The Issue The issue to be determined is whether Consumptive Use Permit No. 2-083-91926-3, and Environmental Resource Permit No. IND-083-130588-4 should be issued as proposed in the respective proposed agency actions issued by the St. Johns River Water Management District.
Findings Of Fact The Parties Sierra Club, Inc., is a national organization, the mission of which is to explore, enjoy, and advocate for the environment. A substantial number of Sierra Club’s 28,000 Florida members utilize the Silver River, Silver Springs, the Ocklawaha River, and the St. Johns River for water-based recreational activities, which uses include kayaking, swimming, fishing, boating, canoeing, nature photography, and bird watching. St. Johns Riverkeeper, Inc., is one of 280 members of the worldwide Waterkeepers Alliance. Its mission is to protect, restore, and promote healthy waters of the St. Johns River, its tributaries, springs, and wetlands -- including Silver Springs, the Silver River, and the Ocklawaha River -- through citizen- based advocacy. A substantial number of St. Johns Riverkeeper’s more than 1,000 members use and enjoy the St. Johns River, the Silver River, Silver Springs, and the Ocklawaha River for boating, fishing, wildlife observation, and other water-based recreational activities. Karen Ahlers is a native of Putnam County, Florida, and lives approximately 15 miles from the Applicant’s property on which the permitted uses will be conducted. Ms. Ahlers currently uses the Ocklawaha River for canoeing, kayaking, and swimming, and enjoys birding and nature photography on and around the Silver River. Over the years, Ms. Ahlers has advocated for the restoration and protection of the Ocklawaha River, as an individual and as a past-president of the Putnam County Environmental Council. Jeri Baldwin lives on a parcel of property in the northeast corner of Marion County, approximately one mile from the Applicant’s property on which the permitted uses will be conducted. Ms. Baldwin, who was raised in the area, and whose family and she used the resources extensively in earlier years, currently uses the Ocklawaha River for boating. Florida Defenders of the Environment (FDE) is a Florida corporation, the mission of which is to conserve and protect and restore Florida's natural resources and to conduct environmental education projects. A substantial number of FDE’s 186 members, of which 29 reside in Marion County, Florida, use and enjoy Silver Springs, the Silver River, and the Ocklawaha Aquatic Preserve, and their associated watersheds in their educational and outreach activities, as well as for various recreational activities including boating, fishing, wildlife observation, and other water-based recreational activities. Sleepy Creek Lands, LLC (Sleepy Creek or Applicant), is an entity registered with the Florida Department of State to do business in the state of Florida. Sleepy Creek owns approximately 21,000 acres of land in Marion County, Florida, which includes the East Tract and the North Tract on which the activities authorized by the permits are proposed. St. Johns River Water Management District (SJRWMD or District) is a water-management district created by section 373.069(1). It has the responsibility to conserve, protect, manage, and control the water resources within its geographic boundaries. See § 373.069(2)(a), Fla. Stat. The Consumptive Use Permit The CUP is a modification and consolidation of two existing CUP permits, CUP No. 2-083-3011-7 and CUP No. 2-083- 91926-2, which authorize the withdrawal of 1.46 mgd from wells located on the East Tract. Although the existing CUP permits authorize an allocation of 1.46 mgd, actual use has historically been far less, and rarely exceeded 0.3 mgd. The proposed CUP modification will convert the authorized use of water from irrigation of 1,010 acres of sod grass on the East Tract, to supplemental irrigation of improved pasture for grass and other forage crops (approximately 97 percent of the proposed withdrawals) and cattle watering (approximately three percent of the proposed withdrawals) on the North Tract and the East Tract. An additional very small amount will be used in conjunction with the application of agricultural chemicals. CUP No. 2-083-3011-7 is due to expire in 2021. CUP No. 2-083-91926-2 is due to expire in 2024. In addition to the consolidation of the withdrawals into a single permit, the proposed agency action would extend the term of the consolidated permit to 20 years from issuance, with the submission of a compliance report due 10 years from issuance. Sleepy Creek calculated a water demand of 2.569 mgd for the production of grasses and forage crops necessary to meet the needs for grass-fed beef production, based on the expected demand in a 2-in-10 drought year. That calculation is consistent with that established in CUP Applicant’s Handbook (CUP A.H.) section 12.5.1. The calculated amount exceeds the authorized average allocation of 1.46 mgd. Mr. Jenkins testified as to the District’s understanding that the requested amount would be sufficient, since the proposed use was a “scaleable-type project,” with adjustments to cattle numbers made as necessary to meet the availability of feed. Regardless of demand, the proposed permit establishes the enforceable withdrawal limits applicable to the property. With regard to the East Tract, the proposed agency action reduces the existing 1.46 mgd allocation for that tract to a maximum allocation of 0.464 mgd, and authorizes the irrigation of 611 acres of pasture grass using existing extraction wells and six existing pivots. With regard to the North Tract, the proposed agency action authorizes the irrigation of 1,620 acres of pasture and forage grain crops using 15 center pivot systems. Extraction wells to serve the North Tract pivots will be constructed on the North Tract. The proposed North Tract withdrawal wells are further from Silver Springs than the current withdrawal locations. The proposed CUP allows Sleepy Creek to apply the allocated water as it believes to be appropriate to the management of the cattle operation. Although the East Tract is limited to a maximum of 0.464 mgd, there is no limitation on the North Tract. Thus, Sleepy Creek could choose to apply all of the 1.46 mgd on the North Tract. For that reason, the analysis of impacts from the irrigation of the North Tract has generally been based on the full 1.46 mgd allocation being drawn from and applied to the North Tract. The Environmental Resource Permit As initially proposed, the CUP had no elements that would require issuance of an ERP. However, in order to control the potential for increased runoff and nutrient loading resulting from the irrigation of the pastures, Sleepy Creek proposes to construct a stormwater management system to capture runoff from the irrigated pastures, consisting of a series of vegetated upland buffers, retention berms and redistribution swales between the pastures and downgradient wetland features. Because the retention berm and swale system triggered the permitting thresholds in rule 62-330.020(2)(d) (“a total project area of more than one acre”) and rule 62-330.020(2)(e) (“a capability of impounding more than 40 acre-feet of water”), Sleepy Creek was required to obtain an Environmental Resource Permit for its construction. Regional Geologic Features To the west of the North Tract is a geologic feature known as the Ocala Uplift or Ocala Platform, in which the limestone that comprises the Floridan aquifer system exists at or very near the land surface. Karst features, including subterranean conduits and voids that can manifest at the land surface as sinkholes, are common in the Ocala Uplift due in large part to the lack of consolidated or confining material overlaying the limestone. Water falling on the surface of such areas tends to infiltrate rapidly through the soil into the Floridan aquifer, occasionally through direct connections such as sinkholes. The lack of confinement in the Ocala Uplift results in few if any surface-water features such as wetlands, creeks, and streams. As one moves east from the Ocala Uplift, a geologic feature known as the Cody Escarpment becomes more prominent. In the Cody Escarpment, the limestone becomes increasingly overlain by sands, shell, silt, clays, and other less permeable sediments of the Hawthorn Group. The North Tract and the East Tract lie to the east of the point at which the Cody Escarpment becomes apparent. As a result, water tends to flow overland to wetlands and other surface water features. The Property The North and East Tracts are located in northern Marion County near the community of Fort McCoy. East Tract Topography and Historic Use The East Tract is located in the Daisy Creek Basin, and includes the headwaters of a small creek that drains directly to the Ocklawaha River. The historic use of the East Tract has been as a cleared 1,010-acre sod farm. The production of sod included irrigation, fertilization, and pest control. Little change in the topography, use, and appearance of the property will be apparent as a result of the permits at issue, but for the addition of grazing cattle. The current CUPs that are subject to modification in this proceeding authorize groundwater withdrawals for irrigation of the East Tract at the rate of 1.46 mgd. Since the proposed agency action has the result of reducing the maximum withdrawal from wells on the East Tract to 0.464 mgd, thus proportionately reducing the proposed impacts, there was little evidence offered to counter Sleepy Creek’s prima facie case that reasonable assurance was provided that the proposed East Tract groundwater withdrawal allocation will meet applicable CUP standards. There are no stormwater management structures to be constructed on the East Tract. Therefore, the ERP permit discussed herein is not applicable to the East Tract. North Tract Topography and Historic Use The North Tract has a generally flat topography, with elevations ranging from 45 feet to 75 feet above sea level. The land elevation is highest at the center of the North Tract, with the land sloping towards the Ocklawaha River to the east, and to several large wet prairie systems to the west. Surface water features on the North Tract include isolated, prairie, and slough-type wetlands on approximately 28 percent of the North Tract, and a network of creeks, streams, and ditches, including the headwaters of Mill Creek, a contributing tributary of the Ocklawaha River. A seasonal high groundwater elevation on the North Tract is estimated at 6 to 14 inches below ground surface. The existence of defined creeks and surface water features supports a finding that the North Tract is underlain by a relatively impermeable confining layer that impedes the flow of water from the surface and the shallow surficial aquifer to the upper Floridan and lower Floridan aquifers. If there was no confining unit, water going onto the surface of the property, either in the form of rain or irrigation water, would percolate unimpeded to the lower aquifers. Areas in the Ocala Uplift to the west of the North Tract, where the confining layer is thinner and discontiguous, contain few streams or runoff features. Historically, the North Tract was used for timber production, with limited pasture and crop lands. At the time the 7,207-acre North Tract was purchased by Sleepy Creek, land use consisted of 4,061 acres of planted pine, 1,998 acres of wetlands, 750 acres of improved pasture, 286 acres of crops, 78 acres of non-forested uplands, 20 acres of native forest, 10 acres of open water, and 4 acres of roads and facilities. Prior to the submission of the CUP and ERP applications, much of the planted pine was harvested, and the land converted to improved pasture. Areas converted to improved pasture include those proposed for irrigation, which have been developed in the circular configuration necessary for future use with center irrigation pivots. As a result of the harvesting of planted pine, and the conversion of about 345 acres of cropland and non-forested uplands to pasture and incidental uses, total acreage in pasture on the North Tract increased from 750 acres to 3,938 acres. Other improvements were constructed on the North Tract, including the cattle processing facility. Aerial photographs suggest that the conversion of the North Tract to improved pasture and infrastructure to support a cattle ranch is substantially complete. The act of converting the North Tract from a property dominated by planted pine to one dominated by improved pasture, and the change in use of the East Tract from sod farm to pasture, were agricultural activities that did not require a permit from the District. As such, there is no impropriety in considering the actual, legal use of the property in its current configuration as the existing use for which baseline conditions are to be measured. Petitioners argue that the baseline conditions should be measured against the use of the property as planted pine plantation, and that Sleepy Creek should not be allowed to “cattle-up” before submitting its permit applications, thereby allowing the baseline to be established as a higher impact use. However, the applicable rules and statutes provide no retrospective time-period for establishing the nature of a parcel of property other than that lawfully existing when the application is made. See West Coast Reg’l Water Supply Auth. v. SW Fla. Water Mgmt. Dist., Case No. 95-1520 et seq., ¶ 301 (Fla. DOAH May 29, 1997; SFWMD ) (“The baseline against which projected impacts conditions [sic] are those conditions, including previously permitted adverse impacts, which existed at the time of the filing of the renewal applications.”). The evidence and testimony in this case focused on the effects of the water allocation on the Floridan aquifer, Silver Springs, and the Silver River, and on the effects of the irrigation on water and nutrient transport from the properties. It was not directed at establishing a violation of chapter 373, the rules of the SJRWMD, or the CUP Applicant’s Handbook with regard to the use and management of the agriculturally-exempt unirrigated pastures, nor did it do so. Soil Types Soils are subject to classifications developed by the Soil Conservation Service based on their hydrologic characteristics, and are grouped into Group A, Group B, Group C, or Group D. Factors applied to determine the appropriate hydrologic soil group on a site-specific basis include depth to seasonal high saturation, the permeability rate of the most restrictive layer within a certain depth, and the depth to any impermeable layers. Group A includes the most well-drained soils, and Group D includes the most poorly-drained soils. Group D soils are those with seasonal high saturation within 24 inches of the soil surface and a higher runoff potential. The primary information used to determine the hydrologic soil groups on the North Tract was the depth to seasonal-high saturation, defined as the highest expected annual elevation of saturation in the soil. Depth to seasonal-high saturation was measured through a series of seven hand-dug and augered soil borings completed at various locations proposed for irrigation across the North Tract. In determining depth to seasonal-high saturation, the extracted soils were examined based on depth, color, texture, and other relevant characteristics. In six of the seven locations at which soil borings were conducted, a restrictive layer was identified within 36 inches of the soil surface. At one location at the northeastern corner of the North Tract, the auger hole ended at a depth of 48 inches -- the length of the auger -- at which depth there was an observable increase in clay content but not a full restrictive layer. However, while the soil assessment was ongoing, a back-hoe was in operation approximately one hundred yards north of the boring location. Observations of that excavation revealed a heavy clay layer at a depth of approximately 5 feet. In each of the locations, the depth to seasonal-high saturation was within 14 inches of the soil surface. Based on the consistent observation of seasonal-high saturation at each of the sampled locations, as well as the flat topography of the property with surface water features, the soils throughout the property, with the exception of a small area in the vicinity of Pivot 6, were determined to be in hydrologic soil Group D. Hydrogeologic Features There are generally five hydrogeologic units underlying the North Tract, those units being the surficial aquifer system, the intermediate confining unit, the upper Floridan aquifer, the middle confining unit, and the lower Floridan aquifer. In areas in which a confining layer is present, water falling on the surface of the land flows over the surface of the land or across the top of the confining layer. A surficial aquifer, with a relatively high perched water table, is created by the confinement and separation of surface waters from the upper strata of the Floridan aquifer. Surface waters are also collected in or conveyed by various surface water features, including perched wetlands, creeks, and streams. The preponderance of the evidence adduced at the final hearing demonstrates that the surficial aquifer exists on the property to a depth of up to 20 feet below the land surface (bls). Beneath the surficial aquifer is an intermediate confining unit of dense clay interspersed with beds of sand and calcareous clays that exists to a depth of up to 100 feet bls. The clay material observed on the North Tract is known as massive or structureless. Such clays are restrictive with very low levels of hydraulic conductivity, and are not conducive to development of preferential flow paths to the surficial or lower aquifers. The intermediate confining unit beneath the North Tract restricts the exchange of groundwater from the surficial aquifer to the upper Floridan aquifer. The upper Floridan aquifer begins at a depth of approximately 100 feet bls, and extends to a depth of approximately 340 feet bls. At about 340 feet bls, the upper Floridan aquifer transitions to the middle confining unit, which consists of finely grained, denser material that separates the interchange of water between the upper Floridan aquifer and the lower Floridan aquifer. Karst Features Karst features form as a result of water moving through rock that comprises the aquifer, primarily limestone, dissolving and forming conduits in the rock. Karst areas present a challenging environment to simulate through modeling. Models assume the subsurface to be a relatively uniform “sand box” through which it is easier to simulate groundwater flow. However, if the subsurface contains conduits, it becomes more difficult to simulate the preferential flows and their effect on groundwater flow paths and travel times. The District has designated parts of western Alachua County and western Marion County as a Sensitive Karst Area Basin. A Sensitive Karst Area is a location in which the porous limestone of the Floridan aquifer occurs within 20 feet of the land surface, and in which there is 10 to 20 inches of annual recharge to the Floridan aquifer. The designation of an area as being within the Sensitive Karst Area Basin does not demonstrate that it does, or does not, have subsurface features that are karstic in nature, or that would provide a connection between the surficial aquifer and the Floridan aquifer. The western portion of the North Tract is within the Sensitive Karst Area Basin. The two intensive-use areas on the North Tract that have associated stormwater facilities -- the cattle unloading area and the processing facility -- are outside of the Sensitive Karst Area Basin. The evidence was persuasive that karst features are more prominent to the west of the North Tract. In order to evaluate the presence of karst features on the North Tract, Mr. Andreyev performed a “desktop-type evaluation,” with a minimal field survey. The desktop review included a review of aerial photographs and an investigation of available data, including the Florida Geological Survey database of sinkhole occurrence in the area. The aerial photographs showed circular depressions suggestive of karst activity west and southwest of the North Tract, but no such depressions on the North Tract. Soil borings taken on the North Tract indicated the presence of layers of clayey sand, clays, and silts at a depth of 70 to 80 feet. Well-drilling logs taken during the development of the wells used for an aquifer performance test on the North Tract showed the limestone of the Floridan aquifer starting at a depth below ground surface of 70 to 80 feet. Other boring data generated on the North Tract suggests that there is greater than 100 feet of clay and sandy clay overburden above the Floridan aquifer on and in the vicinity of the North Tract. Regardless of site-specific differences, the observed confining layer separating the surficial aquifer from the Floridan aquifer is substantial, and not indicative of a karst environment. Aquifer performance tests performed on the North Tract were consistent in showing that drawdown in the surficial aquifer from the tests was minimal to non-detectable, which is strong evidence of an intact and low-permeability confining layer. The presence of well-developed drainage features on the North Tract is further evidence of a unit of confinement that is restricting water from going deeper into the subsurface, and forcing it to runoff to low-lying surface water features. Petitioners’ witnesses did not perform any site- specific analysis of karst features on or around the Sleepy Creek property. Their understanding of the nature of the karst systems in the region was described as “hypothetical or [] conceptual.” Dr. Kincaid admitted that he knew of no conduits on or adjacent to the North Tract. As a result of the data collected from the North Tract, Mr. Hearn opined that the potential for karst features on the property that provide an opening to the upper Floridan aquifer “is extremely remote.” Mr. Hearn’s opinion is consistent with the preponderance of the evidence in this case, and is accepted. In the event a surface karst feature were to manifest itself, Sleepy Creek has proposed that the surface feature be filled and plugged to reestablish the integrity of the confining layer. More to the point, the development of a surficial karst feature in an area influenced by irrigation would be sufficient grounds for the SJRWMD to reevaluate and modify the CUP to account for any changed conditions affecting the assumptions and bases for issuance of the CUP. Silver Springs, the Silver River, and the Ocklawaha River The primary, almost exclusive concern of Petitioners was the effect of the modified CUP and the nutrients from the proposed cattle ranch on Silver Springs, the Silver River, and the Ocklawaha River. Silver Springs Silver Springs has long been a well-known attraction in Florida. It is located just to the east of Ocala, Florida. Many of the speakers at the public comment period of this proceeding spoke fondly of having frequented Silver Springs over the years, enjoying its crystal clear waters through famous glass-bottomed boats. For most of its recorded history, Silver Springs was the largest spring by volume in Florida. Beginning in the 1970s, it began to lose its advantage, and by the year 2000, Rainbow Springs, located in southwestern Marion County, surpassed Silver Springs as the state’s largest spring. Silver Springs exists at the top of the potentiometric surface of the Floridan aquifer. Being at the “top of the mountain,” when water levels in the Floridan aquifer decline, groundwater flow favors the lower elevation springs. Thus, surrounding springshed boundaries expand to take more water to maintain their baseflows, at the expense of the Silver Springs springshed, which contracts. Rainbow Springs shares an overlapping springshed with Silver Springs. The analogy used by Dr. Knight was of the aquifer as a bucket with holes at different levels, and with the Silver Springs “hole” near the top of the bucket. When the water level in the bucket is high, water will flow from the top hole. As the water level drops below that hole, it will preferentially flow from the lower holes. Rainbow Springs has a vent or outlet from the aquifer, that is 10 feet lower in elevation than that of Silver Springs. Coastal springs are lower still. Thus, as groundwater levels decline, the lower springs “pirate flow” from the upper springs. Since the first major studies of Silver Springs were conducted in the 1950s, the ecosystem of Silver Springs has undergone changes. The water clarity, though still high as compared to other springs, has been reduced by 10 to 15 percent. Since the 1950s, macrophytic plants, i.e., rooted plants with seeds and flowers, have declined in population, while epiphytic and benthic algae have increased. Those plants are sensitive to increases in nitrogen in the water. Thus, Dr. Knight’s opinion that increases in nitrogen emerging from Silver Springs, calculated to have risen from just over 0.4 mg/l in the 1950s, to 1.1 mg/l in 2004, and to up to 1.5 mg/l at present,1/ have caused the observed vegetative changes is accepted. Silver River Silver Springs forms the headwaters for the Silver River, a spring run 5 1/2 miles in length, at which point it becomes a primary input to the Ocklawaha River. Issues of water clarity and alteration of the vegetative regime that exist at Silver Springs are also evident in the Silver River. In addition, the reduction in flow allows for more tannic water to enter the river, further reducing clarity. Dr. Dunn recognized the vegetative changes in the river, and opined that the “hydraulic roughness” caused by the increase in vegetation is likely creating a spring pool backwater at Silver Springs, thereby suppressing some of the flow from the spring. The Silver River has been designated as an Outstanding Florida Water. There are currently no Minimum Flows and Levels established by the District for the Silver River. Ocklawaha River The Ocklawaha River originates near Leesburg, Florida, at the Harris Chain of Lakes, and runs northward past Silver Springs. The Silver River is a major contributor to the flow of the Ocklawaha River. Due to the contribution of the Silver River and other spring-fed tributaries, the Ocklawaha River can take on the appearance of a spring run during periods of low rainfall. Historically, the Ocklawaha River flowed unimpeded to its confluence with the St. Johns River in the vicinity of Palatka, Florida. In the 1960s, as part of the Cross-Florida Barge Canal project, the Rodman Dam was constructed across the Ocklawaha River north of the Sleepy Creek property, creating a large reservoir known as the Rodman Pool. Dr. Knight testified convincingly that the Rodman Dam and Pool have altered the Ocklawaha River ecosystem, precipitating a decline in migratory fish populations and an increase in filamentous algae. At the point at which the Ocklawaha River flows past the Sleepy Creek property, it retains its free-flowing characteristics. Mill Creek, which has its headwaters on the North Tract, is a tributary of the Ocklawaha River. The Ocklawaha River, from the Eureka Dam south, has been designated as an Outstanding Florida Water. However, the Ocklawaha River at the point at which Mill Creek or other potential surface water discharges from the Sleepy Creek property might enter the river are not included in the Outstanding Florida Water designation. There are currently no Minimum Flows and Levels established by the District for the Ocklawaha River. The Silver Springs Springshed A springshed is that area from which a spring draws water. Unlike a surface watershed boundary, which is fixed based on land features, contours, and elevations, a springshed boundary is flexible, and changes depending on a number of factors, including rainfall. As to Silver Springs, its springshed is largest during periods of more abundant rainfall when the aquifer is replenished, and smaller during drier periods when groundwater levels are down, and water moves preferentially to springs and discharge points that are lower in elevation. The evidence in this case was conflicting as to whether the North Tract is in or out of the Silver Springs springshed boundary. Dr. Kincaid indicated that under some of the springshed delineations, part of the North Tract was out of the springshed, but over the total period of record, it is within the springshed. Thus, it was Dr. Kincaid’s opinion that withdrawals anywhere within the region will preferentially impact Silver Springs, though he admitted that he did not have the ability to quantify his opinion. Dr. Knight testified that the North Tract is within the Silver Springs “maximum extent” springshed at least part of the time, if not all the time. He did not opine as to the period of time in which the Silver Springs springshed was at its maximum extent. Dr. Bottcher testified that the North Tract is not within the Silver Springs springshed because there is a piezometric rise between North Tract and Silver Springs. Thus, in his opinion, withdrawals at the North Tract would not be withdrawing water going to Silver Springs. Dr. Dunn agreed that the North Tract is on the groundwater divide for Silver Springs. In his view, the North Tract is sometimes in, and sometimes out of the springshed depending on the potentiometric surface. In his opinion, the greater probability is that the North Tract is more often outside of the Silver Springs springshed, with seasonal and year—to—year variation. Dr. Dunn’s opinion provides the most credible explanation of the extent to which the North Tract sits atop that portion of the lower Floridan aquifer that feeds to Silver Springs. Thus, it is found that the groundwater divide exists to the south of the North Tract for a majority of the time, and water entering the Floridan aquifer from the North Tract will, more often than not, flow away from Silver Springs. Silver Springs Flow Volume The Silver Springs daily water discharge has been monitored and recorded since 1932. Over the longest part of the period of record, up to the 1960s, flows at Silver Springs averaged about 800 cubic feet per second (cfs). Through 1989, there was a reasonable regression between rainfall and springflow, based on average rainfalls. The long-term average rainfall in Ocala was around 50 inches per year, and long-term springflow was about 800 cfs, with deviations from average generally consistent with one another. Between 1990 and 1999, the relationship between rainfall and springflow declined by about 80 cubic feet per second. Thus, with average rainfall of 50 inches per year, the average springflow was reduced to about 720 cfs. From 2000 to 2009, there was an additional decline, such that the total cumulative decline for the 20-year period through 2009 was 250 cfs. Dr. Dunn agreed with Dr. Knight that after 2000, there was an abrupt and persistent reduction in flow of about 165 cfs. However, Dr. Dunn did not believe the post-2000 flow reduction could be explained by rainfall directly, although average rainfall was less than normal. Likewise, groundwater withdrawals did not offer an adequate explanation. Dr. Dunn described a natural 30-year cycle of wetter and drier periods known as the Atlantic Multidecadal Oscillation (AMO) that has manifested itself over the area for the period of record. From the 1940s up through 1970, the area experienced an AMO wet cycle with generally higher than normal rainfall at the Ocala rain station. For the next 30-year period, from 1970 up to 2000, the Ocala area ranged from a little bit drier to some years in which it was very, very dry. Dr. Dunn attributed the 80 cfs decline in Silver Springs flow recorded in the 1990s to that lower rainfall cycle. After 2000, when the next AMO cycle would be expected to build up, as it did post—1940, it did not happen. Rather, there was a particularly dry period around 2000 that Dr. Dunn believes to have had a dramatic effect on the lack of recovery in the post-2000 flows in the Silver River. According to Mr. Jenkins, that period of deficient rainfall extended through 2010. Around the year 2001, the relationship between rainfall and flow changed such that for a given amount of rainfall, there was less flow in the Silver River, with flow dropping to as low as 535 cfs after 2001. It is that reduction in flow that Dr. Knight has attributed to groundwater withdrawals. It should be noted that the observed flow of Silver Springs that formed the 1995 baseline conditions for the North Central Florida groundwater model that will be discussed herein was approximately 706 cfs. At the time of the final hearing in August 2014, flow at Silver Springs was 675 cfs. The reason offered for the apparent partial recovery was higher levels of rainfall, though the issue was not explored in depth. For the ten-year period centered on the year 2000, local water use within Marion and Alachua County, closer to Silver Springs, changed little -- around one percent per year. From a regional perspective, groundwater use declined at about one percent per year for the period from 1990 to 2010. The figures prepared by Dr. Knight demonstrate that the Sleepy Creek project area is in an area that has a very low density of consumptive use permits as compared to areas adjacent to Silver Springs and more clearly in the Silver Springs springshed. In Dr. Dunn’s opinion, there were no significant changes in groundwater use either locally or regionally that would account for the flow reduction in Silver Springs from 1990 to 2010. In that regard, the environmental report prepared by Dr. Dunn and submitted with the CUP modification application estimated that groundwater withdrawals accounted for a reduction in flow at Silver Springs of approximately 20 cfs as measured against the period of record up to the year 2000, with most of that reduction attributable to population growth in Marion County. In the March 2014, environmental impacts report, Dr. Dunn described reductions in the stream flow of not only the Silver River, but of other tributaries of the lower Ocklawaha River, including the upper Ocklawaha River at Moss Bluff and Orange Creek. However, an evaluation of the Ocklawaha River water balance revealed there to be additional flow of approximately 50 cfs coming into the Ocklawaha River at other stations. Dr. Dunn suggested that changes to the vent characteristics of Silver Springs, and the backwater effects of increased vegetation in the Silver River, have resulted in a redistribution of pressure to other smaller springs that discharge to the Ocklawaha River, accounting for a portion of the diminished flow at Silver Springs. The Proposed Cattle Operation Virtually all beef cattle raised in Florida, upon reaching a weight of approximately 875 pounds, are shipped to Texas or Kansas to be fattened on grain to the final body weight of approximately 1,150 pounds, whereupon they are slaughtered and processed. The United States Department of Agriculture has a certification for grass—fed beef which requires that, after an animal is weaned, it can only be fed on green forage crops, including grasses, and on corn and grains that are cut green and before they set seed. The forage crops may be grazed or put into hay or silage and fed when grass and forage is dormant. The benefit of grass feeding is that a higher quality meat is produced, with a corresponding higher market value. Sleepy Creek plans to develop the property as a grass- fed beef production ranch, with pastures and related loading/unloading and slaughter/processing facilities where calves can be fattened on grass and green grain crops to a standard slaughter weight, and then slaughtered and processed locally. By so doing, Sleepy Creek expects to save the transportation and energy costs of shipping calves to the Midwest, and to generate jobs and revenues by employing local people to manage, finish, and process the cattle. As they currently exist, pastures proposed for irrigation have been cleared and seeded, and have “fairly good grass production.” The purpose of the irrigation is to enhance the production and quality of the grass in order to maintain the quality and reliability of feed necessary for the production of grass-fed beef. East Tract Cattle Operation The East Tract is 1,242 acres in size, substantially all of which was previously cleared, irrigated, and used for sod production. The proposed CUP permit authorizes the irrigation of 611 acres of pasture under six existing center pivots. The remaining 631 acres will be used as improved, but unirrigated, pasture. Under the proposed permit, a maximum of 1,207 cattle would be managed on the East Tract. Of that number, 707 cattle would be grazed on the irrigated paddocks, and 500 cattle would be grazed on the unirrigated improved pastures. If the decision is made to forego irrigation on the East Tract, with the water allocation being used on the North Tract or not at all, the number of cattle grazed on the six center pivot pastures would be decreased from 707 cattle to 484 cattle. The historic use of the East Tract as a sod farm resulted in high phosphorus levels in the soil from fertilization, which has made its way to Daisy Creek. Sleepy Creek has proposed a cattle density substantially below that allowed by application of the formulae in the Nutrient Management Plan in order to “mine” the phosphorus levels in the soil over time. North Tract Cattle Operation The larger North Tract includes most of the “new” ranch activities, having no previous irrigation, and having been put to primarily silvicultural use with limited pasture prior to its acquisition by Sleepy Creek. The ranch’s more intensive uses, i.e., the unloading corrals and the slaughter house, are located on the North Tract. The North Tract is 7,207 acres in size. Of that, 1,656 acres are proposed for irrigation by means of 15 center- pivot irrigation systems. In addition to the proposed irrigated pastures, the North Tract includes 2,382 acres of unirrigated improved pasture, of which approximately 10 percent is wooded. Under the proposed permit, a maximum of 6,371 cattle would be managed on the North Tract. Of that number, 3,497 cattle would be grazed on the irrigated paddocks (roughly 2.2 head of cattle per acre), and 2,374 cattle would graze on the improved pastures (up to 1.1 head of cattle per acre). The higher cattle density in the irrigated pastures can be maintained due to the higher quality grass produced as a result of irrigation. The remaining 500 cattle would be held temporarily in high-concentration corrals, either after offloading or while awaiting slaughter. On average, there will be fewer than 250 head of cattle staged in those high-concentration corrals at any one time. In the absence of irrigation, the improved pasture on the North Tract could sustain about 4,585 cattle. Nutrient Management Plan, Water Conservation Plan, and BMPs The CUP and ERP applications find much of their support in the implementation of the Nutrient Management Plan (NMP), the Water Conservation Plan, and Best Management Practices (BMPs). The NMP sets forth information designed to govern the day to day operations of the ranch. Those elements of the NMP that were the subject of substantive testimony and evidence at the hearing are discussed herein. Those elements not discussed herein are found to have been supported by Sleepy Creek’s prima facie case, without a preponderance of competent and substantial evidence to the contrary. The NMP includes a herd management plan, which describes rotational grazing and the movement of cattle from paddock to paddock, and establishes animal densities designed to maintain a balance of nutrients on the paddocks, and to prevent overgrazing. The NMP establishes fertilization practices, with the application of fertilizer based on crop tissue analysis to determine need and amount. Thus, the application of nitrogen- based fertilizer is restricted to that capable of ready uptake by the grasses and forage crops, limiting the amount of excess nitrogen that might run off of the pastures or infiltrate past the root zone. The NMP establishes operation and maintenance plans that incorporate maintenance and calibration of equipment, and management of high-use areas. The NMP requires that records be kept of, among other things, soil testing, nutrient application, herd rotation, application of irrigation water, and laboratory testing. The irrigation plan describes the manner and schedule for the application of water during each irrigation cycle. Irrigation schedules for grazed and cropped scenarios vary from pivot to pivot based primarily on soil type. The center pivots proposed for use employ high-efficiency drop irrigation heads, resulting in an 85 percent system efficiency factor, meaning that there is an expected evaporative loss of 15 percent of the water before it becomes available as water in the soil. That level of efficiency is greater than the system efficiency factor of 80 percent established in CUP A.H. section 12.5.2. Other features of the irrigation plan include the employment of an irrigation manager, installation of an on-site weather station, and cumulative tracking of rain and evapotranspiration with periodic verification of soil moisture conditions. The purpose of the water conservation practices is to avoid over application of water, limiting over-saturation and runoff from the irrigated pastures. Sleepy Creek has entered into a Notice of Intent to Implement Water Quality BMPs with the Florida Department of Agriculture and Consumer Services which is incorporated in the NMP and which requires the implementation of Best Management Practices.2/ Dr. Bottcher testified that implementation and compliance with the Water Quality Best Management Practices manual creates a presumption of compliance with water quality standards. His testimony in that regard is consistent with Department of Agriculture and Consumer Services rule 5M-11.003 (“implementation, in accordance with adopted rules, of BMPs that have been verified by the Florida Department of Environmental Protection as effective in reducing target pollutants provides a presumption of compliance with state water quality standards.”). Rotational Grazing Rotational grazing is a practice by which cattle are allowed to graze a pasture for a limited period of time, after which they are “rotated” to a different pasture. The 1,656 acres proposed for irrigation on the North Tract are to be divided into 15 center-pivot pastures. Each individual pasture will have 10 fenced paddocks. The 611 acres of irrigated pasture on the East Tract are divided into 6 center-pivot pastures. The outer fence for each irrigated pasture is to be a permanent “hard” fence. Separating the internal paddocks will be electric fences that can be lowered to allow cattle to move from paddock to paddock, and then raised after they have moved to the new paddock. The NMP for the North Tract provides that cattle are to be brought into individual irrigated pastures as a single herd of approximately 190 cattle and placed into one of the ten paddocks. They will be moved every one to three days to a new paddock, based upon growing conditions and the reduction in grass height resulting from grazing. In this way, the cattle are rotated within the irrigated pasture, with each paddock being used for one to three days, and then rested until each of the other paddocks have been used, whereupon it will again be used in the rotation. The East Tract NMP generally provides for rotation based on the height of the pasture grasses, but is designed to provide a uniform average of cattle per acre per year. Due to the desire to “mine” phosphorus deposited during the years of operation of the East Tract as a sod farm, the density of cattle on the irrigated East Tract pastures is about 30 percent less than that proposed for the North Tract. The East Tract NMP calls for a routine pasture rest period of 15 to 30 days. Unlike dairy farm pastures, where dairy cows traverse a fixed path to the milking barn several times a day, there will be minimal “travel lanes” within the pastures or between paddocks. There will be no travel lanes through wetlands. If nitrogen-based fertilizer is needed, based upon tissue analysis of the grass, fertilizer is proposed for application immediately after a paddock is vacated by the herd. By so doing, the grass within each paddock will have a sufficient period to grow and “flush up” without grazing or traffic, which results in a high—quality grass when the cattle come back around to feed. Sleepy Creek proposes that rotational grazing is to be practiced on improved pastures and irrigated pastures alike. The rotational practices on the improved East Tract and North Tract pastures are generally similar to those practiced on the irrigated pastures. The paddocks will have permanent watering troughs, with one trough serving two adjacent paddocks. The troughs will be raised to prevent “boggy areas” from forming around the trough. Since the area around the troughs will be of a higher use, Sleepy Creek proposes to periodically remove accumulated manure, and re-grade if necessary. Other cattle support items, including feed bunkers and shade structures are portable and can be moved as conditions demand. Forage Crop Production The primary forage crop on the irrigated pastures is to be Bermuda grass. Bermuda grass or other grass types tolerant of drier conditions will be used in unirrigated pastures. During the winter, when Bermuda grass stops growing, Sleepy Creek will overseed the North Tract pastures with ryegrass or other winter crops. Due to the limitation on irrigation water, the East Tract NMP calls for no over-seeding for production of winter crops. Crops do not grow uniformly during the course of a year. Rather, there are periods during which there are excess crops, and periods during which the crops are not growing enough to keep up with the needs of the cattle. During periods of excess, Sleepy Creek will cut those crops and store them as haylage to be fed to the cattle during lower growth periods. The North Tract management plan allows Sleepy Creek to dedicate one or more irrigated pastures for the exclusive production of haylage. If that option is used, cattle numbers will be reduced in proportion to the number of pastures dedicated to haylage production. As a result of the limit on irrigation, the East Tract NMP does not recommend growing supplemental feed on dedicated irrigation pivot pastures. Direct Wetland Impacts Approximately 100 acres proposed for irrigation are wetlands or wetland buffer. Those areas are predominantly isolated wetlands, though some have surface water connections to Mill Creek, a water of the state. Trees will be cut in the wetlands to allow the pivot to pass overhead. Tree cutting is an exempt agricultural activity that does not require a permit. There was no persuasive evidence that cutting trees will alter the fundamental benefit of the wetlands or damage water resources of the District. The wetlands and wetland buffer will be subject to the same watering and fertigation regimen as the irrigated pastures. The application of water to wetlands, done concurrently with the application of water to the pastures, will occur during periods in which the pasture soils are dry. The incidental application of water to the wetlands during dry periods will serve to maintain hydration of the wetlands, which is considered to be a benefit. Fertilizers will be applied through the irrigation arms, a process known as fertigation. Petitioners asserted that the application of fertilizer onto the wetlands beneath the pivot arms could result in some adverse effects to the wetlands. However, Petitioners did not quantify to what extent the wetlands might be affected, or otherwise describe the potential effects. Fertigation of the wetlands will promote the growth of wetland plants. Nitrogen applied through fertigation will be taken up by plants, or will be subject to denitrification -- a process discussed in greater detail herein -- in the anaerobic wetland soils. The preponderance of the evidence indicated that enhanced wetland plant growth would not rise to a level of concern. Since most of the affected wetlands are isolated wetlands, there is expected to be little or no discharge of nutrients from the wetlands. Even as to those wetlands that have a surface water connection, most, if not all of the additional nitrogen applied through fertigation will be accounted for by the combined effect of plant uptake and denitrification. Larger wetland areas within an irrigated pasture will be fenced at the buffer line to prevent cattle from entering. The NMP provided a blow-up of the proposed fencing related to a larger wetland on Pivot 8. Although other figures are not to the same scale, it appears that larger wetlands associated with Pivots 1, 2, 3, and 12 will be similarly fenced. Cattle would be allowed to go into the smaller, isolated wetlands. Cattle going into wetlands do not necessarily damage the wetlands. Any damage that may occur is a function of density, duration, and the number of cattle. The only direct evidence of potential damage to wetlands was the statement that “[i]f you have 6,371 [cattle] go into a wetland, there may be impacts.” The NMP provides that pasture use will be limited to herds of approximately 190 cattle, which will be rotated from paddock to paddock every two to three days, and which will allow for “rest” periods of approximately 20 days. There will be no travel lanes through any wetland. Thus, there is no evidence to support a finding that the cattle at the density, duration, and number proposed will cause direct adverse effects to wetlands on the property. High Concentration Areas Cattle brought to the facility are to be unloaded from trucks and temporarily corralled for inspection. For that period, the cattle will be tightly confined. Cattle that have reached their slaughter weight will be temporarily held in corrals associated with the processing plant. The stormwater retention ponds used to capture and store runoff from the offloading corral and the processing plant holding corral are part of a normal and customary agricultural activity, and are not part of the applications and approvals that are at issue in this proceeding. The retention ponds associated with the high-intensity areas do not require permits because they do not exceed one acre in size or impound more than 40 acre-feet of water. Nonetheless, issues related to the retention ponds were addressed by Petitioners and Sleepy Creek, and warrant discussion here. The retention ponds are designed to capture 100 percent of the runoff and entrained nutrients from the high concentration areas for a minimum of a 24—hour/25—year storm event. If rainfall occurs in excess of the designed storm, the design is such that upon reaching capacity, only new surface water coming to the retention pond will be discharged, and not that containing high concentrations of nutrients from the initial flush of stormwater runoff. Unlike the stormwater retention berms for the pastures, which are to be constructed from the first nine inches of permeable topsoil on the property, the corral retention ponds are to be excavated to a depth of six feet which, based on soil borings in the vicinity, will leave a minimum of two to four feet of clay beneath the retention ponds. In short, the excavation will penetrate into the clay layer underlying the pond sites, but will not penetrate through that layer. The excavated clay will be used to form the side slopes of the ponds, lining the permeable surficial layer and generally making the ponds impermeable. Organic materials entering the retention ponds will form an additional seal. An organic seal is important in areas in which retention ponds are constructed in sandy soil conditions. Organic sealing is less important in this case, where clay forms the barrier preventing nutrients from entering the surficial aquifer. Although the organic material is subject to periodic removal, the clay layer will remain to provide the impermeable barrier necessary to prevent leakage from the ponds. Dr. Bottcher testified that if, during excavation of the ponds, it was found that the remaining in-situ clay layer was too thin, Sleepy Creek would implement the standard practice of bringing additional clay to the site to ensure adequate thickness of the liner. Nutrient Balance The goal of the NMP is to create a balance of nutrients being applied to and taken up from the property. Nitrogen and phosphorus are the nutrients of primary concern, and are those for which specific management standards are proposed. Nutrient inputs to the NMP consist generally of deposition of cattle manure (which includes solid manure and urine), recycling of plant material and roots from the previous growing season, and application of supplemental fertilizer. Nutrient outputs to the NMP consist generally of volatization of ammonia to the atmosphere, uptake and utilization of the nutrients by the grass and crops, weight gain of the cattle, and absorption and denitrification of the nutrients in the soil. The NMP, and the various models discussed herein, average the grass and forage crop uptake and the manure deposition to match that of a 1,013 pound animal. That average weight takes into account the fact that cattle on the property will range from calf weight of approximately 850 pounds, to slaughter weight of 1150 pounds. Nutrients that are not accounted for in the balance, e.g., those that become entrained in stormwater or that pass through the plant root zone without being taken up, are subject to runoff to surface waters or discharge to groundwater. Generally, phosphorus not taken up by crops remains immobile in the soil. Unless there is a potential for runoff to surface waters, the nutrient balance is limited by the amount of nitrogen that can be taken up by the crops. Due to the composition of the soils on the property, the high water table, and the relatively shallow confining layer, there is a potential for surface runoff. Thus, the NMP was developed using phosphorus as the limiting nutrient, which results in nutrient application being limited by the “P-index.” A total of 108 pounds of phosphorus per acre/per year can be taken up and used by the irrigated pasture grasses and forage crops. Therefore, the total number of cattle that can be supported on the irrigated pastures is that which, as a herd, will deposit an average of 108 pounds of phosphorus per year over the irrigated acreage. Therefore, Sleepy Creek has proposed a herd size and density based on calculations demonstrating that the total phosphorus contained in the waste excreted by the cattle equals the amount taken up by the crops. A herd producing 108 pounds per acre per year of phosphorus is calculated to produce 147 pounds of nitrogen per acre per year. The Bermuda grass and forage crops proposed for the irrigated fields require 420 pounds of nitrogen per acre per year. As a result of the nitrogen deficiency, additional nitrogen-based fertilizer to make up the shortfall is required to maintain the crops. Since phosphorus needs are accounted for by animal deposition, the fertilizer will have no phosphorus. The NMP requires routine soil and plant tissue tests to determine the amount of nitrogen fertilizer needed. By basing the application of nitrogen on measured rather than calculated needs, variations in inputs, including plant decomposition and atmospheric deposition, and outputs, including those affected by weather, can be accounted for, bringing the full nutrient balance into consideration. The numeric values for crop uptakes, manure deposition, and other estimates upon which the NMP was developed were based upon literature, values, and research performed and published by the University of Florida and the Natural Resource Conservation Service. Dr. Bottcher testified convincingly that the use of such values is a proven and reliable method of developing a balance for the operation of similar agricultural operations. A primary criticism of the NMP was its expressed intent to “reduce” or “minimize” the transport of nutrients to surface waters and groundwater, rather than to “negate” or “prevent” such transport. Petitioners argue that complete prevention of the transport of nutrients from the property is necessary to meet the standards necessary for issuance of the CUP and ERP. Mr. Drummond went into some detail regarding the total mass of nutrients expected to be deposited onto the ground from the cattle, exclusive of fertilizer application. In the course of his testimony, he suggested that the majority of the nutrients deposited on the land surface “are going to make it to the surficial aquifer and then be carried either to the Floridan or laterally with the groundwater flow.” However, Mr. Drummond performed no analysis on the fate of nitrogen through uptake by crops, volatization, or soil treatment, and did not quantify the infiltration of nitrogen to groundwater. Furthermore, he was not able to provide any quantifiable estimate on any effect of nutrients on Mill Creek, the Ocklawaha River, or Silver Springs. In light of the effectiveness of the nutrient balance and other elements of the NMP, along with the retention berm system that will be discussed herein, Mr. Drummond’s assessment of the nutrients that might be expected to impact water resources of the District is contrary to the greater weight of the evidence. Mr. Drummond’s testimony also runs counter to that of Dr. Kincaid, who performed a particle track analysis of the fate of water recharge from the North Tract. In short, Dr. Kincaid calculated that of the water that makes it as recharge from the North Tract to the surficial aquifer, less than one percent is expected to make its way to the upper Floridan aquifer, with that portion originating from the vicinity of Pivot 6. Recharge from the other 14 irrigated pastures was ultimately accounted for by evapotranspiration or emerged at the surface and found its way to Mill Creek. The preponderance of the competent, substantial evidence adduced at the final hearing supports the effectiveness of the NMPs for the North Tract and East Tract at managing the application and use of nutrients on the property, and minimizing the transport of nutrients to surface water and groundwater resources of the District. North Central Florida Model All of the experts involved in this proceeding agreed that the use of groundwater models is necessary to simulate what might occur below the surface of the ground. Models represent complex systems by applying data from known conditions and impacts measured over a period of years to simulate the effects of new conditions. Models are imperfect, but are the best means of predicting the effects of stresses on complex and unseen subsurface systems. The North Central Florida (NCF) model is used to simulate impacts of water withdrawals on local and regional groundwater levels and flows. The NCF model simulates the surficial aquifer, the upper Floridan aquifer, and the lower Floridan aquifer. Those aquifers are separated from one another by relatively impervious confining units. The intermediate confining unit separates the surficial aquifer from the upper Floridan aquifer. The intermediate confining unit is not present in all locations simulated by the NCF model. However, the evidence is persuasive that the intermediate confining unit is continuous at the North Tract, and serves to effectively isolate the surficial aquifer from the upper Floridan aquifer. The NCF model is not a perfect depiction of what exists under the land surface of the North Tract or elsewhere. It was, however, acknowledged by the testifying experts in this case, despite disagreements as to the extent of error inherent in the model, to be the best available tool for calculating the effects of withdrawals of water within the boundary of the model. The NCF model was developed and calibrated over a period of years, is updated routinely as data becomes available, and has undergone peer review. Aquifer Performance Tests In order to gather site-specific data regarding the characteristics of the aquifer beneath the Sleepy Creek property, a series of three aquifer performance tests (APTs) was conducted on the North Tract. The first two tests were performed by Sleepy Creek, and the third by the District. An APT serves to induce stress on the aquifer by pumping from a well at a high rate. By observing changes in groundwater levels in observation wells, which can be at varying distances from the extraction well, one can extrapolate the nature of the subsurface. In addition, well-completion reports for the various withdrawal and observation wells provide actual data regarding the composition of subsurface soils, clays, and features of the property. The APT is particularly useful in evaluating the ability of the aquifer to produce water, and in calculating the transmissivity of the aquifer. Transmissivity is a measure of the rate at which a substance passes through a medium and, as relevant to this case, measures how groundwater flows through an aquifer. The APTs demonstrated that the Floridan aquifer is capable of producing water at the rate requested. The APT drawdown contour measured in the upper Floridan aquifer was greater than that predicted from a simple run of the NCF model, but the lateral extent of the drawdown was less than predicted. The most reasonable conclusion to be drawn from the combination of greater than expected drawdown in the upper Floridan aquifer with less than expected extent is that the transmissivity of the aquifer beneath the North Tract is lower than the NCF model assumptions. The conclusion that the transmissivity of the aquifer at the North Tract is lower than previously estimated means that impacts from groundwater extraction would tend to be more vertical than horizontal, i.e., the drawdown would be greater, but would be more localized. As such, for areas of lower than estimated transmissivity, modeling would over-estimate off-site impacts from the extraction. NCF Modeling Scenarios The initial NCF modeling runs were based on an assumed withdrawal of 2.39 mgd, an earlier -- though withdrawn - - proposal. The evidence suggests that the simulated well placement for the 2.39 mgd model run was entirely on the North Tract. Thus, the results of the model based on that withdrawal have some limited relevance, especially given that the proposed CUP allows for all of the requested 1.46 mgd of water to be withdrawn from North Tract wells at the option of Sleepy Creek, but will over-predict impacts from the permitted rate of withdrawal. A factor that was suggested as causing a further over-prediction of drawdown in the 2.39 mgd model run was the decision, made at the request of the District, to exclude the input of data of additional recharge to the surficial aquifer, wetlands and surface waters from the irrigation, and the resulting diminution in soil storage capacity. Although there is some merit to the suggestion that omitting recharge made the model results “excessively conservative,” the addition of recharge to the model would not substantially alter the predicted impacts. A model run was subsequently performed based on a presumed withdrawal of 1.54 mgd, a rate that remains slightly more than, but still representative of, the requested amount of 1.46 mgd. The 1.54 mgd model run included an input for irrigation recharge. The simulated extraction points were placed on the East Tract and North Tract in the general configuration as requested in the CUP application. The NCF is designed to model the impacts of a withdrawal based upon various scenarios, identified at the hearing as Scenarios A, B, C, and D. Scenario A is the baseline condition for the NCF model, and represents the impacts of all legal users of water at their estimated actual flow rates as they existed in 1995. Scenario B is all existing users, not including the applicant, at end-of-permit allocations. Scenario C is all existing users, including the applicant, at current end-of-permit allocations. Scenario D is all permittees at full allocation, except the applicant which is modeled at the requested (i.e., new or modified) end-of-permit allocation. To simulate the effects of the CUP modification, simulations were performed on scenarios A, C, and D. In order to measure the specific impact of the modification of the CUP, the Scenario C impacts to the surficial, upper Floridan, and lower Floridan aquifers were compared with the Scenario D impacts to those aquifers. In order to measure the cumulative impact of the CUP, the Scenario A actual-use baseline condition was compared to the Scenario D condition which predicts the impacts of all permitted users, including the applicant, pumping at full end-of-permit allocations. The results of the NCF modeling indicate the following: 2.39 mgd - Specific Impact The surficial aquifer drawdown from the simulated 2.39 mgd withdrawal was less than 0.05 feet on-site and off- site, except to the west of the North Tract, at which a drawdown of 0.07 feet was predicted. The upper Floridan aquifer drawdown from the 2.39 mgd withdrawal was predicted at between 0.30 and 0.12 feet on-site, and between 0.30 and 0.01 feet off-site. The higher off-site figures are immediately proximate to the property. The lower Floridan aquifer drawdown from the 2.39 mgd withdrawal was predicted at less than 0.05 feet at all locations, and at or less than 0.02 feet within six miles of the North Tract. 2.39 mgd - Cumulative Impact The cumulative impact to the surficial aquifer from all permitted users, including a 2.39 mgd Sleepy Creek withdrawal, was less than 0.05 feet on-site, and off-site to the north and east, except to the west of the North Tract, at which a drawdown of 0.07 feet was predicted. The cumulative impact to the upper Floridan aquifer from all permitted users, including a 2.39 mgd Sleepy Creek withdrawal, ranged from 0.4 feet to 0.8 feet over all pertinent locations. The cumulative impact to the lower Floridan aquifer from all permitted users, including a 2.39 mgd Sleepy Creek withdrawal, ranged from 1.0 to 1.9 feet over all pertinent locations. The conclusion drawn by Mr. Andreyev that the predicted impacts to the lower Floridan are almost entirely from other end-of-permit user withdrawals is supported by the evidence and accepted. 1.54 mgd - Specific Impact The NCF model runs based on the more representative 1.54 mgd withdrawal predicted a surficial aquifer drawdown of less than 0.01 feet (i.e., no drawdown contour shown) on the North Tract, and a 0.01 to 0.02 foot drawdown at the location of the East Tract. The drawdown of the upper Floridan aquifer from the CUP modification was predicted at up to 0.07 feet on the property, and generally less than 0.05 feet off-site. There were no drawdown contours at the minimum 0.01 foot level that came within 9 miles of Silver Springs. The lower Floridan aquifer drawdown from the CUP modification was predicted at less than 0.01 feet (i.e., no drawdown contour shown) at all locations. 1.54 mgd - Cumulative Impact A comparison of the cumulative drawdown contours for the 2.36 mgd model and 1.54 mgd model show there to be a significant decrease in predicted drawdowns to the surficial and upper Floridan aquifers, with the decrease in the upper Floridan aquifer drawdown being relatively substantial, i.e., from 0.5 to 0.8 feet on-site predicted for the 2.36 mgd withdrawal, to 0.4 to 0.5 feet on-site for the 1.54 mgd model. Given the small predicted individual impact of the CUP on the upper Floridan aquifer, the evidence is persuasive that the cumulative impacts are the result of other end-of-permit user withdrawals. The drawdown contour for the lower Floridan aquifer predicted by the 1.54 mgd model is almost identical to that of the 2.36 mgd model, thus supporting the conclusion that predicted impacts to the lower Floridan are almost entirely from other end-of-permit user withdrawals. Modeled Effect on Silver Springs As a result of the relocation of the extraction wells from the East Tract to the North Tract, the NCF model run at the 1.54 mgd withdrawal rate predicted springflow at Silver Springs to increase by 0.15 cfs. The net cumulative impact in spring flow as measured from 1995 conditions to the scenario in which all legal users, including Sleepy Creek, are pumping at full capacity at their end-of-permit rates for one year3/ is roughly 35.4 cfs, which is approximately 5 percent of Silver Springs’ current flow. However, as a result of the redistribution of the Sleepy Creek withdrawal, which is, in its current iteration, a legal and permitted use, the cumulative effect of the CUP modification at issue is an increase in flow of 0.l5 cfs. Dr. Kincaid agreed that there is more of an impact to Silver Springs when the pumping allowed by the CUP is located on the East Tract than there is on the North Tract, but that the degree of difference is very small. Dr. Knight testified that effect on the flow of Silver Springs from relocating the 1.46 mgd withdrawal from the East Tract to the North Tract would be “zero.” The predicted increase of 0.15 cfs is admittedly miniscule when compared to the current Silver Springs springflow of approximately 675 cfs. However, as small as the modeled increase may be -- perhaps smaller than its “level of certainty” -- it remains the best evidence that the impact of the CUP modification to the flow of Silver Springs will be insignificant at worst, and beneficial at best. Opposition to the NCF Model Petitioners submitted considerable evidence designed to call the results generated by the District’s and Sleepy Creek’s NCF modeling into question. Karst Features A primary criticism of the validity of the NCF model was its purported inability to account for the presence of karst features, including conduits, and their effect on the results. It was Dr. Kincaid’s opinion that the NCF model assigned transmissivity values that were too high, which he attributed to the presence of karst features that are collecting flow and delivering it to springs. He asserted that, instead of assuming the presence of karst features, the model was adjusted to raise the overall capacity of the porous medium to transmit water, and thereby match the observed flows. In his opinion, the transmissivity values of the equivalent porous media were raised so much that the model can no longer be used to predict drawdowns. That alleged deficiency in the model is insufficient for two reasons. First, as previously discussed in greater detail, the preponderance of the evidence in this case supports a finding that there are no karst features in the vicinity of the North Tract that would provide preferential pathways for water flow so as to skew the results of the NCF model. Second, Dr. Kincaid, while acknowledging that the NCF model is the best available tool for predicting impacts from groundwater extraction on the aquifer, suggested that a hybrid porous media and conduit model would be a better means of predicting impacts, the development of which would take two years or more. There is no basis for the establishment of a de facto moratorium on CUP permitting while waiting for the development of a different and, in this case, unnecessary model. For the reasons set forth herein, it is found that the NCF model is sufficient to accurately and adequately predict the effects of the Sleepy Creek groundwater withdrawals on the aquifers underlying the property, and to provide reasonable assurance that the standards for such withdrawals have been met. Recharge to the Aquifer Petitioners argued that the modeling results showing little significant drawdown were dependent on the application of unrealistic values for recharge or return flow from irrigation. In a groundwater model, as in the physical world, some portion of the water extracted from the aquifer is predicted to be returned to the aquifer as recharge. If more water is applied to the land surface than is being accounted for by evaporation, plant uptake and evapotranspiration, surface runoff, and other processes, that excess water may seep down into the aquifer as recharge. Recharge serves to replenish the aquifer and offset the effects of the groundwater withdrawal. Dr. Kincaid opined that the NCF modeling performed for the CUP application assigned too much water from recharge, offsetting the model's prediction of impacts to other features. It is reasonable to assume that there is some recharge associated with both agricultural and public supply uses. However, the evidence suggests that the impact of recharge on the overall NCF model results is insignificant on the predicted impacts to Silver Springs, the issue of primary concern. Mr. Hearn ran a simulation using the NCF model in which all variables were held constant, except for recharge. The difference between the “with recharge” and “without recharge" simulations at Silver Springs was 0.002 cfs. That difference is not significant, and is not suggestive of adverse impacts on Silver Springs from the CUP modification. Dr. Kincaid testified that “the recharge offset on the property is mostly impacting the surficial aquifer,” and that “the addition of recharge in this case didn't have much of an impact on the upper Floridan aquifer system.” As such, the effect of adding recharge to the model would be as to the effect of groundwater withdrawal on wetlands or surface water bodies, and not on springs. As previously detailed, the drawdown of the surficial aquifer simulated for the 2.39 mgd “no recharge” scenario were less than 0.05 feet on-site and off-site, except for a predicted 0.07 foot drawdown to the west of the North Tract. The predicted drawdown of the surficial aquifer for the 1.54 mgd “with recharge” scenario was 0.02 feet or less. The preponderance of the evidence supports a finding that drawdowns of either degree are less than that at which adverse impacts to wetlands or surface waters would occur. Thus, issues related to the recharge or return flows from irrigation are insufficient to support a finding or conclusion that the NCF model failed to provide reasonable assurance that the standards for issuance of the CUP modification were met. External Boundaries The boundaries of the NCF model are not isolated from the rest of the physical world. Rather, groundwater flows into the modeled area from multiple directions, and out of the modeled area in multiple directions. Inflows to the model area are comprised of recharge, which is an assigned value, and includes water infiltrating and recharging the aquifer from surface waters; injection wells; upward and downward leakage from lower aquifers; and flow across the external horizontal boundaries. Outflows from the model area include evapotranspiration; discharge to surface waters, including springs and rivers; extraction from wells; upward and downward leakage from lower aquifers; and flow against the external model boundaries. Dr. Kincaid testified that flow across the external model boundary is an unknown and unverifiable quantity which increases the uncertainty in the model. He asserted that in the calibrated version of the model, there is no way to check those flows against data. His conclusion was that the inability of the NCF model to accurately account for external boundary flow made the margin of error so great as to make the model an unreliable tool with which to assess whether the withdrawal approved by the proposed CUP modification will increase or decrease drawdown at Silver Springs. The District correlates the NCF model boundaries with a much larger model developed by the United States Geological Survey, the Peninsula of Florida Model, more commonly referred to as the Mega Model, which encompasses most of the State of Florida and part of Southeast Georgia. The Mega Model provides a means to acknowledge that there are stresses outside the NCF model, and to adjust boundary conditions to account for those stresses. The NCF is one of several models that are subsets of the Mega Model, with the grids of the two models being “nested” together. The 1995 base year of the NCF model is sufficiently similar to the 1993-1994 base year of the Mega Model as to allow for a comparison of simulated drawdowns calculated by each of the models. By running a Mega Model simulation of future water use, and applying the change in that use from 1993 base year conditions, the District was able to come to a representative prediction of specific boundary conditions for the 1995 NCF base year, which were then used as the baseline for simulations of subsequent conditions. In its review of the CUP modification, the District conducted a model validation simulation to measure the accuracy of the NCF model against observed conditions, with the conditions of interest being the water flow at Silver Springs. The District ran a simulation using the best information available as to water use in the year 2010, the calculated boundary conditions, irrigation, pumping, recharge, climatic conditions, and generally “everything that we think constitutes that year.” The discharge of water at Silver Springs in 2010 was measured at 580 cfs. The discharge simulated by the NCF model was 545 cfs. Thus, the discharge predicted by the NCF model simulation was within six percent of the observed discharge. Such a result is generally considered in the modeling community to be “a home run.” Petitioners’ objections to the calculation of boundary conditions for the NCF model are insufficient to support a finding that the NCF model is not an appropriate and accurate tool for determining that reasonable assurance has been provided that the standards for issuance of the CUP modification were met. Cumulative Impact Error As part of the District’s efforts to continually refine the NCF, and in conjunction with a draft minimum flows and levels report for Silver Springs and the Silver River, the cumulative NCF model results for the period of baseline to 2010 were compared with the simulated results from the Northern District Model (NDF), a larger model that overlapped the NCF. As a result of the comparison, which yielded different results, it was discovered that the modeler had “turned off” not only the withdrawal pumps, but inputs to the aquifer from drainage wells and sinkholes as well. When those inputs were put back into the model run, and effects calculated only from withdrawals between the “pumps-off” condition and 2010 pumping conditions, the cumulative effect of the withdrawals was adjusted from a reduction in the flow at Silver Springs of 29 cfs to a reduction of between 45 and 50 cfs, an effect described as “counterintuitive.” Although that result has not undergone peer review, and remains subject to further review and comparison with the Mega Model, it was accepted by the District representative, Mr. Bartol. Petitioners seized upon the results of the comparison model run as evidence of the inaccuracy and unreliability of the NCF model. However, the error in the NCF model run was not the result of deficiencies in the model, but was a data input error. Despite the error in the estimate of the cumulative effect of all users at 2010 levels, the evidence in this case does not support a finding that the more recent estimates of specific impact from the CUP at issue were in error. NCF Model Conclusion As has been discussed herein, a model is generally the best means by which to calculate conditions and effects that cannot be directly observed. The NCF model is recognized as being the best tool available for determining the subsurface conditions of the model domain, having been calibrated over a period of years and subject to peer review. It should be recognized that the simulations run using the NCF model represent the worst—case scenario, with all permittees simultaneously drawing at their full end-of-permit allocations. There is merit to the description of that occurrence as being “very remote.” Thus, the results of the modeling represent a conservative estimate of potential drawdown and impacts. While the NCF model is subject to uncertainty, as is any method of predicting the effects of conditions that cannot be seen, the model provides reasonable assurance that the conditions simulated are representative of the conditions that will occur as a result of the withdrawals authorized by the CUP modification. Environmental Resource Permit The irrigation proposed by the CUP will result in runoff from the North Tract irrigated pastures in excess of that expected from the improved pastures, due in large measure to the diminished storage capacity of the soil. Irrigation water will be applied when the soils are dry, and capable of absorbing water not subject to evaporation or plant uptake. The irrigation water will fill the storage space that would exist without irrigation. With irrigation water taking up the capacity of the soil to hold water, soils beneath the irrigation pivots will be less capable of retaining additional moisture during storm events. Thus, there is an increased likelihood of runoff from the irrigated pastures over that expected with dry soils. The increase in runoff is expected to be relatively small, since there should be little or no irrigation needed during the normal summer wet season. The additional runoff may have increased nutrient levels due to the increased cattle density made possible by the irrigation of the pastures. The CUP has a no—impact requirement for water quality resulting from the irrigation of the improved pasture. Thus, nutrients leaving the irrigated pastures may not exceed those calculated to be leaving the existing pre-development use as improved pastures. Retention Berms The additional runoff and nutrient load is proposed to be addressed by constructing a system of retention berms, approximately 50,0004/ feet in length, which is intended to intercept, retain, and provide treatment for runoff from the irrigated pasture. The goal of the system is to ensure that post—development nutrient loading from the proposed irrigated pastures will not exceed the pre—development nutrient loading from the existing improved pastures. An ERP permit is required for the construction of the berm system, since the area needed for the construction of the berms is greater than the one acre in size, and since the berms have the capability of impounding more than 40 acre-feet of water. The berms are to be constructed by excavating the top nine inches of sandy, permeable topsoil and using that permeable soil to create the berms, which will be 1 to 2 feet in height. The water storage areas created by the excavation will have flat or horizontal bottoms, and will be very shallow with the capacity to retain approximately a foot of water. The berms will be planted with pasture grasses after construction to provide vegetative cover. The retention berm system is proposed to be built in segments, with the segment designed to capture runoff from a particular center pivot pasture to be constructed prior to the commencement of irrigation from that center pivot. A continuous clay layer underlies the areas in which the berms are to be constructed. The clay layer varies from 18 to 36 inches below the ground surface, with at least one location being as much as five feet below the ground surface. As such, after nine inches of soil is scraped away to create the water retention area and construct the berm, there will remain a layer of permeable sandy material above the clay. The berms are to be constructed at least 25 feet landward of any jurisdictional wetland, creating a “safe upland line.” Thus, the construction, operation, and maintenance of the retention berms and redistribution swales will result in no direct impacts to jurisdictional wetlands or other surface waters. There will be no agricultural activities, e.g., tilling, planting, or mowing, within the 25-foot buffers, and the buffers will be allowed to establish with native vegetation to provide additional protection for downgradient wetlands. As stormwater runoff flows from the irrigated pastures, it may, in places, create concentrated flow ways. Redistribution swales will be built in those areas to spread any remaining overland flow of water and reestablish sheet flow to the retention berm system. At any point at which water may overtop a berm, the berm will be hardened with rip—rap to insure its integrity. The berms are designed to intercept and collect overland flow from the pastures and temporarily store it behind the berms, regaining the soil storage volume lost through irrigation. A portion of the runoff intercepted by the berm system will evaporate. The majority will infiltrate either through the berm, or vertically into the subsurface soils beneath it. When the surficial soils become saturated, further vertical movement will be stopped by the impermeable clay layer underlying the site. The runoff water will then move horizontally until it reemerges into downstream wetland systems. Thus, the berm system is not expected to have a measurable impact on the hydroperiod of the wetlands on the North Tract. Phosphorus Removal Phosphorus tends to get “tied up” in soil as it moves through it. Phosphorus reduction occurs easily in permeable soil systems because it is removed from the water through a chemical absorption process that is not dependent on the environment of the soil. As the soils in the retention areas and berms go through drying cycles, the absorption capacity is regenerated. Thus, the retention system will effectively account for any increase in phosphorus resulting from the increased cattle density allowed by the irrigation such that there is expected to be no increase in phosphorus levels beyond the berm. Nitrogen Removal When manure is deposited on the ground, primarily as high pH urine, the urea is quickly converted to ammonia, which experiences a loss of 40 to 50 percent of the nitrogen to volatization. Soil conditions during dry weather conditions are generally aerobic. Remaining ammonia in the manure is converted by aerobic bacteria in the soil to nitrates and nitrites. Converted nitrates and nitrites from manure, along with nitrogen from fertilizer, is readily available for uptake as food by plants, including grasses and forage crops. Nitrates and nitrites are mobile in water. Therefore, during rain events of sufficient intensity to create runoff, the nitrogen can be transported downstream towards wetlands and other receiving waters, or percolate downward through the soil until blocked by an impervious barrier. During storm events, the soils above the clay confining layer and the lower parts of the pervious berms become saturated. Those saturated soils are drained of oxygen and become anaerobic. When nitrates and nitrites encounter saturated conditions, they provide food for anaerobic bacteria that exist in those conditions. The bacteria convert nitrates and nitrites to elemental nitrogen, which has no adverse impact on surface waters or groundwater. That process, known as denitrification, is enhanced in the presence of organic material. The soils from which the berms are constructed have a considerable organic component. In addition to the denitrification that occurs in the saturated conditions in and underlying the berms, remaining nitrogen compounds that reemerge into the downstream wetlands are likely to encounter organic wetland-type soil conditions. Organic wetland soils are anaerobic in nature, and will result in further, almost immediate denitrification of the nitrates and nitrites in the emerging water. Calculation of Volume - BMPTRAINS Model The calculation of the volume necessary to capture and store excess runoff from the irrigated pastures was performed by Dr. Wanielista using the BMPTRAINS model. BMPTRAINS is a simple, easy to use spreadsheet model. Its ease of use does not suggest that it is less than reliable. The model has been used as a method of calculating storage volumes in many conditions over a period of more than 40 years. The model was used to calculate the storage volumes necessary to provide storage and treatment of runoff from fifteen “basins” that had a control or a Best Management Practice associated with them. All of the basins were calculated as being underlain by soils in poorly-drained hydrologic soil Group D, except for the basin in the vicinity of Pivot 6, which is underlain by the more well-drained soil Group A. The model assumed about percent of the property to have soil Group A soils, an assumption that is supported by the evidence. Soil moisture conditions on the property were calculated by application of data regarding rainfall events and times, the irrigation schedule, and the amount of irrigation water projected for use over a year. The soil moisture condition was used to determine the amount of water that could be stored in the on-site soils, known as the storage coefficient. Once the storage coefficient was determined, that data was used to calculate the amount of water that would be expected to run off of the North Tract, known as the curve number. The curve number is adjusted by the extent to which the storage within a soil column is filled by the application of irrigation water, making it unable to store additional rainfall. As soil storage goes down, the curve number goes up. Thus, a curve number that approaches 100 means that more water is predicted to run off. Conversely, a lower curve number means that less water is predicted to run off. The pre-development curve number for the North Tract was based on the property being an unirrigated, poor grass area. A post-development curve number was assigned to the property that reflected a wet condition representative of the irrigated soils beneath the pivots. In calculating the storage volume necessary to handle runoff from the basins, the wet condition curve number was adjusted based on the fact that there is a mixture of irrigated and unirrigated general pasture within each basin to be served by a segment of the retention berm system, and by the estimated 15 percent of the time that the irrigation areas would be in a drier condition. In addition, the number was adjusted to reflect the 8 to 10 inches of additional evapotranspiration that occurs as a result of irrigation. The BMPTRAINS model was based on average annual nutrient-loading conditions, with water quality data collected at a suitable point within Reach 22, the receiving waterbody. The effects of nutrients from the irrigated pastures on receiving waterbodies is, in terms of the model, best represented by average annual conditions, rather than a single highest-observed nutrient value. Pre-development loading figures were based on the existing use of the property as unirrigated general pasture. The pre-development phosphorus loading figure was calculated at an average event mean concentration (EMC) of 0.421 milligrams per liter (mg/l). The post—condition phosphorus loading figure was calculated at an EMC of 0.621 mg/l. Therefore, in order to achieve pre-development levels of phosphorus, treatment to achieve a reduction in phosphorus of approximately 36 percent was determined to be necessary. The pre-development nitrogen loading figure was calculated at an EMC of 2.6 mg/l. The post—condition nitrogen loading figure was calculated at an EMC of 3.3 mg/l. Therefore, in order to achieve pre-development levels of nitrogen, treatment to achieve a reduction in nitrogen of approximately 25 percent was determined to be necessary. The limiting value for the design of the retention berms is phosphorus. To achieve post-development concentrations that are equal to or less than pre-development concentrations, the treatment volume of the berm system must be sufficient to allow for the removal of 36 percent of the nutrients in water being retained and treated behind the berms, which represents the necessary percentage of phosphorus. In order to achieve the 36 percent reduction required for phosphorus, the retention berm system must be capable of retaining approximately 38 acre—feet of water from the 15 basins. In order to achieve that retention volume, a berm length of approximately 50,000 linear feet was determined to be necessary, with an average depth of retention behind the berms of one foot. The proposed length of the berms is sufficient to retain the requisite volume of water to achieve a reduction in phosphorus of 36 percent. Thus, the post-development/irrigation levels of phosphorus from runoff are expected to be no greater than pre-development/general pasture levels of phosphorus from runoff. By basing the berm length and volume on that necessary for the treatment of phosphorus, there will be storage volume that is greater than required for a 25 percent reduction in nitrogen. Thus, the post-development/irrigation levels of nitrogen from runoff are expected to be less than pre- development/general pasture levels of nitrogen from runoff. Mr. Drummond admitted that the design of the retention berms “shows there is some reduction, potentially, but it's not going to totally clean up the nutrients.” Such a total clean-up is not required. Rather, it is sufficient that there is nutrient removal to pre-development levels, so that there is no additional pollutant loading from the permitted activities. Reasonable assurance that such additional loading is not expected to occur was provided. Despite Mr. Drummond’s criticism of the BMPTRAINS model, he did not quantify nutrient loading on the North Tract, and was unable to determine whether post-development concentrations of nutrients would increase over pre-development levels. As such, there was insufficient evidence to counter the results of the BMPTRAINS modeling. Watershed Assessment Model In order to further assess potential water quantity and water quality impacts to surface water bodies, and to confirm stormwater retention area and volume necessary to meet pre-development conditions, Sleepy Creek utilized the Watershed Assessment Model (WAM). The WAM is a peer-reviewed model that is widely accepted by national, state, and local regulatory entities. The WAM was designed to simulate water balance and nutrient impacts of varying land uses. It was used in this case to simulate and provide a quantitative measure of the anticipated impacts of irrigation on receiving water bodies, including Mill Creek, Daisy Creek, the Ocklawaha River, and Silver Springs. Inputs to the model include land conditions, soil conditions, rain and climate conditions, and water conveyance systems found on the property. In order to calculate the extent to which nutrients applied to the land surface might affect receiving waters, a time series of surface water and groundwater flow is “routed” through the modeled watershed and to the various outlets from the system, all of which have assimilation algorithms that represent the types of nutrient uptakes expected to occur as water goes through the system. Simulations were performed on the North Tract in its condition prior to acquisition by Sleepy Creek, in its current “exempted improved pasture condition,” and in its proposed “post—development” pivot-irrigation condition. The simulations assessed impacts of the site conditions on surface waters at the point at which they leave the property and discharge to Mill Creek, and at the point where Mill Creek merges into the Ocklawaha River. The baseline condition for measuring changes in nutrient concentrations was determined to be that lawfully existing at the time the application was made. Had there been any suggestion of illegality or impropriety in Sleepy Creek’s actions in clearing the timber and creating improved pasture, a different baseline might be warranted. However, no such illegality or impropriety was shown, and the SJRWMD rules create no procedure for “looking back” to previous land uses and conditions that were legally changed. Thus, the “exempted improved pasture condition” nutrient levels are appropriate for comparison with irrigated pasture nutrient levels. The WAM simulations indicated that nitrogen resulting from the irrigation of the North Tract pastures would be reduced at the outflow to Mill Creek at the Reach 22 stream segment from improved pasture levels by 1.7 percent in pounds per year, and by 0.6 percent in milligrams per liter of water. The model simulations predicted a corresponding reduction at the Mill Creek outflow to the Ocklawaha River of 1.3 percent in pounds per year, and 0.5 percent in milligrams per liter of water. These levels are small, but nonetheless support a finding that the berm system is effective in reducing nitrogen from the North Tract. Furthermore, the WAM simulations showed levels of nitrogen from the irrigated pasture after the construction of the retention berms to be reduced from that present in the pre- development condition, a conclusion consistent with that derived from the BMPTRAINS model. The WAM simulations indicated that phosphorus from the irrigated North Tract pastures, measured at the outflow to Mill Creek at the Reach 22 stream segment, would be reduced from improved pasture levels by 3.7 percent in pounds per year, and by 2.6 percent in milligrams per liter of water. The model simulations predicted a corresponding reduction at the Mill Creek outflow to the Ocklawaha River of 2.5 percent in pounds per year, and 1.6 percent in milligrams per liter of water. Those levels are, again, small, but supportive of a finding of no impact from the permitted activities. The WAM simulations showed phosphorus in the Ocklawaha River at the Eureka Station after the construction of the retention berms to be slightly greater than those simulated for the pre-development condition (0.00008 mg/l) -- the only calculated increase. That level is beyond miniscule, with impacts properly characterized as “non- measurable” and “non-detectable.” In any event, total phosphorus remains well below Florida’s nutrient standards. The WAM simulations were conducted based on all of the 15 pivots operating simultaneously at full capacity. That amount is greater than what is allowed under the permit. Thus, according to Dr. Bottcher, the predicted loads are higher than those that would be generated by the permitted allocation, making his estimates “very conservative.” Dr. Bottcher’s testimony is credited. During the course of the final hearing, the accuracy of the model results was questioned based on inaccuracies in rainfall inputs due to the five-mile distance of the property from the nearest rain station. Dr. Bottcher admitted that given the dynamics of summer convection storms, confidence that the rain station rainfall measurements represent specific conditions on the North Tract is limited. However, it remains the best data available. Furthermore, Dr. Bottcher testified that even if specific data points simulated by the model differ from that recorded at the rain station, that same error carries through each of the various scenarios. Thus, for the comparative purpose of the model, the errors get “washed out.” Other testimony regarding purported inaccuracies in the WAM simulations and report were explained as being the result of errors in the parameters used to run alternative simulations or analyze Sleepy Creek’s simulations, including use of soil types that are not representative of the North Tract, and a misunderstanding of dry weight/wet weight loading rates. There was agreement among witnesses that the WAM is regarded, among individuals with expertise in modeling, as an effective tool, and was the appropriate model for use in the ERP application that is the subject of this proceeding. As a result, the undersigned accepts the WAM simulations as being representative of comparative nutrient impacts on receiving surface water bodies resulting from irrigation of the North Tract. The WAM confirmed that the proposed retention berm system will be sufficient to treat additional nutrients that may result from irrigation of the pastures, and supports a finding of reasonable assurance that water quality criteria will be met. With regard to the East Tract, the WAM simulations showed that there would be reductions in nitrogen and phosphorus loading to Daisy Creek from the conversion of the property to irrigated pasture. Those simulations were also conservative because they assumed the maximum number of cattle allowed by the nutrient balance, and did not assume the 30 percent reduction in the number of cattle under the NMP so as to allow existing elevated levels of phosphorus in the soil from the sod farm to be “mined” by vegetation. Pivot 6 The evidence in this case suggests that, unlike the majority of the North Tract, a small area on the western side of the North Tract drains to the west and north. Irrigation Pivot is within that area. Dr. Harper noted that there are some soils in hydrologic soil Group A in the vicinity of Pivot 6 that reflect soils with a deeper water table where rainfall would be expected to infiltrate into the ground. Dr. Kincaid’s particle track analysis suggested that recharge to the surficial aquifer ultimately discharges to Mill Creek, except for recharge at Pivot 11, which is accounted for by evapotranspiration, and recharge at Pivot 6. Dr. Kincaid concluded that approximately 1 percent of the recharge to the surficial aquifer beneath the North Tract found its way into the upper Floridan aquifer. Those particle tracks originated only on the far western side of the property, and implicated only Pivot 6, which is indicative of the flow divide in the Floridan aquifer. Of the 1 percent of particle tracks entering the Floridan aquifer, some ultimately discharged at the St. John’s River, the Ocklawaha River, or Mill Creek. Dr. Kincaid opined, however, that most ultimately found their way to Silver Springs. Given the previous finding that the Floridan aquifer beneath the property is within the Silver Springs springshed for less than a majority of the time, it is found that a correspondingly small fraction of the less than 1 percent of the particle tracks originating on the North Tract, perhaps a few tenths of one percent, can reach Silver Springs. Dr. Bottcher generally agreed that some small percentage of the water from the North Tract may make it to the upper Floridan aquifer, but that amount will be very small. Furthermore, that water reaching the upper Floridan aquifer would have been subject to the protection and treatment afforded by the NMP and the ERP berms. The evidence regarding the somewhat less restrictive confinement of the aquifer around Pivot 6 is not sufficient to rebut the prima facie case that the CUP modification, coupled with the ERP, will meet the District’s permitting standards. Public Interest The primary basis upon which Sleepy Creek relies to demonstrate that the CUP is “consistent with the public interest” is that Florida's economy is highly dependent upon agricultural operations in terms of jobs and economic development, and that there is a necessity of food production. Sleepy Creek could raise cattle on the property using the agriculturally-exempt improved pastures, but the economic return on the investment would be questionable without the increased quality, quantity, and reliability of grass and forage crop production resulting from the proposed irrigation. Sleepy Creek will continue to engage in agricultural activities on its properties if the CUP modification is denied. Although a typical Florida beef operation could be maintained on the property, the investment was based upon having the revenue generation allowed by grass-fed beef production in order to realize a return on its capital investment and to optimize the economic return. If the CUP modification is denied, the existing CUP will continue to allow the extraction of 1.46 mgd for use on the East Tract. The preponderance of the evidence suggests that such a use would have greater impacts on the water levels at Silver Springs, and that the continued use of the East Tract as a less stringently-controlled sod farm would have a greater likelihood of higher nutrient levels, particularly phosphorus levels which are already elevated.
Recommendation Based on the foregoing Findings of Fact and Conclusions of Law set forth herein it is RECOMMENDED that the St. Johns River Water Management District enter a final order: approving the issuance of Consumptive Use Permit No. 2-083-91926-3 to Sleepy Creek Lands, LLC on the terms and conditions set forth in the complete Permit Application for Consumptive Uses of Water and the Consumptive Use Technical Staff Report; and approving the issuance of Environmental Resource Permit No. IND-083-130588-4 to Sleepy Creek Lands, LLC on the terms and conditions set forth in the complete Joint Application for Individual and Conceptual Environmental Resource Permit and the Individual Environmental Resource Permit Technical Staff Report. DONE AND ENTERED this 29th day of April, 2015, in Tallahassee, Leon County, Florida. S E. GARY EARLY Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 29th day of April, 2015.
The Issue The issue is whether the applicant for an Environmental Resource Permit ("ERP"), the City of Deltona ("City" or "Applicant"), has provided reasonable assurance that the system proposed complies with the water quantity, environmental, and water quality criteria of the St. Johns River Water Management District's ("District") ERP regulations set forth in Florida Administrative Code Chapter 40C-4, and the Applicant's Handbook: Management and Storage of Surface Waters (2005).
Findings Of Fact The District is a special taxing district created by Chapter 373, Florida Statutes, charged with the duty to prevent harm to the water resources of the District, and to administer and enforce Chapter 373, Florida Statutes, and the rules promulgated thereunder. The City of Deltona is a municipal government established under the provisions of Chapter 165, Florida Statutes. The Lake Theresa Basin is comprised primarily of a system of interconnected lakes extending from Lake Macy in the City of Lake Helen to the Butler Chain of Lakes (Lake Butler and Lake Doyle). The Lake Theresa Basin is land-locked and does not have a natural outfall to Lake Monroe and the St. Johns River. In 2003, after an extended period of above-normal rainfall in the Deltona area, the lakes within the land-locked Lake Theresa Basin staged to extremely high elevations that resulted in standing water in residential yards, and rendered some septic systems inoperable. Lake levels within the Lake Theresa Basin continued to rise and were in danger of rising above the finished floor elevations of some residences within the basin. On March 25, 2003, the District issued an Emergency Order (F.O.R. No. 2003-38) authorizing the construction and short-term operation of the Lake Doyle and Lake Bethel Emergency Overflow Interconnection. Since wetland and surface water impacts would occur, the Emergency Order required the City of Deltona to obtain an ERP for the system. The project area is 4.1 acres, and the system consists of a variable water structure on the west shore of Lake Doyle connected to a series of pipes, swales, water control structures, and wetland systems which outfall to a finger canal of Lake Bethel, with ultimate discharge to Lake Monroe and the St. Johns River. The first segment of the system extends downstream from the weir structure on the west shore of Lake Doyle via a pipe entrenched in the upland berm of the Sheryl Drive right-of-way. The pipe passes under Doyle Road and through xeric pine-oak uplands to the northeast shore of a large (approximately 15 acres) deepwater marsh. Water flows south through the deepwater marsh where it outfalls through four pipes at Ledford Drive. Two of the four pipes are overflow structures, controlled by canal gates. The pipes at Ledford Drive discharge into a ditch and into a large (greater than 20 acres) shallow bay swamp. The south end of the bay swamp is defined (and somewhat impounded) by a 19th Century railroad grade. Water flows through the bay swamp where it outfalls through five pipes at the railroad grade. Three of the five pipes are overflow structures, controlled by channel boards. The pipes at the railroad grade discharge to a 1500-foot long finger canal that was dug some time during the period 1940-1972 from the north central shore of Lake Bethel. The overflow interconnection system has three locations whereby the system can be shut down: 1) Lake Doyle--a control weir, controlled by three sluice gates; 2) Ledford Drive--two thirty-inch reinforced concrete pipes, controlled by canal gates; and 3) railroad grade--three thirty-inch reinforced concrete pipes, controlled by channel boards (collectively referred to as "Overflow Structures"). The Overflow Structures are designed to carry the discharge of water from Lake Doyle to Lake Bethel. With the Overflow Structures closed the system returns to pre-construction characteristics, meaning there will be no increase or decrease in the quantity or quality of water throughout the path of the system as a result of the project. An unequivocal condition of the permit is that the system would operate with all of the Overflow Structures closed. As an added assurance, the City proposes to place a brick and mortar plug in the Lake Doyle weir structure outfall pipe to prevent any discharge from the weir. The City has submitted to the District preliminary plans for a future phase in which the system would be modified for the purpose of alleviating high water levels within the Lake Theresa Basin when the water level in Lake Doyle rises above an elevation of 24.5 feet. The District shall require a separate permit application to be submitted for such future plans. Petitioner, Barbara Ash, has lived on Lake Theresa for 19 years. Ms. Ash lives upstream from the area of the weir that will be plugged in accordance with the ERP. She does not trust either the City of Deltona to comply with or the District to enforce the conditions of the ERP applied for by the City. Petitioner, Barbara Ash, also served as the qualified representative for Petitioners, Francell Frei, Bernard J. and Virginia Patterson, and Ted and Carol Sullivan. Ms. Ash represented that Ms. Frei has lived on Lake Theresa for 12 years, and both the Pattersons and the Sullivans live on Lake Louise, which is within the area of concern in this proceeding. Petitioner, Diana Bauer, has lived on Lake Theresa since February 2004. She fears that the lake will become too dry if the system is allowed to flow. She also believes the wildlife will be adversely affected if the water levels are too low since many species need a swampy or wet environment to thrive. She fears her property value will decrease as a result of the approval of the ERP. She also does not trust either the City to comply with or the District to enforce the conditions of the ERP. Petitioner, Howard Ehmer, lives two to three hundred yards down Lake Theresa from Ms. Bauer. He is concerned about the lake bed being too dry and attracting people on all terrain vehicles who enjoy driving around the lake bottom. He is concerned about his property value decreasing if the lake bed is dry. Further, when the lake level is too low, people cannot enjoy water skiing, boating, and fishing on Lake Theresa. Petitioner, Phillip Lott, a Florida native, has also owned and lived on property abutting Lake Theresa since 1995. Mr. Lott has a Ph.D. in plant ecology, and M.P.A. in coastal zone studies, an M.B.A. in international business, and a B.S. in environmental resource management and planning. Mr. Lott has been well acquainted with the water levels on Lake Theresa for many years. Based upon his personal observations of the lake systems in the Deltona area over the years, Mr. Lott has seen levels fluctuate greatly based upon periods of heavy and light rainfall. Mr. Lott is concerned that the District will permit the City to open the weir to let water flow through the system and cause flooding in some areas and low water levels in other areas. He fears that the District will allow the water to flow and upset the environmental balance, but he admits that this ERP application is for a closed system that will not allow the water to flow as he fears. Mr. Lott similarly does not trust the City to comply with and the District to enforce the conditions of the ERP. Petitioners, James E. and Alicia M. Peake, who were represented by Steven L. Spratt at hearing as their qualified representative, live on Lake Louise, which is interconnected with the Lake Theresa basin. The Peakes are concerned that if the level of Lake Louise drops below 21 feet, nine inches, they will not be able to use the boat launch ramps on the lake. Petitioner, Steven L. Spratt, also lives on Lake Louise, and is concerned about the water levels becoming so low that he cannot use the boat launch on the lake. He has lived on the lake since 2000, and remembers when the water level was extremely low. He fears that approval of the ERP in this case will result in low levels of water once again. Petitioner, Gloria Benoit, has live on Lake Theresa for two years. She also enjoys watching recreational activities on the lake, and feels that approval of the ERP will devalue her lakefront property. Ms. Benoit appeared at the first day of the hearing, but offered no testimony on her behalf. J. Christy Wilson, Esquire, appeared prior to the final hearing as counsel of record for Petitioners, Steven E. Larimer, Kathleen Larimer, and Helen Rose Farrow. Neither Ms. Wilson nor any of the three Petitioners she represented appeared at any time during the hearing, filed any pleadings seeking to excuse themselves from appearing at the final hearing, or offered any evidence, testimony, pre- or post- hearing submittals. Petitioner, Gary Jensen, did not appear at hearing, did not file any pleadings or papers seeking to be excused from appearing at the final hearing, and did not offer any evidence, testimony, pre- or post-hearing submittals. Both the City and the District recognize that areas downstream from the project site, such as Stone Island and Sanford, have experienced flooding in the past in time of high amounts of rainfall. The system proposed by the City for this ERP will operate with the overflow structures closed and a brick and mortar plug in the outfall pipe to prevent water flow from Lake Doyle to Lake Bethel. So long as the overflow structures are closed, the system will mimic pre-construction flow patterns, with no increase in volume flowing downstream. The District has considered the environment in its proposed approval of the ERP. The area abutting the project is little urbanized and provides good aquatic and emergent marsh habitat. With the exception of the western shore area of the deepwater marsh ("west marsh area"), the bay swamp and remaining deepwater marsh area have good ecological value. In the 1940's, the west marsh area was incorporated into the drainage system of a poultry farm that occupied the site. This area apparently suffered increased nutrient influxes and sedimentation that contributed to a proliferation of floating mats of aquatic plants and organic debris. These tussocks reduced the deepwater marsh's open water and diminished the historical marsh habitat. Water under the tussocks is typically anoxic owing to total shading by tussocks and reduced water circulation. Thick, soft, anaerobic muck has accumulated under the matted vegetation. Exotic shrubs (primrose willow Ludwigia peruvania) and other plants (cattails Typha spp.) dominate the tussocks. The construction of the project, from the 2003 Emergency Order, resulted in adverse impacts to 1.3 acres of wetlands having moderately high- to high ecological value and 0.2 acres of other surface waters. The 0.2 acre impact to other surface waters was to the lake bottom and the shoreline of Lake Doyle where the weir structure was installed. The 0.3 acres of wetland impacts occurred at the upper end of the deepwater marsh where the pipe was installed. The largest wetland impact (1.0 acre) was to the bay swamp. The bay swamp is a shallow body dominated by low hummocks and pools connected inefficiently by shallow braided channels and one acre is filled with a 1-2 foot layer of sediment following swamp channelization. Disturbance plants (e.g., primrose willow, Ludwigia peruvania, and elderberry Sambucus Canadensis) now colonize the sediment plume. Pursuant to the District's elimination and reduction criteria, the applicant must implement practicable design modifications, which would reduce or eliminate adverse impacts to wetlands and other surface waters. A proposed modification, which is not technically capable of being done, is not economically viable, or which adversely affects public safety through endangerment of lives or property is not considered "practicable." The City reduced and/or eliminated the impacts to the lake bottom and shoreline of Lake Doyle and deepwater marsh, to the extent practicable. The impacts were the minimum necessary to install the weir structure and pipe for the system; the weir structure and pipe were carefully installed on the edges of the wetland and surface water systems, resulting in a minimum amount of grading and disturbance. To compensate for the loss of 1.3 acres of wetlands and 0.2 acres of other surface waters, the City proposes to preserve a total of 27.5 acres of wetlands, bay swamp, marsh, and contiguous uplands. Included in this 27.5 acres are 6.4 acres of the west marsh, which are to be restored. The parties stipulated that the mitigation plan would adequately compensate for losses of ecological function (e.g. wildlife habitat and biodiversity, etc.) resulting from the project. Water quality is a concern for the District. Lake Monroe is included on the Florida Department of Environmental Protection's verified list of impaired water bodies for nitrogen, phosphorous, and dissolved oxygen. Water quality data for Lake Monroe indicate the lake has experienced high levels of nitrogen and phosphorous and low levels of dissolved oxygen. Prior to construction of the project, there was no natural outfall from the Lake Theresa Basin to Lake Monroe and therefore no contribution from this basin to nitrogen and phosphorous loadings to Lake Monroe. Lake Colby, Three Island Lakes (a/k/a Lake Sixma), and the Savannah are surface waters within the Lake Theresa Basin for which minimum levels have been adopted pursuant to Florida Administrative Code Chapter 40C-8. The system will operate with the overflow structures closed and a brick and mortar plug in the outfall pipe to prevent water flow from Lake Doyle to Lake Bethel, resulting in no outfall from the Theresa Basin to Lake Monroe. Minimum flows established for surface waters within the Lake Theresa Basin will not be adversely impacted. Under the first part of the secondary impact test, the City must provide reasonable assurance that the secondary impacts from construction, alteration, and intended or reasonable expected use of the project will not adversely affect the functions of adjacent wetlands or surface waters. The system is designed as a low intensity project. As proposed, little activity and maintenance are expected in the project site area. The reasonably expected use of the system will not cause adverse impacts to the functions of the wetlands and other surface waters. None of the wetland areas adjacent to uplands are used by listed species for nesting or denning. In its pre-construction state, the project area did not cause or contribute to state water quality violations. Under the second part of the secondary impact test, the City must provide reasonable assurance that the construction, alteration, and intended or reasonably expected uses of the system will not adversely affect the ecological value of the uplands to aquatic or wetland dependent species for enabling existing nesting or denning by these species. There are no listed threatened or endangered species within the project site area. Under the third part of the secondary impact test, and as part of the public interest test, the District must consider any other relevant activities that are closely linked and causally related to any proposed dredging or filling which will cause impacts to significant historical and archaeological resources. When making this determination, the District is required, by rule, to consult with the Division of Historical Resources. The Division of Historical Resources indicated that no historical or archaeological resources are likely present on the site. No impacts to significant historical and archaeological resources are expected. Under the fourth part of the secondary impact test, the City must demonstrate that certain additional activities and future phases of a project will not result in adverse impacts to the functions of wetlands or water quality violations. The City has submitted to the District preliminary plans for a future phase in which the system would be modified for the purpose of alleviating high water levels within the Lake Theresa Basin when the level in Lake Doyle rises above an elevation of 24.5 feet. Based upon the plans and calculations submitted, the proposed future phase, without additional measures, could result in minor increases in the loadings of nitrogen and phosphorous to Lake Monroe. Lake Monroe is included on the Florida Department of Environmental Protection's verified list of impaired water bodies due to water quality data indicating the lake has experienced high levels of nitrogen and phosphorous, and low levels of dissolved oxygen. Under this potential future phase, there would be an outfall from the Lake Theresa Basin to Lake Monroe. To address the impact on water quality of this potential future phase, the City has submitted a loading reduction plan for nitrogen, phosphorous, and dissolved oxygen. The plan includes compensating treatment to fully offset the potential increased nutrient loadings to Lake Monroe. Specifically, the loading reduction plan includes: Construction and operation of compensating treatment systems to fully offset anticipated increased nutrient loadings to Lake Monroe. Weekly water quality monitoring of the discharge from Lake Doyle for total phosphorous and total nitrogen. A requirement that the overflow structure be closed if the total phosphorous level reaches 0.18 mg/l or higher or the total nitrogen level reaches 1.2 mg/l or higher in any given week and will remain closed until levels fall below those limits. The implementation of these water quality mitigation measures will result in a net improvement of the water quality in Lake Monroe for nitrogen, phosphorous, or dissolved oxygen. The future phase was conceptually evaluated by the District for impacts to wetland functions. The future phase as proposed could result in adverse impacts to wetland functions. Operation of the system with the overflow structures open could impact the bay swamp and deepwater marsh. The City has demonstrated that any adverse impacts could be offset through mitigation. Based upon the information provided by the City and general engineering principles, the system is capable of functioning as proposed. The City of Deltona will be responsible for the operation, maintenance, and repair of the surface waster management system. A local government is an acceptable operation and maintenance entity under District rules. The public interest test has seven criteria. The public interest test requires the District to evaluate only those parts of the project actually located in, on, or over surface waters or wetlands, to determine whether a factor is positive, neutral, or negative, and then to balance these factors against each other. The seven factors are as follows: the public health, safety, or welfare of others; conservation of fish and wildlife and their habitats; fishing, recreational value, and marine productivity; temporary or permanent nature; 5) navigation, water flow, erosion, and shoaling; 6) the current condition and relative value of functions; and 7) historical and archaeological resources. There are no identified environmental hazards or improvements to public health and safety. The District does not consider impacts to property values. To offset any adverse impacts to fish and wildlife and their habitats, the City has proposed mitigation. The areas of the project in, on, or over wetlands do not provide recreational opportunities. Construction and operation of the project located in, on, or over wetlands will be permanent in nature. Construction and operation of the project located in, on, or over wetlands will not cause shoaling, and does not provide navigational opportunities. The mitigation will offset the relative value of functions performed by areas affected by the proposed project. No historical or archaeological resources are likely on the site of the project. The mitigation of the project is located within the same drainage basin as the project and offsets the adverse impacts. The project is not expected to cause unacceptable cumulative impacts.
Recommendation Based upon the Findings of Fact and Conclusions of Law, it is RECOMMENDED that a Final Order be entered granting the City of Deltona's application for an environmental resource permit with the conditions set forth in the Technical Staff Report, and dismissing the Petitions for Formal Administrative Hearing filed by Gary Jensen in Case No. 04-2405, and by Steven E. Larimer, Kathleen Larimer, and Helen Rose Farrow in Case No. 04-3048. DONE AND ENTERED this 27th day of May, 2005, in Tallahassee, Leon County, Florida. S ROBERT S. COHEN Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 27th day of May, 2005. COPIES FURNISHED: George Trovato, Esquire City of Deltona 2345 Providence Boulevard Deltona, Florida 32725 Diana E. Bauer 1324 Tartan Avenue Deltona, Florida 32738 Barbara Ash, Qualified Representative 943 South Dean Circle Deltona, Florida 32738-6801 Phillip Lott 948 North Watt Circle Deltona, Florida Howard Ehmer Nina Ehmer 32738-7919 1081 Anza Court Deltona, Florida 32738 Francell Frei 1080 Peak Circle Deltona, Florida 32738 Bernard T. Patterson Virginia T. Patterson 2518 Sheffield Drive Deltona, Florida 32738 Kealey A. West, Esquire St. Johns River Water Management District 4049 Reid Street Palatka, Florida 32177 J. Christy Wilson, Esquire Wilson, Garber & Small, P.A. 437 North Magnolia Avenue Orlando, Florida 32801 Gloria Benoit 1300 Tartan Avenue Deltona, Florida 32738 Gary Jensen 1298 Tartan Avenue Deltona, Florida 32738 James E. Peake Alicia M. Peake 2442 Weatherford Drive Deltona, Florida 32738 Steven L. Spratt 2492 Weatherford Drive Deltona, Florida 32738 Ted Sullivan 1489 Timbercrest Drive Deltona, Florida 32738 Kirby Green, Executive Director St. Johns River Water Management District 4049 Reid Street Palatka, Florida 32177
Findings Of Fact The Parties and the Property. The Respondent, Saddlebrook Resorts, Inc. (Saddlebrook), is a corporation organized and existing under the laws of Florida, and is wholly owned by the Dempsey family. Saddlebrook is located on approximately 480 acres in central Pasco County, east of I-75 and south of State Road 54. The Petitioner, Wiregrass Ranch, Inc. (Wiregrass) is a corporation organized and existing under the laws of Florida, and is wholly owned by the Porter family ("the Porters"). Wiregrass owns approximately 5,000 acres of property which extends from Saddlebrook west approximately one mile to State Road 581 and south for approximately four miles. The Respondent, the Southwest Florida Water Management District (SWFWMD), is a political subdivision created pursuant to Chapter 61-691, Laws of Florida, which exists and operates under the Water Resources Act, Fla. Stat., Ch. 373. SWFWMD is charged with regulating, among other things, surface water management systems in Pasco County. Saddlebrook discharges surface water onto Wiregrass at two locations on the southern and western boundaries of Saddlebrook, known as the south outfall and the west outfall. Saddlebrook's property is part of a drainage basin totalling approximately 1400 acres that contributes runoff to Wiregrass' property. Until approximately 1973, the Saddlebrook property was undeveloped and owned by the Porters. In approximately 1973, the Porters sold the Saddlebrook property to the Refram family, which began developing the property. In approximately 1979, Saddlebrook acquired the property from the Reframs. The Saddlebrook property includes residential development, a conference center, and golf course and tennis facilities. Wiregrass' property, which is largely undeveloped and used for ranching, consists of pine-palmetto flatwoods, wetland strands, isolated wetlands, and improved pastures. The Porters' Civil Action Against Saddlebrook. The Porters instituted a civil action against Saddlebrook, Porter, et al. v. Saddlebrook Resorts, Inc., Case No. CA 83-1860, in the Circuit Court of the Sixth Judicial District, Pasco County, complaining that post-development discharges from Saddlebrook exceed pre-development discharges. In the civil litigation, the Porters contended that Saddlebrook's peak flow discharges should be returned to pre-development, or 1973, levels. A primary purpose of Saddlebrook's proposed redesign is to return peak flow discharges to those levels that existed in 1973, in response to the Porters' complaints in the civil action. Saddlebrook's current surface water management system is deemed by SWFWMD to be in compliance with Rule 40D-4, and SWFWMD's regulations do not require redesign or modification of the current system. Prior to Saddlebrook's submission of its application, SWFWMD advised Saddlebrook that, because Rule 40D-4 became effective on October 1, 1984, SWFWMD considered that date to be the "pre-development" condition for purposes of evaluating Saddlebrook's discharges. Saddlebrook requested that SWFWMD evaluate its application using 1973 as the pre-development condition. SWFWMD advised Saddlebrook that it would apply 1973 as the pre-development condition if the Porters consented. By letter from the Porters' counsel to SWFWMD dated January 31, 1990, the Porters provided their express consent to SWFWMD's use of 1973 as the pre- development date for purposes of evaluating those discharges relevant to Saddlebrook's MSSW permit application. Saddlebrook's MSSW Permit Application. On or about February 8, 1990, Saddlebrook submitted its application for MSSW permit no. 497318.00, seeking SWFWMD's conceptual approval of the redesign of Saddlebrook's surface water management system. The proposed redesign calls for modification of most of the existing drainage control structures at Saddlebrook and installation of new control structures at several locations, including the south and west outfalls. After submission of its initial application, Saddlebrook made various subsequent submittals in response to SWFWMD requests for additional information. Saddlebrook's response to SWFWMD's requests culminated in final submittals on March 7, 1991 and April 5, 1991. In its various submittals, Saddlebrook provided, among other things, detailed descriptions of all proposed modifications to its drainage system, engineering reports, and computerized flood-routing analyses of runoff from Saddlebrook under pre-development (1973) and post-modification conditions. Saddlebrook provided all information requested, and SWFWMD thereafter deemed its application complete. SWFWMD's Review of Saddlebrook's Application. In the fifteen months following Saddlwbrook's initial February, 1990, submittal, SWFWMD conducted an intensive review of the application. During the course of this review, SWFWMD staff performed numerous field inspections, made an independent determination of all input data to the computer analyses of Saddlebrook's discharges, and made six separate formal requests for additional information. SWFWMD's requests for additional information required, among other things, that Saddlebrook modify various input data and rerun its computer analyses of discharges under the pre-development and post-modification conditions. In addition, SWFWMD required Saddlebrook to perform computer modelling analyses of discharges from Wiregrass' property onto the property of downstream landowners. Because, unlike the Porters, these downstream owners had not provided consent to use 1973 as the relevant pre-development date, SWFWMD required Saddlebrook to model this downstream discharge using a "pre- development" date of 1984. SWFWMD performed its standard review procedures in connection with Saddlebrooks' application. In addition, SWFWMD also performed its own computer-modelling analyses of Saddlebrook's discharges. This modelling was based on input data independently collected by SWFWMD staff in the field and from other sources. SWFWMD staff also met with the Porters' hydrologist, Dr. Gerald Seaburn, and thoroughly reviewed concerns he expressed in connection with Saddlebrook's application. In addressing these concerns, SWFWMD performed additional work, including conferring with an independent soils expert, performing additional field inspections, and modifying the SWFWMD computer modelling analyses based on alternative input parameters suggested by Dr. Seaburn. In reviewing Saddlebrook's application, SWFWMD applied the design and performance criteria set forth in its "Basis of Review for Surface Water Management Permit Applications" ("Basis of Review"), which is incorporated by reference in F.A.C. Rule Chapter 40D-4. Based upon its review of Saddlebrook's application, SWFWMD concluded that Saddlebrook had demonstrated compliance with the design and performance criteria set forth in SWFWMD's Basis of Review and the conditions for permit issuance under F.A.C. Rule 40D-4.301. By a Staff Report dated April 29, 1991, and Notice of Proposed Agency Action dated May 3, 1991, SWFWMD recommended approval of Saddlebrook's application. Compliance With SWFWMD Permitting Criteria. The design and performance criteria for MSSW permitting set forth in SWFWMD's Basis of Review fall into four categories: (1) water quantity, in terms of peak flow discharges for projects, like Saddlebrook's, located in open drainage basins; (2) flood protection; (3) water quality; and (4) wetlands impacts. Water Quantity. Under the Basis of Review's water quantity standards, SWFWMD requires that projected peak flow discharges during a 25-year, 24-hour storm event under the proposed system be reasonably similar to peak flow discharges under the pre- development condition. The evidence presented at the formal hearing demonstrated that Saddlebrook's application satisfies SWFWMD's water-quantity standards. This evidence demonstrated that peak flow discharges during a 25-year, 24-hour storm event under the proposed system will be less than, but reasonably similar to, pre-development (1973) peak flow discharges. The evidence presented at the formal hearing also demonstrated that, under the proposed system, peak flow discharges during a 25-year, 24-hour storm event from Wiregrass' property onto downstream landowners will be less than, but reasonably similar to, 1984 peak flow discharges. The evidence presented by Saddlebrook further demonstrated that storage will be increased under the proposed redesign versus the pre- development, 1973 condition. On Saddlebrook's property, there will be approximately 35 percent more storage than existed in 1973, and the total storage for Saddlebrook and the contributing drainage basin upstream of Saddlebrook will be increased by approximately 15 percent over that existing in 1973. Flood Protection. Under the flood-protection standards of the Basis of Review, SWFWMD requires that the applicant demonstrate that under the proposed condition the lower floor of all residential and other buildings on-site, and in areas affected by the site, will be above the 100-year flood elevation. SWFWMD also requires that there be no net encroachment into the flood plain, up to that encompassed by the 100-year event, which will adversely affect conveyance, storage, water quality or adjacent lands. The evidence presented at the formal hearing demonstrated that Saddlebrook's application satisfies SWFWMD's flood-protection standards. The testimony of Mr. Fuxan and Wiregrass' related exhibit, Ranch Ex. 35, purporting to show that in a 25-year, 24-hour storm Saddlebrook's proposed redesign will "flood the [Saddlebrook perimeter] roads and just sheet flow onto the Porter property" is not accurate. As part of its redesign, Saddlebrook will construct an additional berm along the southwestern and southern perimeters of its property. This berm will detain water on Saddlebrook's property during a 25-year, 24-hour storm event and prevent it from "sheet-flowing" onto the Wiregrass property. Water Quality. Under the water-quality standards of the Basis of Review, SWFWMD requires, for systems like Saddlebrook's involving wet detention and isolated wetlands, that the applicant provide sufficient storage to treat one inch of runoff from the basins contributing runoff to the site. This volume must be discharged in no less than 120 hours, with no more than one-half of the volume being discharged within the first 60 hours. The evidence presented at the formal hearing demonstrated that Saddlebrook's application satisfies SWFWMD's water-quality standards. Wetland Impacts. Under the wetland-impacts standards of the Basis of Review, SWFWMD requires that the applicant provide reasonable assurance that the proposed system will not adversely impact on-site and downstream wetlands. The evidence presented at the formal hearing demonstrated that Saddlebrook has provided reasonable assurance that the proposed redesign will cause no adverse impacts to on-site wetlands. Saddlebrook's proposed redesign will impact only approximately .167 acres of on-site wetlands, for which Saddlebrook will fully mitigate by creating .174 acres of forested wetlands and buffer area. The evidence presented at the formal hearing also demonstrated that Saddlebrook has provided reasonable assurance that the proposed redesign will cause no adverse impacts to off-site wetlands. Reasonable assurance that off- site wetlands will not be adversely impacted was demonstrated by, among other things, evidence establishing that: (1) discharge points will not change under the proposed condition; (2) discharge elevations will be reasonably similar under the proposed condition; (3) there will be no significant variation in the water fluctuations in the wetlands adjacent to the south and west outfalls as a result of the proposed condition; (4) the drainage basin areas will be reasonably similar under the proposed condition; and (5) the proposed redesign will satisfy SWFWMD's water quality requirements. Wiregrass' Petition. In its Petition for Formal Administrative Hearing, Wiregrass focused primarily on water quality issues and stormwater runoff rates (or peak flow discharges), alleging the following "ultimate facts" which it claimed "entitle [it] to relief": The application, as submitted, contains insufficient storage to meet water quality criteria. The application, as submitted, will result in storage volumes on the project site which will not be recovered within 72 hours [sic] as required by the DISTRICT criteria. The application, as submitted, contains calculations based on erroneous hydraulic gradients. The application, as submitted, will result in storage volumes insufficient to meet water quality criteria as required by DISTRICT criteria. Post development stormwater runoff rates are underestimated in the application, resulting in system design with insufficient retention storage capacity to meet the DISTRICT's water quantity criteria. The failure to store stormwater or irrigation runoff impacts the substantial interest of the RANCH in that it deprives it of groundwater resources necessary for the successful operation of the ranch. Further, the lack of storage of stormwater and irrigation water is a prohibited waste of the water resources. At the formal hearing, Wiregrass presented no evidence to support any of the foregoing allegations of its Petition. Objections Raised by Wiregrass At The Hearing. At the final hearing, Wiregrass' opposition to Saddlebrook's permit application focused on three different grounds: For purposes of evaluating peak flow discharges, SWFWMD does not have jurisdiction to use a pre-development date prior to October 1, 1984. Under F.A.C. Rule 40D-4.301(1)(i), which provides that an applicant must give reasonable assurance that the surface water management systems "is consistent with the requirements of other public agencies," SWFWMD must apply not only its own permitting criteria but also those of other governmental entities, including county planning ordinan Under F.A.C. Rule 40D-4.301(1)(b), which provides that a permit application must give reasonable assurances that the surface water management system "will not cause adverse water . . . quantity impacts", SWFWMD must consider whether the annual volume of runoff will increase as a result of the proposed surface water management system. None of the foregoing objections was raised in Wiregrass' Petition as a basis for denying Saddlebrook's application. (Annual volume was alluded to in the Petition only as being pertinent to the question of Wiregrass' "substantial interest" for purposes of standing.) In any event, for the reasons set forth below, each of these objections was refuted by the evidence presented at the formal hearing. The 1973 Pre-Development Date. In their civil action against Saddlebrook, the Porters took the position that Saddlebrook's surface water management system should be redesigned so that discharges approximate those levels existing in 1973, before development of the Saddlebrook property. Dr. Gerald Seaburn, a hydrologist retained by the Porters, testified in the civil action that 1973 is the appropriate pre-development date for purposes of evaluating Saddlebrook's peak flow discharges. David Fuxan, a civil engineer retained by the Porters, took the position in the civil action that Saddlebrook should modify its surface water management system so as to return peak flow discharges to 1973 levels. At the formal hearing in this proceeding, Mr. Fuxan testified that it is still his position that Saddlebrook should modify its surface water management system so as to return peak flow discharges to 1973 levels. By letter from the Porters' counsel to SWFWMD dated January 31, 1990, the Porters provided their express consent to SWFWMD's use of 1973 as the pre- development date for evaluating those discharges relevant to Saddlebrook's MSSW permit application. Use of a 1984 "pre-development" date would prevent Saddlebrook from making the modifications the Porters claim in the civil litigation that it must make. Saddlebrook's existing system, about which the Porters complain in the civil litigation, is in all material respects the same system that was in place on October 1, 1984. Use of this existing system as the benchmark of comparison for attenuation of peak flows, therefore, would mean that substantial modifications to the existing system could not be made without substantially increasing retention storage on Saddlebrook. Substantially increasing retention storage on Saddlebrook is not possible due to the high water table and proximity of the lower aquifer. See Finding of Fact 70, below. In addition, a primary claim of the Porters in the civil action is that duration of flow under Saddlebrook's existing system exceeds 1973 levels and has resulted in expanded wetlands on the Porter property. But duration of flow and peak flow discharges are inversely related: duration of flow can be decreased only if peak flow discharges are increased. Accordingly, the only way that Saddlebrook can reduce the duration of flow onto Wiregrass to 1973 levels, as the Porters have demanded, other than increasing retention storage on Saddlebrook, is to return peak flow discharges to 1973 levels. Other Governmental Agencies' Requirements. F.A.C. Rule 40D-4.301(1)(i) provides that a permit applicant must give reasonable assurance that the surface water management system "is consistent with the requirements of other public agencies." SWFWMD has consistently interpreted this provision to be "advisory", i.e., to apprise applicants that they must also comply with other applicable laws and that issuance of an MSSW permit by the District does not relieve them of the responsibility to obtain all necessary local and other permits. SWFWMD's long-standing and consistently-applied interpretation and practice is not to require applicants to prove compliance with the regulations of other govermental agencies in order to obtain an MSSW permit. There are two primary reasons for this interpretation and practice. First, the Southwest Florida Water Management District includes 16 counties and 96 municipalities. In addition, other state and various federal agencies have jurisdiction within its territory. It is impracticable for SWFWMD to become familiar with, and to apply, the permitting and other regulations of more than 100 other agencies. Second, SWFWMD has concluded that, under Part 4 of Secton 373 of the Flordia Statutes, it does not have authority to deny a permit application based on its interpretation of another governmental agency's regulations. In any event, the evidence demonstrates that Saddlebrook has provided reasonable assurance that the proposed redesign will be "consistent with the requirements of other public agencies" as provided in F.A.C. Rule 40D- 4.301(1)(i). Limiting Condition No. 3 of the proposed permit requires that Saddlebrook must comply with Pasco County and other local requirements: The Permittee shall comply with all applicable local subdivision regulations and other local requirements. In addition the permittee shall obtain all necessary Federal, State, local and special district authorizations prior to the start of any construction or alteration of works authorized by this permit. In addition, Standard Condition No.3 ensures that SWFWMD approval will not supersede any separate permitting or other requirements imposed by Pasco County: The issuance of this permit does not . . . authorize any . . . infringement of federal, state or local laws or regulations. (Emphasis added.) Finally, the Pasco County ordinance upon which Wiregrass relies imposes requirements that are in substance identical to SWFWMD's with respect to MSSW permit applications. Saddlebrook's compliance with SWFWMD's regulations likewise would satisfy the substance of the requirements of the county ordinance. Annual Volume of Runoff. F.A.C. Rule 40D-4 (incorporating the Basis of Review) does not address, and SWFWMD does not regulate, the annual volume of runoff in open drainage basins. If annual volume of runoff is relevant under Rule 40D-4.301, as Wiregrass contends, that rule requires only that the applicant provide reasonable assurance that "the surface water management system" will not cause adverse quantity impacts. Saddlebrook's existing surface water management system has not caused a significant increase in the annual volume of runoff onto Wiregrass' property. The increase in the annual volume of runoff from Saddlebrook that has occurred over the pre-development 1973 condition has resulted from the urbanization of Saddlebrook's property. The increase in the annual volume of runoff from Saddlebrook over that existing prior to development (1973) is approximately 3.4 inches. This increase is only a small fraction of the natural year-to-year variation in runoff resulting from differences in rainfall alone. Rainfall can vary up to 30 inches on an annual basis, from 40 to 70 inches per year. The resulting year-to-year variations in runoff can total as much as 20 inches. The approximately 3.4 inches increase in the annual volume of runoff from Saddlebrook due to urbanization has caused no adverse impact to Wiregrass. The natural drainage system on the Wiregrass property has in the past and throughout its history received and handled increases in the annual volume of runoff of up to 20 inches due to rainfall differences. Such increases simply flow through Wiregrass' property. Of the approximately 3.4 inch increase in annual runoff due to urbanization, only approximately one-third of an inch is due to the filling in of bayheads by Saddlebrook's prior owner. This increase is insignificant and has not caused a substantial adverse impact to Wiregrass. Any reduction of storage resulting from the filling of bayheads will be more than compensated for under the proposed redesign. Storage on Saddlebrook's property will be increased by approximately 35 percent under the proposed condition over that existing in 1973, before the bayheads were filled. In open drainage basins, like Saddlebrook's, downstream flooding is a function of the rate of peak flow of discharge, not the annual volume of runoff. This is one of the reasons why, in the case of open drainage basins, SWFWMD regulates peak flow discharges and not the annual volume of runoff. Because Saddlebrook's proposed redesign will attenuate peak flow discharges to those levels that existed in the pre-devlopment 1973 condition, Saddlebrook has provided reasonable assurance that there will not be increased flooding on Wiregrass' property in the future. The evidence does not establish that Wiregrass has suffered, or will suffer, any adverse impact due to an increase in the annual volume of runoff from Saddlebrook as a result of the design, or redesign, of the system, or as a result of urbanization, or otherwise. It is not possible to design a surface water management system at Saddlebrook that would reduce the annual volume of runoff. Such a system, which involves the percolation of surface water from retention ponds into a deeper, aquifer system, requires a deep water table. At Saddlebrook, the water table is near the ground surface. As a result, it is not possible to store a significant quantity of water in retention ponds between storm events. In addition, the water levels in the deeper and the shallower aquifer systems at Saddlebrook are approximately the same and, therefore, there is insufficient hydraulic pressure to push the water through the confining layer between the two systems and into the deeper aquifer system.
Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is recommended that the Southwest Florida Water Management District enter a final order granting Saddlebrook's application for surface water management permit no. 497318.00, subject to the terms and conditions in the SWFWMD Staff Report. RECOMMENDED this 31st day of March, 1992, in Tallahassee, Florida. J. LAWRENCE JOHNSTON Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 31st day of March, 1992. APPENDIX TO RECOMMENDED ORDER, CASE NO. 91-3658 To comply with the requirements of Section 120.59(2), Fla. Stat. (1991), the following rulings are made on the parties' proposed findings of fact: Petitioner's Proposed Findings of Fact. 1.-4. Accepted and incorporated. Rejected as not proven and contrary to the greater weight of the evidence. Accepted and incorporated to the extent not subordinate or unnecessary. 7.-9. Rejected as not proven and contrary to the greater weight of the evidence. First sentence, accepted. Second sentence, rejected as not proven and contrary to the greater weight of the evidence. Accepted but not necessary. 12.-13. Rejected as not proven and contrary to the greater weight of the evidence. Accepted but not necessary. The extent of the wetland expansion is rejected as not proven and contrary to the greater weight of the evidence. The rest is accepted. However, the increased volume is due in large part to urbanization, not to the surface water management system. It also is due in part to alterations to the property done by the Porters. Accepted but subordinate and unnecessary. Accepted. However, this would occur only during a 25-year, 24-hour storm event, and there was no evidence that one has occurred or, if it has, whether Mr. Porter was there to observe it. 18.-20. Accepted but subordinate and unnecessary. Characterization "much of" is rejected as not proven and contrary to the greater weight of the evidence. Otherwise, accepted but subordinate and unnecessary. Accepted and incorporated. Rejected as not proven and contrary to the greater weight of the evidence. Rejected as not proven and contrary to the greater weight of the evidence. Rejected as not proven and contrary to the greater weight of the evidence that lichen lines, by themselves, are ordinarily are sufficient to set jurisdictional lines. 26.-29. Rejected as not proven and contrary to the greater weight of the evidence. Even if it were proven that the wetlands had expanded, it was not proven, and is contrary to the greater weight of the evidence, that Saddlebrook (and, especially, Saddlebrook's surface water management system) caused the expansion. First sentence, accepted but cumulative. The rest is rejected as not proven and contrary to the greater weight of the evidence. Accepted but subordinate and unnecessary. In any event, both factors are undeniably significant. 32.-34. Rejected as not proven and contrary to the greater weight of the evidence. Accepted but subordinate and unnecessary. Rejected as not proven and contrary to the greater weight of the evidence. Accepted but subordinate and unnecessary. Rejected as not proven and contrary to the greater weight of the evidence. 39.-41. Rejected as not proven and contrary to the greater weight of the evidence that SWFWMD does not apply it. The evidence was that SWFWMD interprets it differently than Wiregrass proposes and applies its own interpretation. Under the SWFWMD interpretation, the permit conditions requiring compliance with other legal requirements constitute the necessary "reasonable assurance." In addition, SWFWMD's review and evaluation is not complete until this formal administrative proceeding is completed, and the Pasco County ordinance has been considered as part of this proceeding. Rejected as not proven and contrary to the greater weight of the evidence. Again, SWFWMD's review and evaluation is not complete until this formal administrative proceeding is completed, and annual volume has been considered as part of this proceeding. That consideration has affirmed SWFWMD's position that, at least in this case, the proposed stormwater management system does not cause an increase in annual volume that would result in denial of the application. Accepted but subordinate and unnecessary. Rejected as not proven and contrary to the greater weight of the evidence. First sentence, accepted (although the characterization "far exceed" is imprecise) and incorporated. Second sentence, rejected as not proven and contrary to the greater weight of the evidence. Accepted but subordinate and unnecessary that no "stipulation" was entered into. But the evidence is clear that Wiregrass, Saddlebrook and SWFWMD all agreed to the use of 1973 as the point of comparison for peak flow discharges. Rejected as not proven and contrary to the greater weight of the evidence. Accepted but subordinate and unnecessary. Respondents' Proposed Findings of Fact. The proposed findings of fact contained in the Proposed Recommended Order of Respondents Saddlebrook Resorts, Inc., and Southwest Florida Water Management District are accepted and incorporated to the extent not subordinate or unnecessary. COPIES FURNISHED: Douglas P. Manson, Esquire Foley & Lardner 101 East Kennedy Boulevard Suite 3650 Tampa, Florida 33602 Stephen R. Patton, Esquire Jeffrey A. Hall, Esquire Kirkland & Ellis East Randolph Drive Chicago, Illinois 60601 Enola T. Brown, Esquire Lawson, McWhirter, Grandoff & Reeves East Kennedy Boulevard Suite 800 Post Office Box 3350 Tampa, Florida 33601-3350 Mark F. Lapp, Esquire Edward Helvenston, Esquire Assistant General Counsel Southwest Florida Water Management District 2379 Broad Street Brooksville, Florida 34609-6899 Peter G. Hubbell Executive Director Southwest Florida Water Management District 2379 Broad Street Brooksville, Florida 34609-6899
The Issue Whether the activities conducted on respondent's property required a dredge/fill permit and whether respondent violated the conditions of the permit issued on February 15, 1985.
Findings Of Fact Respondent is the record holder of a parcel of land located within Section 35, Township 45, South, Range 21 East, in Lee County, Florida. Respondent's property is contiguous to Pine Island Sound, a Class II, Outstanding Florida Water. Maureen Powers, an Environmental Specialist with the Department initially inspected respondent's property on May 23, 1984, after the Department received an anonymous complaint that someone was clearing away mangroves on the property. Ms. Powers-discovered that an earthen-fill road had been constructed on the property, and a portion of the road, 24' x 43'; was located within the landward extent of the state's waters. The determination that the portion of the road was within the Department's jurisdiction was based on the dominance of black and white mangroves. There had been recent mangrove cutting in the area, and a pile of vegetative debris, the result of the cutting, had been placed in the jurisdictional wetlands contiguous to Pine Island Sound. On June 1, 1984, Ms. Powers met with respondent in Langley Adair's office to discuss the violations observed on May 23, 1984, and to discuss the resolution of these violations. Respondent agreed to remove all of the earthen fill and vegetative debris that he had deposited within the jurisdictional wetlands. He agreed to refrain from any further work within the jurisdictional area prior to receiving a permit from the department. He also agreed to open up a flow channel in the berm along Pine Island Sound to restore circulation to the area. On July 11, 1984, Ms. Powers conducted an on-site inspection and discovered that the vegetative debris and the fill material had not been removed. Further, it was apparent that respondent's proposed home site, outlined by string and stakes, was submerged and directly connected by water to Pine Island Sound. The water standing on the property covered a portion of the fill area. On August 8, 1984, another inspection was performed, and it was discovered that respondent still had not removed the fill materials. The condition of the property was essentially the same as it had been on July 11, 1984. By letter dated August 20, 1984, respondent was again notified of the violations and reminded that he had agreed on June 1, 1984, to remove the vegetative and earthen fill. Respondent was informed that he needed to remove the fill materials within 30 days of receipt of the letter in order to avoid further enforcement action. On September 5, 1984, Ms. Powers again inspected the property and found that the proposed homesite and a portion of the fill were still submerged, that the water connected directly with Pine Island Sound and the fill materials had not been removed. Also apparent was a flume of milky white water which originated at the toe of the fill and continued into Pine Island Sound. Water samples were taken which revealed that the erosion of the unauthorized fill was resulting in a violation of state surface water quality criteria, specifically, turbidity1 greater than 29 Nephelometric Turbidity Units above natural background. The background sample, taken upstream from the site of the discharge, had a value of 5.2 turbidity units. The water sample taken two feet from the toe of the fill had a value of 69 turbidity units, and the sample from Pine Island Sound waterward of the mangrove fringe had a value of 46 turbidity units. On October 9, 1984, a letter was sent to respondent which pointed out that the earthen and vegetative fill had not been removed and notifying respondent that erosion of the earthen fill into the waters of Pine Island Sound had resulted in violation of surface water quality criteria. Respondent was requested to immediately cease and desist from all unauthorized. activity under the Department's jurisdiction. To clarify the situation, original photos of the site were sent with the letter which showed the earthen fill, the vegetative debris, and the turbid water leaving the site. A diagram of the site was also included to show the location fill materials that were to have been removed. On October 25, 1984, Ms. Powers met with Mr. Decker at the site. Ms. Powers showed respondent the earthen fill and vegetative debris that should have been removed. Ms. Powers noted that the waterward 23' x 24' section of the earthen fill had become heavily colonized by black mangrove seedings and, therefore, excepted that portion of the fill from the removal requirement so that the seedlings would not be disturbed. Mr. Decker stated that he would remove the unauthorized fill within two weeks. Meanwhile, apparently in September, respondent had submitted a permit application. Mr. Beaver was the field inspector assigned by DER to evaluate the application and make a recommendation on the feasibility of the project to the dredge and fill supervisor. On October 8, 1984, Mr. Beaver performed the field inspection at the site, and on October 23, 1984, issued his permit application appraisal recommending that the application be denied. Mr. Beaver recommended that the project be reconsidered for a permit if, among other things, the house site were removed from the landward extent of the state waters and located in the uplands, the septic tank were removed from the low lying portions of the site, and previously cut areas were allowed to regrow in native vegetation. On November 15, 1984, Mr. Beaver met with Mr. Decker and Mr. Cantrell, the district supervisor of dredge and fill, to discuss the project. Mr. Cantrell asked how the project could be modified so that Mr. Decker could have his house in the location where he wanted it. Mr. Beaver suggested a stilt, elevated house with a small fill pad that would allow access to the entrance of the house. The house would have to be elevated -enough so that revegetation of wetland plants could occur underneath the house structure and water flow could be maintained. On November 19, 1984, Ms. Powers and Mr. Beaver met Mr. Decker at the property. Ms. Powers and Mr. Beaver staked the DER jurisdiction line and marked the proposed location of Mr. Decker's boardwalk. Mr. Decker asked about placing wood chip mulch on the wetlands on his property in order to beautify the area. Mr. Decker was informed that wood chip mulch was considered vegetative fill and would require modification of his permit application. Subsequent to the meeting of November 15 and the on- site inspection of November 19, Mr. Decker modified his project. However, wood chip mulch was not mentioned. On December 7, 1984, Mr. Beaver recommended that the application be approved subject to specified conditions, which were ultimately incorporated into the permit. On December 11, 1984, Ms. Powers inspected the site and discovered that a large pile of wood chips had been placed on the northeast end of the fill road waterward of the jurisdiction line. The vegetative debris and earthen fill that had previously been on the project had not been removed. Respondent was notified of the violations by a Cease and Desist letter dated January 4, 1985. The letter pointed out that respondent had been told specifically that wood chip mulch was considered vegetative fill and that dredge/fill permit would be required prior to the placement of any fill material. On February 5, 1984, respondent met with DER, officials to discuss the violations. Mr. Decker stated that the fill had been removed as requested. The Department informed Mr. Decker that an inspection would be performed and, if the fill had not been removed, the Department would pursue formal enforcement action. On February 7, 1985, the site was inspected none of the fill material had been removed. A subsequent inspection on February 20, 1985, revealed that the wood chips had been spread throughout the jurisdictional wetlands. On February 15, 1985, respondent received a permit to fill and to construct a dock and boardwalk. The specific conditions of the permit include the following: 2. A 20' x 16' - 4" fill pad shall be the only fill placed waterward of the jurisdictional line. This fill pad will be composed of clean sand and have the banks stabilized by a riprap revetment with a slope not greater than 2H:1V. * * * The house and all associated structures shall be built upon stilts with concrete footings and/or wooden pilings. On-site turbidity control devices shall be installed and properly maintained to localize turbidity impacts to the construction area. * * * All vegetative debris, trash and spoil material resulting from concrete footing placement shall be removed from the landward extent of State Waters as defined by the jurisdiction line staked by the DER. Upon completion of construction, non- filled areas beneath the stilt house and associated structures shall be returned to original grade if they were altered by construction. Wetland vegetation shall be planted in the previously cleared area and mangroves removed by construction activities shall be replaced on a 2 for 1 basis with 80% survival over a three year period. * * * 11. The project shall comply with applicable State Water Quality Standards, namely: 17-3.051 - Minimum Criteria for All Waters at All Times and All Places. 17-3.061 - Surface Waters: General Criteria 17-3.111 - Criteria - Class II Waters Shellfish Propagation or Harvesting, Surface Waters General Conditions 2 and 5 of the permit provide: 2. This permit is valid only for the specific processes and operation applied for and indicated in the approved drawings or exhibits. Any unauthorized deviation from the approved drawings, exhibits, specifications, or conditions of this permit may constitute grounds for 81' filled area was located within the landward extent of the state waters. 19. Respondent has violated several conditions of the permit issued February 15, 1985. Specific Condition #2 provided that the 20' x 16' fill pad would be "the only fill placed waterward of the jurisdictional line." Instead, respondent filled an area approximately 78' x 81' to an average height of about 2\', totaling approximately 585 cubic yards of fill. The fill was non-native fill brought onto the site. The permit did not authorize fill for a septic tank in the revocation and enforcement action by the department. 5. This permit does not relieve the permittee from liability for harm or injury to human health or welfare, animal, plant or aquatic life or property and penalties therefor caused by the construction or operation of this permitted source, nor does it allow the permittee to cause pollution in contravention of Florida Statutes and department rules, unless specifically authorized by an order from the department. On March 19, 1985, an inspection of the property revealed that Mr. Decker had totally ignored the conditions of his permit. Rather than a fill pad of 20' x 16', respondent had filled an area approximately 78' x 81'.2 The fill was unstabilized, and no turbidity control devices were in place. Fill material had been used to construct a earthen berm across a natural flow channel, blocking the flow of water onto the property. Further, the vegetative debris resulting from the construction of the boardwalk had been deposited in the mangrove wetlands. On March 22, 1985, a Notice of Violation and. Orders for Corrective Action was sent to the respondent. Respondent received the notice on or about March 26, 1985. The landward extent of the state waters on respondent's property, the area in which a DER permit is required for dredging and filing, was determined by the presence of red mangroves (Rhizophora mangle), black mangroves (Avicennia germinans), and saltwort (Basis maritime) as the dominant species. The jurisdiction line was originally staked on November 19, 1984, and was reestablished on April 23, 1985, from remaining landmarks, due to the original markers being removed. The 78' x81' filled area was located within the landward extent of the state waters. Respondent has violated several conditions of the permit issued February 15, 1985. Specific Condition #2 provided that the 20' x 16' fill pad would be "the only fill placed waterward of the jurisdictional line." Instead, respondent filled an area approximately 78' x 81' to an average height of about 21/2', totaling approximately 585 cubic yards of fill. The fill was non-native fill brought onto the site. The permit did not authorize fill for a septic tank in the jurisdictional wetlands, but respondent placed a septic tank and drainfield in that area.3 By filling an area several times the size of the area authorized, respondent has seriously violated the conditions of the permit. A fill area of the size that now exists eliminates the habitat and water quality functions that the area historically performed. Respondent has violated Specific Condition #4, which required that the house and associated structures be built on stilts. The purpose of such a requirement is to preserve undisturbed the existing substrate, which constitutes the base of the food chain, and to allow for a free flow of water across the site, which is essential to the health of the mangrove system. Respondent not only filled an area larger than his proposed house, he poured a solid, continuous, concrete foundation on top of the fill, which would prevent the flow of water should the water rise high enough to come onto the filled area.4 By filling the area, destroying the substrate, and preventing the flow of water into the area, respondent has violated Specific Condition #4 of the permit. Respondent violated Specific Condition #5 of his permit in that respondent failed to install any turbidity control devices. Turbidity control devices of some sort are necessary in a fill area such as the one in this case. Turbidity screens or staked hay bales could have been used. Respondent also violated Specific Condition #8. Construction debris and vegetative debris were located throughout the area. Although respondent technically has not violated Specific Condition #9, in that it requires acts to be performed "upon completion of construction", respondent has made compliance with that provision an impossibility because he has filled the "non- filled areas beneath the stilt house" and therefore there are no "non-filled areas" to return to original grade. Respondent has never requested that his permit conditions and requirements be modified. By his actions, respondent has repeatedly shown a complete disregard for the requirements of the law, and he has totally ignored the conditions set forth in the permit. Mr. Decker was not qualified as an expert and I did not find him to be a credible witness. The reasonable costs and expenses incurred by the Department in relation to the enforcement aspects of this action are $866.17. These costs and expenses were incurred by the Department in its effort to control and abate pollutants and to restore the waters and property of the state to their former condition.
Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the respondent's permit, number 360902245, be revoked that the respondent be ordered to make payment to the Department in the amount of $866.17 for costs and expenses incurred by the state and that the following corrective action be ordered: Respondent shall within thirty (30) days, remove all unauthorized fill material placed within the area of Department jurisdiction. Prior to initiating the fill removal respondent shall arrange for Department personnel to stake the area to be restored. All areas shall be restored to the elevation and soil conditions which existed prior to the placement of fill material. Respondent shall take all necessary precautions to ensure that state water quality standards are not violated during the restoration work. Respondent shall not disturb adjacent areas within the jurisdiction of the Department unless approved by the Department in writing. DONE and ENTERED this a 24th day of January, 1986, in Tallahassee, Leon County, Florida. DIANE A. GRUBBS Hearing Officer Division of Administrative Hearings The Oakland Building 2009 Apalachee Parkway Tallahassee, Florida 32301 (904) 488-9675 FILED with the Clerk of the Division of Administrative Hearings this 24th day of January, 1986.
The Issue The issues are whether to (a) issue an Environmental Resource Permit (ERP) to the Department of Transportation (DOT) and Martin County (County) authorizing construction and operation of a surface water management system to serve a project known as the Indian Street Bridge; (b) issue DOT a letter of modification of ERP No. 43-00785-S authorizing roadway and drainage modifications to the Kanner Highway/Indian Street intersection; and (c) issue DOT a letter of modification of ERP No. 43-01229-P authorizing roadway and drainage modifications to Indian Street between the intersections of Kanner Highway and Willoughby Boulevard.
Findings Of Fact Based on the evidence presented by the parties, the following findings of fact are made: The Parties Petitioner Citizens for Smart Growth, Inc., is a Florida 501(c)(3) corporation with its principal place of business in Palm City, Florida. It was formed by Odias Smith in August 2001, who serves as its president. The original directors were Kathie Smith, Odias Smith, and Craig Smith, who is the Smiths' son. The composition of the Board has never changed. According to the original Articles of Incorporation, its objectives are "preserving and enhancing the present advantages of living in Martin County (Quality of Life) for the common good, through public education, and the encouragement of reasonable and considered decision making by full disclosure of impacts and alternatives for the most appropriate use of land, water and resources." The exact number of members fluctuates from time to time. There are no dues paid by any member. At his deposition, Mr. Smith stated that no membership list exists; however, Kathie Smith stated that she currently has a list of 125 names, consisting of persons who at one time or another have made a contribution, have attended a meeting, or asked to be "kept informed of what's going on or asked to be on a mailing list or a telephone list, so they could be advised when we have meetings." No meetings have been held since 2006. Therefore, the Petitions filed in these cases have never been discussed at any meetings of the members, although Ms. Smith indicated that telephone discussions periodically occur with various individuals. Kathie Smith believes that roughly 25 percent of the members reside in a mobile home park north of the project site on Kanner Highway on the eastern side of the St. Lucie River, she does not know how many members reside on the western side of the St. Lucie River, and she is unaware of any member who resides on the South Fork of the St. Lucie River immediately adjacent to the project. Although the three Petitions allege that "seventy percent of the members . . . reside and/or recreate on the St. Lucie River," and in greater detail they allege how those members use that water body or depend on it for their livelihood, no evidence was submitted to support these allegations that 70 percent (or any other percentage of members) use or depend on the South Fork of the St. Lucie River for recreational or other activities. Petitioners Odias Smith and Cathie Smith reside in Palm City, an unincorporated community just south of Stuart in Martin County. They have opposed the construction of the new bridge since they moved to Palm City in 2001. It is fair to infer that Mr. Smith formed the corporation primarily for the purpose of opposing the bridge. Their home faces north, overlooking the South Fork of the St. Lucie River, from which it is separated by Saint Lucie Shores Drive and a narrow strip of common-ownership property. A boat dock extends from the common-ownership property into the St. Lucie River, providing 5 slips for use by the Smiths and other co-owners. The home is located three blocks or approximately 1,000 feet from the proposed western landfall of the new bridge. Due to the direction that the house faces (north) and the site of the new bridge, the surface water management system elements associated with the bridge will not be visible from their property. Mr. Smith believes, however, that when looking south through a veranda window on the second floor of his home, he will be able to see at least a part of the new bridge. From the front of their house, they now have an unobstructed view of the existing Palm City Bridge, a large structure that crosses the St. Lucie River approximately six- tenths of a mile north of their home, and which is similar in size to the new bridge now being proposed by the Applicants. The Smiths' home is more than 500 feet from the Project's right- of-way, and they do not know of any impact on its value caused by the Project. While the Smiths currently engage in walking, boating, running, fishing, and watching wildlife in the neighborhood or the South Fork of the St. Lucie River, there was no credible evidence that the Project would prevent them from doing so after the bridge and other improvements are constructed. Also, there was no evidence showing that the ERP Letter Modifications will cause them to suffer any adverse impacts. In fact, as noted below, by DOT undertaking the Project, the neighborhood will be improved through reduced flooding, improved water quality, and new swales and ponds. The County is a political subdivision of the State. It filed one of the applications at issue in this proceeding. DOT is an agency of the State and filed the three applications being contested. The District has the power and duty to exercise regulatory jurisdiction over the administration and enforcement of ERP criteria pursuant to Part IV, Chapter 373, Florida Statutes, and Title 40E of the Florida Administrative Code. The Department of Environment Protection (DEP) has delegated certain authority to the District, including the authority to authorize an applicant to use sovereign submerged lands via a public easement within the District's geographic jurisdiction. The Project Construction of a new bridge over the St. Lucie River has been studied extensively by the Applicants for over twenty years. DOT has awarded the contract and nearly all of the right-of-way has been purchased. The Project will begin as soon as the remaining permits are acquired. The Project is fully funded through the American Recovery and Reinvestment Act of 2009 and County funding. The Project is located in the County and includes 62.06 acres of roadway bridge development and 12.45 acres of sovereign submerged lands. The Project begins on the west side of the St. Lucie River on County Road 714, approximately 1,300 feet west of Mapp Road in Palm City and ends on the east side of the St. Lucie River approximately 1,400 feet east of Kanner Highway (State Road 76) on Indian Street. It includes construction and operation of a surface water management system to serve the road and bridge project. The total length of the Project is approximately 1.96 miles (1.38 miles of roadway and 0.58 miles of bridge) while the total area is approximately 74.51 acres. After treatment, surface water runoff will discharge to the tidal South Fork of the St. Lucie River. The Project encompasses a bridge crossing the South Fork of the St. Lucie River and the Okeechobee Waterway. Both are classified as Class III waters. The bridge transitions from 4 to 6 lanes east of the Okeechobee Waterway and will require a 55-foot vertical clearance and a 200-foot horizontal clearance between the fender systems at the Okeechobee Waterway. The bridge will cross over a portion of Kiplinger Island owned and preserved by the County. A part of the island was donated to the County in 1993-1994 by The Kiplinger Washington Editors, Inc., and the Kiplinger Foundation, Inc. Audubon of Martin County owns another part of the island. The transfer of title to the County does not include any restriction on the use of the island for conservation purposes only. Documentation submitted at hearing refers to a "two hundred foot wide road right-of-way" easement that the bridge will cross and allows the County to designate where on the island parcel such an easement would be. Therefore, spanning the bridge over a portion of the island owned by the County is clearly permissible. The Project also includes the roadway transition and widening/reconstruction of (a) County Road 714 from the beginning of the Project to Mapp Road from 2-lane to a 4-lane divided roadway; (b) Southwest 36th Street from Mapp Road to the beginning of the bridge from a 2-lane rural roadway to a 4-lane divided roadway with wide roadway swales; and (c) Kanner Highway (along Indian Street) from a 4-lane to a 6-lane divided urban roadway. Drainage improvements on both sides of the St. Lucie River are associated with the roadway construction. DOT proposes to provide both on-site and off-site mitigation for wetland and surface waters impacts pursuant to a mitigation plan approved by the District. The ERP Permitting Criteria In order to obtain an ERP, an applicant must satisfy the conditions for issuance set forth in Florida Administrative Code Rules 40E-4.301 and 40E-4.302. Besides these rules, certain related BOR provisions which implement the rules must also be considered. The conditions for issuance primarily focus on water quality, water quantity, and environmental criteria and form the basis of the District's ERP permitting program. The parties have stipulated that the Project either complies with the following rule provisions or they are not applicable: Rules 40E-4.301(1)(a), (b), (g), (g), (h), and (k), and 40E- 4.302(1)(a)3. and 6. All other provisions remain at issue. Where conflicting evidence on these issues was submitted, the undersigned has resolved all evidentiary conflicts in favor of the Applicants and District. Based on the parties' Stipulation, the following provisions in Rule 40E-4.301(1) are in dispute and require an applicant to provide reasonable assurances that the construction, alteration, operation, maintenance, removal, or abandonment of a surface water management system: will not cause adverse impacts to existing surface water storage and conveyance capabilities; will not adversely impact the value of functions provided to fish and wildlife and listed species by wetlands and other surface waters; will not adversely affect the quality of receiving waters such that the water quality standards set forth in chapters 62- 4, 62-302, 62-520, 62-522, 62-550, F.A.C., including any anti-degradation provisions of paragraphs 62-4.242(1)(a) and (b), subsections 62-4.242(2) and (3), and rule 62-302.300, F.A.C., and any special standards for Outstanding Florida Waters and Outstanding National Resource Waters set forth in subsections 62-4.242(2) and (3), F.A.C., will be violated; will not cause adverse secondary impacts to the water resources; will be capable, based on generally accepted engineering and scientific principles, of being performed and of functioning as proposed; will be conducted by an entity with sufficient financial, legal and administrative capability to ensure that the activity will be undertaken in accordance with the terms and conditions of the permit, if issued; These disputed criteria are discussed separately below. Surface Water Storage and Conveyance Rule 40E-4.301(1)(c) requires that an applicant provide reasonable assurances that a proposed activity will not cause adverse impacts to existing surface water storage and conveyance capabilities. Through unrefuted evidence, this requirement was shown to be satisfied. The evidence also establishes that the surface water in and around the Project will actually improve if the Project is constructed as permitted. Further, it will create improved and upgraded surface water management and treatment in areas that now lack features such as swales, retention/detention ponds, curbs and gutters, and improve the overall surface water storage and conveyance capabilities of the Project and surrounding areas. In its current pre-development condition, flooding has occurred in certain areas adjacent to and within the Project area due to poor conveyance, low storage volume, and high tailwater conditions that result from high tides. The Project will remedy historic flooding issues in the Old Palm City area which lies adjacent to a portion of the Project alignment. Surface water runoff will be captured, controlled, and treated by a system of swales, weirs, and retention/detention facilities for pretreatment prior to discharging into the South Fork of the St. Lucie River. Reasonable assurances have been given that existing surface water storage and conveyance capabilities will not be adversely affected. Value of Functions to Fish, Wildlife, and Species Rule 40E-4.301(1)(d) requires that an applicant provide reasonable assurances that a proposed activity will not adversely impact the value of functions provided to fish and wildlife and listed species by wetlands and other surface waters. BOR Section 4.2.2 further implements this provision. For the following reasons, the rule and BOR have been satisfied. The evidence shows that the existing functions to fish and wildlife were assessed and analyzed by a number of federal and state fish and wildlife agencies. There were extensive review and site inspections by the District, DOT, United States Fish and Wildlife Service, United States Army Corps of Engineers, and National Marine Fisheries Commission to assess the existence of, and potential impact on, fish and wildlife that may result from the Project. These studies revealed that while portions of the South Fork of the St. Lucie River provide potential habitat for aquatic or wetland-dependent or threatened species of special concern, no nesting or roosting areas within the vicinity of the Project were observed. The evidence further supports a finding that "other surface waters" over and under the Project will not receive unacceptable impacts due to their current condition, the detrimental influences of Lake Okeechobee discharges, and tidal impacts. Many of the wetlands to be impacted by the Project were shown to have been impacted by historic activities, and they provide diminished functions to fish and wildlife. The wetland functions were assessed through the Uniform Mitigation Assessment Methodology (UMAM). The UMAM is a standardized procedure for assessing the functions provided by wetlands and other surface waters, the amount that those functions would be reduced by a proposed project, and the amount of mitigation necessary to offset that loss. Detailed UMAM assessments were prepared by the Applicants and the District. They demonstrate that while certain functional units will be lost, they will be fully offset by the proposed mitigation. No credible evidence to the contrary was presented. Water Quality of Receiving Waters Rule 40E-4.301(1)(e) requires an applicant to provide reasonable assurances that a project will not adversely affect the quality of receiving waters such that State water quality standards will be violated. BOR Section 4.2.4 implements this rule and requires that "reasonable assurances regarding water quality must be provided for both the short term and long term, addressing the proposed construction, . . . [and] operation of the system." The receiving water body is the South Fork of the St. Lucie River, which is designated as an impaired water body. The evidence establishes that the Applicants will avoid and minimize potential short-term impacts to water quality by using silt screens and turbidity barriers, and implementing other best management practices to contain turbidity during construction of the Project. They will also use a temporary trestle rather than barges in the shallow portions of the South Fork to avoid stirring up bottom sediments. Finally, a turbidity monitoring plan will be implemented during construction and dewatering activities for all in-water work. All of these construction techniques will minimize potential impacts during construction. The evidence further establishes that water quality standards will not be violated as a result of the Project. In fact, in some cases water quality will be enhanced due to the installation and maintenance of new or upgraded surface water management features in areas where they do not exist or have fallen into disrepair. Over the long term, the Project is expected to have a beneficial effect on water quality. By improving existing surface water management and adding new surface water treatment features, the Project will provide net improvement to water quality. Wetland Delineation and Impacts The Project includes unavoidable impacts to wetlands and other surface waters. A total of 18.53 acres of wetlands and other surface waters within the Project site will be impacted by the Project, including 3.83 acres of wetlands that will be directly impacted and 14.7 acres of wetlands and other surface waters that will be secondarily impacted. The delineated wetlands are depicted in the Staff Report as wetlands 2a, 19a, 19b, 22, 25-29, 30a, 30b, and 30c, with each having a detailed UMAM assessment of its values and condition. (Impacts to wetland 25 are not included in this Project because they were accounted for in a separate permit proceeding.) Using a conservative assessment and set of assumptions, the District determined that, with the exception of wetlands 19a, 19b, 22, and 27, all wetlands would be impacted by the Project. However, the wetlands that would be impacted suffer from varying historical adverse impacts that have compromised the functions and values they provide to fish, wildlife, and species. This is due to their proximity to urban development, vegetative connectivity, size, historic impacts, altered hydroperiod, and invasive plant species. Likewise, even though the wetlands to be impacted on Kiplinger Island provide certain resting and feeding functions for birds, the value of these functions is comparatively lower than other wetlands due to the presence of invasive species and lack of management. The preponderance of the evidence supports a finding that the Applicants provided reasonable assurances that the Project will not cause adverse impacts to fish, wildlife, or listed species. See Fla. Admin. Code R. 40E-4.301(1)(d). Secondary Impacts Rule 40E-4.301(1)(f) and BOR Sections 4.1.1(f) and 4.2.7. require a demonstration that the proposed activities will not cause adverse secondary impacts to the water resources, both from a wetlands and water quality standpoint. Secondary impacts are those that occur outside the footprint of the project, but which are very closely linked and causally related to the activity to be permitted. De minimis or remotely-related secondary impacts, however, are not considered unacceptable. See § 4.2.7.(a). There will be secondary impacts to 6.83 acres of freshwater wetlands and 7.87 acres of mangroves, or a total of 14.7 acres. To address these secondary impacts, the Applicants have established extensive secondary impact zones and buffers along the Project alignment, which were based in part on District experience with other road projects and another nearby proposed bridge project in an area where a State Preserve is located. While Petitioners' expert contended that a 250-foot buffer on both sides of the roadway's 200-foot right-of-way was insufficient to address secondary impacts to birds (who the expert opines may fly into the bridge or moving vehicles), the greater weight of evidence shows that bird mortality can be avoided and mitigated through various measures incorporated into the Project. Further, the bird mortality studies used by the expert involved significantly different projects and designs, and in some cases involved projects outside the United States with different species concerned. Engineering and Scientific Principles Rule 40E-301(1)(i) requires that an applicant give reasonable assurance that a project "be capable, based on generally accepted engineering and scientific principles, of being performed and of functioning as proposed." Unrefuted evidence establishes that the proposed system will function and be maintained as proposed. Financial, Legal and Administrative Capability Rule 40E-4.301(1)(j) requires that an applicant give reasonable assurance that it has the financial, legal, and administrative capability to ensure that the activity will be undertaken in accordance with the terms of the permit. The evidence supports a finding that Applicants have complied with this requirement. Elimination and Reduction of Impacts Before establishing a mitigation plan, Rule 40E- 4.301(3) requires that an applicant implement practicable design modifications to eliminate and reduce wetland and other surface water impacts. In this case, there are unavoidable, temporary wetland impacts associated with the construction of the Project, as well as unavoidable wetland impacts for direct (project footprint), secondary, and cumulative impacts of the Project. The record shows that the Applicants have undertaken extensive efforts to eliminate and reduce wetland and other surface water impacts of the Project. For example, DOT examined and assessed several innovative construction techniques and bridge designs to eliminate and avoid wetland impacts. To eliminate and reduce temporary impacts occurring during construction, DOT has reduced the effect of scour on the pier foundation and reduced the depth of the footing to minimize the amount of excavation on the mangrove island. Also, during construction, the contractor is prohibited from using the 200- foot right-of-way on the mangrove island for staging or stockpiling of construction materials or equipment. The majority of the bridge width has been reduced to eliminate and avoid impacts. Also, the Project's alignment was adjusted to the north to avoid impacts to a tidal creek. Reasonable assurances have been given that all practicable design and project alternatives to the construction and placement of the Project were assessed with no practicable alternatives. Public Interest Test Besides complying with the requirements of Rule 40E- 4.301, an applicant must also address the seven factors in Rule 40E-4.302(1)(a)1.-7., which comprise the so-called "public interest" test. See also § 373.414(1)(a), Fla. Stat. In interpreting the seven factors, the District balances the potential positive and negative effects of a project to determine if it meets the public interest criteria. Because Petitioners agree that factors 3 and 6 of the rule are not at issue, only the remaining five factors will be considered. For the following reasons, the Project is positive when the criteria are weighed and balanced, and therefore the Project is not contrary to the public interest. Public Health, Safety, and Welfare The Applicants have provided reasonable assurance that the Project will not affect public health, safety, and welfare. Specifically, it will benefit the health, safety, and welfare of the citizens by improving traffic conditions and congestion, emergency and hurricane evacuation, and access to medical facilities. In terms of safety, navigation markers are included as part of the Project for safe boating by the public. See Fla. Admin. Code R. 40E-4.302(1)(a)1. Conservation of Fish and Wildlife The activity will not adversely affect the conservation of fish and wildlife, including endangered or threatened species, or their habitats. The mitigation projects will offset any impacts to fish and wildlife, improve the abundance and diversity of fish and wildlife on Kiplinger Island, create mangrove habitat, and add to the marine productivity in the area by enhancing water quality. See Fla. Admin. Code R. 40E-302(1)(a)2. Fishing or Recreational Values The Project has features that allow for pedestrian and bicycle utilization and observation areas which should enhance recreational values. The Old Palm Bridge, approximately one mile north of the Project, has had no adverse impact on the fishing recreation along the South Fork of the St. Lucie River. Navigation will not be affected due to the height and design of the new bridge. Finally, the bridge is expected to be a destination for boating, kayaking, fishing, and bird watching. See Fla. Admin. Code R. 40E-4.302(1)(a)4. Whether the Activity is of a Permanent Nature The parties have stipulated that the Project is permanent in nature. No future activities or future phases of the project are contemplated. Temporary and permanent impacts are all being fully mitigated. See Fla. Admin. Code R. 40E- 4.302(1)(a)5. Values of Functions Being Performed in Affected Areas Due to historic impacts to the areas affected by the Project, the current condition is degraded and the relative value of functions is minimal. Although Kiplinger Island will have temporary impacts, that island is subject to exotic species and has no recreational use or access by boaters or members of the public. The Applicants propose mitigation which will improve and enhance these wetland functions and values in the areas. See Fla. Admin. Code R. 40E-4.302(1)(a)7. Summary The evidence supports a finding that the Project is positive as to whether it will affect the public health, safety, welfare, or property of others; that the Project is neutral with respect to navigation, erosion and shoaling, and water flow, as well as to historical and archaeological concerns; and that the Project is positive as to conservation of fish, wildlife, recreational values, marine productivity, permanency, and current values and functions. When weighed and balanced, the Project is not contrary to the public interest. Cumulative Impacts Rule 40E-4.302(1)(b) requires that an applicant give reasonable assurance that a project will not cause unacceptable cumulative impacts upon wetlands and other surface waters as set forth in BOR Sections 4.28 through 4.2.8.2. Cumulative impacts are the summation of unmitigated wetland impacts within a drainage basin. An analysis is geographically based upon the drainage basins described in BOR Figure 4.4.1. Petitioners' contention that Figure 4.4.1 is inaccurate or not representative of the basin in which the Project is located has been rejected. In this case, the North St. Lucie Basin was used. To assess and quantify any potential unacceptable cumulative impacts in the basin, and supplement the analyses performed by the Applicants, the District prepared a Basin Map that depicted all the existing and permitted wetland impacts as well as those wetlands under some form of public ownership and/or subject to conservation restrictions or easements. The District's analysis found that the wetlands to be mitigated were of poor quality and provided minimal wildlife and water quality functions. Cumulative impacts from the Project to wetlands within the basin resulted in approximately a four percent loss basin-wide. This is an acceptable adverse cumulative impact. Therefore, the Project will not result in unacceptable cumulative impacts. Mitigation Adverse impacts to wetlands caused by a proposed activity must be offset by mitigation measures. See § 4.3. These may include on-site mitigation, off-site mitigation, off- site regional mitigation, or the purchase of mitigation credits from mitigation banks. The proposed mitigation must offset direct, secondary, and cumulative impacts to the values and functions of the wetlands impacted by the proposed activity. The ability to provide on-site mitigation for a DOT linear transportation project such as a bridge is limited and in this case consists of the creation of mangrove and other wetlands between the realigned St. Lucie Shores Boulevard and the west shore of the St. Lucie River, north and south of the proposed bridge crossing. BOR Section 4.3.1.2 specifically recognizes this limitation and allows off-site mitigation for linear projects that cannot effectively implement on-site mitigation requirements due to right-of-way constraints. Off-site mitigation will offset the majority of the wetland impacts. Because no single on-site or off-site location within the basin was available to provide mitigation necessary to offset all of the Project's impacts, DOT proposed off-site mitigation at two established and functioning mitigation areas known as Dupuis State Reserve (Dupuis), which is managed by the County and for which DOT has available mitigation credits, and the County's Estuarine Mitigation Site, a/k/a Florida Oceanographic Society (FOS) located on Hutchinson Island. Dupuis is outside the North St. Lucie Basin and was selected to offset direct and secondary impacts to freshwater wetlands. That site meets the ERP criteria in using it for this project. The FOS is within the North St. Lucie Basin and was selected to offset direct and secondary impacts to estuarine wetlands. Like Dupuis, this site also meets the ERP criteria for the project. The preponderance of the evidence establishes that the on-site and off-site mitigation projects fully offset any and all project impacts, and in most instances before the impacts will actually occur. Sovereign Submerged Lands and Heightened Public Concern Chapter 18-21 applies to requests for authorization to use sovereign submerged lands. The management policies, standards, and criteria used to determine whether to approve or deny a request are found in Rule 18-21.004. For purposes of granting a public easement to the Applicants, the District determined that the Project is not contrary to the public interest and that all requirements of the rule were satisfied. This determination was not disputed. The only issue raised by Petitioners concerning the use of submerged lands is whether the application should have been treated as one of "heightened public concern." See Fla. Admin. Code R. 18-21.0051(5). If a project falls within the purview of that rule, the Board of Trustees of the Internal Improvement Trust Fund (Board), rather than the District, must review and approve the application to use submerged lands. Review by the Board is appropriate whenever a proposed activity is reasonably expected to result in a heightened public concern because of its potential effect on the environment, natural resources, or controversial nature or location. Id. In accordance with established protocol, the ERP application was sent by the District to DEP's review panel in Tallahassee (acting as the Board's staff) to determine whether the Project required review by the Board. The panel concluded that the Project did not rise to the level of heightened public concern. Evidence by Petitioners that "many people" attended meetings and workshops concerning the Project over the last 20 years or so is insufficient to trigger the rule. Significantly, except for general project objections lodged by Petitioners and Audubon of Martin County, which did not include an objection to an easement, no adjacent property owner or other member of the public voiced objections to the construction of a new bridge. Revised Staff Report On October 20, 2010, the District issued a Revised Staff Report that merely corrected administrative errors or information that had been previously submitted to the District. Contrary to Petitioners' assertion, it did not constitute a material change to the earlier agency action either individually or cumulatively. Therefore, it was properly considered in this proceeding. Letter Modifications The Letter Modifications were used as a mechanism to capture minor alterations made to previously issued permits for Kanner Highway and Indian Street. Neither Letter Modification is significant in terms of water quality, water quantity, or environmental impacts. Both were issued in accordance with District rules and should be approved.
Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the South Florida Water Management District enter a final order granting Application Nos. 091021-8, 100316-7, and 100316-6. DONE AND ENTERED this 28th day of December, 2010, in Tallahassee, Leon County, Florida. S D. R. ALEXANDER Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 28th day of December, 2010. COPIES FURNISHED: Carol Ann Wehle, Executive Director South Florida Water Management District 3301 Gun Club Road West Palm Beach, Florida 33406-3007 Jeffrey W. Appel, Esquire Ray Quinney and Nebeker, P.C. 36 South State Street, Suite 1400 Salt Lake City, Florida 84111-1401 Bruce R. Conroy, Esquire Department of Transportation 605 Suwannee Street Mail Station 58 Tallahassee, Florida 32399-0458 David A. Acton, Esquire Senior Assistant County Attorney Martin County Administrative Center 2401 Southeast Monterey Road Stuart, Florida 34996-3397 John J. Fumero, Esquire Rose, Sundstrom & Bentley, P.A. 950 Peninsula Corporate Circle Suite 2020 Boca Raton, Florida 33487-1389 Keith L. Williams, Esquire South Florida Water Management District 3301 Gun Club Road Mail Stop 1410 West Palm Beach, Florida 33406-3007
Findings Of Fact Based upon the oral and documentary evidence adduced at the final hearing and the entire record in this proceeding, the following findings of fact are made: The SFWMD is a public corporation in the state of Florida existing by virtue of Chapter 25270, Laws of Florida, 1949, and operating pursuant to Chapter 573, Fla. Stat., and Title 40E, Fla. Admin. Code, as a multi-purpose water management district, with its principal office in West Palm Beach, Florida. The Navy has proposed construction of a naval housing facility on the Peary Court site (the "Site") in Key West, Florida. The Site is approximately 25.89 acres and will provide 160 housing units for junior enlisted Navy and Air Force personnel and their families. The Site is the center of a larger, 37 acre drainage basin. The Site was formerly the location of military housing. However, for the past 18 years, the Site had been used by the City of Key West, with the assent of the Navy, for active and passive recreation for city residents. The Site contains a cemetery of historic value and a former military housing structure now being used by the Navy Key West Federal Credit Union with an associated parking area of paved asphalt. On February 6, 1992, the Navy submitted an application for a Surface Water Management District General Permit for the Project. The proposed surface water management system (the "System") was designed by Rice Creekmore, a registered professional engineer, and his company Johnson, Creekmore, and Fabray. The proposed System utilizes the existing topography and incorporates a number of drainage control mechanisms to manage the run-off from the Site. The System employs inlets, swales and culverts to direct stormwater run-off into dry detention areas (ponds) for pretreatment prior to discharging into seven 24-inch Class V injection wells (drainage wells). As discussed below, these injection wells must be permitted by the Florida Department of Environmental Regulation ("FDER"). The dry pond areas utilize key ditches, bottom elevation 1.0' NGVD, in order to hydraulically connect all of the dry pond areas together into one dry system prior to overflowing into the drainage wells beginning at elevation 1.5' NGVD. In other words, the detention ponds are interconnected with pipes. The design includes only one point where run-off would be discharged from the Site during any storm equal to a 25 year, three day storm event. That discharge would occur at the lowest point of the Site at the corner of Eisenhower and Palm. The water would be discharged through a V notch weir (the "Weir") into the City's stormwater system. An existing 12" storm drain line at the discharge point will be replaced by a 13.5" by 22.0" Reinforced Concrete Elliptical Pipe culvert. As discussed in more detail below, the System is designed so as to detain 1" of run-off within the dry detention ponds prior to any discharge through the Weir. After review of the application and submittals, the SFWMD issued a Notice of Intent to issue General Permit and Stormwater Discharge Certification No. 44-00178-S (the "Permit") on September 29, 1992. Petitioner and Intervenor timely petitioned for an administrative hearing challenging the SFWMD decision to award the Permit. There is no dispute as to the standing of either Petitioner or Intervenor. The SFWMD has adopted rules that set forth the criteria which an applicant must satisfy in order for a surface water management permit to issue. The criteria are set forth in Rule 40E-4, Florida Administrative Code. Rule 40E-4.301(1)(m) and 40E-4.091(1)(a) incorporate by reference The Basis of Review for Surface Water Management Permit Applications within South Florida Water Management District - April, 1987, ("The Basis for Review"). The Basis for Review explicates certain procedures and information used by the SFWMD staff in reviewing a surface water management permit application. The SFWMD issues general permits for projects of 40 acres or less that meet specific criteria. All other projects must obtain individual permits which are reviewed by the District Board. The specific rules relating only to general permits are set forth in Rule 40E-40. In addition, the Basis for Review sets forth certain technical requirements which must be met for the issuance of a general permit including general construction requirements and special requirements for wetlands. The Basis for Review also sets forth criteria for how a proposed system should address water quantity and water quality issues. The SFWMD assumes that water quantity and water quality standards will be met if a system satisfies the criteria set forth in the Basis for Review. Water Quantity Criteria Rule 40E-4.301(a), Florida Administrative Code, requires an applicant to provide reasonable assurances that a surface water management system will provide adequate flood protection and drainage. The purpose of the water quantity criteria is to insure that pre- development flows and post-development flows are equal. The SFWMD requires calculations of a project's projected post-development flow to guarantee that the post-development discharge rate will not be in excess of the pre-development discharge rate. These calculations are based on a 25 year, 3 day storm event. There is no stormwater management system in place at the Project Site. The pre-development topography results in a pre-development discharge point from the Site at the corner of Eisenhower Drive and Palm Avenue. At this point, a discharge or outfall pipe leads into the City of Key West's stormwater management system. The City's system ultimately discharge into Garrison Bight, a nearly waterbody which is discussed in more detail below. At the time the Navy began planning for the Project, the Navy was told that the discharge pipe had a capacity of accepting water at a rate of 40 cubic feet per second ("CFS"). The Navy initially designed a system to utilize this capacity. Subsequently, it was discovered that, due to the size of the pipe at the discharge point and the capacity of the pipes downstream in the City of Key West's stormwater management system, the City would not allow or accommodate a discharge of more than 11 CFS from the Site. Thus, the System had to be redesigned so that the discharge to the City's system would not exceed 11 CFS. The system was redesigned to incorporate the seven (7) Class V injection wells. The injection wells are intended to insure that discharge from the Project into the City stormwater system through the surface water discharge pipe at Eisenhower Drive and Palm Avenue will not exceed 11 CFS. The injection wells introduce treated stormwater into the ground before it reaches the discharge point. The pre-development rate of surface water discharge from Peary Court in a 25 year, 72 hour storm event was 55 CFS. This rate was calculated based upon a site survey, a determination of the existing amount of pervious versus impervious surface area, and a calculation made through a generally accepted civil-engineering computer program. 1/ This predevelopment discharge is the amount of water which would be expected to discharge off-site after percolation occurs. The number and size of the injection wells for the proposed system were determined based upon tests of an on-site twelve-inch fire well. The results of the tests revealed that the on-site test well could manage in excess of 2 CFS. Due to test limitations, the exact capacity could not be measured, but the capacity was clearly more than 2 CFS. These results were then compared with data obtained from the engineering firm of Post, Buckeley, Schuh & Jernigan for installed wells in the Florida Keys of a similar nature and size to the wells in the proposed surface water management system. The Post, Buckeley test results indicated that 24-inch wells had a capacity of 31 CFS. In addition, the design engineer consulted with South Florida Well Drillers, who have drilled other wells in the Florida Keys including 24-inch wells at the Key West airport which were completed shortly before the application for this Project. South Florida Well drillers found the capacity of 24-inch wells in Key West to be in the 25 to 30 CFS range. Based upon the results of the test well and the related reports described above, the project engineer based his design of the surface water management system on an estimated well capacity of 8.4 CFS for each well. These estimates were submitted by the Navy in its application and were appropriately determined to be reasonable by the SFWMD staff. Indeed, the evidence established that 8.4 CFS was a conservative estimate. The seven injection wells, at an estimated capacity of approximately 8.4 CFS each, provide in excess of 56 CFS of well discharge capacity, which is beyond the necessary discharge volume for the Project. Limiting Condition No. 13 of the Permit requires the Navy to obtain a well capacity test from a Florida Registered Professional Engineer or Professional Geologist following the installation of the first Class V injection well at the Site. If the results of this test indicate that the capacity of the well is different than that submitted by the Navy in its application, the Navy must apply for a permit modification to provide a design which incorporates a representative injection well flow-rate and an appropriate number of wells for the Site. In view of the reasonableness of the capacity rates utilized for the wells, it is unlikely that the results of the capacity test will result in any major design change in the proposed surface water management system. The use of the injection wells in the proposed surface water management system will significantly reduce the amount of run-off which would otherwise reach Garrison Bight from the Site. After the System is completed, it is expected that the amount of run-off from the Site that will reach Garrison Bight will be only 20 percent of the predevelopment amount. In addition, because there has previously been no management of the run-off from the Site and surrounding areas, there has been a frequent flooding problem at the corner of Eisenhower Drive and Palm Avenue after heavy rain storms. The proposed surface water management system will accommodate the overflow of water which historically occurred when discharges from Peary Court and the surrounding areas could not be accommodated by the Key West storm water management system. Petitioner and Intervenor suggest that the effect of tidal flow on the capacity of the wells was not fully considered. The evidence established that the design engineer considered normal high tides in calculating groundwater elevations. Respondent's engineering experts have concluded that the proposed surface water management system is effectively designed to accommodate the Florida Keys' tidal flows. Petitioner and Intervenor offered no expert testimony to refute this conclusion and/or to establish that the tides would impact the effectiveness of the proposed surface water management system. In the event that an extremely high tide occurs at the time of a storm, the detention ponds may hold standing water for a short time. This water would not be discharged off-site. There is no evidence that tidal influences would in any way adversely affect the System's ability to uptake pollutants in the "first- flush". The Class V shallow injection wells are an integral part of the proposed Peary Court surface water management system. Without the injection wells it is not clear whether the Project could meet the SFWMD water quantity criteria. The SFWMD does not have authority to permit Class V injection wells. FDER must permit those wells. The Peary Court site is not the first Florida Keys' project permitted by the SFWMD which utilizes injection wells. The surface water management permits for the other projects were issued contingent upon obtaining the necessary permits for the injection wells. Special Condition No. 14 of the Permit provides that the Permit is conditioned on the Applicant obtaining the applicable permits from FDER for the injection wells. During the interim while the Navy is seeking the FDER permits, it should be required to retain all run-off on-site. If the Navy is not able to obtain the necessary FDER permits for the injection wells, the Navy should be required to either retain all run-off on-site or propose an alternate design to meet the SFWMD's water quantity requirements. A modified permit application with a new Notice of Intent should be required for any alternate design. The following Special Condition Number 14 was offered by the SFWMD at the hearing (language revised from original condition is highlighted and underlined): THIS PERMIT IS ISSUED BASED ON THE APPLICANT OBTAINING THE NECESSARY CLASS V INJECTION WELL PERMITS FROM THE FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION (FDER). THE PERMITTEE SHALL SUBMIT AN APPROVED CLASS V DRAINAGE WELL PERMIT FROM FDER PRIOR TO OPERATION OF THE SURFACE WATER MANAGEMENT SYSTEM. IN THE INTERIM, THE PERMITTEE SHALL CERTIFY TO THE DISTRICT THAT NO OFF-SITE DISCHARGE WILL OCCUR UNTIL THE APPROVED CLASS V DRAINAGE WELLS ARE IN OPERATION. IF THE SURFACE WATER MANAGEMENT SYSTEM DESIGN MUST BE MODIFIED AS A RESULT OF FDER REQUIREMENTS OR IF THE CLASS V INJECTION WELL PERMITS ARE NOT ISSUED, THE APPLICANT SHALL APPLY FOR A PERMIT MODIFICATION TO PROVIDE A SURFACE WATER MANAGEMENT SYSTEM DESIGN WHICH SHALL MEET DISTRICT CRITERIA IN EFFECT AT THAT TIME. The proposed additional language requires the Navy to certify that no off-site discharges will occur until the injection wells are permitted and are operating. This revised language should be added to Special Condition No. 14 to clarify that the injection wells must be in operation prior to any off-site discharge from the surface water management system. Maintenance of the surface water management system entails upkeep of the dry detention areas and routine grass cutting, as well as inspection of the injection wells on a periodic basis to guard against clogging and reduced capacity. The system is essentially designed to operate without direct surveillance or intervention. Injection wells do not require any additional maintenance over and above that which is routinely required for other types of surface water management systems. The injection wells will require routine maintenance to ensure that manholes and inlets do not become clogged. Limiting Condition No. 8 of the Permit requires that the surface water management system, including the injection wells, be maintained. At the hearing, the SFWMD proposed that a condition be added to the Permit to further clarify the maintenance requirements. A condition requiring long-term maintenance would be desirable and reasonable. A new special condition should be added to the Permit requiring long-term maintenance of grass swales and inspections of injection wells for clogging. Acceptable language for such a condition would be: SPECIAL CONDITION NO. 15 The permittee shall provide long-term maintenance of the surface water management system, encompassing the injection wells, including, but not limited to, (a) maintenance of the vegetation in the grass swales and detention ponds and (b) routine inspections of wells and discharge structures for clogging. Water Quality Criteria As noted above, there is no designed system for surface water management and/or water quality pretreatment at the Site in its undeveloped state. Surface water run-off that can not be managed by the City of Key West's storm water management system collects in roads adjacent to the Site, resulting in adverse water quality and quantity impacts to adjacent land and receiving waters. The applicable water quality criteria, contained in Rule 40E-4.301, Florida Administrative Code, require an applicant to provide reasonable assurances that a surface water management system will not cause adverse water quality impacts to receiving waters and adjacent lands, and will not cause discharge which results in any violation of the standards and criteria of Chapter 17-302 for surface waters of the state. Rule 40E-4.301 provides that: In order to obtain a permit under this chapter, an applicant must give reasonable assurances that the surface water management system is consistent with the State Water Policy as set forth in Chapter 17-40, Florida Administrative Code (40E-4.301(1)(h), Florida Administrative Code. Rule 17-40.420 provides in pertinent part: Minimum Stormwater Treatment Performance Standards. When a stormwater management system complies with rules establishing the design and performance criteria for stormwater management systems, there shall be a rebuttable presumption that such systems will comply with state water quality standards. The Department and the Districts, pursuant to Section 373.436, Florida Statutes, shall adopt rules that specify design and performance criteria for new stormwater management systems which: 1. Shall be designed to achieve at least 80 percent reduction of the average annual load of pollutants that would cause or contribute to violations of state water quality standards. The Basis for Review, which is incorporated into Title 40E, Florida Administrative Code, by reference, further delineates the applicable water quality permit criteria for surface water management systems. Regarding water quality criteria, the Basis for Review provides: 3.2.2.1 State standards - Projects shall be designed so that discharges will meet state water quality standards, as set forth in Chapter 17-3 [revised to 17-302], Florida Administrative Code. The SFWMD's water quality criteria do not require chemical testing of stormwater for residential projects. The SFWMD's water quality criteria require that the design of a surface water management system meet applicable design/technology based criteria. Section 3.2.2.2 of the Basis for Review contains the specific water quality criteria for the design of a surface water management system. The SFWMD allows applicants to design their surface water management system using either dry or wet detention or dry or wet retention, so long as the treatment provided by the system meets water quality and quantity criteria. Dry detention consists of a system of grass swales and vegetative- covered ponds which detain water at a predetermined rate prior to off-site discharge. Wet retention can contain canals, ditches, lakes or ponds to retain water on-site. If a system is designed to meet the criteria specified in 3.2.2.2(a) of the Basis for Review and incorporates Best Management Practices ("BMP's") for the type of system proposed, the SFWMD presumes that water quality standards will not be violated. In determining which system is appropriate for a particular site, water quantity (flooding impacts) and water quality impacts must be balanced. In some cases, water quantity concerns may preclude certain types of water quality treatment methods. At the hearing in this case, Petitioner and Intervenor suggested that retention is superior to detention in designing surface water management systems. The evidence presented in this case was insufficient to support this conclusion. In any event, this contention focuses only on water quality considerations. One drawback to retention is that it may have on-site flooding impacts. With respect to this Project, the evidence indicates that retention may not have been an acceptable alternative because of possible adverse water quantity impacts. The Navy's proposed surface water management system was designed to utilize dry detention with filtration for treatment of surface water prior to discharge into the injection wells and/or off-site. The design uses a system of grass swales and grass-covered detention ponds to detain and filter pollutants from the surface water as it makes its way through the dry detention system. The System is designed to utilize as many grass swale areas as possible to filter or treat the surface water before it reaches the detention ponds which provide further treatment. The swales restrict the flow of water to approxmiately one half to one foot per second which allows for percolation and a tremendous amount of filtration. The System utilizes the natural topography of the Site to direct water through the dry detention system to the lowest point of the Site at the corner of Eisenhower Drive and Palm Avenue. Any water which makes it to this last detention pond and is not drained into one of the injection wells can flow through the discharge structure (the Weir) at 11 CFS and ultimately make it into Garrison Bight. Petitioner and Intervenor have suggested that the design of the proposed System is defective because water discharged from the cul-de-sacs in the Project design will flow directly into detention ponds without passing over any of the grass swales. The permit criteria do not specify that all surface water must contact grass swales prior to reaching a detention pond. While greater filtration is achieved the longer the run-off remains in the system, the evidence established that the detention ponds by themselves provide sufficient water quality treatment. With respect to all but one of the cul-de-sacs, the water must pass through at least two detention ponds before it is discharged. Run-off from the cul-de-sac closest to the Weir will receive treatment only in the last discharge pond. Petitioner and Intervenor questioned whether the run- off from this last cul-de-sac will receive adequate treatment, in other words, whether the "first flush" will be adequately detained prior to discharge, especially in circumstances when the detention pond is already wet. However, the evidence was insufficient to establish that their concerns are justified and/or that this situation would constitute a violation of water quality standards. This cul-de-sac is only 100 ft in diameter and accounts for no more than 8 percent of the total run-off from the Site. After considering all of the evidence, it is concluded that the water from the cul-de-sacs will be adequately treated in accordance with the permit criteria prior to any discharge. In assessing the Navy's proposed surface water management system the following criteria from the Basis for Review are pertinent in determining whether the proposed System will provide appropriate water quality treatment: 3.2.2.2 Retention and/or detention in the overall system, including swales, lakes, canals, greenways, etc., shall be provided for one of the three following criteria or equivalent combinations thereof. . .: Wet detention volume shall be provided for the first inch of run-off from the developed project, or the total run-off of 2.5 inches times the percentage of imperviousness, whichever is greater. Dry detention volume shall be provided equal to 75 percent of the above amounts computed for wet detention. If the receiving waterbody, is a "sensitive receiving water," which would include an Outstanding Florida Water, the following additional criteria regarding direct discharges are applicable: 3.2.2.2 d. Projects having greater than 40 percent impervious area and which discharge directly to sensitive receiving waters shall provide at least one half inch of dry detention or retention pretreatment as part of the required retention/detention. The SFWMD interprets the permitting criteria as creating a rebuttable presumption that a surface water management system that provides detention in accordance with BMP's of the first inch (1") of run-off from a Site, commonly referred to as the "first-flush", will meet state water quality standards. The "first-flush" occurs at the onset of a rainfall when most pollutants run off paved areas and percolate into the grass swales. It is an accepted design parameter that the "first flush" contains 90 percent of the pollutants which will be collected in the run-off. The 90 percent of the pollutants in the first flush are consequently retained on-site through pure percolation and never reach the discharge facility. Although Petitioner and Intervenor suggest that dry detention does not provide this degree of filtration, the evidence was insufficient to support this contention. The proposed System for this Project provides treatment for the first one inch (1") of run-off from the developed Project, thereby meeting the permitting criteria for sensitive receiving waters. Intervenor and Petitioner contend that the development of this Project will necessarily result in a larger amount of pollutants in the run-off from the Site. They argue that the Applicant has not provided reasonable assurances that capturing 90 percent of the increased level of pollutants in the first flush will meet water quality standards. As noted above, compliance with the permit criteria creates a rebuttable presumption that water quality standards will be met. Insufficient evidence was presented to overcome this rebuttable presumption. In calculating the appropriate volume for the dry detention ponds, the Project engineer used the Site's percentage of impervious area. The percentage of impervious area was determined in accordance with SFWMD criteria. The calculations do not account for any percolation from the impervious areas even though much of that run-off will pass through swales and other grassy areas of the Site. In addition, there is a built-in buffer between the berm elevation around the ponds and the expected water level in the ponds. These factors confirm that there is significant additional capacity in the ponds which is an overage or safety net. In sizing the detention ponds, the project engineer also factored in additional off-site water that will be coming on-site from Palm Avenue. This water currently ponds on Palm Avenue contributing to a recurring flooding problem in the area. This off-site water will be routed through an inlet and pumped directly into on-site detention areas thereby reducing flooding on Palm Avenue and providing some treatment for off-site run-off that was not previously treated before entering the City's stormwater system. As noted above, additional water quality criteria requirements apply to projects which discharge to an Outstanding Florida Water. These additional criteria are set forth in paragraph 40 above. Outstanding Florida Water or OFW is the designation given exclusively by the FDER to certain waterbodies in Florida which have special significance, either for ecological or recreational reasons. Outstanding Florida Waters are afforded the highest degree of water quality protection. The criteria for designation of waters as Outstanding Florida Waters is found in Chapter 17-302, Florida Administrative Code. When the SFWMD initially reviewed the Permit application for this Project, it erroneously assumed that Garrison Bight, the ultimate receiving body for the waters discharged from the project through the City stormwater system, was an OFW. Although the SFWMD applied water quality criteria for OFW's when it reviewed the subject permit application, the evidence at the hearing in this case established that Garrison Bight is not an Outstanding Florida Water. A FDER representative, qualified as an expert in the designation of Outstanding Florida Waters, testified that the Outstanding Florida Water designation does not apply to certain waterbodies that were degraded at the time of designation or did not have the significance or pristine water quality that merit special protection. The designation also does not apply to artificial waterbodies. Artificial waterbodies are defined in Rule 17-302.700(9)(i), Florida Administrative Code, as a waterbody created by dredging or excavation or by the filing in of its boundaries on at least two sides. The FDER has formally determined that Garrison Bight is not an Outstanding Florida Water because Garrison Bight is an artificial waterbody in accordance with the definition. Furthermore, Garrison Bight is the site of extensive boating and marina activities. The water quality of Garrison Bight is currently degraded in comparison to ambient conditions and offshore/unconfined water. In sum, the evidence established that proposed surface water management system meets or exceeds the current permit criteria. Consequently, the water flowing into Garrison Bight from the Site will be significantly less and much cleaner after the proposed surface water management system is installed than it currently is without a designed surface water management system.
Recommendation Based upon the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that a Final Order be entered approving the issuance of Surface Water Management General Permit No. 44-01785 in accordance with the Notice of Intent dated September 29, 1992 and the additional conditions noted in this Recommended Order. DONE AND ENTERED this 14th day of May, 1993, at Tallahassee, Florida. J. STEPHEN MENTON Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 14th day of May, 1993.
The Issue The issue in this case is whether the South Florida Water Management District (SFWMD, or District) should issue a Modification to Environmental Resource Permit (ERP) No. 11- 02055-P, Application No. 060713-9, to G.L. Homes of Naples Associates II, Ltd. (G.L. Homes, or Applicant), which authorizes modifications to the surface water management system (SWMS) for a residential development known as Saturnia Falls (the Project).
Findings Of Fact PARTIES The District is a water management district with the power and duty to exercise regulatory jurisdiction over the administration and enforcement of ERP criteria, pursuant to the provisions of Part IV, Chapter 373, Florida Statutes, and Title 40E, Florida Administrative Code, and Sections 373.413, 373.414, and 373.416, Florida Statutes. G.L. Homes is an entity with the administrative, legal, and financial capabilities of undertaking the activity in accordance with the terms and conditions of the 2006 ERP, meeting the criteria in Rule 40E-4.301(1)(j). The Conservancy was duly incorporated in 1966 under the laws of the State of Florida as a not for-profit corporation and has it headquarters in Collier County, Florida. G.L. Homes contests the Conservancy's assertion of "associational standing." But there is no question as to the Conservancy's "citizen standing" under Section 403.412(6), Florida Statutes. The Conservancy has approximately 6,200 members, with approximately 4,200 residing in Collier County. Twenty-five current members in good standing who reside in Collier County were identified during the hearing. The Conservancy's purpose is to "protect and sustain the natural environment of southwest Florida through advocacy, education, research, land acquisition and other lawful means." Specific purposes relevant to the subject matter of this case include: "to acquire and protect sanctuaries, greenbelts, parks, and beaches"; "to assist governing bodies to remedy present pollution and to prevent future pollution of water, air, and our waterfronts and beaches"; and "to encourage and stimulate the interests of residents and visitors to the area, to increase their knowledge of, and to promote the preservation of the southwest Florida natural environment." The Conservancy also asserts standing under Section 403.412(5), Florida Statutes. In furtherance of its corporate purpose, the Conservancy owns approximately 300 acres of land for preservation in Collier County, including a 46-acre parcel located on the Cocohatchee River downstream from the proposed Saturnia Falls development. The Conservancy also conducts scientific research in the waters of the Wiggins Pass Estuary downstream from the proposed Saturnia Falls development, including water quality monitoring and research on seagrass restoration. Further impacts to the water quality in the Cocohatchee River would affect the value of the Conservancy's property for conservation and would affect its interests in research in the area. These interests of the Conservancy would be adversely affected if the 2006 ERP were issued improperly. The Conservancy's assertion of "associational standing" is based on the testimony of eight of its members who engage in various recreational activities, including boating, fishing, bird-watching, nature study, and observation of wildlife. Some visit Corkscrew Swamp Sanctuary and the Corkscrew Regional Ecosystem Watershed (CREW) to view endangered wood storks and other wildlife. Some also visit and recreate in downstream waters, such as the Wiggins Pass Estuary, for fishing, boating, or wildlife observation. These interests would be adversely affected if the 2006 ERP were issued improperly. PROJECT DESCRIPTION AND PERMITTING HISTORY The Project site is located one mile north of Immokalee Road, approximately 2 miles east of 1-75 and lies near the CREW lands in Collier County. The entire Project site consists of approximately 646 acres, of which 533.1 acres are wetlands. The Project has a permitting history dating back to 1997, when the previous owner, Robert Vocisano, applied to construct a development called Wildewood Lakes. The Wildewood Lakes application was denied in 1998, at least in part because wetland impacts were not reduced and eliminated to the extent practicable, and was mediated pursuant to Section 120.573, Florida Statutes. After three years of responding to additional requests for information, the application was submitted to the Governing Board for approval in May 2002. This ERP, referred to as “the 2002 ERP,” authorized the construction and operation of a SWMS to serve a residential and golf course development, discharging to the Cocohatchee Canal via a conveyance channel/Flow-way known as the Mirasol Flow-way (Flow-way). The Flow-way feature was to be built on lands owned by three different property owners, one of whom was the owner of the Terafina Project, and was intended to address flooding and storage criteria in the BOR and alleviate flooding problems in the region that resulted from previous drainage and development projects that altered the natural sheet-flow through the region to the Cocohatchee and Imperial Rivers, and on to the Gulf Coast. As reported in the Staff Report for the 2004 ERP, studies current at the time indicated that, during the initial part of the rainy season, the wetland systems in the vicinity of the proposed Flow- way carried the flow between the Corkscrew Swamp and the Cocohatchee Canal with the peak stages contained with the limits of the wetland areas. However, as the wet season progressed, the wetland vegetation impeded the conveyance of flow and resulted in elevated water stages that inundated properties adjacent to those wetlands, including portions of the eastern half of the Project. There were approximately 288 acres of direct impacts to wetlands under the 2002 ERP. There was a total of 291.20 acres of onsite preserve, including 259.97 acres of wetlands and 31.23 acres of uplands. Part of the Flow-way was to be located within the eastern third of the property (225.74 acres, including 217.80 acres of wetlands and 7.94 acres of uplands), which would be preserved after construction of part of the Flow- way in 23 of those acres. There also would be off-site mitigation in the form of a payment of $1,232,000 "specifically for the purchase of 154 acres . . . of land within CREW, a project within the District's Save Our Rivers Program." Of that total, $712,404 was to be deposited in an account for the land purchase, $437,206 in an account to pay for restoration work within the CREW project, and $82,390 in an escrow account for general operations and maintenance costs incurred by the District within the CREW project. On March 10, 2004, the Governing Board approved a modification to the 2002 ERP authorizing the construction and operation of the Project, at the time known as the Terafina PUD. This ERP is referred to as “the 2004 ERP.” The 2004 ERP removed the golf course and proposed a residential development within the same 646-acre parcel. It also discharged to the Cocohatchee Canal via the Flow-way. The 2004 ERP modified the Project to consist of: single-family residential areas; a recreation area; internal roadway; onsite wetland preserve areas within the development of approximately 73.99 acres; and 210 acres of wetland preserve east of the development, which included the Flow-way, and is referred to as the Eastern Preserve. The 2004 ERP proposed to impact approximately 280 acres of wetlands, slightly less than in the 2002 ERP. To mitigate for the impacts, the 2004 ERP authorized onsite mitigation consisting of the preservation and enhancement of 253.04 acres of wetlands, preservation of 31.27 acres of uplands, creation of 0.1 acres of wetlands, and offsite mitigation by a payment to the District for the purchase, restoration, and management of lands in CREW. Apparently by mistake, the amount of the CREW payment was reduced to $1,001,000, with $418,404 to go into the purchase account, $437,206 to go into the restoration account, and $82,390 to go into the escrow account for general operations and maintenance. In addition, the time for deposit of the funds was extended to June 30, 2004. The District included Special Condition No. 18 in the 2004 ERP, delaying any construction under the 2004 ERP until the Flow-way was completed. However, the United States Army Corps of Engineers (ACOE) refused to permit construction of the Flow-way. On July 13, 2006, G.L. Homes submitted an application to modify the 2004 ERP (the 2006 Application), which is the subject of this proceeding. (A letter modification was issued on October 5, 2006, authorizing installation of a 48" outfall pipe within the Logan Boulevard right-of-way to convey the discharge from the Project to the Cocohatchee Canal. This letter modification was not challenged by the Conservancy and is not at issue in this proceeding.) On November 9, 2006, SFWMD proposed issuance of the 2006 ERP authorizing the construction and operation of the residential development now known as Saturnia Falls (the 2006 ERP). The 2006 Staff Report proposes elimination of the Flow- way, and enhancement and preservation of the 23.5 acres that would have been located in the eastern third of the Project area, similar to the rest of the Eastern Preserve. The SWMS also was altered, and the Staff Report noted that the CREW payment was made in June 2004 in the amount of $1,260,000 "as funding for the off-site mitigation in CREW," which was said to have "provided a substantial amount of up-front mitigation in CREW." The Conservancy did not challenge the 2002 ERP or the 2004 ERP but did challenge the 2006 ERP. THE MODIFIED SURFACE WATER MANAGEMENT SYSTEM In addition to removal of the 23.5-acre segment of the Flow-way from the Eastern Preserve, the current proposal would modify the SWMS under the 2004 ERP by replacing the 80-foot weir at Lake 9, which was the sole final outfall under the 2004 ERP, with two operable Water Control Structures (WCS), located at the eastern (WCS-2) and western (WCS-1) boundaries of the Project, as the final outfall structures. The 80-foot weir in the 2004 ERP consisted of a rectangular notch in the 17.7 foot NGVD berm between Lake 9 and the Eastern Preserve, with a crest elevation of 13.8 foot NGVD and a 5 foot wide, .4 foot deep rectangular notch (that is, with an invert elevation of 13.4 foot NGVD) within the 80-foot weir, which served as a bleeder for water quality. The structure was fixed, and water was to pass freely through the bleeder and over the weir depending on the water levels on either side of the structure. In contrast, the structures proposed in the 2006 ERP are operable based on water levels in the Eastern Preserve. WCS- 1 is located in Lake 4 and discharges to the Cocohatchee Canal via a 48" reinforced concrete pipe located in the Logan Boulevard right-of-way. WCS-2 is located to the east of the development and discharges to the Eastern Preserve and then ultimately to the Cocohatchee Canal. As modified under the 2006 ERP, the SWMS continues to consist of eleven controlled sub-basins with a total area of 397.46 acres. The remainder of the proposed Project also is the same as under the 2004 ERP, including road alignments, type and number of houses, lots, lakes and grading information, and wetland impacts. It is the position of the Applicant and the District that the mitigation proposal also is identical; but Petitioner takes the position that proposed onsite mitigation will be adversely affected by the proposed modifications and that offsite mitigation no longer has the same benefit, so that mitigation no longer fully offsets the wetland impacts. The SWMS is set at the control elevation of 13.4 feet NGVD, which represents the wet season water table (WSWT) for the currently existing wetlands. The seasonal high water level for the wetlands was determined to be approximately 14.0 feet NGVD. When water levels in the Eastern Preserve are below 14.00 feet NGVD (typically in the dry season), the SWMS discharges to the Eastern Preserve through WCS-2, which is located in the perimeter berm to be constructed with sloping banks and a crest elevation of 17.7 feet NGVD between the Eastern Preserve and one of the western wetland preserves, called preserve P-5. WCS-2 consists of a 23-foot weir fitted with an operable bleeder at the control elevation of 13.40 feet NGVD, and a fixed discharge V-Notch weir with an invert elevation of 14.20 feet NGVD, and a crest elevation of 15.40 feet NGVD. This discharge will flow southerly through the Eastern Preserve to the receiving waterbody, the Cocohatchee Canal. WCS-1 will be closed during these periods. The maximum discharge rate under these conditions will be 15.28 cubic feet per second (cfs) to the Eastern Preserve. Based on the hydraulic modeling results, the Eastern Preserve experiences levels below 14 feet NGVD approximately 70% of the time on an annual basis. When water levels in the Eastern Preserve are above 14.00 feet NGVD (typically in the wet season), the SWMS will discharge predominately to the west via WCS-1 to the Cocohatchee Canal. When the water level in the Eastern Preserve reaches 14.00 ft NGVD, the operable bleeder on WCS-2 will close and the operable bleeder/discharge structure on WCS-1 will open. During the 25- year 3-day storm, the maximum discharge rate through WCS-1 is 13.50 cfs. During these conditions, discharge will also occur through the fixed 60-degree V-notch in WCS-2, with a maximum discharge of 2.10 cfs, ensuring bidirectional flow of water so long as the water level in the SWMS stays above 14.20 feet NGVD. The total discharge rate from both structures under this condition is 15.61 cfs. During the 25-year 3-day storm event, water levels in the Eastern Preserve fluctuate from 13.40 feet NGVD to 15.31 feet NGVD. When the water levels in the Eastern Preserve are higher than 14.20 feet NGVD, and the water level in the SWMS is lower than 14.20 feet NGVD, water from the Eastern Preserve will enter into the SWMS through the 60-degree V-Notch in WCS-2. The SWMS is designed to receive water from the Eastern Preserve to provide flood storage and hydrology to the onsite wetlands within the development. THE ERP PERMITTING CRITERIA In order to obtain an ERP, an applicant must satisfy the conditions for issuance set forth in Rules 40E-4.301 and 40E-4.302. In this case, the evidence must be viewed under Rule 40E-4.331(2)(a), pertaining to modification of permits, which requires the District to review permit modification applications “using the same criteria as new applications for those portions of the project proposed for, or affected by, the modification.” The test in this case is not whether the District properly evaluated the 2004 ERP, but whether the areas proposed to be modified or affected by the modification meet the applicable conditions for issuance. Rule 40E-4.301(1) requires an applicant to provide reasonable assurance that the construction, alteration, operation, maintenance, removal or abandonment of a SWMS: Will not cause adverse water quantity impacts to receiving waters and adjacent lands; Will not cause adverse flooding to on- site or off-site property; Will not cause adverse impacts to existing surface water storage and conveyance capabilities; Will not adversely impact the value of functions provided to fish and wildlife and listed species by wetlands and other surface waters; Will not adversely affect the quality of receiving waters such that the water quality standards set forth in Chapters 62- 4, 62-302, 62-520, 62-522, 62-550, F.A.C., including any antidegradation provisions of paragraphs 62-4.242(1)(a) and (b), subsections 62-4.242(2) and (3), and Rule 62-302.300, F.A.C., and any special standards for Outstanding Florida Waters and Outstanding National Resource Waters set forth in subsections 62-4.242(2) and (3), F.A.C., will be violated; Will not cause adverse secondary impacts to the water resources; Will not adversely impact the maintenance of surface or ground water levels or surface water flows established pursuant to Chapter 373.042, F.S.; Will not cause adverse impacts to a work of the District established pursuant to Section 373.086, F.S.; Will be capable, based on generally accepted engineering and scientific principles, of being performed and of functioning as proposed; Will be conducted by an entity with the sufficient financial, legal and administrative capability to ensure that the activity will be undertaken in accordance with the terms and conditions of the permit, if issued; and Will comply with any applicable special basin or geographic area criteria established in Chapter 40E-41, F.A.C. The parties stipulated that the Project either complies with Rules 40E-4.301(1)(g),(h),(j), and (k), and Sections 4.3.8, 7.5, and 9.0 of the BOR, or that those rules are not applicable. THE SURFACE WATER MANAGEMENT CRITERIA Water Quantity (Rule 40E-4.301(1)(a)) As indicated, the 2006 modifications eliminate the Flow-way and change the manner in which water flows in and out of the proposed SWMS. Otherwise, there are no changes to the engineered features of the SWMS. Rule 40E-4.301(1)(a) requires that G.L. Homes demonstrate that the Project will not cause adverse water quantity impacts to receiving waters and adjacent lands, and not exceed the capacity of the downstream receiving water bodies. Section 6.2 of the BOR requires that a project be designed so it is consistent with the downstream carrying capacity of the receiving waters. The receiving waterbody for this Project is the Cocohatchee Canal. The allowable discharge rate for the Cocohatchee Canal is 15.9 cfs. The Project’s calculated rate of discharge is 15.6 cfs, so the Project does not exceed the allowable discharge rate. The Project's discharge rate is lower in 2006 (15.6 cfs) than it was in the 2004 ERP (291 cfs). Petitioner argued that the significant difference in discharge rates between the 2006 and the 2004 ERPs violated the District’s water quantity criteria. But the discharge rate calculated in 2004 was associated with the Flow-way and entailed a different overall analysis for the entire area served by the Flow-way. G.L. Homes provided reasonable assurances that the discharge rate allowed for its Project would not be exceeded, as required in Section 6.2 of the BOR. G.L. Homes complied with Section 6.3 of the BOR which requires the 25-year, 3-day storm event to be used when computing the discharge rate for the Project. Section 6.8 of the BOR is entitled “Offsite Lands.” Compliance with this Section requires that a project allow the passage of drainage from offsite areas to downstream areas, which is necessary to demonstrate that off-site receiving waterbodies are not being adversely affected. G.L. Homes complied with Section 6.8 by conducting a hydrologic analysis, using the 25-year, 3-day storm event, which demonstrated that discharge would be directed to WCS-1 and WCS-2, allowing for the passage of drainage from offsite areas to the downstream areas. Section 6.10 of the BOR requires that the design of the Project conserve water and not over-drain wetlands. There is nothing about the modifications that violate Section 6.10. In this case, the control elevations have been set at 13.4 feet NGVD, which is the average WSWT. The WSWT was established using biological indicators to determine the average elevation in the Project’s wetlands during the wet season. Setting the control elevation at the WSWT does not violate Section 6.10. To the contrary, when water levels are at or above the control elevation, the design helps prevent the wetlands from being drawn down below 13.4 feet NGVD, and not over-drain them. The WSWT of 13.4 was permitted in the 2004 ERP. The structures also allow for the interchange of water from the Eastern Preserve into the preserve wetlands within the SWMS. This exchange of water helps preserve the Project’s environmental values. Setting the control elevation at 13.4 also reduces unnecessary runoff from the Project, retaining the water for recharge. In addition, the ability of the SWMS to accept flows from the Eastern Preserve also conserves freshwater by preventing that water from being discharged downstream. As indicated, when water levels in the Eastern Preserve are below the control elevation, no water will enter the SWMS from the Eastern Preserve. During those times, it is possible that wetlands within the SWMS will be drained into the deep lakes dug as part of the project. However, that would not be the result of 2006 modifications but would be inherent in the previously-approved SWMS. The 2006 modifications do not re-open the soundness of that previously-approved part of the design. Section 6.10 also requires that a project not lower water tables so that the existing rights of others would be adversely affected. Again, by setting the control elevations at the WSWT, the water table is not expected to be lowered so as to affect the existing rights of others. The Project also must demonstrate that the site’s groundwater recharge characteristics will be preserved through the design of the SWMS. G.L. Homes complied by setting the control elevations at the WSWT, allowing standing water in the wetland preserves to recharge the groundwater. Section 6.11 addresses Detention and Control Elevations which are intended to assist in complying with the provisions of Section 6.10. By designing WCS-1 and WCS-2 at control elevation 13.4, the Project maintains the detention component and the control (wetland protection) elevations under the previously-approved SWMS. The Required Design Information and Assumptions are contained in Section 8.0 of the BOR. This Section includes various assumptions and information regarding the design of the SWMS. By incorporating these assumptions into the Project, G.L. Homes complied with Section 8.0. Flooding (Rule 40E-4.301(1)(b)) This Rule requires G.L. Homes to demonstrate that the Project will not cause adverse flooding to onsite or offsite property. Section 6.4 requires that building floors be designed to be protected from a 100-year, 3-day storm event. G.L. Homes complied with this provision by providing construction plans demonstrating that the building floors are being built higher than the 100-year, 3-day storm event. Likewise, Section 6.5 pertains to providing flood protection for the Project’s roads and parking lots. G.L. Homes complied with this provision by exceeding the District’s 5-year design criteria, and instead designing the roads and parking lots using the 25-year, 3-day storm event. G.L. Homes was required to comply with the Historic Basin Storage provision in Section 6.7, which requires the Project to replace or otherwise mitigate the loss of historic basin storage provided by the site. In this case, the amount and extent of historic storage that is being displaced by the 2006 ERP is the same as that in the 2004 ERP. However, the replacement or mitigation for loss of historic basin storage is reduced due to elimination of the Flow-way. Instead of relying on the Flow-way to address this criterion, G.L. Homes relied on the “Saturnia Falls Slough Hydraulic Study” prepared by Taylor Engineering, the “Taylor Report” (RJ Ex. 32), which demonstrates the current flood levels in the Eastern Preserve and other adjacent properties and wetlands, and that the Project’s configuration would not affect the basin’s historic storage. Lastly, to demonstrate that the Project will not cause adverse flooding to offsite properties, G.L. Homes was required to comply with Section 6.9, Minimum Drainage. This provision requires that the SWMS recover, consistent with the environmental criteria in 6.10 of the BOR, within 12 days or less. The Taylor Report also demonstrated that the Project will recover from the design storm event in time to provide the required attenuation for the next storm event, while preserving environmental or wetland features. There may be times when the recovery may exceed 12 days, but the need to protect the hydrology of the wetlands required the control elevations to be set at 13.4 ft NGVD. Balanced against Section 6.10, G.L. Homes still complies with Section 6.9. Accordingly, G.L. Homes provided reasonable assurances demonstrating that the 2006 ERP will not cause adverse flooding to on-site or off-site property, satisfying Rule 40E- 4.301(1)(b). Storage and Conveyance (Rule 40E-4.301(1)(c)) Rule 40E-4.301(1)(c) requires that an applicant demonstrate that the proposed development will not adversely impact existing surface water storage and conveyance capabilities. In order to accomplish this demonstration, applicants are to consider the capability of the adjacent properties to both store and convey stormwater runoff from their developments. Section 6.6 of the BOR, entitled Floodplain Encroachment, specifies the parameters by prohibiting a net encroachment into the floodplain, between the average WSWT and the 100-year event, which will adversely affect the existing rights of others. G.L. Homes addressed this criterion through the analysis submitted and contained in the Taylor Report. The Taylor Report used the hydrologic model, HEC-HMS, and hydraulic model, HEC-RAS, to provide a simulation of flood stages propagating through the Eastern Preserve and the adjacent wetland system. This analysis assessed the existing flood stages within the offsite areas, starting at the Cocohatchee Canal and ending approximately 2-3 miles northeast of the eastern boundary of the Project. The analysis captured the expected flood levels during both the 25-year, 3-day and the 100-year, 3-day storm events in the area's current condition, and then compared the analysis of the two storm events considering the Project in its development condition. The analysis relied on the Project’s proposal to remove the current melaleuca infestation from the Eastern Preserve as part of the Project’s post-development condition. The Taylor Report concluded that the removal of such exotics would remove a flow impediment and allow the water to flow through the Eastern Preserve at a higher rate, and therefore at lower flood stages. The Taylor Report made these conclusions while accounting for the development as well as the mitigation-required plantings. The Taylor Report, along with Mr. Hull’s testimony, demonstrated that even with the mitigation reaching full maturity, the removal of melaleuca results in lower flood stages than the study area is currently experiencing. The evidence was that the model used by Taylor Engineering, the HEC-RAS model, is an appropriate model to determine flood stages and to calculate the floodplain conveyance. Furthermore, although Petitioner attacked the choice of inputs, mainly the “Manning’s n coefficients” used to determine the roughness or the friction provided by current and post-development vegetation, the balance of the evidence supports the coefficients contained in the Taylor Report as reasonable and within the ranges of the cited data and models. Petitioner’s expert, Dr. Van Lent, who conducted no analysis of his own, admitted that HEC-RAS was an accepted tool to use for floodplain conveyance and that the other models he suggested are either inappropriate or rarely used by ERP applicants. The Applicant provided reasonable assurances demonstrating that the 2006 ERP will not cause adverse impacts to existing surface water storage and conveyance capabilities, satisfying Rule 40E-4.301(1)(c). However, that is not to say that the 2006 ERP replaces the storage and conveyance capabilities that would have been provided under the 2004 ERP with the proposed Flow-way, which also required removal of melaleuca and required the same mitigation plantings except within the Flow-way itself. To the contrary, storage and conveyance capability under the 2004 ERP clearly would have been greater. Wetland Impacts (Rule 40E-4.301(1)(d)) This Rule provision, while typically associated with the wetland ERP criteria review, also applies to the SWMS through Section 6.12 of the BOR, which requires that a lake system be designed so that an adverse gradient is not created between the lakes and wetland areas. G.L. Homes complied with this criterion by setting the control elevation at 13.4 feet NGVD, the WSWT, for the lake system, the SWMS wetland preserves and the Eastern Preserve, ensuring no gradient (or difference in elevation) between the wetland elevation and the lake elevation. Petitioner argued that additional analysis regarding the timing and levels of inundation in the wetland preserves is necessary to fully determine the impacts to the wetlands. Contrary testimony indicated that setting the control elevations within the development area at the WSWT protects the onsite wetlands and ensures that those wetlands will function as expected. Mr. Waterhouse testified that additional analysis, such as groundwater or evapotranspiration, is not necessary because the Project was designed so that the control elevation that affects the lake levels and the wetlands are the same. The testimony was that, since the control elevation was set using the WSWT, the timing and levels within the wetlands will not be affected by the revised SWMS, and that no additional modeling, as recommended by Dr. Van Lent, is necessary because the SWMS complies with Section 6.12. As indicated, it is questionable on this record whether wetlands within the SWMS will be drained during dry conditions by adjacent deep lakes. No such analysis was presented in evidence in this case. However, such an impact on the wetlands within the SWMS would not be the result of 2006 modifications but would be inherent in the previously-approved SWMS. The 2006 modifications do not re-open the soundness of that previously-approved part of the design. As for the 2006 modifications, the evidence was persuasive that no additional analysis regarding the timing and levels of inundation in the wetland preserves is necessary to determine that the elimination of the 80-foot weir and its replacement with WCS-1 and WCS-2 will not impact the wetlands. Water Quality (Rule 40E-4.301(1)(e)) Rule 40E-4.301(1)(e) requires an applicant to provide reasonable assurances that the Project will not adversely affect the quality of receiving waters such that water quality standards will be violated. Section 5.2 describes the District’s standard water quality criteria. This provision, requiring a minimum of one inch detention of stormwater, is referred to as a “presumptive criterion” because it is presumed that if an applicant provides the required one inch of detention, Class III water quality standards and rule requirements will be met. In this case, G.L. Homes provides one inch of detention in its lake system in the exact manner it did in the 2004 ERP. A difference from the 2004 to the 2006 ERP is the classification of the Cocohatchee Canal, the Project’s receiving waterbody, as impaired for iron and dissolved oxygen (DO). Therefore, G.L. Homes was also required to comply with Section 4.2.4.5 of the BOR to demonstrate that it is not contributing to the impairment. See also Fla. Admin. Code R. 40E-4.301(2). Section 4.2.4.5, entitled "Where Ambient Water Quality Does Not Meet State Water Quality Standards," states as follows: If the site of the proposed activity currently does not meet state water quality standards, the applicant must demonstrate compliance with the water quality standards by meeting the provisions in 4.2.4.1, 4.2.4.2, and 4.2.4.3, as applicable, and for the parameters which do not meet water quality standards, the applicant must demonstrate that the proposed activity will not contribute to the existing violation. If the proposed activity will contribute to the existing violation, mitigation may be proposed as described in subsection 4.3.1.4. To comply, G.L. Homes must show that neither short- term (4.2.4.1) nor long-term (4.2.4.2) water quality impacts will occur. G.L. Homes complied with the short-term requirements by submitting the Construction Pollution Prevention Plan (CPPP), detailing how water quality will be protected during the construction process. In addition to the inch of treatment, the long-term water quality requirement was addressed, in part, by the Urban Stormwater Management Plan (USMP), which details various source controls or best management practices (BMPs) to be implemented once the Project is built and operating. These BMPs help keep pollutants out of the lake system. In addition to the BMPs, the USMP requires G.L. Homes to institute a water quality monitoring plan and submit results to the District for review after the Project is developed. Dr. Harper concurred with Petitioner that the USMP as proposed (in R.J. 28, § 6.0) was deficient in certain respects and recommended that it be clarified or supplemented to specify testing for oxygen, iron, nitrogen, phosphorus, hardness, and a few heavy metals, namely copper, lead, and zinc. Dr. Harper also concurred and recommended that that samples should be collected at both WCS-1 or WCS-2, not just at one of them, depending on which structure is discharging water at the time of sampling. (Dr. Harper confirmed the propriety of testing three times per year, which is a common frequency for monitoring in situations like this.) Mr. Waterhouse agreed with Dr. Harper's additions/clarifications and testified that the USMP, as supplemented and clarified, would comply with District’s criteria. G.L. Homes accepted Dr. Harper's additions/clarifications to the USMP. Another component of Section 4.2.4.5 requires additional assurance for parameters that do not meet water quality standards. The District prepared the “Terrie Bates Water Quality Memo dated June 11, 2004,” referred to as “the Bates Memo,” to provide guidance on the implementation of Section 4.2.4.5 for projects which discharge into an impaired waterbody. The Bates Memo suggests that an additional 50 percent of treatment, among other BMPs, be incorporated into a SWMS. G.L. Homes complied with the Bates Memo because runoff from the lakes, after meeting the one inch detention treatment requirement, spills into the wetland preserves within the SWMS for an additional 50 percent of treatment. In terms of operation of the SWMS, this is no different from the 2004 ERP, but the 2006 ERP simply calculates and takes credit for the additional treatment that was also provided by the onsite wetlands in the 2004 ERP. It is uncontested that the wetland preserves within the development are not impaired and are only required to meet Class III water quality standards. When the stormwater spills into the SWMS wetland preserves, it is presumed to meet Class III water quality standards due to the one inch of detention treatment. Accordingly, the SWMS wetland preserves can be used to provide the additional 50 percent of treatment. The Bates Memo also lists seven BMPs as potential options to consider, in addition to the extra 50 percent treatment volume. G.L. Homes is implementing 6 of the 7 items as follows: (1) the CPPP, which is a stormwater pollution prevention plan; (2) an operation plan or long-term plan addressing routine maintenance is included in the USMP; (3) planting littoral zones; (4) some utilization of onsite wetlands for additional treatment downstream of the SWMS by discharging into the Eastern Preserve wetland system through WCS-2 at times; (5) a site-specific water quality evaluation for the Project’s pre- and post-development conditions is addressed by the Harper Report (RJ Ex. 25); and (6) a Water Quality Monitoring Plan, which is required under the USMP. Petitioner erroneously argued that the Bates Memo does not allow the 50 percent treatment to occur in the preserve wetlands within the development. The argument stems from the phrase “in addition to the extra 50% treatment volume” at the bottom of page 3 of the memo, and bullet No. 5 on page 4, which recommends “treatment in wetlands downstream of the SWMS.” Absent any analysis of her own or any experience in the application of the Bates Memo, Ms. Hecker contended that the Bates Memo precludes the use of onsite wetlands. The argument is contradictory and confusing because Hecker admits that the preserve wetlands within the development are not downstream of the SWMS, and acknowledges that the Eastern Preserve is the wetland downstream of the SWMS. Ms. Hecker, along with Mr. Boler, ultimately admitted that criteria exist allowing the use of wetlands as part of the SWMS. Mr. Waterhouse, who has vastly more experience with the District’s water quality criteria than Ms. Hecker, and participated in the drafting of the Bates Memo, refuted Ms. Hecker’s position about the intent of the Bates Memo, citing to Section 5.3.1 of the BOR as additional support for the use of onsite wetlands for water quality treatment. In addition to these water quality submittals, G.L. Homes also provided a water quality analysis specific to the Project prepared by Dr. Harvey Harper. The analysis, entitled “Evaluation of Water Quality Issues Related to the Saturnia Falls Project” (RJ Ex. 25), referred to as the “Harper Report,” analyzed the Project’s pre- and post-development pollutant loads to help demonstrate that the Project would not contribute to the impairment of the Cocohatchee Canal. The Harper Report estimated the removal efficiency of the SWMS lakes to determine how much pollutant removal would be achieved by the lakes on the Project. Dr. Harper relied solely on the lakes without accounting for any of the additional treatment expected to occur in the wetlands or from the source control BMPs contained in the USMP, which means his report errs on the conservative side in those respects. Although the Canal is impaired for dissolved oxygen (DO), it is uncontested that a nutrient analysis is the appropriate method to assess DO conditions. The Harper Report, as summarized in the table below, concluded that the Project would result in lower post-development loading rates than the pre-development loading rates for nutrients. Nitrogen (N) Pre-Development Total N Load 390.6 kg Post-Development Removal (Dry4) Total N Load 204.99 kg Post-Development Removal (Wet5) Total N Load 194.69 kg Phosphorus (P) Pre-development Total P Load 15.12 kg Post-Development Removal (Dry) Total P Load 5.29 kg Post-Development Removal (Wet) Total P Load 4.49 kg The Harper Report compared the Post-Development Total Basin Loading numbers for P (136.43 kg) and for N (922.57 kg), on an average annual basis, coming from the residential areas (roads and lots) to the Post-Development Removal Loads for P [5.29 kg (dry) and 4.49 kg (wet)] and for N [204.99 kg (dry) and 194.69 kg (wet)] discharging from the lakes after treatment. The calculations demonstrated that approximately 77 percent of N would be removed by the lakes in the dry season conditions and approximately 78 percent would be removed in the wet season conditions. Approximately 95 percent of P would be removed by the lakes in both the dry and wet season conditions. Additional removal and treatment above these percentages is expected due to a number of other source control measures not accounted for in the Harper Report. The Harper Report also concluded that iron discharges from the SWMS would be extremely low and substantially less than the Class III standard of 1 mg/l. Petitioner presented no evidence to counter this conclusion. Petitioner questioned the validity of Harper Report’s use of wetlands as part of the loading calculations, and attacked his underlying methodology. Petitioner's witnesses called it "bad science" to attribute pollutant loading to wetlands because wetlands remove nutrients from the water column and because attributing nutrient loading to wetlands would make it easier to obtain a permit to destroy wetlands. However, none of Petitioner's witnesses were able to credibly defend the position that wetlands cannot contribute to the loading calculations and at times conceded to this fact. Generally, wetlands can in fact contribute some nutrients that pass through without being taken up by wetland vegetation, either because the water is moving through the wetlands too fast or because the nutrient load in the wetland overtaxes the wetland's ability to take up nutrients. That does not necessarily mean that the nutrient load attributable to a wetland will be greater than the load attributable to other post-development land uses. Indeed, the only post-development land use characterized by Dr. Harper as having a lower pollutant load than a wetland was low- intensity commercial, and that was only for total nitrogen. (Dr. Harper's use of data from some distance away in Corkscrew Swamp as the basis for characterizing the pollutant loadings for the onsite wetlands, instead of data from a closer monitoring station in the Cocohatchee Canal weir, was justified; his use of that data instead of collecting data onsite was a valid criticism, but there was not enough evidence in support of that criticism to undermine the additional assurance derived from Dr. Harper's work.) As for the argument that the "Harper method" makes it easier to obtain a permit to destroy wetlands, there are many regulatory criteria other than just water quality that are supposed to be considered before a permit is issued to impact wetlands. Another component of Petitioner’s attack on the Project’s water quality compliance included vague references to an 80 percent removal efficiency. In actuality, the 80 percent removal efficiency is not adopted or incorporated into any District rule criteria. In any event, the Harper Report and other evidence give reasonable assurance that, along with other source controls, the proposed SWMS probably will remove 80 percent of pollutants on an average annual basis. Lastly, the District clarified why Section 4.2.8 of the BOR, regarding cumulative impacts for water quality, was not applicable in this case. Since no contribution or impacts to water quality are expected, a cumulative impacts analysis is not necessary to assess the extent of the impacts. The combination of all these water quality measures, when taken together, give reasonable assurance that the 2006 ERP will not adversely affect the quality of receiving waters such that State water quality standards will be violated, and that Rule 40E-4.301(1)(e) will be satisfied. Engineering Principles (Rule 40E-4.301(1)(i)) Rule 40E-4.301(1)(i) requires an applicant to provide reasonable assurances that the SWMS will be capable, based on generally-accepted engineering and scientific principles, of being performed and of functioning as proposed. Section 7.0 of the BOR specifies implementation of the Rule. Since WCS-1 and WCS-2 are proposed as operable structures, the District is requiring that G.L. Homes enter into an operable Control Structure Agreement with the Big Cypress Basin Board. The agreement provides for the Big Cypress Basin Board to operate and maintain the two operable structures, instead of the Saturnia Falls Homeowners Association. As Mr. Waterhouse explained, this is a reasonable and logical requirement. WETLAND ERP CRITERIA As with the SWMS criteria, the wetland criteria review of this modification compares the Project to 2004 ERP. Functions To Fish & Wildlife And Listed Species (Subsection 40E- 4.301(1)(d)) Rule 40E-4.301(1)(d) requires an applicant to provide reasonable assurances to demonstrate that the construction, alteration, operation, maintenance, removal, or abandonment of a SWMS will not adversely impact the value of functions provided to fish and wildlife and listed species by wetlands and other surface waters. Section 4.2.2 of the BOR provides further specificity to ensure that a project will not impact the abundance and diversity of fish, wildlife and listed species. The 2006 ERP makes no changes or modification to the 280 acres of wetland impacts allowed in the 2004 ERP. Since the impacts remain the same, the 2006 ERP does not modify or affect the values the wetlands provide to either the abundance or diversity of fish and wildlife, compared to the 2004 ERP. Review of this criterion was determined in the 2004 ERP and should not be re- opened. Section 4.2.2.3 of the BOR addresses the functional assessment of the values provided by the Project’s wetlands. The wetland values were not reassessed in the 2006 ERP because the wetland impacts remain the same as in the 2004 ERP. The evidence was that the current value of the wetlands remains low due to heavy melaleuca infestation, with 75 percent coverage in most locations. While Petitioner may disagree with how the current wetlands were evaluated, nothing in this modification request requires a reassessment of their value. Accordingly, the value of the wetlands currently onsite has not changed, and this criteria should not be re-opened. Section 4.2.2.4 of the BOR requires that a regulated activity not adversely impact the hydroperiod of wetlands or other surface waters. Specifically, the criterion states as follows: [An] applicant must provide reasonable assurances that the regulated activity will not change the hydroperiod of a wetland or other surface water, so as to adversely affect wetland functions or other surface water functions as follows: Whenever portions of a system, such as constructed basins, structures, stormwater ponds, canals, and ditches, are reasonably expected to have the effect of reducing the depth, duration or frequency of inundation or saturation in a wetland or other surface water, the applicant must perform an analysis of the drawdown in water levels or diversion of water flows resulting from such activities and provide reasonable assurance that these drawdowns or diversions will not adversely impact the functions that wetlands and other surface waters provide to fish and wildlife and listed species. Increasing the depth, duration, or frequency of inundation through changing the rate or method of discharge of water to wetlands or other surface waters or by impounding water in wetlands or other surface waters must also be addressed to prevent adverse effects to functions that wetlands and other surface waters provide to fish and wildlife and listed species. Different types of wetlands respond differently to increased depth, duration, or frequency of inundation. Therefore, the applicant must provide reasonable assurance that activities that have the potential to increase discharge or water levels will not adversely affect the functioning of the specific wetland or other surface water subject to the increased discharge or water level. Whenever portions of a system could have the effect of altering water levels in wetlands or other surface waters, applicants shall be required to: monitor the wetland or other surface waters to demonstrate that such alteration has not resulted in adverse impacts; or calibrate the system to prevent adverse impacts. Monitoring parameters, methods, schedules, and reporting requirements shall be specified in permit conditions. Subsection (a) applies if the Project was expected to reduce the depth, duration, or frequency of inundation or saturation in any of the Project’s wetlands. Subsection (b) applies if the Project is expected to increase the depth, duration, or frequency of inundation through changing the rate or method of discharge of water to wetlands or other surface waters. Subsection (c) requires monitoring of the wetlands to determine the effects of the hydrological changes. Persuasive engineering and biological testimony demonstrated that no change (neither a reduction nor an increase) in the hydrology on the preserved wetlands or the Eastern Preserve will occur from what was permitted in the 2004 ERP. By analyzing the various biological indicators onsite, control elevations within the SWMS and the wetlands (both the Eastern Preserve and onsite preserve wetlands) were set at 13.4 feet NGVD, which is the WSWT. This matched the control elevation under the 2004 ERP. Ms. Bain and Mr. Passarella both testified that the hydroperiods in the wetlands would remain the same as in the 2004 ERP during normal conditions, the most important indicator of wetland success, and that the wetlands would be unaffected by the modifications. The WSWT is a common indicator of average wet season water levels in a wetland, which generally is the best indicator of maintaining appropriate hydrology and thereby maintaining the expected level of wetland function. However, as indicated, the deep lakes next to preserved wetlands within the SWMS could draw down those wetlands during dry conditions; but the potential lake effect was present in the 2004 ERP. Both Dr. Van Lent and Jason Lauritsen conceded that, with the elimination of the Flow-way, the hydrology in the Eastern Preserve would be better in the 2006 ERP than in the 2004 ERP. But, as indicated, there was no detailed analysis of wetland impacts from the 2006 modifications because G.L. Homes and the District took the position that no detailed analysis was necessary since the control elevation remained unchanged. Petitioner attempts to cast doubt as to the level of data reviewed by the District to conclude that no changes will occur in the hydrology of the wetlands. But the additional modeling recommended by Petitioner is unnecessary and unwarranted in the face of the biological indicators collected from the Project site over several years. These biological indicators are reliable and customary information to use when ensuring compliance with Section 4.2.2.4. They also resulted in the same control elevation that was set in the 2004 ERP. Petitioner never disputed the credibility of the biological indicators, nor did they present any contrary evidence (either a model or otherwise) that purported to show the wetlands would not function as permitted in the 2004 ERP based on these indicators. Instead, they simply asserted that additional analysis should be done. Although not precipitated by this criterion, G.L. Homes will conduct monitoring of the wetlands by implementing the Monitoring Plan as additional reasonable assurances that the wetlands will not be affected. Secondary Impacts To Water Resources (Subsection 40E- 4.301(1)(f)) Rule 40E-4.301(1)(f) and Section 4.2.7 of the BOR require a demonstration that the proposed activities will not cause adverse secondary impacts to the water resources. No secondary impact analysis was done because the site plan and wetland impacts remained unchanged from the 2004 ERP. Additional Wetland Provisions (Subsection 40E-4.301(3) and 40E- 4.302 Subsection 40E-4.301(3) addresses the remaining wetland criteria in the BOR, including mitigation and elimination or reduction of impacts. Rule 40E-4.302(1)(b) addresses the cumulative impacts analysis contained in Section 4.2.8 of the BOR. No assessment of elimination and reduction of wetland impacts was done because the wetland impacts remain unchanged from the 2004 ERP. The 2006 modifications do not warrant another elimination and reduction analysis. No cumulative impacts analysis is necessary because, as in the 2004 ERP, all proposed mitigation for wetland impacts are within the same drainage basin (West Collier) as the impacts. Logically, if the mitigation proposed for the 2006 modifications fully offsets the wetland impacts, there will be no impacts to cumulate with others impacts of other development activities. On the other hand, if the mitigation does not fully offset the impacts, the application will be denied for that reason, without the need for a cumulative impacts analysis. Section 4.3 of the BOR specifies criteria for mitigation proposed as part of an ERP application. Both G.L. Homes and the District took the position that, similar to the wetland impacts, the proposal for both onsite and offsite mitigation did not change from the 2004 ERP, and that no detailed analysis of the mitigation proposal, or comparison to wetland impacts, was required. Indeed, the onsite mitigation proposal--which includes preservation, restoration of wetlands by removing melaleuca, and the creation of four shallow depressional areas for wood stork habitat--remains unchanged from the 2004 ERP, including the Grading and Planting Plan, the Monitoring Plan, and Mitigation, Monitoring and Maintenance Plan. It was proven that the Flow- way footprint never was considered to be either a wetland impact or a part of the mitigation proposal, and that its removal from the Eastern Preserve does not decrease the amount or the value of the mitigation. (Actually, its removal probably increases the value of the mitigation, but the amount of any such increase was not analyzed or quantified.) It also was proven that the onsite wetlands will not be adversely affected as a result of the 2006 modifications so as to decrease their mitigation value, as Petitioner contended. Petitioner also raised the concern that the wetland mitigation within the SWMS would not function as permitted in the 2004 ERP due to the storage of the additional 50 percent within those wetlands, thereby affecting the mitigation assessment. However, as already indicated, when the water reaches those internal wetland preserves, it will have been treated to Class III water quality standards. In addition, operationally, the water also would have been stored in those wetlands under the 2004 ERP; the only difference is that the 2006 modifications calculate and claim credit for the storage, which was not necessary or done for the 2004 ERP. In addition to the onsite mitigation, G.L. Homes previously had been permitted to provide offsite mitigation in the form of a $1.26 million cash payment to the District. The payment was for the purchase, restoration, and enhancement of 154 acres of lands within the boundaries of the District’s environmental restoration project called CREW. Payment of cash for use by the District is addressed in Section 4.3.1.8 of the BOR. These types of offsite mitigation opportunities are referred to as a regional offsite mitigation areas or “ROMAs.” Unlike most mitigation banks, ROMAs, such as CREW, involve a land acquisition component and are owned and operated by the District. G.L. Homes and the District take the position that, under Section 4.3.1.8 of the BOR, and the previous 2004 ERP, G.L. Homes’ responsibilities ended when it paid the cash donation to the District. They take the position that the mitigation is unaffected by the modification, and that re- opening of the offsite mitigation requirement is unwarranted. However, while the Staff Report characterizes the $1.26 million payment as "a substantial amount of up-front mitigation for the proposed wetland impacts," no land in CREW has been purchased as of yet. In addition, the evidence was that, as a result of the passage of time and market forces, it unlikely that 154 acres of land within CREW can be purchased, enhanced, and maintained with the funds paid to the District under the 2004 ERP. Indeed, for a number of reasons, including the lack of willing sellers to participate in the CREW ROMA, in 2004 the District stopped accepting payment of funds to purchase land in CREW as an acceptable form of mitigation for wetland impacts. As a result, it no longer can be said that the proposed mitigation package, which includes and relies on the use of the funds to purchase, enhance, and maintain 154 acres in CREW, fully offsets the proposed wetland impacts. (In addition, under Rule 40E- 4.331(2)(a), any new mitigation proposal would have to analyzed using the Uniform Mitigation Assessment Methodology, Rule 62- 345.100.) Finally, if the offsite mitigation outside the drainage basin is used, a cumulative impact analysis will be necessary. Public Interest Test (Rule 40E-4.302(1) In addition to complying with Rule 40E-4.301, since the Project is located in, on, or over wetlands, G.L. Homes must also address the criteria contained in the Public Interest Test, Rule 40E-4.302 and Section 4.2.3 of the BOR, by demonstrating that the Project is not contrary to the public interest. (Since the Project is not within an OFW or does not significantly degrade an OFW, the higher standard of “clearly in the public interest” does not apply.) The District considers and balances the following seven factors in determining compliance with the test: Whether the regulated activity will adversely affect the public health, safety, or welfare or the property of others (40E-4.302(1)(a)1.); 93. G.L. Homes provided reasonable assurances that the Project will not cause any onsite or offsite flooding, nor will the Project cause any adverse impacts to adjacent lands because the SWMS is designed in accordance with District criteria and the post-development peak rate of discharge does not exceed the allowable discharge rate. The Project is considered neutral as to this factor. However, it appears from the evidence that the 2002 ERP and the 2004 ERP viewed those proposals as positive as to this factor due to the inclusion of the Flow-way in an effort to alleviate regional flooding. Whether the regulated activity will adversely affect the conservation of fish and wildlife, including endangered or threatened species, or their habitats (40E-4.302(1)(a)2.); 94. As indicated, the Project proposes onsite mitigation which has not changed from the 2004 ERP, but passage of time and market conditions have changed the offsite mitigation proposal. As a result, it no longer can be said based on the evidence in this case that the overall mitigation proposal offsets potential impacts to fish and wildlife, including wood stork habitat, even though the mitigation plan for the Eastern Preserve would improve wood stork habitat from its current melaleuca-infested condition. For these reasons, the Project cannot be considered positive as to this factor. Whether the regulated activity will adversely affect navigation or the flow of water or cause harmful erosion or shoaling (40E-4.302(1)(a)3.); 95. The Project will not adversely affect navigation. In addition, no evidence was introduced to suggest that the Project’s construction would result in harmful erosion or shoaling. The balance of the testimony pertaining to the flow of water in the Project indicated that it will not be adversely affected. Although there will be reduced discharge to the Eastern Preserve as a result of the 2006 modifications, the Project is considered neutral as to this factor. In contrast, it appears from the evidence that the 2002 ERP and the 2004 ERP would have viewed those proposals as positive as to this factor due to the inclusion of the Flow-way in an effort to alleviate regional flooding. Whether the regulated activity will adversely affect the fishing or recreational values or marine productivity in the vicinity of the activity (40E-4.302(1)(a)4.); 96. The Project does not provide any fishing, recreational values, or marine productivity. Therefore, the Project is neutral as to this factor. Whether the regulated activity will be of a temporary or permanent nature (40E-4.302(1)(a)5.); 97. The Project is permanent in nature and is considered neutral as to this factor because reasonable assurances have not been given that mitigation will fully offset the permanent wetland impacts. Whether the regulated activity will adversely affect or will enhance significant historical and archaeological resources under the provisions of Section 267.061, F.S. (40E- 4.302(1)(a)6.); 98. There are no significant archeological or historical resources that will be adversely affected by the Project. In addition, no new information was received by the District indicating that historical resources would be impacted. Therefore, the Project is considered neutral as to this factor. The current condition and relative value of functions being performed by areas affected by the proposed regulated activity (40E-4.302(1)(a)7.); As found, reasonable assurance has not been given that the current condition and relative value of functions being performed by the areas affected by the Project will be fully offset by mitigation. Therefore, the Project should be considered negative as to this factor. On balance, the Project, overall, is negative when measured against these criteria. Accordingly, it must be determined that reasonable assurance has not been given that the Project, as a whole, is not contrary to the public interest.
Conclusions DOAH has jurisdiction over the parties and the subject matter of this proceeding pursuant to Sections 120.569 and 120.57, Florida Statutes. Under Section 403.412(6), Florida Statutes: Any Florida corporation not for profit which has at least 25 current members residing within the county where the activity is proposed, and which was formed for the purpose of the protection of the environment, fish and wildlife resources, and protection of air and water quality, may initiate a hearing pursuant to s. 120.569 or s. 120.57, provided that the Florida corporation not for profit was formed at least 1 year prior to the date of the filing of the application for a permit, license, or authorization that is the subject of the notice of proposed agency action. It is concluded that use of virtually the identical statutory language is not mandatory for standing under this statute and that the Conservancy meets the requirements for standing under this statute. Party status under Sections 120.569 and 120.57, Florida Statutes, also can be based on proof that "substantial interests will be affected by proposed agency action." § 120.52(12)(b), Fla. Stat. This requires proof of "an injury in fact which is of sufficient immediacy and is of the type and nature intended to be protected" by the substantive law. § 403.412(5), Fla. Stat. See also Agrico Chemical Co. v. Dept. of Environmental Reg., 406 So. 2d 478 (Fla. 2d DCA 1981). An organization like the Conservancy may allege and prove either that its own substantial interests or those of a substantial number of its members will be affected. See Florida Home Builders Ass'n v. Dept. of Labor and Employment Security, 412 So. 2d 351 (Fla. 1982); Farmworker Rights Organization, Inc. v. Dept. of Health, etc., 417 So. 2d 753 (Fla. 1st DCA 1982). In addition, Section 403.412(5), Florida Statutes, provides: No demonstration of special injury different in kind from the general public at large is required. A sufficient demonstration of a substantial interest may be made by a petitioner who establishes that the proposed activity, conduct, or product to be licensed or permitted affects the petitioner's use or enjoyment of air, water, or natural resources protected by this chapter. The Conservancy made a sufficient demonstration under this statute that the proposed 2006 ERP will affect its use or enjoyment of water and natural resources protected by Chapter 403. As a result, the Conservancy also proved standing under Sections 120.569 and 120.57, Florida Statutes. Because the Conservancy has "citizen standing" under Section 403.412(6), Florida Statutes, as well as standing under Sections 120.569 and 120.57, Florida Statutes, it is not necessary to decide G.L. Homes' challenge to the Conservancy's "associational standing." It also is unnecessary and premature to determine whether any party would be entitled under Section 120.68(1), Florida Statutes, to judicial review of the final order entered in this case as "a party who is adversely affected." It is believed that such a determination, if it becomes necessary, can be made upon the evidence in the record. BURDENS OF PROOF AND PERSUASION This is a de novo proceeding designed to formulate final agency action. See Florida Department of Transportation v. J.W.C. Company, Inc., 396 So. 2d 778, 786-787 (Fla. 1st DCA 1981); and § 120.57(1)(k), Fla. Stat. As an ERP applicant, G.L. Homes has the ultimate burden of proof and burden of persuasion. See J.W.C. Company, Inc., 396 So. 2d at 786-789. In light of the evidence presented in this case, the option suggested in the J.W.C. case to shift the burden of presenting evidence was not useful. ERP CRITERIA The permitting criteria for G.L. Homes' proposed Project are found in Parts I and IV of Chapter 373, Florida Statutes, Florida Administrative Code Chapter 62-345, Florida Administrative Code Rules 40E-4.301 and 40E-4.302, and the BOR, which is adopted by reference in Rule 40E-4.091(1)(a). For its proposed Project to be permitted, G.L. Homes must give reasonable assurance of compliance with those criteria. Issuance of an ERP must be based solely on compliance with applicable permit criteria. See Council of the Lower Keys v. Charley Toppino & Sons, Inc., 429 So. 2d 67 (Fla. 3d DCA 1983). Reasonable assurance contemplates a substantial likelihood that the project will be successfully implemented. See Metropolitan Dade County v. Coscan Florida Inc., 609 So. 2d 644 (Fla. 3d DCA 1992). Absolute guarantees are not necessary, and a permit applicant is not required to eliminate all contrary possibilities or address impacts that are only theoretical and cannot be measured in real life. See City of Sunrise v. Indian Trace Community Development District, et al., DOAH Case No. 91- 6036, 1991 Fla. ENV LEXIS 6997, 92 ER FALR 21 (DOAH 1991, SFWMD 1992); Manasota-88, Inc. v. Agrico Chemical Co. and Department of Environmental Regulation, DOAH Case No. 87-2433, 1990 Fla. ENV LEXIS 38 (DOAH Jan. 5, 1990; DER Feb. 19, 1990). The test in this case is not whether the District properly evaluated the 2004 ERP, but whether the areas proposed to be modified or affected by the modification met the applicable conditions for issuance. When a permittee seeks to modify an existing permit, the District’s review includes only that portion of the existing permit that is proposed to be modified or is affected by the modification. Fla. Admin. Code R. 40E-4.331(2). See also Friends of the Everglades, Inc., v. Dep't. of Envt'l. Reg., 496 So. 2d 181, 183 (Fla. 1st DCA 1986); Behrens v. Boran, ORDER NO. SWF 02-052, ER FALR 257 (SWFWMD Aug. 27, 2002), DOAH Case No. 02-0282, 2002 Fla. ENV LEXIS 192 (DOAH July 29, 2002); Kunnen v. Southwest Fla. Water Mgmt. Dist., ORDER NO.: SWF 02-003, DOAH Case No. 01-2571, 2002 Fla. ENV LEXIS 4 (DOAH Dec. 17, 2001; SWFWMD Jan. 29, 2002). The "reasonable assurance" requirement applies to the activities for which permitting is presently sought and, except to the extent affected by the proposed modification, does not burden the applicant with "providing 'reasonable assurances' anew with respect to the original permit." Friends of the Everglades, supra at 183. Accordingly, Petitioner’s arguments that certain criteria must be revisited because they were not properly addressed in previous permits is irrelevant to this proceeding; but previously-decided criteria must be reviewed again to the extent that proposed modifications affect those criteria. CONSIDERATION OF THE ERP CRITERIA In order to provide reasonable assurances that a Project will not be harmful to the water resources of the District, the applicant must satisfy the conditions for issuance set forth in Rules 40E-4.301 and 40E-4.302. In this case, the evidence must be viewed under the rule pertaining to modification of permits. Rule 40E-4.331(2)(a) requires the District to review permit modification applications “using the same criteria as new applications for those portions of the project proposed for, or affected by, the modification.” Surface Water Management Criteria Water Quantity and Flooding Rule 40E-4.301(1)(a) and (b) address adverse water quantity to receiving water bodies and flooding either onsite and offsite. As found, G.L. Homes complied with the applicable criteria to satisfy both of these rules. Storage and Conveyance Rule 40E-4.301(1)(c) requires G.L. Homes to provide reasonable assurances that the Project will not adversely impact storage and conveyance capabilities. As found, the submittal of the Taylor Report provides reasonable assurances that the Project will not adversely affect the conveyance of water. Moreover, although some criticism was aimed at the choice of the friction coefficients used in the Taylor Report, the evidence as a whole proves that the coefficients in the Taylor Report are reasonable and scientifically defensible. Water Quality Rule 40E-4.301(1)(e) requires G.L. Homes to provide reasonable assurances that the Project will not result in adverse water quality impacts. As found, coupled with the clarifications/additions to the USMP suggested by Dr. Harper and accepted by G.L. Homes, the numerous water quality submittals demonstrated compliance with this Rule, including assurances regarding the impairment status of the Cocohatchee Canal. While Petitioner leveled numerous criticisms against the Project’s ability to comply with water quality, none of the criticisms rose to the level of “contrary evidence of equivalent quality.” Taken as whole, and balanced against Petitioner’s lack of equivalent evidence and credible witnesses, the preponderance of the evidence demonstrates that, with the Monitoring Plan additions/clarifications, G.L. Homes meets the District’s water quality criteria. Engineering Principles As required by Rule 40E-4.301(1)(i), G.L. Homes has provided reasonable assurances to demonstrate that the SWMS will be capable, based on generally accepted engineering and scientific principles, of being performed and functioning as proposed. Wetlands Criteria Elimination and Reduction, Secondary and Cumulative Impacts 115. Rules 40E-4.301(1)(f) and (2) and 40E-4.302(1)(b) require G.L. Homes to demonstrate compliance with the following District criteria pertaining to wetland impacts: (1) elimination and reduction; (2) secondary impacts; and (3) cumulative impacts. As found, the 2006 ERP proposes no changes or modifications to the wetlands impacts approved in the 2004 ERP. Therefore, Petitioner’s arguments that these assessments were either not done or done improperly in the previous permit are not valid bases to relitigate those issues. Accordingly, elimination and reduction, secondary impacts, and cumulative impacts addressed in the 2004 ERP are not properly litigated in this modification proceeding, except to the extent that they are affected by the proposed modifications. While the proposed modifications do not affect either elimination and reduction or secondary impacts, they could affect cumulative impacts, depending on whether offset mitigation needed to fully offset wetland impacts is accomplished in the West Collier drainage basin. Wetland Values and Functions to Fish and Wildlife Rule 40E-4.301(1)(d) requires G.L. Homes to provide reasonable assurances that the Project will not adversely impact the value and functions provided to fish and wildlife and listed species by wetlands. Rule 40E-4.301(3) requires an applicant to comply with the District’s mitigation provisions in the BOR. As found, Petitioner’s contention that the revised SWMS affected the values and functions provided to fish and wildlife, particularly the wood stork, was not supported by the weight of the evidence as to onsite mitigation. However, the passage of time and market conditions affected the offsite mitigation proposed and presumably evaluated for the 2004 ERP, and the impacts and mitigation were not re-evaluated for the 2006 ERP. Under Rule 40E-4.331(2), they must be re-evaluated using UMAM, as required by Rule 62-345.100. Public Interest Test The public interest test is limited in scope to only the seven factors set forth in Rule 40E-4.302(2). As found above, after a balancing of the factors, reasonable assurance was not provided that the Project is not contrary to the Public Interest.
Recommendation Based upon the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the proposed 2006 ERP be denied. If it is granted, it should include the additions/clarifications to the USMP suggested by Dr. Harper and accepted by G.L. Homes. DONE AND ENTERED this 15th day of May, 2007, in Tallahassee, Leon County, Florida. S J. LAWRENCE JOHNSTON Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 15th day of May, 2007.
Findings Of Fact Petitioner is the owner and developer of a parcel of land located on the eastern side of the northern end of Key Largo, Monroe County, Florida. Located in the middle of that parcel is a dead-end east-west canal approximately two feet deep at its eastern end where it opens to the Atlantic Ocean and approximately twenty feet deep at its western dead-end. The canal is approximately fifty feet wide. A plug at the mouth of the canal previously prevented boat traffic from entering and exiting the canal. Petitioner's predecessor in title permitted the plug to partially erode, and Petitioner's president had some of the boulders which helped form the plug removed. The digging of the canal, the placement of the plug, and the partial removal of the plug were performed without benefit of state and federal permits. Petitioner's development plan is that twenty single-family homes will surround the canal, with each home being serviced by a septic tank and a boat dock. On the oceanside of the partial plug is a small depressed area which was dredged at the same time that the canal itself was dredged. Surrounding that depressed area is very shallow water. Petitioner proposes to remove the plug from the existing canal and shallow the canal to a uniform depth of -10 feet and two years later to a uniform depth of -6 feet. Petitioner further proposes to dredge an access channel from the mouth of the canal northward for a distance of approximately 480 feet where it would join with an existing channel. The access channel proposed to be dredged would be approximately fifty feet wide and six feet deep at low tide. The area to be dredged to create the access channel is classified as Class III waters, is within the Florida Keys Special Waters, and is also classified as Outstanding Florida Waters. The waters outside the existing canal where Petitioner proposes to dredge the access channel are also located within John Pennekamp State Park, the site of a natural coral reef. Due to the disparity in depths between the shallow waters outside the existing canal which are only one or two feet deep and the depth of the existing canal which is as deep as twenty feet, the canal itself experiences a very long flushing time. The lengthy flushing time causes the waters in the existing canal to fall below minimum state water quality standards The area proposed to be dredged for the navigational access channel is thickly vegetated by a productive seagrass and algae community. The area is in excellent condition, and the seagrass and algae community is very healthy. The seagrass and algae communities serve as habitat for thousands of organisms, including juvenile lobster and other small plants and animals; serve as a food source for animals; stabilize sediments through their root structures; reduce pollution by filtering pollutants from the water; are a natural feature of the John Pennekamp State Park, and are part of the ecological unit that is important for the survival of reef corals. The proposed dredging of the access channel would destroy an area of approximately one-half acre. Excessive turbidity is often a problem with dredge and fill activities, and reef coral need clear water for survival. Once dredged, the proposed access channel would not be expected to revegetate. Further, the proposed dredged channel will violate state water quality standards for dissolved oxygen. The proposed navigational access channel would connect the mouth of the existing canal with the Post channel to the north of Petitioner's property. The Post channel dug in approximately 1971 is also six feet deep, violates state water quality standards for dissolved oxygen, and has never revegetated even though replanting of vegetation has been attempted. The destruction of the one-half acre area of healthy productive habitat would adversely affect fish and other marine wildlife, resulting in a decrease in fishery production and marine productivity. The residential subdivision will be a source of pollutants from, among other things, septic tanks, fertilizers, stormwater run-off from paved areas, boats, and boat engines, into the existing canal in violation of state water quality standards for Class III waters and would lower the ambient water quality of the adjacent Outstanding Florida Waters. The long flushing time of the canal, even if shallowed as proposed, will result in the waters of the canal failing to meet state water quality standards. Any pollutants or organic material entering or blown into the canal will remain in the canal to be broken down by bacteria which consume oxygen, resulting in low dissolved oxygen in violation of state water quality standards. Further, pollutants will be exported periodically into the receding waters outside the canal, resulting in degradation of those Outstanding Florida Waters. The project is not in the public interest since the project will result in water quality violations and in the destruction of an area of highly productive shallow water habitat. The adverse cumulative impacts of allowing riparian landowners along the Florida Keys to dredge access channels are overwhelming.
Recommendation Based upon the foregoing Findings of Fact and Conclusions of Law, it is, therefore, RECOMMENDED that a Final Order be entered: Denying Petitioner's application for a permit for its proposed project, and Dismissing Intervenor Izaak Walton League, Mangrove Chapter, as a party to this proceeding. DONE AND ORDERED in Tallahassee, Leon County, Florida, this 5th day of November, 1989. LINDA M. RIGOT Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, FL 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 30th day of November, 1989. APPENDIX TO RECOMMENDED ORDER DOAH CASE NO. 88-1813 Petitioner's proposed findings of fact numbered 1 and 2(a) have been rejected as being contrary to the weight of the evidence in this cause. Petitioner's proposed findings of fact numbered 2(b) and 2(d) have been rejected as not being Supported by the evidence in this cause. Petitioner's proposed finding of fact numbered 2(c) has been rejected as being irrelevant to the issues under consideration in this cause. The Department's proposed findings of fact numbered 1-10 and 12-22 have been adopted either verbatim or in substance in this Recommended Order. The Department's proposed finding of fact numbered 11 has been rejected as being unnecessary for determination of the issues herein. Intervenor's proposed findings of fact numbered 1- 13, 16, 18, 20, and 21 have been adopted either verbatim or in Substance in this Recommended Order. Intervenor's proposed finding of fact numbered 15 has been rejected as being unnecessary for determination of the issues in this cause. Intervenor's proposed finding of fact numbered 19 has been rejected as not constituting a finding of fact but rather as constituting a conclusion of law. COPIES FURNISHED: Pamela P. Garvin, Esquire Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32399 Cayetano F. Alfonso, President Sunland Estates, Inc. 17400 Northwest 17th Avenue Miami, Florida 33056 Maureen B. Harwitz, Esquire 2390 Bayview Lane North Miami, Florida 33181 Daniel H. Thompson, General Counsel Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32399-2400 Dale H. Twachtmann, Secretary Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32399-2400