone, and PM, which comprises PM10 and PM2.5. Primary AAQS for these pollutants protect the public health, and secondary AAQS for these pollutants protect the public welfare, such as the environment and physical property. The Application discloses the national and Florida AAQS standards for the six pollutants and reports that the entire state of Florida is in attainment for all six pollutants. This results in the application of the NSR/PSD regulatory framework, rather than a more stringent NSR regulatory framework for areas that are determined to be nonattainment under national AAQS. The Application reports that the GREC facility will be a major facility, under NSR/PSD, because it has the potential to emit more than 250 tpy of a PSD pollutant. GREC must use BACT for all PSD pollutants that will exceed significant emission rates, which are expressed in tons per year by PSD pollutant, and show that its emissions will not violate any national AAQS or PSD increment. If emissions will adversely affect a "Class 1 area," such as a national park or wilderness area, more rigorous protection of the area and national AAQS and PSD increments would be imposed in terms of "air quality related values," but the GREC facility does not impact any of the four Class I areas in Florida. However, all NSR/PSD reviews include assessments of additional impacts on nearby land uses, as well as on soils, vegetation, and visibility. For PSD emissions that exceed their significant emissions rates, GREC must show that a PSD emission, in micrograms per cubic meter, is below what constitutes the PSD's significant impact level, which is, as a measure of ambient concentration, expressed as micrograms per cubic meter. For any PSD emission that exceeds its significant impact level, GREC would have to provide a more elaborate source-impact analysis. According to the Application, the GREC facility is expected to generate the following PSD emissions in the following amounts: NOX--418.1 tpy; SO2--243.9 tpy; CO--715.6 tpy; VOCs--78.1 tpy; PM (filterable)--130.4 tpy; PM10 (filterable and condensable)--281.2 tpy; SAM--5.9 tpy; lead--0.12 tpy; and mercury--0.0084 tpy. (Filterable PM is in a solid or liquid state in the exhaust stream and is subject to capture by a filter. Filterable and condensable PM is in a gaseous state in the exhaust stream and is converted to a solid or liquid state on condensation after passing through a filter.) All of these emissions exceed the significant emission rates except for lead, mercury, and SAM. (Mercury is not a PSD pollutant, but it has a PSD significant emission rate.) Over 95 percent of these emissions are from the BFBB; small amounts are from the diesel emergency generator and firewater pump. As noted below, DEP subsequently determined that GREC could net its SO2 and NOX emissions against offsetting decreases in emissions of these two pollutants by GRU, so that GREC would be required to demonstrate BACT only for CO, VOCs, and PM/PM10. The Application undertakes BACT analysis for PSD pollutants based on a top-down consideration of all available technology, technically feasible control technology in order from the most- to least-stringent, and the applicable control technology, which is both technologically and economically feasible. Because Petitioners' allegations concerning BACT relate only to SO2, NOX, and PM/PM10 emissions, it is unnecessary to consider GREC's BACT analysis for CO and VOCs. The Application also states that GREC will be a major source of HAPs because the GREC facility will emit more than 10 tpy of any individual HAP or more than 25 tpy of total HAPs. As noted below, DEP subsequently determined that GREC's initial projections of HAPs emissions were too high and that, as revised in the February RRAI, discussed below, the HAPs emissions were below both thresholds for a major source, as described below. Because GREC consequently was not required to demonstrate case- by-case MACT, it is unnecessary to consider GREC's MACT analysis. In Alachua County, HAPS are not attributable primarily to stationary fuel combustion. The Site Application states that 86 percent of these pollutants were emitted from mobile and area small sources, such as dry cleaners and gas stations. The Site Application reports that stationary fuel combustion generates about 91 percent of the SO2, about 28 percent of the NOX, about 14 percent of the PM2.5, about six percent of the PM10, and nearly none of the CO and VOCs. Applying 40 CFR Part 60, Subpart DA, which applies to electric utility steam generating units, the Application notes that the BFBB will meet all emissions limits for PM, NOx, SO2, and opacity or visible emissions. Also, the Application states that, to conform to Subpart DA, GREC will have to install with the BFBB an opacity monitoring system, a continuous bag leak detection system for the fabric filters, continuous emissions monitoring systems (CEMS) for SO2, NOX, and oxygen or CO2, and conduct initial performance tests for SO2, NOX, opacity, and PM. The Application states that the GREC emissions are below the significant impact levels for PSD Class II areas for all PSD pollutants except PM10, for which the GREC emissions, on a 24-hour average, will be 20.4 micrograms per cubic meter, as compared to the significant impact level, on a 24-hour average, of 10 micrograms per cubic meter. Thus, the Application analyzes national AAQS and PSD increments only for PM10. Including all significant stack sources of PM10 within 60 kilometers of the GREC facility (fugitive emissions being deemed too local to require consideration) and both stack and fugitive emissions from the GREC facility, the Application concludes that GREC should not be required to perform preconstruction ambient air quality monitoring because Alachua County already performs adequate air quality monitoring for PM10, and the modeling for the 24-hour projections, as opposed to annual projections, shows that GREC's PM10 emissions in excess of the significant impact levels will be highly localized and entirely contained within the Deerhaven site. Additionally, for the 24-hour and annual projections, the Application notes that the maximum distance to significant impacts for PM10 emissions will be only 1.1 kilometers. Referring to the nearest ambient PM10 air quality monitoring site, which is 7 kilometers south of GREC, the Application concludes that, based on modeling for cumulative PM10 impacts, the air quality impacts from all sources, including background, will be substantially below the 24-hour and annual PSD Class II increments and national AAQS, so the GREC facility will not cause or contribute to an exceedance of the PM10 PSD increments or national AAQS. Finally, turning to additional impacts, the Application reports that the GREC emissions are too low to significantly affect soils, vegetation, or wildlife. In discussing PM10 emissions, the Application advises that Florida's 24-hour and annual averages for PM10 emissions, under state AAQS, are 150 and 50 micrograms per cubic meter. As noted above, the GREC facility's PM10 emissions will result in an increase of PM10 concentrations by 20.4 micrograms per cubic meter, on a 24-hour average; its PM10 emissions will result in an increase of PM10 concentrations by 5.3 micrograms per cubic meter, on an annual average. Both of these increases are obviously below the state AAQS. (The national AAQS for PM10 is the same for a 24-hour average and omits an annual average.) Responses to Requests for Additional Information Attachment A to the February RRAI is a set of BMPs for biomass material handling and storage. Attachment A requires GREC to consult with the Gainesville Fire Department and develop a Fire Management Plan. Key components of the Fire Management Plan will be frequent rotation of the biomass and the prevention of biomass compaction. Attachment A provides for the covering or partial enclosing of drop points and conveyor systems for biomass. The in-ground receiving hoppers will be covered by a divided enclosure with roll-up entry doors, curtained exit doors, and stilling curtains in the upper roof. The fuel processing building, which houses the hammer hog and screens, will have local ventilation ducted to a fabric filter dust collector. Drop points to the wood piles will be minimized by telescoping discharge spouts. Boiler fill bins will have vent filters. To ensure that the dust control measures are effective, daily inspections of the equipment will take place. Also, regular maintenance of the equipment will be performed. All major roads at the GREC facility will be paved to suppress fugitive emissions. Trained GREC personnel will promptly remove excessive mud, dirt, or similar debris from paved roads. Attachment A provides that GREC will maintain the wood piles to avoid excessive wind erosion. GREC will develop a dust management plan for the storage areas. GREC will minimize the use of rolling stock on the wood piles during windy conditions. In a request for additional information, DEP commented that the projections of HAPs emissions seemed high because other biomass projects half the size of GREC had projected HAPs emissions one-quarter of those projected by GREC. Noting that 95 percent of the HAPs emissions from the GREC facility would be in the form of HF and HCl, GREC responded that the BFBB manufacturer, Metso Corporation, had recalculated the projected emissions from its boiler based on a redetermination of the fluorine and chloride content of the biomass fuel, BBFB chemical reactions, increased sorbent in the DSI, and optimization and sizing of the baghouse. Based on these recalculations, the February RRAI reports that the GREC facility will emit no more than 25 tpy of HAPs or 10 tpy of any single HAP. The February RRAI states that, based on these recalculations, the GREC will emit 170.7 tpy of SO2 (down from 243.9 tpy) and the following HAPS: HF--9.7 tpy (down from 71.4 tpy; and HCl--9.7 tpy (down from 35.7 tpy). Lead and mercury projected emissions will be the same, but total HAPs emissions will be 24.6 tpy. Also, the February RRAI projects emissions of PM2.5 to be 278.3 tpy. Due to these recalculations of HAPs, the February RRAI states that it is unnecessary for GREC to provide case-by-case MACT. Attachment D to the February RRAI is the Biomass Quality Assurance and Quality Control Plan (Biomass QAQC Plan). Restating the biomass specifications, the Biomass QAQC Plan requires GREC to contract with suppliers for woody biomass material that conforms to the material described in the Air Construction Permit. The Biomass QAQC Plan notes that the power purchase agreement between GRU and GREC requires GREC to hire two professional foresters to manage the biomass procurement. The Biomass QAQC Plan states that GREC is required to inspect each shipment of biomass, upon receipt, and reject all shipments that fail to conform to the specifications contained in the plan. The February RRAI explains why GREC is not required to perform AQRV analysis for impacts to Class I areas. The February RRAI notes that GREC has relocated several improvements by relatively short distances, but these relocations do not affect the PM modeling. The May RRAI mostly addresses PM. The May RRAI accedes to a DEP request to model fugitive emissions after the relocation of various improvements, as mentioned in the February RRAI. GREC supplied this analysis, which suggests that the GREC facility will not cause or contribute to an exceedance of the PM10 PSD Class II increments or national AAQS. Attachment B to the May RRAI describes the dispersion modeling that was undertaken after the relocation of the various site improvements. In response to an EPA comment, the May RRAI adds various offsite sources of PM10, including two simple cycle combustion turbines, three emergency diesel engines, and fugitive PM10 from coal handling at Deerhaven and three simple cycle combustion turbines at another nearby GRU facility. Also, the May RRAI increases the PM10 emission rates for a nearby cement plant. As before, GREC conceded that the PM10 emissions will exceed the PSD Class II significant impact levels, but contended that preconstruction ambient air quality monitoring is unnecessary because adequate data already exist in Alachua County for this pollutant and the 24-hour PM10 impacts will be highly localized and confined with the industrialized areas abutting the GREC site. Additionally, the May RRAI reports the results of cumulative PM10 modeling. Again, the May RRAI states that the result of this cumulative modeling is that the air quality impacts from all relevant sources, including background, will be well below the 24-hour and annual PSD Class II increments and national AAQS, so the GREC facility will not cause or contribute to an exceedance of the PM10 PSD increments or national AAQS. Responding to an EPA comment asking for justification for using PM10 as a surrogate for PM2.5, Attachment C of the May RRAI, citing an EPA guidance memo issued March 23, 2010, explains why PM10 may be used as a surrogate for PM2.5 for the GREC facility. Using the GREC facility's PM2.5/PM10 emission ratios, Attachment C assures that the GREC facility will not cause or contribute to an exceedance of PM2.5 national AAQS. In generating the PM2.5/PM10 emission ratios, Attachment C states that GREC assumed that all of the PM emissions from the BFBB would be PM2.5 because the baghouse filter would capture the larger PM. For fugitive dust and material handling, GREC relied on an EPA published 0.10-0.15 PM2.5/PM10 emission ratio, which is applicable to fugitive dust from paved and unpaved roads, material handling and storage piles, industrial wind erosion, and material transfer operations. GREC selected the 0.15 factor, which assumes a greater presence of PM2.5 in these emissions. For the cooling tower, GREC assumed the same 0.15 PM2.5/PM10 emission ratio. Noting that drift eliminators are the only technology that control PM2.5 and PM10 emissions for wet cooling towers, Attachment C cites a 2002 article finding that a cooling tower's PM2.5 emissions are less than one percent of its PM10 emissions. For its calculations, GREC assumed conservatively that its tower's PM2.5 emissions would be 15 percent of its PM10 emissions. Attachment C restates that, primarily due to the low elevation for fugitive PM emissions, the maximum PM10 impacts would be at the GREC fenceline. However, again taking a worst- case scenario, GREC assumed that all of its PM10 emissions would be stack emissions and that the BFBB PM emissions would coincide with all other PM emissions from the GREC facility. Adjusting the background PM2.5 data to remove the data for 2007, due to the pollution caused by extensive wildfires, GREC determined that, despite all of its conservative assumptions, in some instances resulting in worst-case assumptions, the GREC facility's PM2.5 emissions, when combined with background levels, would be below the 24-hour PM2.5 national AAQS. For this reason, responding to another EPA comment, GREC rejected the need for more additional impacts analysis. DEP's Technical Evaluation On July 14, 2010, DEP issued its Technical Evaluation. The Technical Evaluation identifies four specific elements for the control of fugitive emissions: the use of the first- in/first-out method for biomass and the telescoping chute to minimize drop lengths onto wood pile, use of BMPs and design features to control fugitive emissions from conveyor system, use of enclosures for dust collectors and (where possible) telescoping chutes, and wetting of wood piles and roads, as needed. For the handling of fly ash, the Technical Evaluation notes that a baghouse or similar filter will control fugitive PM emissions from the fly ash silo, and BMPs will be used to minimize PM emissions while loading trucks. For the BFBB, the Technical Evaluation identifies several elements for the control of emissions. The BFBB design, especially its efficient combustion, will control the formation of PM, CO, and VOCs, as well as HAPs. The fabric filter baghouse will control PM2.5 and PM10 emissions. Because the biomass fuel with be low in sulfur, SO2 and SAM emissions will be controlled. These emissions will also be controlled by reaction with the alkaline fly ash and DSI. The SCR will control NOX and VOCs. Low-chloride biomass fuel will control HAPs. HAPs will also be controlled by reaction with alkaline fly ash, DSI, the fabric filter baghouse, and SCR. And drift eliminators will control PM emissions from the cooling tower. The Technical Evaluation finds that the GREC facility is a major stationary source, under NSR/PSD, because it has the potential to emit 100 tpy of any PSD pollutant and is in one of 28 categories of major PSD facilities. The Technical Evaluation explains that, for major modifications of existing major stationary sources, PSD applicability depends on whether significant emission rates will be met. For net emissions exceeding these rates, an applicant must provide BACT for each pollutant exceeding its significant emission rate. The Technical Evaluation notes that PM2.5 is a PSD pollutant, but its significant emission rate has not yet been set, at least in Florida, so PM2.5 is regulated by its precursors and surrogates, including SO2, NOX, and PM/PM10. For the NOX and SO2 emissions of, respectively, 418.1 and 170.7 tpy, the Technical Evaluation discloses that, on July 12, 2010, DEP issued a permit to GRU imposing enforceable reductions in its Deerhaven NOX and SO2 emissions of, respectively, 418 and 171 tpy. In fact, based on a 2007 permit issued to GRU, DEP and GRU expect future reductions at Deerhaven in NOX and SO2 emissions of, respectively, 7139 and 3262 tpy. The air pollution control system permitted in 2007 will, in the long term, result in reductions of SAM and mercury, in excess of the GREC facility's emissions of these two pollutants, but DEP did not consider these offsets because of the lack of CEMS and enforceability. The Technical Evaluation thus concludes that, on a net basis, the GREC facility will emit PM/PM10, CO, and VOCs in excess of their respective PSD significant emission rates. The unnetted emissions of SAM are slightly below its significant emission rate. Although not shown on the table, the emissions of mercury are more than one order of magnitude less than its significant emission rate. Thus, GREC is subject to PSD ambient air modeling and BACT for PM/PM10, CO, and VOCs. The Technical Evolution relies on GREC's revised projections of HAPs with HCl and HF each at 9.72 tpy and total HAPs at 24.7 tpy. The Technical Evaluation concludes that the GREC facility, without regard to the Deerhaven facility, fails to trigger case-by-case MACT review because it is just under the thresholds of 10 tpy for any single HAP and 25 tpy for all HAPs. The Technical Evaluation notes that the 2007 air pollution control system permitted to GRU would result in reductions of HCl and HF greater than GREC's emissions of these two HAPs, but these offsets may not be considered in calculating the HAPs increases from the GREC facility due to the lack of a netting procedure in NESHAP. Reporting that GREC requested that the Air Construction Permit limit NOX and SO2 emissions even though, after netting, such limits were no longer required, the Technical Evaluation compares the GREC facility's emissions caps of these two PSD pollutants with the emissions caps of these two pollutants by other facilities. The GREC facility's emissions caps are lower than most other facilities, including the Nacogdoches biomass plant and another biomass plant in Ft. Gaines, Georgia, which are similar in size to the GREC facility. The biomass for the GREC facility will contain two orders of magnitude less sulfur than the coal burned at Deerhaven. For SAM, DEP imposed a limit of 6.6 tpy because the GREC projection of 5.9 tpy was close to the significant emission rate for SAM of 7 tpy. For the PSD pollutants requiring BACT, the Technical Evaluation observes that GREC has adopted a strategy in the BFBB of emphasizing the control of NOX, even where this means reduced control of VOCs and CO. Noting that the addition of an oxygen catalyst could reduce VOCs and CO, the Technical Evaluation reports that GREC chose instead SCR, which is superior to another system that its affiliate used at the Nacogdoches facility. With the ensuing reductions of NOX, GREC was able to retune the BFBB to back off the NOX control in order to gain additional control of VOCs and CO, which are emitted at slightly lower rates than the rates at the Nacogdoches and Ft. Gaines facilities. Due to the ongoing need to fine tune the BFBB combustion processes and the SCR, the Technical Evaluation notes that GREC agreed to tiered limits of VOCs and CO emission rates. Also, the Technical Evaluation provides that CO compliance will be measured by a CEMS, and VOCs compliance will be measured by an annual test. For PM/PM10/PM2.5, the Technical Evaluation reports that burnout of the constituents of these pollutants is superior in a BFBB than a stoker furnace. Because more-complete combustion reduces the risk of fires in the pollution control equipment, the BFBB permits GREC to use a baghouse to produce lower PM/PM10 limits and to minimize direct emissions of PM2.5. The Technical Evaluation states that the most effective control technologies for PM are fabric filters and electrostatic precipitators, but the former provide better control of fine PM. The Technical Evaluation identifies as supplementary control strategies the minimization of PM2.5 and visible emission precursors by limiting SO2, NOX, ammonia, VOCs, and chlorides. The Technical Evaluation notes that GREC's BACT proposal for filterable PM/PM10 is the NSPS of 89 tpy based on a fabric filter baghouse. The Technical Evaluation adds that GREC estimated 250 tpy for total PM/PM10, including filterable and condensible PM/PM10. Given the BFBB, baghouse, DSI, and SCR, DEP did not expect the emissions of filterable and condensible PM/PM10 to be as high as projected by GREC and expected these emissions to be below those of the Nacogdoches and Ft. Gaines facilities, which projected PM/PM10 emissions at rates about 75 and 43 percent, respectively, of the rate of these emissions at the GREC facility, even though it would emit less NOX and SO2 and would be equipped with a superior catalytic control system. DEP elected the NSPS limit for PM/PM10, but warned that the GREC facility will eventually need to comply with a filterable PM NSPS limit that, when initially proposed by EPA, was about half the emissions rate proposed by GREC. The Technical Evaluation requires compliance by initial and annual stack testing using EPA Method 5 or 17 for filterable PM/PM10 emissions and EPA Method 202 for filterable and condensible PM/PM10 emissions. The Technical Evaluation adds that a visible emissions limit of 10 percent opacity over a six-minute average, except for one six-minute period of not more than 20 percent opacity, which is BACT, will be demonstrated by the continuous opacity measurement system. The Technical Evaluation states that GREC has incorporated BACT into its proposal concerning PM2.5. This finding is based on the BACT limits for PM/PM10, CO, and VOCs; low emissions of SO2 and NOX; enforceable reductions in PM2.5 precursors from Deerhaven; the visible emissions limit, which controls the fraction of PM2.5 that interferes with light transmission; and limits on ammonia and HCl. Controlling SO2, NOX, CO, VOCs, chlorides, and ammonia controls PM2.5 because these pollutants are PM2.5 precursors. For HCl, the Technical Evaluation acknowledges that DSI and the fabric filter will control emissions, for which DEP will require a CEMS. For HF, the Technical Evaluation notes that the fly ash interaction, DSI, and the fabric filter will control emissions, for which DEP will also require a CEMS. For the four metallic HAPs, phosphorus, chromium, manganese, and lead, and nine organic HAPs, which exclude dioxins or furans, DEP will require initial and annual stack tests. For PM, the Technical Evaluation reviews the BMPs for biomass fuel delivery, preparation, storage, and handling. As for the quality of the biomass accepted at the GREC facility, the Technical Evaluation notes that GREC will contractually obligate its suppliers to provide biomass that conforms to the biomass described in the Air Construction Permit. The Technical Evaluation states that GREC must inspect each shipment of biomass and reject nonconforming biomass. GREC must document each shipment and document rejected shipments, including the ultimate disposition of such shipments. Discussing the three PSD pollutants--VOCs, CO, and PM/PM10--that the GREC facility will emit in excess of PSD significant emission rates, the Technical Evaluation approves of GREC's use of PM10 as a surrogate for PM2.5, especially due to the enforceable reductions at Deerhaven of SO2 and NOX. The Technical Evaluation reports that, between 2007 and 2009, Florida's power plants reduced their SO2 and NOX emissions by 38 percent and 54 percent, respectively. Agreeing with GREC that the only pollutant emissions to exceed their significant impact levels will be PM/PM10 for Class II areas, but not Class I areas, the Technical Evaluation also agrees with GREC that no purpose would be served by requiring preconstruction air monitoring for PM because of the low emissions of these pollutants by the GREC facility and the existence of adequate monitoring for PM in Alachua and Putnam counties, which disclose attainment with national AAQS for PM10 and PM2.5. In its multisource PSD Class II increment analysis, the Technical Evaluation explains that the PSD increment is the amount by which new sources may increase ambient ground level concentrations from a baseline concentration. For PM10, the Technical Evaluation agrees with GREC's modeling that the 24- hour and annual averages would not come close to the maximum allowable increment. Likewise, the Technical Evaluation agrees with GREC that its PM10 impacts would not come close to national or state AAQS for this pollutant. Lastly, the Technical Evaluation agrees with GREC in terms of additional impacts. The Technical Evaluation states that the GREC facility will not have an adverse impact on soils, wildlife, or vegetation. The Technical Evaluation reports that the U.S. Fish and Wildlife Service did not require an AQRV analysis due to the facility's low emissions. Based on its analysis, the Technical Evaluation found that the Application, as amended and conditioned by the Air Construction Permit, meets all federal and state air pollution control requirements. Air Construction Permit Draft Air Construction Permit Section 1 highlights the GREC facility's pollution control technology: the efficient combustion of clean woody biomass in the BFBB to minimize formation of PM/PM10/PM2.5 (which is referred to as PM in the draft Air Construction Permit), NOX, CO, and VOCs; limitation of biomass to clean woody biomass to minimize the formation of SO2 and HAPs, including HF and HCl; injection of ammonia into the SCR to SCR to destroy NOX; use of DSI and alkaline fly ash to control SO2, HF, and HCl; installation of fabric filter baghouse to control PM and remove injected sorbents; implementation of BMPs to minimize fugitive PM emissions from biomass handling, storage and processing, ash handling, storage and shipment and alkaline sorbent handling, storage, and processing; and appropriate design of draft cooling tower to minimize drift (PM). For emissions monitoring, draft Air Construction Permit Section 1 identifies the following: CEMS for CO, SO2, NOX, HCl, and HF and a continuous opacity measuring system for visual emissions. Draft Air Construction Permit Section 1 notes that GRU's Deerhaven facility is a major source of HAPs, but the GREC facility itself is not a major source of HAPs. The draft Air Construction Permit states that the GREC facility is a major stationary source under the NSR/PSD program and is subject to NSPS and NESHAP, under the Clean Air Act. Draft Air Construction Permit Section 2, Specific Condition 11 provides: No person shall cause . . . or allow the emissions of unconfined particulate matter from any activity, including vehicular movement; transportation of materials; construction, alteration, demolition, or wrecking; or industrial related activities such as loading, unloading, storing, or handling; without taking reasonable precautions to prevent such emissions. . . . Appendix BMP . . . provides a Best Management Plan of reasonable precautions specific to the GREC facility to control fugitive PM emissions. General reasonable precautions include the following: a. Paving and maintenance of roads, parking areas and yards; b. Application of water or chemicals to control emissions from such activities as demolition of buildings, grading roads, construction, and land clearing; c. Application of asphalt, water, oil, chemicals or other dust suppressants to unpaved roads, yards, open stock piles and similar activities; d. Removal of particulate matter from roads and other paved areas under the control of the owner or operator of the facility to prevent re- entrainment, and from buildings or work areas to prevent particulates from becoming airborne; e. Landscaping or planting of vegetation; f. Use of hoods, fans, filters, and similar equipment to contain, capture and/or vent particulate matter; g. Confining abrasive blasting where possible; and h. Enclosure or covering of conveyor systems. Draft Air Construction Permit Section 3.A applies to the emissions unit of biomass delivery, preparation, storage, and handling. Section 3.A describes the unit as consisting of three truck dumpers, two sets of screens and hogs, and automatic and manual stackers to maintain, on average, a 15-20 day supply of biomass based on full load operation and average biomass fuel moisture content. Noting that suppliers will initially chip, ground, and otherwise process the biomass at offsite locations before trucking it to the GREC facility, Section 3.A reports that 130-150 fuel truck deliveries are expected daily, six days per week. During peak periods, the GREC facility is expected to handle 24 truckloads of biomass per hour. By design, the maximum processing rate is 600 tons per hour with a maximum yearly rate of 1.395 million tons. Draft Air Construction Permit Section 3.A describes the four wood piles. The automatic stacker/reclaimer pile will be 85 feet high--the draft Air Construction Permit does not incorporate the 60-foot height restriction added at the hearing--with a storage capacity of 125,000 cubic yards of fuel. The stock pile will be shaped like a cone, 60-feet high, and capable of storing 8500 cubic yards of fuel. This pile will be fed with a fixed stacker, including a telescoping chute to minimize drop distances. The second storage pile will be 35 feet high with a storage capacity of 79,000 cubic yards of fuel. Rolling stock will transfer fuel from the stock pile to the second storage pile. A fourth, small pile will be for sawdust, which will be delivered, moist, by trucks to an open area adjacent to the second storage pile. Front-end loaders will reclaim the sawdust. Draft Air Construction Permit Section 3.A.1 authorizes the construction of biomass delivery, unloading, and processing equipment consisting of truck scales, a fully enclosed building containing surge bins, size disc screens and hogging equipment, three drive-through truck dumpers with receiving hoppers, six conveyors to transport the biomass from the truck dumpers to the fuel handling and storage system, a metal detector and self- cleaning magnetic separator on the conveyor entering the screen/hog building, two surge bins and two reclaimers within the screen/hog building to accept the biomass from the conveyors from the truck dumpers, two sizing discs in the screen/hog building to screen any oversized biomass and send it to the hogs for reduction to design size, and two hogs in the screen/hog building to reduce the size of any oversized biomass. Draft Air Construction Permit Section 3.A.2 authorizes the construction of biomass fuel handling and storage system equipment consisting of a stacker/reclaimer system for the first storage pile, a telescoping chute for the stock pile, two conveyors to transport the fuel to the stacker/reclaimer pile, a telescoping chute for the stock pile, five conveyors to transfer the fuel from the two storage piles to the BFBB bins, and scales and magnetic separators for some of the conveyors. The two BFBB bins will store sufficient biomass for 45 minutes of boiler operation and will be equipped with bin vent filters to control PM emissions. Draft Air Construction Permit Section 3.A.3 provides for the control of fugitive PM by the use of enclosed conveyors, where practical, and installation of dust collectors on conveyor drop transfer points, also where possible. One exception to the enclosure of the conveyors is a small section near the truck dumpers to allow visual inspection of biomass to ensure that the GREC facility has accepted conforming loads. Section 3.A.3.a requires the addition of a baghouse to the screen/hog building to control PM emissions, and the installation of a screw conveyor to transfer the PM captured in the baghouse to the conveyor taking the biomass to the biomass fuel handling and storage system. Section 3.A.3.b requires the installation of bin vent filters to control PM emissions from the boiler bins. Draft Air Construction Permit Section 3.A.4 requires a BMP plan to control fugitive emissions from this emissions unit. The BMP plan will include provisions to ensure that the biomass conforms to the qualitative standards imposed by the draft Air Construction Permit. A draft BMP plan is attached to the draft Air Construction Permit, but GREC must provide DEP with a final BMP plan at least 180 days prior to opening the facility. The draft BMP plan addresses fugitive emissions, pile management, and fire prevention. After reciting the clean woody biomass materials that are permitted, as noted above, the draft BMP plan prohibits wood that has been chemically treated or processed, yard trash, paper, treated wood such as CCA or creosote, painted wood, and wood from landfills. The draft BMP plan does not explicitly prohibit the acceptance of construction and demolition debris, although GREC offered at the hearing to add this prohibition. The draft BMP plan requires the covering or partial enclosure of conveyor systems and drop points for biomass. The hoppers into which biomass trucks deliver their loads must be covered for dust control. The hoppers will be in a divided enclosure with roll-up entry doors, slitted curtains at the exit doors, and stilling curtains in the upper roof area. Processing equipment will be in an enclosed building, identified above as the screen/hog building, which will be equipped with local ventilation and ducted to a fabric filter dust collector. Drop points to the wood piles will be designed to minimize the overall exposed drop height by using telescoping discharge spouts. Boiler fuel bins must be equipped with bin vent filters. GREC staff will conduct daily observations of the conveyor system and drop point integrity to ensure proper operation. All major roads at the GREC facility will be paved. GREC staff will promptly remove excessive mud, dirt, or similar debris from the paved roads. All paved roads and gravel areas will be wetted as needed to minimize fugitive dust emissions. GREC shall manage and maintain the biomass storage areas to avoid excessive wind erosion. Ninety days after the plant becomes operational, GREC shall submit to DEP a fugitive dust management plan for the biomass storage area. Front-end loaders and other equipment will minimize movement of the biomass on high wind event days. When necessary to minimize fugitive dust emissions, GREC will wet the biomass before moving it with front-end loaders and other equipment. GREC staff shall observe the biomass storage areas daily to determine if they need to implement elements of the fugitive dust management plan. GREC staff will work with the Gainesville Fire Department to develop a Fire Management Plan. GREC will avoid spontaneous combustion and odors by rotating the biomass in the wood piles. The stacker/reclaimer pile will be divided into zones to facilitate the removal of the oldest biomass first. The fuel yard manager will do the same with the manual pile. Compaction of the biomass will be minimized. To assure that the qualitative biomass specifications are met, GREC will require that suppliers perform most of the processing offsite. For each shipment of biomass, GREC must record the date, quantity, and description of the material received. GREC must inspect each shipment for nonconforming materials, and GREC must reject or segregate such material, if it is discovered. GREC must maintain records of rejected shipments and their disposition. Draft Air Construction Permit Section 3.A.6 specifies the qualitative standards for the biomass. GREC may receive only "in-forest residue and slash," which are defined as "tops, limbs, whole tree material and other residues from soft and hardwoods that result from traditional silvicultural harvests"; "mill residue," which is defined as "saw dust, bark, shavings and kerf waste from cutting/milling whole green trees; fines from planing kiln-dried lumber; wood waste material generated by primary wood products industries such as round-offs, end cuts, sticks, [and] pole ends; and reject lumber as well as residue material from the construction of wood trusses and pallets"; "pre-commercial tree trimmings and understory clearings," which are defined as "tops, limbs, whole tree material and other residues that result from the cutting or removal of certain, smaller trees from a stand . . .; and forest understory which includes smaller trees, bushes and saplings"; "storm, fire and disease debris," which are defined as "tops, limbs, whole tree material and other residues that are damaged due to storms, fires or infectious diseases"; "urban wood waste," which is defined as "tree parts and/or branches generated by landscaping contractors and power line/roadway clearance contractors that have been cut down for land development or right-of-way clearing purposes"; "recycled industrial wood," which is defined as "wood derived from used pallets packing crates; and dunnage disposed of by commercial or industrial users"; and "supplementary fuel material," which is defined as "herbaceous plant matter; clean agricultural residues (i.e. rice hulls, straw, etc.: no animal wastes or manure); and whole tree chips and pulpwood chips." Draft Air Construction Permit Section 3.A.8-13 describes visible emissions limits and opacity testing that GREC must perform. The description conforms to the limits described above. Draft Air Construction Permit Section 3.B applies to the BFBB. Section 3.B provides that the maximum heat input capacity is 1358 mmBTU per hour on a four-hour average basis. The BFBB's steam production capability will be 650,000 to 930,000 pounds per hour. Section 3.B repeats the description of the pollution-control technology contained in the introduction of the draft Air Construction Permit, adding only that the fabric filter baghouse will have a design efficiency of 99.99 percent to control PM and visible emissions. Draft Air Construction Permit Section 3.B describes the stack as 12 feet in diameter and at least 230 feet tall. It will release flue gas with a temperature of about 310 degrees at a volumetric flow rate of 520,600 actual cubic feet per minute. Draft Air Construction Permit Section 3.B requires CEMS for CO, NOX, SO2, HCl, and HF, as well as continuous opacity monitoring systems for visible emissions. Draft Air Construction Permit Section 3.B.1 describes the BFBB. Section 3.B.2.a requires the addition of a fabric filter baghouse to control PM and visible emissions. Section 3.B.2.b requires the addition of an ammonia-based SCR to reduce NOX emissions. Section 3.B.2.c requires the addition of DSI to control the emissions of SO2 and HAPs, particularly HCl and HF, although there seems to be no mention of the trona sorbent that GREC selected, after submitting the original application, to achieve greater pollution control. The 24-hour average from CEMS of SO2, HCl, and HF will be monitored daily by trained staff to determine if adjustments are required to DSI to assure that emissions of these pollutants do not exceed the limits stated in the draft Air Construction Permit. GREC must report these emissions data quarterly to DEP. Draft Air Construction Permit Section 3.B.9 states the emissions limits for the BFBB and the applicable tests. Selected limits are: NOX--416.4 tpy--12-month CEMS; SO2--170.7 tpy--12-month CEMS; SAM--1.4 lb/hr--initial and annual stack test; CO--0.12/0.18 lb/mmBTU--30-day CEMS; HCl--9.72 tpy-- 12-month CEMS; HF--9.72 tpy--12-month CEMS; HCl, HF, organic HAPs, and metallic HAPs--24.7 tpy--12 month CEMS plus initial and annual stack tests; visible emissions--10 percent opacity-- continuous opacity monitoring system and initial stack test; VOCs--0.01/0.009 lb/mmBTU--initial and annual stack test; and heat input rate--1,358 mmBTU/hr--four-hour average. "Lb/mmBTU" means pounds per million BTU heat input. The alternative values for CO and VOCs state the limit for the first 360 calendars after certification of the CEMS followed by the limit thereafter and allow GREC time to fine tune the BFBB and air pollution control technology. Draft Air Construction Permit Section 3.B.13 requires GREC to install, calibrate, maintain, and operate CEMS for SO2, NOX, CO, HCl, and HF, as well as a diluent monitor for either CO or oxygen, from the boiler stack to show compliance with Section 3.B.9. This section provides the standards for certification, operation, maintenance, and recordkeeping for each CEMS. Draft Air Construction Permit Section 3.B.18 provides that the initial and annual stack tests shall be conducted between 90 and 100 percent of maximum heat input rate. A note states that the initial test must be done at 90 to 100 percent of permitted capacity, but the draft Air Construction Permit will be modified to reflect true maximum capacity, as constructed, so, implicitly, the annual tests will be based on the adjusted maximum heat input rate. Draft Air Construction Permit Section 3.B.19 provides similarly for HAPs. Draft Air Construction Permit Section 3.B.20 identifies the EPA Method stack tests and calculations for various emissions. EPA Method 320 is for the measurement of Vapor Phase Organic and Inorganic Emissions by Extractive Fourier Transform Infrared Spectroscopy. EPA Methods 5, 5B, and 17 are for the measurement of PM. EPA Methods 201 and 201A are for the measurement of PM10. All but one of the EPA Methods are specified in 40 CFR Part 60, Appendix A. Despite the statement in the Technical Evaluation that DEP would require GREC to use EPA Method 202 to measure filterable and condensible PM emissions, the draft Air Construction Permit omits this test, as well as any other test for filterable and condensible PM emissions. Draft Air Construction Permit Sections 3.B.22 and 23 require GREC to continuously measure and record pressure drops across each baghouse compartment controlling PM boiler emissions. Draft Air Construction Permit Section 3.B.25 specifies the information to be contained in the stack test reports submitted to DEP. Section 3.B.26 provides that GREC will submit to DEP monthly records of the hours of operation of the BFBB, tons of woody biomass burned, cubic feet of natural gas burned (for start-ups), pounds of steam, total heat input rate, hourly heat input rate to the BFBB, and the updated 12- month rolling results for each of these parameters. Draft Air Construction Permit Section 3.B.27 provides that GREC will submit to DEP quarterly records of CO, NOX, SO2, HCl, HF, and opacity emissions. Draft Air Construction Permit Section 3.C pertains to ash handling, storage, and shipment. Section 3.C states that about two-thirds of the ash created by the combustion of the biomass will leave the BFBB as fly ash and the remaining one- third will leave as bottom ash. Fly ash from the boiler connective pass and baghouse hoppers will be collected dry and transported pneumatically to a single fly ash storage silo by means of two vacuum blowers. The transferred fly ash will first pass through a receiver/collector that will separate the fly ash from the conveying air stream. After passing through an air lock valve, the fly ash will be deposited into the storage silo, which will be vented through a baghouse to control PM emissions. The fly ash will either be stabilized with water or loaded dry into a receiving truck. If stabilized with water, the ash will be transferred by chute into covered trucks, which will haul it offsite for reuse or disposal. If transferred dry, the ash will be transferred by an enclosed process by chute into sealed trucks. Draft Air Construction Permit Section 3.C states that bottom ash from the bed will consist primarily of noncombustible materials (e.g., rocks, glass, sand, and metal) from the biomass fuel. The coarse bottom ash will be removed from the BFBB through ash hoppers and chutes. The coarse material will be sieved in a rotating screen prior to conveyance to the bottom ash container. The contents of this container will be taken offsite for disposal at a properly licensed landfill. Draft Air Construction Permit Section 3.C.1 authorizes GREC to construct an emissions unit consisting of the above-described equipment for the handling, storage, and shipment of fly and bottom ash. Section 3.C.2 requires GREC to install and operate, where practical, enclosed conveyors for bottom and fly ash to minimize fugitive PM and, where practical, dust collectors on the bottom and fly ash transfer points, drop points, hoppers, and chutes. Section 3.C.2 requires GREC to design, install, and maintain a baghouse to remove PM from the fly ash storage silo exhaust. This baghouse will achieve a PM emission rate of 0.15 grains per dry standard cubic foot. Draft Air Construction Permit Section 3.C.4 provides that the maximum design transfer rate of the fly ash handling system will be 3.2 tons per hour with a maximum annual design transfer rate of 27,594 tpy. Section 3.C.5 provides that the maximum design transfer rate of the bottom ash handling system will be 1.5 tons per hour with a maximum annual design transfer rate of 13,140 tpy. The overall ash handling, storage, and shipment system will have a maximum annual design transfer rate of 40,734 tpy. Draft Air Construction Permit Section 3.C.7 imposes a 10 percent opacity limit from the bottom and fly ash conveyors, transfer points, drop points, hoppers, chutes, and dust collectors, except for a 20 percent rate for one six-minute period per unspecified period of time. Section 3.C.8 limits PM emissions from the baghouse of the fly ash silo to 0.15 grains per dry standard cubic foot. Draft Air Construction Permit Sections 3.C.11 and 12 pertain to initial and annual testing for visible emissions. Section 3.C.13 provide that these tests sill serve as a surrogate for PM emissions tests. If the visible emissions standard is unmet, a PM test using EPA Method 5 must be conducted on the baghouse stack to show compliance with the PM emissions standard specified in Section 3.C.8. Section 3.C.14 requires GREC to maintain continuous operation of bag leak detection systems on the fly ash storage silo baghouse. Draft Air Construction Permit Section 3.D describes the cooling tower as a four-cell, mechanical, draft-type tower with high efficiency fill and drift eliminators. Cooling tower evaporation loss at maximum load is estimated to be 1.34 million gallons per day. GREC will obtain makeup water from two onsite wells drilled to the Floridan aquifer. Draft Air Construction Permit Section 3.E describes an emergency diesel generator with a maximum design rating of 564 kW. Draft Air Construction Permit Section 3.F describes an emergency diesel firewater pump engine with a maximum design rating of 275 hp. In addition to the draft BMP plan, described above, the draft Air Construction Permit contains several other appendices. Appendix CEMS requires GREC to evaluate the acceptability of each CEMS by conducting a performance specification. Appendix CEMS Section 8 provides: for CO CEMS, GREC will use EPA Performance Specification 4 or 4A; for NOX and SO2 CEMS, GREC will use EPA Performance Specification 2; for HCl, GREC will use EPA Performance Specification 15, Method OTM 22, or alternative specification approved by DEP; and for HF, GREC will use EPA Performance Specification 15, Method OTM 22, or alternative specification approved by DEP. The EPA performance specifications are found at 40 CFR Part 60, Appendix B. Appendix CEMS Section 9 requires GREC to implement EPA quality assurance procedures found at 40 CFR Part 60, Appendix F. These apply to each pollutant mentioned in the preceding paragraph. Appendix CTR covers common testing requirements. Appendix CTR Section 1 requires that emissions tests take place with the emissions unit, such as the BFBB, operating at permitted capacity, which is defined as 90 to 100 percent of the maximum operation rate allowed by the final Air Construction Permit. Appendix CC covers common conditions. Appendix CC Section 10 provides that GREC will comply with changes in Florida statutes and DEP rules after "a reasonable time for compliance." Other Findings Dioxin Petitioners claim that GREC has failed to provide reasonable assurance that the proposed facility protects public health and the environment from emissions of dioxins, including furans and PCBs, and the draft Air Construction Permit fails to impose emissions limits for dioxins. Dioxins are not among the pollutants covered under national AAQS. Dioxins are classified as HAPs, but, unlike the situation with HCl and HF, Petitioners do not contend that DEP incorrectly concluded that dioxin emissions would be under 10 tpy. Instead, Petitioners claim that the projected emissions of dioxins by the GREC facility, although indisputably well under 10 tpy, are nonetheless high enough to endanger public health and the environment. Dioxins are compounds that result from the combustion of chlorine-containing materials, including wood. The family of "dioxins" includes furans and polychlorinated biphenyls (more commonly known as PCBs), which all are within the family of persistent organic pollutants. Common sources of dioxins include boilers, electrical power plants, municipal and medical waste incinerators, crematoriums, cement kilns, forest fires, household fireplaces, cigarette smoking, pulp production, and open burning. Dioxins have been associated with cancer and disorders of the immune, skin, digestive, and reproductive systems, where dioxins may act as endocrine disruptors. Work with rats suggests that a major effect of excessive dioxin exposure in utero is upon the reproductive system of the fetus. Dioxins are persistent. Their half lives in the environment range from 30 to 40 years. Because they are hydrophobic and accumulate in fatty tissue, dioxins enjoy half lives of 7-12 years in humans. Humans acquire dioxins by breathing, skin contact, consuming water, consuming food, breastfeeding, and transplacental movement while in utero. The last three means are the principal routes of human exposure. The virtually safe dose, or reference dose, for dioxins is low: one picogram per kilogram per day. One picogram is one-trillionth of one gram. An EPA work in progress may lower this reference dose to 0.7 picograms per kilogram per day. For the late 1990s, the EPA estimated that the average American acquired 6-10 picograms per kilogram per day, later reducing this estimate to 6-8 picograms per kilogram per day. The EPA estimate for children, including breast-fed infants, is five to seven times higher, around 40 picograms per kilogram per day. This is about 60 times higher than the virtually safe dose. However, the trends for dioxin levels are good. In its 2006 reassessment of dioxin, the EPA reported that dioxin levels in the environment had decreased by over 90 percent since the late 1980s. Over roughly the same period, the Centers for Disease Control reported that dioxin concentrations in human blood had decreased 80 percent, although decreases in dioxin concentrations in human fatty tissue over the same period of time are likely less. To some extent, dioxin emissions will be limited by the pollution control equipment, especially the redesigned fabric baghouse and SCR catalyst, which, according to the Technical Evaluation, will help destroy VOCs and is a documented strategy for dioxin control. Also, the temperature of the air leaving the stack will be about 310 degrees--90 degrees below the temperature at which dioxins form. GREC has provided reasonable assurance that the GREC facility will not emit dioxins in significant amounts. Thomas Davis is the principal engineer of GREC's consultant, ECT. Mr. Davis, who has considerable experience in air pollution control technology, analyzed the potential for dioxin emissions from the GREC boiler. Mr. Davis found five, operational fluidized bed boilers for which relevant data were available on the rate of dioxin emissions. He then applied the derived emissions rate to the GREC boiler. Mr. Davis determined that the GREC boiler will likely emit .11 grams per year of all dioxins and about .012 grams per year of 2,3,7,8 TCDD, the most potent dioxin. Expressed in another way, the .11 grams per year of total dioxins emitted by the GREC boiler is 110,000,000,000 picograms per year or 301,369,860 picograms per day. If the average person--young and old--weighs 50 kilograms, this emission rate translates to about 6 million picograms per kilogram per day. If the population of Alachua County were 250,000 persons, then the daily exposure, without regard to dispersion patterns, would be 24 picograms per day. For many reasons, 24 picograms of dioxins per kilogram per day of exposure represents only a starting point in the calculations necessary to grasp the limited extent of the dioxin exposure posed by the GREC boiler. An adjustment of one order of magnitude is suggested by the fact that Mr. Davis calculated the emissions rate of most toxic 2,3,7,8 TCDD at one- tenth the rate of the dioxins family. This means that the most toxic dioxin is produced at the rate of only 2.4 picograms per kilogram per day. A larger adjustment is required because the GREC biomass plant will displace substantial open burning that presently takes place in North Florida. The result will be a large net reduction in dioxin emissions. How much and over what area is hard to say, partly due to the replacement of dispersed burning with point-source combustion. The record supports an estimate that about half of the biomass to be combusted by GREC would have been open burned. Using this estimate, the open burning of this biomass would have produced dioxin emissions of 3-8 grams per year. GREC has effectively replaced these dioxin emissions with .11 gram per year. And, if the dispersed dioxin emissions displaced by the GREC facility were closer to agricultural areas, given the role of food consumption, not inhalation, as the primary means of consumption, another adjustment downward in effective dose would be necessary. Calculations by two witnesses support GREC's reasonable assurance of the insubstantiality of the impact posed by the GREC boiler in terms of dioxins. Mr. Davis calculated dioxin dispersal patterns for air and deposition and found that the average annual maximum concentration was .000000000149 micrograms per liter of air per and the average annual wet and dry deposition rate was .0000000000206 grams per square meter. These are reassuringly low numbers. Making more elaborate dioxin calculations, Dr. Christopher Teaf, an expert in environmental chemistry, toxicology, and human health risk assessment, performed a large number of calculations in the most conservative manner possible, such as by assuming that all dioxins were 2,3,7,8 TCDD and treating the emissions from the GREC boiler as new emissions (i.e., disregarding the fact that GREC's dioxin emissions displace far higher dioxin emissions from open burning). Dr. Teaf showed that air concentrations and wet and dry deposition rates were well below--usually, by one or more orders of magnitude--recently published EPA regional screening levels for air, water, and soil. Petitioners' contention for a limitation on dioxins emissions in the Air Construction Permit misses a couple of points. The GREC boiler will result in a net reduction in dioxin emissions, and, even without regard to the netting, GREC has provided reasonable assurance that the GREC facility's dioxin emissions are not, themselves, significant. GREC has provided reasonable assurance that the GREC facility adequately protects the public health and environment from emissions of dioxins, including furans and PCBs, and, based on the circumstances of this case, the Air Construction Permit is not required to contain a dioxins emissions limit. Mercury Petitioners claim that GREC has failed to provide reasonable assurance that the proposed facility protects public health from emissions of mercury. Mercury is not among the pollutants covered under national AAQS. Although not a PSD pollutant, as noted above, NSR/PSD sets a significant emission rate for mercury, and the mercury emissions of the GREC facility will not exceed this rate. Although a HAP, mercury, like dioxins, is not emitted at rates anywhere near the 10 tpy threshold. Instead, as with dioxins, Petitioners claim that the projected emissions of mercury by the GREC facility, although indisputably well under 10 tpy, are nonetheless high enough to endanger public health and the environment. The biomass fuel contains trace amounts of mercury. Combustion at 1500 degrees vaporizes the mercury into gaseous elemental mercury. Subsequent cooling may produce elemental mercury, particle-bound mercury, and oxidized mercury compounds, which is also known as reactive gaseous divalent mercury (RGM). The baghouse filters might capture some of these mercury emissions, although GREC's analysis conservatively assumed that they would not. Of the 16.7 pounds per year of all forms of mercury projected to be emitted by the GREC biomass plant, about 70 percent of it, according to GREC's conservative assumptions, will be elemental mercury and 30 percent of it will be RGM. The former has long residence time in the atmosphere and travels long distances, and the latter deposits locally and regionally. By comparison, annual anthropogenic emissions of mercury in the United States were 145 tons in 2005, including 48 tons from power plant emissions. In 1999, mercury emissions from Florida coal-fired plants were 1923 pounds. Worldwide, anthropogenic emissions of mercury account for two-thirds of total mercury emissions, the remainder being from natural causes, such as volcanic eruptions and oceans. The Site Application considers wet and dry deposition rates of mercury in the Santa Fe River basin. After calculating an average areal wet deposition rate from the GREC facility, the Site Application concludes that it is 6000 times less than the average areal wet deposition at the nearest location for which such data are available. The Site Application also concludes that the wet plus dry deposition rate of mercury from the GREC facility will be 400 times less than the wet-only rate at the comparison location. Additionally, as noted above, the air pollution control system installed at Deerhaven will reduce mercury emissions by more than the increases caused by the GREC project. Because these decreases will not be subject to CEMS and will not be enforceable, DEP's NSR/PSD analysis could not net the GREC facility's mercury emissions against the corresponding decreases in mercury emissions at Deerhaven. However, the GREC facility will emit mercury at a rate over one order of magnitude less than the PSD significant emission rate for mercury. And, to the extent that Petitioners have questioned the safety of GREC's projected mercury emissions outside of NSR/PSD and NESHAP, then the limitations on netting do not preclude attaching significance to the fact that, when considered in conjunction with roughly contemporaneous pollution control improvements at Deerhaven, the GREC facility's mercury emissions are nonexistent. GREC has provided reasonable assurance that the GREC facility adequately protects the public health and environment from emissions of mercury. Netting of NOX and SO2 To Avoid BACT Petitioners claim that DEP improperly allowed GREC to net its NOX and SO2 emissions against enforceable reductions of NOX and SO2 by GRU at Deerhaven, so as to avoid BACT analysis. On July 12, 2010, DEP issued a permit to GRU imposing enforceable and permanent reductions on Deerhaven Unit 2's emissions of NOx and SO2--418 tpy of the former and 171 tpy of the latter. These reductions were achieved by GRU's installation of more effective pollution control technology. Under NSR/PSD, GREC may net out its emissions of NOx and SO2 by taking into account these offsetting GRU reductions because GREC and GRU constitute one major stationary source, under NSR/PSD permitting. Offsetting the increased emissions of GREC with the decreased emissions of GRU is authorized by the proximity of the two operations and their common operational control. Specifically, GRU controls GREC's operations through their power purchasing agreement, which gives GRU the authority to dispatch the power generated by the GREC facility, to determine when the biomass plant will start up and shut down, to control the amount of electricity that the GREC biomass plant will produce while operating, and to regulate the voltage of such electricity. GRU will supply the switchyard and transmission lines by which GREC-produced power will enter the power grid and will distribute GREC-produced power among GRU customers. GRU will also supply the natural gas that GREC requires for start-up and the electricity that GREC requires for start-up and stand-by operations. GRU even agreed to reduce its groundwater withdrawals by 1.4 million gallons per day, so GREC could withdraw an equal amount of groundwater for its operations. Contrary to Petitioners' contention, this aggregate treatment of GRU and GREC is not a legal fiction designed to circumvent BACT under the NSR/PSD program. On these facts, it would be much easier to prove that the independence of GREC is a legal fiction, or that GREC serves as GRU's contractor, ushering the biomass plant through certification, permitting, the acquisition of supplier contracts, and start-up, perhaps then to sell it to GRU at the same late stage that GREC's affiliate sold the Nacogdoches plant. But whatever the precise relationship between the two entities is, or proves to be, at this stage, without doubt, GRU controls GREC. Contrary to Petitioners' contention, the emissions reduction achieved by GRU at Deerhaven cannot somehow be disregarded in this case and "banked" as a gain in achieving cleaner air. From all appearances, GRU pursued this emissions reduction--and certainly the permit modification enforcing the emissions reduction against GRU permanently--for the same reason that it agreed to reduce its groundwater withdrawals. The reason is not an abundance of good will among corporate partners working shoulder to shoulder in providing America's power needs or a gestalt moment of environmental awareness. GRU effected this emissions reduction as a strategic decision to enable GREC to come online sooner and provide GRU with a reliable source of power from a plant much newer than any that it has in place at Deerhaven. This is the economic reality of the closer-than- armslength relationship that exists between GRU and GREC. The netting of NOx and SO2 emissions means that GREC effectively emits no such pollutants. But to put GREC's offset emissions into context, Deerhaven Unit 2 produces roughly 2.5 times the power that the GREC plant will produce. Even after the July 2010 emission reductions, Deerhaven Unit 2 is permitted to emit 3381 tpy of NOx emissions and 8005 tpy of SO2 emissions. If the GREC plant were scaled up to Deerhaven Unit 2's capacity and the NOX and SO2 emissions could be extrapolated linearly, the GREC biomass plant would produce about one-third as much NOx and one-twentieth as much SO2. Nothing in the record suggests that GREC's relatively low emissions of NOx and SO2--even without regarding to netting--presents a significant risk to human health or the environment. GREC has provided reasonable assurance that its NOx and SO2 emissions properly should be netted against offsetting reductions in these emissions at Deerhaven and that BACT analysis for these pollutants is thus unnecessary. Not Major Source of HAPs So No MACT Petitioners claim that DEP improperly determined that the GREC facility will not be a major source of HAPs, so DEP improperly relieved GREC of the burden of demonstrating case-by- case MACT. As noted above, originally, GREC stated that its emissions of HCl and HF, as well as total HAPs, were sufficiently high to trigger MACT case-by-case review. Originally, the HCl and HF emissions were projected to be 36 tpy and 71 tpy, respectively, and total HAPs were 114 tpy. However, after DEP representatives advised GREC representatives that their HCl and HF projections seemed very high, based on DEP's experience with comparable facilities, GREC representatives met with representatives of the boiler manufacturer, Metso, to determine if they could implement more stringent emission control technology. The purpose was to reduce HAPs emissions to levels more in line with DEP's experience, which would be sufficiently low to avoid triggering MACT case-by-case review. The means by which GREC and Metso achieved this reduction essentially constituted MACT. The difference was that, by following DEP's recommendations, GREC was able to avoid months of formal MACT analysis. On February 2010, GREC presented to DEP a revised set of projections of HAPs emissions that were just beneath the MACT thresholds of 10 tpy for any single HAP and 25 tpy of all HAPS. As noted above, the revised projections are for 9.72 tpy of HCl and HF, each, and 24.7 tpy of all HAPs. GREC justified these revised projections by several means. First, Metso reconsidered the chlorine and fluorine concentrations in the clean woody biomass to be received by the GREC facility, reevaluated the chemical reactions, and reduced its earlier assumptions. Second, Metso and GREC selected for the DSI a more effective sorbent, trona, which reduces the emissions of HF and HCl. Third, Metso and GREC increased the amount of sorbent to be injected into the flue gas system, which will further reduce emissions of HF, HCl, and SO2. Fourth, Metso and GREC changed the catalyst in the SCR, which will remove HAPs more effectively. Fifth, Metso and GREC increased the size and optimized the design of the fabric filter baghouse, which will further reduce stack emissions of PM, but also HAPs to a lesser degree. These are not paper adjustments, but are actual investments in technology that will cost GREC millions of dollars. Petitioners, though, remain skeptical, partly due to the proximity of the revised projections to the regulatory thresholds. For HF, at least, the skepticism is clearly misplaced. The actual projection for HF emissions is much less than 9.72 tpy. Metso and GREC selected 9.72 tpy for HF to allow for a margin of error in the projections. GREC's motivation was obviously to a avoid a sub-threshold breach of a projected emissions limit and the resulting regulatory intervention of DEP. Metso's motivation probably arises from the fact that, to induce GREC to purchase its boiler, Metso provided GREC a guarantee that, at least initially, the boiler will meet these revised HAPs emissions limitations. So, the proximity to regulatory thresholds, at least for HF, is not a ground for skepticism. As revised, the pollution control systems restrict HAPs, and other pollutants, as follows: 1) good combustion practices in the BFBB control PM, CO, VOCs, and HAPs generally; 2) the fabric filter baghouse controls emissions of PM10, PM2.5, and HAPs; 3) clean biomass fuel, reaction with alkaline fly ash, and DSI control SO2 and SAM; 4) ammonia-based SCR controls NOx, VOCs, and HAPs generally; and 5) high-efficiency drift eliminators in the cooling tower control PM. Assurances that these close margins for the HAPs thresholds, as well as the other pollutant limits, will not be breached is also supplied by the CEMS: for SO2 and NOx, 24-hour, 30-day, and 12-month CEMS; for SAM, an initial and annual stack test; for CO, a 30-day CEMS; for HCl and HF, an initial stack test and 12-month CEMS; for HAPs generally, an initial and annual stack test and 12-month CEMS; for PM/PM10, an initial and annual stack test; and for visible emissions and VOCs, an initial and annual stack test, as well as continuous opacity monitoring. Finally, the GREC facility's HAPs emissions are offset by decreases in emissions of HCl and HF, as well as SAM and mercury, as a result of the enhanced pollution control technology adopted by GRU at Deerhaven. Although these reductions, which are all greater than the emissions of these pollutants by the GREC facility, are not enforceable and netting is unavailable under NESHAP, these reductions are relevant in assessing Petitioners' broader claims concerning human health, again outside of the context of NESHAP. GREC has provided reasonable assurance that its facility will not emit more than 9.72 tpy annually of any individual HAP or 25 tpy of all HAPs. Thus, DEP properly determined that case-by-case MACT analysis was unnecessary. Stack and Diesel-Exhaust Emissions of PM/PM10 and Failure to Require BACT Petitioners claim that the draft Air Construction Permit inadequately accounts for stack and diesel-exhaust emissions of PM and PM10 and fails to require BACT for these pollutants. In one respect, Petitioners' claim is correct. The failure of the draft Air Construction Permit to incorporate the provision of the Technical Evaluation that DEP would require GREC to measure filterable and condensible PM with EPA Method 202, in conjunction with the apparent absence of any other test for filterable and condensible PM, is, literally, inadequate accounting for stack emissions of PM/PM10, at least where such a test is commonly enough available to be identified as an EPA Method. But DEP can easily repair this defect by adding this requirement to the Air Construction Permit. In all other respects, though, GREC has adequately accounted for stack emissions of PM/PM10 and provided BACT for these PSD pollutants. As noted in the Technical Evaluation, GREC has provided BACT through the superior combustion of a BFBB, baghouse, DSI, and SCR, as well through the control of SO2 and NOX and visible emissions. GREC's stack emissions of PM10 do not exceed the NSPS limit for this pollutant. Although GREC's stack emissions of PM10 require more elaborate PSD analysis due to their exceeding the PSD significant impact level for PM10, GREC's modeling supports a finding that the these impacts will be highly localized-- restricted to the GREC/GRU site, mostly along the south fenceline--and will require no ambient air quality sampling due to the sampling program already in existence in Alachua County. GREC's modeling also supports findings that the impacts of GREC's stack emissions of PM10, when combined with the air quality impacts from all sources, will be substantially below the 24-hour and annual PSD Class II increments and national AAQS, so the GREC facility will not cause or contribute to an exceedance of the PM10 PSD increments or national AAQS. Fugitive Emissions of PM/PM10 Petitioners claim that the draft Air Construction Permit inadequately accounts for fugitive emissions from the wood piles and biomass handling of PM and PM10. The preceding analysis included all of GREC's PM10 emissions--stack and fugitive. The draft BMP plan and other design elements adequately account for fugitive emissions of PM/PM10, and the procedures described in the BMPs plan and other design elements constitute BACT. Spontaneous Combustion of Wood Piles and PM Emissions Petitioner claims that the draft Air Construction Permit fails to adequately protect against spontaneous combustion and the PM emissions that would result from a fire. The wood piles present a risk of fire from spontaneous combustion. Microbial metabolic action within the pile can generate sufficient heat to cause the wood pile to combust. The primary safeguard against this risk is proper fuel management to minimize the heat buildup within the pile. One way to manage the fuel for fire safety is to mix the wood piles to aerate the piles and prevent hot spots. Another way to manage the fuel is to ensure that the fuel is not allowed to remain in the pile too long. GREC's first-fuel-in, first-fuel-out policy limits the age of any part of the wood pile. The implementation of this policy is further assured by the fact that the fuel loses heat value over time, so GREC will gain more burn for the dollar by combusting the fuel sooner, rather than later. The ratio of stored fuel to combustion rates suggests that all fuel will be turned over within 20 days--probably sooner, after the late revision lowering the height of the automatic stacker/reclaimer pile by 25 feet. Anecdotal evidence suggests that 20 days' residence in the wood pile is well short of the age of fuel that has spontaneously combusted in piles in the past. The stormwater management system will also enhance fire safety by draining rainwater and runoff from the piles and discouraging the ongoing saturation of the fuel piles. Excessive, intermittent saturation of the pile may encourage the microbial activity that can lead to combustion. As part of the local review that took place for the GREC facility, Gainesville Fire Department representatives met three times with GREC representatives to address fire safety, as the Development Review Board of the City of Gainesville reviewed the GREC proposal. As a result of these meetings, GREC agreed to a number of changes to assure substantial compliance with the National Fire Protection Association (NFPA) standards for the management of wood storage areas. As noted above, one change after consultations with the fire department was to reduce the automatic stacker/reclaimer pile from 85 feet to 60 feet. This reduces the risk of fire by making it easier to mix the entire pile and reduces the volume of fuel stored onsite and, thus, the time that that the fuel may remain unused in the wood pile. Secondarily, this change also reduces the volume of fuel available to burn in an unintended fire. To conform to NFPA standards, GREC also agreed to place low barrier walls between the fuel piles; to drive stakes around the perimeter of the piles, so inspectors could more easily check that the piles are not migrating or expanding; and to insert temperature probes into the piles to allow timely detection and elimination of hot spots that might otherwise develop into fires. A revised site plan, as reflected in Exhibits 50A, 50B, and 50C, incorporates the barrier walls and perimeter stakes identified above, as well as the layout of the fire main and fire hydrants that loop the fuel storage area and some access issues for firefighting equipment, which may weigh as much as 30 tons. After DEP adds to the Air Construction Permit the changes to the above-described changes to the site plan, which do not relocate emissions units so as to require remodeling emissions, GREC has provided reasonable assurance that the draft Air Construction Permit adequately protects against spontaneous combustion and the PM emissions that would result from a fire. Failure To Assure Uncontaminated Supplies of Biomass Petitioner claims that the draft Air Construction Permit fails to adequately assure that the biomass fuel will be free from contaminants prior to its combustion in the BFBB. Draft Air Construction Permit Section 3.A.6 requires clean woody biomass, and the draft BMP plan addresses the means to ensure that only clean woody biomass is burned in the BFBB. Suppliers must perform most of the processing offsite; for each shipment, GREC must record the date, quantity, and description of the material received; GREC must inspect each shipment for nonconforming materials; GREC must reject or segregate nonconforming material, if it is discovered; and GREC must maintain records of rejected shipments and their disposition. At the hearing, GREC agreed to another prohibition--namely, that it may not burn construction and demolition debris. GREC has provided reasonable assurance that only clean woody biomass will be combusted at the GREC facility.

Recommendation It is RECOMMENDED that, subject to the additional conditions set forth in the preceding paragraph, DEP enter a final order granting the Air Construction Permit. DONE AND ENTERED this 7th day of December, 2010, in Tallahassee, Leon County, Florida. S ROBERT E. MEALE Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings This 7th day of December, 2010. COPIES FURNISHED: Lea Crandall, Agency Clerk Department of Environmental Protection Douglas Building, Mail Station 35 3900 Commonwealth Boulevard Tallahassee, Florida 32399-3000 Tom Beason, General Counsel Department of Environmental Protection Douglas Building, Mail Station 35 3900 Commonwealth Boulevard Tallahassee, Florida 32399-3000 Mimi Drew, Secretary Department of Environmental Protection Douglas Building 3900 Commonwealth Boulevard Tallahassee, Florida 32399-3000 David S. Dee, Esquire Young Van Assenderp, P.A. 225 South Adams Street Suite 200 Tallahassee, Florida 32301-1700 Mick G. Harrison, Esquire 205 North College Avenue, Suite 311 Bloomington, Indiana 47404 Jack Chisolm, Esquire Department of Environmental Protection 3900 Commonwealth Boulevard, Mail Station 35 Tallahassee, Florida 32399-3000 Raymond O. Manasco, Jr., Esquire Gainesville Regional Utilities 301 Southwest 4th Avenue Gainesville, Florida 32614 Douglas S. Roberts, Esquire Hopping Green & Sams 119 South Monroe Street Suite 300 Post Office Box 6526 Tallahassee, Florida 32301 Richard E. Condit, Esquire 1612 K Street, Northwest, Suite 1100 Washington, DC 20006

# 1
JULIE HELLMUTH vs FLORIDA SOLITE COMPANY AND DEPARTMENT OF ENVIRONMENTAL PROTECTION, 94-004057 (1994)
Division of Administrative Hearings, Florida Filed:Jacksonville, Florida Jul. 19, 1994 Number: 94-004057 Latest Update: Oct. 17, 1995

Findings Of Fact Solite is a light weight aggregate mining and manufacturing facility located in Clay County, Florida. The mining operation extracts clay from quarries on site. That clay is then stored on site for use in the manufacturing. The Solite facility began its operations in Clay County in 1959. To convert the clay into a product, it is introduced into a rotary light weight aggregate kiln. There it is heated to a temperature of 1,900 to 2,100 degrees Fahrenheit. Once the raw feed has been subjected to the heat in the rotary kiln, it becomes light weight aggregate, a product that is used in the construction industry. Before being introduced into the kiln the raw feed clay is stored in a covered shed. When the kiln is operating clay is taken from the shed by front end loader and transported to a pug mill. The clay exits the pug mill onto a conveyor which has a weigh scale. From there, the raw feed clay is introduced into the kiln, at what is referred to as the cold end of the kiln. When a kiln is in operation the clay rolls from the cold end of the kiln through the other end during which transport the raw clay is heated. The clay is discharged from the kiln into a product cooler. From the product cooler it is transferred by a front end loader to a crushing, screening and storage area. Solite has three (3) kilns at the facility. They are kilns 1, 1A and 5. The kilns at the Solite facility are eight to nine feet in diameter and 130 to 160 feet long. When the kilns are in operation, they rotate at a speed of one to two revolutions per minute in producing the product. The fuel sources for heating the kilns on site are constituted of coal, number (2) fuel oil, propane or liquid burnable material (LBM). The LBM fuel source contains a variety of combustible waste materials. Among those waste materials are certain hazardous wastes. In 1973 Solite began to burn material which is now classified as hazardous waste. The combustion process that occurs in manufacturing the light weight aggregate creates gases that run countercurrent to the raw clay feed. The combustion gases are discharged at the same end of the kiln in which the raw clay had been introduced. In managing the hazardous waste used at the facility, Solite has installed two systems to treat the combustion gases before those gases are released into the atmosphere. Kiln No. 5 employs baghouse technology for air pollution control, a treatment system consisting of two compartments with approximately 960 bags. By contrast, the air pollution control devises for kilns 1 and 1A are individual wet scrubber systems for each kiln. As stated, the proposed permit would allow Solite to add an additional baghouse. Under this arrangement two of the existing kilns could be used simultaneously, with the existing baghouse No. 5 and the proposed baghouse No. 1 serving as air pollution control devices. The existing baghouse associated with kiln 5 has a lime injection system as part of the air pollution control system. The proposed permit contemplates a lime injection system as part of the air pollution control to be employed with the additional baghouse. The wet scrubbers associated with kilns 1 and 1A are designed to control particulate matter in emissions. The scrubbers are not designed to respond to other pollutants. To that end the wet scrubber with kiln 1A could meet applicable standards for particulate matter. The wet scrubber for kiln 1 could possibly meet the applicable standard for particulate matter if more spray nozzles were added to the scrubber. The present inability for kiln 1 to meet the applicable standard for particulate matter control is not significant because Solite may only operate kiln 1 or 1A separately. The water that is employed in the wet scrubbers becomes hazardous waste once it has been utilized in the attempt to respond to the pollutants in the air emissions generated by the respective kiln. In the past that water containing hazardous waste was introduced into a settling pond. Solite may no longer discharge that water into the settling pond in accordance with a regulatory decision that is not the subject for consideration in this case. Solite has made no other arrangements for disposing of the waste water. The proposed permit in this case would allow Solite to use the existing scrubbers to control emissions from kilns 1 and 1A in the instance where fuels were used in the manufacturing that were other than LBM with hazardous waste. At present kilns 1 and 1A have necessary permits for their use with the wet scrubber air pollution control devices, subject to the limitations that have been described. Under the terms set forth in the proposed permit the future use of LBM with hazardous waste in the manufacturing in kilns 1 and 1A would be only allowed when baghouse technology was employed as an air pollution control device. The baghouse air pollution control technology does not use water. Therefore it does not create a circumstance in which the treatment water contains hazardous waste. In that respect, kiln 1A ceased burning LBM with hazardous waste on December 1, 1990. That practice was concluded at kiln 1 on June 6, 1991. Kiln 5 ceased burning LBM with hazardous waste on August 19, 1991, but resumed burning LBM with hazardous waste on December 14, 1993 after the baghouse for that kiln was installed with its lime injection system. The baghouse proposed to be installed under the terms of the permit application is almost identical to the baghouse and associated equipment that were recently installed to operate with kiln 5. The baghouse and associated equipment with kiln 5 has achieved full compliance with all applicable state and federal air regulations as evidenced through compliance tests. As noted, with the baghouse at kiln 5 and the proposed baghouse for kilns 1 and 1A, the combustion gases are subject to treatment by lime. In that process the lime is introduced into the air emissions by pneumatic transfer. An alternative means for lime injection is established. That alternative would allow the lime to be introduced at the point where the fuel is fired at the kiln. Lime injection is used to control acid gases, either sulfur dioxide or hydrogen chloride. The combustion gases are also cooled by passing them through a heat exchanger that brings the temperature down from the exit temperature from the kiln temperature of 900 degrees Fahrenheit to approximately 400 degrees Fahrenheit. The cooled gases then enter the baghouse which is designed to control the particulate matter in the emissions. From there the remaining gases are discharged into the atmosphere. It takes four to five seconds for the combustion gases to go from the kiln through the heat exchanger proposed by this project. The particulate matter is in the form of dust that is collected in the baghouse. That dust is removed through a screw conveyor and pneumatically transferred to a kiln storage bin. The air involved in that pneumatic transfer is discharged through a small baghouse. The clay fines in the kilns bin are reintroduced into the pug mill, conveyed and mixed with raw clay before the clay fines are reintroduced into the manufacturing process in the kiln. The clay fines may also be transported from the kiln storage bin to the crusher and introduced into the finishing process for the product. On November 30, 1992, Solite made application for the permit at issue. Solite sought permission to modify the existing facility by constructing duct work that would connect kilns 1 and 1A to the kiln 5 baghouse, to construct and temporarily operate the additional baghouse and to connect kilns 1 and 1A to the existing pug mill filter receiver and clinker hopper filter (the filter receiver associated with the crusher). The connection of kilns 1 and 1A to the existing pug mill filter receiver and clinker hopper filter is to control the particulate matter that is captured in the baghouses. The existing pug mill filter receiver and clinker hopper filter presently serve kiln 5. If allowed the opportunity to construct a second baghouse, Solite contemplates using the second baghouse with kiln 1 or 1A. The arrangement contemplated by the proposed permit would allow kiln 1 or 1A to operate simultaneously with kiln 5. The bags in the proposed baghouse would be about six inches in diameter and twelve feet long. As the particulate matter in the air emissions enters the top of the baghouse it passes through these bags. That particulate or dust is collected on the surface of the bags, while the air that has gone through the filtration process exits through the stack to the baghouse and into the atmosphere. The dust that collects on the bags forms a "filter cake." Once a certain atmospheric pressure is achieved in the baghouse a predetermined jet of air is blasted down the bags blowing the filter cakes away from the bags. This allows the cakes to fall down into the bottom of the baghouse where a screw-auger moves that material to one end of the baghouse hopper. From there it is removed through an air lock and pneumatically transferred to the clay fines bin. The proposed baghouse would utilize a continuous monitor that is installed with the baghouse to measure the particulate matter concentration in the clean air section of the baghouse. Should a hole appear in one of the bags, that would cause a increase in the particulate concentration. Then a signal is generated by a broken bag detector which alerts the operator that a problem exists and the bag needs to be replaced. There are access doors into the baghouse that allow the operator to enter the baghouse to inspect the bags and replace them as needed. When the Department reviewed the permit application, it issued a notice of intent to grant a permit and a proposed permit. Petitioner's timely protested the intent to grant. Before hearing the Department issued two amendments to the proposed permit. It is the second amendment which forms the basis for proposed agency action. Solite does not oppose the terms set forth in the second amendment. Petitioners do oppose the grant of the second amended permit. By the actions which the parties have taken in this case, it would appear that they have conceded the standing for Petitioners to bring the challenge to the grant of a permit. The proposed project would not increase the capacity for the manufacture of light weight aggregate products. The amount of fuel used in that manufacturing and the hours of operation when compared to opportunities presently permitted would not be increased. The maximum rate of feed of authorized LBM that could be incinerated in kilns 1 and 1A does not increase when comparing the application to the existing permits for kilns 1 and 1A with wet scrubbers. The removal efficiencies with the proposed baghouse exceed or are equal to those with the wet scrubber systems when examining control of emissions of air pollutants that must be addressed. Clay County is an attainment area for all air pollutants. In considering the application, the Department determined this to be a construction request with a right to temporarily operate the equipment to check its performance. The Department considered the permit request to be one related to a stationary installation which will reasonably be expected to be a source of air pollution. See Section 403.087(1), Florida Statutes. In the proposed permit for baghouse No. 1 the Department intends to impose certain restrictions on emissions that were specified in the permit issued for the baghouse No. 5. The Department in its proposed permit employs a process similar to that set forth in the January 23, 1993 settlement agreement related to kiln No. 5. In determining the acceptability of the proposal the Department looked to Rule 62-730.181, Florida Administrative Code which speaks to standards for the management of specific hazardous wastes and specific types of hazardous waste management facilities. In particular the Department utilized that rule in its terms wherein the rule incorporates by reference 40 C.F.R. Part 266, Subpart H, as it is designed to regulate hazardous waste burned in a boiler or industrial furnace. The regulations in 40 C.F.R. 266, Subpart H, are referred to as the Boiler and Industrial Furnaces regulations (BIF). The Solite kilns are industrial furnaces within the meaning as defined in 40 C.F.R. 266, Subpart H. The Department in its proposed permit would impose the terms set forth in 40 C.F.R. 266, Subpart H, related to the maximum concentrations of certain constituents in the LBM with hazardous wastes and the air emissions produced by their destruction. By imposing those requirements the Department is operating independently. It is not through this permit review administering the BIF regulations as set forth in 40 C.F.R. 266, Subpart H under authority from the United Stated Environmental Protection Agency and for the benefit of that federal regulatory agency. The Department has required that Solite address the combined emissions from metals and other air pollutants for all sources at the facility. By this requirement the Department intends to assure that those emissions do not result in ambient air concentrations that would harm or injure human health or welfare, animal, plant, or aquatic life or property. To demonstrate those assurances Solite was expected to conduct modeling of the emissions of metals and chlorine which could be emitted from the facility. That modeling was properly done. The requirement for modeling was in accordance with Section 403.161, Florida Statutes. In association with this requirement the Department referred to the BIF regulations at 40 C.F.R. 261. The proposed permit is considered in accordance with Rule 62-296.320, Florida Administrative Code, related to the control of air pollutants which cause or contribute to an objectionable odor. The requirements within the proposed permit include the necessity for Solite to establish reasonable precautions to minimize unconfined emissions of particulate matter as described in Rule 62-196.310(3), Florida Administrative Code. As stated in the proposed permit, if kiln 1 or 1A were in operation using the wet scrubbers they must conform to existing permits associated with kilns 1 and 1A, but those opportunities would only pertain to the instance in which the fuel sources are other than LBM with hazardous waste. For Solite to use wet scrubbers as pollution control devices for kilns 1 and 1A in an instance in which LBM with hazardous waste was used for fuel, the treatment efficiency for kiln 1 would have to be improved in the manner described and the treatment water that contained hazardous waste must be disposed of other than by placement in the settling pond. The existing wet scrubber systems for kilns 1 and 1A are not closed systems which continue to re-circulate the scrub water (a closed scrub water containment system). There is no proposal to install a scrubber water re-circulation system. If such a system were installed an arrangement would be necessary for periodically taking the scrubber water and disposing of that water off-site. Without a system for containing and re-circulating the scrubber water which contained hazardous waste, and periodic disposal of that scrubber water, Solite may not use kilns 1 and 1A with a scrubber when burning LBM with hazardous waste. This is true even though the Solite air emissions control device for kiln 1A using the wet scrubber does meet applicable air emissions standards and the scrubber system permitted with kiln 1 has the possibility to meet air emissions standards. Therefore, if kilns 1 or 1A were used with a baghouse this would create a net increase in air emissions when using LBM with hazardous waste as a fuel source. Such an arrangement would not exceed the theoretical air emissions associated with the wet scrubbers for kilns 1 or 1A when using LBM with hazardous waste that are presently set forth in the existing permits for those kilns. But the proposed permit recognizes the problem with the scrubber systems by limiting the use of the scrubber systems to those occasions in which LBM with hazardous waste is not used as a fuel. The proposed permit specifically prohibits the use of kiln 1 and 1A simultaneously. A baghouse or scrubber may only control the emissions from one kiln at a time in accordance with the proposed permit. The Oldover Corporation or another facility permitted to manage hazardous wastes under various provisions at 40 C.F.R. shall be the supplier of LBM with hazardous wastes. Under the terms of the proposed permit Solite is responsible for the LBM with hazardous wastes meeting all the requirements in any applicable state, federal and local regulations. The proposed permit limits the constituents in the LBM with hazardous waste. It does not allow any hazardous waste that is listed for dioxin or derived from the dioxin-listed waste. As set forth in the proposed permit, organic cyanides, sulfide, mercaptans, insecticides, pesticides, herbicides, electroplating waste or radioactive material regulated by the State of Florida, Department of Health and Rehabilitative Services are not allowed to be part of the LBM. Other limitations are placed on the LBM with hazardous fuel concerning its constituents. They are set forth in proposed condition number 22 to the proposed permit. In accordance with the proposed permit, prior to submitting an application for an operating permit, which would allow LBM with hazardous waste to be burned, Solite is required to conduct testing at the facility for chlorinated dibenzo-p-dioxin and dibenzofuran, pursuant to a test plan approved by the Department. The proposed permit addresses test requirements and reports under various provisions set forth in Rule 62-297, Florida Administrative Code. The proposed permit reminds Solite that: Nothing in this permit shall exempt the permit to you from the requirements of 40 C.F.R. 761, polychlorinated bolychlorinated biophenyls, 40 C.F.R. 266, Subpart H, hazardous waste burned in boilers and industrial furnaces, and Chapter 62-730, Florida Administrative Code, hazardous waste, or any other requirements outside the purview of the Department's air regulation (Chapters 62-296 and 297, Florida Administrative Code). The permittee shall obtain such state and federal permits, when applicable, pursuant to any hazardous waste regulation (Rule 62-4.160, Florida Administrative Code). The proposed permit allows for an extension of the construction permit upon request of the Bureau of Air Regulation within the Department. The proposed permit makes it incumbent upon Solite to submit an application for an operation permit to the northeast district of the Department at least ninety (90) days prior to the expiration date of the construction permit. The proposed permit would allow kilns Nos. 1 and 1A to operate 24 hours a day, 7 days a week, 52 weeks a year, but no more than 760 hours during any calendar year, but not simultaneously. Concerning hazardous wastes in the LBM, procedures for testing those fuels to be used at the Solite facility are set forth in the waste analysis plan in the hazardous waste facility permit for the Oldover Corporation and the waste analysis plan for Solite. Oldover supplies those fuels to Solite. Under the waste analysis plan the generator of the waste material must complete a waste profile indicating the type of waste and its constituents which the generator proposes to supply to the facility. Initially Solite evaluates the waste profile to determine if the waste material meets all the necessary requirements for acceptance as a hazardous waste fuel for Solite. If the profile is acceptable, a representative sample is obtained from the waste generator. This sample is analyzed for a comprehensive set of parameters including physical characteristics, metals and organic compounds. If the representative sample indicates that the waste stream is acceptable it is approved and shipments are made to the Oldover facility adjacent to Solite. Once the waste stream has been approved by Solite and shipments are made, Oldover reviews the manifest associated with each shipment to determine the existence of any prohibitive constituents in the fuel before the fuel is accepted. Oldover tests the wastes for a limited number of parameters to determine whether or not the shipment conforms with the pre-established waste profile. If discrepancies are discovered between the waste profile and testing results the shipment may be rejected if the problems with the shipment cannot be reconciled with the anticipated waste profile. Comprehensive waste analysis are performed on an annual basis as well as at the initial point at which Solite begins to do business with a waste generator or upon the occasion when there is a significant change to the generator's waste stream. As it appears, the LBM with hazardous waste obtained from outside generators is generated off-site. Through this processes Solite has provided reasonable assurance that the use of LBM's with hazardous waste envisioned by the proposed permit will not allow the burning of hazardous waste that is listed for dioxin or derived from the dioxin-listed wastes: FO20, FO21, FO23, FO26 or FO27 as specified in 40 C.F.R. 261, Subpart H, or organic cyanides sulfites, mercaptans, insecticides, pesticides, herbicides, electroplating waste or radioactive material regulated by the State of Florida, Department of Health and Rehabilitative Services. Solite has provided reasonable assurance that the LBM with hazardous waste will be properly analyzed to quantify the concentration of any constituent that may reasonably be expected to be in the waste. Those constituents will be identified and quantified, if present. This process of identification and quantification will be at levels detectable by analytical procedures prescribed in EPA method SW-846. That method is the prescribed method for analyzing hazardous LBM under the BIF rules. As a means to promote reasonable assurances that the proposed project will comply with applicable state and federal emissions standards, emissions from kiln 5 using its baghouse have been tested and the emissions at kiln 5 using the baghouse meet all applicable state and federal emission standards. Given that the proposed baghouse for kilns 1 and 1A will be very similar to the baghouse associated with kiln 5, it is to be expected that the emissions from kilns 1 and 1A using the proposed baghouse would be comparable to the experience with kiln 5 and its baghouse. Using a baghouse results in significant reductions in the emissions of particulate matter when compared to the experience with wet scrubbers. The emissions from the proposed project will not exceed emission standards for particulate matter. The use of the lime injection system with the proposed baghouse will decrease emissions of sulfur dioxide. The emissions from the proposed project will not exceed standards for sulfur dioxide. Neither the existing wet scrubber system nor the baghouse system are expected to have any significant impact on nitrogen oxide emissions. Consequently, there will be no significant change in nitrogen oxide emissions associated with the installation of the proposed baghouse. The emissions from the proposed project will not exceed emission standards for nitrogen oxides. The proposed baghouse will result in a reduction in the emissions of metals due to the increased efficiency in the removal of particulate matter. The emissions from the proposed project will not exceed emission standards for metals. The proposed baghouse will result in a reduction in mercury emissions due to increased efficiencies in the removal of mercury in particulate form. The proposed baghouse will not cause a change in the emissions of hydrogen chloride when compared to the experience with the wet scrubbers. The levels of hydrogen chloride when using the baghouse as a control device will not exceed any standards. Nor will there be emissions in excess of standards for chlorine gas. The proposed baghouse when contrasted with the experience in the use of wet scrubbers will not change the amount of emissions of organic materials. The proposed baghouse when contrasted with the wet scrubber system will result in a reduction of the emissions of dioxins and furans. The proposed project will comply with standards applicable to dioxins and furans by exclusion from the LBM and limiting the inlet temperature to the baghouse. The proposed permit prohibits the facility from accepting any dioxins bearing waste. The fuel is screened to insure that it does not contain dioxin. PCB's in excess of five parts per million are not allowed. This is a means to limit the formation of dioxins and furans from the PCB's. The maximum temperature of gases entering the baghouse is established at 450 degrees Fahrenheit and an automatic shut-off device is required if this temperature is exceeded in order to control the secondary generation of dioxins and furans. The inlet temperature to the baghouse is set at 425 degrees. The modeling that was done to examine emissions of metals and chlorine provided reasonable assurances that the ambient concentrations caused by the impact of these pollutants from this facility will be less than the Department's annual air reference concentrations, as a means to ensure that harm or injury to human health or welfare, animal, plant or aquatic life or property does not occur. Solite is required by the terms of the proposed permit to have continuous emission monitors for carbon monoxide and hydrocarbons. When the emission standard for carbon monoxide or alternatively hydrocarbons nears the exceedance level, then the automatic waste feed shut-off is activated to assure that the carbon monoxide or, alternatively, hydrocarbon emission standards are not exceeded. Kiln 5 with its associated baghouse has demonstrated a destruction and removal efficiency for regulated organic pollutants in excess of 99.99 percent. Having similar technology, the proposed permit for a baghouse can be expected to meet the 99.99 percent destruction and removal efficiency for organic pollutants. The addition of the proposed baghouse with its associated features provides reasonable assurance that the particulate matter standard of 0.08 grains per dry standard cubic foot corrected to seven percent O2 will be met. As a protection against exceeding emission standards for various pollutants the proposed permit requires that Solite continuously monitor for carbon monoxide, oxygen, baghouse inlet temperature and sulfur dioxide at levels established in the proposed permit. Furthermore, the proposed permit requires that an automatic shut-off device be installed to maintain established emissions limits for temperature, oxygen or hydrocarbons. Such devices have been installed on the existing kiln 5 with its baghouse. Efficient combustion can be expected in kilns 1 and 1A based upon residence time for burning, turbulence, temperature and oxygen availability. The residence time for the fuels is approximately four seconds. The rotation of the kilns and movement of the clay material ensures adequate turbulence. The temperature of the kiln must be maintained at or above 1,800 degrees Fahrenheit and the fuel feed of LBM with hazardous waste is automatically shut-off if the temperature falls below 1,850 degrees. Oxygen levels are to be continuously monitored. The gas flow rates for fuel introduced into the kiln may not vary significantly. These arrangements are contained in the proposed permit. The re-introduction of clay fines or dust into the kiln to be incorporated into the product has been taken into account in establishing estimates of emissions for kilns 1 and 1A. That phenomenon has been measured in emissions for kiln 5. In using the dust Solite will not create conditions which violate standards for emissions. To support these findings all experts who testified at the hearing agreed that the proposed project will meet all applicable rules and emission standards. Solite has established reasonable assurances concerning those standards. The Solite application was sealed by a professional engineer, Dr. John Koogler, who was among those experts mentioned. The Solite facility uses an industrial furnace which is similar in design to furnaces regulated by the Environmental Protection Agency in its hazardous waste regulatory program. Nothing about the facility is extraordinary, thus requiring a more rigorous regulatory response to this facility which uses LBM with hazardous waste in kiln No. 5 and proposes to do so through the project under consideration. It was not shown that the Department must impose its "Air toxics" permitting strategy for controlling toxic emissions from stationary sources at levels which will not endanger public health in order to adequately consider the proposed project. The "Air toxics" permitting strategy is a non-rule policy. Although not specifically required by rule or standard Solite performed additional modeling concerning the emissions of organics from the facility with the advent of the use of the proposed baghouse. The modeling indicated that there would not be an exceedance of the no threat levels established in the state air toxics strategy. Similarly, although not required, Solite conducted additional modeling of dioxins emissions which indicated that there would be no significant risk posed as a result of the proposed project. Solite has qualified for interim status under the United States Environmental Protection Agency (EPA) regulations to burn hazardous waste at its facility. Solite has filed EPA required precompliance certification for all three kilns and certification of compliance for kiln 5. Solite has obtained an extension from EPA for filing their certification of compliance for kilns 1 and 1A. In addition Solite has submitted an application for hazardous facility permit to EPA and this application is currently under review by EPA. In reviewing the permit application past violations of statutes and rules were considered by the Department. This was done to determine whether Solite had provided reasonable assurances that the Department standards in application to the proposed project would be met. The Department correctly decided that Solite's past violations did not justify denial of the permit. Those violations were not severe and Solite corrected the problems. Furthermore, the proposed project would improve air pollution control to the extent that it reduces or eliminates problems that led to the previous violations.

Recommendation Based upon a consideration of the facts found and the conclusions of law reached, it is, RECOMMENDED: That a final order be entered which grants the construction permit for the air pollution source subject to the provisions set forth in the second amended proposed permit. DONE and ENTERED this 30th day of August, 1995, at Tallahassee, Florida. CHARLES C. ADAMS, Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 30th day of August, 1995. APPENDIX TO RECOMMENDED ORDER The following discussion is given concerning the proposed findings of facts by the parties: Petitioner's facts Paragraphs 1 through 6 are subordinate to facts found. Paragraphs 7 through 12 are not requirements that must be considered in deciding to grant or deny the permit. Paragraphs 13 through 16 are contrary to facts found. Paragraph 17 is not necessary to the resolution of the dispute. Paragraph 18 is rejected in its suggestion that Solite has not given the necessary reasonable assurances. Paragraph 19 is subordinate to facts found. Paragraph 20 is not necessary to the resolution of the dispute. Paragraphs 21 and 22 are rejected in the suggestion that the activities at Solite caused these problems. Paragraphs 23 through 28 are rejected in the suggestion that the emissions tests associated with the permit request are inadequate or that Solite has routinely exceeded air emissions requirements or used unacceptable LBM with hazardous waste in the past. Paragraph 29 is rejected in the suggestion that the Department has inappropriately considered the permit request. Paragraph 30 is rejected in the suggestion that the Department would allow unacceptable fuels to be burned in the kilns. Paragraphs 31 and 32 are subordinate to facts found. Paragraph 33 is rejected as not establishing a requirement for granting or denying this permit. Paragraph 34 is rejected to the extent that it suggests that the Department has failed to take into account appropriate circumstances when determining to grant or deny the permit. Paragraph 35 is rejected in the suggestion that the Solite facility has caused problems for local gardeners. Paragraphs 36 and 37 are not necessary to the resolution of the dispute. Paragraph 38 is rejected in the suggestion that Solite has not complied with applicable standards for lead. Paragraphs 39 through 43 are not necessary to the resolution of the dispute. Paragraph 44 is not relevant. Paragraphs 45 through 47 are rejected in the suggestion that the Department has not adequately considered those circumstances necessary to determine whether to grant or deny the permit. Paragraphs 48 through 49 are subordinate to facts found. Paragraphs 50 and 51 are rejected in the suggestion that these matters must be considered by the Department in deciding whether to grant or deny the permit. Paragraph 52 is subordinate to facts found. Paragraph 53 is not necessary to the resolution of the dispute. Paragraphs 54 through 57 are subordinate to facts found. Paragraph 58 is not relevant. Paragraph 59 is a conclusion of law. Paragraph 60 is rejected in the suggestion that inappropriate modeling was conducted by Solite in support of its application. Paragraph 61 is a conclusion of law. Paragraph 62 is not necessary to the resolution of the dispute. Paragraph 63 is rejected in the suggestion that the air toxics strategy should have been employed in this case. Paragraph 64 is subordinate to facts found. Paragraphs 65 through 67 are not necessary to the resolution of the dispute. Paragraph 68 is not relevant. Paragraphs 69 through 73 are rejected in the suggestion that reasonable assurances have not been given concerning compliance with applicable standards for emissions levels. Paragraph 74 is subordinate to facts found. The first sentence to Paragraph 75 is contrary to facts found. The second sentence is not a requirement for resolving the proposed permit request. Paragraphs 76 through 80 are not relevant. Paragraph 81 is subordinate to facts found. Paragraph 82 is contrary to facts found. Solite's facts: Paragraphs 1 through 5 are subordinate to facts found. The first sentence to Paragraph 6 is not necessary to the resolution of dispute. The second sentence is subordinate to facts found. Paragraphs 7 through 16 are subordinate to facts found. Paragraph 17 is not necessary to the resolution of the dispute. Paragraphs 18 through 42 are subordinate to facts found. Paragraph 43 is contrary to facts found in its suggestion that LBM with hazardous waste may be used with the existing wet scrubbers and the lack of increase in the capacity to burn LBM with hazardous waste if the proposed permit is granted. Paragraphs 44 and 45 are subordinate to facts found. Department's Facts: Paragraphs 1 through 9 are subordinate to facts found. Paragraph 10 is rejected in the suggestion that kilns 1 and 1A may use LBM with hazardous waste when operating with the wet scrubber notwithstanding what the permits may say. Paragraphs 11 through 28 are subordinate to facts found. COPIES FURNISHED: Thomas K. Maurer, Esquire Foley & Lardner Post Office Box 2193 Orlando, FL 32801 Julie Hellmuth 1205 Orange Circle North Orange Park, FL 32073 Priscilla Norwood Harris Post Office Box 702 Green Cove Springs, FL 32043 Jefferson M. Braswell, Esquire Department of Environmental Protection 2600 Blair Stone Road Tallahassee, FL 32399-2400 Virginia B. Wetherell, Secretary Department of Environmental Protection Douglas Building 3900 Commonwealth Boulevard Tallahassee, FL 32399-3000 Kenneth Plante, Esquire Department of Environmental Protection Douglas Building 3900 Commonwealth Boulevard Tallahassee, FL 32399-3000

# 2
JOHN C. WALKER, ET AL. vs. LEE COUNTY BOARD OF COUNTY COMMISSIONERS AND DEPARTMENT OF ENVIRONMENTAL REGULATION, 78-001014 (1978)
Division of Administrative Hearings, Florida Number: 78-001014 Latest Update: Apr. 02, 1979

Findings Of Fact This cause comes on for consideration based upon the petition of John C. Walker and others, residents of Fort Myers, Florida, who have challenged the Respondent, State of Florida, Department of Environmental Regulation's intention to grant a Complex Air Source Permit to the Respondent, Lee County Board of County Commissioners, for purposes of constructing a four-lane road at Daniels Road, Lee County, Florida. The Respondent, State of Florida, Department of Environmental Regulation, is an agency charged with the promotion and protection of air quality within the State of Florida. The authority for this function is found in Chapter 403, Florida Statutes, and various rules enacted to implement the provisions of this statute. Specifically, as it pertains to this dispute, the Respondent, State of Florida, Department of Environmental Regulation, is charged with the maintenance of Ambient Air Quality Standards. The standards are set forth in Chapter 17-2, Florida Administrative Code. To carry out this function, Rule 17-2.06, Florida Administrative Code, has been enacted, which establishes maximum limiting levels for Ambient Air Quality Standards. This sets the allowable limits for pollutants existing in the ambient air, the purpose for such standards being the protection of human health and public welfare. It involves the consideration of the pollutants, sulphur dioxide, particulate matter, carbon monoxide, photochemical oxidants (by measurement and correction for interference due to nitrogen oxide and sulphur dioxide), hydrocarbons (used as a guide in devising implementation plans to achieve oxidant standards, to be measured and corrected to methane), and nitrogen dioxide. The Respondent, Lee County Board of County Commissioners, is a unit of local government in the State of Florida charged with the function of carrying on the business of government for that county, to include the construction of those roads necessary to accommodate the needs of the public. To that end, on February 1, 1978, the Respondent, Lee County Board of County Commissioners, applied for a Complex Air Source Permit to be granted for the construction of a four-lane road at Daniels Road, Lee County, Florida. Subsequent to that initial application, revisions of the data provided in support of the application were made on October 12, 1978, and again on January 19, 1979. That application, as revised, may be found as the Respondent's (Lee County) Exhibit No. 1 admitted into evidence and includes aerial photographs. On May 4, 1978, through the person of Phillip R. Edwards, District Manager of the State of Florida, Department of Environmental Regulation, South Florida District, an indication was given that the department intended to issue a Complex Air Source Permit to the Lee County Board of County Commissioners. This exhibit is found as the Respondent's (Lee County) Exhibit No. 2 admitted into evidence. An engineer for the South Florida District, State of Florida, Department of Environmental Regulation, has made a review of the revisions in addition to the original application and is still of the persuasion that the Complex Air Source Permit should be granted. This letter of intent to grant the permit makes reference to the permitting chapter of the Florida Administrative Code pertaining to Complex Air Source Permits and other types of permits. Rule 17-4.07, Florida Administrative Code, sets out the general criterion which must be met prior to the issuance of the Complex Air Source Permit. That provision establishes the need for the applicant to affirmatively provide reasonable assurances based on its plans, test results and other information that the construction of the road and operation on that road will not discharge, emit or cause a violation of the Ambient Air Quality Standards set forth in Rule 17-2.06, Florida Administrative Code, previously referenced. In this case, those assurances have been given. In examining the particular pollutants set out in the Ambient Air Quality Standards table, sulphur dioxide and particulate matter are not items of significant concern, because motor vehicles do not promote the emission of those pollutants in quantities sufficient to exceed the maximum limiting levels. In measuring the amount of carbon monoxide, Lee County utilized a technique known as the representative site method, to be applied in the Cal-Air Model. The ecolyzer which measures this pollutant, was placed in various locations near the intersection of U.S. 41 and Daniels Road, with the object in mind to achieve the gravest readings as a basis for projecting the future amounts of carbon monoxide that would be present in the area of the proposed road expansion. The traffic projections and average speed at the intersection were factored in by Joseph Ebner, P.E., an expert in traffic engineering. The most recent statement of those traffic projections may be found in the January 19, 1979, revision to the application offered by the Respondent, Lee County Board of County Commissioners, which is a part of that Respondent's Exhibit No. 1. In that revision, as was the case of the revision of October 12, 1978, and the original application, the average speed at the intersection was established at fifteen miles per hour, calculated from an engineering textbook, "Highway Capacity Handbook (1975), Highway Research Board, Special Report No. 87". This represents the lowest average speed for an eight-hour period in a signalized intersection of an urban area. In arriving at the traffic count calculations, Mr. Ebner relied on the Lee County Transportation Study, Technical Report No. 6, which contains traffic projections for the year 1990. A copy of this report may be found as Petitioner's Exhibit No. 10 admitted into evidence. The statistics found in that report take into account the projected construction of a regional airport located east of Interstate-75 on Daniels Road, to be opened in the year 1982, and the Opinion that Canal Road, which will intersect with Daniels Road, will be opened in that same year. Calculations made in the January 1, 1979, revision are based upon the belief of a rate of increase in traffic to be eight percent per annum in the area of the intersection of U.S. 41, Cypress Lake Drive and Daniels Road. (At this point it should be indicated that the calculations in the revision of January 1, 1979, labeled, 8-hour Co. Concentrations, U.S. 41 & Cypress Lake Drive [natural traffic mix], are improperly depicted in the columns entitled, "U.S. 41 and Cypress Lake Drive" and must be transposed in their labeling to arrive at the proper mathematical result.) When that adjustment is made, it is established that the highest concentration of carbon monoxide in an eight-hour period in the intersection of U.S. 41 and Cypress Lake Drive in the location of the northwest quadrant for the years 1980 through 1990 was in the year 1980. In that year the measurement would be 9.13 mg/m3 in an eight-hour period. The second most severe year is 1981, in which the measurement is 9.10 mg/m3 as the highest eight-hour carbon monoxide concentration levels in that intersection. The balance of those measurements for the years 1982 through 1990 may be found in the Respondent's, Lee County Board of County Commissioners, Exhibit No. 1 in the January 19, 1979, revision to the permit application. Finally, it should be indicated that the projections made by the Lee County Board of County Commissioners in its application are premised upon a vehicular mix of ninety-four percent automobiles and six percent trucks. Tom Davis, an engineer for the Department of Environmental Regulation, who has the responsibility to review permit applications for Complex Air Source Permits, was involved in advising the applicant on the requirements for compliance for the granting of the permit. Through his involvement, Mr. Davis has been satisfied with the techniques used by the applicant in its efforts at measuring the carbon monoxide and the modeling necessary to answer the ultimate question of whether or not this project will violate the Ambient Air Quality Standards. In this instance, Mr. Davis does not believe those air quality standards will be violated. His testimony established that there are no models designed specifically for the measurement of photochemical oxidants, hydrocarbons or nitrogen dioxide. The hydrocarbons and nitrogen dioxide are area wide phenomena and are not subject to such specific site measurement. However, the area wide monitoring which has been done for nitrogen dioxide throughout the State of Florida, and more particularly in Lee County, Florida, has never shown that pollutant to exceed ten percent of the maximum limiting level. Moreover, carbon monoxide, hydrocarbons and nitrogen dioxide are felt to decrease at roughly the same percentage rate throughout the years, so that the decrease in the carbon monoxide levels at the project site beyond 1980 would reflect a similar decrease at that site in the amounts of hydrocarbons and nitrogen dioxide. Therefore, if there are no problems with carbon monoxide there is no reason to believe that there would be a problem with hydrocarbons and nitrogen dioxide, nor with the photochemical oxidants which are a bi-product of hydrocarbons and nitrogen dioxide combinations. These opinions stated herein are those of Mr. Davis, and David Barker, Ph.D., an air quality expert who testified in behalf of the Respondent, Lee County Board of County Commissioners, agrees. As indicated, these opinions are well founded. Notwithstanding the belief that the Respondent, Lee County Board of County Commissioners, has complied with the requirements of law, an examination of the Petitioners position would seem to be indicated. The Petitioners' argument against the approval of the Complex Air Source Permit falls into two broad categories. The first of those categories has to do with the allegation that the Respondent, Lee County Board of County Commissioners, failed to comply with the instructions in the application form. After considering the testimony in this cause and the exhibits submitted, this contention on the part of the Petitioners is rejected. The second basis for attacking the application concerns the techniques for gathering and applying the data which was utilized by the Respondent, Lee County Board of County Commissioners, in their efforts to establish reasonable assurances that the project would not violate Ambient Air Quality Standards in terms of the maximum limiting levels set forth in Rule 17-2.06, Florida Administrative Code. To this end, the Petitioners offered a series of competing statistics through their exhibits, in terms of traffic projections. In addition, their expert on air quality, Dr. Detar, was of a different persuasion on the question of the average automobile speed through the signalized intersection U.S. 41 and Daniels Road. In Dr. Detar's mind the average speed would be eight miles per hour as the low average speed for an eight-hour period. In view of all the testimony, this projection of the low average speed is not found to be acceptable. Finally, the Petitioners were of the persuasion that the average mix of automobiles and trucks in the area of the project would be more along the lines of the national average of eighty percent cars and twenty percent trucks. The studies conducted by the Respondent, Lee County Board of County Commissioners, in prior projects demonstrated the efficacy of the ninety- four percent automobiles and six percent trucks standard. In measuring other sources of pollution than sulphur dioxide and particulate matter (which the Petitioners do not question in this case), Dr. Detar believed that hydrocarbons and nitrogen dioxide could be modeled. His explanation of the modeling technique, when contrasted with the argument of the Lee County Board of County Commissioners and the State of Florida, Department of Environmental Regulation, to the effect that those two substances may not be modeled on a specific site basis, failed to be persuasive. In summary, in contrasting the evidence offered in behalf of the Petitioners with that offered in behalf of the Respondent; the Respondent, Lee County Board of County Commissioners, has demonstrated reasonable assurances that maximum limiting levels of the applicable pollutants will not be exceeded in the area of the project. The various memoranda and proposed findings of fact and conclusions of law have been reviewed by the undersigned, and to the extent that those items are not inconsistent with the findings of fact rendered herein and conclusions of law and recommendation, they are hereby acknowledged by the entry of this Order. To the extent that those aforementioned items are inconsistent with the findings of fact, conclusions of law and recommendation by the undersigned, they are rejected.

Recommendation It is recommended that the Respondent, Lee County Board of County Commissioners, be granted a Complex Air Source Permit for the construction of the improvements at Daniels Road, Lee County, Florida. DONE AND ENTERED this 1st day of March, 1979, in Tallahassee, Florida. CHARLES C. ADAMS Hearing Officer Division of Administrative Hearings Room 101, Collins Building MAIL: 530 Carlton Building Tallahassee, Florida 32304 COPIES FURNISHED: E. G. Couse, Esquire Grace & Couse, P.A. Suite 202, Courtney Building Post Office Drawer 1647 Fort Myers, Florida 33902 L. Caleen, Jr., Esquire General Counsel Department of Environmental Regulation Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32301 Beverly E. Myers, Esquire Assistant County Attorney Lee County Post Office Box 398 Fort Myers, Florida 33902 ================================================================= AGENCY FINAL ORDER =================================================================

Florida Laws (1) 120.57
# 3
MICHAEL L. PEMBERTON, ET AL. vs. TRIANGLE CONSTRUCTION ROAD BUILDING, INC., 85-000621 (1985)
Division of Administrative Hearings, Florida Number: 85-000621 Latest Update: Jul. 03, 1985

Findings Of Fact On January 23, 1985, following the filing of the and its on-site inspection, DER issued its notice of intent to grant the air construction permit, pursuant to Chapter 403, Florida Statutes (F.S.), and Chapters 17-2 and 17-4, Florida Administrative Code (F.A.C.). The notice stated that the proposed equipment, with a cyclone primary dust collector followed by a Dustex Baghouse Model DW-14-28W dust collector, was adequate to insure compliance with DER particulate emission standards. The ambient air standards for sulfur dioxide emissions by the plant were to be controlled by the use of low sulfur fuel oil (maximum 0.5 percent sulfur). Subsequent to the issuance of the notice of intent, DER received a Petition for Administrative Hearing regarding the issuance of the permit. The petition alleged, inter alia, that the plant would emit particulates and gases in contravention of Chapter 17-2, F.A.C., and that stormwater run-off from the plant would be contaminated with oil, scum and debris. The petition further asserted that this run-off would cause water pollution in contravention of Chapters 17-3 and 17-25, F.A.C., and would introduce pollution into Dry Branch and Bayou George, a Class I Water. The permit application covers only the proposed batch plant site and the immediately adjacent property consisting of 2.15 acres. The location of the building would be at the northern end of the parcel, approximately 0.10 miles from both Star Avenue and U.S. Highway 231. There is no residential use of property immediately adjacent to the project site. However, Petitioners all reside in the immediate area, and will be affected to some extent by this facility. Dust from construction activity has already been experienced. In this regard, it must be recognized that the area has no zoning restrictions and is therefore subject to industrial uses such as that proposed here. The Applicant owns several acres of property surrounding the location of the proposed batch plant. The permit application at issue covers only the request to construct the facility on a 2.15 acre portion of the larger parcel. Anticipated environmental problems caused by activity not on the immediate parcel are not related to this permit application and thus are not germane to a determination whether the permit should be issued or denied. Further, the construction permit will only allow the applicant to build the proposed air pollution source. Before such a source can actually be operated, a separate operation permit application must be made, and testing for compliance with standards by the facility must be satisfactorily completed. Petitioners demonstrated that the individuals who own Triangle Construction Company, Inc. were previously employed by Gulf Asphalt Company, which was occasionally out of compliance with state air emission standards. Petitioners asserted that these individuals would likely fail to operate the proposed facility in compliance with DER standards. Although these individuals did have managerial responsibility at Gulf Asphalt, final decisions concerning financial expenditures for repairs and maintenance were made by the owner of the plant, rather than the Applicant's owners. It was also established that the Gulf Asphalt Plant continued to have emission problems after such individuals left as employees. Petitioners contend the Applicant's unrelated dredging activities in an adjacent borrow pit area caused turbidity in Dry Branch Creek, and characterized the Applicant as a habitual violator who could not be expected to comply with state pollution control regulations in the operation of the proposed facility. Testimony revealed that the Applicant constructed a culvert in Dry Branch, which flows through a borrow pit area and did some other incidental dredging in areas within the landward extent of waters of the state. However, when the Applicant became aware that activities in the proposed borrow pit area were potentially in violation of DER rules, it ceased activities and applied for the appropriate permits. An asphalt concrete batch plant is a relatively simple operation in which sand and aggregate are dried, then mixed with hot liquid asphalt and loaded directly into trucks. It is the drying process which emits the particulates which the cyclone and the baghouse are designed to control. Baghouse operations are similar to those of a vacuum cleaner. Particulate-laden air from the drying process is vented into the baghouse, where it is filtered through a number of cloth bags. The bags trap the particulates, and pass the filtered air through the bag cloth and out of the building. When enough air has been filtered to cause a build-up of trapped particulates, a portion of the baghouse is taken off cycle and reverse air is blown through the bags. The reverse air causes the trapped particulates to fall into a hopper where they are removed for disposal. The baghouse was designed to function efficiently in conjunction with a plant producing up to 120 tons per hour of asphalt concrete. Applicants's plant will produce only 80-85 tons of asphalt concrete per hour due to the limited size of the dryer. The estimated air to cloth ratio in the amended permit application is 6:1, which will result in emissions substantially lower than DER standards. Air to cloth ratio is not a specific standard or requirement, but is a figure which is used by engineers to determine projected emissions which may reasonably be anticipated from facilities which use an air pollution control mechanism. A projected air to cloth ratio of 6:1 for this baghouse may be reasonably expected to yield emissions of approximately 0.014 micrograms per dry cubic foot, which is approximately one-third of the DER standard of 0.04 mg. per dry cubic foot. The equipment to be installed is used and in need of minor repairs. The testimony established that necessary repairs will be accomplished prior to plant activation, and that operations will not be adversely affected when such repairs are complete.

Recommendation Based on the foregoing, it is RECOMMENDED that the Department of Environmental Regulation issue a final order granting Triangle Construction Company an air construction permit. DONE and ENTERED this 21st day of June, 1985, in Tallahassee, Florida. R. T. CARPENTER Hearing Officer Division of Administrative Hearings The Oakland Building 2009 Apalachee Parkway Tallahassee, Florida 32301 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 21st day of June, 1985. COPIES FURNISHED: Lynn C. Higby, Esquire BRYANT, HIGBY & WILLIAMS, P.A. Post Office Box 124 Panama City, Florida 32402 E. Gary Early, Esquire and Clare E. Gray, Esquire Department of Environmental Regulation 2600 Blairstone Road Tallahassee, Florida 32301 Richard Smoak, Esquire SALE, BROWN & SMOAK Post Office Box 1579 Panama City, Florida 32402 Victoria Tschinkel, Secretary Department of Environmental Regulation Twin Towers Office Building 2600 Blairstone Road Tallahassee, Florida 32301

USC (1) 40 CFR 60.90 Florida Laws (2) 120.57403.087
# 4
FLORIDA POWER CORPORATION vs DEPARTMENT OF ENVIRONMENTAL PROTECTION, 96-005344 (1996)
Division of Administrative Hearings, Florida Filed:Tallahassee, Florida Nov. 13, 1996 Number: 96-005344 Latest Update: Jan. 13, 1999

The Issue The issue in this case is whether Petitioner should be issued an air construction permit authorizing its Crystal River steam generating plant Units 1 and 2 to co-fire a five to seven percent blend of petroleum coke with coal.

Findings Of Fact Based upon all of the evidence, the following findings of fact are determined: Background Petitioner, Florida Power Corporation (FPC), is an investor-owned public utility engaged in the sale of electricity to approximately 1.2 million customers. Among others, it operates the Crystal River Power Plant consisting of five electric-generating units in Citrus County, Florida. Units 1, 2, 4, and 5 are coal-fired, while Unit 3 is a nuclear unit. Respondent, Department of Environmental Regulation (DEP), is a state agency charged with the statutory responsibility of regulating the construction and operation of business enterprises in a manner to prevent air pollution in excess of specified limits. Among other things, DEP issues air construction permits for a limited period of time to undertake and evaluate initial operations of a business enterprise; long- term approval subsequently is available under an air operation permit. As a part of this process, and pursuant to federal law, DEP engages in a Prevention of Significant Deterioration (PSD) review to determine if non-exempt alterations to major facilities result in net emission increases greater than specified amounts. Under certain conditions, however, the use of alternative fuels or raw materials are exempted from PSD review. Intervenor, Legal Environmental Assistance Foundation, Inc. (LEAF), is a non-profit Alabama corporation licensed to do business in the State of Florida. It is a public interest advocacy organization whose corporate purposes include securing environmental and health benefits from clean air and water. Intervenor, Sierra Club, Inc. (Sierra Club), is a public interest advocacy organization incorporated in California and doing business in Florida. Its corporate purposes include securing the environmental and health benefits of clean air and water. On December 26, 1995, FPC filed an application with DEP for an air construction permit authorizing it to burn a blend of petroleum coke and coal in its existing coal-fired Units 1 and 2 at the Crystal River Power Plant in Citrus County, Florida. In the application, FPC did not address PSD review since it believed it qualified for an exemption from PSD permitting under Rule 62- 212.400(2)(c)4., Florida Administrative Code. That rule exempts from PSD review the [u]se of an alternative fuel or raw material which the facility was capable of accommodating before January 6, 1975, unless such change would be prohibited under any federally enforceable permit condition which was established after January 6, 1975. After reviewing the application, DEP issued an Intent to Deny on June 25, 1996. In that document, DEP stated that [a]ccording to information in Department files, both Units 1 and 2 operated on liquid fuel prior to January 6, 1975. Very substantial modifications of the boilers and pollution control equipment were implemented thereafter by [FPC] to convert the units to coal-firing mode. Therefore the project does not qualify for the exemption from PSD review claimed by the company. Contending that it was entitled to an exemption from PSD review and therefore a permit, FPC filed a Petition for Administrative Hearing on October 4, 1996. In its Petition, FPC generally alleged that petroleum coke is a product with characteristics very similar to coal; Units 1 and 2 were capable of accommodating coal and petroleum coke as of January 6, 1975; and contrary to the statements in the Intent to Deny, any boiler modifications and pollution control improvements to those units were minor and not substantial. The Permitting Program The PSD program is based on similar PSD requirements found in the federal Clean Air Act of 1970, as amended (the Act). The permitting program is a federally required element of DEP's State Implementation Plan (SIP) under Section 110 of the Act. DEP has fulfilled the requirement of administering the federal PSD program by obtaining approval from the Environmental Protection Agency (EPA) of state PSD regulations that meet the requirements of federal law. The requirements of the SIP are found in Chapters 62-204, 62-210, 62-212, 62-296, and 62-297, Florida Administrative Code. Chapter 62-212 contains the preconstruction review requirements for proposed new facilities and modifications to existing facilities. Rule 62-212.400, Florida Administrative Code, establishes the general preconstruction review requirements and specific requirements for emission units subject to PSD review. The provisions of the rule generally apply to the construction or modification of a major stationary source located in an area in which the state ambient air quality standards are being met. Paragraph (2)(c) of the rule identifies certain exemptions from those requirements. More specifically, subparagraph (2)(c)4. provides that a modification that occurs for the following reason shall not be subject to the requirements of the rule: 4. Use of an alternative fuel or raw material which the facility was capable of accommodating before January 6, 1975, unless such change would be prohibited under any federally enforceable permit condition which was established after January 6, 1975. The rule essentially tracks verbatim the EPA regulation found at 40 CFR 52.21(b)(2)(iii)(e)1. Therefore, in order to qualify for an exemption from PSD review, FPC must use "an alternative fuel . . . which [Units and 2 were] capable of accommodating before January 6, 1975." In addition, FPC must show that "such change would [not] be prohibited under any federally enforceable permit condition which was established after January 6, 1975." Contrary to assertions by Respondent and Intervenors, in making this showing, there is no implied or explicit requirement in the rule that FPC demonstrate that it had a subjective intent to utilize petroleum coke prior to January 6, 1975. The Application and DEP's Response In its application, FPC proposes to co-fire a five percent (plus or minus two percent) blend of petroleum coke with coal, by weight. It does not propose to make any physical changes to Units 1 and 2 to utilize petroleum coke. Also, it does not request an increase in any permitted air emission rates for the units because it can meet its current limits while burning the proposed blend rate of petroleum coke with coal. The application included extensive fuel analysis and air emissions data obtained from a DEP-authorized petroleum coke trial burn conducted from March 8 until April 4, 1995. Although it is not proposing to make physical changes to the plant, FPC applied for the air construction permit in deference to DEP's interpretation that such a permit is required when a permittee utilizes an alternative fuel. After completing his initial review, the DEP supervisor of the New Source Review program acknowledged in a memorandum to his supervisor that FPC was "entitled to a permit" but suggested that FPC be asked to "change their minds." Before the permit was issued, however, DEP changed its mind and issued an Intent to Deny on the ground that prior to January 6, 1975, Units 1 and 2 were not capable of accommodating coal or a blend of petroleum coke with coal. The Units Unit 1 has a generating capacity of 400 MW and commenced operation as a coal-fired plant in October 1966. It fired coal until March 1970, fuel oil until October 1978, and then again fired coal from June 1979 to the present. Unit 2 has a generating capacity of 500 MW and commenced operations as a coal-fired plant in November 1969. It fired coal until September 1971, fired fuel oil from December 1971 until October 1976, and then again fired coal from December 1976 to the present. Original equipment installed during the initial construction of Units 1 and 2 included the following: the barge unloader, which removes coal from barges that deliver coal from New Orleans; the stacker/reclaimer, which stacks the coal into piles and then reclaims the coal by directing it from the coal piles to conveyors that deliver it to the units; the crusher house, which has two crushers that crush the coal on the way to units down to nuggets no larger than three-quarters of an inch in diameter; the silos, which store the crushed coal; the feeders, located below the silos, which regulate the flow of coal from the silos to the pulverizers; the pulverizers, which grind the coal in preparation for combustion and then direct the pulverized coal to the burners, which are located on the corners of each unit's boiler; and the boilers, where the fuel is combusted, imparting heat to water contained in the waterwalls and thereby producing steam for electrical generation. The foregoing equipment was reflected in the plant's construction specifications and remains in operation, on site, at the plant. Components and parts of this equipment have been maintained, replaced, and repaired periodically. The original operations manual for the barge unloader, stacker/reclaimer, crushers, and conveyor systems are still kept and utilized on site. The primary fuel utilized in Units 1 and 2 is coal, although these units also co-fire from one to five percent number fuel oil and used oil. The combustion of fuel in Units 1 and 2 results in air emissions. As a result of changing regulatory requirements, there have been substantial improvements to the units' air pollution control capabilities since original construction. Existing Air Permits Unit 1 currently operates under Air Operation Permit Number A009-169341. Unit 2 operates under Air Operation Permit Number A-009-191820. Both permits were amended by DEP on October 8, 1996. Although each air operation permit contains an expiration date that has been surpassed, the permits remain in effect under DEP's regulations during the pendency of the agency's review of FPC's applications for air operation permits under the new Title V program found in Chapter 62-213, Florida Administrative Code. The air operation permits governing Units 1 and 2 contain mass emission rate limitations of 0.1 pounds/million (mm) British thermal units (Btu) or particulate matter (PM), and 2.1 pounds/mmBtu for sulfur dioxide. These mass emission rate limitations restrict the amount of each pollutant (measured in pounds) that is to be released into the atmosphere per million Btu of heat energy by burning fuel. The PM limitation is applicable to Units 1 and 2 under state regulations originally promulgated in 1972. The sulfur dioxide limitation was established in 1978 as a result of a PSD air quality analysis performed in conjunction with the permitting of Units 4 and 5. Prior to 1978, sulfur dioxide limits promulgated early in 1975 imposed a limit of 6.17 pounds/mmBtu on coal-fired operations at Units 1 and 2. Because Units 1 and 2 were subjected to a PSD air quality impact analysis along with Units 4 and 5, the units' sulfur dioxide emission limits were reduced from 6.17 to 2.1 pounds/mmBtu. The 2.1 pounds/mmBtu sulfur dioxide emission limitation applicable to Units 1 and 2 was set with the intention of assuring no adverse air quality impacts. The sulfur dioxide impacts associated with Units 1, 2, 4, and 5, after collectively being subjected to PSD air quality review, were much lower than the sulfur dioxide impacts previously associated with only Units 1 and 2. Is Petroleum Coke an Alternative Fuel? Petroleum coke is a by-product of the oil refining process and is produced by many major oil companies. The oil refineries refine the light ends and liquid products of oil to produce gasoline and kerosene, resulting in a solid material that resembles and has the fuel characteristics of coal. Both historically and presently, it has been common- place for electric utilities to rely on petroleum coke as fuel. For example, during the period 1969 through 1974, regular shipments of petroleum coke were sent to various electric utility companies throughout the United States to be co-fired with coal. In addition, DEP has issued permits for Tampa Electric Company to co-fire petroleum coke with coal. In 1987 and again in 1990, the EPA promulgated air- emission regulations which specifically define "coal" as including "petroleum coke." DEP has incorporated these regulations by reference at Rule 62-204.800(7)(b) 3. and 4., Florida Administrative Code. Given these considerations, it is found that petroleum coke constitutes an alternative fuel within the meaning of Rule 62-212.400(4)(c)4., Florida Administrative Code. Were the Units Capable of Accommodating the Fuel? Petroleum coke and coal are operationally equivalent. Petroleum coke can be handled, stored, and burned with the existing coal handling equipment at Units 1 and 2. The barge unloader, stacker/reclaimer, storage areas, conveyors, silos, crusher house, pulverizers, and burners, all installed prior to 1975, can handle petroleum coke. The equipment comprising Units 1 and 2 does not require any modification in order to burn a blend of petroleum coke with coal. Also, there will be no net impact on steam generator design or operation, and there will be no decline in performance or adverse impacts to the boilers. FPC could have co-fired petroleum coke with coal historically without making physical alterations or derating the units. Similarly, petroleum coke can be fired in Units 1 and 2 now without alterations or derating. These findings are further supported by Petitioner's Exhibits 35 and 36, which are reference books published in 1948 and 1967 by the manufacturer of the equipment installed at Units 1 and 2. They confirm that prior to 1975, petroleum coke was suitable for the manufacturer's boilers and pulverizers. Unrebutted testimony demonstrated that Units 1 and 2 could have co-fired petroleum coke with oil during the oil-firing period. Even when Units 1 and 2 fired oil instead of coal for a period of time in the 1970s, the coal-handling equipment remained in existence on-site and available for use, and both units remained readily convertible to their original, coal-firing modes. Because the plant remained capable of accommodating coal, it also remained capable of accommodating petroleum coke. In light of the foregoing, it is found that co-firing petroleum coke with coal at Units 1 and 2 could have been accomplished prior to January 6, 1975. Are there Post-January 6, 1975, Prohibitions? There is no evidence to support a finding that a federally enforceable permit condition was establshed after January 6, 1975, that prohibits co-firing petroleum coke with coal. I. Miscellaneous By letters dated February 14 and June 2, 1997, the EPA Region IV office replied to inquiries from DEP regarding the instant application. The conclusions reached in those letters, however, were based on a misapprehension of the facts in this case. Therefore, the undersigned has not credited these letters. To prove up its standing, LEAF introduced into evidence a copy of its articles of incorporation and a brochure describing the organization. In addition, it asserted that the air quality for its members would be "at risk" if Units 1 and 2 did not meet PSD standards and air emissions were "increased." Intervenor Sierra Club proffered that a substantial number of members "live, work, or recreate in the vicinity of the Crystal River Units 1 and 2, and in the area subject to the air emissions by those units," and that those members "would be substantially affected by the proposed exemption."

Recommendation Based on the foregoing findings of fact and conclusions of law, it is RECOMMENDED that the Department of Environmental Protection enter a final order granting the application of Florida Power Corporation and issuing the requested air construction permit. DONE AND ORDERED this 23rd day of September, 1997, in Tallahassee, Leon County, Florida. DONALD R. ALEXANDER Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1560 (904) 488-9675 SUNCOM 278-9675 Fax Filing (904) 921-6847 Filed with the Clerk of the Division of Administrative Hearings this 23rd day of September, 1997. COPIES FURNISHED: Kathy Carter, Agency Clerk Department of Environmental Protection 3900 Commonwealth Boulevard Mail Station 35 Tallahassee, Florida 32399-3000 James S. Alves, Esquire Post Office Box 6526 Tallahassee, Florida 32314-6526 W. Douglas Beason, Esquire Department of Environmental Protection 3900 Commonwealth Boulevard Mail Station 35 Tallahassee, Florida 32399-3000 Gail Kamaras, Esquire 1115 North Gadsden Street Tallahassee, Florida 32303-6327 Jaime Austrich, Esquire Post Office Box 1029 Lake City, Florida 32056-1029 F. Perry Odom, Esquire Department of Environmental Protection 3900 Commonwealth Boulevard Tallahassee, Florida 32399-3000

USC (1) 40 CFR 52.21(b)(2)(iii)(e)1 Florida Laws (1) 120.569 Florida Administrative Code (2) 62-204.80062-212.400
# 5
WILLIAM KEELING AND SHIRLEY KEELING vs S.M.G., INC. AND DEPARTMENT OF ENVIRONMENTAL PROTECTION, 02-003875 (2002)
Division of Administrative Hearings, Florida Filed:Crystal River, Florida Sep. 19, 2002 Number: 02-003875 Latest Update: Jun. 03, 2003

The Issue The issue presented is whether Respondent, S.M.G., Inc. (SMG), has provided reasonable assurance that its existing air curtain incinerator will be operated in accordance with applicable statutory and rule provisions.

Findings Of Fact The Parties The Department is the state agency responsible for receiving applications for, and the issuance of, permits for the construction and operation of air curtain incinerators in the State of Florida. SMG is a contracting company, with residential, trucking, agricultural, and commercial driver's license divisions. SMG is the applicant for a permit to operate an air curtain incinerator. Petitioners reside in Citrus County, Florida, in the vicinity of the constructed and operational air curtain incinerator. For the most part, Petitioners reside northeast, east, or southeast of the site. The Petitioners demonstrated their standing in this proceeding. SMG's Construction Permit On May 23, 2001, SMG submitted an application for an air construction permit to the Department's Southwest District Office. The application sought authorization to construct an air curtain incinerator "[o]n the east or west side of 6844 N. Citrus Avenue, Crystal River," Citrus County, Florida. 1 The general purpose of pursuing this permit was to burn wood waste. On July 9, 2001, the Department issued SMG a Notice of Intent to Issue the Proposed Air Construction Permit (Permit No. 0170360-001-AC). A copy of the Notice of Intent was published in the Citrus Times in Citrus County on July 19, 2001. On August 6, 2001, the Department issued SMG an air construction permit for the proposed air curtain incinerator. The construction permit authorized the construction of a McPherson Systems, Inc. - Model M30E air curtain destructor (incinerator) with under fire air at a natural non-Title V facility. Pursuant to the terms of the construction permit, in November 2001, SMG constructed an air curtain incinerator on approximately 500 acres of land on the east side of State Route 495 north of Crystal River in Citrus County, Florida, on property owned by the Gerrits family. See Endnote 1. Pursuant to the construction permit, SMG installed a McPherson Systems, Inc. - Model M30E air curtain incinerator with under fire air, a refractory lined burning pit, three upper chamber refractory lined walls (ten feet high), and a stainless steel spark arrester screen. The manifold blower and under fire air fans are powered by an electric engine. The manufacture designs and specifications for the McPherson model were submitted with the application for the air construction permit and admitted in evidence. Construction of a portable air curtain incinerator with a blower/fan system powered by a diesel-fired engine was contemplated by the air construction permit. Although cheaper, SMG instead chose to install the McPherson model that would produce the cleanest burn, i.e., one with fewer emissions, that was operated by electricity. The McPherson model used by SMG is recognized as an efficient, reliable model of air curtain incinerator. The diesel-fired blower/fan/engine system contemplated by the construction permit is considered exempt from permitting. An engine operated by electricity has no emissions and therefore does not require an air permit from the Department. The Department could not require a permit for the blower/fan system alone. The operating permit supercedes the construction permit, except as amended. Testing after Construction of the Incinerator On November 23, 2001, SMG began operating the air curtain incinerator. Pursuant to Special Condition 22 of the air construction permit, an initial visible emissions (VE) (opacity test) compliance test was performed on November 23, 2001, by Bernard A. Ball, Jr., an environmental engineer with Southern Environmental Services, Inc. The results of the initial VE compliance test were within the opacity limits contained in the construction permit. Specific Condition 19 of the construction permit requires SMG to maintain daily operating logs of the air curtain incinerator's daily operations. In order to obtain an air operating permit, a permit applicant is required to demonstrate compliance with the Department's rules and with the conditions of the construction permit. The Department requires an applicant for an operating permit to submit copies of recent daily operating records for the facility and copies of the emissions test required by the construction permit. These operating records are submitted in order for the Department to determine whether the applicant is complying with the applicable emissions standards and that the applicant is, in fact, maintaining the required operating logs as required by the construction permit. In order for SMG to obtain the operating permit for the incinerator, Specific Condition 28 of the construction permit required SMG to file an application for an air operating permit with the Department within 45 days of testing and required the application to include a copy of the VE test report and copies of at least two recent weeks of daily operating logs. On March 14, 2002, a second VE test was conducted by Mr. Ball, which also indicated that emissions were within the construction permit's opacity limits. On April 1, 2002, SMG submitted its application for the air operation permit to the Department. The application was signed by Sean Gerrits, and contained copies of the VE test reports for the November 2001 and March 2002 tests, as well as three and one-half months of daily operating logs, certificates showing that the incinerator operators were trained, and photographs of the incinerator in operation. SMG submitted the documentation required under the construction permit. On April 19, 2002, Robert E. Soich, Jr., air compliance inspector for the Department's Southwest District Office, performed an unannounced inspection and conducted a VE test in response to a complaint by Mr. Leonard Kaplan (a Petitioner), complaining of odors present. Excessive visible emissions were observed by Mr. Soich on April 19, 2002. The incinerator did not pass the VE test because of the improper alignment of the blade angle on the manifold of the blower system and because of green leaves and inadequate drying of the materials to be burned in the incinerator. Mr. Soich also observed, in part, that "materials need to be prepared better for burning." As a result of this unannounced inspection and the negative VE test, the Department requested SMG to provide an explanation of the VE test results and of the type of changes SMG planned to implement to correct the problem. On learning of the problem, SMG shut down the incinerator and called a McPherson mechanical contractor to come out and adjust the blade angle. Southern Environmental Services conducted another VE test to ensure the problem had been corrected. On April 22, 2002, a VE test was conducted by Southern Environmental Services on-site which showed compliance with the construction permit. On April 30, 2002, SMG advised the Department that adjustments were made to the baffles to correct the angles. SMG provided the Department with the April 22, 2002, VE test results. SMG also implemented better operational procedures. On May 30, 2002, with Mr. Soich present, SMG, by Byron E. Nelson, performed another VE test. The test results showed compliance with the opacity limits in the construction permit and the results were submitted to the Department.2 Mr. Nelson, an environmental engineer with Southern Environmental Sciences, testified that he has been involved in preparing approximately two dozen applications for air curtain incinerators and has conducted probably "thousands" of visible emissions tests. Mr. Nelson is certified by the State of Florida to conduct VE tests. He has seen "two or three dozen" air curtain incinerators in operation and has conducted VE tests on about 20 of them. Based on his experience, Mr. Nelson testified that SMG employed the same practices and controls to control odor, smoke, and fugitive emissions as other such incinerators he is familiar with. He testified that the amount of smoke and odors from the SMG incinerator is similar to that emitted from other air curtain incinerators, and that the fugitive emissions from the SMG incinerator were probably less than others he is familiar with. Based on his experience, Mr. Nelson opined that SMG has taken reasonable measures to minimize odor, smoke and dust/particulates from the operation of the incinerator. Mr. Nelson likewise opined that the SMG incinerator is well run, perhaps better run than other incinerators. (Mr. Nelson had been on the SMG site twice when the incinerator was operating and burning wood products.) Based on his experience, Mr. Nelson opined that SMG meets the requirements necessary to obtain an air operating permit from the Department and has demonstrated that it has complied with the conditions of its construction permit. Mr. Soich is the air compliance inspector for the Department's Southwest District Office. He testified that he has inspected the operations of other air curtain incinerators over the last 15 years. Mr. Soich testified that SMG is one of the "better operators" of air curtain incinerators he is familiar with. (Mr. Soich visited the SMG site approximately nine times from March 13, 2002, to October 15, 2002.) Mr. McDonald is the Air Permitting Engineer for the Southwest District Office of the Department. He is responsible for reviewing all applications for air curtain incinerators in the Southwest District and has reviewed applications for between 25 and 30 incinerators. Mr. McDonald reviewed the SMG permit applications. Based on the latest VE test results, copies of the records attached to the operating permit application, and his experience, Mr. McDonald, for the Department, determined that SMG had demonstrated compliance with the conditions of the construction permit and recommended issuance of the operating permit for the incinerator. He maintained the same position at hearing. SMG provided assurance that the DeRosa Fire Department would respond in the event of a fire at the incinerator. On June 19, 2002, the Department issued the proposed air operating permit. Operation of the Air Curtain Incinerator Emissions from the incinerator are controlled by a curtain of forced air at a very high static pressure over and around the burning pit. The air curtain traps smoke and small particles and recirculates them to enhance combustion and reduce smoke. The underfire air introduces air underneath the air curtain to ensure complete combustion and minimize opacity at start-up. The refractory-tiled ceramic concrete burn pit provides a safe combustion chamber, and the refractory panels keep excess heat from escaping. The upper chamber refractory panels, which surround three sides of the burn pit, allow more retention time in the burner to better control opacity and sparks. The stainless screen spark arrestor also controls sparks and debris from leaving the burner. The operating permit application proposed the use of an air curtain blower along with a manifold to provide forced air to the burning pit. According to the manufacturer specifications, the blower can force air into the pit at velocities of between 100 and 120 mph. This ensures that the flames in the burn pit receive enough oxygen to combust completely. The air circulates inside the burn pit to ensure a complete burn, which reduces smoke and odor. The combustion temperature for the burning pit ranges from approximately 1,800 to 2,500 degrees Fahrenheit. The operating permit allows a maximum charging rate of ten tons per hour on a daily average basis and 31,200 tons per any consecutive 12 month period. The incinerator has been operating below the maximum charging rate. The operating permit limits the hours of operation (charging) to 3,120 hours per year, i.e., ten hours/day, six days/week, 52 weeks/year. According to various SMG operating and maintenance logs, the incinerator has been operated below this limit. The operating permit, in accordance with Rule 62- 296.401(7), Florida Administrative Code, allows the burning of only wood waste, yard waste, and clean lumber, and prohibits the burning/incineration of materials such as sawdust, paper, trash, tires, garbage, rubber material, plastics, liquid wastes, Bunker C residual oil, roofing materials, tar, asphalt, railroad cross ties, or other creosoted lumber, chemically treated or painted wood, and other similar materials. Biological waste shall not be burned in the incinerator. During its operation, the incinerator only burned wood and yard waste, and Mr. Gerrits testified that the waste materials are inspected before being burned in order to ensure that no prohibited materials are burned. If any non-authorized materials are observed, they are removed before the waste is burned. See Finding of Fact 24. The operating permit allows visible emissions during start-up periods (not to exceed the first 30 minutes of operation) of an opacity up to 35 percent, averaged over a six- minute period, as provided for in Rule 62-296.401(7)(a)-(b), Florida Administrative Code. The McPherson model is designed to meet the requirements of the above-referenced rule, and the VE tests run during start-up periods (except one performed by Mr. Soich on April 19, 2002) demonstrated compliance with this requirement. Id. The operating permit limits visible emissions outside of start-up periods (the first 30 minutes of daily operation) to no more that five percent opacity, with visible emissions of up to ten percent opacity allowed up to three minutes in any one hour as provided for in Rule 62-296.401(7)(a), Florida Administrative Code, and 40 Code of Federal Regulations Part 60, Subpart CCCC, adopted and incorporated by reference in Rule 62- 204.800(8)(b)74, Florida Administrative Code. (Rule 62- 296.401(7)(a) permits up to 20 percent opacity. The ten percent rate is required by the new federal standard. See SMG Exhibit 13, page 3 of 9.) The opacity limits in the operating permit are more stringent than those contained in the construction permit, which allows visible emissions of up to 20 percent opacity up to three minutes in any one-hour period. (By definition, a "visible emission" is "[a]n emission greater than 5 percent opacity or 1/4 Ringelmann measured by standard methods." Rule 62-296.200(278), Florida Administrative Code.) The VE test results submitted by SMG demonstrate compliance with the opacity limits in the operating permit and with the opacity limits in the construction permit for the days tested. See Findings of Fact 18, 22, 27, and 29. The operating permit requires that the incinerator must be attended at all times while materials are being burned and that public access to the incinerator must be restricted. A certified operator is in attendance whenever the incinerator is operated, i.e., when something is burning in the incinerator. A fence has been constructed around the property. The operating permit prohibits starting the incinerator before sunrise and requires that all charging of the incinerator be completely stopped before sunset as required by Rule 62- 296.401(7)(h), Florida Administrative Code. Mr. Gerrits testified that the incinerator is never started before sunrise and is typically started after 8:00 a.m. Mr. Gerrits testified that the incinerator is never charged after sunset and that charging typically stops at 4:00 or 5:00 p.m. See Endnote 4. These practices are consistent with the Operations and Maintenance Guide for the incinerator. The operating permit limits the height of the ash in the burning pit to one-third of the depth of the pit or to a point where the ash begins to impede combustion, whichever occurs first as provided in Rule 62-296.401(7)(m), Florida Administrative Code. The one-third depth line is marked on the outside of the incinerator. Mr. Gerrits testified that ash is regularly removed from the burning pit every third day to keep the ash level low, which helps ensure better combustion and reduces smoke. The operating permit provides that material shall not be loaded into the incinerator in such a way that it will protrude above the air curtain. Testimony established that the SMG incinerator is properly loaded. The operating permit requires that all operators of the incinerator be trained in the proper operation and maintenance of the incinerator and that an operations and maintenance guide be maintained at the facility at all times. All of the operators of the SMG incinerator have taken a four-hour training course to learn how to operate the incinerator in accordance with Department regulations and good operating practices, and certificates attesting to that training were submitted with the application for the operating permit. An Operations and Maintenance Guide was submitted with the application for the construction permit. The operating permit requires the maintenance of a daily operating log. The daily operating log must be maintained at the facility for at least five years and must be available for inspection by the Department upon request. SMG currently maintains a daily operating log that meets the requirements of the construction permit. SMG submits those daily logs to the Department on a monthly basis after the Department requested that SMG do so. The log includes a date and site location, daily operating hours, total charges, total material charged in tons, average hourly charging rate, any maintenance performed, fuel usage in gallons, and the operator's signature. The logs of record contain this information and have been initialed by SMG's operator for each day when the incinerator has been operated. SMG operators responsible for preparing the logs have no incentive to indicate the incinerator is not operating on days or during hours when it is running, as a deliberate misstatement on the operating logs could result in enforcement action by the Department and being fired by SMG. The operating permit requires that all reasonable precautions be undertaken to prevent and control the generation of unconfined emissions of particulate matter in accordance with Rule 62-296.320(4)(c), Florida Administrative Code. SMG takes reasonable precautions to prevent and control the generation of unconfined emissions of particulate matter, including paving the road that leads to the incinerator to reduce dust, wetting the ashes removed from the burn pit, wetting the ash piles and ramp that addresses the incinerator, approaching the incinerator at a slow rate, and placing a charge into the incinerator slowly and carefully. SMG voluntarily added a sprinkler system on all four corners of the burning pit that was not contemplated by the construction permit. The Department witness Mr. McDonald testified that this provided an additional method to control unconfined emissions. Although the construction permit and proposed permit do not contain conditions prohibiting the burning of green wood or wet wood waste, SMG takes precautions at the request of Mr. Soich to ensure that the wood is properly dried before being burned. See Finding of Fact 24. This helps to reduce smoke and emissions from the incinerator. (Moisture is the primary factor that inhibits burning and causes smoke and potentially odor.) As part of the routine practice in handling the wood waste before it is burned, trucks bringing wood waste to the incinerator are instructed to dump it into a pile. SMG operators then use a loader to flatten out the pile and remove dirt, prohibited materials, and harvestable pieces of wood. Harvestable pieces of wood and dirt are removed to separate staging areas. The remaining wood waste is separated into long windrows, with the oldest row closest to the incinerator. The windrows are flipped or rolled over in the direction of the incinerator, allowing the waste to dry. The waste in the row closest to the incinerator is burned, and subsequent windrows are rolled over in its place. Ash is generally removed from the burn pit every third day; it is wetted on removal to reduce dust, and the ash piles adjacent to the incinerator are also kept wetted by the sprinkler system. The ash is eventually mixed with the dirt in a composter for use as Class-A unrestricted compost. The SMG operator in charge on a particular day decides whether the incinerator will operate that day, in accordance with standard operational practices. The operator checks the weather forecast. If it is raining or if there are high winds (over 20 miles per hour), the incinerator will not be operated that day, and SMG typically waits four days after a rain to begin operating the incinerator again. These procedures are not contained in any permit conditions. The purpose of not operating during or immediately after a rain and taking steps to ensure the wood is dry is to reduce smoke; wet wood smokes more. Rainy weather can also affect odor. The purpose of not operating during windy conditions is to reduce the possibility of fire on SMG's property, but wind can also affect odor and visible emissions. On days when the incinerator is not operating, SMG conducts yard maintenance, maintains the waste windrows, and runs the composter. The composter is a source of noise and is located adjacent to the incinerator and is run when the incinerator is shut down. To ensure that the visible emission limitations are not exceeded and objectionable odors3 not generated, the operating permit requires that the incinerator's fan shall continue to operate after the last charge of the day until all combustion (presence of any flame or smoke) has ceased. Generally, the incinerator keeps burning an hour to an hour and one-half. Mr. Gerrits testified that the fan is kept running until the flames and smoke die out and that a certified operator is present until the fan is switched off. The operating permit requires that the testing of visible emissions must be conducted within 90-100 percent of the maximum allowable charging rate of 10 tons/hour and shall be conducted when the highest emissions can reasonable be expected to occur.4 Testing of the SMG incinerator was conducted at within 90-100 percent of the maximum allowable charging rate of 10 tons per hour, and the May 30, 2002, test results indicated that the incinerator was operating within the opacity limits of its permit even when operating at close to maximum capacity. Evidence established that the May 30, 2002, VE test complied with the specific conditions of both the construction and operating permit. See Finding of Fact 29. The test method for visible emissions required by both the construction permit and the operating permit is EPA Method 9, adopted and incorporated by reference at Rule 62- 204.800(8)(b)74, Florida Administrative Code. (Method 22 is not required pursuant to Department rules for compliance testing of an air curtain incinerator.) Testimony established that Method 9 was the method used for the VE tests conducted on the SMG incinerator. As required by both the construction and operating permits, the incinerator is located in excess of 300 feet from any pre-existing occupied building located off site as required by Rule 62-296.401(7)(j), Florida Administrative Code. The closest residences, that of Mr. Gerrits' father and his tenant, are approximately 1,500 feet away. Petitioners' Challenge For the most part, Petitioners reside northeast, east, or southeast of the incinerator. One Petitioner resides approximately three-tenths of a mile southeast of the incinerator; others reside at greater distances, up to approximately a mile and one-half away from the incinerator. Each of the Petitioners who testified have resided in this area for many years, pre-dating the operation of the incinerator. The Petitioners who testified were credible and well- intentioned. Each of these Petitioners maintained daily logs covering several months when the incinerator was authorized to operate. Some kept logs for several months, while others kept logs for several days. They noted their observations and perceptions in the logs. Admittedly, Petitioners are not experts in the detection of odors or noise levels. Nevertheless, they recorded their own experiences as to what they saw, heard, and/or smelled, believing that the odors and noise came from the incinerator. Some recorded that they smelled the strong odor of smoke, an "acrid smell," a "pungent smell," for example; "it makes your eyes burn and throat burn" said another during the hearing. One witness described the experience as being a prisoner in his house. Another does not go outside when the smell is bad. Generally, the level of odor varied with the weather conditions, i.e., a stronger odor was noticed on foggy and wet days or nights and when the wind blows from the west, which Petitioners contend is the prevailing wind. Some witnesses only smelled the odor during the night and not during the day, and not all of the time. Some complained about the odor and noise, or one and not the other. Some believed the noise coming from the incinerator was a major problem. At least two witnesses who live approximately three-tenths of a mile and 3,500 feet, respectively, from the incinerator site, described the noise as being like a jet airplane. One witness shuts her windows to keep out the noise. (SMG also operates a "wood chipper" or "composter" on site which is loud. Mr. Gerrits stated that he did not think the sound was the same as made by the incinerator fan. He also stated that "[i]t doesn't exceed the noise decibels. It doesn't exceed background noise levels at [their] property line.") Petitioners documented their concerns which are described, in part, above, and also documented their complaints to the Department and local government. It appears that each of the logs prepared by the Petitioners (who kept logs) were given to Petitioner Martha Futscher, who summarized and compiled a hand-written master list of the complaints. Then, Mr. Harvey inputted this data on the master list (spread sheet) of complaints, which appears as Petitioners' Exhibit F1. The master list contains recorded observations from May 2002 through January 2003. The master list contains a representation of when the incinerator started and stopped for various days and when it was operational or not, and this information was derived, according to Mr. Harvey, from the logs maintained by SMG. The master list also provides tons per hour of waste burned on particular days, the observer's initials, and the approximate distance each observer lived from the incinerator, and the comments, with time of observation or perception noted. There are discrepancies between the master list and the actual logs maintained by SMG as to when the incinerator was operational. There also appears to be several differences in observations between the Petitioners' master list and other evidence which indicates when Mr. Soich inspected the incinerator and determined that the incinerator was operating satisfactorily. Compare Petitioners' Exhibit 2 with Petitioners' Exhibit F1. For example, the master list records an observation from May 30, 2002, when the incinerator was operating, when there was noise and smoke noted at 8:00 a.m., and flames at the incinerator and odor at 5:30 p.m. Conversely, Mr. Soich was on-site on May 30, 2002, and observed the scheduled VE test. No problems were noted with the operation on this date by Mr. Soich. Mr. Soich also noted that "wood waste was properly dry and free of debris." The VE test on May 30, 2002, was performed from 10:29 a.m. to 11:59 a.m. and showed compliance with opacity limits. The master list indicates that black smoke was observed (no time given) on May 7, 2002, when the incinerator was operational, yet Mr. Soich inspected the incinerator on that day and there is a notation in the record that the incinerator was operating between 0-5 percent visible emissions. (Mr. Soich opined that it should be very rare to smell objectionable odors if the visible emissions run at a 5 percent level.) For October 15, 2002, there is a notation in the master list that a Petitioner commented that the incinerator was running during the day ("AM/PM Running") and that there was a strong smell at approximately 7:05 p.m. A strong smell at the person's house was also noted at approximately 9:30 p.m. on that day. However, Mr. Soich performed an annual inspection of the incinerator on October 15, 2002, and there is a notation on the master list, Petitioners' Exhibit 2, that the incinerator was not operating due to recent rain. As one Petitioner testified, her point was that the inspectors are not there when she hears the noise, sees smoke, and smells the odor. Mr. Soich confirmed that he does not inspect the facility in the evening. Petitioners also provided, as evidence in support of their position, six videotapes of the incinerator for September 19, October 3, October 23, November 25 (2 tapes), 2002, and January 10, 2003. (Mr. Harvey took the videotapes from the same location, across the street and west of the incinerator.) Each tape, except for September 19, 2002, showed smoke emanating from the operational incinerator. On September 19, 2002, the incinerator was not running according to the SMG log. There was a malfunction which was reported to the Department. The SMG log indicates that the pit was cleaned out, site cleared and rows moved. There is also a notation in the SMG log for this date that there was a power failure/malfunction at the incinerator at 9:00 a.m., and that the power was out. According to Mr. Gerrits, the malfunction caused smoke. (One Petitioner observed smoke from ashes on September 19, 2002.) While the Petitioners proved that there was smoke emanating from the operation of the incinerator on the days which were videotaped, with the exception of September 19, 2002, this did not necessarily prove that the emissions exceeded the requirements of the Department rules or that there was an objectionable odor emanating therefrom. Mr. Stoich observed the videotapes played during the hearing. In particular, with respect to the January 10, 2003, videotape, Petitioners' Exhibit 12, Mr. Stoich stated that a level of opacity cannot be determined from photographs and videotapes. He also noted that there was "a lot of white smoke," an atypical situation according to him, emanating from the incinerator and that he, as a compliance inspector, would have investigated further and performed an inspection, including a VE test, to determine if there was a violation, had he seen this smoke. However, he stated that without actually seeing the operation, he could not determine whether a violation had occurred. There was persuasive evidence that compliance with the opacity limits of a permit can only be determined through VE tests conducted using the Department-approved EPA Method 9. The VE test takes into account wind, the angle of the plume, the position of the sun, and other factors, and must use appropriate averaging to ensure that the test is valid. A smoke plume can look quite dense at the wrong angle or if the light is reflecting off the plume in a certain way, when in fact it is in compliance with Department rules. The VE tests for the incinerator have, with one exception, see Finding of Fact 24, demonstrated compliance with the opacity limits in the construction permit. As noted herein, upon receipt of notice that one VE test failed, SMG implemented corrective actions, and two VE tests conducted after the time showed the incinerator was operating in compliance with the opacity limits of the permit. See Findings of Fact 27 and 29. The Department relies on its compliance inspectors, such as Mr. Soich, to make a determination of whether an air emission source is causing an objectionable odor. There does not appear to be an approved Department method for measuring odors from incinerators. (Mr. Nelson stated that odors are difficult to test and that "odor is done collecting samples." No samples were taken or analyzed.) On the other hand, Mr. Soich testified that, based on his years of experience, he has developed certain methods for determining whether a facility is emitting an objectionable odor under the rules. If he receives an odor complaint, which he has in this case, he goes to the site and checks the prevailing winds. He also travels around the facility to determine the source of the odor. An odor can be deemed objectionable if it is very strong and overpowering, such that he cannot stay on- site and breathe in the odors. An odor can also be deemed objectionable if, after being on-site for some extended period of time, he begins to develop symptoms such as runny eyes, a scratchy throat, or a headache as a result of the smell. Finally, he may bring along another Department employee to determine whether the other individual finds the odor objectionable. Enforcement actions can be taken if objectionable odors are detected. Mr. Soich testified that he has inspected the incinerator at least nine times in the past year and never detected an objectionable odor. On some of the visits, the incinerator was not operational. On rebuttal, several residents of the area testified that they had not experienced objectionable odors from the incinerator. David Stevens, the Chief of the DeRosa County Fire Department, testified that an open land-clearing burn emits black smoke, more so than he observed from the incinerator. This fire department only had to respond to false alarms at the incinerator. Mr. Stevens personally inspected the operation of the incinerator and thought it was a very safe operation. Randy Morgan, a wildlife firefighter and certified burner with the Division of Forestry with over 16 years of experience in fire control, testified that approximately 50,000 acres of the state land burns occurred in Citrus County last year. These land burns can be a significant source of smoke and odor. In addition, approximately 50 open burn authorizations are issued each day. He also testified that controlled burns of approximately 15 fires of approximately 50 to 2,000 acres a day occurred in 2002 in proximity of the SMG incinerator which is a source of smoke and odor. The state also conducts open burns of some kind approximately ten months out of the year. Other witnesses testified that, given the rural nature of the community, open burning of trash, wood, and leaves occurs on a regular basis. Ultimate Findings of Fact Credible evidence established that SMG meets or exceeds the requirements in the construction permit to reduce smoke, dust, and odor, and these requirements are carried over to the operating permit. Credible evidence established that SMG employs the same, if not better, practices and permit conditions to control smoke, dust, and odor as other air curtain incinerators in the state. Credible evidence established that the SMG incinerator is operated in accordance with its construction permit. Credible evidence established that the SMG incinerator can be expected to be operated in accordance with its operating permit. Credible evidence established that the SMG incinerator is operated in accordance with Department rules. In light of the foregoing, SMG has demonstrated reasonable assurance that its air curtain incinerator has been operated in compliance with the construction permit and that the incinerator can continue to be operated in accordance with the conditions of the operating permit.

Recommendation Based upon the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the Department of Environmental Protection enter a final order granting SMG's application and issuing Permit No. 0170360-002-AO, as amended, and subject to all conditions, including but not limited to the Specific Conditions set forth in the Department's Notice of Intent to Issue, for the operation of an air curtain incinerator in Citrus County, Florida. It is further recommended that Petitioners' challenge to the amendment to the operating permit be dismissed. See Preliminary Statement. DONE AND ENTERED this 21st day of April, 2003, in Tallahassee, Leon County, Florida.5 CHARLES A. STAMPELOS Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 21st day of April, 2003.

Florida Laws (2) 120.569120.57
# 6
SHARON SAMOLE, ET AL. vs. FLORIDA POWER AND LIGHT CORPORATION AND DEPARTMENT OF ENVIRONMENTAL REGULATION, 84-002115 (1984)
Division of Administrative Hearings, Florida Number: 84-002115 Latest Update: Jan. 09, 1985

Findings Of Fact The Cutler plant of Respondent, Florida Power & Light Company (FPL), is located in Dade County, Florida, at 14925 Southwest 67th Avenue, approximately 15 miles south of Central Miami on an 80-acre site adjacent to Biscayne Bay. The plant has provided electrical service since 1949. At one time there were six generating units at the plant, but units 1, 2, 3 and 4 have been retired and are no longer in service. Cutler Units 5 and 6 were placed in service in 1954 and 1955, respectively. Both units were placed on extended cold standby in 1976, and were returned to service in 1982. These units are normally used only when other FPL generating units are out of operation or if extremely hot or cold weather creates an unusual electrical demand by FPL's customers. Cutler Unit 5 is a 75 megawatt steam generating unit. Cutler Unit 6 is a 161.5 megawatt steam generating unit. Each unit operates with a combustion engineering design boiler which is capable of burning No. 6 residual fuel, No. 2 distillate fuel, and natural gas. These fuels may be burned independently or in combination with each other. Combustion products from the boilers are exhausted through two separate stacks, each 150 feet in height. When in operation these units emit the following regulated air pollutants: particulate matter, sulfur dioxide, nitrogen oxides, and carbon monoxide. Cutler Units 5 and 6 are "existing fossil fuel steam generators" subject to the emission limiting standards specified in Rule 17-2.600(5)(b), Florida Administrative Code (F.A.C.), the ambient air quality standards specified in Rule 17-2.300(3), F.A.C., and the ambient air quality standards soecified in Section 24-17(1) and (2)(b), Dade County Code. Rule 17-2.600(5)(b), F.A.C., limits: (1) visible emissions to 20 percent opacity, (2) emission of particulate matter to 0.1 pounds per million Btu heat input, maximum 2-hour average, and (3) sulfur dioxide emissions to 1.1 pounds per million Btu heat input. Rule 17-2.300(3), F.A.C., establishes the maximum permitted levels of sulfur dioxide, particulate matter, carbon monoxide and nitrogen dioxide, as follows: sulfur Dioxide. Maximum three hour concentration not to be exceeded more than once per year-- 1300 micrograms per cubic meter (0.5 ppm). Maximum 24-hour concentration not to be exceeded more than once per year--260 micrograms per cubic meter (0.1 ppm) Annual arithmetic mean--60 micro- grams per cubic meter (0.02 ppm). Particulate Matter. Maximum 24-hour concentration not to he exceeded more than once per year-- 150 micrograms per cubic meter. Annual geometric mean--60 micrograms per cubic meter. Carbon Monoxide. Maximum one hour concentration not to be exceeded more than once per year--40 milligrams her cubic meter (35 ppm). Maximum eight hour concentration not to be exceeded more than once per year--10 milligrams per cubic meter (9 ppm). * * * Nitrogen Dioxide. Annual arithmetic mean--100 micrograms per cubic meter (0.05 ppm). Section 24-17(1) and (2)(b), Dade County Code, establishes the following ambient air quality standards and emission standards for maximum sulfur dioxide concentrations: Ambient air quality standards. . . . Annual arithmetic mean-8.6 micro- grams per cubic meter (0.003 parts per million); Twenty-four-hour concentration-- 28.6 micrograms per cubic meter (0.010 parts per million); Four-hour concentration-57.2 micro- grams per cubic meter (0.020 parts per million); One-hour concentration-286 micrograms per cubic meter (0.100 parts per million). Emission standards... Existing sources on the effective date of this section [Ordinance Nos. 76-52]: 1.1 pounds per million Btu heat input, maximum two-hour average, when liquid fuel is burned; On June 23, 1983, FPL submitted its application for renewal of the operating permits for Cutler Units 5 and 6 to DER. FPL's initial application contemplated burning No. 6 fuel oil containing up to one percent sulfur content to provide up to 25 percent of the heat input to each unit, with natural gas constituting the remaining 75 percent. During 1982 and 1984 several tests were performed at Units 5 and 6 to determine the level of particulate matter and visible emissions. Particulate and visual emissions testing was conducted at Unit 5 on June 30, 1982, and at Unit 6 on July 9, 1982, with the units burning a mixture of 75 percent natural gas and 25 percent fuel oil containing one percent sulfur. The results of these tests indicate the average particulate emission rate from each unit to be 0.04 pounds per million Btu head input, as compared to the applicable emission limit of 0.1 pound per million Btu input established by Rule 17-2.600(5)(b), F.A.C. Visual emissions were established as 6 percent for Unit 5 and one percent for Unit 6, as compared to the capacity limit of 20 percent established by Rule 17- 2.600(5)(b), F.A.C. Additional visual emission tests were conducted at Units 5 and 6 on August 10, 1983. The results of these tests indicted visible emissions to be less than 5 percent. While FPL's permit application was pending, residents of the neighborhood in the vicinity of the plant expressed concern to DER regarding "plume down wash." "Down wash" is a term used to describe an aerodynamic effect that, at higher wind speeds, causes reduction in pressure on the leeward side of the building or structure resulting in turbulent air flow around and within the cavity. If the exhaust plume from the stack of an air pollution source is near enough to the low pressure cavity, it is drawn into the turbulence and follows the air flow down to the leeward side of the building, thereby increasing the impact of emissions at ground level in the surrounding area. Air quality dispersion modeling is a method of predicting the impact of emissions from an air pollution source upon ground level air quality in the surrounding area. Inputs to the model include local meteorological data (wind speed, direction and mixing depth, and atmospheric stability and pressure) and source-specific information regarding stack height and diameter, exhaust gas temperature and velocity, and pollutant emission rate. The model provides a prediction of the ground level concentration of an air pollutant that will result from an emission source at any geographic point. The maximum point of impact from a particular source, under the "worst case" meteorological conditions, can therefore be identified and the resulting pollutant concentration predicted. Air quality di spersion modeling is a well-accepted technique in the field of air quality control, and specific models have been developed and approved by the United States Environmental Protection Agency. A screening analysis performed by DER meteorologist, Thomas Rogers, indicated that the configuration of the Cutler Units 5 and 6 and their exhaust stacks could create plume down wash. In order to address the potential effects of down wash from Units 5 and 6, FPL retained Environmental Science and Engineering, Inc. (ESE) to perform an air quality dispersion study. The initial ESE study, submitted to DER on February 14, 1984, evaluated the effects of emissions of sulfur dioxide from Units 5 and 6 on ground level air quality in the surrounding area, under both down wash and non- down wash conditions. As was contemplated in FPL's permit applications, this modeling study assumed that up to 25 percent of the heat input to each unit would be provided by No. 6 residental fuel oil containing one percent sulfur, with 100 percent fuel oil being burned during start-up until the unit achieved 25 percent load. The ESE study concluded that, under the worst-case emission and down wash conditions, the sulfur dioxide concentration at the point of maximum impact in the area surrounding the Cutler site would be a: (1) maximum three-hour concentration of 410 micrograms per cubic meter, (2) maximum 24-hour concentration of 114 micrograms per cubic meter, and (3) annual arithmetic mean of 9 micrograms per cubic meter. ESE performed an additional study to evaluate the maximum inpact of emissions of three other pollutants (nitrogen dioxide, carbon monoxide, and total suspended particulate) from Units 5 and 6, based on the same fuel assumptions. The predicted ambient air concentrations of these pollutants at the point of maximum impact, and under worst-case down wash and emission conditions, were: Nitrogen dioxide - annual arithmetic mean of 8.7 micrograms per cubic meter. Carbon monoxide - Maximum one-hour concentration of annual 23.3 micrograms per cubic meter. Maximum eight-hour concentration of annual 13.9 micrograms per cubic meter. Total suspended particulate - Maximum 24-hour concentration of annual 10.9 micrograms per cubic meter. Annual geometric mean - 0.8 micrograms per cubic meter. ESE subsequently performed a third analysis to determine the sulfur dioxide emission rate from Cutler Units 5 and 6 that would demonstrate compliance with the ambient air quality standards for sulfur dioxide established in the Metropolitan Dade County Pollution Control Ordinance. ESE's analysis concluded that under worst-case building down wash conditions, the maximum 1- and 4-hour sulfur dioxide concentrations from Units 5 and 6 were predicted to be 662 and 248 micrograms per cubic meter. These maximum concentrations were higher than the 1- and 4-hour standards established by the Dade County Code. Based on these results, ESE concluded that compliance with the Dade County ambient air quality standards would require that the maximum sulfur content of fuel oil burned during start-up would have to be limited to 0.23 percent. Additional particulate and visible emissions tests were conducted at Unit 5 on March 1, 1984, and at Unit 6 on February 29, 1984, with the units burning 100 percent natural gas. Unit 5 demonstrated an average particulate emission of 0.02 pounds per million Btu and Unit 6, of 0.01 pounds per million Btu, with neither unit exhibiting any visual emissions. During all compliance testings at Units 5 and 6, the units were operating at a capacity of at least 90 percent maximum load, in accordance with the testing requirements and policy of DER. Based on the results of ESE's third modeling study, FPL amended its permit applications to include a restriction requiring Units 5 and 6 to burn 100 percent natural gas except during start-up, and to limit the sulfur content of the oil burned during start-up to a maximum 0.2 percent. The air quality dispersion modeling performed by ESE utilized the only model currently approved by the United States Environmental Protection Agency and DER that is capable of taking aerodynamic down wash into consideration. DER's expert in air dispersion modeling found no fault with the conclusions reached in the ESE modeling studies. Possible differences between the actual Cutler plant building dimensions and configurations and those assumed in the modeling studies would not significantly change any of the conclusions reached. The draft permits for Units 5 and 6 would require the burning of 100 percent natural gas, except during periods of unit start-up when fuel oil may contribute up to 170 million Btu per hour of heat input to Unit 5 and 290 million Btu per hour heat input to Unit 6 (approximately 22 percent of each unit's maximum heat input). In addition, the draft permits limit total sulfur dioxide emissions from Units 5 and 6 to 41.3 pounds per hour and 70.1 pounds per hour, respectively. These sulfur dioxide emission limitations will insure compliance with the Dade County ambient air quality standards for sulfur dioxide, based upon the results of the ESE modeling studies. In order to meet the sulfur dioxide emission limits in the draft permits, the maximum sulfur content of fuel oil burned for Units 5 and 6 would be restricted to 0.23 percent. Operation of Cutler Units 5 and 6 in compliance with the conditions of the draft permits will provide reasonable assurance that the units will not cause any violation of the Dade County ambient air quality standards for sulfur dioxide, or the Florida ambient air quality standards. Use of 100 percent natural gas, except during start-up when residual fuel oil with maximum sulfur content of 0.23 percent is burned, will insure compliance with the emission limiting standards for particulate matter, opacity and sulfur dioxide established for existing fossil fuel steam generators by Rule 17-2.600(5)(b), F.A.C. The use of high quality, "clean", fuel as required by the draft permits, constitutes the most effective air pollution control strategy for Units 5 and 6. The primary concerns expressed by the Petitioners regarding Cutler Units 5 and 6 relate to noise, odors, down wash, and fumes they attribute to operation of the Cutler plant. Although the testimony and evidence on these points related to past experience of Petitioners, they were unable to specify what operating conditions and fuels resulted in the incidences of concern. On at least three of the occasions Jean Guthrie recorded objectionable odors or other effects felt to be attributable to the Cutler plant, neither Unit 5 nor Unit 6 was in operation. The record of complaints registered with the Dade County Consumer Advocate, from the time Cutler Units 5 and 6 were reactivated until two weeks before the final hearing, shows that there have been no complaints regarding the plant since June 3, 1983. No evidence was presented demonstrating that any past problems that may have been caused by operation of the Cutler plant will continue under the stringent restrictions on emissions, fuel type, and fuel quality imposed by the draft permit conditions. No violations of ambient air quality standards or emission limitations have been discovered and documented by DER with respect to Cutler Units 5 and 6. Neither Petitioners nor the members of the public that testified produced any evidence that Cutler Units 5 and 6 will be unable to comply with the conditions of the draft permits issued by DER. Nor was any evidence produced demonstrating that operation of Cutler Units 5 and 6 in compliance with the draft permits will result in emissions in excess of the emission limits prescribed under DER's rules, or will cause or contribute to any violations of the Florida or Dade County ambient air quality or emissions standards. Petitioner, Walter Guthrie, presently resides in Phoenix, Arizona, where he is employed in a permanent position with American West Airlines, a carrier servicing the southwestern and midwestern United States. He has been employed by American West Airlines, and has resided in Phoenix, for approximately 15 months, is registered to vote in the State of Arizona, and has an Arizona driver's license. Walter Guthrie holds no ownership interest in the home located at 6960 Southwest 144 Street, Miami, Florida, which home is owned by his parents, William L. and Jean Guthrie. Walter Guthrie has only visited his parents' home approximately three weeks in the year immediately preceding the final hearing in this case, and while some of his personal property is kept at that location, there is no certainty that Walter Guthrie will at any time in the future take up residence at his parents' home.

Florida Laws (1) 120.57
# 7
SOUTH PINELLAS SENIOR CITIZENS CLUB, INC. vs BAYFRONT MEDICAL CENTER AND DEPARTMENT OF ENVIRONMENTAL REGULATION, 93-003440 (1993)
Division of Administrative Hearings, Florida Filed:St. Petersburg, Florida Jun. 17, 1993 Number: 93-003440 Latest Update: Dec. 22, 1993

Findings Of Fact Bayfront commenced construction of the biological waste incinerator here at issue prior to March 21, 1992, the effective date of the moratorium on construction of biological waste incinerators and was exempt from that moratorium. An inspection of the premises on April 9, 1992, (exhibit 5) showed substantial work had been accomplished and the inspector concluded, and DEP's legal counsel concurred, that in order to have achieved the construction progress shown on April 9, 1992, the work had to have been commenced prior to March 21, 1992. Further, a building permit to renovate the building into which the waste incinerator was placed was issued November 12, 1991, (exhibit 7) and a building permit to install a waste incinerator was issued March 4, 1992, (exhibit 6). No contradictory evidence was submitted by Petitioner. Respondent's witnesses testified without contradiction that Bayfront's application for an operation permit was complete in all respects, including certification by a professional engineer; that all test results showed the emissions into the atmosphere were within the prescribed standards; that certain conditions contained in the construction permit as a result of the settlement agreement resolving the challenge to the issuance of the construction permit are contained in the operation permit; that those conditions exceed the conditions required by the rules for incinerators; and that Bayfront affirmatively provided the Department with reasonable assurance based on plans, test results, installation of pollution control equipment, or other information that the operation of the incinerator will not discharge, emit, or cause pollution in contravention of DEP's standards as contained in Rule 17-4.070(1), Florida Administrative Code. This testimony is accepted as factual. The draft permit authorizes Bayfront to burn a maximum of fifteen hundred pounds per hour of waste. Each time a test run is conducted to check the emissions, the pounds of waste burned per hour during the test establishes an upper limit on the rate of burning waste. As explained by James L. McDonald, the engineer processing air pollution applications for the Department at Transcript p. 50-51: The construction application asked for a permit at fifteen hundred pounds per hour. So the construction permit is -- the condition that we would want, the Department would normally want the test within ten percent of that fifteen hundred pounds an hour in order to go ahead and issue, if its in total compliance, to issue an operating permit at fifteen hundred pounds. Since the test came in at a reduced rate, below the ten percent, then that's why in the operating permit condition twenty-one says you're limited to the rate that we're, the test was conducted. [sic] Now, also, its interesting to note that in their test, if you look at their runs two and three -- because there are rules that say the Department could accept two runs out of three if a condition occurred that was out of their control -- if your average runs two and three, they would average within ten percent of fifteen hundred. So, as a permit processor, it even gave me some reasonable assurance that they could probably comply with the fifteen hundred. But, since the test of all three runs came in as an average of twelve fifty-one, then the operating permit included that twelve fiftyone. And like the real world out there, just like power plants, when it comes time for their annual testing, if they are at half speed, their business is down, it allows them to test at half speed. We won't require them to go up to full speed. They can test at half speed. But then they are limited there. And if they go above it at a later date they would have to retest. So they can work their way back up to where the Department has reasonable assurance that the upper limit of fifteen hundred pounds -- that's where later in condition twenty-one of the operating permit it says but in no case shall the maximum permit or burning rate of fifteen hundred pounds per hour be exceeded. Petitioner's second two grounds for challenging the issuance of the operation permit was answered by McDonald's testimony, above quoted, and this evidence was not rebutted by Petitioner. The primary thrust of the evidence presented by Petitioner was that Bayfront had somehow misled the City of St. Petersburg regarding the operation of the incinerator and had not complied with all of the City's requirements in other respects, ergo, Bayfront could not be relied on to comply with the conditions in the operation permit. This evidence is irrelevant to the determination of whether or not the operation of the incinerator complies with all of the Department rules. The conditions of the operating permit require Bayfront to submit periodic reports to the Department from which the Department can determine whether the conditions in the permit are being complied with. Furthermore, the Department requires the permittee to notify the Pinellas County Department of Environmental Management at least fifteen days prior to the date on which each formal compliance test is to begin (Permit Condition No. 22) to allow them to witness the test, if desired. The construction permit, complying with the settlement agreement, required Bayfront to adhere to more frequent testing and more extensive testing then is required by the rules for operating biological waste incinerators. All of the tests and reports submitted by Bayfront on the operation of this incinerator met all of the requirements in the construction permit and the draft operation permit.

Recommendation It is RECOMMENDED that Bayfront Medical Center be issued Permit No. AO52- 224337 to operate a biological waste incinerator at Fifth Avenue South and Eighth Street, St. Petersburg, Florida. DONE AND ENTERED this 16th day of November 1993 in Tallahassee, Leon County, Florida. K. N. AYERS Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 16th day of November 1993. COPIES FURNISHED: Adrian W. Helm, Esquire 925 14th Avenue North St. Petersburg, Florida 33712 Daniel N. Burton, Esquire Thomas K. Maurer, Esquire Terri L. Gillis-Tucker, Esquire Foley and Lardner 111 North Orange Avenue, Suite 1800 Orlando, Florida 32801 W. Douglas Beason, Esquire Department of Environmental Protection 2600 Blair Stone Road Tallahassee, Florida 32399-2400 Virginia B. Wetherell, Secretary Department of Environmental Protection 2600 Blair Stone Road Tallahassee, Florida 32399-2400 Kenneth Plante, General Counsel Department of Environmental Protection 2600 Blair Stone Road Tallahassee, Florida 32399-2400

Florida Laws (1) 403.087
# 8
CONTAINER CORPORATION OF AMERICA vs DEPARTMENT OF ENVIRONMENTAL REGULATION, 90-004301RX (1990)
Division of Administrative Hearings, Florida Filed:Tallahassee, Florida Jul. 10, 1990 Number: 90-004301RX Latest Update: Sep. 07, 1990

Findings Of Fact In their Prehearing Stipulation, filed on August 14, 1990, the parties stipulate to the following: Container Corporation of America (CCA) owns and operates a pulp and paper mill in Fernandina Beach, Nassau County, Florida. The mill is authorized by various Department of Environmental Regulation (DER) permits to discharge industrial wastewater and emit air pollutants and is subject to DER's power to enforce such permits, as well as Chapter 403, F.S. and DER Rules. DER issued an Administrative Notice of Violation charging CCA with various wastewater violations, an filed a judicial action alleging violation of air pollution standards at the mill. The Notice of Violation was issued on April 24, 1990, OGC Case NO. 90-0346; and the judicial action was filed in the Circuit Court of Nassau County in June of 1989, Civ Case NO. 89- 562-CA. CCA has not yet requested a hearing on the merits of the Notice of Violation; it requested an informal conference on the charges, which tolls the time for requesting a hearing. A verbal settlement has been reached, but is not yet reduced to writing. Neither DER nor CCA has requested a hearing on the merits in the judicial action. The allegations in the complaint are, however, at issue and, absent settlement, will be tried by the court. On June 27, 1990, DER gave notice of its intent to deny an operating (renewal) permit for the No. 5 Recovery Boiler and Smelt Dissolving Tank because of the pending judicial action. Subsequent to the filing of this rule challenge petition, DER notified CCA that the Notice of Intent to Deny renewal of CCA's operating permits for the NO. 5 Recovery Boiler and the Smelt Dissolving Tank dated June 27, 1990 was issued erroneously and that the permits would be issued. [Issuance is based on expiration of the 90-day deadline for denial rather than the agency's interpretation of the rule under scrutiny.] On June 28, 1990, DER notified. CCA that it may not be able to issue.. the requested construction permits [for a new batch digester and brown stock washer] due to the pending Department enforcement action ... CCA was notified that its applications for construction of the proposed new batch digester and brown stock washer were incomplete. If the judicial action is not resolved at the time action must be taken on the application for construction permits for the new batch digester and brown stock washer, the permits will be denied in reliance on Rule 17-4.070(5)(first three sentences). By a separate letter on June 28 1990, DER also notified CCA that until the Notice of Violation was resolved the application for the construction permit for the new paper machine would be held in abeyance. CCA has been notified that its application for a construction permit for its new proposed paper machine is incomplete. Subsequent to the filing of this rule challenge petition, DER has notified CCA it will not hold CCA's application for a construction permit for its proposed new paper machine in abeyance upon the submission of the requested material, or its request to process the application without the material, but will process the permit at that time and issue either an intent to issue or deny. If, however, the Notice of Violation is not resolved by the time action must be taken on the application the permit will be denied in reliance on Rule 17-4.070(5). Until or unless the judicial action against CCA filed by DER in June 1989 is resolved, Rule 17-4.070(5)(first three sentences) requires DER to deny any permit applications filed by CCA relating to the Multiple Effect Evaporators (2), Nos. 5 and 7 Power Boilers, including electiostatic precipitators, Recovery Boilers (2) and Pulp Digester Systems (2) located at its Fernandina Beach mill. Each of the foregoing sources operate by virtue of permits issued by DER. The permits periodically expire and must be renewed. DER interprets the first sentence of Rule 17- 4.070(5) to mean that no permits for the sources listed in paragraph 10 above can be renewed unless and until the pending civil action against CCA is resolved, and the issue of reasonable assurance is not reached. [As to Intervenor Florida Pulp & Paper Association) The Florida Pulp & Paper Association is a trade association representing the vital interests of its members -- the pulp and paper companies operating mills in Florida or discharging to state waters. Rule 17-4.070(5), F.A.C., the rule which is the subject of this proceeding, regulates and affects the substantial interests of the members of the Association. Each of the mills operate [sic] under various environmental permits issued by DER. Permits must be obtained when existing permits expire or when sources are replaced or expanded. The rule at issue forbids the issuance of such permit to any source or for any activity against which the Department has filed a Notice of Violation or judicial enforcement action, which remain(s) pending. The Association's scope of interest and activity includes participating in the development of rules proposed by DER membership. Here, a senior DER official has indicated that the rule at issue will henceforth be uniformly and strictly applied, industry-wide. Accordingly, a determination of invalidity of this rule is an appropriate remedy for the Association to seek on behalf of its members

USC (1) 40 CFR 124.41 Florida Laws (18) 120.52120.54120.56120.57120.60120.68403.021403.031403.061403.087403.0876403.088403.091403.111403.121403.141403.16190.506
# 9
EDWARD T. HUCK vs DEPARTMENT OF ENVIRONMENTAL REGULATION, 90-004828RP (1990)
Division of Administrative Hearings, Florida Filed:Tallahassee, Florida Aug. 02, 1990 Number: 90-004828RP Latest Update: Dec. 27, 1990

The Issue The issue for consideration in this hearing was whether the Department of Environmental Regulation's Amended Rule 17-105, F.A.C, Smoking Policy, was properly implemented and is a proper exercise of delegated legislative authority.

Findings Of Fact At all times pertinent to the issues herein, the Petitioners were employees of the Department. Petitioner Huck was employed in the Tallahassee headquarters and the other Petitioners were employed elsewhere. GENESIS The Florida Legislature, in 1985, enacted Chapter 386, Part 11, Florida Statutes, The Florida Clean Indoor Air Act, (Act), under the authority of which, in February, 1986, the Department promulgated its own "Smoking Policy" incorporated in Rule 17-105, F.A.C.. This rule prohibited smoking in all Department facilities except in those areas specifically exempted as designated smoking areas. These included private office areas and employee lounge areas as well as the first floor cafeteria. Dale Twachtmann was appointed Secretary of the Department in January, 1987. At the very beginning of his incumbency, he became aware of the ongoing controversy over smoking within the Department and concluded that a management decision to put the matter to rest was called for. He determined, from the information made available to him, that even before his arrival, the headquarters building in Tallahassee had serious air handling problems due partially, at least, to activities that had previously been carried on in parts of the building. A previously operating print shop and laboratory were moved shortly after his arrival. He could not determine how much of the "bad" air was attributable to each program. THE RULEMAKING PROCESS Mr. Twachtmann also determined that smoking within the building was considered, by a significant number of employees, to be a part of the air problem second only in seriousness to the laboratory. When the lab was moved, those proponents of clean air struck upon smoking as their bete noire. No studies of air quality were done during Mr. Twachtmann's tenure, however, nor had anything been done to curb smoking except for the promulgation of the original Rule 17-105. The controversy over smoking within the building continued, however, culminating in the drafting and circulation, in December, 1988, by an employee, Mr. Billy Kahn, of a petition to totally ban smoking in the facility. This petition was signed by approximately 275 of the 500 to 600 employees in the Tallahassee office. Though the Secretary did not recognize all the names thereon, he did recognize enough to satisfy him of its validity, notwithstanding a few irregularities on it, and he was influenced by it to do something. It reinforced his own observations of the smoking situation gathered while going about the building. For example, though he never noticed smoke in the halls, nor did he ever see anyone smoking in open areas, he would find some heavy and unpleasant odors in some of the break rooms and the lunchroom where smoking was allowed. Mr. Twachtmann thereupon decided, as Department Secretary, to take action which would resolve the smoking issue once and for all. He decided to initiate the rulemaking process with a view toward, if and after all legal requirements were met, banning smoking completely in all Department facilities and vehicles. Part of the process, which called for workshops to advise all employees of the proposed action and to solicit employee input, included consideration of alternative solutions to banning smoking. The process also included consideration by the Secretary of the substantial information available on both sides of the issue which was provided to him by his staff and by experts whose opinions on the matter were solicited. Much of this information was presented by advocates of both positions at a series of senior staff meetings held in early 1990 at which the senior staff voted unanimously to proceed with rulemaking to amend the smoking policy in Rule 17-105 to ban smoking. At this point, no studies had been made of air quality within the Tallahassee headquarters building. Nonetheless, after the vote was taken to amend the rule, in May, 1990, Mr. Shearer prepared and dispatched a memorandum to Department staff, referring to the "decision" by the Secretary to ban smoking from the headquarters building. This memo solicited personnel participation in the rulemaking process and instructed anyone who had any input to coordinate it through their supervisors. The task of drafting the amended rule was given to Mr. Peyton, the chief administrator of the Department, who, in turn, delegated the task initially to his counsel, Ms. Costas. Mr. Peyton was not told, when assigned his task, that he could not change the substance of the existing rule. Because Mr. Peyton was not satisfied with the draft of the proposed amendment prepared by Ms. Costas, he reassigned the task to one of his deputies, a nonlawyer, Ms. Drew. He instructions to her were to cut it down and make it simple, but to reflect the Department policy to ban all smoking in Department facilities and vehicles. The latter was an afterthought subsequent to Mr. Peyton's receiving comments regarding the smell in the Department's vehicles. After the draft of the rule was prepared, workshops to address the proposed rule were scheduled, noticed in the Florida Administrative Weekly, (F.A.W.), and conducted in various locations throughout the state. The published notice indicated discussion would include the need, if any, for the rule, and the proposed terms thereof. Instructions governing the conduct of the workshops and the method of handling employee comments were disseminated by Ms. Costas to the Deputy Assistant Secretary in each district. Those employees who held opinions on the need for or terms of the proposed rule were to be instructed to forward their comments in writing to the Department headquarters in Tallahassee. Hearings were held throughout the state in late June and early July, 1990. The comments received by Mr. Peyton, who conducted the Tallahassee workshop, and those submitted from elsewhere within the Department, were consolidated and summarized by Ms. Costas and thereafter forwarded, through Peyton, to the Secretary. Comments in writing were received from members in the Central, Northeast and Northwest Districts and orally from the Southeast District. There is no record of any comments having been received from any other district. All comments received were forwarded to, discussed with, and considered by the Secretary personally. Consistent with appropriate rulemaking procedure, a hearing on the rule was scheduled to be held by the Secretary regardless of whether there was a request therefor or not. In the interim, on June 20, 1990, copies of the hearing notice, the rule, the economic impact statement and the Statement of Facts and Circumstances Justifying the Proposed Rule were sent to the required agencies for coordination. Thereafter, based on the input received from employees and other pertinent sources, the rule was changed and notice thereof appropriately published in the F.L.W.. The secretarial hearing was held as noticed and did not result in any input sufficient to cause delay in the process. On July 27, 1990, the rule was certified to the Secretary of State by Secretary Twachtmann. MATTERS RELATING TO THE NEED FOR THE RULE There has been and continues to be discourse in the medical and lay communities on the harmful effect of secondhand tobacco smoke. While few disagree that the direct inhalation of tobacco smoke by smokers has harmful effects on the health of those individuals, controversy is still rampant as to what effect, if any, the forced inhalation by nonsmokers of tobacco smoke generated by smokers in the area, has on the health of these passive exposees. It is well recognized that chemicals shown to be carcinogens are found in tobacco, (cigarette) smoke. Responsible medical studies have also shown a higher incidence of lung cancer in persons exposed to second hand cigarette smoke than in those who have routinely been free of it. A secondary effect is a higher incidence of pulmonary disease and a detriment to lung development. "Secondary smoke" is that smoke generated by burning tobacco between puffs and that smoke exhaled by smokers. There is substantial evidence that the inhalation of secondary smoke for 8 or 9 hours per day over time increases the risk of cancer in an individual so exposed since tobacco smoke contains known carcinogens. Dr. Dennis Williams, a cardiologist accepted by the parties as an expert in the effect of tobacco on human health, is not aware of any showing of increased danger there in the workplace as a result of secondary smoke. However, studies have conclusively shown such an increased danger in the home and to children. Increased levels of nicotine and cotenine have also been observed in the blood and urine of nonsmokers in a workplace where smoking is permitted. Cotenine is a known carcinogen and nicotine, while not, itself, a carcinogen, is an addictive substance. The tar from cigarette smoke contains thousands of cancer causing chemicals. Admittedly, some of these can be found in substances other than cigarette smoke. However, lung cancer is now the leading cause of death among men and women in the United States, and 90% of all lung cancer deaths are due to the use of cigarettes and other tobacco products. Considering all the above, Dr. Williams feels there is no reasonable alternative to concluding that secondary smoke creates a health hazard to the nonsmoker who is frequently exposed to it. It is so found. It is also found that limiting smoking to a closed room does not protect the nonsmoking worker. Smoke quickly diffuses, through the ventilating system, throughout the total air of the facility. Cigarette smoking is a major cause of indoor air pollution and constitutes a major exposure of the worker to a carcinogen. Nonsmokers in the workplace have been found to have metabolized nicotine and cotenine in their urine which could have come only from secondary smoke to which they have been exposed there. The 1986 Report of the Surgeon General of the United States on the Health Consequences of Involuntary Smoking supports the conclusions drawn by Dr. Williams both as to the adverse health effects of secondary smoke and the ineffectuality of artificial separation, within the same air space, of smokers and nonsmokers. This report, along with other supporting information, was considered by Mr. Peyton during the rulemaking process and reported to Secretary Twachtmann prior to final decision. SPECIFICS The poor quality of air in the Department's headquarters building in Tallahassee has been known for some time. Studies of the building's air quality in both 1987 and 1988, while not dealing with the issue of cigarette smoking, both recognized the problem and recommended solutions. The building's ventilation is accomplished through two air handlers on each floor which re- circulate heated or chilled air, depending on the season. Interior air lost through doors and exhaust fans is replenished by outside air brought in by the air handlers. Approximately 88% of the air in the building at any time, however, is re-circulated. In very cold weather, when the introduction of cold outside air must be restricted, that percentage is increased. Any tobacco smoke in the air is, therefore, re-circulated again and again on the floor where it originates. Consequently, regardless of physical separation, nonsmokers sharing a ventilation system with smokers will be exposed to their smoke. In order to reduce that risk, internal air would have to be expelled and more outside air brought in. This cannot be done without a major modification to the building structure and a replacement of the existing air handling system. This is neither reasonable nor economically feasible. In order to reduce the air pollution problems within the building, the Department relocated two of the major polluting functions; the laboratory and the print shop. All these factors were known to and considered by the Department during the rulemaking process. Previous efforts were also made to accommodate the desires of both smoking and nonsmoking employees. Until the adoption of the total ban, smoking was allowed in private offices, in the break room on the fourth floor, and in the employee deli on the first floor. Since smoke concentration in the deli was heavy, many nonsmoking employees found it either unpleasant or impossible to eat there. Consequently, business and the resultant income therefrom was lost. On the other hand, since the ban on smoking, many smokers who formerly patronized the facility during their breaks no longer use it, with a resultant loss of business and income. The use of private offices for smoking was equally unsuccessful since not only were nonsmokers put off from entering either for business or other purposes, but smoke and the smell of smoke escaped through the ventilation system and open doors, and the odor of smoke, so unpleasant to many, would linger in an office long after the occupant thereof was gone. Taken together, the information available on the subject indicated that the only way to safely allow smoking in the building was to limit it to an area that was independently ventilated. This would require an independent access to the outside for the exhaust of old air and the re-supply of fresh air. Only one area in the building ever had an independent air exhaust, and that system, formerly in the laboratory, has been removed and is now being used in the Jacksonville district office. The former lab space is now an open office. As was found previously, physical modification of a currently operational building to accommodate the desires of a portion of the employee force is neither required nor justified. The issue regarding vehicles is somewhat different. The Department operates a fleet of state-owned vehicles, access to which is available to all Department employees. These vehicles are not separated into groups reserved for smokers or nonsmokers. Department employees are sometimes required to travel in Departmental vehicles. Some trips are of several hours duration, and while so occupied, the employees are on Department business. The vehicles also may be used, under proper authorization, to carry individuals other than state employees. Nonsmoking passengers, whether employees or not, may be in the position of riding with another passenger who smokes or in a vehicle which has previously been occupied by a smoker. There have been complaints regarding both situations, with the latter relating primarily to the objectionable smell left in the vehicle by the former smoking occupant. Dr. Williams opined that occupying a vehicle with another, smoking, individual poses the same risk to the nonsmoker's health as does occupying a room with such an individual. However, the residual odor of smoke left in a vehicle by a previous smoking passenger, while offensive, normally is not harmful. It is so found. All these factors were considered by the Department during the rulemaking process. The Department has taken the position that when Departmental vehicles are occupied by its employees, the vehicles are the employees' assigned workplace and individuals are, therefore, afforded the protection of the Act. OPERATION AND EFFECT Penalties for violation of the rule are incorporated therein and provide for a fine of $100.00 for the first violation, and of $500.00 for each subsequent violation in addition to discipline in accordance with the provisions of Chapter 17-130, F.A.C., the Department's disciplinary rule. Those provisions for fine are taken directly from the terms of the Act, Section 386.208, Florida Statutes. The disciplinary rule previously mentioned, (Section 17- 130.300(7)(b)2, F.A.C.), makes it a violation to smoke in a restricted area, an area in which smoking is prohibited. Penalties are outlined in the rule for the various violations which might occur, and each employee is provided with a copy of that rule upon employment with the Department. The Department claims it incorporated the fine provisions of the Act into its amended rule to "reference those disciplinary actions what would be involved" as a result of a violation of the rule and that they are informative only and do not create any additional disciplinary rules. This may be so, but any provision for discipline of an employee for violation of the terms of an agency rule should be incorporated in the agency's employee discipline rule to which reference is made in the instant rule. OTHER PROBLEMS Petitioners have objected to the use of the term, "right" in the amended rule which refers to the objection of nonsmokers to the effects of having to work in closed areas with smokers. Petitioners urge that the Department has sought to create and utilize a new "constitutional" right and that such action is unlawful and unsupportable. A thorough review of all the evidence presented in relation to the promulgation of this rule and its predecessor 1986 rule clearly demonstrates that the use of the term, "right" was no more than an in-artful word choice and in no way dispositive of the smoking issue. To be sure, the Legislature has, by implementation of the Act, encumbered the freedom of the smoker to engage in his passion in a public place, absent an affirmative designation of a smoking area. The use of the term, "public", does not necessarily mean only open to the general public. A building is public if it is owned or operated by a governmental agency. Here, the Department's use of the word, "right", in its rule is no more than a recognition of the differences of opinion which separate the ranks of the smoker and nonsmoker and a recognition of the proposition that the interests of one are as important as are those of the other. The Petitioners have also argued that in its implementation of the amended rule, the Department has denied them due process, specifically referring to the May 8, 1990 memorandum, and the participation in the rulemaking process of Ms. Drew, who was a signatory to the anti-smoking Petition solicited and presented by Mr. Kahn. In his memo, Assistant Secretary Shearer indicated that, "...a decision ha[d] been made .... " to ban smoking, and Petitioners claim that that "decision" having been made, the entire subsequent rulemaking process was a sham. Again we see what appears to be, in light of all that followed, no more than in-artful phraseology to announce the recognition of a Departmental problem and the initiation of a process designed to correct that problem. Admittedly, the use of that phrase raises a spectre of improper influence and a closed mind on the part of the Department hierarchy. However, the testimony of the principals, Secretary Twachtmann and Assistant Secretary Shearer, as to their intent from the beginning of the process, and the uncontroverted testimony regarding the openness of the succeeding activity toward the ultimate determination of a need for and the drafting of the proposed rule, clearly dispels any shade of impropriety. The process was conducted in the open. Employee comment was solicited and several forums were employed in which these comments, pro or con, could be made known to the Secretary. Inquiry was solicited and none who now object to the rule either asked questions or made recorded comment at the time. Petitioners have not shown by any definitive evidence of record, that any interested party who wished to object was prevented from doing so or dissuaded from negative comment by fear of reprisal. To the contrary, the evidence clearly demonstrates that all required notices were published, and that management went far beyond that which was required to insure the opportunity for fair comment and to, as best as possible, guarantee the maximum available input to the Secretary before the final decision was made. As for the participation of Ms. Drew in the process, the evidence shows that she is Mr. Peyton's deputy. When Mr. Peyton received Ms. Costas' draft of the proposed amended rule and was dissatisfied with it, he requested Ms. Drew, with Ms. Costas, rework it. His guidelines were to cut excessive wordage and make it simple. The operating thesis was also simple and left little room for interpretation. There is little risk that Ms. Drew, or anyone else, could have, in this instance, gone beyond the basic instructional premise upon which she was to work because of her own feelings about the subject matter. The lines were simply drawn on this issue. There were those who favored allowing smoking and those who favored abolishing it. To claim that one who supported abolition could not, thereafter, work on a rule to bring about that end is unrealistic and inappropriate. Petitioners also claim that the Department failed to provide a statement of data and methodology with its Economic Impact Statement, (EIS). Review of the EIS filed with the Joint Administrative Procedures Committee, (Respondent's Exhibit K), reveals that it contains the required statement which appears to demonstrate that the agency's methodology for information collection was appropriate. There was no evidence presented by Petitioners to demonstrate to the contrary. Petitioners further claim that the Department was not the appropriate agency to take the action regarding smoking, assuming, arguendo, such action was appropriate. The Act, which formerly provided that the government entity "responsible for the management and maintenance" of a government building should "implement" the provisions of the Act, was amended in 1988 to require that agency only to report observed violations of the Act to the Department of Health and Rehabilitative Services. In this case, the management and maintenance of Departmental buildings is accomplished through contracts entered through leases on the buildings let through the Department of General Services, (DGS). Petitioners claim that as a result, the rule, if appropriate, should have been promulgated and implemented by DGS. Petitioners overlook the fact that the Department is ultimately responsible for the headquarters building and the activities therein, and is the major employer therein. Petitioners raise the issue that the Department should have, under the Act, designated a smoking area since it claims to be the agency charged with enforcing the Act. This claim presupposes that the Act requires a smoking area be designated in all buildings where smoking is otherwise regulated. Such is not the case. Section 386.202 specifically noted that the Act shall not be interpreted to require the designation of smoking areas. The Department has construed the Act to indicate that as the employer, it implements smoking policy in its facilities. This interpretation conforms to that of other state agencies, including the Department of Education, the Department of Transportation, and the Division of Administrative Hearings, all of which have implemented smoking policies in their facilities. The Department's interpretation appears to be correct, even though different agencies than those listed have provided for separate smoking areas.

Florida Laws (10) 120.52120.54120.57120.68386.202386.204386.205386.207386.208386.209
# 10

Can't find what you're looking for?

Post a free question on our public forum.
Ask a Question
Search for lawyers by practice areas.
Find a Lawyer