Elawyers Elawyers
Washington| Change
Find Similar Cases by Filters
You can browse Case Laws by Courts, or by your need.
Find 49 similar cases
CITY OF SANIBEL, TOWN OF FORT MYERS BEACH, AND CITY OF CAPE CORAL vs SOUTH FLORIDA WATER MANAGEMENT DISTRICT, 18-005114RP (2018)
Division of Administrative Hearings, Florida Filed:Fort Myers, Florida Sep. 24, 2018 Number: 18-005114RP Latest Update: Oct. 16, 2019

The Issue The issues to be determined in this proceeding are: whether the challengers have standing; and (2) whether Proposed Rule 40E-8.221(2) is an invalid exercise of delegated legislative authority.

Findings Of Fact Based on the parties' stipulations and the evidence adduced at the final hearing, the following findings of fact are made: The Parties The District is a government entity existing and operating pursuant to chapter 373, Florida Statutes, as a multi- purpose water management district. The District has the power and duty to adopt MFLs consistent with the provisions of part I of chapter 373. Sanibel is a barrier island sanctuary in Lee County and a duly-formed municipality with a population of more than 6,000. Sanibel is situated at the mouth of the Caloosahatchee River, within the Caloosahatchee's greater estuarine area. Sanibel is known primarily for its natural beauty, including clear blue waters, shell beaches, world-class sport fisheries, and wildlife refuges. That is why tourists come from around the globe to visit Sanibel, and why Sanibel's residents move and remain there. Sanibel actively participated in the rulemaking process for the Proposed Rule from its inception. Sanibel submitted two technical comment letters to the District during the development of the Proposed Rule. Sanibel's natural resources director, James Evans, attended numerous public and technical meetings associated with the development of the Proposed Rule, speaking on the record at each of the public meetings prior to the adoption hearing by the District's governing board. The Town, located on Estero Island in Lee County, is also a barrier island community and duly-formed municipality with a population of more than 6,000. The Town is situated just south of the mouth of the Caloosahatchee River and on the southeastern edge of the Caloosahatchee River's greater estuarine area. The Town is known primarily for its natural beauty, including clear blue waters, shell beaches, world-class sport fisheries, and wildlife refuges. Cape Coral is a duly-formed municipality in Lee County and is the largest city between Tampa and Miami, with a population in excess of 150,000. Cape Coral is bordered on the south by the Caloosahatchee River and has over 400 miles of navigable canals and waterways, all of which are within the Caloosahatchee River's greater estuarine area. In addition, Cape Coral has an assigned load reduction allocation under the Basin Management Action Plan (BMAP) for the Caloosahatchee River Estuary (CRE) due to it being designated as impaired for dissolved oxygen and nutrients. Maintaining sufficient flow in the Caloosahatchee River would have a direct impact on Cape Coral's ability to meet its assigned load reduction allocation. In addition to living on or near the water, a substantial number of the residents of Sanibel, Cape Coral, and the Town engage in water-based recreational activities such as swimming, fishing, boating, kayaking, paddle boarding, bird watching, and nature observation in and around the Caloosahatchee River's greater estuarine area. Fort Myers is a duly-formed municipality in Lee County and has a population of approximately 80,000. Fort Myers is bordered by the CRE throughout its entire jurisdictional boundary. Fort Myers owns and maintains a yacht basin (Ft. Myers Yacht Basin), which includes a mooring field and an anchorage field in the Caloosahatchee River. Fort Myers presented testimony that commercial crabbing and recreational fishing have declined and that it has suffered economic harm due to water quality issues. Fort Myers owns the submerged land in the Caloosahatchee River from Marker 39 to Marker 58, and islands in the river. One such island will be used as a park for recreational activities such as canoeing, kayaking, and hiking for visitors to enjoy the Caloosahatchee River. Fort Myers also owns and operates piers and a public boat ramp within the Caloosahatchee River. Fort Myers' dock master has observed declines in seagrasses in the Caloosahatchee River during his 19-year career working at the Ft. Myers Yacht Basin. Fort Myers has adopted a Harbor Management Plan for the management of its mooring and anchorage fields in the Caloosahatchee River. Fort Myers has also been assigned a load reduction allocation under the BMAP for the CRE, and is responsible for a certain amount of pollution reduction over time. Bonita Springs is a municipality of more than 50,000 in Lee County. The borders of Bonita Springs include portions of Estero Bay, which, along with San Carlos Bay and the Caloosahatchee River, is part of the greater Lower Charlotte Harbor Estuary. Bonita Springs includes wildlife refuges, such as the Estero Bay Aquatic Preserve and Lovers Key State Park and Recreation Area. While Bonita Springs' strategic priorities include environmental protection and water quality, it does not have environmental staff or test water quality. Bonita Springs participates in Estero Bay Management and the Charlotte Harbor National Estuary Program (CHNEP). Bonita Springs provides financial assistance to the Caloosahatchee Citizen Sea Grass Gardening Project. Concerns regarding harm to the CRE and tape grasses are shared by a significant number of residents in Bonita Springs and Estero, including injury to the quality of life and recreational uses such as swimming, boating, and kayaking in the waterways. Estero is a municipality of more than 30,000 in Lee County. Estero borders the eastern portion of Estero Bay. Estero includes wildlife refuges, such as Estero Bay Aquatic Preserve and Koreshan State Park. While Estero has environmental policies, it does not have environmental staff or test water quality. Estero makes financial contributions to CHNEP. Estero is concerned that the Proposed Rule will affect its water quality, which could affect its residents' quality of life. Estero believes it could be harmed by poor water quality because its residents are portable retirees who can move away, or tourists who can choose not to visit. Captiva Island is situated at the mouth of the Caloosahatchee River, within the Caloosahatchee's greater estuarine area. CCP is a Florida not-for-profit corporation representing property owners, businesses, and the community of Captiva Island. Captiva Island is part of unincorporated Lee County and is located north of Sanibel. CCP has 200 financial contributors comprised of property owners, businesses, and residents on Captiva Island. CCP's mission includes protection of clean off-shore water, diverse and healthy marine life, and robust native vegetation along with the protection of mangrove fringe and water quality. CCP works with Lee County on provisions of the County's comprehensive plan, which include the quality of adjacent waters. CCP relied on the expertise of James Evans, the director of natural resources for Sanibel, and on the Sanibel- Captiva Conservation Foundation (SCCF). CCP was advised that the Proposed Rule was not sufficient to protect the environment and Vallisneria americana (Vallisneria) or tape grass during the dry season. Caloosahatchee River and Estuary The watershed of the Caloosahatchee River covers approximately 861,058 acres. The watershed consists of four sub-watersheds, three of which are upstream of the S-79 structure. The Tidal Caloosahatchee Basin sub-watershed (estuarine system) is downstream of the S-79 structure. The S-79 structure captures all the upstream discharges of fresh water that go into the estuarine system through the S-79 structure. Major tidal tributaries of the Tidal Caloosahatchee Basin are the Orange River and Telegraph Creek, which drain into the upper estuary downstream of the S-79 structure. Fresh water inflows from these and other tributaries also contribute fresh water into the estuarine system. The Caloosahatchee River was originally a natural watercourse running from its origin at Lake Flirt to San Carlos Bay. It is currently defined as the "surface waters that flow through the S-79 structure, combined with tributary contributions below S-79 that collectively flow southwest to San Carlos Bay." Fla. Admin. Code. R. 40E-8.021(2). Man-made alterations to the Caloosahatchee River began as early as 1884, but major alterations began in the 1930s with the authorization and construction of the C-43 Canal. The C-43 Canal runs 41.6 miles from Lake Okeechobee at Moore Haven, i.e., from the S-77 structure, to Olga, i.e., the S-79 structure. The C-43 Canal serves as a conveyance feature to drain water from the three sub-watersheds located upstream of the S-79 structure and convey regulatory discharges of water from Lake Okeechobee. In 1957, the United States Army Corps of Engineers (USACOE) prepared a report focused on drainage, flood control, and navigation needs of the Caloosahatchee River Basin, and one recommendation was construction of the S-79 structure. The key objectives of the S-79 structure were to eliminate undesirable salinity in the lower Caloosahatchee River, prevent the rapid depletion of water supplies, and raise the prevailing dry weather water table levels. The S-79 structure was constructed in 1965. It is a lock and dam structure that is also known as the Franklin Lock and Dam. The S-79 structure captures all upstream fresh water discharges that go into the CRE. The S-79 structure demarcates the head of the CRE, which extends 26 miles downstream to Shell Point, where it empties into San Carlos Bay in the southern portion of the greater Lower Charlotte Harbor Estuary. Most of this surface water flow takes a southerly route, flowing to the Gulf of Mexico under the Sanibel Causeway that crosses San Carlos Bay. When fresh water inflows are high, tidal action pushes some of this water back up into Matlacha Pass and Pine Island Sound. Additionally, some water exits to the south and flows into Estero Bay through Matanzas Pass. Salinity exhibits a strong gradient in the CRE. Changes in the watershed upstream of the S-79 structure have profoundly influenced the delivery of fresh water to the CRE. Runoff is now more variable with higher wet season flows and lower dry season discharges. Large volumes of fresh water during the wet season can flush salt water from the tidally-influenced sections of the water body, resulting in low salinity conditions throughout most of the CRE. In contrast, fresh water inflow at the S-79 structure can stop entirely during the dry season, especially during significant drought events. This results in saline intrusion that can extend upstream to the S-79 structure. Fluctuations of this magnitude at the head and mouth of the system cause mortality of organisms at both ends of the salinity gradient. Downstream of the S-79 structure, the CRE was significantly altered by multiple dredging activities, including the removal of extensive shoals and oyster bars. Seven automobile bridges, a railroad trestle, and the Sanibel Causeway were built between the 1880s and 1960s. A large canal network was built along the northern shoreline of the CRE in Cape Coral. To provide navigational access from the canal network to deeper water, multiple access channels were dredged within the CRE. Alterations to the delivery of fresh water combined with structural changes to the tidally-influenced sections of the water body have had lasting ecological consequences. These include the loss of extensive shoals and oyster bars, loss of a flourishing bay scallop fishery, and significant decline in seagrass cover in deeper areas. MFLs An MFL is the limit at which further withdrawals would be significantly harmful to the water resources or ecology of the area. The District's rules define significant harm as the "temporary loss of water resource functions, which results from a change in surface or ground water hydrology, that takes more than two years to recover, but which is considered less severe than serious harm." Fla. Admin. Code R. 40E-8.021(31). The rule further specifies that a water body's specific water resource functions addressed by an MFL are defined in the MFL technical support document. Id. MFLs are calculated using the best information available. The regulatory agency is required to consider changes and structural alterations to watersheds, and the constraints such changes or alterations placed on the hydrology of an affected watershed. Certain waterbodies may not serve their historical hydrologic functions and recovery of these waterbodies to historical hydrologic conditions may not be economically or technically feasible. Accordingly, the regulatory agencies may determine that setting an MFL for such a water body based on its historical condition is not appropriate. Caloosahatchee MFL For the CRE, MFL criteria were designed to protect the estuary from significant harm due to insufficient fresh water inflows and were not guidelines for restoration of estuarine functions to conditions that existed in the past. The MFL criteria consider three aspects of the flow in terms of potential significant harm to the estuary: (1) the magnitude of the flow or the volume of fresh water entering the estuary; (2) the duration of time that flows can be below the recommended level before causing significant harm; and (3) the return frequency, or the number of times the MFL can be violated over a number of years before it results in significant harm, recognizing that natural climatic variability will be expected to cause fresh water inflows to fall below recommended levels at some natural frequency. The CRE MFL initially adopted in 2001 was primarily based on the salinity tolerance of one valued ecosystem component (VEC). The VEC was Vallisneria americana or tape grass, a fresh water aquatic plant that tolerates low levels of salinity. A major assumption of this approach was that flow and salinity conditions that protect Vallisneria would also protect other key organisms in the estuary. The 2001 CRE MFL was based on a regression model for estimating the relationship between surface salinity measured at the Ft. Myers monitoring station located in the Ft. Myers Yacht Basin and discharge at the S-79 structure. Although the District monitors surface and bottom salinity at multiple stations in the CRE, the Ft. Myers monitoring station is located centrally in the CRE and at the historical downstream extent of the Vallisneria habitat. The Ft. Myers monitoring station also has the most comprehensive period of record of monitoring data available. The fixed data sondes that monitor surface and bottom salinity are located at 20 percent and 80 percent of total river depth measured at mean low water. The data sondes continuously measure temperature and specific conductivity and, depending on the manufacturer, contains programs that calculate salinity. Those calculations are based on standards recognized and used worldwide by estuarine, marine, and oceanographic scientists.1/ The regression model only implicitly included inflows from the Tidal Caloosahatchee Basin sub-watershed downstream of the S-79 structure. To address this, during the 2003 re-evaluation, a linear reservoir model of Tidal Caloosahatchee Basin inflows was developed. The regression model results showed that a total inflow from S-79 plus the Tidal Caloosahatchee Basin of about 500 cubic feet per second (cfs) was required to produce a salinity of 10 at the Ft. Myers monitoring station. Thus, the 2001 CRE MFL of 300 cfs measured at the S-79 structure would produce a salinity of 10 at the Ft. Myers monitoring station only with additional inflow from the downstream Tidal Caloosahatchee Basin sub- watershed. However, that additional inflow estimate was highly uncertain. The conclusion was that actual flow measurements over a period of time were needed in order to perform more robust calibrations for the new models that were being developed. The Re-evaluation The District's re-evaluation effort began in 2010 after the Conservancy of Southwest Florida filed a petition requesting review of the Caloosahatchee MFL. At the time, the governing board denied the petition but directed staff to undertake additional research and monitoring to ensure a future revision would be supported by the best information available. The first step was to review the September 2000 Final Peer Review Report (PRR) for the initial adoption. The 2000 PRR identified several items the District should consider, including a hydrodynamic salinity model, a numerical population model for Vallisneria, quantification of habitat value for Vallisneria, and documentation of the effects of minimum flows on downstream estuarine biota. The 2000 PRR documented concerns that the current MFL was based solely on the salinity tolerance of Vallisneria and recommended using multiple indicator species. To address those recommendations, the District conducted studies to evaluate multiple ecological indicators, such as zooplankton, aquatic vegetation, oysters, benthic communities, and blue crabs, in the Caloosahatchee from the S-79 structure to beyond Shell Point. In addition, the District collected flow data from the Tidal Caloosahatchee Basin sub-watershed for at least five years to develop watershed, flow, and hydrodynamic models that could properly simulate inflows and salinity responses. When the initial research was complete in 2016, the District published the Draft Science Document containing 11 component studies. In September 2016, the District held a two- day Science Symposium to present the 11 component studies and gather public comment. In response to public comment, the District performed additional evaluations, modeling, and updated the component studies to produce a Draft Technical Document. A Peer Review Panel reviewed the Draft Technical Document, which included the Draft Science Document. The Peer Review Panel has over 150 years of combined relevant scientific experience. The Peer Review Panel toured the CRE by air and water. The District also held a Peer Review Session to engage the public and obtain feedback. The Peer Review Panel's 2017 report (PRP report) stated that the District had "crafted a well-executed and well- documented set of field and laboratory studies and modeling effort" to re-evaluate the CRE MFL. The PRP report supported the 11 component studies, the modeling, the evaluations, and the initial proposed rule language. The Final Technical Document published in January 2018 incorporated five different models and additional science, examining the entire watershed and the criteria itself. The Final Science Document was Appendix A to the Final Technical Document and contained the scientific research and analysis that was done for the 11 component studies, the modeling, and the additional scientific analyses performed in response to public and stakeholder input. The District initiated rule development in December 2017. Rule development workshops were held in February and June 2018 and a stakeholder technical meeting was held in May 2018. The District validated the comments after each workshop and meeting, and revised the proposed rule language. The District published its Notice of Proposed Rule on July 23, 2018.2/ At its September 13, 2018, meeting, the District's governing board held a public hearing on the Proposed Rule. The mayors of Sanibel, Cape Coral, and the Town publicly commented at the hearing. After considering public comments, the governing board adopted the Proposed Rule. The District documented and responded to each public comment, memorializing the information in the Final Technical Document. Later, after the rule workshops and May 2018 technical meeting, the District prepared and presented all of the updated information, including public comment, at the September 2018 adoption hearing. Thus, the District's re-evaluation process was open and transparent. The Re-evaluated Caloosahatchee MFL The science supporting the re-evaluation involved a comprehensive assessment of the effects of diminished dry season fresh water inflows on the CRE. The dry season was chosen for two reasons. First, because it is well-established that the upstream migration of salt combined with reduced fresh water inflow alters the health and productivity of estuarine habitats. Second, because the dry seasons are the times when the current MFL criteria are likely to be exceeded or violated. The 11 component studies targeted specific concerns regarding physical and ecological characteristics. Together they offered a holistic understanding of the negative effects of diminished fresh water inflow on estuarine ecology. The re-evaluated MFL criteria were developed using a resource-based approach. The approach combined the VEC approach and the habitat overlap concept. The habitat overlap approach is based on the idea that estuaries serve a nursery function and salinity determines the distribution of species within an estuary, including distribution during different life stages. The combined approach studied the minimum flow requirements of the various indicator species in terms of magnitude, duration, and return frequency, resulting in the following three aspects of the flow: (1) for magnitude, a 30-day moving average flow of 400 cfs measured at the S-79 structure; for duration, an MFL exceedance occurs during a 365-day period when the 30-day moving average flow at S-79 is below 400 cfs and the 30-day moving average salinity exceeds 10 at the Ft. Myers salinity monitoring station; and (3) for return frequency, an MFL violation occurs when an exceedance occurs more than once in a five-year period. The magnitude component is based on the salinity requirements of Vallisneria, along with results from the 11 studies modeling salinity and considering the salinity requirements of the other VECs. The duration component is based mainly on the estimates of rate of loss of Vallisneria shoots when salinity rises above 10 and the recovery rate of the shoots when salinities fall back below 10. Return frequency was determined based on long-term rainfall records rather than flow measurements from the S-79 structure, which the PRP report felt was well justified. In addition to the component studies, the re-evaluated MFL criteria and existing recovery strategy were evaluated using a suite of hydrologic and ecological models simulating long-term fresh water inflow to the CRE associated with varying management options, the resulting salinity in the CRE, and the ecological response of indicator species that are sensitive to low fresh water inflows. Five models were utilized. Three models simulated fresh water inflows to the CRE: two for S-79 flows; and one for Tidal Caloosahatchee Basin sub-watershed flows. The other two models were a three-dimensional hydrodynamic salinity model and a Vallisneria model. Tidal Caloosahatchee Basin sub-watershed has a number of tributaries that drain fresh water into the CRE. The flow at several of the tributaries was monitored for a five-year period. The measured flow was used to calibrate a watershed model and conduct a long-term simulation. The results showed an average fresh water inflow for all seasons of approximately 430 cfs. The average fresh water inflow during the dry season was 245 cfs while the wet season average fresh water inflow was 613 cfs. Fresh water inflow from the Tidal Caloosahatchee Basin sub- watershed was approximately 20 percent of total fresh water inflow to the CRE while 80 percent was released through the S-79 structure. Petitioners' and Intervenors' Objections 400 cfs Is Too Low Sanibel relied on a memorandum prepared by Dr. David Tomasko (Tomasko report) concerning his company's review of the January 2018 Final Technical Document supporting the Proposed Rule. The Tomasko report, dated October 23, 2018, was in the form of a "technical memorandum" outlining "preliminary findings." The Tomasko report was admitted as a joint exhibit; however, Dr. Tomasko did not testify at the final hearing. The Tomasko report is hearsay that was not used to supplement or explain competent direct evidence. Although hearsay is admissible in this proceeding, it cannot be the sole basis for a finding of fact.3/ See § 120.57(1)(c), Fla. Stat. The District's expert witnesses, who testified at the final hearing, explained that ten of the 11 component studies identified average indicator flows at S-79 ranging from 237 to 545 cfs with standard deviations ranging from plus or minus 57 to plus or minus 774 cfs.4/ The District's experts performed three different evaluations of those flow results. They identified the mean of all the means, calculated the median of the means, and performed a probability density function. The flow results for each of the three evaluations were 381 cfs, 400 cfs, and 365 cfs, with standard deviations that ranged from plus or minus 277 cfs to plus or minus 706 cfs. The District's experts testified that the three flow results are indistinguishable from a statistical point of view. The District chose 400 cfs because it was the highest flow result, and, therefore, the most protective of the three. The Petitioners and Intervenors failed to present evidence that showed any deficiencies in the District's component studies, hydrologic, hydrodynamic, or statistical modeling, or analysis of compliance data. The preponderance of the evidence established that the District used the best available science to calculate the MFL criteria. The District did not act arbitrarily or capriciously when it chose 400 cfs as the magnitude component of the MFL criteria. Inclusion of Salinity in the MFL Criteria The preponderance of the evidence also established that Vallisneria continues to be a particularly useful indicator of environmental conditions in the CRE. It supports essential ecological goods and services, is sensitive to salinity fluctuations at the ecosystem scale, and has value to a variety of stakeholders. The location of Vallisneria habitat in the upper CRE and its negative response to increased salinity made it an excellent candidate as an ecological indicator for fresh water inflow. A combination of field monitoring, mesocosm studies, and modeling results allowed the application of Vallisneria responses as a platform to quantify the effects of high salinity duration in the upper CRE. Component Study Eight reviewed the development and initial application of a simulation model for Vallisneria in the CRE. The Vallisneria model was used to evaluate the salinity conditions that led to net annual mortality, or, in other words, the duration of high salinity exposure that led to decreased Vallisneria shoots versus the duration of low salinity conditions required for recovery. Component Study Seven included an analysis of the relationship between the number of consecutive days where salinity at the Ft. Myers monitoring station was greater than 10 and the percentage of initial Vallisneria shoots remaining at the end of each high salinity period. To further evaluate the duration element associated with the MFL criteria, the field monitoring data contained in Component Study Seven was evaluated with the mesocosm and modeling results. All three sources were analyzed similarly to derive a combined curve showing high salinity exposure duration that is significantly harmful to Vallisneria. The model also provided information that was used to quantify the duration of low salinity conditions required for Vallisneria to recover a relative fraction of shoots after high salinity exposure. Merging the exposure and recovery evaluations facilitated a determination of the unfavorable salinity duration that could significantly harm Vallisneria habitat. With significant harm defined as the environmental harm from which two years are required to recover, the determination was that Vallisneria should experience no more than 55 consecutive days of salinity greater than 10. However, stakeholders expressed concerns regarding the percentage loss of Vallisneria habitat after 55 days of high salinity exposure. In response, the District conducted further analysis of modeling results and revised the duration component to accept the stakeholder recommendation, now expressed in the Proposed Rule, of a 30-day moving average salinity greater than 10. The Petitioners and Intervenors argued that by expressing the MFL as a "flow plus salinity component" the Proposed Rule enlarges, modifies, or contravenes the specific provisions of law implemented. However, the duration component is part of compliance and represents the duration of time that flows can be below the recommended level before causing significant harm to the indicator species Vallisneria. The MFL in the Proposed Rule is a 30-day moving average flow of 400 cfs measured at the S-79 structure. Flow is both measured and operationally controlled at the S-79 structure. However, as previously found, there are other sources of fresh water entering the CRE downstream of the S-79 structure. The District does not control and cannot control these downstream sources, which modeling reveals contribute approximately 20 percent of total fresh water inflow to the CRE. By including salinity, the District can account for fresh water inflows coming from the tidal basin when there are low or no flows at S-79 since the significant harm threshold in the CRE is directly related to salinity tolerance of the indicator species Vallisneria. The District's experts also testified that salinity can be used as a flow component because it is not affected by chemical or biological processes and is an indicator of how much fresh water is entering the system.5/ Salinity is included in the duration component of the MFL criteria and is an exceedance criterion because the science established that the salinity gradient is crucial to the overall health of the CRE. Including salinity in the duration component of the MFL criteria achieves the purpose of the statutory mandate to set MFLs that are designed to avoid significant harm to the water resources and ecology of the area. No Unit of Measurement for Salinity The Petitioners and Intervenors argued that the Proposed Rule is vague because the language does not contain any units for salinity. The UNESCO calculation is the standard equation used by the estuarine and marine science community to convert specific conductivity and temperature data to salinity. The District's experts testified that the UNESCO calculation reports salinity as a ratio, which is a dimensionless number and has no units. The District uses the UNESCO calculation and performs the conversion in a spreadsheet that it maintains. In some instances, certain brands of data sondes are programmed to perform the calculation and provide the salinity number. The preponderance of the evidence established that use of the practical salinity unit (PSU) is not technically correct. PSU is a misnomer, a pseudo-unit equivalent to a unitless salinity number. The Petitioners' and Intervenors' expert witness, Dr. Anthony Janicki, conceded there is no difference between reporting salinity as unitless or as PSU. And although technically incorrect, he suggested that placing the word "practical" or putting "PSU" in the Proposed Rule would reduce confusion and vagueness. However, since the preponderance of the evidence established that use of PSU is not technically correct, the use of a pseudo-unit would actually cause confusion instead of reduce confusion. The Petitioners and Intervenors also argued that the Proposed Rule is vague because the language does not state that the method of measuring salinity is specific conductivity, or that the equation used to convert specific conductivity and temperature data to salinity is the standard developed by UNESCO. The Petitioners and Intervenors essentially argued that members of the public and those who may be regulated by the Proposed Rule are left to guess about the method or methods used to measure salinity. Because the Proposed Rule identifies and locates by latitude and longitude coordinates the Ft. Myers salinity monitoring station as the location where salinity would be measured for compliance, the Proposed Rule language is not vague. The Proposed Rule is not vague because it does not describe the data sondes, what parameters are measured by the data sondes, and how those parameters are converted to a salinity number. Salinity Monitoring Location and Mean Low Water The Petitioners and Intervenors argued that the Proposed Rule is vague for failing to define the phrase "20% of the total river depth at mean low water," and is arbitrary or capricious for failing to include more than one salinity monitoring station. Total river depth or the water column depth is a standardized measurement that is made from the surface down to the bottom of the river bed. Mean low water is commonly understood in the oceanographic and coastal sciences community as the average of all low tides over the time period defined as the national tidal datum epic. The District's expert witness, Dr. Cassondra Armstrong, testified that mean low water can be determined by using two documents prepared by the National Oceanographic and Atmospheric Administration (NOAA), i.e., the NOAA tide charts and glossary. The District's expert witnesses testified that "20% of the total river depth at mean low water" is the location of the data sonde at the Ft. Myers monitoring station that measures surface salinity. This is also the depth at which Vallisneria is located in the CRE. Since, the Proposed Rule language simply identifies the location of the existing data sonde at the Ft. Myers salinity monitoring station, the language is not vague. The preponderance of the evidence established that the Ft. Myers salinity monitoring station has two salinity data sondes, the one at 20 percent of the total river depth and the other at 80 percent. The data sonde at 20 percent of the total river depth was identified in the Proposed Rule for the following reasons. First, this is the depth where Vallisneria grows and is representative of the salinity exposure for Vallisneria. Second, it guarantees the data sonde is always submerged and able to record data. Third, it has the most comprehensive period of record of monitoring data available. As previously found, Vallisneria continues to be a particularly useful indicator of environmental conditions in the CRE. The location of Vallisneria habitat in the upper CRE and its negative response to increased salinity made it an excellent candidate as an ecological indicator for fresh water inflow. Because the preponderance of the evidence established that Vallisneria continues to be a particularly useful indicator of environmental conditions in the CRE, the choice of the Ft. Myers monitoring station is not arbitrary or capricious. Water Resource Functions vs. Environmental Values The District's MFL rule specifies that a water body's specific water resource functions addressed by an MFL are defined in the MFL technical support document. See Fla. Admin. Code R. 40E-8.021(31). The Final Technical Document identified the relevant water resource functions of the CRE as fish and wildlife habitats, estuarine resources, water supply, recreation, navigation, and flood control. The Petitioners and Intervenors argued that the environmental values listed in Florida Administrative Code Chapter 62-40, also known as the Water Resource Implementation Rule, were not adequately addressed in the Final Technical Document. A proposed rule challenge is not the proper forum to determine whether a proposed rule is consistent with the Water Resource Implementation Rule. Such a determination is within the exclusive jurisdiction of the Department of Environmental Protection under section 373.114(2), Florida Statutes. Consistency of the District's Proposed Rule with the Water Resource Implementation Rule of the Department of Environmental Protection is not a basis in this proceeding for a finding that the Proposed Rule is an invalid exercise of delegated legislative authority. Other Issues The Petitioners and Intervenors raised other issues during the hearing, although not specifically argued in their proposed final order. Since those issues were identified as disputed issues in the Joint Pre-hearing Stipulation, they are addressed below. 1. Elimination of Single-day Exceedance Criterion During the rulemaking process, Sanibel and SCCF sent the District a letter requesting justification for eliminating the single-day exceedance salinity criterion in the current rule. The District staff evaluated the available Caloosahatchee River MFL compliance record, dating back to when the MFL was adopted in September 2001. The District maintains a historical record of MFL monitoring data and reviewed it to determine if the single-day exceedance salinity criterion was exceeded before the 30-day moving average criterion. The compliance record showed five exceedance events of the single-day salinity criterion have occurred. However, the compliance record also showed that the 30- day moving average salinity criterion had already been exceeded before the five events occurred. In other words, the single-day criterion was never exceeded before the 30-day moving average criterion. Based on this evaluation, the District eliminated the single-day exceedance salinity criterion because it did not provide any additional resource protection. The District's decision was not arbitrary or capricious. 2. Not Using the Latest Model Evaluation of recommended MFL criteria and a recovery strategy for the CRE were greatly aided by integration of a suite of hydrologic and ecological models simulating (1) long-term fresh water inflow associated with varying management options, (2) the resulting salinity in the estuary, and (3) ecological response of indicator species that are sensitive to low fresh water inflows. Five models were specifically utilized, including three models for simulations of fresh water inflows to the CRE, a three-dimensional hydrodynamic salinity model, and a Vallisneria model. The three models simulating fresh water inflows included (1) the South Florida Water Management Model (SFWMM) to simulate fresh water discharges at S-79, which includes regional operations of Lake Okeechobee and incorporates Caloosahatchee River irrigation demands; (2) the C-43 Reservoir Model, which uses the SFWMM-simulated daily S-79 flow as input and simulates the management benefit of the C-43 Reservoir; and (3) the Watershed (WaSh) Model to simulate tidal tributary inflow from the Tidal Caloosahatchee Basin sub-watershed. The Caloosahatchee Hydrodynamic/Salinity Model was based on the Curvilinear Hydrodynamic Three-dimensional Model (CH3D) modeling framework with the functionality of simulating the spatial salinity structure across the entire estuary. The Vallisneria Model took the CH3D modeled salinity as input to simulate Vallisneria growth at critical locations in the estuary. The District did review the more recent Environmental Fluid Dynamic Code (EFDC) model developed for the Caloosahatchee Total Maximum Daily Load (TMDL) and being used by the Department of Environmental Protection. The District's expert witness, Dr. Detong Sun, testified that until 2014, the hydrodynamic part of the EFDC model was not working well. He testified that in 2016, the District still had concerns and suggested the use of the District's continuous monitoring data from seven locations across the CRE rather than grab samples for model calibration. Dr. Sun's opinion was that the EFDC model has improved in recent years, but was still behind the CH3D model in terms of performance. The District's expert witness, Dr. Amanda Kahn, testified that the water quality component of the EFDC model was not appropriate for this re-evaluation because the MFL is about water quantity, not water quality. The water quality component of the EFDC model addresses nutrient loadings, not minimum flows. Dr. Kahn also testified that in setting MFL criteria for the CRE, salinity was not a water quality component. Salinity was used as a water quantity component because it does not change with biological processes and can be a measure of how much fresh water is coming into the system. Based on a preponderance of the evidence, the District's decision not to use the EFDC model was not arbitrary or capricious. 3. Seasonality The Petitioners and Intervenors argued that the District is required to set an MFL that varies by season. For the CRE, the District set MFL criteria that protect the system from low flow that would occur in either the wet or dry season. As previously found, the re-evaluation studies focused on the dry season for two reasons: first, because it is well-established that the upstream migration of salt combined with reduced fresh water inflow alters the health and productivity of estuarine habitats; and second, because the dry seasons are the times when the current MFL criteria are likely to be exceeded or violated. The MFL statute states that "when appropriate, [MFLs] may be calculated to reflect seasonal variations." § 373.042(1)(b), Fla. Stat. The preponderance of the evidence showed that for the CRE, it was not necessary to set an MFL that varied by season. Improper Purpose The Petitioners, Sanibel, Cape Coral, and the Town, did not participate in this proceeding primarily to harass or to cause unnecessary delay or for frivolous purpose or to needlessly increase the cost of litigation. The Petitioners did not participate in this proceeding for an improper purpose. The Intervenors, Fort Myers, Estero, Bonita Springs, and CCP, did not participate in this proceeding primarily to harass or to cause unnecessary delay or for frivolous purpose or to needlessly increase the cost of litigation. The Intervenors did not participate in this proceeding for an improper purpose.

Florida Laws (15) 120.52120.56120.57120.595120.68373.016373.042373.0421373.113373.114373.129373.171373.175373.219373.246 Florida Administrative Code (2) 40E-8.02140E-8.221 DOAH Case (1) 18-5114RP
# 1
BARBARA ASH vs CITY OF DELTONA AND ST. JOHNS RIVER WATER MANAGEMENT DISTRICT, 04-002399 (2004)
Division of Administrative Hearings, Florida Filed:Deltona, Florida Jul. 12, 2004 Number: 04-002399 Latest Update: Jul. 25, 2005

The Issue The issue is whether the applicant for an Environmental Resource Permit ("ERP"), the City of Deltona ("City" or "Applicant"), has provided reasonable assurance that the system proposed complies with the water quantity, environmental, and water quality criteria of the St. Johns River Water Management District's ("District") ERP regulations set forth in Florida Administrative Code Chapter 40C-4, and the Applicant's Handbook: Management and Storage of Surface Waters (2005).

Findings Of Fact The District is a special taxing district created by Chapter 373, Florida Statutes, charged with the duty to prevent harm to the water resources of the District, and to administer and enforce Chapter 373, Florida Statutes, and the rules promulgated thereunder. The City of Deltona is a municipal government established under the provisions of Chapter 165, Florida Statutes. The Lake Theresa Basin is comprised primarily of a system of interconnected lakes extending from Lake Macy in the City of Lake Helen to the Butler Chain of Lakes (Lake Butler and Lake Doyle). The Lake Theresa Basin is land-locked and does not have a natural outfall to Lake Monroe and the St. Johns River. In 2003, after an extended period of above-normal rainfall in the Deltona area, the lakes within the land-locked Lake Theresa Basin staged to extremely high elevations that resulted in standing water in residential yards, and rendered some septic systems inoperable. Lake levels within the Lake Theresa Basin continued to rise and were in danger of rising above the finished floor elevations of some residences within the basin. On March 25, 2003, the District issued an Emergency Order (F.O.R. No. 2003-38) authorizing the construction and short-term operation of the Lake Doyle and Lake Bethel Emergency Overflow Interconnection. Since wetland and surface water impacts would occur, the Emergency Order required the City of Deltona to obtain an ERP for the system. The project area is 4.1 acres, and the system consists of a variable water structure on the west shore of Lake Doyle connected to a series of pipes, swales, water control structures, and wetland systems which outfall to a finger canal of Lake Bethel, with ultimate discharge to Lake Monroe and the St. Johns River. The first segment of the system extends downstream from the weir structure on the west shore of Lake Doyle via a pipe entrenched in the upland berm of the Sheryl Drive right-of-way. The pipe passes under Doyle Road and through xeric pine-oak uplands to the northeast shore of a large (approximately 15 acres) deepwater marsh. Water flows south through the deepwater marsh where it outfalls through four pipes at Ledford Drive. Two of the four pipes are overflow structures, controlled by canal gates. The pipes at Ledford Drive discharge into a ditch and into a large (greater than 20 acres) shallow bay swamp. The south end of the bay swamp is defined (and somewhat impounded) by a 19th Century railroad grade. Water flows through the bay swamp where it outfalls through five pipes at the railroad grade. Three of the five pipes are overflow structures, controlled by channel boards. The pipes at the railroad grade discharge to a 1500-foot long finger canal that was dug some time during the period 1940-1972 from the north central shore of Lake Bethel. The overflow interconnection system has three locations whereby the system can be shut down: 1) Lake Doyle--a control weir, controlled by three sluice gates; 2) Ledford Drive--two thirty-inch reinforced concrete pipes, controlled by canal gates; and 3) railroad grade--three thirty-inch reinforced concrete pipes, controlled by channel boards (collectively referred to as "Overflow Structures"). The Overflow Structures are designed to carry the discharge of water from Lake Doyle to Lake Bethel. With the Overflow Structures closed the system returns to pre-construction characteristics, meaning there will be no increase or decrease in the quantity or quality of water throughout the path of the system as a result of the project. An unequivocal condition of the permit is that the system would operate with all of the Overflow Structures closed. As an added assurance, the City proposes to place a brick and mortar plug in the Lake Doyle weir structure outfall pipe to prevent any discharge from the weir. The City has submitted to the District preliminary plans for a future phase in which the system would be modified for the purpose of alleviating high water levels within the Lake Theresa Basin when the water level in Lake Doyle rises above an elevation of 24.5 feet. The District shall require a separate permit application to be submitted for such future plans. Petitioner, Barbara Ash, has lived on Lake Theresa for 19 years. Ms. Ash lives upstream from the area of the weir that will be plugged in accordance with the ERP. She does not trust either the City of Deltona to comply with or the District to enforce the conditions of the ERP applied for by the City. Petitioner, Barbara Ash, also served as the qualified representative for Petitioners, Francell Frei, Bernard J. and Virginia Patterson, and Ted and Carol Sullivan. Ms. Ash represented that Ms. Frei has lived on Lake Theresa for 12 years, and both the Pattersons and the Sullivans live on Lake Louise, which is within the area of concern in this proceeding. Petitioner, Diana Bauer, has lived on Lake Theresa since February 2004. She fears that the lake will become too dry if the system is allowed to flow. She also believes the wildlife will be adversely affected if the water levels are too low since many species need a swampy or wet environment to thrive. She fears her property value will decrease as a result of the approval of the ERP. She also does not trust either the City to comply with or the District to enforce the conditions of the ERP. Petitioner, Howard Ehmer, lives two to three hundred yards down Lake Theresa from Ms. Bauer. He is concerned about the lake bed being too dry and attracting people on all terrain vehicles who enjoy driving around the lake bottom. He is concerned about his property value decreasing if the lake bed is dry. Further, when the lake level is too low, people cannot enjoy water skiing, boating, and fishing on Lake Theresa. Petitioner, Phillip Lott, a Florida native, has also owned and lived on property abutting Lake Theresa since 1995. Mr. Lott has a Ph.D. in plant ecology, and M.P.A. in coastal zone studies, an M.B.A. in international business, and a B.S. in environmental resource management and planning. Mr. Lott has been well acquainted with the water levels on Lake Theresa for many years. Based upon his personal observations of the lake systems in the Deltona area over the years, Mr. Lott has seen levels fluctuate greatly based upon periods of heavy and light rainfall. Mr. Lott is concerned that the District will permit the City to open the weir to let water flow through the system and cause flooding in some areas and low water levels in other areas. He fears that the District will allow the water to flow and upset the environmental balance, but he admits that this ERP application is for a closed system that will not allow the water to flow as he fears. Mr. Lott similarly does not trust the City to comply with and the District to enforce the conditions of the ERP. Petitioners, James E. and Alicia M. Peake, who were represented by Steven L. Spratt at hearing as their qualified representative, live on Lake Louise, which is interconnected with the Lake Theresa basin. The Peakes are concerned that if the level of Lake Louise drops below 21 feet, nine inches, they will not be able to use the boat launch ramps on the lake. Petitioner, Steven L. Spratt, also lives on Lake Louise, and is concerned about the water levels becoming so low that he cannot use the boat launch on the lake. He has lived on the lake since 2000, and remembers when the water level was extremely low. He fears that approval of the ERP in this case will result in low levels of water once again. Petitioner, Gloria Benoit, has live on Lake Theresa for two years. She also enjoys watching recreational activities on the lake, and feels that approval of the ERP will devalue her lakefront property. Ms. Benoit appeared at the first day of the hearing, but offered no testimony on her behalf. J. Christy Wilson, Esquire, appeared prior to the final hearing as counsel of record for Petitioners, Steven E. Larimer, Kathleen Larimer, and Helen Rose Farrow. Neither Ms. Wilson nor any of the three Petitioners she represented appeared at any time during the hearing, filed any pleadings seeking to excuse themselves from appearing at the final hearing, or offered any evidence, testimony, pre- or post- hearing submittals. Petitioner, Gary Jensen, did not appear at hearing, did not file any pleadings or papers seeking to be excused from appearing at the final hearing, and did not offer any evidence, testimony, pre- or post-hearing submittals. Both the City and the District recognize that areas downstream from the project site, such as Stone Island and Sanford, have experienced flooding in the past in time of high amounts of rainfall. The system proposed by the City for this ERP will operate with the overflow structures closed and a brick and mortar plug in the outfall pipe to prevent water flow from Lake Doyle to Lake Bethel. So long as the overflow structures are closed, the system will mimic pre-construction flow patterns, with no increase in volume flowing downstream. The District has considered the environment in its proposed approval of the ERP. The area abutting the project is little urbanized and provides good aquatic and emergent marsh habitat. With the exception of the western shore area of the deepwater marsh ("west marsh area"), the bay swamp and remaining deepwater marsh area have good ecological value. In the 1940's, the west marsh area was incorporated into the drainage system of a poultry farm that occupied the site. This area apparently suffered increased nutrient influxes and sedimentation that contributed to a proliferation of floating mats of aquatic plants and organic debris. These tussocks reduced the deepwater marsh's open water and diminished the historical marsh habitat. Water under the tussocks is typically anoxic owing to total shading by tussocks and reduced water circulation. Thick, soft, anaerobic muck has accumulated under the matted vegetation. Exotic shrubs (primrose willow Ludwigia peruvania) and other plants (cattails Typha spp.) dominate the tussocks. The construction of the project, from the 2003 Emergency Order, resulted in adverse impacts to 1.3 acres of wetlands having moderately high- to high ecological value and 0.2 acres of other surface waters. The 0.2 acre impact to other surface waters was to the lake bottom and the shoreline of Lake Doyle where the weir structure was installed. The 0.3 acres of wetland impacts occurred at the upper end of the deepwater marsh where the pipe was installed. The largest wetland impact (1.0 acre) was to the bay swamp. The bay swamp is a shallow body dominated by low hummocks and pools connected inefficiently by shallow braided channels and one acre is filled with a 1-2 foot layer of sediment following swamp channelization. Disturbance plants (e.g., primrose willow, Ludwigia peruvania, and elderberry Sambucus Canadensis) now colonize the sediment plume. Pursuant to the District's elimination and reduction criteria, the applicant must implement practicable design modifications, which would reduce or eliminate adverse impacts to wetlands and other surface waters. A proposed modification, which is not technically capable of being done, is not economically viable, or which adversely affects public safety through endangerment of lives or property is not considered "practicable." The City reduced and/or eliminated the impacts to the lake bottom and shoreline of Lake Doyle and deepwater marsh, to the extent practicable. The impacts were the minimum necessary to install the weir structure and pipe for the system; the weir structure and pipe were carefully installed on the edges of the wetland and surface water systems, resulting in a minimum amount of grading and disturbance. To compensate for the loss of 1.3 acres of wetlands and 0.2 acres of other surface waters, the City proposes to preserve a total of 27.5 acres of wetlands, bay swamp, marsh, and contiguous uplands. Included in this 27.5 acres are 6.4 acres of the west marsh, which are to be restored. The parties stipulated that the mitigation plan would adequately compensate for losses of ecological function (e.g. wildlife habitat and biodiversity, etc.) resulting from the project. Water quality is a concern for the District. Lake Monroe is included on the Florida Department of Environmental Protection's verified list of impaired water bodies for nitrogen, phosphorous, and dissolved oxygen. Water quality data for Lake Monroe indicate the lake has experienced high levels of nitrogen and phosphorous and low levels of dissolved oxygen. Prior to construction of the project, there was no natural outfall from the Lake Theresa Basin to Lake Monroe and therefore no contribution from this basin to nitrogen and phosphorous loadings to Lake Monroe. Lake Colby, Three Island Lakes (a/k/a Lake Sixma), and the Savannah are surface waters within the Lake Theresa Basin for which minimum levels have been adopted pursuant to Florida Administrative Code Chapter 40C-8. The system will operate with the overflow structures closed and a brick and mortar plug in the outfall pipe to prevent water flow from Lake Doyle to Lake Bethel, resulting in no outfall from the Theresa Basin to Lake Monroe. Minimum flows established for surface waters within the Lake Theresa Basin will not be adversely impacted. Under the first part of the secondary impact test, the City must provide reasonable assurance that the secondary impacts from construction, alteration, and intended or reasonable expected use of the project will not adversely affect the functions of adjacent wetlands or surface waters. The system is designed as a low intensity project. As proposed, little activity and maintenance are expected in the project site area. The reasonably expected use of the system will not cause adverse impacts to the functions of the wetlands and other surface waters. None of the wetland areas adjacent to uplands are used by listed species for nesting or denning. In its pre-construction state, the project area did not cause or contribute to state water quality violations. Under the second part of the secondary impact test, the City must provide reasonable assurance that the construction, alteration, and intended or reasonably expected uses of the system will not adversely affect the ecological value of the uplands to aquatic or wetland dependent species for enabling existing nesting or denning by these species. There are no listed threatened or endangered species within the project site area. Under the third part of the secondary impact test, and as part of the public interest test, the District must consider any other relevant activities that are closely linked and causally related to any proposed dredging or filling which will cause impacts to significant historical and archaeological resources. When making this determination, the District is required, by rule, to consult with the Division of Historical Resources. The Division of Historical Resources indicated that no historical or archaeological resources are likely present on the site. No impacts to significant historical and archaeological resources are expected. Under the fourth part of the secondary impact test, the City must demonstrate that certain additional activities and future phases of a project will not result in adverse impacts to the functions of wetlands or water quality violations. The City has submitted to the District preliminary plans for a future phase in which the system would be modified for the purpose of alleviating high water levels within the Lake Theresa Basin when the level in Lake Doyle rises above an elevation of 24.5 feet. Based upon the plans and calculations submitted, the proposed future phase, without additional measures, could result in minor increases in the loadings of nitrogen and phosphorous to Lake Monroe. Lake Monroe is included on the Florida Department of Environmental Protection's verified list of impaired water bodies due to water quality data indicating the lake has experienced high levels of nitrogen and phosphorous, and low levels of dissolved oxygen. Under this potential future phase, there would be an outfall from the Lake Theresa Basin to Lake Monroe. To address the impact on water quality of this potential future phase, the City has submitted a loading reduction plan for nitrogen, phosphorous, and dissolved oxygen. The plan includes compensating treatment to fully offset the potential increased nutrient loadings to Lake Monroe. Specifically, the loading reduction plan includes: Construction and operation of compensating treatment systems to fully offset anticipated increased nutrient loadings to Lake Monroe. Weekly water quality monitoring of the discharge from Lake Doyle for total phosphorous and total nitrogen. A requirement that the overflow structure be closed if the total phosphorous level reaches 0.18 mg/l or higher or the total nitrogen level reaches 1.2 mg/l or higher in any given week and will remain closed until levels fall below those limits. The implementation of these water quality mitigation measures will result in a net improvement of the water quality in Lake Monroe for nitrogen, phosphorous, or dissolved oxygen. The future phase was conceptually evaluated by the District for impacts to wetland functions. The future phase as proposed could result in adverse impacts to wetland functions. Operation of the system with the overflow structures open could impact the bay swamp and deepwater marsh. The City has demonstrated that any adverse impacts could be offset through mitigation. Based upon the information provided by the City and general engineering principles, the system is capable of functioning as proposed. The City of Deltona will be responsible for the operation, maintenance, and repair of the surface waster management system. A local government is an acceptable operation and maintenance entity under District rules. The public interest test has seven criteria. The public interest test requires the District to evaluate only those parts of the project actually located in, on, or over surface waters or wetlands, to determine whether a factor is positive, neutral, or negative, and then to balance these factors against each other. The seven factors are as follows: the public health, safety, or welfare of others; conservation of fish and wildlife and their habitats; fishing, recreational value, and marine productivity; temporary or permanent nature; 5) navigation, water flow, erosion, and shoaling; 6) the current condition and relative value of functions; and 7) historical and archaeological resources. There are no identified environmental hazards or improvements to public health and safety. The District does not consider impacts to property values. To offset any adverse impacts to fish and wildlife and their habitats, the City has proposed mitigation. The areas of the project in, on, or over wetlands do not provide recreational opportunities. Construction and operation of the project located in, on, or over wetlands will be permanent in nature. Construction and operation of the project located in, on, or over wetlands will not cause shoaling, and does not provide navigational opportunities. The mitigation will offset the relative value of functions performed by areas affected by the proposed project. No historical or archaeological resources are likely on the site of the project. The mitigation of the project is located within the same drainage basin as the project and offsets the adverse impacts. The project is not expected to cause unacceptable cumulative impacts.

Recommendation Based upon the Findings of Fact and Conclusions of Law, it is RECOMMENDED that a Final Order be entered granting the City of Deltona's application for an environmental resource permit with the conditions set forth in the Technical Staff Report, and dismissing the Petitions for Formal Administrative Hearing filed by Gary Jensen in Case No. 04-2405, and by Steven E. Larimer, Kathleen Larimer, and Helen Rose Farrow in Case No. 04-3048. DONE AND ENTERED this 27th day of May, 2005, in Tallahassee, Leon County, Florida. S ROBERT S. COHEN Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 27th day of May, 2005. COPIES FURNISHED: George Trovato, Esquire City of Deltona 2345 Providence Boulevard Deltona, Florida 32725 Diana E. Bauer 1324 Tartan Avenue Deltona, Florida 32738 Barbara Ash, Qualified Representative 943 South Dean Circle Deltona, Florida 32738-6801 Phillip Lott 948 North Watt Circle Deltona, Florida Howard Ehmer Nina Ehmer 32738-7919 1081 Anza Court Deltona, Florida 32738 Francell Frei 1080 Peak Circle Deltona, Florida 32738 Bernard T. Patterson Virginia T. Patterson 2518 Sheffield Drive Deltona, Florida 32738 Kealey A. West, Esquire St. Johns River Water Management District 4049 Reid Street Palatka, Florida 32177 J. Christy Wilson, Esquire Wilson, Garber & Small, P.A. 437 North Magnolia Avenue Orlando, Florida 32801 Gloria Benoit 1300 Tartan Avenue Deltona, Florida 32738 Gary Jensen 1298 Tartan Avenue Deltona, Florida 32738 James E. Peake Alicia M. Peake 2442 Weatherford Drive Deltona, Florida 32738 Steven L. Spratt 2492 Weatherford Drive Deltona, Florida 32738 Ted Sullivan 1489 Timbercrest Drive Deltona, Florida 32738 Kirby Green, Executive Director St. Johns River Water Management District 4049 Reid Street Palatka, Florida 32177

Florida Laws (3) 120.569120.57373.086 Florida Administrative Code (6) 40C-4.30140C-4.30240C-4.33140C-4.75162-302.30062-4.242
# 2
SHIRLEY B. HAYNES vs KGB LAKE HOWELL, LLC, AND ST. JOHNS RIVER WATER MANAGEMENT DISTRICT, 01-004250 (2001)
Division of Administrative Hearings, Florida Filed:Orlando, Florida Oct. 30, 2001 Number: 01-004250 Latest Update: Mar. 31, 2003

The Issue The issue is whether an Environmental Resource Permit should be issued to KGB Lake Howell, LLC, authorizing the construction of a surface water management system to serve an apartment complex known as the Estates at Lake Howell in the City of Casselberry, Florida.

Findings Of Fact Based upon all of the evidence, the following findings of fact are determined: Background In this proceeding, Respondent, St. Johns River Water Management District (District), proposes to issue an Environmental Resource Permit to Respondent, KGB Lake Howell, LLC (Applicant), authorizing the construction of a stormwater management system to serve a 240-unit apartment complex known as the Estates of Lake Howell. The project will be located on an undeveloped tract of land in the City of Casselberry (City), Seminole County, Florida, just north of the Orange County line. It will include ten three-story buildings, parking, clubhouse/ administration building, amenity complex, and wet detention pond. The project also incorporates a 3.62-acre stormwater pond, now owned and used by Seminole County (County), lying east of Lake Ann Lane across from the project site, which was included in the overall acreage calculations for the purpose of increasing apartment density on the site. The Applicant has authorization from the County to apply for the permit incorporating that tract of land. The pond will continue to function as a stormwater facility for the County and will not accommodate stormwater from the project site. The project site consists of 38.9 acres located on the north side of Howell Branch Road, east of State Road 436 (also known as Semoran Boulevard), and west of Lake Ann Lane in the City. The site is currently undeveloped and includes an abandoned orange grove and upland pine flatwoods community, which make up approximately 14.6 acres, while the remaining 24.3 acres is a mixed forested wetland system. The property is now owned by the Harold Kasik Living Trust (Kasik property), which has a contract for purchase with the Applicant. The Kasik property is in the shape of a rectangle, 648 feet by 2,530 feet, with its long sides running north- south. It is bordered on the north and east by single-family residential and vacant land, to the south by commercial development, and to the west by high-density residential and commercial development. The property has a high elevation of approximately 83 feet on its southeastern corner and falls to the north/northeast, where the edge of the wetland system is at an elevation of 63 or 64 feet. The major development constraint on the site is the large wetland tract on the northern portion of the property. In order to minimize proposed impacts to the wetlands, the Applicant proposed the transfer of the development entitlements from the County land to benefit the Applicant's property. More specifically, the Applicant will acquire the County property, the Applicant will simultaneously grant a perpetual drainage easement over the property to the County, the Applicant will maintain the landscaping of the property in perpetuity, the Applicant will convey around five acres of wetlands on the northern end of the Kasik property to the County in fee simple, and the City will allow the transfer of development rights from the property. The project will adversely impact 0.99 acres of low- quality wetlands, of which 0.72 acres are to be dredged and 0.27 acres are to be filled to provide the fencing around the wet detention facility. To offset this impact, the Applicant proposes to preserve 17.8 acres of forested wetlands, plus 1.2 acres of forested uplands, or a mitigation ratio of 18:1. The District's guidelines for preservation mitigation applicable to this project are 10:1 to 60:1 for wetland impacts and 3:1 to 20:1 for upland impacts; thus, the mitigation plan falls within these guidelines. Under current conditions, stormwater runoff from the project site sheet flows into the on-site wetland and ultimately Lake Howell (the Lake), a Class III water body which meets all applicable water quality standards and is not an Outstanding Florida Water. After development occurs, stormwater from the developed portions of the property will be conveyed to a wet detention pond for required water quality treatment and peak discharge rate attenuation. After treatment in the detention pond, the water will discharge to the on-site wetland, as it does now, and eventually will be conveyed into the Lake. Off-site flows will continue to be conveyed into the on-site wetland. The wet detention pond, which has a minimum depth of twelve feet and a permanent pool of water with a mean depth of two to eight feet, has been designed to accommodate a 25-year, 24-hour storm. Post-development discharge will be less than pre-development, and the outfall structure has been designed to avoid channelization in the wetlands after the point of discharge. Since at least the late 1940's, Petitioner, Shirley Haynes, or her relatives, have owned, or resided on, a multi-acre tract of land just north of the project site at 2764 Lake Howell Lane. She has substantial frontage on the south side of the Lake. The southern portion of her property, which are wetlands, adjoins the northern boundary of the project site. For the past three years, Petitioner, Egerton van den Berg, has resided on a ten-acre tract of land at 1245 Howell Point, which is northeast of the project site. He has approximately 235 feet of frontage on the south side of the Lake. As argued in their Proposed Recommended Order, Petitioners generally contend that the application is "materially deficient" in several respects in violation of Rule 40C-4.101; that the Applicant has failed to satisfy Rule 40C-4.301(1)(c) and (d), which in turn constitutes a failure to meet the requirements of Rule 40C-4.302(1)(a)-(c); that the Applicant failed to satisfy the criteria in Sections 12.2.3(a)-(f), 12.2.1, 12.2.1.1, 12.2.1.3, 12.2.2.3(a)-(e), 12.2.2.4(a) and (b), 12.3.2.2(c), and 12.3.8(a) of the Applicant's Handbook: Management and Storage of Surface Waters (Applicant's Handbook); that the District did not adequately consider the cumulative impacts of the project as required by Section 373.414(8)(a), Florida Statutes; that a low flow analysis of the Lake was not performed, as required by Rule 40C-8.011(5); that the Applicant did not submit detailed mitigation plans as required by Section 12.3.3.2 of the Applicant's Handbook; that the 18:1 ratio for mitigation proposed by the Applicant is inappropriate; and that the District should not approve the density of the apartments established by the City. These concerns, to the extent they have been identified as issues in the parties' Pre-Hearing Stipulation, are addressed in the findings below. Where contentions have been raised by Petitioners, such as the placement of the detention pond over a depressional area, and they have not been argued in the Proposed Recommended Order, they have been deemed to be abandoned. Conditions for issuance of permits Rule 40C-4.301(1)(a)-(k), Florida Administrative Code, specifies eleven substantive requirements for which reasonable assurance must be given in order for a standard permit to be issued. Subsection (3) of the same Rule provides that the standards and criteria contained in the Applicant's Handbook shall determine whether the foregoing reasonable assurances have been given. Additional conditions for the issuance of a permit are found in Rule 40C-4.302(1) when the project, or any part of it, is located in, on, or over wetlands or other surface waters. Therefore, because a part of the Applicant's system will be located in wetlands, the Applicant must also give reasonable assurance that the project will not be contrary to the public interest, and that it will not cause unacceptable cumulative impacts upon the wetlands or surface waters. a. Rule 40C-4.301 Paragraphs (a)-(c) of the Rule require that an applicant provide reasonable assurance that the project will not cause adverse water quantity impacts to receiving waters and adjacent lands, adverse flooding to on-site or off-site property, or adverse impacts to existing surface water storage and conveyance capabilities. If a system meets the requirements of Section 10.2.1(a) through (d) of the Applicant's Handbook, there is a presumption that the system complies with the requirements of Paragraphs (a) through (c). This presumption has been met since the evidence supports a finding that the post- development peak rate of discharge will be lower than the pre- development peak rate of discharge for a 24-hour, 25-year storm event. Therefore, the Applicant's system meets the requirements of these Paragraphs. Paragraph (d) of the Rule requires that an applicant give reasonable assurance that the project "will not adversely impact the value of functions provided to fish and wildlife and listed species by wetlands and other surface waters." To satisfy this requirement, an applicant must also demonstrate compliance with the two-prong test in Sections 12.2.2 and 12.2.2.4 of the Applicant's Handbook. Section 12.2.2 requires that an applicant provide reasonable assurance that a regulated activity will not impact the values of wetlands and other surface water functions so as to cause adverse impacts to the abundance, diversity, and habitat of fish, wildlife, and listed species. In its proposal, the Applicant proposes to fill a total of 0.99 acres of wetlands. Since these impacts will eliminate the ability of the filled part of the on-site wetland to provide functions to fish and wildlife, the filling will cause adverse impacts. Under these circumstances, Section 12.2.1.1 requires that the Applicant either implement practicable design modifications to reduce or eliminate these adverse impacts or meet one of the exceptions under Section 12.2.1.2. Under Section 12.2.1.1, a proposed modification which is not technically capable of being done, is not economically viable, or which adversely affects public safety through the endangerment of lives or property is not considered practicable. The Applicant’s design for the proposed project went through a number of iterations prior to submittal to the District to reduce adverse impacts to the wetlands. During the permitting process, the District requested that the Applicant consider a number of other suggestions to reduce or eliminate the adverse impacts to wetlands such as adding a fourth floor to the apartment buildings to eliminate the need for one apartment building, building a parking garage for the tenants, and eliminating the tennis and volleyball courts. Because the Applicant provided detailed reasons why none of those suggestions were practicable, it was not required to implement any of those design modifications. In addition, the Applicant’s decision not to include a littoral zone around the stormwater pond did not increase the amount of wetland impacts as that engineering decision resulted in a stormwater pond that was simply deeper and not wider. Therefore, the Applicant has met the requirement to reduce or eliminate adverse wetland impacts. Section 12.2.1.1 only requires an elimination and reduction analysis when: (1) a proposed system will result in adverse impacts to wetland functions and other surface water functions so that it does not meet the requirements of Sections 12.2.2 through 12.2.3.7, or (2) neither one of the two exceptions within Section 12.2.1.2 applies. In determining whether one of the two exceptions in Section 12.2.1.2 applies, the District must evaluate the long- term ecological value of the mitigation proposed by the Applicant. If the mitigation is not adequate to offset the adverse impacts of the proposed system, then it is unlikely either exception in Section 12.2.1.2 will apply. As noted above, the Applicant’s proposed dredging and filling of the southern edge of the wetlands on the project site will eliminate the ability of that wetland area to provide functions to fish and wildlife. However, the Applicant’s mitigation plan of placing 17.8 acres of wetlands and 1.2 acres of uplands under a conservation easement to preserve that property in its natural state in perpetuity will fully replace the types of functions that the part of the wetlands proposed to be impacted provides to fish and wildlife. The mitigation plan will also offset the adverse impacts that this project will have on the value and functions provided to fish and wildlife by the impacted part of the wetlands. In this case, the first exception under Section 12.2.1.2(a) applies as it meets that Section's two requirements: the ecological value of the functions provided by the area of wetland to be adversely affected is low, and the proposed mitigation will provide greater long-term ecological value than the area or wetland to be adversely affected. Also, the quality of the wetland to be impacted is low. All of the proposed impacts will occur in the area of the wetland that was historically disturbed and in which nuisance and exotic species are prevalent. Due to nuisance and exotic vegetation, the ecological value provided by that area to wildlife is low. The mitigation for the proposed project will provide greater long-term ecological value to fish and wildlife than the part of the wetland proposed to be impacted because the proposed mitigation will preserve eighteen times more wetlands that are of higher quality and provide greater value than the wetland area to be impacted. The type of wetland to be preserved, a mixed forested wetland containing hardwoods, is rare for the area. Although the mitigation plan will provide greater long-term ecological value to fish and wildlife than the part of the wetland proposed to be impacted, the Applicant did not meet the second exception in the elimination and reduction rule under Section 12.2.1.2(b) because the wetlands to be preserved are not regionally significant. In addition to meeting the elimination and reduction rule through implementation of practicable design modifications, the Applicant also satisfied the same rule by meeting the first exception found in Section 12.2.1.2(a). Thus, the Applicant has satisfied Section 12.2.2, which is the first prong of the test to determine compliance with Paragraph (d). The second prong of the test to determine whether Paragraph (d) of the Rule has been satisfied is found in Section 12.2.2.4. That Section requires that an applicant give reasonable assurance that the activity will not change the hydroperiod of a wetland so as to affect wetland functions. For the following reasons, that prong of the test has been satisfied. Since the wetlands are primarily groundwater-influenced, the construction of the stormwater pond between the project and the wetlands will not adversely affect the wetlands. As the soils surrounding the pond are very porous with a high infiltration and percolation rate, water from the stormwater pond will still reach the wetlands through lateral seepage. Further, the Applicant will install an energy dissipating device on the outfall spout at the point of discharge so that water will be spread out from the stormwater pond as it discharges into the receiving wetlands. As noted earlier, this will prevent an adverse channelization effect. Finally, stormwater runoff from the surrounding basins that currently discharge into the wetlands will not be affected by the construction of the stormwater system. That runoff will continue to flow into the wetlands on the project site. Because the Applicant has satisfied Sections 12.2.2 and 12.2.2.4, Paragraph (d) of the Rule has been met. Paragraph (e) of the Rule generally requires that an applicant provide reasonable assurance that a project will not adversely affect the quality of receiving waters. Here, the Applicant has provided such assurance. This is because the system has been designed in accordance with all relevant District criteria. Also, the Applicant has proposed to revise Permit Condition 26 as follows: Condition 26. This permit authorizes construction and operation of a surface water management system as shown on the plans received by the District on June 14, 2001, and as amended by plan sheet C4 (Sheet 07 of 207) received by the District on January 23, 2002. In view of this revision, the Applicant's wet detention system complies with all of the design criteria contained in Rule 40C-42.026(4). Under Rule 40C-42.023(2)(a), compliance with the design criteria contained in Rule 40C-42.026 creates a presumption that state water quality standards, including those for Outstanding Florida Waters, will be met. This presumption has not been rebutted; therefore, the requirements of Paragraph (e) of the Rule have been satisfied. Further, Sections 12.2.4.1 and 12.2.4.2 state, in part, that reasonable assurance regarding water quality must be provided both for the short term and the long term, addressing the proposed construction, alteration, operation, maintenance, removal, and abandonment of the system. The Applicant has provided reasonable assurance that this requirement is met through the design of its surface water management system, its long-term maintenance plan for the system, and the long and short-term erosion and turbidity control measures it proposes. If issued, the permit will require that the surface water management system be constructed and operated in accordance with the plans approved by the District. The permit will also require that the proposed erosion and turbidity control measures be implemented. Section 12.2.4.5 does not apply because there are no exceedances of any water quality standards at the proposed receiving water. Also, Sections 12.2.4.3 and 12.2.4.4 do not apply because the Applicant has not proposed any docking facilities or temporary mixing zones. Paragraph (f) of the Rule requires that an applicant not cause adverse secondary impacts to the water resources. Compliance with this requirement is determined by applying the four-part test in Section 12.2.7(a) through (d). As to Section 12.2.7(a), there are no secondary impacts from construction, alteration, and intended or reasonably expected uses of the proposed system that will cause water quality violations or adverse impacts to the wetland functions. The Applicant chose not to provide buffers abutting the wetlands but rather chose measures other than buffers to meet this requirement. The Applicant has provided reasonable assurance that secondary impacts will not occur by placing the stormwater pond between the planned project and the wetlands, so that the pond itself will serve as a buffer by shielding the wetland from the lighting and noise of the project, and by acting as a barrier to keep domestic animals out of the wetlands. In addition, the Applicant increased the amount of property to be preserved as mitigation by adding 2.97 acres of wetlands and 1.2 acres of uplands to the mitigation plan to mitigate for any remaining secondary impacts. Accordingly, the first part of the secondary impacts test in Section 12.2.7(a) is satisfied. As to Section 12.2.7(b), because there is no evidence that any aquatic or wetland-dependent listed animal species use uplands for existing nesting or denning adjacent to the project, the second part of the test has been met. No adverse secondary impacts will occur under the third part of the test in Section 12.2.7(c) because the proposed project will not cause impacts to significant historical or archaeological resources. Finally, adverse secondary impacts as proscribed by Section 12.2.7(d) will not occur because no evidence was presented that there would be additional phases or expansion of the proposed system or that there are any onsite or offsite activities that are closely or causally linked to the proposed system. Therefore, the proposed project satisfies Paragraph (f) of the Rule. Paragraph (g) of the Rule requires that an applicant provide reasonable assurance that a project will not adversely impact the maintenance of surface or ground water levels or surface water flows established in Chapter 40C-8. Minimum (but not maximum) surface water levels have been established for the Lake pursuant to Chapter 40C-8 for the basin in which the project is located. The project will not cause a decrease of water to, or cause a new withdrawal of water from, the Lake. Therefore, the project satisfies this requirement. Finally, Petitioners have acknowledged in their Proposed Recommended Order that the Applicant has given reasonable assurance that the requirements of Paragraphs (h), (i), (j), and (k) have been met. The parties have also stipulated that the receiving water (Lake Howell) meets all Class III water quality standards. Therefore, the project satisfies the requirements of Subsection 40C-4.301(2). Rule 40C-4.302 - Public Interest Test Under Rule 40C-4.302(1)(a)1.-7., an applicant must provide reasonable assurance that the parts of its surface water management system located in, on, or over wetlands are not contrary to the public interest. Similar requirements are found in Section 12.2.3. The Applicant has provided reasonable assurance that the parts of the project that are located in, on, or over wetlands (mainly the detention pond and fill) are not contrary to the public interest, because the evidence showed that all seven of the public interest factors to be balanced are neutral. Because the proposed permanent mitigation will offset the project’s adverse impacts to wetlands, no adverse effects to the conservation of fish and wildlife due to the project’s permanent nature will occur. The evidence also showed that best management practices and erosion control measures will ensure that the project will not result in harmful erosion or shoaling. Further, it was demonstrated that the project will not adversely affect the flow of water, navigation, significant historical or archaeological resources, recreational or fishing values, marine productivity, or the public health, safety, welfare or property of others. Finally, the evidence showed that the project’s design, including permanent mitigation, will maintain the current condition and relative value of functions performed by parts of the wetland proposed to be impacted. Therefore, the project meets the public interest criteria found in Rule 40C-4.302(1)(a). Rule 40C-4.302(1)(b) - Cumulative Impacts Rule 40C-4.302(1)(b) and Section 12.2.8 require that an applicant demonstrate that its project will not cause unacceptable cumulative impacts upon wetlands and other surface waters within the same drainage basin as the regulated activity for which the permit is being sought. Under this requirement, if an applicant proposes to mitigate the adverse impacts to wetlands within the same drainage basin as the impacts, and if the mitigation fully offsets these impacts, the District will consider the regulated activity to have no unacceptable cumulative impacts upon wetlands and other surface waters. The Applicant has chosen to mitigate for the impacts to 0.99 acres of wetlands by preserving 17.8 acres of wetlands and 1.2 acres of uplands on-site. Since this mitigation will occur in the same drainage basin as the impacts and the mitigation fully offsets those impacts, the Applicant satisfies the requirements of the Rule. Rule 40C-4.302 - Other Requirements The parties have stipulated that the requirements of Paragraphs (c) and (d) of Rule 40C-4.302(1) do not apply. There is no evidence that the Applicant has violated any District rules or that it has been the subject of prior disciplinary action. Therefore, the requirements of Subsection (2) of the Rule have been met. Miscellaneous Matters County Pond Site The Seminole County pond site located on the east side of Lake Ann Lane and across the street from the project is not a jurisdictional wetland and does not have any wetland indicators. It is classified as an upland cut surface water. The Applicant is not proposing to impact any wetlands at the pond site, and the site is not part of the proposed mitigation plan for the project. The permit in issue here is not dependent on the pond site, and nothing in the application ties the project with that site. Indeed, the transfer of density rights from the County property is not relevant to the District permitting criteria. Review of Application When the decision to issue the permit was made, the District had received all necessary information from the Applicant to make a determination that the project met the District's permitting criteria. While certain information may have been omitted from the original application, these items were either immaterial or were not essential to the permitting decision. The application complies with all District permitting criteria. Contrary to Petitioners' contention, the Applicant does not have to be the contract purchaser for property in order to submit an application for that property. Rather, the District may review a permit application upon receipt of information that the applicant has received authorization from the current owners of the property to apply for a permit. In this case, the Applicant has the permission of the current owners (the Harold Kasik Living Trust).

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the St. Johns River Water Management District enter a final order granting the requested permit as described above. DONE AND ENTERED this 29th day of March, 2002, in Tallahassee, Leon County, Florida. ___________________________________ DONALD R. ALEXANDER Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 29th day of March, 2002. COPIES FURNISHED: Kirby B. Green, III, Executive Director St. Johns River Water Management District Post Office Box 1429 Palatka, Florida 32178-1429 Shirley B. Haynes 2764 Lake Howell Road Winter Park, Florida 32792-5725 Egerton K. van den Berg 1245 Howell Point Winter Park, Florida 32792-5706 Charles A. Lobdell, III, Esquire St. Johns River Water Management District Post Office Box 1429 Palatka, Florida 32178-1429 Meredith A. Harper, Esquire Shutts & Bowen Post Office Box 4956 Orlando, Florida 32802-4956

Florida Laws (3) 120.569120.57373.414
# 3
HYMAN ROBERT LEVITAN vs. DEPARTMENT OF ENVIRONMENTAL REGULATION, 79-002194 (1979)
Division of Administrative Hearings, Florida Number: 79-002194 Latest Update: Jul. 17, 1980

Findings Of Fact On June 27, 1979, Petitioner applied to the St. Johns River District Office of Respondent for a permit to conduct dredge and fill activities on his property on Johnson Lake near DeLeon Springs, Volusia County, Florida. On July 10, 1979, within thirty days of the filing of the permit application, Respondent requested additional information to complete the permit application, which information was received by Respondent on July 20, 1979. In his permit application, Petitioner seeks to dredge approximately 833 cubic yards of fill material from the bottom of Johnson Lake and deposit that material landward on his property in order to provide waterfront access. Johnson Lake is a small sinkhole lake, with a surface area of approximately 17 acres. The lake consists of two lobes connected by a marshy area traversable by boat. The north lobe of the lake, on which Petitioner's property is located, has a surface area of approximately 7 acres and an average depth of more than two feet throughout the year. The maximum depth of the north lobe of Johnson Lake exceeds thirty feet. Property abutting the shoreline of the north lobe is owned by more than one person. The area which Petitioner proposes to dredge is a heavily vegetated submerged point of land extending from Petitioner's uplands into the waters of the lake. Petitioner proposes to increase the slope of his lake front by relocating materials from the lake bottom landward toward his property, thereby increasing water depth in the lake adjacent to his property by approximately one foot. Petitioner's permit application contains no engineering or other detail demonstrating the manner by which turbidity associated with the project will be controlled either during or after the proposed dredge and fill activities are conducted. In addition, the application contains no data concerning the potential impact of the project on existing water quality in Johnson Lake. However, after receipt of the permit application, Respondent caused a field assessment of the project to be con- ducted. This field assessment revealed that the project site is dominated by a plant community consisting primarily of maidencane, bullrushes and rushes. Each of these species are found in the "submerged lands" vegetative index for fresh waters contained in Rule 17- 4.02(17), Florida Administrative Code. Aquatic vegetation such as that found on Petitioner's property and in the adjoining waters of Johnson Lake aids in both the assimilation of nutrients and filtering of deleterious substances from the waters of the lake and from upland runoff. These types of vegetation in Johnson Lake also provide a habitat for wildlife. Among the fish species present in Johnson Lake are darters, whose presence is indicative of good water quality. Because darters are very oxygen sensitive, it is likely that dissolved oxygen levels in Johnson Lake are in excess of five milligrams per liter. These darters were collected only in marsh areas of the lake, and not in front of areas where the shoreline of Johnson Lake has been previously disturbed by dredging. The existence of good water quality in the lake is due at least in part to the cleansing function of this marsh vegetation which would he removed if the subject permit were granted. Respondent has previously issued permits for dredge and fill activities to other property owners on the north lobe of Johnson Lake. In addition, several other instances of dredging by property owners have occurred on Johnson Lake, at least one of which resulted in Respondent's instituting an enforcement action to cause the affected area to be restored. Approximately 30 percent of the shoreline of the north lobe of Johnson Lake had been disturbed in some fashion at the time of final hearing in this cause. If Petitioner's application is granted, the percentage of shoreline disturbed would increase to approximately 50 percent. Destruction of as much as 20 percent of the littoral zone of a water body may be expected to result in measurable adverse effects on water quality. This adverse effect has been linked to destruction of the nutrient removal capacity of aquatic vegetation. Removal of aquatic vegetation can also result in setting off an algal bloom cycle in the affected water body because of increased nutrient loadings. This algal bloom cycle could, in turn, result in lowering the dissolved oxygen content of the lake, thereby adversely affecting both plant and animal communities. Petitioner has pointed out to the Hearing Officer the earlier case of McPhail v. State of Florida, Department of Environmental Regulation, DOAH Case No. 79-2174, in which a Hearing Officer from the Division of Administrative Hearings recommended the issuance of a dredge and fill permit to a neighbor of Petitioner on the north lobe of Johnson Lake. That recommendation was later adopted by Respondent by issuance of a final order. Petitioner suggests that his application is essentially similar to that of the Petitioner in McPhail, and should, therefore, be granted. However, there is no evidence of record in this proceeding, as there apparently was in McPhaiI, that establishes that no permanent adverse effects will result from the conduct of dredge and fill activities as presently proposed in Petitioner's permit application. In fact, evidence of record in this proceeding clearly establishes that removal of the quantity of aquatic vegetation in the manner proposed by Petitioner could reasonably be expected to have a measurable adverse impact on water quality in Johnson Lake. Further, it is clear that the proposed dredging activity could reasonably be expected to result in short-term turbidity of the water in Johnson Lake, and petitioner in his application has neither attempted to assess the potential impact of turbidity, nor has he proposed any safeguards to limit the effect of that turbidity. The evidence of record in this proceeding clearly establishes that the dredge and fill activity, if conducted as presently proposed, could reasonably be expected to result in lowering the dissolved oxygen content of the water in Johnson Lake, a potential overloading of nutrients in that water body, and short-term and long-term increases in turbidity. It is difficult to address the question of the extent of the potential impact of the proposed activity because nothing submitted by Petitioner either in his permit application or at final hearing in this cause directly addresses this issue in a competent fashion. It should be noted here that the record herein indicates that Petitioner might obtain the desired waterfront access which he seeks by redesigning his project to reduce its size, or, alternatively, by incorporating in his proposal a dock-type structure which would not require such extensive alterations in the littoral zone of Johnson Take. Both Petitioner and Respondent have submitted proposed findings of fact for consideration by the Hearing Officer in this proceeding. To the extent that those proposed findings of fact have not been adopted in this Recommended Order, they have been rejected as either not having been supported by the evidence, or as being irrelevant to the issues in this proceeding.

Florida Laws (3) 120.57120.60403.031
# 4
JOSEPH SMITH, LENA SMITH, EUGENE COLWELL, ANNA COLWELL, JERRY HARRIS, AND BRENDA HARRIS vs ST. JOHNS RIVER WATER MANAGEMENT DISTRICT, 93-007109RP (1993)
Division of Administrative Hearings, Florida Filed:Tallahassee, Florida Dec. 17, 1993 Number: 93-007109RP Latest Update: Nov. 01, 1994

Findings Of Fact The Parties. The Petitioners, Joseph and Lena Smith, Eugene and Anna Colwell, and Jerry and Brenda Harris, are littoral owners and operators of sports fishing facilities on Orange Lake, a freshwater body of approximately 7,000 acres of open water and 15,000 acres of associated wetlands, whose southern margin constitutes the boundary between Alachua and Marion Counties in north central Florida. Respondent, the St. Johns River Water Management District (hereinafter referred to as the "District"), is a special taxing district created by Chapter 373, Florida Statutes, charged with the statutory responsibility for the management of water and related land resources; the promotion of conservation, development, and proper utilization of surface and ground water; and the preservation of natural resources, fish and wildlife, pursuant to Chapter 373, Florida Statutes. Intervenor, the Sierra Club, Inc. (hereinafter referred to as "Sierra"), is a not-for-profit California corporation registered to do business within the State of Florida. Sierra is an international corporation whose purpose is to explore, enjoy and protect the natural resources of the earth. Intervenor, Florida Defenders of the Environment, Inc. (hereinafter referred to as "Florida Defenders"), is a not-for-profit Florida corporation whose purpose is to preserve and restore Florida's natural resources. Intervenor, the Florida Department of Environmental Protection (hereinafter referred to as "DEP"), is an agency of the State of Florida charged with the responsibility of controlling and prohibiting pollution of the air and water of the State of Florida. See Chapter 403, Florida Statutes. DEP is also charged with responsibility for management of the Paynes Prairie State Preserve. Section 373.026, Florida Statutes. Intervenor, the Attorney General of the State of Florida (hereinafter referred to as the "Attorney General"), sits as a Trustee of the sovereignty submerged lands of the State and as one of the legal owners of the State's property including the Paynes Prairie State Preserve. The Challenged Rules. The District issued an order on November 7, 1993, authorizing the publication of a notice of intent to amend Chapter 40C-2, Florida Administrative Code, by adopting proposed Rule 40C-2.302, Florida Administrative Code, and amending Rule 40C-2.051(6), Florida Administrative Code (hereinafter jointly referred to as the "Challenged Rules"). Proposed Rule 40C-2.302, Florida Administrative Code (hereinafter individually referred to as the "Reservation Rule"), provides: 40C-2.302 Reservation of Water From Use. The Governing Board finds that reserving a certain portion of the surface water flow through Prairie Creek and Camps Canal south of Newnans Lake in Alachua County, Florida, is necessary in order to protect the fish and wildlife which utilize the Paynes Prairie State Preserve, in Alachua County, Florida. The Board therefore reserves from use by permit applicants that portion of surface water flow in Prairie Creek and Camps Canal that drains by gravity through an existing multiple culvert structure into Paynes Prairie. This reservation is for an average flow of [35] cubic feet per second (23 million gallons per day) representing approximately forty five per cent (45 percent) of the calculated historic flow of surface water through Prairie Creek and Camps Canal. The specific authority for the Reservation Rule is Sections 373.044, 373.113, 373.171, 373.216 and 373.219, Florida Statutes. The law implemented by the Reservation Rule is Sections 373.219 and 373.223, Florida Statutes. The proposed amendment to Rule 40C-2.051, Florida Administrative Code (hereinafter individually referred to as the "Exemption Rule"), provides, in pertinent part: 40C-5.2.051 Exemptions. No permit shall be required under the provisions of this rule for the following water uses: through (5) No change (6) Water, whether withdrawn or diverted, when used for purposes of protection of fish and wildlife or the public health and safety when and where the Governing Board has, by regulation, reserved said water from use by permit applicant pursuant to Subsection 373.223(3), F.S. The specific authority for the Exemption Rule is Sections 373.044, 373.113 and 373.171, Florida Statutes. The law implemented by the Exemption Rule is Sections 373.103, 373.171, 373.216, 373.219, 403.501 et seq. and 288.501 et seq., Florida Statutes. Orange Creek Basin. Orange Creek Basin is the name given to the hydrological features of approximately 400 square miles of Alachua, Putnam and Marion Counties, Florida. Orange Creek Basin is a major sub-basin of the Lower Ocklawaha River Basin. Surface water in the Orange Creek Basin flows generally in a north to south direction. Orange Creek Basin is made up of several sub-basins, including Newnans Lake, Paynes Prairie, Orange Lake and Lochloosa Lake sub-basins. Surface water within the approximately 100 square miles of Newnans Lake sub-basin drains into Newnans Lake. When sufficiently high, water in Newnans Lake discharges over a weir structure from the southern end of the lake into Prairie Creek. The weir structure at the southern end of Newnans Lake may be adjusted to control the amount of water flowing into Prairie Creek. The weir was installed in 1966. It was adjusted by the Florida Game and Freshwater Fish Commission in 1976. Water flows south into Prairie Creek, the south and southwest through Prairie Creek to two man-made structures. The first is a gated culvert structure consisting of 3 Culverts (the "Camps Canal Culverts"), through which some of the Prairie Creek water enters Paynes Prairie. The second man-made feature is a levee and a canal named Camps Canal. The levee diverts water in Prairie Creek, which does not flow into Paynes Prairie by gravity, through Camps Canal to the south to the River Styx, which flows into Orange Lake. If the elevation of surface water in Prairie Creek exceeds 58.91 feet National Geodetic Vertical Datum (hereinafter referred to as "NGVD"), a portion of the volume of Prairie Creek will flow, by gravity, into Paynes Prairie through the Camps Canal Culverts. The Paynes Prairie sub-basin covers an area of approximately 49 square miles. Surface water in this sub-basin drains into a natural geological feature known as Alachua Sink. Surface water in the approximately 56 square mile Orange Lake sub- basin flows into Orange Lake. Surface water flows out of Orange Lake through Orange Creek. Outflow is controlled by Orange Lake Dam. The Orange Lake Dam has a fixed crest elevation of 58 feet NGVD. Water levels in Orange Lake must exceed 58 feet NGVD before there is surface water outflow from Orange Lake. Surface water within the approximately 75 square mile Lochloosa Lake sub-basin drains into Lochloosa Lake. Lochloosa Lake has two outlets: Lochloosa Slough in the east and Cross Creek in the south. Cross Creek connects Lochloosa Lake to Orange Lake. Paynes Prairie State Preserve. Prior to the construction of the weir at the outlet from Newnans Lake to Prairie Creek, all surface water from Newnans Lake flowed from Newnans Lake to Prairie Creek unimpeded. Prior to 1927 all surface water in Prairie Creek flowed south into an area known as Paynes Prairie. Paynes Prairie is located in Alachua County. All water in Prairie Creek entered Paynes Prairie and flowed across Paynes Prairie to Alachua Sink. Alachua Sink is a natural geological feature located in the north- central portion of Paynes Prairie. At Alachua Sink surface water enters the Florida aquifer. In 1927 a levee was constructed around the eastern boundary of Paynes Prairie, and Camps Canal was excavated in order to divert water from Paynes Prairie. Due to the levee, water in Prairie Creek was diverted into Camps Canal beginning in approximately 1927. The water flowed into the River Styx and then into Orange Lake. Canals and levees were also constructed within Paynes Prairie to convey surface water in Paynes Prairie into Alachua Sink and Camps Canal. The modifications to Paynes Prairie made in 1927 were intended to drain Paynes Prairie so that the land could be utilized for agricultural purposes, including the raising of cattle. Paynes Prairie continued to be used primarily for the raising of cattle between 1927 and early 1970. In 1970, the State of Florida began acquiring parts of Paynes Prairie. Property acquired by the State was used to create the Paynes Prairie State Preserve (hereinafter referred to as the "Preserve"). Land is still being acquired by the State. The Preserve currently consists of approximately 20,600 acres. Approximately 18,000 acres of the Preserve were acquired within the first 4 years after acquisitions by the State began. Approximately 12,000 acres are considered wetlands. Two major highways, U.S. Highway 441 and Interstate 75 run north-south across the middle and western portion of Paynes Prairie. U.S. 441 was constructed in 1927 and I-75 was constructed in 1964. In 1975 the State of Florida's Department of Natural Resources (which is now DEP) breached the levee at Camps Canal in order to restore part of the water flow from Prairie Creek to the Preserve. In 1979 flashboard riser Culverts were placed in the breach in the Camps Canal levee. In 1988 the Camps Canal Culverts were constructed. The Preserve, a unique land feature, was designated a National Natural Landmark in 1974 by the United States Department of the Interior. No consumptive use permit concerning water that flows into Paynes Prairie or the Preserve has been issued by the District. No consumptive use permits have been issued by the District for surface water withdrawals from Newnans Lake, Prairie Creek or Orange Creek. The Current General Hydrologic Condition of the Preserve. The Preserve is one of the largest continuous wetland systems in Florida and the Southeastern United States. The Preserve and Paynes Prairie constitute one of the largest wetland areas formed by the collapse of a sinkhole, Alachua Sink. Since 1975, at least some water has flowed into the Preserve from Prairie Creek through the Camps Canal Culverts and its predecessors. The "inverts" of the Prairie Creek-Camps Canal Culverts are above the creek-canal bottom. This means that if water in Prairie Creek does not reach a certain level, no water will flow through the Camps Canal Culverts into the Preserve. Under these conditions, all water in Prairie Creek will flow through Camps Canal and eventually to Orange Lake. The amount of water flowing through the Camps Canal Culverts is also limited to a maximum amount due to the size of the Culverts. The exact amount of water that may flow through the Camps Canal Culverts into the Preserve depends on the amount of water in Prairie Creek coming from Newnans Lake and the capacity of the Culverts to move the water. Water flowing into the Preserve through the Camps Canal Culverts constitutes approximately 50 percent of the surface water entering the Preserve. After water flows into the Preserve through the Camps Canal Culverts it flows in a broad, shallow path, referred to as "sheetflow," over the eastern portion of the Preserve. The sheetflow from Camps Canal Culverts creates approximately 550 to 600 acres of shallow marsh community. The water eventually flows into an area known as Alachua Lake in the central portion of the Preserve. Water discharging from Alachua Lake flows through a water control structure consisting of four gated Culverts, known as the Main Structure, into Alachua Sink. Water also enters the Preserve from the north through a tributary known as Sweetwater Branch. Water flows through Sweetwater Branch into Alachua Sink. Sweetwater Branch is channelized over its entire length, preventing water from reaching into the Preserve or Alachua Lake. The District's Purpose in Adopting, and the District's Interpretation of, the Challenged Rules. The District's intent in adopting the Challenge Rules was to reserve water which the District had concluded is required for the protection of fish and wildlife in Paynes Prairie. The District is attempting to carry out its intent by providing in the Reservation Rule that whatever amount of water that may flow through the Camps Canal Culverts by gravity into the Preserve may not be used for other purposes. The District is further attempting to carry out its intent by providing in the Exemption Rule that any amount of water that has been reserved by the District because it is required for the protection of fish and wildlife pursuant to Section 373.223(3), Florida Statutes, exempt from the consumptive use permit process. The Reservation Rule is not intended to reserve a specific quantity of water for the Preserve. Rather, the Reservation Rule reserves only that amount of water that flows through the Camps Canal Culverts by force of gravity. The intent is to allow the natural existing hydrologic regime of the Preserve to continue. The quantity of the water reserved by the Reservation Rule is identified, in part, as follows: The Governing Board finds that reserving a certain portion of the surface water flow through Prairie Creek and Camps Canal south of Newnans Lake in Alachua County, Florida, is necessary in order to protect the fish and wildlife which utilize the Paynes Prairie State Preserve, in Alachua County, Florida. The Board therefore reserves from use by permit applicants that portion of surface water flow in Prairie Creek and Camps Canal that drains by gravity through an existing multiple culvert structure into Paynes Prairie. . . . [Emphasis added]. The last sentence of the Reservation Rule goes on to prove: This reservation is for an average flow of [35] cubic feet per second (23 million gallons per day) representing approximately forty five per cent (45 percent) of the calculated historic flow of surface water through Prairie Creek and Camps Canal. This portion of the Reservation Rule was not included by the District to establish a minimum and/or maximum quantity of water that is being reserved for the protection of fish and wildlife in the Preserve. This portion of the Reservation Rule represents a very condensed summary of the historical hydrologic data relied upon by the District in deciding to reserve water for the Preserve's fish and wildlife. The Exemption Rule was intended to make clear that any time the District reserves water which it determines is required to protect fish and wildlife or the public safety, that no consumptive use permit is necessary. The District's Determination that Water is Necessary for the Protection of Fish and Wildlife in Paynes Prairie. In reaching its decision that the quantity of water flowing through the Camps Canal Culverts by force of gravity into the Preserve is required for the protection of the fish and wildlife of the Preserve, the District relied upon a study of the Orange Creek Basin which District staff had begun in the 1980s. There were three objectives for the Orange Creek Basin study: (a) the first objective of the study was to develop a predictive hydrologic model that could be used to predict water levels throughout the basin and the water courses that connect the various major lakes and prairie systems; (b) the second objective of the Orange Creek Basin study was to develop environmental and hydrologic criteria that could be used to evaluate the environmental impacts of different water management alternatives in the basin; and (c) the third objective was to look at alternatives for management of water within the District. Substantial evidence concerning the manner in which the Orange Creek Basin study was conducted, the results of the study and the rationale for the District's conclusion that the quantity of water flowing through the Camps Canal Culverts by force of gravity is required to protect the fish and wildlife of the Preserve was presented during the final hearing of this case by the District. The evidence presented by the District to support a finding that the quantity of water flowing through the Camps Canal Culverts by force of gravity is required to protect the fish and wildlife of the Preserve was not rebutted by competent subs by the Petitioners. The only witness called by the Petitioners was an expert in hydrology. The Petitioners' expert only suggested that he had questions about the District's hydrologic study. He was unable, however, to testify that the hydrologic study relied on by the District was unreasonable or inaccurate. The Petitioners also offered no evidence to counter the testimony of the District's expert on the environment of Paynes Prairie. The testimony of the District's expert proved that, even without the results of the hydrologic study conducted by the District, the evidence concerning the Preserve's environment supports a finding that the water reserved by the Reservation Rule is required for the protection of fish and wildlife. Generally, the evidence proved that, if the water being reserved is not continued to allow to flow naturally into the Preserve, the range of water fluctuations and the resulting natural impact of the environment of the Preserve will not be achieved. There exists in the Preserve currently, a range of plant communities and fish and wildlife. The nature of those communities, fish and wildlife depends on the amount of water in the communities. The communities range from those existing in upland areas, which have the lowest levels of water, down to deep marshes, where water levels are the greatest. In between are emergent marsh (also called "shallow marsh"), cypress swamps, mixed scrub-shrub wetland, wet prairie, old field, hudric forest, mesic forest and xeric community. The various types of communities are in a state of fluctuation depending on the levels of water flowing into the Preserve. The evidence presented by the District, and was uncontroverted by the Petitioners, proved that these fluctuations are environmentally desirable; that natural fluctuations of water levels in the Preserve are required for the protection of fish and wildlife. It is for this reason, therefore, that the District decided to reserve the amount of water flowing by gravity through the Camps Canal Culverts, and not some specified volume. The Rationale for the District's Finding that Water is Required for the Protection of Fish and Wildlife. Although the District and some of the Intervenors have proposed several findings of fact that support the ultimate finding of fact that the water reserved by the Reservation Rule is required to protect fish and wildlife. Those findings of fact are subordinate to the ultimate relevant fact in this case. Therefore, rather than rewrite all of those subordinate facts, the District's subordinate findings of fact (which cover those subordinate findings suggested by the Intervenors) will be quoted and adopted in this Final Order. The findings of fact of the District quoted and adopted herein which relate to the hydrologic portion of the District's study are as follows. The findings have been modified to reflect terms used throughout this Final Order. The findings of the District adopted are District findings of fact 44 through 74: Surface water hydrologic models are a tool used by water resource professionals to enable them to simulate or calculate certain characteristics of a hydrologic system from data that relates to or is collected from within that system. T. 65, 66, 90, 91, 779. In this basin, the staff of the District developed a surface water model in order to calculate anticipated water levels and discharge volumes at various points throughout the basin expected to be associated with several alternative water management strategies. T. 90, 91, SJ Ex 1 p 27. The specific model used by the District is the Streamflow Synthesis and Reservoir Regulation (SSARR) mathematical model, developed by the U.S. Army Corps of Engineers. This particular model is generally accepted and used in the field of hydrology for the purposes for which it was used here by the District staff. T. 90, 91, SJ Ex 1 p 27. The model combines two types of data, the first of which are "fixed basin parameters" such as drainage area, soil moisture run-off relationships, and storage capacity of the water bodies in the basin. Fixed basin parameters do not change over time. T. 98, 99, SJ Ex 1 pp 32-37. The second type of data used by the model is "time series" data such as rainfall, evaporation, lake elevations and discharges at several points throughout the basin. Time series data does change over time. T. 98, 99, SJ Ex 1 pp 38-40. Rainfall data for the basin is the most important input element for the model because rainfall drives the system from a hydrologic perspective. T. 95. Rainfall data from 5 recording stations scattered over the basin were utilized, with one station located at the University of Florida in Gainesville yielding data for more than 50 years, although only data for the 50 year period from 1942-1991 was used in the model. T. 96, 97, SJ Ex 1 pp 38, 39, 62, 175. The other 4 rainfall recording stations used in the model have recorded rainfall for periods ranging from 11 years to 37 years. SJ Ex 1 p 39. In a basin the size of the Orange Creek Basin, day to day rainfall amounts may vary from one recording station to another, however, on an annualized basis, rainfall amounts are relatively consistent between the rainfall recording stations utilized in the District's model. T. 97, 98, 184, 727. Both the number and location of rainfall recording stations used for the model are adequate to characterize rainfall for the basin. T. 97, 98, 184. Fifty years of hydrologic data were utilized by the District in the model, because corresponding records existed for rainfall, lake levels, and discharge for this period of time. In addition, a 50 year period is more likely to exhibit a full range of hydrologic conditions, such as droughts and floods, than a shorter increment of time would. T. 104. The model utilizes both the fixed basin parameters and the time series data to calculate an associated lake level for any of the lakes in the basin or a discharge measurement at one of several points in the basin for any particular day during the 50 year period represented by the hydrologic data on which the model is based. T. 98-100. The model was initially run to calculate several hydrologic values with existing conditions in place. Existing conditions, for purposes of comparison with other alternatives, assumes the Newnans Lake weir to be in place, the gates to the Camps Canal Culverts to be in an open position and the gates to the main structure Culverts in the Preserve to be in an open position. T. 99, SJ Ex 1 p 83. For all scenarios examined, the model assumes existing land uses to be in place, in all years simulated, in order to allow consistent comparisons of hydrologic conditions over the 50 years for which data was available. T. 134, 135. In the "existing conditions" scenario the model calculates the volume of water discharging from Newnans Lake southward into Prairie Creek for each day during the 50 year period from 1942-1991. T. 100. Discharge measurements were made by District staff at the downstream end of the Camps Canal Culverts from which a rating curve was developed for the structure. T. 101, 102, SJ Ex 1 pp 33, 36. A rating curve is a means by which the flow capacity of a water control structure such as a culvert may be calculated. T. 101, 102. Using the rating curve developed by District staff for the Camps Canal Culverts, the model, having calculated the volume of water moving from Newnans Lake into Prairie Creek, can then calculate the volume of water passing through the Culverts at the Camps Canal Culverts into the Preserve versus the volume moving on southward through Camps Canal to Orange Lake for each day or year during the 50 year period from 1942-1991. T. 101, 102, SJ Ex 1 p 84, Appendix Table E-45. Having calculated the annual volume of surface water entering the Preserve and the annual volume moving into and through Camps Canal to Orange Lake for each of the 50 years between 1942- 1991, District staff then divided the 50 year totals for each by 50 to arrive at a yearly average volume of water going to the Preserve versus a yearly average volume going through Camps Canal to Orange Lake, under existing conditions. T. 101-104, SJ Ex 1 p 84, Appendix Table E-45. Based on the volumes calculated for the 50 year period between 1942-1991, on average, 45 percent of Prairie Creek flow enters Preserve through the Camps Canal Culverts under existing conditions. This equates to 35 cubic feet per second (cfs), or 23 million gallons per day (mgd). T. 103, 605, 606, SJ Ex 1 p 84, Appendix Table E-45. Also based on the volumes calculated for the 50 year period between 1942-1991, on average, 55 percent of Prairie Creek flow goes into Camps Canal and moves on southward to the River Styx and then to Orange Lake under existing conditions. T. 103, SJ Ex 1 Appendix Table E-45. Making a calculation of flow based on 50 years of historic hydrologic data does not guarantee that the next 50 years will be identical to the period during which the calculation was developed, however, it is reasonable to assume that the next 50 years will be statistically similar to the previous 50 years and that hydrologic conditions, on average, will be the same. T. 104, 143. Both the general methodology and the specific model used by the District to quantify the average volume of flow entering the Preserve under existing conditions, which also represents the volume of flow which the rule would reserve for fish and wildlife which use the Preserve, are based on logic and accepted scientific principles. T. 90, 91, 97, 102, 128, 729. The rule in issue does not reserve a specific amount of water for the protection of fish and wildlife using the Preserve, rather, it reserves the amount which will flow by gravity through the existing Camps Canal Culverts with the gates in an open position, which will in essence, maintain the existing volume of flow into the Preserve. T. 604, 605, 624. Thirty-five cfs does not necessarily represent the specific volume of water that will flow into Preserve on a given day, rather, the specific volume would be dependent on hydrologic conditions on that given day. T. 105, 106. Nevertheless, 45 percent of flow, or 35 cfs, or 23 mgd, represents a reasonably accurate calculation, based on the data available, of the average volume of Prairie Creek flow which will enter the Preserve by gravity pursuant to the Reservation Rule. T. 101- 104, 638, SJ Ex 1. With the existing conditions hydrologic regime which the Reservation Rule would continue in place, the model calculates that the mean elevation of Orange Lake would be 57.26 feet NGVD. T. 121, 122, SJ Ex 8 (arithmetic mean). If no Prairie Creek flow were allowed to enter the Preserve and all of its flow went to Orange Lake, the model calculates the mean elevation of Orange Lake to be 57.51 feet NGVD. T. 121, 122, SJ Ex 8 (arithmetic mean). Thus, the mean elevation of Orange Lake rises by only 0.25 feet when all of the Prairie Creek flow is diverted to Orange Lake. SJ Ex 8. The impact of a 0.25 feet change in the mean elevation of Orange Lake from a hydrologic perspective is small given the 11 feet fluctuation in elevations that has occurred naturally over time in the lake. T. 125. By contrast, if no Prairie Creek flow were allowed to enter the Preserve and all of its flow went to Orange Lake, the mean elevation of water levels within the Preserve, as calculated by the model, would decline by 0.65 feet. SJ Ex 7. Eliminating all Prairie Creek flow from the Preserve would decrease the amount of wetted acreage in the central portion of the prairie by up to 2400 acres. T. 203, SJ Ex 1 p 131, SJ Ex 6. In addition, the acreage wetted in the eastern lobe of the Preserve by the sheetflow of Prairie Creek water as it moves from the Camps Canal Culverts to Alachua Lake would also be eliminated. T. 116, SJ Ex 1 p 131. The findings of fact of the District quoted and adopted herein which relate to the environment of, and the alternative course of action considered for, the Preserve are as follows. The findings have been modified to reflect terms used throughout this Final Order. The findings of the District adopted are District findings of fact 79 through 127: The eastern and western lobes of the Preserve are approximately the same elevation and have similar gradients; however, the plant communities within the eastern lobe differ from the plant communities in the western lobe. The plant community within the eastern lobe is predominantly a shallow marsh community while the plant community within the western lobe varies from wet prairie to old field. T. 262, 263; SJ Exs 3, 10B, 10H. For the western lobe of the Preserve, consisting of the area west of U.S. Highway 441, rainfall is the only source of water except when extremely high water levels occur in Alachua Lake. T. 263, 272. When extremely high water levels occur on Alachua Lake water can backflow through the culverts under U.S. Highway 441 and Interstate Highway 75 and inundate the western lobe. T. 272. The eastern lobe of the Preserve is dependent upon sheetflow from Prairie Creek for its source of water. T. 263. Prior to the construction of Cones Levee the sheetflow from Prairie Creek inundated approximately 1,200 acres of the eastern lobe. Today, however, sheetflow inundates directly 600 acres and indirectly another 600 acres in the eastern lobe. T. 264, 265; SJ Ex 10B. Without the Prairie Creek sheetflow, the biological character of the eastern lobe would change to resemble the more terrestrial nature of the western lobe. T. 263, 272, 518. The fish and wildlife inhabiting the Preserve are totally dependent upon its surface water hydrology. T. 276. Of the 21 species of plants living within the Preserve that are listed by the federal government or the State of Florida as endangered, threatened or species of special concern, four species are wetland species. T. 268, 358, 359, 360. Twenty species of animals living on the Preserve are listed by the federal government or the State of Florida as endangered, threatened or species of special concern. Seventeen of these species are wetland dependent. T. 269. Birds, including a number of species listed as endangered or threatened such as great blue herons, woodstorks, anhingas, limpkins, sandhill cranes and ospreys, use the shrub communities around Alachua Lake, the cypress swamp in the eastern lobe and other areas of the eastern lobe for breeding, nesting, and foraging. T. 269, 270, 271, 277, 364, 365. Several species of migratory ducks overwinter in the central area of the Preserve, particularly in the shrub wetland communities around Alachua Lake. Without the flow of water from Prairie Creek the open water in Alachua Lake would be lost and consequently, the overwintering habitat for the ducks would be lost. T. 240, 270, 518. Immature bald eagles use the eastern lobe wetlands for foraging. T. 270. Additionally, the northern harrier, American kestrel and peragrine falcon use wetlands within the Preserve as foraging habitat. T. 364, 365. Mammals, such as river otters, brown water rat, bobcats, bats and long-tailed weasels, use the wetlands within the Preserve, and the eastern lobe particularly, as breeding, nesting, and/or foraging habitat. Reptiles, such as the American alligator, live in the Preserve. T. 270-271, 375, 377-378; SJ Ex 14. The diversity and abundance of animals living in or using the Preserve is greater in the eastern lobe and central area than the western lobe. T. 273, 274. Different species of birds frequent the western lobe. Typically, species more indicative of a drier terrestrial environment are found in the western lobe. T. 272. If the Prairie Creek flow is diverted from the Preserve, the eastern lobe would be driven towards a drier, terrestrial habitat and the functions of the eastern lobe wetlands would be totally lost. T. 277. The sheetflow across the eastern lobe is a unique feature of the Preserve, and without this sheetflow animals such as the endangered brown water rat would not live there. T. 277. Without the Prairie Creek sheetflow, animals dependent on Alachua Lake and the wetlands, such as the brown water rat and the woodstork, would have to find other areas to live, forage, breed and nest due to the loss of wetlands and open water habitat. T. 277, 518. When the water levels in the Preserve are low and wetlands are lost, the birds that depend on the wetlands for nesting will not nest in the Preserve nor elsewhere. T. 532. The wetland communities within the Preserve require a range of water level fluctuations which includes periods of high water levels, average water levels and low water levels. Wetlands must remain wet long enough to exclude upland plants and to conserve hydric soils, yet sufficiently dry often enough to allow germination of wetland plants and the compaction and oxidation of flocculent sediments. T. 293, 294, 298, 299, 310, 311; SJ Ex 1 pp. 23-25. Periods of high water levels maintain lower swamp and shallow marsh habitats, facilitate the dispersal of the seeds of wetland plants, allow wetland species that normally occur at lower elevations to move up into the forested communities, prevent the encroachment of upland species into the upper wetland area, and advance the transportation of organic matter from uplands to wetlands. Inundation of the floodplain and forested communities provide nesting, spawning, refugia, and foraging habitat for fish and other aquatic organisms. T. 294, 296, 310, 311; SJ Ex 1 pp 23- 25. The frequency, timing and duration of high water levels influence the composition and survival of wetland forests. T. 310, 311; SJ Ex 1 p 23. Periods of average water levels create and maintain organic soils and maintain wetland habitat for wetland dependent wildlife. T. 293, 297; SJ Ex 1 p 25. Periods of low water levels rejuvenate floodplain wetlands by allowing seed germination and growth of wetland plants. Seeds of many wetland plant species require saturated soils without standing water in order to germinate. T. 291, 293, 298, 299; SJ Ex 1 pp 24, 25. Periods of low water levels increase the rate of aerobic microbial breakdown and decomposition of organic sediments, and allows the consolidation and compaction of flocculent organic sediments. The consolidation, compaction and decomposition of flocculent organic sediments improves substrates for fish nesting and seed germination. T. 298, 299; SJ Ex 1 pp 24-25. Upland animals use the wetlands during periods of low water levels for foraging and breeding. T. 298, 299. Three elevation transects were used by District staff to identify the elevations of plant communities on the Preserve and develop environmental criteria for the Preserve floodplain. T. 302, 305-306; SJ Ex 1 pp 26, 27, 31, 60. Ecological criteria were developed by District staff to accommodate the hydroperiod requirements of lake and wetland biota. The ecological criteria consisted of hydrologic duration, i.e. how long an area is flooded; and recurrence intervals, i.e. how often an area is flooded. T. 304, 309; SJ Ex 1 pp 23, 61. Maintaining appropriate hydrologic durations and recurrence intervals for plant communities enables the plant communities to support populations of fish and wildlife. T. 307, 312. The District identified the following five significant water management levels: infrequent high water level, frequent high water level, minimum average water level, frequent low water level, and infrequent low water level. The water management levels characterize zones along the elevation gradient of the Preserve. T. 307, 308; SJ Ex 1 p 61. The five different recurrence intervals and the associated hydrologic durations became the hydrologic criteria used by District staff for the water management levels. T. 312. The District evaluated six water management alternatives for the Preserve: the "existing conditions" alternative which simulated the current morphometry of the Paynes Prairie sub-basin; the "total restoration" alternative, under which all the Prairie Creek flow is restored to Paynes Prairie; the "50/50 management" alternative, under which the inflow capacity at the Camps Canal Culvert is reduced by 50 percent and the outflow capacity at the main structure at Alachua Lake is reduced by 50 percent; the "elevation threshold" alternative, under which when the water level at Newnans lake is at 66 feet NGVD or above and the water level at Orange Lake is at 56 feet NGVD or below, then the inflow structure at Camps Canal Culvert is reduced by 50 percent while the outflow capacity at the main structure is maintained at 100 percent; the "Sweetwater Branch" alternative, under which flow from Prairie Creek is replaced by Sweetwater Branch flow; and the "no restoration" alternative, under which the entire flow from Prairie Creek is diverted to Orange Lake. T. 313, 314; SJ Ex 1 p 119. Based upon the hydrologic durations and recurrence intervals defined by the ecologic criteria, the District determined five water management levels for each water management alternative. SJ Ex 1 p 61. The five water management levels and the associated recurrence intervals and hydrologic durations form a fluctuation management regime. The fluctuation management regime for each water management alternative was evaluated with respect to the existing biological features of the aquatic and wetland communities of the Paynes Prairie sub-basin. SJ Ex 1 pp 61, 124, 125. Under the total restoration alternative the water levels on the Preserve would rise thereby improving the hydrologic regime on the prairie, but the possibility of flooding and damaging U.S. Highway 441 would also increase. The minimum average water level of Orange Lake would decrease by 0.67 feet. T. 331, 333; SJ Ex 1 pp 125-130; SJ Ex 8. The no restoration alternative would not satisfy all the hydrologic criteria. The minimum average water level on the Preserve would decrease by 1.01 feet under this alternative. Under this alternative the acreage inundated by the minimum average water level is reduced by approximately 2,400 acres. Additional wetland acres are lost due to the absence of the Prairie Creek sheetflow across the eastern lobe. The minimum average water level in Orange Lake would increase by 0.16 of a foot. T. 324, 334-336; SJ Ex 1 pp 124, 125, 131; SJ Ex 8. Eliminating the flow of Prairie Creek into Paynes Prairie would be detrimental to the current and future biological conditions on the Preserve. SJ Ex 1 p 131. Under the 50/50 management alternative the average flow from Prairie Creek would be reduced from 45 percent to 22.5 percent and the outflow to Alachua Sink would be reduced by 26 percent. T. 337; SJ Ex 1 p 131. The high water levels and the low water levels increase slightly within the Preserve and Orange Lake under the 50/50 management alternative; however, the residence time of water and the concentration of nutrients, including phosphorous and nitrogen, would increase thereby degrading water quality within the Preserve. T. 338, 340, 341; SJ Ex 1 pp 124, 125, 127, 128, 131, 132; SJ Exs 7 and 8. The reduction of sheetflow from Prairie Creek under the 50/50 management alternative would adversely affect the wetlands in the eastern lobe. SJ Ex 1 p 132. Under the elevation threshold management alternative water levels within the Preserve would decrease. The Preserve would receive less water during some periods of naturally high flows reducing the duration and frequency of inundation in the eastern lobe wetlands and, therefore, negatively impacting wildlife dependent upon seasonal high flows. T. 344; SJ Ex 1 p 133; SJ Ex 7. The flow provided by Sweetwater Branch provides approximately 15 percent of the Preserve's average inflow, whereas Prairie Creek provides approximately 50 percent of the Preserve's average inflow. T. 346. Sweetwater Branch is more or less confined to a channel and discharges into Alachua Sink bypassing the Preserve and its eastern lobe. T. 347. Under the Sweetwater Branch alternative the eastern lobe would be deprived of the sheetflow essential to the maintenance of wetlands and the wildlife in the eastern lobe. The eastern lobe would dry out and the plant communities would change to old field or wet prairie. The functions of the plant communities to wildlife would also change under this alternative. T. 347. The Sweetwater Branch alternative would not support fish and wildlife in the eastern lobe of the Preserve. T. 347. The water quality of Sweetwater Branch is poor. Sweetwater Branch has higher concentrations of nitrogen and phosphorous than Prairie Creek. If the nutrient-rich Sweetwater Branch water was diverted onto the Preserve the types and abundances of vegetative communities would change from native vegetation to monocultures of nuisance vegetation that thrive in nutrient-rich environments. T. 346-349; SJ Ex 1 pp 133-134. The existing conditions alternative provides over the long term an average of approximately 45 percent of the Prairie Creek flow by gravity flow through the Camps Canal Culvert to the Preserve. T. 355, 356; SJ Ex 1 p 121. Under the existing conditions alternative, the five hydrologic criteria for both the Preserve and Orange Lake are met and the water level elevations meet the desired recurrence intervals and hydrologic durations. T. 324, 350, 351. The fluctuation management regime provided by the existing conditions alternative partially restores sheetflow from Prairie Creek to the Preserve in sufficient, but fluctuating, water quantities necessary to maintain habitat for fish and wildlife within the eastern lobe. T. 350, 351. It is essential for the protection of the fish and wildlife that utilize and depend upon the Preserve to maintain the flow of Prairie Creek into the Preserve. T. 351, 517. The Preserve needs flow from Prairie Creek in volumes reserved by the proposed rule to protect its fish and wildlife. T. 351. The management levels established by the environmental criteria used for each of the water bodies in the basin will continue to be met in Orange Lake with an average of 45 percent of Prairie Creek flow going to the Preserve and 55 percent going to Orange Lake. T. 432, SJ Ex 1 pp 127, 134, 146. Based upon the substantial and uncontroverted evidence in this case, it is concluded that the water reserved by the Reservation Rule is required for the protection of fish and wildlife of the Preserve.

Florida Laws (14) 1.01120.52120.54120.57120.68373.026373.042373.044373.103373.171373.216373.219373.223403.501 Florida Administrative Code (2) 40C-2.05140C-2.302
# 5
DIANA E. BAUER vs CITY OF DELTONA AND ST. JOHNS RIVER WATER MANAGEMENT DISTRICT, 04-002400 (2004)
Division of Administrative Hearings, Florida Filed:Deltona, Florida Jul. 12, 2004 Number: 04-002400 Latest Update: Feb. 14, 2006

The Issue The issue is whether the applicant for an Environmental Resource Permit ("ERP"), the City of Deltona ("City" or "Applicant"), has provided reasonable assurance that the system proposed complies with the water quantity, environmental, and water quality criteria of the St. Johns River Water Management District's ("District") ERP regulations set forth in Florida Administrative Code Chapter 40C-4, and the Applicant's Handbook: Management and Storage of Surface Waters (2005).

Findings Of Fact The District is a special taxing district created by Chapter 373, Florida Statutes, charged with the duty to prevent harm to the water resources of the District, and to administer and enforce Chapter 373, Florida Statutes, and the rules promulgated thereunder. The City of Deltona is a municipal government established under the provisions of Chapter 165, Florida Statutes. The Lake Theresa Basin is comprised primarily of a system of interconnected lakes extending from Lake Macy in the City of Lake Helen to the Butler Chain of Lakes (Lake Butler and Lake Doyle). The Lake Theresa Basin is land-locked and does not have a natural outfall to Lake Monroe and the St. Johns River. In 2003, after an extended period of above-normal rainfall in the Deltona area, the lakes within the land-locked Lake Theresa Basin staged to extremely high elevations that resulted in standing water in residential yards, and rendered some septic systems inoperable. Lake levels within the Lake Theresa Basin continued to rise and were in danger of rising above the finished floor elevations of some residences within the basin. On March 25, 2003, the District issued an Emergency Order (F.O.R. No. 2003-38) authorizing the construction and short-term operation of the Lake Doyle and Lake Bethel Emergency Overflow Interconnection. Since wetland and surface water impacts would occur, the Emergency Order required the City of Deltona to obtain an ERP for the system. The project area is 4.1 acres, and the system consists of a variable water structure on the west shore of Lake Doyle connected to a series of pipes, swales, water control structures, and wetland systems which outfall to a finger canal of Lake Bethel, with ultimate discharge to Lake Monroe and the St. Johns River. The first segment of the system extends downstream from the weir structure on the west shore of Lake Doyle via a pipe entrenched in the upland berm of the Sheryl Drive right-of-way. The pipe passes under Doyle Road and through xeric pine-oak uplands to the northeast shore of a large (approximately 15 acres) deepwater marsh. Water flows south through the deepwater marsh where it outfalls through four pipes at Ledford Drive. Two of the four pipes are overflow structures, controlled by canal gates. The pipes at Ledford Drive discharge into a ditch and into a large (greater than 20 acres) shallow bay swamp. The south end of the bay swamp is defined (and somewhat impounded) by a 19th Century railroad grade. Water flows through the bay swamp where it outfalls through five pipes at the railroad grade. Three of the five pipes are overflow structures, controlled by channel boards. The pipes at the railroad grade discharge to a 1500-foot long finger canal that was dug some time during the period 1940-1972 from the north central shore of Lake Bethel. The overflow interconnection system has three locations whereby the system can be shut down: 1) Lake Doyle--a control weir, controlled by three sluice gates; 2) Ledford Drive--two thirty-inch reinforced concrete pipes, controlled by canal gates; and 3) railroad grade--three thirty-inch reinforced concrete pipes, controlled by channel boards (collectively referred to as "Overflow Structures"). The Overflow Structures are designed to carry the discharge of water from Lake Doyle to Lake Bethel. With the Overflow Structures closed the system returns to pre-construction characteristics, meaning there will be no increase or decrease in the quantity or quality of water throughout the path of the system as a result of the project. An unequivocal condition of the permit is that the system would operate with all of the Overflow Structures closed. As an added assurance, the City proposes to place a brick and mortar plug in the Lake Doyle weir structure outfall pipe to prevent any discharge from the weir. The City has submitted to the District preliminary plans for a future phase in which the system would be modified for the purpose of alleviating high water levels within the Lake Theresa Basin when the water level in Lake Doyle rises above an elevation of 24.5 feet. The District shall require a separate permit application to be submitted for such future plans. Petitioner, Barbara Ash, has lived on Lake Theresa for 19 years. Ms. Ash lives upstream from the area of the weir that will be plugged in accordance with the ERP. She does not trust either the City of Deltona to comply with or the District to enforce the conditions of the ERP applied for by the City. Petitioner, Barbara Ash, also served as the qualified representative for Petitioners, Francell Frei, Bernard J. and Virginia Patterson, and Ted and Carol Sullivan. Ms. Ash represented that Ms. Frei has lived on Lake Theresa for 12 years, and both the Pattersons and the Sullivans live on Lake Louise, which is within the area of concern in this proceeding. Petitioner, Diana Bauer, has lived on Lake Theresa since February 2004. She fears that the lake will become too dry if the system is allowed to flow. She also believes the wildlife will be adversely affected if the water levels are too low since many species need a swampy or wet environment to thrive. She fears her property value will decrease as a result of the approval of the ERP. She also does not trust either the City to comply with or the District to enforce the conditions of the ERP. Petitioner, Howard Ehmer, lives two to three hundred yards down Lake Theresa from Ms. Bauer. He is concerned about the lake bed being too dry and attracting people on all terrain vehicles who enjoy driving around the lake bottom. He is concerned about his property value decreasing if the lake bed is dry. Further, when the lake level is too low, people cannot enjoy water skiing, boating, and fishing on Lake Theresa. Petitioner, Phillip Lott, a Florida native, has also owned and lived on property abutting Lake Theresa since 1995. Mr. Lott has a Ph.D. in plant ecology, and M.P.A. in coastal zone studies, an M.B.A. in international business, and a B.S. in environmental resource management and planning. Mr. Lott has been well acquainted with the water levels on Lake Theresa for many years. Based upon his personal observations of the lake systems in the Deltona area over the years, Mr. Lott has seen levels fluctuate greatly based upon periods of heavy and light rainfall. Mr. Lott is concerned that the District will permit the City to open the weir to let water flow through the system and cause flooding in some areas and low water levels in other areas. He fears that the District will allow the water to flow and upset the environmental balance, but he admits that this ERP application is for a closed system that will not allow the water to flow as he fears. Mr. Lott similarly does not trust the City to comply with and the District to enforce the conditions of the ERP. Petitioners, James E. and Alicia M. Peake, who were represented by Steven L. Spratt at hearing as their qualified representative, live on Lake Louise, which is interconnected with the Lake Theresa basin. The Peakes are concerned that if the level of Lake Louise drops below 21 feet, nine inches, they will not be able to use the boat launch ramps on the lake. Petitioner, Steven L. Spratt, also lives on Lake Louise, and is concerned about the water levels becoming so low that he cannot use the boat launch on the lake. He has lived on the lake since 2000, and remembers when the water level was extremely low. He fears that approval of the ERP in this case will result in low levels of water once again. Petitioner, Gloria Benoit, has live on Lake Theresa for two years. She also enjoys watching recreational activities on the lake, and feels that approval of the ERP will devalue her lakefront property. Ms. Benoit appeared at the first day of the hearing, but offered no testimony on her behalf. J. Christy Wilson, Esquire, appeared prior to the final hearing as counsel of record for Petitioners, Steven E. Larimer, Kathleen Larimer, and Helen Rose Farrow. Neither Ms. Wilson nor any of the three Petitioners she represented appeared at any time during the hearing, filed any pleadings seeking to excuse themselves from appearing at the final hearing, or offered any evidence, testimony, pre- or post- hearing submittals. Petitioner, Gary Jensen, did not appear at hearing, did not file any pleadings or papers seeking to be excused from appearing at the final hearing, and did not offer any evidence, testimony, pre- or post-hearing submittals. Both the City and the District recognize that areas downstream from the project site, such as Stone Island and Sanford, have experienced flooding in the past in time of high amounts of rainfall. The system proposed by the City for this ERP will operate with the overflow structures closed and a brick and mortar plug in the outfall pipe to prevent water flow from Lake Doyle to Lake Bethel. So long as the overflow structures are closed, the system will mimic pre-construction flow patterns, with no increase in volume flowing downstream. The District has considered the environment in its proposed approval of the ERP. The area abutting the project is little urbanized and provides good aquatic and emergent marsh habitat. With the exception of the western shore area of the deepwater marsh ("west marsh area"), the bay swamp and remaining deepwater marsh area have good ecological value. In the 1940's, the west marsh area was incorporated into the drainage system of a poultry farm that occupied the site. This area apparently suffered increased nutrient influxes and sedimentation that contributed to a proliferation of floating mats of aquatic plants and organic debris. These tussocks reduced the deepwater marsh's open water and diminished the historical marsh habitat. Water under the tussocks is typically anoxic owing to total shading by tussocks and reduced water circulation. Thick, soft, anaerobic muck has accumulated under the matted vegetation. Exotic shrubs (primrose willow Ludwigia peruvania) and other plants (cattails Typha spp.) dominate the tussocks. The construction of the project, from the 2003 Emergency Order, resulted in adverse impacts to 1.3 acres of wetlands having moderately high- to high ecological value and 0.2 acres of other surface waters. The 0.2 acre impact to other surface waters was to the lake bottom and the shoreline of Lake Doyle where the weir structure was installed. The 0.3 acres of wetland impacts occurred at the upper end of the deepwater marsh where the pipe was installed. The largest wetland impact (1.0 acre) was to the bay swamp. The bay swamp is a shallow body dominated by low hummocks and pools connected inefficiently by shallow braided channels and one acre is filled with a 1-2 foot layer of sediment following swamp channelization. Disturbance plants (e.g., primrose willow, Ludwigia peruvania, and elderberry Sambucus Canadensis) now colonize the sediment plume. Pursuant to the District's elimination and reduction criteria, the applicant must implement practicable design modifications, which would reduce or eliminate adverse impacts to wetlands and other surface waters. A proposed modification, which is not technically capable of being done, is not economically viable, or which adversely affects public safety through endangerment of lives or property is not considered "practicable." The City reduced and/or eliminated the impacts to the lake bottom and shoreline of Lake Doyle and deepwater marsh, to the extent practicable. The impacts were the minimum necessary to install the weir structure and pipe for the system; the weir structure and pipe were carefully installed on the edges of the wetland and surface water systems, resulting in a minimum amount of grading and disturbance. To compensate for the loss of 1.3 acres of wetlands and 0.2 acres of other surface waters, the City proposes to preserve a total of 27.5 acres of wetlands, bay swamp, marsh, and contiguous uplands. Included in this 27.5 acres are 6.4 acres of the west marsh, which are to be restored. The parties stipulated that the mitigation plan would adequately compensate for losses of ecological function (e.g. wildlife habitat and biodiversity, etc.) resulting from the project. Water quality is a concern for the District. Lake Monroe is included on the Florida Department of Environmental Protection's verified list of impaired water bodies for nitrogen, phosphorous, and dissolved oxygen. Water quality data for Lake Monroe indicate the lake has experienced high levels of nitrogen and phosphorous and low levels of dissolved oxygen. Prior to construction of the project, there was no natural outfall from the Lake Theresa Basin to Lake Monroe and therefore no contribution from this basin to nitrogen and phosphorous loadings to Lake Monroe. Lake Colby, Three Island Lakes (a/k/a Lake Sixma), and the Savannah are surface waters within the Lake Theresa Basin for which minimum levels have been adopted pursuant to Florida Administrative Code Chapter 40C-8. The system will operate with the overflow structures closed and a brick and mortar plug in the outfall pipe to prevent water flow from Lake Doyle to Lake Bethel, resulting in no outfall from the Theresa Basin to Lake Monroe. Minimum flows established for surface waters within the Lake Theresa Basin will not be adversely impacted. Under the first part of the secondary impact test, the City must provide reasonable assurance that the secondary impacts from construction, alteration, and intended or reasonable expected use of the project will not adversely affect the functions of adjacent wetlands or surface waters. The system is designed as a low intensity project. As proposed, little activity and maintenance are expected in the project site area. The reasonably expected use of the system will not cause adverse impacts to the functions of the wetlands and other surface waters. None of the wetland areas adjacent to uplands are used by listed species for nesting or denning. In its pre-construction state, the project area did not cause or contribute to state water quality violations. Under the second part of the secondary impact test, the City must provide reasonable assurance that the construction, alteration, and intended or reasonably expected uses of the system will not adversely affect the ecological value of the uplands to aquatic or wetland dependent species for enabling existing nesting or denning by these species. There are no listed threatened or endangered species within the project site area. Under the third part of the secondary impact test, and as part of the public interest test, the District must consider any other relevant activities that are closely linked and causally related to any proposed dredging or filling which will cause impacts to significant historical and archaeological resources. When making this determination, the District is required, by rule, to consult with the Division of Historical Resources. The Division of Historical Resources indicated that no historical or archaeological resources are likely present on the site. No impacts to significant historical and archaeological resources are expected. Under the fourth part of the secondary impact test, the City must demonstrate that certain additional activities and future phases of a project will not result in adverse impacts to the functions of wetlands or water quality violations. The City has submitted to the District preliminary plans for a future phase in which the system would be modified for the purpose of alleviating high water levels within the Lake Theresa Basin when the level in Lake Doyle rises above an elevation of 24.5 feet. Based upon the plans and calculations submitted, the proposed future phase, without additional measures, could result in minor increases in the loadings of nitrogen and phosphorous to Lake Monroe. Lake Monroe is included on the Florida Department of Environmental Protection's verified list of impaired water bodies due to water quality data indicating the lake has experienced high levels of nitrogen and phosphorous, and low levels of dissolved oxygen. Under this potential future phase, there would be an outfall from the Lake Theresa Basin to Lake Monroe. To address the impact on water quality of this potential future phase, the City has submitted a loading reduction plan for nitrogen, phosphorous, and dissolved oxygen. The plan includes compensating treatment to fully offset the potential increased nutrient loadings to Lake Monroe. Specifically, the loading reduction plan includes: Construction and operation of compensating treatment systems to fully offset anticipated increased nutrient loadings to Lake Monroe. Weekly water quality monitoring of the discharge from Lake Doyle for total phosphorous and total nitrogen. A requirement that the overflow structure be closed if the total phosphorous level reaches 0.18 mg/l or higher or the total nitrogen level reaches 1.2 mg/l or higher in any given week and will remain closed until levels fall below those limits. The implementation of these water quality mitigation measures will result in a net improvement of the water quality in Lake Monroe for nitrogen, phosphorous, or dissolved oxygen. The future phase was conceptually evaluated by the District for impacts to wetland functions. The future phase as proposed could result in adverse impacts to wetland functions. Operation of the system with the overflow structures open could impact the bay swamp and deepwater marsh. The City has demonstrated that any adverse impacts could be offset through mitigation. Based upon the information provided by the City and general engineering principles, the system is capable of functioning as proposed. The City of Deltona will be responsible for the operation, maintenance, and repair of the surface waster management system. A local government is an acceptable operation and maintenance entity under District rules. The public interest test has seven criteria. The public interest test requires the District to evaluate only those parts of the project actually located in, on, or over surface waters or wetlands, to determine whether a factor is positive, neutral, or negative, and then to balance these factors against each other. The seven factors are as follows: the public health, safety, or welfare of others; conservation of fish and wildlife and their habitats; fishing, recreational value, and marine productivity; temporary or permanent nature; 5) navigation, water flow, erosion, and shoaling; 6) the current condition and relative value of functions; and 7) historical and archaeological resources. There are no identified environmental hazards or improvements to public health and safety. The District does not consider impacts to property values. To offset any adverse impacts to fish and wildlife and their habitats, the City has proposed mitigation. The areas of the project in, on, or over wetlands do not provide recreational opportunities. Construction and operation of the project located in, on, or over wetlands will be permanent in nature. Construction and operation of the project located in, on, or over wetlands will not cause shoaling, and does not provide navigational opportunities. The mitigation will offset the relative value of functions performed by areas affected by the proposed project. No historical or archaeological resources are likely on the site of the project. The mitigation of the project is located within the same drainage basin as the project and offsets the adverse impacts. The project is not expected to cause unacceptable cumulative impacts.

Recommendation Based upon the Findings of Fact and Conclusions of Law, it is RECOMMENDED that a Final Order be entered granting the City of Deltona's application for an environmental resource permit with the conditions set forth in the Technical Staff Report, and dismissing the Petitions for Formal Administrative Hearing filed by Gary Jensen in Case No. 04-2405, and by Steven E. Larimer, Kathleen Larimer, and Helen Rose Farrow in Case No. 04-3048. DONE AND ENTERED this 27th day of May, 2005, in Tallahassee, Leon County, Florida. S ROBERT S. COHEN Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 27th day of May, 2005. COPIES FURNISHED: George Trovato, Esquire City of Deltona 2345 Providence Boulevard Deltona, Florida 32725 Diana E. Bauer 1324 Tartan Avenue Deltona, Florida 32738 Barbara Ash, Qualified Representative 943 South Dean Circle Deltona, Florida 32738-6801 Phillip Lott 948 North Watt Circle Deltona, Florida Howard Ehmer Nina Ehmer 32738-7919 1081 Anza Court Deltona, Florida 32738 Francell Frei 1080 Peak Circle Deltona, Florida 32738 Bernard T. Patterson Virginia T. Patterson 2518 Sheffield Drive Deltona, Florida 32738 Kealey A. West, Esquire St. Johns River Water Management District 4049 Reid Street Palatka, Florida 32177 J. Christy Wilson, Esquire Wilson, Garber & Small, P.A. 437 North Magnolia Avenue Orlando, Florida 32801 Gloria Benoit 1300 Tartan Avenue Deltona, Florida 32738 Gary Jensen 1298 Tartan Avenue Deltona, Florida 32738 James E. Peake Alicia M. Peake 2442 Weatherford Drive Deltona, Florida 32738 Steven L. Spratt 2492 Weatherford Drive Deltona, Florida 32738 Ted Sullivan 1489 Timbercrest Drive Deltona, Florida 32738 Kirby Green, Executive Director St. Johns River Water Management District 4049 Reid Street Palatka, Florida 32177

Florida Laws (3) 120.569120.57373.086 Florida Administrative Code (6) 40C-4.30140C-4.30240C-4.33140C-4.75162-302.30062-4.242
# 6
VICTOR T. CHENEY vs. DEPARTMENT OF ENVIRONMENTAL REGULATION, 83-002314 (1983)
Division of Administrative Hearings, Florida Number: 83-002314 Latest Update: Jan. 09, 1984

Findings Of Fact Petitioner in this matter is Victor T. Cheney, who owns the property in question described as Section 7, south quarter, southeast quarter of northwest quarter of Township 1 South, Range 19 Nest, located near Portland, Walton County, Florida. The property consists of approximately 15 acres and is located 300 to 400 feet south of State Road 20 in Walton County. Respondent is the State of Florida, Department of Environmental Regulation. Several years ago, Petitioner purchased considerable property located on either side of Goodwin Creek, a tributary of Alaqua Creek, which enters into Alaqua Bayou, which in turn empties into Choctawhatchee Bay, which itself enters into the Gulf of Mexico. The property in question was not a part of the original purchase. At some point in the not-too-distant past, Petitioner sold a portion of his property downstream from the instant property to a real estate developer for the purpose of residential subdivision. However, because of the fact that Goodwin Creek, over the years, has been blocked by numerous Beaver dams, the surrounding land has become waterlogged and did not afford reasonable access to the property previously sold for residential subdivision. As a result, Petitioner was forced to purchase the property in question here for the purpose of restoring the proper flow of Goodwin Creek by removal of the dams and draining of the swamp, thereby affording reasonable access to the downstream residential property. Petitioner's position is contained in three major thrusts: the first dealing with trees and forestation, the second dealing with water quality, and the third with the constitutionality of the DER action. The property in question, according to the Petitioner, was initially forestland. However, subsequent to World War II, because of the lumbering-off of what was once virgin forest, as evidenced by surveyors notes dating from 1848 and 1896, beavers were brought in by governmental agencies at Eglin Field during World War II to help control erosion problems. Because the beavers natural enemies, such as wildcats and alligators, have been reduced in number in later years to the point that they are no longer effective in maintaining the beaver population and because beavers proliferate quickly and are hard to control, the beaver population has gotten out of hand. The City of Fort Walton Beach has within recent years engaged in a war with the beavers because of the latters' incursion into the city limits and the destruction they have caused to trees within the city. Beavers, which build dams and flood the land, resulting in a die-off of first the pines and then the tupelos and other hardwoods, are the last attack on the virgin forests of northwest Florida. Other enemies which have taken their toll of the trees during the past years are lumbering, insects, disease and hurricanes. Petitioner wants to reforest the beaver area with loblolly and slash pine. These trees are the dominant forms necessary for a healthy ecosystem, and they provide food and shelter for various birds, some species of which have become extinct because of the loss of trees in the area. Other species are endangered, such as certain types of woodpeckers. Some species of birds need up to 100 acres per family in order to survive. Petitioner wants to plant trees that are productive clients for the local economy. Conifers are the most valuable wood product in this area; and in Petitioner's opinion, the best tree there is for the area in question is the pine tree. Petitioner contends that 20 percent of the land in Walton County, Florida, is in private hands, and the county is poor in forestland. There is too much hardwood, which is of poor quality, and not enough pine, and pine is what he intends to plant in the area if he is permitted to drain it. Turning to the area of water quality, Petitioner urges that the beaver activity has left Goodwin Creek stagnant, without clear headwaters. The area in question contains some SO acre feet of standing water. As a result of beaver activity, the area is plagued with silting, an invasion of saltwater and a putrefaction by sunshine in the summer, and a scum on top of the water. At the bottom of the water is a stinking white globular mass which lies below the freshwater on top. The beaver dams build up swamps behind them, not lakes. Goodwin Creek contains Class III waters which, according to Petitioner, must be maintained in a quality sufficient to sustain body contact (bathing and skiing) . These activities cannot be done in the water as it stands now. If permitted to drain the swamp and clear out the beaver dams, Mr. Cheney claims that the water quality will be improved, contra to the state claim that it would he degraded. He contends that the flushing action resulting from his clearing of the creek will clear and improve the water quality both there and downstream. The predominant fish in the water in the area now is the needlenose gar, which can live in the water as it is now. Those fish are a pest and have no food value. They eat better fish; and their eggs, according to Petitioner, are poisonous. The young gar eat fish that eat mosquito larvae. If the creek is cleared, the gar will clear out and better fish will return. Another purpose of clearing the creek would he to remove the threat to the road and the residential lots downstream because of the constant danger of road washout and the plugging of the drainage culvert by beavers. Removal of the beaver dams would reduce run-over flooding. Petitioner contends his desire is to remove the dams and clear the creek. Yet, the two drawings submitted with his Petition and Amended petition reflect considerably more than merely the clearing of dams. In the first drawing submitted, Petitioner proposed to dig a 30-foot-wide drainage ditch to a depth of 4 feet, running across a portion of the property, using the material excavated from the ditch to build up the area to the north of the ditch and west of the west branch of Goodwin Creek, thereafter planting 15,000 pine trees in the filled area. Petitioner offered no evidence in the form of water quality studies, or forester or reforestation reports from experts in the area. His evidence consisted primarily of newspaper articles, maps, photographs, historic documents and other documents submitted to him by the State. There was no hard evidence to support the allegations of benefit or the contentions as to forestation or water quality as contained in his narrative testimony which included, coincidentally, a rendering of Joyce Kilmer's poem "Trees." On the other hand, Respondent presented the testimony of Clifford S. Rohlke, a dredge and fill field inspector with a background in biology who for 9 years has made biological impact assessments on approximately 1,000 dredge and fill applications throughout the State. Mr. Rohlke was first brought into this case when Petitioner's original application was filed. He went out and looked at the site in section, meeting with Petitioner later, and together they walked the site for a second time. As a result of his inspection, he wrote the biological field report, which outlines the impact of the proposed project. He described the area as rural, floodplain land of the Alaqua Creek basin, which has been subject to numerous fill violations for housing adjacent to the bay and Little Alaqua and Goodwin Creeks. The creek basin in question regularly floods once or twice per year, and much of the land has standing water supporting cypress, tupelo hardwood swamp. The specific site is an inundated hardwood swamp. Overstory vegetation includes black gum, red maple and titi. Submerged and emerging vegetation includes various grasses, moss, water lily, dollar weed and duckweed. The proposed canal and its spoil areas are typically inundated with water In fact, the surface water sheet flows westward around numerous islands and buttresses through various small creek channels intermittently located throughout the wetland area. There is only one piece of upland property in Petitioner's entire parcel which is located to the south of the proposed project area. This particular portion is small and is isolated on three sides by the surrounding basin. As a result, Mr. Rohlke considered the area to be wetlands because of contiguous waters which run up to and flow into Goodwin Creek. There are pools and rivulets throughout the property. He saw three beaver dams, most of which had been breached already; and it is his contention that even if the dams are removed, the water will not dry up naturally because it is historically bona fide wetlands, a low, low area which could not be dried up without a lot of fill. Consequently, this evidence supports a finding that the area in question is in fact a historical wetland, was such before the advent of the beavers, and even the removal of the beaver dams would not radically change the nature of the property to convert it into uplands, thereby taking it outside the jurisdiction of the Respondent. Having thus concluded that the property in question is a historical wetland over which Respondent has jurisdiction, we then turn to the basis for denial by the Respondent of Petitioner's request. The letter of July 12, 1983, reflects as reasons for the intent to deny several factors. One is that he application is incomplete because the Department of Natural Resources has not Issued Its consent to the project. This is correct, though Petitioner contends he was advised by the Department of Natural Resources not to worry about it. A second is that the proposed evacuation and filling will result in violations of state water quality standards and criteria for such Items as bacteriological quality, biological integrity, pH, specific conductives, DO, BOD, nutrients and turbidity. Regarding she issue of bacteriological quality, because of the buildup of muck in standing water areas over the years, the rich muck contains silt, a good media for bacteria, including fecal bacteria, growth. Cutting into this silt will release much of this bacteria into the water downstream from the area of the cut. This in turn will raise the total coliform and fecal coliform bacteria count. In short, disturbing the area by digging would release the bacteria currently trapped in the bog area and the muck. Biological integrity deals with the number of species and the quantity of item per species in the area. Disruption of the natural habitat will vastly alter the biological integrity of this area and other areas downstream. Specifically and primarily, Mr. Rohlke was referring to such species as mayflies, dragonflies, worms, leeches and lesser organisms which would be disturbed and possibly removed, in the case of the lesser organisms, by the removal of the dirt. Not only would removal alter the biological balance, but so would the biological balance of the area where the removed dirt is placed. These minuscule organisms, even if not visible, are extremely important in the breakdown of this material and are important to the food chain:. Eliminating this block would put a big hole in the food chain. It has been the experience of Mr. Rohlke that artificial channels always lower the invertibrate life in the water; and as a result, the water quality goes down. This may not be catastrophic, per se, but there is a cumulative effect which manifests itself in a reduced production of seafood in the area, such as shrimp, oysters, trout and mullet, all of which are important sources of edible seafood. As to the pH, studies show that this pH balance is best when not altered more than one unit. Petitioner's property in question is of a type usually considered alkaline. Dredging would bring in acidic swamp water to mix with the alkaline surrounding water and would result in an alteration of more than one unit. The resulting impact would be adverse to the water quality. As to the question of specific conductives, saltwater has a conductive count of 30,000, freshwater of about 1,000. Stirring up the water by dredging would alter the specific conductives of saltwater and may result in a quick release of freshwater into the saltwater, thereby having a fatal effect on those microorganisms and macroorganisms which are dependent upon saltwater for life. In the area of dissolved oxygen (DO), when organic materials such as are found on the bottom of Petitioner's property are released, there is a strong probability that dissolved oxygen contained in the water will decrease. This would result in the death of fish and other organisms which use oxygen. There are many years of organic buildup on the bottom of the area to be dredged. This area is not a sandy bottom, and release of this organic buildup, with the resultant loss of dissolved oxygen, would be fatal to a large number of species in the ecosystem. Turning to the area of turbidity, which is the suspension of solid matter within the liquid (lack of clarity) the silt that would be stirred us as a result of the dredging, when suspended in the water, tends to suffocate fish and other life forms which breathe through water. This, in conjunction with lowered oxygen levels, creates a combination which is deadly to the many types of organisms. Not only does dredging have an immediate negative short-term impact, but it well may have a long-term impact, as well. The straight sides of a cut canal normally do not support growth which would strain out or hold silt carried by stormwater rushing through the canal. Also, since this is a silty, organic area rather than a clean, sandy bottom, the area is even worse. The turbidity curtain which Petitioner offered to ins tall downstream to curb the turbidity would be, in the opinion of Respondent, ineffective in a stream of flowing water. In considering the validity of Mr. Rohlke's evidence, as outlined above, however, one must consider that he did not take any water samples, did not check for any types of fish, did not take any samples of marine biology, but basically based his opinion and analysis on no more than a walk through the area and his unaided view of the property in question.

Recommendation On the basis of the above, it is RECOMMENDED: That the application of Victor T. Cheney for a permit to dredge a canal across the property as described in the application be denied. RECOMMENDED this 5th day of December, 1983, in Tallahassee, Florida. ARNOLD H. POLLOCK, Hearing Officer Division of Administrative Hearings The Oakland Building 2009 Apalachee Parkway Tallahassee, Florida 32301 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 5th day of December, 1983. COPIES FURNISHED: Mr. Victor T. Cheney 374 Gardner Drive Fort Walton Beach, Florida 32548 E. Gary Early, Esquire Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32301 Ms. Victoria Tschinkel Secretary Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32301 ================================================================= AGENCY FINAL ORDER ================================================================= STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION VICTOR T. CHENEY, Petitioner, vs. CASE NO. 83-2314 STATE OF FLORIDA, DEPARTMENT OF ENVIRONMENTAL REGULATION, Respondent. /

Florida Laws (2) 253.12403.087
# 7
STEVEN E. LARIMER, KATHLEEN LARIMER, AND HELEN ROSE FARROW vs CITY OF DELTONA AND ST. JOHNS RIVER WATER MANAGEMENT DISTRICT, 04-003048 (2004)
Division of Administrative Hearings, Florida Filed:Deltona, Florida Aug. 30, 2004 Number: 04-003048 Latest Update: Jul. 25, 2005

The Issue The issue is whether the applicant for an Environmental Resource Permit ("ERP"), the City of Deltona ("City" or "Applicant"), has provided reasonable assurance that the system proposed complies with the water quantity, environmental, and water quality criteria of the St. Johns River Water Management District's ("District") ERP regulations set forth in Florida Administrative Code Chapter 40C-4, and the Applicant's Handbook: Management and Storage of Surface Waters (2005).

Findings Of Fact The District is a special taxing district created by Chapter 373, Florida Statutes, charged with the duty to prevent harm to the water resources of the District, and to administer and enforce Chapter 373, Florida Statutes, and the rules promulgated thereunder. The City of Deltona is a municipal government established under the provisions of Chapter 165, Florida Statutes. The Lake Theresa Basin is comprised primarily of a system of interconnected lakes extending from Lake Macy in the City of Lake Helen to the Butler Chain of Lakes (Lake Butler and Lake Doyle). The Lake Theresa Basin is land-locked and does not have a natural outfall to Lake Monroe and the St. Johns River. In 2003, after an extended period of above-normal rainfall in the Deltona area, the lakes within the land-locked Lake Theresa Basin staged to extremely high elevations that resulted in standing water in residential yards, and rendered some septic systems inoperable. Lake levels within the Lake Theresa Basin continued to rise and were in danger of rising above the finished floor elevations of some residences within the basin. On March 25, 2003, the District issued an Emergency Order (F.O.R. No. 2003-38) authorizing the construction and short-term operation of the Lake Doyle and Lake Bethel Emergency Overflow Interconnection. Since wetland and surface water impacts would occur, the Emergency Order required the City of Deltona to obtain an ERP for the system. The project area is 4.1 acres, and the system consists of a variable water structure on the west shore of Lake Doyle connected to a series of pipes, swales, water control structures, and wetland systems which outfall to a finger canal of Lake Bethel, with ultimate discharge to Lake Monroe and the St. Johns River. The first segment of the system extends downstream from the weir structure on the west shore of Lake Doyle via a pipe entrenched in the upland berm of the Sheryl Drive right-of-way. The pipe passes under Doyle Road and through xeric pine-oak uplands to the northeast shore of a large (approximately 15 acres) deepwater marsh. Water flows south through the deepwater marsh where it outfalls through four pipes at Ledford Drive. Two of the four pipes are overflow structures, controlled by canal gates. The pipes at Ledford Drive discharge into a ditch and into a large (greater than 20 acres) shallow bay swamp. The south end of the bay swamp is defined (and somewhat impounded) by a 19th Century railroad grade. Water flows through the bay swamp where it outfalls through five pipes at the railroad grade. Three of the five pipes are overflow structures, controlled by channel boards. The pipes at the railroad grade discharge to a 1500-foot long finger canal that was dug some time during the period 1940-1972 from the north central shore of Lake Bethel. The overflow interconnection system has three locations whereby the system can be shut down: 1) Lake Doyle--a control weir, controlled by three sluice gates; 2) Ledford Drive--two thirty-inch reinforced concrete pipes, controlled by canal gates; and 3) railroad grade--three thirty-inch reinforced concrete pipes, controlled by channel boards (collectively referred to as "Overflow Structures"). The Overflow Structures are designed to carry the discharge of water from Lake Doyle to Lake Bethel. With the Overflow Structures closed the system returns to pre-construction characteristics, meaning there will be no increase or decrease in the quantity or quality of water throughout the path of the system as a result of the project. An unequivocal condition of the permit is that the system would operate with all of the Overflow Structures closed. As an added assurance, the City proposes to place a brick and mortar plug in the Lake Doyle weir structure outfall pipe to prevent any discharge from the weir. The City has submitted to the District preliminary plans for a future phase in which the system would be modified for the purpose of alleviating high water levels within the Lake Theresa Basin when the water level in Lake Doyle rises above an elevation of 24.5 feet. The District shall require a separate permit application to be submitted for such future plans. Petitioner, Barbara Ash, has lived on Lake Theresa for 19 years. Ms. Ash lives upstream from the area of the weir that will be plugged in accordance with the ERP. She does not trust either the City of Deltona to comply with or the District to enforce the conditions of the ERP applied for by the City. Petitioner, Barbara Ash, also served as the qualified representative for Petitioners, Francell Frei, Bernard J. and Virginia Patterson, and Ted and Carol Sullivan. Ms. Ash represented that Ms. Frei has lived on Lake Theresa for 12 years, and both the Pattersons and the Sullivans live on Lake Louise, which is within the area of concern in this proceeding. Petitioner, Diana Bauer, has lived on Lake Theresa since February 2004. She fears that the lake will become too dry if the system is allowed to flow. She also believes the wildlife will be adversely affected if the water levels are too low since many species need a swampy or wet environment to thrive. She fears her property value will decrease as a result of the approval of the ERP. She also does not trust either the City to comply with or the District to enforce the conditions of the ERP. Petitioner, Howard Ehmer, lives two to three hundred yards down Lake Theresa from Ms. Bauer. He is concerned about the lake bed being too dry and attracting people on all terrain vehicles who enjoy driving around the lake bottom. He is concerned about his property value decreasing if the lake bed is dry. Further, when the lake level is too low, people cannot enjoy water skiing, boating, and fishing on Lake Theresa. Petitioner, Phillip Lott, a Florida native, has also owned and lived on property abutting Lake Theresa since 1995. Mr. Lott has a Ph.D. in plant ecology, and M.P.A. in coastal zone studies, an M.B.A. in international business, and a B.S. in environmental resource management and planning. Mr. Lott has been well acquainted with the water levels on Lake Theresa for many years. Based upon his personal observations of the lake systems in the Deltona area over the years, Mr. Lott has seen levels fluctuate greatly based upon periods of heavy and light rainfall. Mr. Lott is concerned that the District will permit the City to open the weir to let water flow through the system and cause flooding in some areas and low water levels in other areas. He fears that the District will allow the water to flow and upset the environmental balance, but he admits that this ERP application is for a closed system that will not allow the water to flow as he fears. Mr. Lott similarly does not trust the City to comply with and the District to enforce the conditions of the ERP. Petitioners, James E. and Alicia M. Peake, who were represented by Steven L. Spratt at hearing as their qualified representative, live on Lake Louise, which is interconnected with the Lake Theresa basin. The Peakes are concerned that if the level of Lake Louise drops below 21 feet, nine inches, they will not be able to use the boat launch ramps on the lake. Petitioner, Steven L. Spratt, also lives on Lake Louise, and is concerned about the water levels becoming so low that he cannot use the boat launch on the lake. He has lived on the lake since 2000, and remembers when the water level was extremely low. He fears that approval of the ERP in this case will result in low levels of water once again. Petitioner, Gloria Benoit, has live on Lake Theresa for two years. She also enjoys watching recreational activities on the lake, and feels that approval of the ERP will devalue her lakefront property. Ms. Benoit appeared at the first day of the hearing, but offered no testimony on her behalf. J. Christy Wilson, Esquire, appeared prior to the final hearing as counsel of record for Petitioners, Steven E. Larimer, Kathleen Larimer, and Helen Rose Farrow. Neither Ms. Wilson nor any of the three Petitioners she represented appeared at any time during the hearing, filed any pleadings seeking to excuse themselves from appearing at the final hearing, or offered any evidence, testimony, pre- or post- hearing submittals. Petitioner, Gary Jensen, did not appear at hearing, did not file any pleadings or papers seeking to be excused from appearing at the final hearing, and did not offer any evidence, testimony, pre- or post-hearing submittals. Both the City and the District recognize that areas downstream from the project site, such as Stone Island and Sanford, have experienced flooding in the past in time of high amounts of rainfall. The system proposed by the City for this ERP will operate with the overflow structures closed and a brick and mortar plug in the outfall pipe to prevent water flow from Lake Doyle to Lake Bethel. So long as the overflow structures are closed, the system will mimic pre-construction flow patterns, with no increase in volume flowing downstream. The District has considered the environment in its proposed approval of the ERP. The area abutting the project is little urbanized and provides good aquatic and emergent marsh habitat. With the exception of the western shore area of the deepwater marsh ("west marsh area"), the bay swamp and remaining deepwater marsh area have good ecological value. In the 1940's, the west marsh area was incorporated into the drainage system of a poultry farm that occupied the site. This area apparently suffered increased nutrient influxes and sedimentation that contributed to a proliferation of floating mats of aquatic plants and organic debris. These tussocks reduced the deepwater marsh's open water and diminished the historical marsh habitat. Water under the tussocks is typically anoxic owing to total shading by tussocks and reduced water circulation. Thick, soft, anaerobic muck has accumulated under the matted vegetation. Exotic shrubs (primrose willow Ludwigia peruvania) and other plants (cattails Typha spp.) dominate the tussocks. The construction of the project, from the 2003 Emergency Order, resulted in adverse impacts to 1.3 acres of wetlands having moderately high- to high ecological value and 0.2 acres of other surface waters. The 0.2 acre impact to other surface waters was to the lake bottom and the shoreline of Lake Doyle where the weir structure was installed. The 0.3 acres of wetland impacts occurred at the upper end of the deepwater marsh where the pipe was installed. The largest wetland impact (1.0 acre) was to the bay swamp. The bay swamp is a shallow body dominated by low hummocks and pools connected inefficiently by shallow braided channels and one acre is filled with a 1-2 foot layer of sediment following swamp channelization. Disturbance plants (e.g., primrose willow, Ludwigia peruvania, and elderberry Sambucus Canadensis) now colonize the sediment plume. Pursuant to the District's elimination and reduction criteria, the applicant must implement practicable design modifications, which would reduce or eliminate adverse impacts to wetlands and other surface waters. A proposed modification, which is not technically capable of being done, is not economically viable, or which adversely affects public safety through endangerment of lives or property is not considered "practicable." The City reduced and/or eliminated the impacts to the lake bottom and shoreline of Lake Doyle and deepwater marsh, to the extent practicable. The impacts were the minimum necessary to install the weir structure and pipe for the system; the weir structure and pipe were carefully installed on the edges of the wetland and surface water systems, resulting in a minimum amount of grading and disturbance. To compensate for the loss of 1.3 acres of wetlands and 0.2 acres of other surface waters, the City proposes to preserve a total of 27.5 acres of wetlands, bay swamp, marsh, and contiguous uplands. Included in this 27.5 acres are 6.4 acres of the west marsh, which are to be restored. The parties stipulated that the mitigation plan would adequately compensate for losses of ecological function (e.g. wildlife habitat and biodiversity, etc.) resulting from the project. Water quality is a concern for the District. Lake Monroe is included on the Florida Department of Environmental Protection's verified list of impaired water bodies for nitrogen, phosphorous, and dissolved oxygen. Water quality data for Lake Monroe indicate the lake has experienced high levels of nitrogen and phosphorous and low levels of dissolved oxygen. Prior to construction of the project, there was no natural outfall from the Lake Theresa Basin to Lake Monroe and therefore no contribution from this basin to nitrogen and phosphorous loadings to Lake Monroe. Lake Colby, Three Island Lakes (a/k/a Lake Sixma), and the Savannah are surface waters within the Lake Theresa Basin for which minimum levels have been adopted pursuant to Florida Administrative Code Chapter 40C-8. The system will operate with the overflow structures closed and a brick and mortar plug in the outfall pipe to prevent water flow from Lake Doyle to Lake Bethel, resulting in no outfall from the Theresa Basin to Lake Monroe. Minimum flows established for surface waters within the Lake Theresa Basin will not be adversely impacted. Under the first part of the secondary impact test, the City must provide reasonable assurance that the secondary impacts from construction, alteration, and intended or reasonable expected use of the project will not adversely affect the functions of adjacent wetlands or surface waters. The system is designed as a low intensity project. As proposed, little activity and maintenance are expected in the project site area. The reasonably expected use of the system will not cause adverse impacts to the functions of the wetlands and other surface waters. None of the wetland areas adjacent to uplands are used by listed species for nesting or denning. In its pre-construction state, the project area did not cause or contribute to state water quality violations. Under the second part of the secondary impact test, the City must provide reasonable assurance that the construction, alteration, and intended or reasonably expected uses of the system will not adversely affect the ecological value of the uplands to aquatic or wetland dependent species for enabling existing nesting or denning by these species. There are no listed threatened or endangered species within the project site area. Under the third part of the secondary impact test, and as part of the public interest test, the District must consider any other relevant activities that are closely linked and causally related to any proposed dredging or filling which will cause impacts to significant historical and archaeological resources. When making this determination, the District is required, by rule, to consult with the Division of Historical Resources. The Division of Historical Resources indicated that no historical or archaeological resources are likely present on the site. No impacts to significant historical and archaeological resources are expected. Under the fourth part of the secondary impact test, the City must demonstrate that certain additional activities and future phases of a project will not result in adverse impacts to the functions of wetlands or water quality violations. The City has submitted to the District preliminary plans for a future phase in which the system would be modified for the purpose of alleviating high water levels within the Lake Theresa Basin when the level in Lake Doyle rises above an elevation of 24.5 feet. Based upon the plans and calculations submitted, the proposed future phase, without additional measures, could result in minor increases in the loadings of nitrogen and phosphorous to Lake Monroe. Lake Monroe is included on the Florida Department of Environmental Protection's verified list of impaired water bodies due to water quality data indicating the lake has experienced high levels of nitrogen and phosphorous, and low levels of dissolved oxygen. Under this potential future phase, there would be an outfall from the Lake Theresa Basin to Lake Monroe. To address the impact on water quality of this potential future phase, the City has submitted a loading reduction plan for nitrogen, phosphorous, and dissolved oxygen. The plan includes compensating treatment to fully offset the potential increased nutrient loadings to Lake Monroe. Specifically, the loading reduction plan includes: Construction and operation of compensating treatment systems to fully offset anticipated increased nutrient loadings to Lake Monroe. Weekly water quality monitoring of the discharge from Lake Doyle for total phosphorous and total nitrogen. A requirement that the overflow structure be closed if the total phosphorous level reaches 0.18 mg/l or higher or the total nitrogen level reaches 1.2 mg/l or higher in any given week and will remain closed until levels fall below those limits. The implementation of these water quality mitigation measures will result in a net improvement of the water quality in Lake Monroe for nitrogen, phosphorous, or dissolved oxygen. The future phase was conceptually evaluated by the District for impacts to wetland functions. The future phase as proposed could result in adverse impacts to wetland functions. Operation of the system with the overflow structures open could impact the bay swamp and deepwater marsh. The City has demonstrated that any adverse impacts could be offset through mitigation. Based upon the information provided by the City and general engineering principles, the system is capable of functioning as proposed. The City of Deltona will be responsible for the operation, maintenance, and repair of the surface waster management system. A local government is an acceptable operation and maintenance entity under District rules. The public interest test has seven criteria. The public interest test requires the District to evaluate only those parts of the project actually located in, on, or over surface waters or wetlands, to determine whether a factor is positive, neutral, or negative, and then to balance these factors against each other. The seven factors are as follows: the public health, safety, or welfare of others; conservation of fish and wildlife and their habitats; fishing, recreational value, and marine productivity; temporary or permanent nature; 5) navigation, water flow, erosion, and shoaling; 6) the current condition and relative value of functions; and 7) historical and archaeological resources. There are no identified environmental hazards or improvements to public health and safety. The District does not consider impacts to property values. To offset any adverse impacts to fish and wildlife and their habitats, the City has proposed mitigation. The areas of the project in, on, or over wetlands do not provide recreational opportunities. Construction and operation of the project located in, on, or over wetlands will be permanent in nature. Construction and operation of the project located in, on, or over wetlands will not cause shoaling, and does not provide navigational opportunities. The mitigation will offset the relative value of functions performed by areas affected by the proposed project. No historical or archaeological resources are likely on the site of the project. The mitigation of the project is located within the same drainage basin as the project and offsets the adverse impacts. The project is not expected to cause unacceptable cumulative impacts.

Recommendation Based upon the Findings of Fact and Conclusions of Law, it is RECOMMENDED that a Final Order be entered granting the City of Deltona's application for an environmental resource permit with the conditions set forth in the Technical Staff Report, and dismissing the Petitions for Formal Administrative Hearing filed by Gary Jensen in Case No. 04-2405, and by Steven E. Larimer, Kathleen Larimer, and Helen Rose Farrow in Case No. 04-3048. DONE AND ENTERED this 27th day of May, 2005, in Tallahassee, Leon County, Florida. S ROBERT S. COHEN Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 27th day of May, 2005. COPIES FURNISHED: George Trovato, Esquire City of Deltona 2345 Providence Boulevard Deltona, Florida 32725 Diana E. Bauer 1324 Tartan Avenue Deltona, Florida 32738 Barbara Ash, Qualified Representative 943 South Dean Circle Deltona, Florida 32738-6801 Phillip Lott 948 North Watt Circle Deltona, Florida Howard Ehmer Nina Ehmer 32738-7919 1081 Anza Court Deltona, Florida 32738 Francell Frei 1080 Peak Circle Deltona, Florida 32738 Bernard T. Patterson Virginia T. Patterson 2518 Sheffield Drive Deltona, Florida 32738 Kealey A. West, Esquire St. Johns River Water Management District 4049 Reid Street Palatka, Florida 32177 J. Christy Wilson, Esquire Wilson, Garber & Small, P.A. 437 North Magnolia Avenue Orlando, Florida 32801 Gloria Benoit 1300 Tartan Avenue Deltona, Florida 32738 Gary Jensen 1298 Tartan Avenue Deltona, Florida 32738 James E. Peake Alicia M. Peake 2442 Weatherford Drive Deltona, Florida 32738 Steven L. Spratt 2492 Weatherford Drive Deltona, Florida 32738 Ted Sullivan 1489 Timbercrest Drive Deltona, Florida 32738 Kirby Green, Executive Director St. Johns River Water Management District 4049 Reid Street Palatka, Florida 32177

Florida Laws (3) 120.569120.57373.086 Florida Administrative Code (6) 40C-4.30140C-4.30240C-4.33140C-4.75162-302.30062-4.242
# 8
JOSEPH SMITH, LENA SMITH, EUGENE COLWELL, ANNA COLWELL, JERRY HARRIS, AND BRENDA HARRIS vs ST. JOHNS RIVER WATER MANAGEMENT DISTRICT, 94-000544 (1994)
Division of Administrative Hearings, Florida Filed:Ocala, Florida Jan. 31, 1994 Number: 94-000544 Latest Update: Nov. 01, 1994

Findings Of Fact The Parties. The Petitioners, Joseph and Lena Smith, Eugene and Anna Colwell, and Jerry and Brenda Harris, are littoral owners and operators of sports fishing facilities on Orange Lake, a freshwater body of approximately 7,000 acres of open water and 15,000 acres of associated wetlands, whose southern margin constitutes the boundary between Alachua and Marion Counties in north central Florida. Respondent, the St. Johns River Water Management District (hereinafter referred to as the "District"), is a special taxing district created by Chapter 373, Florida Statutes, charged with the statutory responsibility for the management of water and related land resources; the promotion of conservation, development, and proper utilization of surface and ground water; and the preservation of natural resources, fish and wildlife, pursuant to Chapter 373, Florida Statutes. Intervenor, the Sierra Club, Inc. (hereinafter referred to as "Sierra"), is a not-for-profit California corporation registered to do business within the State of Florida. Sierra is an international corporation whose purpose is to explore, enjoy and protect the natural resources of the earth. Intervenor, Florida Defenders of the Environment, Inc. (hereinafter referred to as "Florida Defenders"), is a not-for-profit Florida corporation whose purpose is to preserve and restore Florida's natural resources. Intervenor, the Florida Department of Environmental Protection (hereinafter referred to as "DEP"), is an agency of the State of Florida charged with the responsibility of controlling and prohibiting pollution of the air and water of the State of Florida. See Chapter 403, Florida Statutes. DEP is also charged with responsibility for management of the Paynes Prairie State Preserve. Section 373.026, Florida Statutes. Intervenor, the Attorney General of the State of Florida (hereinafter referred to as the "Attorney General"), sits as a Trustee of the sovereignty submerged lands of the State and as one of the legal owners of the State's property including the Paynes Prairie State Preserve. The Challenged Rules. The District issued an order on November 7, 1993, authorizing the publication of a notice of intent to amend Chapter 40C-2, Florida Administrative Code, by adopting proposed Rule 40C-2.302, Florida Administrative Code, and amending Rule 40C-2.051(6), Florida Administrative Code (hereinafter jointly referred to as the "Challenged Rules"). Proposed Rule 40C-2.302, Florida Administrative Code (hereinafter individually referred to as the "Reservation Rule"), provides: 40C-2.302 Reservation of Water From Use. The Governing Board finds that reserving a certain portion of the surface water flow through Prairie Creek and Camps Canal south of Newnans Lake in Alachua County, Florida, is necessary in order to protect the fish and wildlife which utilize the Paynes Prairie State Preserve, in Alachua County, Florida. The Board therefore reserves from use by permit applicants that portion of surface water flow in Prairie Creek and Camps Canal that drains by gravity through an existing multiple culvert structure into Paynes Prairie. this reservation is for an average flow of [35] cubic fee per second (23 million gallons per day_ representing approximately forty five per cent (45 percent) of the calculated historic flow of surface water through Prairie Creek and Camps Canal. The specific authority for the Reservation Rule is Sections 373.044, 373.113, 373.171, 373.216 and 373.219, Florida Statutes. The law implemented by the Reservation Rule is Sections 373.219 and 373.223, Florida Statutes. The proposed amendment to Rule 40C-2.051, Florida Administrative Code (hereinafter individually referred to as the "Exemption Rule"), provides, in pertinent part: 40C-5.2.051 Exemptions. No permit shall be required under the provisions of this rule for the following water uses: through (5) No change (6) Water, whether withdrawn or diverted, when used for purposes of protection of fish and wildlife or the public health and safety when and where the Governing Board has, by regulation, reserved said water from use by permit applicant pursuant to Subsection 373.223(3), F.S. The specific authority for the Exemption rule is Sections 373.044, 373.113 and 373.171, Florida Statutes. The law implemented by the Exemption Rule is Sections 373.103, 373.171, 373.216, 373.219, 403.501 et seq. and 288.501 et seq., Florida Statutes. Orange Creek Basin. Orange Creek Basin is the name given to the hydrological features of approximately 400 square miles of Alachua, Putnam and Marion Counties, Florida. Orange Creek Basin is a major sub-basin of the Lower Ocklawaha River Basin. Surface water in the Orange Creek Basin flows generally in a north to south direction Orange Creek Basin is made up of several sub-basins, including Newnans Lake, Paynes Prairie, Orange Lake and Lochloosa Lake sub-basins. Surface water within the approximately 100 square miles of Newnans Lake sub-basin drains into Newnans Lake. When sufficiently high, water in Newnans Lake discharges over a weir structure from the southern end of the lake into Prairie Creek. The weir structure at the southern end of Newnans Lake may be adjusted to control the amount of water flowing into Prairie Creek. The weir was installed in 1966. It was adjusted by the Florida Game and Freshwater Fish Commission in 1976. Water flows south into Prairie Creek, the south and southwest through Prairie Creek to two man-made structures. The first is a gated culvert structure consisting of 3 Culverts (the "Camps Canal Culverts"), through which some of the Prairie Creek water enters Paynes Prairie. The second man-made feature is a levee and a canal named Camps Canal. The levee diverts water in Prairie Creek, which does not flow into Paynes Prairie by gravity, through Camps Canal to the south to the River Styx, which flows into Orange Lake. If the elevation of surface water in Prairie Creek exceeds 58.91 feet National Geodetic Vertical Datum (hereinafter referred to as "NGVD"), a portion of the volume of Prairie Creek will flow, by gravity, into Paynes Prairie through the Camps Canal Culverts. The Paynes Prairie sub-basin covers an area of approximately 49 square miles. Surface water in this sub-basin drains into a natural geological feature known as Alachua Sink. Surface water in the approximately 56 square mile Orange Lake sub- basin flows into Orange Lake. Surface water flows out of Orange Lake through Orange Creek. Outflow is controlled by Orange Lake Dam. The Orange Lake Dam has a fixed crest elevation of 58 feet NGVD. Water levels in Orange Lake must exceed 58 feet NGVD before there is surface water outflow from Orange Lake. Surface water within the approximately 75 square mile Lochloosa Lake sub-basin drains into Lochloosa Lake. Lochloosa Lake has two outlets: Lochloosa Slough in the east and Cross Creek in the south. Cross Creek connects Lochloosa Lake to Orange Lake. Paynes Prairie State Preserve. Prior to the construction of the weir at the outlet from Newnans Lake to Prairie Creek, all surface water from Newnans Lake flowed from Newnans Lake to Prairie Creek unimpeded. Prior to 1927 all surface water in Prairie Creek flowed south into an area known as Paynes Prairie. Paynes Prairie is located in Alachua County. All water in Prairie Creek entered Paynes Prairie and flowed across Paynes Prairie to Alachua Sink. Alachua Sink is a natural geological feature located in the north- central portion of Paynes Prairie. At Alachua Sink surface water enters the Florida aquifer. In 1927 a levee was constructed around the eastern boundary of Paynes Prairie, and Camps Canal was excavated in order to divert water from Paynes Prairie. Due to the levee, water in Prairie Creek was diverted into Camps Canal beginning in approximately 1927. The water flowed into the River Styx and then into Orange Lake. Canals and levees were also constructed within Paynes Prairie to convey surface water in Paynes Prairie into Alachua Sink and Camps Canal. The modifications to Paynes Prairie made in 1927 were intended to drain Paynes Prairie so that the land could be utilized for agricultural purposes, including the raising of cattle. Paynes Prairie continued to be used primarily for the raising of cattle between 1927 and early 1970. In 1970, the State of Florida began acquiring parts of Paynes Prairie. Property acquired by the State was used to create the Paynes Prairie State Preserve (hereinafter referred to as the "Preserve"). Land is still being acquired by the State. The Preserve currently consists of approximately 20,600 acres. Approximately 18,000 acres of the Preserve were acquired within the first 4 years after acquisitions by the State began. Approximately 12,000 acres are considered wetlands. Two major highways, U.S. Highway 441 and Interstate 75 run north-south across the middle and western portion of Paynes Prairie. U.S. 441 was constructed in 1927 and I-75 was constructed in 1964. In 1975 the State of Florida's Department of Natural Resources (which is now DEP) breached the levee at Camps Canal in order to restore part of the water flow from Prairie Creek to the Preserve. In 1979 flashboard riser Culverts were placed in the breach in the Camps Canal levee. In 1988 the Camps Canal Culverts were constructed. The Preserve, a unique land feature, was designated a National Natural Landmark in 1974 by the United States Department of the Interior. No consumptive use permit concerning water that flows into Paynes Prairie or the Preserve has been issued by the District. No consumptive use permits have been issued by the District for surface water withdrawals from Newnans Lake, Prairie Creek or Orange Creek. The Current General Hydrologic Condition of the Preserve. The Preserve is one of the largest continuous wetland systems in Florida and the Southeastern United States. The Preserve and Paynes Prairie constitute one of the largest wetland areas formed by the collapse of a sinkhole, Alachua Sink. Since 1975, at least some water has flowed into the Preserve from Prairie Creek through the Camps Canal Culverts and its predecessors. The "inverts" of the Prairie Creek-Camps Canal Culverts are above the creek-canal bottom. This means that if water in Prairie Creek does not reach a certain level, no water will flow through the Camps Canal Culverts into the Preserve. Under these conditions, all water in Prairie Creek will flow through Camps Canal and eventually to Orange Lake. The amount of water flowing through the Camps Canal Culverts is also limited to a maximum amount due to the size of the Culverts. The exact amount of water that may flow through the Camps Canal Culverts into the Preserve depends on the amount of water in Prairie Creek coming from Newnans Lake and the capacity of the Culverts to move the water. Water flowing into the Preserve through the Camps Canal Culverts constitutes approximately 50 percent of the surface water entering the Preserve. After water flows into the Preserve through the Camps Canal Culverts it flows in a broad, shallow path, referred to as "sheetflow," over the eastern portion of the Preserve. The sheetflow from Camps Canal Culverts creates approximately 550 to 600 acres of shallow marsh community. The water eventually flows into an area known as Alachua Lake in the central portion of the Preserve. Water discharging from Alachua Lake flows through a water control structure consisting of four gated Culverts, known as the Main Structure, into Alachua Sink. Water also enters the Preserve from the north through a tributary known as Sweetwater Branch. Water flows through Sweetwater Branch into Alachua Sink. Sweetwater Branch is channelized over its entire length, preventing water from reaching into the Preserve or Alachua Lake. The District's Purpose in Adopting, and the District's Interpretation of, the Challenged Rules. The District's intent in adopting the Challenge Rules was to reserve water which the District had concluded is required for the protection of fish and wildlife in Paynes Prairie. The District is attempting to carry out its intent by providing in the Reservation Rule that whatever amount of water that may flow through the Camps Canal Culverts by gravity into the Preserve may not be used for other purposes. The District is further attempting to carry out its intent by providing in the Exemption Rule that any amount of water that has been reserved by the District because it is required for the protection of fish and wildlife pursuant to Section 373.223(3), Florida Statutes, exempt from the consumptive use permit process. The Reservation Rule is not intended to reserve a specific quantity of water for the Preserve. Rather, the Reservation Rule reserves only that amount of water that flows through the Camps Canal Culverts by force of gravity. The intent is allow the natural existing hydrologic regime of the Preserve to continue. The quantity of the water reserved by the Reservation Rule is identified, in part, as follows: The Governing Board finds that reserving a certain portion of the surface water flow through Prairie Creek and Camps Canal south of Newnans Lake in Alachua County, Florida, is necessary in order to protect the fish and wildlife which utilize the Paynes Prairie State Preserve, in Alachua County, Florida. The Board therefore reserves from use by permit applicants that portion of surface water flow in Prairie Creek and Camps Canal that drains by gravity through an existing multiple culvert structure into Paynes Prairie. . . . [Emphasis added]. The last sentence of the Reservation Rule goes on to proved: This reservation is for an average flow of [35] cubic feet per second (23 million gallons per day) representing approximately forty five per cent (45 percent) of the calculated historic flow of surface water through Prairie Creek and Camps Canal. This portion of the Reservation Rule was not included by the District to establish a minimum and/or maximum quantity of water that is being reserved for the protection of fish and wildlife in the Preserve. This portion of the Reservation Rule represents a very condensed summary of the historical hydrologic data relied upon by the District in deciding to reserve water for the Preserve's fish and wildlife. The Exemption Rule was intended to make clear that anytime the District reserves water which it determines is required to protect fish and wildlife or the public safety, that no consumptive use permit is necessary. The District's Determination that Water is Necessary for the Protection of Fish and Wildlife in Paynes Prairie. In reaching its decision that the quantity of water flowing through the Camps Canal Culverts by force of gravity into the Preserve is required for the protection of the fish and wildlife of the Preserve, the District relied upon a study of the Orange Creek Basin which District staff had begun in the 1980s. There were three objectives for the Orange Creek Basin study: (a) the first objective of the study was to develop a predictive hydrologic model that could be used to predict water levels throughout the basin and the water courses that connect the various major lakes and prairie systems; (b) the second objective of the Orange Creek Basin study was to develop environmental and hydrologic criteria that could be used to evaluate the environmental impacts of different water management alternatives in the basin; and (c) the third objective was to look at alternatives for management of water within the District. Substantial evidence concerning the manner in which the Orange Creek Basin study was conducted, the results of the study and the rationale for the District's conclusion that the quantity of water flowing through the Camps Canal Culverts by force of gravity is required to protect the fish and wildlife of the Preserve was presented during the final hearing of this case by the District. The evidence presented by the District to support a finding that the quantity of water flowing through the Camps Canal Culverts by force of gravity is required to protect the fish and wildlife of the Preserve was not rebutted by competent subs by the Petitioners. The only witness called by the Petitioners was an expert in hydrology. The Petitioners' expert only suggested that he had questions about the District's hydrologic study. He was unable, however, to testify that the hydrologic study relied on by the District was unreasonable or inaccurate. The Petitioners also offered no evidence to counter the testimony of the District's expert on the environment of Paynes Prairie. The testimony of the District's expert proved that, even without the results of the hydrologic study conducted by the District, the evidence concerning the Preserve's environment supports a finding that the water reserved by the Reservation Rule is required for the protection of fish and wildlife. Generally, the evidence proved that, if the water being reserved is not continued to allow to flow naturally into the Preserve, the range of water fluctuations and the resulting natural impact of the environment of the Preserve will not be achieved. There exist in the Preserve currently, a range of plant communities and fish and wildlife. The nature of those communities, fish and wildlife depends on the amount of water in the communities. The communities range from those existing in of upland areas, which have the lowest levels of water, down to deep marshes, where water levels are the greatest. In between are emergent marsh (also called "shallow marsh"), cypress swamps, mixed scrub-shrub wetland, wet prairie, old filed, hudric forest, mesic forest and xeric community. The various types of communities are is a state of fluctuation depending on the levels of water flowing into the Preserve. The evidence presented by the District, and was uncontroverted by the Petitioners, proved that these fluctuations are environmentally desirable; that natural fluctuations of water levels in the Preserve are required for the protection of fish and wildlife. It is for this reason, therefore, that the District decided to reserve the amount of water flowing by gravity through the Camps Canal Culverts, and not some specified volume. The Rationale for the District's Finding that Water is Required for the Protection of Fish and Wildlife. Although the District and some of the Intervenors have prosed several findings of fact that support the ultimate finding of fact that the water reserved by the Reservation Rule is required to protect fish and wildlife. Those findings of fact are subordinate to the ultimate relevant fact in this case. Therefore, rather than rewrite all of those subordinate facts, the District's subordinate findings of fact (which cover those subordinate findings suggested by the Intervenors) will be quoted and adopted in this Final Order. The findings of fact of the District quoted and adopted herein which relate to the hydrologic portion of the are as follows. The findings have been modified to reflect terms used throughout this Final Order. The findings of the District adopted are District findings of fact 44 through 74: Surface water hydrologic models are a tool used by water resource professionals to enable them to simulate or calculate certain characteristics of a hydrologic system from data that relates to or is collected from within that system. T. 65, 66, 90, 91, 779. In this basin, the staff of the District developed a surface water model in order to calculate anticipated water levels and discharge volumes at various points throughout the basin expected to be associated with several alternative water management strategies. T. 90, 91, SJ Ex 1 p 27. The specific model used by the District is the Streamflow Synthesis and Reservoir Regulation (SSARR) mathematical model, developed by the U.S. Army Corps of Engineers. This particular model is generally accepted and used in the field of hydrology for the purposes for which it was used here by the District staff. T. 90, 91, SJ Ex 1 p 27. The model combines two types of data, the first of which are "fixed basin parameters" such as drainage area, soil moisture run-off relationships, and storage capacity of the water bodies in the basin. Fixed basin parameters do not change over time. T. 98, 99, SJ Ex 1 pp 32-37. The second type of data used by the model is "time series" data such as rainfall, evaporation, lake elevations and discharges at several points throughout the basin. Time series data does change over time. T. 98, 99, SJ Ex 1 pp 38-40. Rainfall data for the basin is the most important input element for the model because rainfall drives the system from a hydrologic perspective. T. 95. Rainfall data from 5 recording stations scattered over the basin were utilized, with one station located at the University of Florida in Gainesville yielding data for more than 50 years, although only data for the 50 year period from 1942-1991 was used in the model. T. 96, 97, SJ Ex 1 pp 38, 39, 62, 175. The other 4 rainfall recording stations used in the model have recorded rainfall for periods ranging from 11 years to 37 years. SJ Ex 1 p 39. In a basin the size of the Orange Creek Basin, day to day rainfall amounts may vary from one recording station to another, however, on an annualized basis, rainfall amounts are relatively consistent between the rainfall recording stations utilized in the District's model. T. 97, 98, 184, 727. Both the number and location of rainfall recording stations used for the model are adequate to characterize rainfall for the basin. T. 97, 98, 184. Fifty years of hydrologic data were utilized by the District in the model, because corresponding records existed for rainfall, lake levels, and discharge for this period of time. In addition, a 50 year period is more likely to exhibit a full range of hydrologic conditions, such as droughts and floods, than a shorter increment of time would. T. 104. The model utilizes both the fixed basin parameters and the time series data to calculate an associated lake level for any of the lakes in the basin or a discharge measurement at one of several points in the basin for any particular day during the 50 year period represented by the hydrologic data on which the model is based. T. 98-100. The model was initially run to calculate several hydrologic values with existing conditions in place. Existing conditions, for purposes of comparison with other alternatives, assumes the Newnans Lake weir to be in place, the gates to the Camps Canal Culverts to be in an open position and the gates to the main structure Culverts in the Preserve to be in an open position. T. 99, SJ Ex 1 p 83. For all scenarios examined, the model assumes existing land uses to be in place, in all years simulated, in order to allow consistent comparisons of hydrologic conditions over the 50 years for which data was available. T. 134, 135. In the "existing conditions" scenario the model calculates the volume of water discharging from Newnans Lake southward into Prairie Creek for each day during the 50 year period from 1942-1991. T. 100. Discharge measurements were made by District staff at the downstream end of the Camps Canal Culverts from which a rating curve was developed for the structure. T. 101, 102, SJ Ex 1 pp 33, 36. A rating curve is a means by which the flow capacity of a water control structure such as a culvert may be calculated. T. 101, 102. Using the rating curve developed by District staff for the Camps Canal Culverts, the model, having calculated the volume of water moving from Newnans Lake into Prairie Creek, can then calculate the volume of water passing through the Culverts at the Camps Canal Culverts into the Preserve versus the volume moving on southward through Camps Canal to Orange Lake for each day or year during the 50 year period from 1942-1991. T. 101, 102, SJ Ex 1 p 84, Appendix Table E-45. Having calculated the annual volume of surface water entering the Preserve and the annual volume moving into and through Camps Canal to Orange Lake for each of the 50 years between 1942- 1991, District staff then divided the 50 year totals for each by 50 to arrive at a yearly average volume of water going to the Preserve versus a yearly average volume going through Camps Canal to Orange Lake, under existing conditions. T. 101-104, SJ Ex 1 p 84, Appendix Table E-45. Based on the volumes calculated for the 50 year period between 1942-1991, on average, 45 percent of Prairie Creek flow enters Preserve through the Camps Canal Culverts under existing conditions. This equates to 35 cubic feet per second (cfs), or 23 million gallons per day (mgd). T. 103, 605, 606, SJ Ex 1 p 84, Appendix Table E-45. Also based on the volumes calculated for the 50 year period between 1942-1991, on average, 55 percent of Prairie Creek flow goes into Camps Canal and moves on southward to the River Styx and then to Orange Lake under existing conditions. T. 103, SJ Ex 1 Appendix Table E-45. Making a calculation of flow based on 50 years of historic hydrologic data does not guarantee that the next 50 years will be identical to the period during which the calculation was developed, however, it is reasonable to assume that the next 50 years will be statistically similar to the previous 50 years and that hydrologic conditions, on average, will be the same. T. 104, 143. Both the general methodology and the specific model used by the District to quantify the average volume of flow entering the Preserve under existing conditions, which also represents the volume of flow which the rule would reserve for fish and wildlife which use the Preserve, are based on logic and accepted scientific principles. T. 90, 91, 97, 102, 128, 729. The rule in issue does not reserve a specific amount of water for the protection of fish and wildlife using the Preserve, rather, it reserves the amount which will flow by gravity through the existing Camps Canal Culverts with the gates in an open position, which will in essence, maintain the existing volume of flow into the Preserve. T. 604, 605, 624. Thirty-five cfs does not necessarily represent the specific volume of water that will flow into Preserve on a given day, rather, the specific volume would be dependent on hydrologic conditions on that given day. T. 105, 106. Nevertheless, 45 percent of flow, or 35 cfs, or 23 mgd, represents a reasonably accurate calculation, based on the data available, of the average volume of Prairie Creek flow which will enter the Preserve by gravity pursuant to the Reservation Rule. T. 101- 104, 638, SJ Ex 1. With the existing conditions hydrologic regime which the Reservation Rule would continue in place, the model calculates that the mean elevation of Orange Lake would be 57.26 feet NGVD. T. 121, 122, SJ Ex 8 (arithmetic mean). If no Prairie Creek flow were allowed to enter the Preserve and all of its flow went to Orange Lake, the model calculates the mean elevation of Orange Lake to be 57.51 feet NGVD. T. 121, 122, SJ Ex 8 (arithmetic mean). Thus, the mean elevation of Orange Lake rises by only 0.25 feet when all of the Prairie Creek flow is diverted to Orange Lake. SJ Ex 8. The impact of a 0.25 feet change in the mean elevation of Orange Lake from a hydrologic perspective is small given the 11 feet fluctuation in elevations that has occurred naturally over time in the lake. T. 125. By contrast, if no Prairie Creek flow were allowed to enter the Preserve and all of its flow went to Orange Lake, the mean elevation of water levels within the Preserve, as calculated by the model, would decline by 0.65 feet. SJ Ex 7. Eliminating all Prairie Creek flow from the Preserve would decrease the amount of wetted acreage in the central portion of the prairie by up to 2400 acres. T. 203, SJ Ex 1 p 131, SJ Ex 6. In addition, the acreage wetted in the eastern lobe of the Preserve by the sheetflow of Prairie Creek water as it moves from the Camps Canal Culverts to Alachua Lake would also be eliminated. T. 116, SJ Ex 1 p 131. The findings of fact of the District quoted and adopted herein which relate to the environment of, and the alternative course of action considered for, the Preserve are as follows. The findings have been modified to reflect terms used throughout this Final Order. The findings of the District adopted are District findings of fact 79 through 127: The eastern and western lobes of the Preserve are approximately the same elevation and have similar gradients; however, the plant communities within the eastern lobe differ from the plant communities in the western lobe. The plant community within the eastern lobe is predominantly a shallow marsh community while the plant community within the western lobe varies from wet prairie to old field. T. 262, 263; SJ Exs 3, 10B, 10H. For the western lobe of the Preserve, consisting of the area west of U.S. Highway 441, rainfall is the only source of water except when extremely high water levels occur in Alachua Lake. T. 263, 272. When extremely high water levels occur on Alachua Lake water can backflow through the culverts under U.S. Highway 441 and Interstate Highway 75 and inundate the western lobe. T. 272. The eastern lobe of the Preserve is dependent upon sheetflow from Prairie Creek for its source of water. T. 263. Prior to the construction of Cones Levee the sheetflow from Prairie Creek inundated approximately 1,200 acres of the eastern lobe. Today, however, sheetflow inundates directly 600 acres and indirectly another 600 acres in the eastern lobe. T. 264, 265; SJ Ex 10B. Without the Prairie Creek sheetflow, the biological character of the eastern lobe would change to resemble the more terrestrial nature of the western lobe. T. 263, 272, 518. The fish and wildlife inhabiting the Preserve are totally dependent upon its surface water hydrology. T. 276. Of the 21 species of plants living within the Preserve that are listed by the federal government or the State of Florida as endangered, threatened or species of special concern, four species are wetland species. T. 268, 358, 359, 360. Twenty species of animals living on the Preserve are listed by the federal government or the State of Florida as endangered, threatened or species of special concern. Seventeen of these species are wetland dependent. T. 269. Birds, including a number of species listed as endangered or threatened such as great blue herons, woodstorks, anhingas, limpkins, sandhill cranes and ospreys, use the shrub communities around Alachua Lake, the cypress swamp in the eastern lobe and other areas of the eastern lobe for breeding, nesting, and foraging. T. 269, 270, 271, 277, 364, 365. Several species of migratory ducks overwinter in the central area of the Preserve, particularly in the shrub wetland communities around Alachua Lake. Without the flow of water from Prairie Creek the open water in Alachua Lake would be lost and consequently, the overwintering habitat for the ducks would be lost. T. 240, 270, 518. Immature bald eagles use the eastern lobe wetlands for foraging. T. 270. Additionally, the northern harrier, American kestrel and peragrine falcon use wetlands within the Preserve as foraging habitat. T. 364, 365. Mammals, such as river otters, brown water rat, bobcats, bats and long-tailed weasels, use the wetlands within the Preserve, and the eastern lobe particularly, as breeding, nesting, and/or foraging habitat. Reptiles, such as the American alligator, live in the Preserve. T. 270-271, 375, 377-378; SJ Ex 14. The diversity and abundance of animals living in or using the Preserve is greater in the eastern lobe and central area than the western lobe. T. 273, 274. Different species of birds frequent the western lobe. Typically, species more indicative of a drier terrestrial environment are found in the western lobe. T. 272. If the Prairie Creek flow is diverted from the Preserve, the eastern lobe would be driven towards a drier, terrestrial habitat and the functions of the eastern lobe wetlands would be totally lost. T. 277. The sheetflow across the eastern lobe is a unique feature of the Preserve, and without this sheetflow animals such as the endangered brown water rat would not live there. T. 277. Without the Prairie Creek sheetflow, animals dependent on Alachua Lake and the wetlands, such as the brown water rat and the woodstork, would have to find other areas to live, forage, breed and nest due to the loss of wetlands and open water habitat. T. 277, 518. When the water levels in the Preserve are low and wetlands are lost, the birds that depend on the wetlands for nesting will not nest in the Preserve nor elsewhere. T. 532. The wetland communities within the Preserve require a range of water level fluctuations which includes periods of high water levels, average water levels and low water levels. Wetlands must remain wet long enough to exclude upland plants and to conserve hydric soils, yet sufficiently dry often enough to allow germination of wetland plants and the compaction and oxidation of flocculent sediments. T. 293, 294, 298, 299, 310, 311; SJ Ex 1 pp. 23-25. Periods of high water levels maintain lower swamp and shallow marsh habitats, facilitate the dispersal of the seeds of wetland plants, allow wetland species that normally occur at lower elevations to move up into the forested communities, prevent the encroachment of upland species into the upper wetland area, and advance the transportation of organic matter from uplands to wetlands. Inundation of the floodplain and forested communities provide nesting, spawning, refugia, and foraging habitat for fish and other aquatic organisms. T. 294, 296, 310, 311; SJ Ex 1 pp 23- 25. The frequency, timing and duration of high water levels influence the composition and survival of wetland forests. T. 310, 311; SJ Ex 1 p 23. Periods of average water levels create and maintain organic soils and maintain wetland habitat for wetland dependent wildlife. T. 293, 297; SJ Ex 1 p 25. Periods of low water levels rejuvenate floodplain wetlands by allowing seed germination and growth of wetland plants. Seeds of many wetland plant species require saturated soils without standing water in order to germinate. T. 291, 293, 298, 299; SJ Ex 1 pp 24, 25. Periods of low water levels increase the rate of aerobic microbial breakdown and decomposition of organic sediments, and allows the consolidation and compaction of flocculent organic sediments. The consolidation, compaction and decomposition of flocculent organic sediments improves substrates for fish nesting and seed germination. T. 298, 299; SJ Ex 1 pp 24-25. Upland animals use the wetlands during periods of low water levels for foraging and breeding. T. 298, 299. Three elevation transects were used by District staff to identify the elevations of plant communities on the Preserve and develop environmental criteria for the Preserve floodplain. T. 302, 305-306; SJ Ex 1 pp 26, 27, 31, 60. Ecological criteria were developed by District staff to accommodate the hydroperiod requirements of lake and wetland biota. The ecological criteria consisted of hydrologic duration, i.e. how long an area is flooded; and recurrence intervals, i.e. how often an area is flooded. T. 304, 309; SJ Ex 1 pp 23, 61. Maintaining appropriate hydrologic durations and recurrence intervals for plant communities enables the plant communities to support populations of fish and wildlife. T. 307, 312. The District identified the following five significant water management levels: infrequent high water level, frequent high water level, minimum average water level, frequent low water level, and infrequent low water level. The water management levels characterize zones along the elevation gradient of the Preserve. T. 307, 308; SJ Ex 1 p 61. The five different recurrence intervals and the associated hydrologic durations became the hydrologic criteria used by District staff for the water management levels. T. 312. The District evaluated six water management alternatives for the Preserve: the "existing conditions" alternative which simulated the current morphometry of the Paynes Prairie sub-basin; the "total restoration" alternative, under which all the Prairie Creek flow is restored to Paynes Prairie; the "50/50 management" alternative, under which the inflow capacity at the Camps Canal Culvert is reduced by 50 percent and the outflow capacity at the main structure at Alachua Lake is reduced by 50 percent; the "elevation threshold" alternative, under which when the water level at Newnans lake is at 66 feet NGVD or above and the water level at Orange Lake is at 56 feet NGVD or below, then the inflow structure at Camps Canal Culvert is reduced by 50 percent while the outflow capacity at the main structure is maintained at 100 percent; the "Sweetwater Branch" alternative, under which flow from Prairie Creek is replaced by Sweetwater Branch flow; and the "no restoration" alternative, under which the entire flow from Prairie Creek is diverted to Orange Lake. T. 313, 314; SJ Ex 1 p 119. Based upon the hydrologic durations and recurrence intervals defined by the ecologic criteria, the District determined five water management levels for each water management alternative. SJ Ex 1 p 61. The five water management levels and the associated recurrence intervals and hydrologic durations form a fluctuation management regime. The fluctuation management regime for each water management alternative was evaluated with respect to the existing biological features of the aquatic and wetland communities of the Paynes Prairie sub-basin. SJ Ex 1 pp 61, 124, 125. Under the total restoration alternative the water levels on the Preserve would rise thereby improving the hydrologic regime on the prairie, but the possibility of flooding and damaging U.S. Highway 441 would also increase. The minimum average water level of Orange Lake would decrease by 0.67 feet. T. 331, 333; SJ Ex 1 pp 125-130; SJ Ex 8. The no restoration alternative would not satisfy all the hydrologic criteria. The minimum average water level on the Preserve would decrease by 1.01 feet under this alternative. Under this alternative the acreage inundated by the minimum average water level is reduced by approximately 2,400 acres. Additional wetland acres are lost due to the absence of the Prairie Creek sheetflow across the eastern lobe. The minimum average water level in Orange Lake would increase by 0.16 of a foot. T. 324, 334-336; SJ Ex 1 pp 124, 125, 131; SJ Ex 8. Eliminating the flow of Prairie Creek into Paynes Prairie would be detrimental to the current and future biological conditions on the Preserve. SJ Ex 1 p 131. Under the 50/50 management alternative the average flow from Prairie Creek would be reduced from 45 percent to 22.5 percent and the outflow to Alachua Sink would be reduced by 26 percent. T. 337; SJ Ex 1 p 131. The high water levels and the low water levels increase slightly within the Preserve and Orange Lake under the 50/50 management alternative; however, the residence time of water and the concentration of nutrients, including phosphorous and nitrogen, would increase thereby degrading water quality within the Preserve. T. 338, 340, 341; SJ Ex 1 pp 124, 125, 127, 128, 131, 132; SJ Exs 7 and 8. The reduction of sheetflow from Prairie Creek under the 50/50 management alternative would adversely affect the wetlands in the eastern lobe. SJ Ex 1 p 132. Under the elevation threshold management alternative water levels within the Preserve would decrease. The Preserve would receive less water during some periods of naturally high flows reducing the duration and frequency of inundation in the eastern lobe wetlands and, therefore, negatively impacting wildlife dependent upon seasonal high flows. T. 344; SJ Ex 1 p 133; SJ Ex 7. The flow provided by Sweetwater Branch provides approximately 15 percent of the Preserve's average inflow, whereas Prairie Creek provides approximately 50 percent of the Preserve's average inflow. T. 346. Sweetwater Branch is more or less confined to a channel and discharges into Alachua Sink bypassing the Preserve and its eastern lobe. T. 347. Under the Sweetwater Branch alternative the eastern lobe would be deprived of the sheetflow essential to the maintenance of wetlands and the wildlife in the eastern lobe. The eastern lobe would dry out and the plant communities would change to old field or wet prairie. The functions of the plant communities to wildlife would also change under this alternative. T. 347. The Sweetwater Branch alternative would not support fish and wildlife in the eastern lobe of the Preserve. T. 347. The water quality of Sweetwater Branch is poor. Sweetwater Branch has higher concentrations of nitrogen and phosphorous than Prairie Creek. If the nutrient-rich Sweetwater Branch water was diverted onto the Preserve the types and abundances of vegetative communities would change from native vegetation to monocultures of nuisance vegetation that thrive in nutrient-rich environments. T. 346-349; SJ Ex 1 pp 133-134. The existing conditions alternative provides over the long term an average of approximately 45 percent of the Prairie Creek flow by gravity flow through the Camps Canal Culvert to the Preserve. T. 355, 356; SJ Ex 1 p 121. Under the existing conditions alternative, the five hydrologic criteria for both the Preserve and Orange Lake are met and the water level elevations meet the desired recurrence intervals and hydrologic durations. T. 324, 350, 351. The fluctuation management regime provided by the existing conditions alternative partially restores sheetflow from Prairie Creek to the Preserve in sufficient, but fluctuating, water quantities necessary to maintain habitat for fish and wildlife within the eastern lobe. T. 350, 351. It is essential for the protection of the fish and wildlife that utilize and depend upon the Preserve to maintain the flow of Prairie Creek into the Preserve. T. 351, 517. The Preserve needs flow from Prairie Creek in volumes reserved by the proposed rule to protect its fish and wildlife. T. 351. The management levels established by the environmental criteria used for each of the water bodies in the basin will continue to be met in Orange Lake with an average of 45 percent of Prairie Creek flow going to the Preserve and 55 percent going to Orange Lake. T. 432, SJ Ex 1 pp 127, 134, 146. Based upon the substantial and uncontroverted evidence in this case, it is concluded that the water reserved by the Reservation Rule is required for the protection of fish and wildlife of the Preserve.

Florida Laws (12) 1.01120.54120.56120.57373.026373.044373.103373.171373.216373.219373.223403.501 Florida Administrative Code (2) 40C-2.05140C-2.302
# 9
THE SIERRA CLUB vs ST. JOHNS RIVER WATER MANAGEMENT DISTRICT AND HINES INTERESTS LIMITED PARTNERSHIP, 00-002231 (2000)
Division of Administrative Hearings, Florida Filed:St. Augustine, Florida May 26, 2000 Number: 00-002231 Latest Update: Jul. 12, 2004

The Issue The issues to be resolved in this proceedings concern whether Environmental Resource Permit (ERP) No. 4-109-0216-ERP, should be modified to allow construction and operation of a surface water management system (project) related to the construction and operation of single-family homes on "Marshall Creek" (Parcel D) in a manner consistent with the standards for issuance of an ERP in accordance with Rules 40C-4.301 and 40C-4.302, Florida Administrative Code.

Findings Of Fact The Project The project is a 29.9-acre residential development and associated stormwater system in a wetland mitigation area known as "Parcel D." It lies within the much larger Marshall Creek DRI in St. Johns County, Florida, bounded on the northeast by Marshall Creek, on the south and southeast by a previously permitted golf course holes sixteen and seventeen, and on the north by the "Loop Road." The project consists of thirty residential lots of approximately one-half acre in size; a short segment of Loop Road to access Parcel D; an internal road system; expansion of previously permitted Pond N, a wet detention stormwater management pond lying north of the Loop Road and wetland mitigation areas. Approximately 1.15 acres of wetlands are located on the Parcel D site. The project plan calls for filling 0.63 acres of the wetlands for purposes of constructing a road and residential lots for Parcel D. Part of that 0.63-acre impact area, 0.11 acres, is comprised of a 760-foot-long, narrow drainageway, with 0.52 acres of adjacent wetland. Downstream of the fill area, 0.52 acres of higher quality wetland is to be preserved. Hines proposes to preserve 4.5 acres of existing wetland and 2.49 acres of upland, as well as to create .82 acres of forested wetland as mitigation for the proposed impact of the project. Additionally, as part of the project, Hines will implement a nutrient and pesticide management plan. The only pesticides to be used at the project will be approved by the Department of Agriculture for use with soil types prevailing at the site and only pesticides approved by the Environmental Protection Agency may be used on the site. All pesticides to be used on the project site must be selected to minimize impacts to ground and surface water, including having a maximum 70-day half-life. Stormwater Management System The majority of surface runoff from Parcel D will be diverted to a stormwater collection system and thence through drainage pipes and a swale into Phase I of Pond N. After treatment in Pond N, the water will discharge to an upland area adjacent to wetlands associated with Marshall Creek and then flow into Marshall Creek. The system will discharge to Marshall Creek. In addition to the area served by Pond N, a portion of lots fourteen though twenty drain through a vegetated, natural buffer zone and ultimately through the soil into Marshall Creek. Water quality treatment for that stormwater runoff will be achieved by percolating water into the ground and allowing natural soil treatment. The fifty-foot, vegetated, natural buffer is adequate to treat the stormwater runoff to water quality standards for Lots 14, 15 and 20. Lots 16, 17, 18 and 19, will have only a twenty-five foot buffer, so additional measures must be adopted for those lots to require either that the owners of them direct all runoff from the roofs and driveways of houses to be constructed on those lots to the collection system for Pond N or placement of an additional twenty-five foot barrier of xeriscape plants, with all non- vegetated areas being mulched, with no pesticide or fertilizer use. An additional mandatory permit condition, specifying that either of these measures must be employed for Lots 16, 17, 18 and 19, is necessary to ensure that water quality standards will be met. Pond N is a wet detention-type stormwater pond. Wet detention systems function similarly to natural lakes and are permanently wet, with a depth of six to twelve feet. When stormwater enters a wet detention pond it mixes with existing water and physical, chemical and biological processes work to remove the pollutants from the stormwater. Pond N is designed for a twenty-five year, twenty-four- hour storm event (design storm). The pre-development peak rate of discharge from the Pond N drainage area for the design storm event is forty cubic feet per second. The post-development peak rate of discharge for the design storm event will be approximately twenty-eight cubic feet per second. The discharge rate for the less severe, "mean annual storm" would be approximately eleven cubic feet per second, pre-development peak rate and the post-development peak rate of discharge would be approximately five cubic feet per second. Consequently, the post-development peak rate of discharge does not exceed the pre- development peak rate of discharge. Pond N is designed to meet the engineering requirements of Rule 40C-42.026(4), Florida Administrative Code. Because the pond is not designed with a littoral zone, the permanent pool volume has been increased by fifty-percent. Additionally, because Pond N discharges to the Class II waters of Marshall Creek, an additional fifty-percent of treatment volume is included in the pond design. The system design addresses surface water velocity and erosion issues through incorporation of best management practices promulgated by the District to prevent erosion and sedimentation, including; designing side slopes of 4:1; siding and seeding disturbed areas to stabilize soil; and the use of riprap at the outfall from Pond N. During construction, short- term water quality impacts will be addressed through installation of silt fences and hay bales. The majority of the eighteen-acre drainage basin which flows into the Parcel D wetland lies to the south and southwest of Parcel D. In accordance with the prior permit, water from those off-site acres will be intercepted and routed to stormwater ponds serving golf course holes sixteen and seventeen. The system design will prevent adverse impacts to the hydroperiod of remaining on-site and off-site wetlands. The remaining wetlands will be hydrated through groundwater flow. Surface waters will continue to flow to the wetlands adjacent to lots fourteen through twenty because drainage from those lots will be directed across a vegetated, natural buffer to those wetlands. There is no diversion of water from the natural drainage basin, because Pond N discharges to a wetland adjacent to Marshall Creek, slightly upstream from the current discharge point for the wetland which is to be impacted. This ensures that Marshall Creek will continue to receive that fresh-water source. An underground "PVC cut-off wall" will be installed around Pond N to ensure that the pond will not draw down the water table below the wetlands near the pond. Pond N has been designed to treat stormwater prior to discharge, in part to remove turbidity and sedimentation. This means that discharge from the pond will not carry sediment and that the system will not result in shoaling. There will be no septic tanks in the project. The system is a gravity flow system with no mechanical or moving parts. It will be constructed in accordance with standard industry materials readily available and there will be nothing extraordinary about its design or operation. The system is capable of being effectively operated and maintained and the owner of the system will be the Marshall Creek Community Development District (CDD). Water Quality Water entering Pond N will have a residence time of approximately 200 days or about fifteen times higher than the design criteria listed in the below-cited rule. During that time, the treatment and removal process described herein will occur, removing most of the pollutants. Discharge from the pond will enter Marshall Creek, a Class II water body. The discharges must therefore meet Class II water quality numerical and anti-degradation standards. The design for the pond complies with the design criteria for wet detention systems listed in Rule 40C-42.026(4), Florida Administrative Code. In addition to meeting applicable design criteria, the potential discharge will meet water quality standards. The pond will have low levels of nitrogen and phosphorous resulting in low algae production in the pond. The long residence time of the water in the pond will provide an adequate amount of time for pesticides to volatilize or degrade, minimizing the potential for pesticide discharge. Due to the clear characteristics of the water column, neither thermal stratification nor chemical stratification are expected. Periodically, fecal coliform and total coliform levels are exceeded under current, pre-development conditions. These are common natural background conditions. Because the detention time in the pond will be an average of 200 days, and because the life span of fecal coliform bacteria is approximately seven to fourteen days the levels for coliforms in the pond will be very low. Discharges from the pond will enhance water quality of the Class II receiving waters because the levels of fecal coliform and total coliform will be reduced. The discharge will be characterized by approximately 100 micrograms per liter total nitrogen, compared with a background of 250 micrograms per liter presently existing in the receiving waters of Marshall Creek. The discharge will contain approximately three micrograms per liter of phosphorous, compared with sixty-three micrograms per liter presently existing in Marshall Creek. Total suspended solids in the discharge will be less than one-milligram per liter compared with seventy-two milligrams per liter in the present waters of Marshall Creek. Biochemical oxygen demand will be approximately a 0.3 level in the discharge, compared with a level of 2.4 in Marshall Creek. Consequently, the water quality discharging from the pond will be of better quality than the water in Marshall Creek or the water discharging from the wetland today. The pollutant loading in the discharge from the stormwater management system will have water quality values several times lower than pre-development discharges from the same site. Comparison of pre-development and post-development mass loadings of pollutants demonstrates that post-development discharges will be substantially lower than pre-development discharges. Currently, Marshall Creek periodically does not meet Class II water quality standards for dissolved oxygen. Construction and operation of the project will improve water quality in the creek concerning dissolved oxygen values because discharges from Pond N will be subjected to additional aeration. This results from design features such as discharge from the surface of the system, where the highest level of dissolved oxygen exists, and the discharge water draining through an orifice and then free falling to a stormwater structure, providing additional aeration. Discharges from the system will maintain existing uses of the Class II waters of Marshall Creek because there will be no degradation of water quality. Discharges will not cause new violations or contribute to existing violations because the discharge from the system will contain less pollutant loading for coliform and will be at a higher quality or value for dissolved oxygen. Discharges from the system as to water quality will not adversely affect marine fisheries or marine productivity because the water will be clear so there will be no potential for thermal stratification; the post-development discharges will remain freshwater so there will be no change to the salinity regime; and the gradual pre-development discharges will be replicated in post-development discharges. Several factors minimize potential for discharge of pesticide related pollutants: (1) only EPA-approved pesticides can be used; (2) only pesticides approved for site-specific soils can be used; (3) pesticides must be selected so as to minimize impacts on surface and groundwater; (4) pesticides must have a maximum half-life of 70 days; and (5) the system design will maximize such pollutant removal. Archaeological Resources The applicant conducted an archaeological resource assessment of the project and area. This was intended to locate and define the boundaries of any historical or archaeological sites and to assess any site, if such exists, as to its potential eligibility for listing in the National Register of Historic Places (National Register). Only a portion of one archaeological site was located on the project tract. Site 8SJ3473, according to witness Anne Stokes, an expert in the field of archaeological assessment, contains trace artifacts dating to the so-called "Orange Period," a time horizon for human archaeological pre-history in Florida dating to approximately 2,300 B.C. The site may have been only a small campsite, however, since only five pottery fragments and two chert flakes, residuals from tool-making were found. Moreover, there is little possibility that the site would add to knowledge concerning the Orange Period or pre-history because it is a very common type of site for northeast Florida and is not an extensive village site. There are likely other campsites around and very few artifacts were found. No artifacts were found which would associate the site with historic events or persons. The applicant provided the findings of its cultural resource assessment, made by Dr. Stokes, to the Florida Division of Historical Resources. That agency is charged with the responsibility of reviewing cultural resource assessments to determine if significant historic or archaeological resources will be impacted. The division reviewed the survey techniques used by Dr. Stokes, including shovel testing, sub-surface testing and pedestrian walk-over and investigation. The division determined that the site in question is not of a significant historical or archaeological nature as a resource because it does not meet any of the four criteria for inclusion in the National Register.1 Thus the referenced agency determined that the site in question is not a significant historical or archaeological resource and that construction may proceed in that area without further investigation, insofar as its regulatory jurisdiction is concerned. Wetlands The wetlands to be impacted by the project consist of a 1,000 foot drainage-way made up of a 0.11 acre open-water channel, approximately four feet wide, and an adjacent vegetated wetland area of approximately 0.52 acres containing fewer than 30 trees. The open-water channel is intermittent in that it flows during periods of heavy rainfall and recedes to a series of small, standing pools of water during drier periods. The Parcel D wetland is hydrologically connected to Marshall Creek, although its ephemeral nature means that the connection does not always flow. The wetland at times consists only of isolated pools that do not connect it to Marshall Creek. Although it provides detrital material export, that function is negligible because the productivity of the adjacent marsh is so much greater than that of the wetland with its very small drainage area. Because of the intermittent flow in the wetland, base flow maintenance and nursery habitat functions are not attributed to the wetland. The Parcel D wetland is not unique. The predominant tree species and the small amount of vegetated wetland are water oak and swamp bay. Faunal utilization of the wetland is negligible. The wetland drainage-way functions like a ditch because it lacks the typical characteristics of a creek, such as a swampy, hardwood floodplain headwater system that channelizes and contains adjacent hardwood floodplains. The location of the wetland is an area designated by the St. Johns County comprehensive plan as a development parcel. The Florida Natural Areas Inventories maps indicate that the wetland is not within any unique wildlife or vegetative habitats. The wetland is to be impacted as a freshwater system and is not located in a lagoon or estuary. It contains no vegetation that is consistent with a saltwater wetland. The retaining wall at the end of the impact area is located 1.7 feet above the mean high water line. Wetland Impacts The proposed 0.63 acre wetland impact area will run approximately 760 linear feet from the existing trail road to the proposed retaining wall. If the wetland were preserved, development would surround the wetland, adversely affecting its long-term functions. Mitigation of the wetland functions is proposed, which will provide greater long-term ecological value than the wetland to be adversely affected. The wetland to be impacted does not provide a unique or special wetland function or good habitat source for fish or wildlife. The wetland does not provide the thick cover that would make it valuable as Black Bear habitat and is so narrow and ephemeral that it would not provide good habitat for aquatic-dependent and wetland-dependent species. Its does not, for instance, provide good habitat for woodstorks due to the lack of a fish population and its closed- in tree canopy. Minnow sized fish (Gambusia) and crabs were seen in portions of the wetland, but those areas are downstream of the proposed area of impact. Mitigation Mitigation is offered as compensation for any wetland impacts as part of an overall mitigation plan for the Marshall Creek DRI. The overall mitigation plan is described in the development order, the mitigation offered for the subject permit and mitigation required by prior permits. A total of 27 acres of the more than 287 acres of wetlands in the total 1,300-acre DRI tract are anticipated to be impacted by the DRI. Approximately 14.5 acres of impacted area out of that 27 acres has already been previously authorized by prior permits. The overall mitigation plan for the DRI as a whole will preserve all of the remaining wetlands in the DRI after development occurs. Approximately one-half of that preserved area already has been committed to preservation as a condition of prior permits not at issue in this case. Also, as part of prior permitting, wetland creation areas have been required, as well as preserved upland buffers which further protect the preserved wetlands. The mitigation area for the project lies within the Tolomato River Basin. The development order governing the total DRI requires that 66 acres of uplands must also be preserved adjacent to preserved wetlands. The overall mitigation plan for the DRI preserves or enhances approximately 260 acres of wetlands; preserves a minimum of 66 acres of uplands and creates enhancement or restores additional wetlands to offset wetland impacts. The preserved wetlands and uplands constitute the majority of Marshall Creek, and Stokes Creek which are tributaries of the Tolomato River Basin, a designated Outstanding Florida Water (OFW). Preservation of these areas prevents them from being timbered and ensures that they will not be developed in the future. The overall DRI mitigation plan provides regional ecological value because it encompasses wetlands and uplands they are adjacent to and in close proximity to the following regionally significant resources: (1) the 55,000 acre Guana- Tolomato-Matanzas National Estuarine Research Reserve; (2) the Guana River State Park; (3) the Guana Wildlife Management Area; (4) an aquatic preserve; (5) an OFW; and (6) the 22,000 acre Cummer Tract Preserve. The mitigation plan will provide for a wildlife corridor between these resources, preserve their habitat and insure protection of the water quality for these regionally significant resources. The mitigation offered to offset wetland impacts associated with Parcel D includes: (1) wetland preservation of 0.52 acres of bottom land forest along the northeast property boundary (wetland EP); (2) wetland preservation of 3.98 acres of bottom land forest on a tributary of Marshall Creek contained in the DRI boundaries (Wetlands EEE and HHH); (3) upland preservation of 2.49 acres, including a 25-foot buffer along the preserved Wetlands EEE and HHH and a 50-foot buffer adjacent to Marshall Creek and preserved Wetland EP; (4) a wetland creation area of 0.82 acres, contiguous with the wetland preservation area; and (5) an upland buffer located adjacent to the wetland creation area. The wetland creation area will be graded to match the grades of the adjacent bottomland swamp and planted with wetland tree species. Small ponds of varying depths will be constructed in the wetland creation area to provide varying hydrologic conditions similar to those of the wetland to be impacted. The wetland creation area is designed so as to not de-water the adjacent wetlands. All of the mitigation lands will be encumbered with a conservation easement consistent with the requirements of Section 704.06, Florida Statutes. The proposed mitigation will offset the wetland functions and values lost through the wetland impact on Parcel D. The wetland creation is designed to mimic the functions of the impact area, but is located within a larger ecological system that includes hardwood wetland headwaters. The long-term ecological value of the mitigation area will be greater than the long-term value of the wetland to be impacted because; (1) the mitigation area is part of a larger ecological system; (2) the mitigation area is part of an intact wetland system; (3) the wetland to be impacted will be unlikely to maintain its functions in the long-term; and (4) the mitigation area provides additional habitat for animal species not present in the wetland to be impacted. Certain features will prevent adverse secondary impacts in the vicinity of the roadway such as: (1) a retaining wall which would prevent migration of wetland animals onto the road; (2) a guard rail to prevent people from moving from the uplands into wetlands; and (3) a vegetated hedge to prevent intrusion of light and noise caused by automotive use of the roadway.

Recommendation Having considered the foregoing Findings of Fact and Conclusions of Law, the evidence of record, the candor and demeanor of the witnesses and the pleadings and arguments of the parties, it is RECOMMENDED: That a final order be entered granting the subject application for modification of Permit 4-109-0216A-ERP so as to allow construction and operation of the Parcel D project at issue, with the addition of the inclusion of a supplemental permit condition regarding the vegetated natural buffers for Lots 16 through 19 described and determined above. DONE AND ENTERED this 9th day of April, 2001, in Tallahassee, Leon County, Florida. P. MICHAEL RUFF Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 9th day of April, 2001.

Florida Laws (5) 120.57267.061373.086373.414704.06 Florida Administrative Code (5) 40C-4.09140C-4.30140C-4.30240C-42.02340C-42.026
# 10

Can't find what you're looking for?

Post a free question on our public forum.
Ask a Question
Search for lawyers by practice areas.
Find a Lawyer