The Issue The issue for consideration in this case is whether sufficient grounds exists for the Petitioner, West Coast Regional Water Supply Authority, to terminate Respondent, Steve Toler, Jr.'s employment with the Authority because of the matters alleged in the Letter of Termination dated February 15, 1995.
Findings Of Fact At all times pertinent to the allegations herein, the Petitioner, Authority, was a governmental agency with membership held by Hillsborough, Pinellas and Pasco Counties and the cities of St. Petersburg and Tampa. It is charged with the responsibility of providing water resource management for its members. In November, 1994, the Respondent, Steve Toler, Jr., then employed for 9 1/2 years by the Authority as a maintenance technician, was under the supervision of Ben Nevel, lead supervisor for his crew and Harry Vogel, the facilities maintenance supervisor at Cypress Creek pump station. Just before Thanksgiving that year, his crew was given the responsibility of removing certain supposedly above ground aluminum pipe belonging to Pinellas County and replacing it with buried PVC pipe on the county's well field on Cross Bar Ranch, owned by Pinellas County. On the last day of the project Respondent was working by himself at the job site doing those things necessary to complete the project. This included removing three aluminum pipes and replacing them with three PVC pipes. In the course of the removal of the aluminum pipe, two pipes were damaged by Respondent because they were buried and he could not see them. When Respondent attempted to bury the three pieces of PVC pipe, he found that he needed some pipe lubricant in order to get them joined and called the pump station to have someone bring it. The lubricant was brought to the site by Mr. Vogel about noon, and the two men talked about the project. According to Mr. Vogel, Respondent made no mention of any damaged pipe nor did Vogel see any damaged pipe while he was at the site. Vogel adamantly denies that he ever, either that day or at any other time, told Respondent that he could throw away damaged pipe. The instructions that Vogel had left with Mr. Nevel for transmittal to the crew was that the removed pipe was to be placed in storage at the north end of the ranch because it belonged to Pinellas County, not to the Authority, and even if the pipe was damaged, the ends might be used for fittings. It is not clear whether Respondent knew the pipe belonged to the county or to the cattle company which had originally owned the ranch. Notwithstanding, Respondent took the two damaged pipes back to the Cypress Creek pumping station where, without speaking to anyone about what he proposed to do, he placed them in the trash dumpster for disposal. The following day, after completing his day's work, Respondent noted that the pipe was still in the dumpster and, without seeking approval from anyone, removed it from the dumpster, placed it in his truck, and that same day, sold it to All American Metal Recycling in Land O'Lakes, Florida, for $29.00 which he kept for his personal use. He collects scrap aluminum and copper in order to sell them. Respondent admits that as an Authority employee, he did not have the authority to take property owned by the Authority or its members for his own use. Ordinarily, he admits, the disposal of Authority-owned property had to be approved. The authority for approval, as contained in the agency's standard operating procedure for disposal of Authority assets, dated February 14, 1994, was the Cypress Creek storekeeper. Though it is not written, the Authority has a policy against employees taking material out of the dumpsters at the Cypress Creek facility. It was Toler's understanding, however, that old, unusable pieces of piping and wood could be thrown away, but equipment and property that had value had to be turned into Mr. Rooney, the storekeeper, who would evaluate it for disposal or repair. At no time did Respondent have the authority to make that determination. Mr. Toler admits he was aware of the Authority's policy on the disposal of property as noted in the February 14 SOP, as it had been outlined at no lees than two safety meetings he had attended. He understood that if he threw property away without authority, he could be fired. In fact, he admits, Mr. Vogel had so advised him of that. In the instant case, however, he contends, Mr. Vogel told him on the last day of the project in issue, in response to his inquiry, that he should throw the damaged pipe away. This was, as stated earlier, categorically denied by Mr. Vogel. Respondent also indicates that on the second day of the project, pipe being removed was damaged. That pipe was taken to the north pasture and stacked near other, undamaged pipe. The total amount of aluminum pipe removed in this project consisted of approximate one hundred twenty foot long "sticks". Respondent well knew he could not take and sell the stacked pipe, even that which was damaged. Respondent claims that no one saw him put the damaged pipe into the dumpster. He did not think about the opportunity to salvage the pipe when Mr. Vogel told him to throw it away or even when he brought it back and threw it into the dumpster. It was not until the next day when, after work, he saw the pipe still in the dumpster, that it occurred to him to take it, he claims. Respondent admits he has taken scrap metal and sold it before and claims others have done so, too. When he put this pipe in the dumpster he realized that others might take it, so he was somewhat surprised when it was still there the next day. Respondent also admits he did not tell Mr. Vogel how he had disposed of the pipe at first. Once the situation came under investigation, however, as a result of an inquiry regarding missing pipe from the Cross Bar Ranch project, he did so. He admits that sometime after the day he took and sold the pipe as scrap, but before the investigation was commenced, Mr. Vogel asked him what he had done with the pipe, and Respondent replied he had thrown it away. A few days later, in Vogel's office, when the investigation had begun, Mr. Vogel again asked Respondent what he had done with the pipe, and this time Respondent admitted to scrapping it. In the course of the investigation, Respondent spoke with Mr. Capp, a Cypress Creek engineer, about the allegation. In that conversation, held in Mr. Capp's office while no one else was present, Respondent admitted selling the broken pipe for scrap and advised that Mr. Vogel had told him to throw it away. At that time, he offered to replace the pipe, but his offer was not accepted. Some time later, and prior to the pre-disciplinary hearing, he was given a letter by Mr. Capp placing him on administrative leave pending investigation. At that time, Mr. Capp denied knowing what was in the letter. On February 8, 1995 a pre-disciplinary hearing was held with Respondent and counsel present at which time Respondent was given an opportunity to tell his side of the story. At that time, he did not mention any other individuals who had taken scrap from the dumpster, nor had he ever told Mr. Vogel, Mr. Capp or Mr. Kennedy about that. He claims he does not know of any cases where either Mr. Capp or Mr. Kennedy knew of others taking scrap but not being disciplined. However, Respondent is of the opinion Mr. Vogel knows what is going on but he cannot be sure. As was stated previously, Respondent has taken scrap from the dumpster before and claims Mr. Vogel knew it. Vogel, predictably, denies that. Some time after the pre-disciplinary hearing, after Kennedy received the information regarding the incident as determined therein, he discharged Respondent for several violations of the Authority's personnel rules. These included the removal and sale of the scrap pipe owned by Pinellas County, committing a breach of public trust, and committing a breach of member government trust which was deleterious to the Authority in that, in Kennedy's opinion, it undermined the public's faith and confidence in the Authority's public service responsibilities. Kennedy asserts that the relationship between the Authority and its member governments requires that each cooperate with the other in the mission to supply water to the public. Trust and confidence are essential elements of that relationship. Employees of the Authority and its member governments frequently are in and out of each others' facilities. If a member government loses trust in an Authority employee, the Authority's ability to efficiently perform its function would be hampered. This is a reasonable and supportable position and it is so found. In the past, the Authority has discharged employees for violating employee rules which reflect adversely on Authority integrity. One was discharged for the improper use of an Authority vehicle, and others have been discharged for violations of the property disposal policy. It would appear that Mr. Toler has not been treated differently than any others who were found to have violated similar policies. Since February, 1944, when the Authority adopted its policy regarding disposal of property, three employees, including Respondent, have removed materials from the dumpster at the Cypress Creek facility for their own use. Among these are Mr. Nevel who admits to taking electric wire and three discarded printers. Nothing taken by the others included aluminum pipe, however. Capp, Kennedy and Vogel all deny knowing that employees were taking scrap. Respondent cannot say that any of them did know. Consistent with that philosophy, Mr. Kennedy indicates he would have discharged Respondent for placing the scrap in the dumpster whether or not he sold it. By the same token, he would have discharged Respondent had he taken and sold the pipe, even if he had not placed it in the dumpster. Another incident arose in June, 1995, just prior to the hearing, involving the potential disposal of scrap pipe. Mr. Kennedy learned that a stick of aluminum pipe was in the dumpster at the Cypress Creek facility. The pipe, owned by the Authority, had been placed there by Mr. Rooney, the storekeeper, after Mr. Nevel used the ends to retrofit some piping at the Cross Bar Ranch. When this was discovered, Mr. Kennedy directed the pipe be recovered and held for possible future use or sale. Whereas Respondent contends this action was an attempt at a cover-up, it is more likely the result of an unintentional discard of potentially useful pipe.
Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is, therefore: RECOMMENDED that the East Coast Regional Water Supply Authority deny Respondent's Petition for Relief and Enter a Final Order discharging him effective February 15, 1995. RECOMMENDED this 29th day of August, 1995, in Tallahassee, Florida. ARNOLD H. POLLOCK, Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 29th day of August, 1995. APPENDIX TO RECOMMENDED ORDER The following constitutes my specific rulings pursuant to Section 120.59(2), Florida Statutes, on all of the Proposed Findings of Fact submitted by the parties to this case. FOR THE PETITIONER: & 2. Accepted and incorporated herein. & 4. Accepted but irrelevant to any disputed issue of fact. Accepted. - 8. Accepted. 9. - 14. Accepted and incorporated herein. 15. - 19. Accepted and incorporated herein. 20. - 25. Accepted and incorporated herein. 26. & 27. Accepted and incorporated herein. 28. Accepted. 29. Accepted and incorporated herein. 30. Accepted and incorporated herein. 31. Accepted and incorporated herein. FOR THE RESPONDENT: Respondent's counsel has identified his Proposed Findings of Fact by letter rather than number. For the sake of consistency in this Order they will be re- identified herein with numbers. Accepted and incorporated herein. & 3. Accepted but not dispositive of any issue of fact. - 8. Accepted and incorporated herein. Accepted but not dispositive of any issue of fact. - 12. Accepted and incorporated herein. Accepted and incorporated herein. Rejected as not a proper Finding of Fact but more a Conclusion of Law. COPIES FURNISHED: Gregory A. Hearing, Esquire Thompson, Sizemore & Gonzalez, P.A. 109 North brush Street, Suite 200 Post Office Box 639 Tampa, Florida 33601 Michael S. Edenfield, Esquire Battle & Edenfield, P.A. 206 Mason Street Brandon, Florida 33511 General Manager West Coast Regional Water Supply Authority 2535 Landmark Drive, Suite 211 Clearwater, Florida 34621 Donald D. Conn General Counsel West Coast Regional Water Supply Authority 2535 Landmark Drive, Suite 211 Clearwater, Florida 34621
The Issue As reflected in the parties' prehearing stipulation filed on August 28, 1991, the issue in this case is whether the St. Johns River Water Management District (SJRWMD) should approve South Brevard Water Authority's (SBWA) consumptive use permit (CUP) application. The SBWA is seeking permission to withdraw an annual average daily rate of 18.8 million gallons (mgd) and a maximum daily rate of 21.4 mgd. The District proposes to grant the permit with specified conditions. Petitioners challenge the issuance of the permit, alleging that applicable requirements of Chapter 373, F.S. and Chapter 40C-2, F.A.C. and other applicable law are not met. The standing of Petitioners, other than Osceola County, is at issue. Also at issue is whether the relevant criteria include consideration of the adequacy of existing sources of water, and the consideration of costs of utilizing existing sources versus the cost of the proposed new source of water.
Findings Of Fact The Parties The applicant, South Brevard Water Authority (SBWA) was created by special act of the legislature, Chapter 83-375, Laws of Florida. Its principal office is located in Melbourne, Brevard County, Florida. Its general mission is described in Section 1, of Chapter 83-375, Laws of Florida, as amended by Chapter 87-481, Laws of Florida: Section 1. It is hereby declared and determined by the Legislature that a regional water authority is the most responsive, efficient, and effective local government entity to secure, operate, and maintain an adequate, dependable, and safe water supply for the district and customers of the district. It is the intent of the Legislature that such regional water authority possess the full power and authority to implement, finance, and operate a single coordinated program of water supply transmission and distribution to meet the future quantity and quality needs of the district and for customers of the district. There is a paramount public need to develop a safe, reliable, and energy-efficient source of public water for the district residents and to contruct the wellfields, transmission lines, and other facilities necessary to supply such water. The St. Johns River Water Management District (SJRWMD or District) is an agency created pursuant to Chapter 373, F.S. in charge of regulating consumptive uses of water in a 19-county area of the State of Florida, including all of Brevard and part of Osceola County. The geographical boundaries of the District are described in Section 373.069(2)(c), F.S. Osceola County is a political subdivision of the state, west of, and contiguous to, south Brevard County. The Corporation of the President of the Church of Jesus Christ of Latter Day Saints (Deseret) is a Utah corporation authorized to conduct business in the State of Florida. Deseret owns real property in Osceola County to the north and east of the proposed wellfield. Deseret possesses a valid consumptive use permit authorizing the withdrawal of water for this property. East Central Florida Services (ECFS) does not own land or possess a consumptive use permit (CUP). Its purpose is to take over the water management program for the Deseret property. It has applied to the Public Service Commission for certification. Notwithstanding the parties' stipulation that "Triple E Corporation" and "Triple N Corporation" own real property in Osceola County near the proposed wellfield (prehearing stipulation, filed 8/28/91, p. 5), no such corporations are registered in the State of Florida. The lands identified as Triple E and Triple N are owned by multiple parties through trusts, primarily managed by Maury L. Carter, one of the owners. Neither Triple E nor Triple N properties have CUP's. The properties are used for agricultural purposes and the Triple N property has a well and recreational camp. The Site of the Proposed Use The proposed wellfield is located on property owned by the SJRWMD, the Bull Creek Wildlife Management Area (BCWMA), located entirely in eastern Osceola County. The BCWMA is comprised of 22,206 acres within the drainage area of the St. Johns River. The northern third of the management area is drained by Crabgrass Creek, and the southern two-thirds is drained by Bull Creek. The easternmost boundary is located approximately one mile from the Brevard County boundary. Currently all 22,206 acres of the BCWMA are under lease to the Florida Game and Fresh Water Fish Commission, which agency manages the area as a public recreation facility for hunting, fishing, hiking, horseback riding, camping and archeological studies. The sparsely populated area has historically been used for logging and cattle grazing. It was acquired for a detention area and it currently provides nonstructural flood protection. Its surface topography is relatively flat, with uplands and wetlands separated by only inches in vertical elevation. Upland communities include pine flatwoods, saw palmetto prairies, pine savannahs and sand oaks. Wetland communities include cypress domes, mixed shallow marshes, sawgrass marsh, wet prairies and transitional prairies. The BCWMA is classified as a "conservation area" in the District's current adopted Five Year Land Plan which summarizes the agency's land acquisition and management policies. A "conservation area" is defined as "...an area acquired for water resource conservation and protection in an environmentally-acceptable manner". The term includes water supply areas, including areas for public wellfield location. (Osceola Co. exhibit #33, p. 15) Facilities Associated with the Proposed Consumptive Use Although the precise siting of the wells has not been established, the wellfield will be located at the northern end of the BCWMA, east-west into a "panhandle" area, and extending south, for an inverted "L" shape. The wellfield will consist of 12 production wells in 2000 ft. intervals. Wells 1-9 will lie along an east-west axis adjacent to Crabgrass Creek, while wells 10-12 will lie along a north-south axis below well 9, the eastern-most well. The capacity of each well is designed at 3,000 gallons per minute or approximately 4.30 million gallons a day (mgd). Each well consists of 20" diameter casing pipe extending 700' below the ground surface. From there, an open hole for production will extend another 250 feet in depth. A small, 20 ft. by 30 ft., concrete building will enclose the motor and other equipment associated with each well, in order to eliminate vandalism and to baffle the noise. The wells will be sited to avoid jurisdictional wetlands. In addition to the production wells, monitoring wells will be constructed to comply with permit conditions. Because the water drawn from the proposed wellfield will exceed potable standards, reverse osmosis (RO) desalinization treatment is required. A below ground header pipeline will carry raw water from the wellfield to an RO treatment facility in Brevard County. The RO treatment facility will process 75 percent of water coming from the wellfield, 85 percent of which is recovered as finished water, and 15 percent of which is disposed of as brine by deep well injection. The 25 percent of raw water which bypasses the treatment process will be blended with the finished water to yield water which meets drinking water standards for chloride levels. The yield is anticipated to be 16.67 mgd on an average day and 18.9 mgd on a maximum day. However, the finished water yield could be higher if raw water quality permits greater blending and less reject water. On the finished water side, the water will need to be treated again to assure that it will be compatible with water from the City of Melbourne plant. Failure to balance the blended waters chemically could result in corrosion of pipes, leaching of pipes, discoloration, rusty water, and odorous water. A proper process, therefore, is essential and is highly sophisticated. From the treatment facility the water will travel in underground pipes, beneath the St. Johns River, beneath I-95 and east to the Melbourne distribution system. From there some water is anticipated to travel south to connect to the General Development Utilities (GDU) system. Hydrogeologic Characteristics of the Site For modelling purposes, the aquifer system in the region is represented by sequential layers of differing characteristics in the flow and movement of water. The SBWA model contains 6 layers; the Osceola model contains 7 layers. In both models, layer 1 corresponds to the surficial (water table) aquifer; layer 2 corresponds to the Hawthorn formation (the upper confirming layer); layer 3 is the Upper Floridan aquifer; layer 4 describes the 200 ft. thick portion of the Upper Floridan called the "production zone"; layer 5 in the SBWA model is approximately 450 ft. thick and is called a confining unit; Osceola's consultants consider this layer less permeable or semi-confirming; layer 6 is the lower Floridan; and layer 7 in the Osceola model is the bottom reaches of the lower Floridan. The surficial aquifer consists of sand and shell deposits and extends to a depth of approximately 100 feet below land surface. The surficial aquifer is capable of producing small to moderate amounts of water for domestic uses. The Hawthorn is an interbedded formation consisting of clay, limestone and phosphate. Due to its extremely low permeability, this layer restricts both the vertical and horizontal movement of water. The Hawthorn is thicker in Central Florida than in other portions of the state. At the BCWMA the thickness of the Hawthorn ranges from 240 feet in the area northwest of the management area to 80 feet in the southeastern portion of the management area. The upper Floridan Aquifer at the BCWMA, as characterized by the SBWA's consultant and based on site specific data, extends from the base of the Hawthorn to a depth of approximately 900 feet below land surface. That portion of the upper Floridan Aquifer between the bottom of the Hawthorn and 700 feet below land surface consists of fine grained limestone with relatively low permeability. This zone corresponds with layer 3 in the groundwater modeling done by the SBWA. The portion of the upper Floridan between the bottom of the Hawthorn and 700 feet below land surface is less capable of producing water than the portions below this level. That portion of the upper Floridan Aquifer between 700 feet and 900 feet of depth consists of hard dolomites. Dolomitic zones are the most productive zones of water within the Floridan in this part of the state because these formations contain solution fractures and cavities. This zone corresponds with layer 4 in the groundwater modeling done by the SBWA. Several researchers and modelers have suggested the existence of a zone, variously referred to as a semi-confining unit, a zone of lower permeability or a middle semi-confining unit, located between the upper and lower Floridan Aquifer. This area between 900 feet and 1350 feet below land surface consists largely of hard dolomites similar in nature to those in the zone immediately above it. This zone corresponds to layer 5 in the groundwater modeling done by SBWA. Previous regional modeling efforts have utilized model derived values to describe the middle semi-confining unit rather than site specific information showing the location, thickness or hydrogeological characteristics of the zone. Site specific data tends to confirm the lower permeability of this zone relative to the layers above and below it. Site specific data consists of a core sample, mineral content observed during the drilling of the test monitor well, and a Neumann-Witherspoon ratio analysis conducted during the aquifer performance test. The area between 1350 feet and 1450 feet below land surface also consists of dolomites but with greater permeability and greater transmissivity (the measure of an aquifer's ability to transmit water in a horizontal direction). This area corresponds to layer 6 in the groundwater modeling done by the SBWA. No site specific data exists beneath 1483 feet, representing the total depth of test well TM. Regional data does exist which characterizes the areas from 1500 feet below land surface to the bottom of the lower Floridan Aquifer as consisting of zones of varying lithology, and varying permeabilities. This zone which corresponds to layer 7 in the groundwater modeling done by Osceola County is not homogeneous or uniform over its entire thickness according to available regional data, consisting of geologic reports of deep wells in the east-central Florida area. All parties agree that in the area of the proposed wellfield, horizontal movement of water in the Floridan aquifer is from west, where the greatest recharge occurs along the Lake Wales Ridge, to east, where there is little or no recharge. Water quality in the upper Floridan as measured by chloride concentrations deteriorates as one moves from west to east. The Floridan aquifer beneath the BCWMA represents a transition zone between the recharge area to the west and high saline formation waters in the east. The dominant geochemical components in water beneath the BCWMA are biocarbonates. Water quality, as measured by chloride concentrations, also deteriorates with depth. Chloride concentrations, based on data derived from the drilling of well TM at the BCWMA, increase gradually from 306 milligrams per liter (mgl) at 410 feet, to 658 mgl at 1473 feet below land surface. Chloride concentrations increase abruptly to 1980 mgl in well TM at 1483 feet of depth. Evidence is inconclusive as to whether all of the proposed production wells will draw water exceeding 250 mgl in chloride concentrations. It is undisputed that most will, but chloride contours initially provided by SBWA's consultant indicate that the southernmost wells may produce water between 150 and 250 mgl. A comprehensive aquifer performance test (APT) was conducted at the BCWMA by the SBWA's consultant, Post, Buckley Schuh, and Jernigan, Inc. (PBSJ). The test was designed by the staff of the SJRWMD in consultation with the U.S. Geological Survey (USGS). This test yielded data which enabled PBSJ to calculate several aquifer characteristics for use in the groundwater modeling which was later done by SBWA's modeling consultant, Environmental Science and Engineering, Inc. (ESE). Eight wells were utilized in connection with the APT conducted at the BCWMA in January and February 1990. Three of the wells were dual zone monitoring wells capable of monitoring events in two different geologic units simultaneously. Three wells, including the test production well (TP) were open to the interval between 700 and 900 feet below land surface which was identified by the SBWA as the production zone. Typically APT's are run for 12 to 72 hours in Florida. Well TP was pumped for approximately 10 days at a rate equivalent to that expected during actual production while observations were made of water levels in all wells, including three off-site wells (the Holopaw test well, the Kempfer well and the Bruner well). All of the information the SBWA needed from the APT was obtained in the first hours of the test. Water levels in the area monitored during the APT ceased dropping due to pumpage within 1 hour after the pumping started. Three different analytical models were used to calculate a transmissivity value for the production zone, utilizing data derived during the APT. The result showed transmissivity in this zone to be approximately 2 million gallons per foot per day. This is a very high transmissivity value indicating a comparatively prolific aquifer, capable of producing the volumes of water requested in the application. As transmissivity increases, the cone of depression associated with pumpage tends to flatten out and be less steep. The cone of depression extends further out, creating a wider area of drawdown. Hydraulic conductivity is the measure of an aquifer's resistance to flow either in a vertical (KV) or horizontal (KH) direction. Two methods were used to calculate the hydraulic conductivity of the Hawthon Formation by PBSJ: laboratory analysis of a core sample taken from this unit, and a bail test (measuring an increase in water level over time) conducted on a well on site by the SJRWMD. Two different methods were used by PBSJ to calculate the hydraulic conductivity of layer 5: laboratory analysis of a core sample taken from that zone, and the Neuman-Witherspoon ratio analysis method. Porosity is the void space in porous media through which transport of particles, such as chlorides, can occur. Effective porosity has an impact on the ability of saline or dense water to move upward from depth toward a pumping well. The lower the effective porosity within an aquifer, the greater the potential for upconing of saline water within that aquifer. Effective porosity for layers 4 and 5 was calculated using two different methods, those being laboratory analysis of core samples taken from these zones, and analysis of acoustic logs generated during the APT. Each of these methods is accepted in the field of hydrogeology. Anticipated Impacts to Groundwater Levels and Flows as a Result of the Proposed Consumptive Use A numeric groundwater flow model is a computer code representing the groundwater flow process. Both SBWA and Osceola used numeric groundwater flow models developed by their consultants to predict and simulate the impacts associated with withdrawals proposed in the application. The SBWA used a finite difference model called INTERSAT for its simulations. INTERSAT is a widely used and accepted groundwater flow model. The model was run by ESE for the SBWA in the impact or drawdown mode. Drawdown or impact models simulate changes in water levels in response to a stress such as a pumping well. Drawdown models are an accepted and frequently used method to evaluate wellfield stress, particularly in association with a CUP application. ESE and PBSJ utilized several analytical models to first determine and later to verify the area to which the boundaries of their model would extend. The radius of influence of a well or wellfield is the distance from the center of pumpage extending out to where drawdowns caused by that pumpage reach zero. The boundary for a numeric groundwater model should be set at, or beyond, the radius of influence of the pumpage being simulated by the model. Based on the analytical models run by ESE and PBSJ the radius of influence of the wellfield proposed in the application is 43,000 to 45,000 feet. The approximate distances of the boundaries set in INTERSAT model from well TP were 50,000 feet to the east, 40,000 feet to the west, 40,000 feet to the north and 50,000 feet to the south. The INTERSAT model covers a total area of 320 square miles. This size falls somewhere between a regional model and a local model, and is adequate in size to address the impacts associated with the proposed withdrawals. The vertical boundary of SBWA's model extends to 1450 feet below land surface and, as stated above, is divided into 6 layers. The 1450 feet depth generally coincides with the limits of site specific data generated during the APT. The six layers in the SBWA flow model coincide with the six distinct geologic units identified by PBSJ in their APT report. The site specific data generated by the APT was utilized, along with other regional modeling studies, to arrive at a set of "conservative" aquifer parameters to be utilized in the INTERSAT model. "Conservative" parameters for purposes of this application are those which would tend to overpredict drawdown in the surficial aquifer and the production zone, while allowing for more upconing of dense water from the bottom of the model. The selection of "conservative" aquifer parameters by SBWA involved taking site specific values, comparing them with the ranges of values reported in the other available regional models and selecting values which, while still within the range of reported values used in other studies, would tend to show greater impacts for the areas of primary concern than the site specific values. Every aquifer parameter utilized in SBWA's groundwater flow model falls within the range of values reported in at least one of the groundwater modeling studies previously done in this region. The size of the grids utilized in the SBWA model were 500 feet by 500 feet within the vicinity of the wellfield. Grid sizes expand as one moves toward the outer boundaries of the model. The fineness of the grids used by ESE, particularly in the wellfield area, allows for accurate representation and resolution of surface water features, impacts in the production zone and for evaluating the effects of saltwater upcoming in the transport model also done by ESE. Within the radius of influence of the proposed wellfield, there are no existing wells in layers 5 or 6. The ESE model simulations for 18.8 mgd pumpage predict a maximum drawdown in the surficial aquifer (layer 1) of 0.14 feet centered primarily within the BCWMA. At a distance of 1 mile from the wellfield the impact drops to 0.12 feet. None of the existing legal users of water in layer 1 within the radius of influence of the proposed wellfield will suffer a ten percent or greater reduction in withdrawal capacity from their wells solely as a result of the proposed withdrawals, since 10 percent reduction would require at least 3 feet of drawdown. The ESE model simulations predict a maximum drawdown caused by the proposed pumpage of 4.5 feet in layer 3 centered along the alignment of wells and primarily within the BCWMA. At a distance of 2 miles, the drawdown drops to 2 feet. At the Brevard-Osceola County line the drawdown in layer 3 is approximately .5 feet. Petitioner Deseret's flowing wells are drilled in layer 3 and are located within the area where a drawdown of 1 foot is predicted in layer 3 by the ESE model. Deseret uses its property for a cow/calf ranching operation and has approximately 32,000 head of cows. Deseret uses 39 flowing wells east of state road 192 to irrigate pasture, water cattle and supply drinking water. Deseret possesses a valid CUP for a portion of the total flow capacity from those wells. Seasonally, the wells flow at different rates, but they are most relied upon in dry conditions when the natural flow would be decreased. It is unlikely that the proposed SBWA withdrawals will stop the flow of any of Deseret's wells; and it is unlikely that the flow will be reduced by more than 10 percent. Deseret and Osceola's consultants do predict a greater drawdown and opine that approximately 12 of Deseret's wells will cease flowing as a result of the SBWA withdraw As addressed below, the modelling by Petitioner's consultants, upon which those predictions are based, is less reliable than that of SBWA's consultants. If the effects are greater than predicted, mitigation in the form of installation of pumps is possible, albeit inconvenient and expensive. Mitigation would have to be provided by the applicant, SBWA. The drawdowns predicted by the ESE model for layer 4 are not significantly different from those for layer 3. It is anticipated that no legal user of water within the radius of influence of the proposed wellfield will suffer a 10 percent or greater reduction in withdrawal capacity for its wells, as a result of SBWA's proposed withdrawals. Petitioners' consultants, Hartman and Associates, (Hartman) modeled a significantly larger (4900 square miles) and deeper (3000 feet) area than did SBWA. The model makes its predictions based on one data point for every 49 square miles within the modeled area. Petitioners utilized much larger model grids in the wellfield area (2000 feet by 2000 feet) than did the SBWA. Grid of this size lacks the resolution necessary to evaluate wellfield impacts. Petitioners selected their aquifer parameters from another regional modeling study done in 1985 rather than using site specific data. Those parameters were then adjusted or calibrated until a match was obtained to a computer created potentiometric surface which was supposed to reflect the potentiometric surface for May 1990, an uncharacteristically dry period. The created potentiometric surface to which Hartman calibrated its model varies greatly from the potentiometric surface as reflected in the actual data points from which USGS derives its potentiometric surface maps. While no model is perfect, and actual data is preferable, in the absence of all the actual data that is needed, the ESE model is a more credible predictor of drawdowns. Anticipated Impacts to Groundwater Quality as a Result of the Proposed Consumptive Use Solute transport models are computer models designed to simulate the movement of mass, in this case -- chlorides -- through a groundwater flow system. These models are linked to, and are dependent on flow fields generated by groundwater flow models. In order to predict changes in water quality anticipated to occur as a result of its proposed withdrawals, SBWA's consultants used a solute transport model called HST3D. Developed by the USGS, this model is widely used and accepted. For simulations using the HST3D model, SBWA used the flow field and a portion of the grid generated by its INTERSAT groundwater flow model. The HST3D simulations run by ESE utilized a cross section of the INTERSAT model grid extending through row 26 of that grid, which is the row containing the line of 9 proposed wells running on an east-west axis. Use of a cross sectional grid is an appropriate method by which to examine salt water intrusion. Upconing, to the extent that it will occur as a result of the proposed pumpage, would be greatest within the cross section containing the 9 wells. The cross section extends two miles through the wellfield to the west. As chloride concentrations in water increase, the density of the water increases. Density can retard the degree of upconing when chloride concentrations are as low as 1000-2000 parts per million and becomes significant at 3000-5000 parts per million. Failure of a model to consider density effects, when appropriate, would tend to overstate upconing. HST3D does consider density effects. SBWA's consultant ran several simulations with the HST3D model to predict changes that would occur as a result of the proposed pumpage in chloride concentrations over 7, 14 and 30 year time periods. These simulations utilized the same aquifer parameters as the INTERSAT model together with the effective porosity values derived from site specific data. Assuming a starting chloride concentration of 1000 mgl at the bottom of layer 5, the measured concentration at that level in well TM on the BCWMA site, after 30 years of pumpage at 18.8 mgd, the chloride concentrations in layer 4 would increase by only 100 mgl. The simulations for 7 years of pumpage which is the duration of the proposed permit, show that the predicted increase in chloride levels would be substantially less than 100 mgl. Other HST3D simulations were run by SBWA for a pumpage rate of 35 mgd utilizing beginning chloride concentrations of 5,000 mgl and 10,000 mgl, respectively at the bottom of layers. The results did not show any significant changes in chloride concentrations in layer 4 over and above those shown when a lower starting chloride concentration was assumed. In a circumstance where, as here, the chloride concentrations in the zone from which water is proposed to be withdrawn exceeds secondary drinking water standards (250 mgl), the SJRWMD evaluates the existing legal water uses within the area that would be impacted by the proposed use. If it is determined that the increase in chloride concentrations caused by a proposed use would detrimentally affect other existing legal users or the applicant, only then is the increase deemed to be "significant". Within the layers of the aquifer which would experience increases in chloride concentrations as a result of the proposed withdrawal, layers 4, 5 and 6, no existing users of water would be detrimentally affected. Petitioner Deseret's closest wells to the proposed wellfield are in layer 3 where chloride levels will not be affected by the proposed wellfield within the 7 year duration of the proposed permit or even beyond that period. Further, the use Deseret makes of the water from the wells in closest proximity to the proposed wellfield, pasture irrigation, can tolerate significantly higher chloride concentrations than will exist even directly beneath the wellfield in level 4 after 30 years of pumping. Use of water for public supply purposes is considered by SJRWMD to be in the public interest. Utilization of the water beneath BCWMA for public supply purposes, even with some increase in chloride concentrations in the source of the water over the life of the permit, does not on balance detrimentally affect the public interest. Two different solute transport models were done by Petitioners' consultants, one a numeric model and the other an analytical model. The numeric model done by Hartman, RANDOMWALK, does not predict changes in chloride concentrations within an aquifer, but rather tracks movement of particles. RANDOMWALK does not account for density effects. The analytical model done by Prickett for the Petitioners relies on assumptions, many of which are not met in the aquifer system at BCWMA. Those assumptions relate to uniformity of the system, for example: porosity and permeabilities, and lack of regional gradients. The solute transport models utilized by the Petitioners are less reliable for predicting water quality changes resulting from the proposed pumpage than the model utilized by the SBWA. Salt water intrusion is a dramatic increase of chloride levels in an aquifer layer. The saline water encroachment which occurs from the wellfield stress will be in the lower confining unit. There will be limited degradation in the lower part of the production zone. The wellfield will not induce significant lateral intrusion from the east. There will not be any dramatic changes in chlorides. The movement of the chlorides is confined to the locality of the wellfield. Most of the movement is vertical and is of limited increase. The proposed Bull Creek withdrawals will not aggravate any currently existing salt water intrusion problems. The reject brine water from the RO treatment plant will be disposed of in deep injection wells in Brevard County. These injection wells would deposit the brine into a receiving body of water in the Oldsmar geologic formation. The brine reject will have a total dissolved solids (TDS) concentration of approximately 7,000 mgl. The receiving water into which the brine will be injected approximates sea water, with TDS concentrations in the range of 36,000 mgl. The receiving body will obviously not be further degraded. Environmental Impacts of the Proposed Consumptive Use District staff, SBWA consultants and Osceola's consultants independently conducted onsite field investigations of the BCWMA to evaluate the vegetative communities and land uses which exist on site. Each consultant prepared a habitat map identifying the various vegetative communities found at the site. While relatively pristine, the BCWMA has been logged and grazed by cattle in the past. The impacts of man's activities have been remediated by ceasing the activity. There are few permanent incursions, such as roads, canals and buildings. The area is a very diverse landscape, with a mosaic of different types of plant communities. There are various upland and wetland habitats. The variety of wetlands are forested and non-forested, deep and shallow, open and closed. These wetlands perform important functions, including water storage and purification, aquifer recharge, flood control, and provision of food sources and habitat for wildlife, and they are "factories" for producing the materials needed by many higher organisms. The wetlands on site are structurally complex and are good habitat for macro- invertebrates and the fish and higher organisms that feed on them. A number of these wetlands are shallow, isolated wetlands. During periods of inundation, when the wetlands fill up with water and interconnect with the Bull Creek drainage system, the system exports various organisms to the wetlands. Fish that are live bearers move into isolated wetlands during periods of inundation, and they and their offspring become a source of food for birds. Fish species that lay eggs can withstand desiccation (total drying out) can survive the temporary drying of wetlands, but live bearers must repopulate during periods of inundation. The mixed wetland hardwoods on site contain a diversity of bugs, crawfish, mayflies, damsel flies, midges, and snails. Some of these are important food sources for higher organisms. The apple snail, for example, is an important food source for such birds as the limpkin and the endangered snail kite, and its eggs are food for crawfish and other organisms. The biological communities that exist in the wetlands and uplands at the site are determined by a number of factors, including the depth and duration of the hydroperiod, soils, climate, temperature, and availability of sunlight. These communities and their habitats will react to changes in light, water, temperature, and many other subtle effects, causing changes in plant diversity and structure, the areal extent of certain types of habitats and wetlands, and utilization by wildlife. Natural fluctuations in the hydroperiod also cause these changes, generally from the exterior edges of a wetland to the interior. The wetlands in the BCWMA have been able to withstand the natural drought and flood periods, or they wouldn't be there today. Periodic burning is essential to the health of ecosystems such as in the Bull Creek area. Fires reduce the prevalence of species less tolerant to fire, allow other species to strengthen their presence, return organic material to the soil, and reduce the fuel available for wild fires. Originally occurring naturally as a result of lightening strikes, prescribed burns are now undertaken by agencies such as the Division of Forestry and the Game and Fresh Water Fish Commission to replicate the beneficial functions of natural periodic burning. Fire management is used as a land management technique at BCWMA and continued fire management at the BCWMA will maintain a natural ecological setting typical of Florida. Slight variations in elevation which mark the difference between wetlands and uplands can result in utilization of the areas by different animal communities. Where different types of plant communities meet, an "ecotone" is created. Where an ecotone exists, the "edge effect" of the competition between the two communities occurs. The result of the edge effect is higher plant and animal species diversity, which is extremely important to the natural community. Some animals make specific use of the ecotone for habitat and food resources. Many amphibians, frogs in particular, live in the ecotone. Some birds will not roost in the upland forests but will roost in the edge of the forest adjacent to wetlands. Wetlands in the BCWMA are connected to the remainder of the Bull Creek system through groundwater resources. Their biological and ecological communities are also connected as the same organisms move throughout the system. Isolated wetlands also exhibit a "moving edge" effect, where changes in the surface water and water table levels cause different plants, or plants at different levels of maturity, to exist in the wetland and its perimeter. This increases the productivity of the wetland by making it attractive to a wider variety of plant and animal species. If the expansion and contraction of isolated wetlands is reduced by lowered water levels, the smaller wetlands would exhibit a reduced edge effect, and the cumulative effect of this reduction over time would disrupt the functioning of the wetland-upland system. Isolated wetland systems are more sensitive to drawdowns in the surficial aquifer than connected wetland systems because the drainage area contributing water to the wetland system is smaller. Isolated herbaceous wetland communities are the most sensitive of the vegetative communities on BCWMA to drawdowns in the surficial aquifer. The surficial aquifer fluctuates naturally as much as five feet annually. Rainfall is the primary source of water for the surficial aquifer. Water levels in the surficial aquifer respond very quickly to rainfall events. Hydroperiods of the wetland systems in the BCWMA respond to rainfall and surficial aquifer levels. The wetland hydroperiods vary from year to year, and wetland ecosystems have adopted to those annual changes. But a groundwater withdrawal from the surficial aquifer in the Bull Creek area would cause a corresponding lowering of the surface water level, since the wetlands are not "perched", or separated from the aquifer by a confining layer. A drawdown would lower water levels throughout the hydroperiod, under both high water and low water conditions, with a more pronounced effect during the dry season and drought periods. Some of the over twenty threatened and endangered plant species present at Bull Creek grow in shallow, marginally wet areas. Changes in even a few inches of groundwater would cause these plant species to be retarded in growth, and their abundance would decrease or they would die out at the site. Many of the wetlands are shallow, broad, sloping areas, and groundwater elevation changes of just a few inches will cause changes in the areal extent of these wetlands. Even the .14 foot drawdown predicted by SBWA's modeling would affect shallow inundated or saturated systems by changing the moisture level at the surface, particularly by affecting the lowest water levels. Changes in the vegetative composition of wetlands will affect the macro-invertebrate characteristics of a site. For example, as water levels change, the density of the vegetation (in terms of number of plant stems per acre) can decrease, leaving fewer places for the macro-invertebrates to hide, and the populations of macro-invertebrates will decrease through predation. As food sources, habitat and breeding grounds decrease, those animal species that can relocate will attempt to do so. Relocation can adversely affect the survival of the species; for example, a wood stork unable to find a particular food upon which it is dependent at a particular interval in its life cycle may abandon its nest and its young. Animals that attempt to relocate may find that there is not a suitable similar habitat available, making their attempt to adjust to the change in their environment unsuccessful. The proposed use will not significantly affect the stages or vegetation of the upland communities at the BCWMA because they are not as dependent on saturation or inundation as a wetland community. Forested wetland systems, be they isolated or connected, will not be influenced by a drawdown of the magnitude predicted by SBWA for the surficial aquifer. Forested systems have deep root zones and the canopy provides shading to the strata below. Forested systems are able to tolerate natural changes in hydrology. The SBWA assessment does not offer any detailed cataloguing of the plant and animal communities on site, or a description of how the systems operate or interface with each other. It does not provide sufficient information to be able to assess the impacts of the proposed wellfield on these systems. There was insufficient information presented by the applicant to conclude that the environmental harm to be caused by operation of a wellfield at the BCWMA has been reduced to an acceptable level. The applicant relied on the fact that drawdowns in the surficial aquifer will be minimal, without fully considering the impact of those minimal drawdowns on a fragile wetland ecosystem during a dry period. Water Demand The SBWA was created by special act in 1983 as a dependent special district for the purpose of developing regional water supplies and transmission of water to water distribution systems. In its existence so far, its labors have been in the former, and none in the latter category. Efforts to develop a regional water supply have been frustrated by litigation, by reluctance of local public systems to give up their authority and by delays in pursuing and processing CUP applications, two of which are still pending, in addition to the instant application. The City of Melbourne's public water system provides water to Melbourne, Palm Bay and West Melbourne, and to some unincorporated areas surrounding Melbourne. It also supplies water to the area called south beaches, comprised of the Brevard County area south of Patrick Air Force Base, including Satellite Beach, Melbourne Beach, Indiatlantic and Indian Harbor Beach. The current water supply is Lake Washington, which is part of the chain of lakes on the St. Johns River. The city of Melbourne was granted a CUP on January 15, 1991, for withdrawals from Lake Washington, ranging from 27.15 million gallons maximum daily withdrawals in 1991 to 21.7 million gallons maximum daily withdrawals in 1998. In addition, Melbourne has planned a new facility and has the CUP to withdraw 8.13 million gallons a day from the Floridan Aquifer commencing in 1993. After reverse osmosis treatment, the groundwater withdrawal will yield 6.5 million gallons a day finished water, making up the difference from reduced withdrawals from Lake Washington. Approximately 56 potable water systems have been identified by SBWA in South Brevard, south of the Pineda Causeway. Almost all are small private systems. Besides Melbourne, the other major water supplier in the area is General Development Utilities (GDU), serving the City of Palm Bay. GDU's CUP expires in 1993 with an average daily withdrawal of 6.5 mgd and maximum daily withdrawal of 8.5 mgd. It has ample capacity until 1996, and beyond to the year 2000, if an additional Department of Environmental Regulation capacity rating is obtained. The total capacity of the two major existing facilities is approximately 30 mgd and total existing consumptive use quantities (including existing CUPs with expiration dates varying from 1993 to 1998) approach 40 mgd. The current SBWA water master plan assumes that existing sources need replacing. More specifically, SBWA, if this CUP is granted, seeks to replace Lake Washington as the primary source of water in the area with the groundwater obtained from the BCWMA wellfield. An agreement between the City of Melbourne and SBWA provides that the City will initially purchase 8 mgd, plus all future needs of water from the SBWA. This 8 mgd would be used by Melbourne prior to using its 6.5 mgd finished water from the RO facility, and the RO water would be used prior to withdrawals from Lake Washington. The agreement, dated January 9, 1991, acknowledges the need for, and specifically authorizes improvements to Melbourne's Lake Washington Water Treatment Plant, including the conversion of the existing high service pumping station to a low service pumping station with average daily capacity of 20 mgd and maximum capacity of 25 mgd. (SBWA Ex. 49) GDU is a private utility and currently is outside the jurisdiction of the SBWA. General Development Corporation is in receivership and the City of Palm Bay is negotiating for purchase of the utility. If the purchase is successful, the supply will become publicly owned and subject to the jurisdiction of the SBWA. The City of Palm Bay is not bound to purchase GDU at any price, and the requirement that it would shut down its newly purchased facility to receive water from SBWA is a disincentive to the acquisition. In the meantime, GDU has no incentive to reduce CUP capacity and devalue its facility. GDU's service has been uninterrupted and reliable. Contamination to the surface aquifer utilized by GDU has been successfully treated. Although septic tanks proliferate in Palm Bay, their location, as well as the presence of confining layers in the surficial aquifer, reduce the susceptibility of GDU wells to contamination from septic tanks. The applicant's concerns about unreliability and safety of Lake Washington as a continued water source are unsubstantiated by the weight of evidence in this proceeding. Surface water facilities have been used in Florida since before the turn of the century and no major facility has ever been off-line one day due to raw water contamination. Nor has any major Florida surface water plant ever been sabotaged. There is a greater chance in Florida of problems with pipeline failures, and the miles of pipes planned to transmit ground water from Bull Creek east to SBWA consumers increase the chances of those problems. Recently, the SJRWMD Upper Basin Project has significantly improved the water quality and quantity in Lake Washington through restoration of marshlands in the upper basin and capping flowing wells. Restored marsh areas will allow for additional removal of nutrients and provide an additional storage to the Lake Washington/Upper Basin system, significantly improving safe yield quantities. Comparisons of concentrations of raw water chlorides and total dissolved solids for the drought years of 1989 and 1990, show significant reductions for the latter time frame. Recent evaluations indicate that Lake Washington would be acceptable in terms of chlorides and TDS concentrations for a 35 mgd withdrawal, even during 50 and 100 year droughts. Water quality improvements to Lake Washington can be directly related to the Upper Basin project. Trihalomethanes are regulated by the Safe Drinking Water Act. They are produced by the disinfection process of treating raw water with chlorines, and they are carcinogenic. A previously experienced problem at the Melbourne plant has been corrected with operational changes. As recently as 1988, an internal staff report by SJRWMD staff provided: Lake Washington has been a reliable source of public water supply since 1960 and can remain so in the future with the continuation of sound basin planning and watershed management by the St. John's river Water Management District. The quality of the raw water from Lake Washington is subject to annual and seasonal variations that make the treatment process more difficult, and the quality of the delivered water less consistent, than would be the case with a groundwater supply. A supplemental water source near Lake Washington would improve the quality of the water delivered to the users, would increase the total volume that could be taken from the lake in times of stress, and would provide a reliable alternative in case of emergency. The upper zone of the Floridan Aquifer within south Brevard County has the potential to supply a significant portion of the area's future water needs with existing low-pressure, reverse osmosis technology at a cost that is comparable to current supplies.
Recommendation Based on the foregoing, it is hereby, recommended that the SBWA application for CUP be denied. RECOMMENDED this 12th day of March, 1992, in Tallahassee, Leon County, Florida. MARY CLARK Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904)488-9675 Filed with the Clerk of the Division of Administrative Hearings this 12th day of March, 1992. APPENDIX TO RECOMMENDED ORDER, CASE NOS. 91-1779, 91-1780, & 91-1781 The following constitute disposition of the findings of fact proposed by each party. Petitioner, Osceola County These findings have been adopted in full or in substantial part in the recommended order submitted herewith: 1-5, 7-8, 14, 21-22, 24-25, 27-28, 30, 32, 35, 62-65, 73, 104, 113, 116-125, 127, 129-130, 132-138, 140, 154, 157-158, 164, 167-168, 183, 186, 189, 191-195, 197-200, 202-204, 209, 212. These findings are rejected as contrary to or unsupported by the weight of evidence: 37-38, 48, 51, 53, 56, 66, 79-81, 84-90, 92-94, 102-103, 105-107, 110-112, 115, 128, 171-172, 212(d), (f) and (g), 213-214. These findings are rejected as cumulative, unnecessary or irrelevant: 6, 9- 13, 15-20, 23, 26, 29, 31, 33-34, 36, 39-47, 49-50, 52, 54-55, 57-61, 67-72, 74- 78, 82-83, 91, 95-101, 108-109, 114, 126, 131, 139, 141-153, 155-156, 159-163, 165-166, 169-170, 173-182, 184-185, 190, 196, 201, 205-208, 210-211, 212(e), 215. Petitioners, Triple E, Triple N, East Central Florida Services, Inc., and Deseret These findings have been adopted in full or in substantial part in the recommended order submitted herewith: 1-6, 8-9, 16-20, 22-25, 27-28, 30-31, 50- 56, 59-60. These findings are rejected as contrary to or unsupported by the weight of evidence: 7, 12, 32, 34-37, 40, 42, 44, 48, 49, 58. These findings are rejected as cumulative, unnecessary or irrelevant: 10- 11, 13-15, 21, 26, 29, 33, 38-39, 41, 43, 45-47, 57, 61-63. Respondent, South Brevard Water Authority These findings have been adopted in full or in substantial part in the recommended order submitted herewith: 1-6, 9-11, 13, 16-24, 28, 30-34, 36, 38, 46-48, 61, 64, 70, 72-74, 90-91, 94-98, 105-108, 110-111, 113, 115-116, 121, 126-129, 133, 149, 152, 157, 169, 179, 181-190, 192-194. These findings are rejected as contrary to or unsupported by the weight of evidence: 41, 130-132, 156, 158, 167, 174, 177. These findings are rejected as cumulative, unnecessary or irrelevant: 7-8, 12, 14-15, 25-27, 29, 35, 37, 39-40, 42-45, 49-60, 62-63, 65-69, 71, 75-89, 92- 93, 100-104, 109, 112, 114, 117-120, 122-125, 134-148, 150-151, 153-155, 159- 166, 168, 170-173, 175-176, 178, 180, 191. Respondent, St. Johns River Water Management District These findings have been adopted in full or in substantial part in the recommended order submitted herewith: 1-8, 10-22, 24-36, 38-44, 47-62, 64-88, 90, 92-116, 118-122, 124-130, 132-142, 144-151, 159-160, 164, 166-167, 169, 171, 174-175, 177, 193-196, 198, 202, 206. These findings are rejected as contrary to or unsupported by the weight of evidence: 131 (the conclusion), 153-154, 156-157, 161-162, 197, 204, 207. These findings are rejected as cumulative, unnecessary or irrelevant: 9, 23, 37, 45-46, 63, 89, 91, 117, 123, 143, 150, 152, 155, 158, 163, 165, 168, 170, 172-173, 176, 178-192, 199-201, 203, 208-210. COPIES FURNISHED: Segundo J. Fernandez, Esquire Scott Shirley, Esquire OERTEL, HOFFMAN, FERNANDEZ & COLE, P.A. Post Office Box 6507 Tallahassee, FL 32314-6507 Douglas P. Manson, Esquire BLAIN & CONE, P.A. 202 Madison Street Tampa, FL 33602 Clifton A. McClelland, Esquire POTTER, McCLELLAND, MARKS & HEALY, P.A. Post Office Box 2523 Melbourne, FL 32902-2523 Wayne Flowers, Esquire Nancy B. Barnard, Esquire St. Johns River Water Management District Post Office Box 1429 Palatka, FL 32178-1429 Neal D. Bowen, County Attorney Osceola County Room 117 17 South Vernon Avenue Kissimmee, FL 32741 Carol Browner, Secretary Dept. of Environmental Regulation Twin Towers Office Building 2600 Blair Stone Road Tallahassee, FL 32399-2400 Daniel H. Thompson, General Counsel Dept. of Environmental Regulation Twin Towers Office Building 2600 Blair Stone Road Tallahassee, FL 32399-2400
Findings Of Fact Upon consideration of the oral and documentary evidence adduced at the hearing, the following relevant facts are found: WEST COAST REGIONAL WATER SUPPLY AUTHORITY (STARKEY WELLFIELD) The Authority is a nonprofit five-member interlocal entity created in 1974, pursuant to Section 373.1962, Florida Statutes, for the purpose of planning, designing and operating new sources of water supply to governmental entities in Pasco, Pinellas and Hillsborough Counties. Its members include the Counties of Pasco, Pinellas and Hillsborough and the Cities of St. Petersburg and Tampa. The City of New Port Richey also has a seat on the Authority Board. The Authority's revenues are presently derived entirely from the sale of water to its customers. It owns and/or operates five wellfields, some of which are connected by a water transmission pipeline to each other and to wellfields operated or owned by Pinellas County and the City of St. Petersburg. In 1984, the Authority supplied approximately 74 million gallons per day (mgd) to its customers and held consumptive use permits (CUPs) for a total of 94 mgd average and 144 mgd peak or maximum. The Authority anticipates that it will serve approximately 800,000 people in the year 1985. Its master plan, which was last updated in 1982, projects future water demands through 1995 and identifies alternative sources of supply to satisfy those demands. One of the wellfields presently operated by the Authority is the Starkey Wellfield located in Pasco County. The Starkey Wellfield property, located on some 5,400 or 6,947 acres, was acquired in phases by the Southwest Florida Water Management District (District) over a period of years beginning in the early 1970's. There are two remaining parcels which the District has contracted to acquire in 1985 and 1986. These parcels will be acquired under the "Save Our Rivers" program embodied in Section 373.59, Florida Statutes. The various contracts between the District and the Starkey family contain restrictive covenants which require that "the land remain, as nearly as practicable, in its natural state" and that water withdrawals be restricted so that they "do not substantially and/or permanently damage the lands adjacent to the area." In 1981, the District granted the Authority an exclusive license to operate a wellfield on the Starkey property provided that it maintain the wellfield "as nearly as practicable in its natural state." All cater produced from the property is to be for the water supply needs of the City of New Port Richey and Pasco County, except that those entities can authorize the sale of surplus water. Prior to the Authority's involvement with the Starkey Wellfield, the City of New Port Richey planned and constructed water supply facilities at the extreme western portion of the wellfield. Four wells were originally permitted for 3 mgd average and 4.5 mgd maximum. In 1979, in conjunction with Pasco County as a co-applicant, the permit was modified to provide for increased withdrawals of 8 mgd average and 15 mgd peak. This increase was not implemented due to contractual problems between the City and the County. Then, in December of 1981, the Authority became involved in the Starkey Wellfield. Pursuant to a Water Transfer and Management Agreement and a Water Supply Agreement, the City of New Port Richey's four existing wells were transferred to the Authority and the Authority was authorized to construct additional wells and sell the water to the City and Pasco County. As noted above, any surplus water could be sold to others. These agreements have a term of 35 years, with an option of a 35-year renewal period. If the agreements are terminated, the facilities are to revert back to the City of New Port Richey and Pasco County. In 1982, the Authority, the City of New Port Richey and Pasco County obtained the present CUP authorizing the construction and operation of a total of 14 wells and permitting withdrawals at an average annual rate of 8 mgd and a maximum daily rate of 15 mgd. This CUP expires on February 3, 1986. The ten presently operating wells have the capacity to produce 22 mgd. The financing arrangements for the construction of the Starkey Wellfield are not sufficient to complete construction. There is a shortfall of about $720,000, which the Authority plans to make up in revenues from the facility. On December 20, 1983, the Authority, with the City of New Port Richey and Pasco County as co-applicants, applied to the District for a modification of the 1982 CUP to increase withdrawals from 8 mgd average, 15 mgd maximum to 11 mgd average and 21 mgd maximum. At the time, the Authority believed that the increases were justified by the projected water demands of the City and Pasco County. In preparing its water supply plan submitted to the District on March 1, 1984, the Authority determined that it would be feasible to interconnect the Starkey Wellfield with the Cypress Creek pipeline and other major production facilities. In order to finance this pipeline interconnection and again believing that there was sufficient demand in Pasco County and the City of New Port Richey to justify increased withdrawals, the Authority, along with the City and the County, amended the application to modify their CUP on March 23, 1984. This amendment sought average annual withdrawals of 15 mgd and maximum daily withdrawals of 25 mgd. Also requested was the relocation of 2 wells that have not yet been constructed. Between 1971 and 1982, five pump tests have been performed at the Starkey Wellfield, and monitor wells are installed throughout the property. Except for the northwest corner of the property, existing withdrawals have not changed the natural condition of the property. Utilizing these various tests and monitoring results to predict the hydrologic effects of the Authority's proposed increased withdrawals, the District found that the potentiometric drawdown and the water table drawdown at the requested rates would each increase to almost twice the drawdown at the currently permitted rates. The withdrawal of water will cause the level of the potentiometric surface to be lowered more than five feet outside the northern and southern boundaries of the Starkey Wellfield property. The one-foot water table drawdown anticipated from the increased withdrawals could have an adverse effect upon lands immediately adjacent to the north and west. Likewise, this one foot water table drawdown could cause adverse ecological effects on forests and wetlands within the Starkey Wellfield properties. Approximately 40 percent of the Starkey property is high quality wetlands. In June of 1984, a three-day field validation multi-pump test was performed for the Authority. These test results were not available to the District at the time it performed its evaluation. The June tests showed aquifer characteristics different than those previously thought to exist. A much higher transmissivity level was found and the differing leakance values throughout the property demonstrated that the aquifer beneath the Starkey Wellfield is not homogenous. A higher transmissivity level decreases the extent of potentiometric surface drawdown. After substituting the new aquifer characteristics found from the June pump tests, the Authority's computer modeling demonstrates no violation of District hydrologic rules with respect to potentiometric surface and water table drawdowns at the increased level of withdrawals. The Authority's ecologist did not feel that the increased withdrawals would adversely affect natural conditions on the Starkey property, stating that a one-foot water table drawdown is well within the adaptive range of wetland vegetation. In addition, the Authority will maintain its existing ecological monitoring plan on site. The District has not established regulatory levels for the rate of flow of streams or other water courses, for the potentiometric surface or for the surface water in the vicinity of the Starkey Wellfield. Deep monitor wells on the property indicate that there has been no increase in chloride concentrations. Increased withdrawals are not expected to induce saltwater encroachment. If it is found that the potentiometric surface at the Starkey property boundary is lowered more than five feet, an alternative pumping schedule can be put into effect to prevent that occurrence. The pattern of production can be changed by shifting to different wells during the dry season. Increased withdrawals will not lower off-site water tables, lakes or other impoundments by more than one foot, and the potentiometric surface will not be lowered below sea level. The Authority's proposed consumptive use of 15 mgd average would withdraw 2,777.77 gallons per acre per day if the Starkey Wellfield contains 5,400 acres, and 2,159.13 gallons per acre per day if it contains 6,947 acres. Its present permitted withdrawals average more than 1,000 gallons per acre per day. The Authority's proposed increased withdrawals will not interfere with any presently existing legal use of water. BEXLEY (CENTRAL PASCO WELLFIELD) Bexley owns 14,510 acres of land in Pasco County located immediately east of the Starkey Wellfield. The land contains improved pasture, crops, planted pine and some cypress heads and ponds. He presently holds a CUP authorizing a combined average annual withdrawal of 2,416,000 gallons per day with a maximum withdrawal of 11,520,000 gallons per day. Such withdrawals are permitted for agricultural irrigation purposes and come from five wells. In August of 1983, Bexley entered into a contract with Pasco County. The contract requires Bexley to produce and supply to Pasco County an average of 9 mgd of public supply water and a maximum of 13 mgd. Pasco County is given the exclusive right to purchase these amounts and, indeed, must pay for the water made available, whether it is accepted or not. The term of the agreement between Bexley and the County is 33 years. Pursuant to his contract with Pasco County, Bexley applied to the District on December 21, 1983 to modify his existing CUP. A decrease in agricultural withdrawals was requested, as were five additional wells to produce 10.0 mgd average and 13.5 mgd maximum for Pasco County's public water supply. The five additional wells are to be located on 10,848 acres of land, to be known as the Central Pasco Wellfield, located within the 14,510 acres owned or controlled by Mr. Bexley. The modification would result in total (agricultural irrigation and public water supply use) withdrawals of 11,881,000 gallons per day annual average and 23,580,000 gallons per day maximum. In order to determine the anticipated hydrologic effect of the proposed withdrawals, Bexley's hydrologist reviewed and analyzed previous studies of regional hydrogeology and other wellfields prepared by the District, the United States Geological Survey and private consultants. He also conducted a "slug test" and a single well pump test over a period of six days. The aquifer characteristics of the Bexley property were found to be within the range of values derived from other regional testing. Assuming an homogenous aquifer, these characteristics were used in computer modeling to predict the effect of increased withdrawals on and off the Bexley property. The five-foot potentiometric drawdown is confined to the Bexley property, as is the three-foot water table drawdown. The effects of any potentiometric surface and/or water table drawdowns on agricultural crops in the vicinity of the production wells can be offset by irrigation. No lake or other impoundment off-site will be lowered more than one foot. The proposed withdrawals will not cause the potentiometric surface to be lowered below sea level. Regulatory levels have not been established by the District for potentiometric surface, stream flows or surface water on the Bexley property. Although there was no deep monitor well testing done, salt water encroachment is not anticipated as a result of the proposed withdrawals. After an independent evaluation, the District staff also concluded that the proposed Bexley withdrawals would not violate the District's hydrologic rules. The proposed public water supply use of 10 mgd average from 10,848 acres will average 921.80 gallons per acre per day. The combined public supply and agricultural irrigation use of 11.8 mgd from 14,510 acres will average 818.78 gallons per acre per day. CITY OF ST. PETERSBURG (SOUTH PASCO WELLFIELD) The City of Saint Petersburg owns and operates the South Pasco Wellfield, located on a 589 acre site to the south of the Bexley property. This wellfield has been in operation since 1973, and the City has a CUP to withdraw water at the rate of 16.9 mgd annual average and 24 mgd maximum as part of a public supply system. This CUP expires on September 1, 1992. The CUP requires the City to balance production from its South Pasco Wellfield equally with its two other well fields -- Section 21 and Cosme-Odessa. Among the terms and conditions of the CUP are that three regulatory wells be monitored so as not to cause the cumulative weekly average elevations of the potentiometric surface of the aquifer to be lower than the regulatory level set for each well. One of the regulatory wells is located on State Road 54, about 1.5 miles south of the Bexley southern property boundary. The regulatory level set for that well is that the potentiometric surface not be below 42.0 feet above mean sea level on a cumulative weekly average basis. On a noncumulative weekly average basis, the elevations may be 37.0 feet above mean sea level. Since 1974, average water levels at the State Road 54 regulatory well have fluctuated from 44.8 feet to 49.4 feet. Bexley's proposed combined average withdrawals may cause a potentiometric surface drawdown of between 1.3 and 1.9 feet at the State Road 54 regulatory well. The City of Saint Petersburg presented evidence that if the City pumps at its permitted average of 16.9 mgd and Bexley pumps at its average of 11.8 mgd, the City will only be able to withdraw 14.1 mgd without violating the regulatory level for the State Road 54 well. However, this result was obtained by starting off with the normal water levels in the State Road 54 well as they existed in 1980-81, a particularly dry year, and then comparing them with the results obtained if Bexley were to pump its total combined average of 11.8 mgd. This methodology fails to take into account Bexley's permitted withdrawals of 2.4 mgd as they existed in 1980-81, and in effect, double-counted them by initially ignoring their impact on the 1980-81 water levels and adding them back in as a part of the new combined total. In addition, the exhibits and testimony offered by the City failed to demonstrate that the cumulative weekly average elevations would go below 42.0 feet if Bexley were pumping at its requested average rate. While the City of St. Petersburg did utilize its permitted average capacity in 1975, for the past five years it has averaged only between 10.1 and 12.3 million gallons per day from its South Pasco Wellfield. Even if the regulatory level of the State Road 54 well were in jeopardy of violation, it would be possible to shift the pumpage among the eight production wells to counter such a result. The Bexley property is located approximately 3.5 miles from the center of pumpage at the South Pasco Wellfield. THE OTTO POTTBERG TRUST PROPERTY The Otto Pottberg Trust Property, owned by the Pottberg family since 1936, is comprised of 8,000 acres of land located immediately north of the Starkey Wellfield. The property is used for cattle grazing and a nursery operation, and wildlife on the property is abundant. The intervenor Pottberg has observed that since the operation of the well field began on the Starkey property, the cattle ponds on the Pottberg property dry up and vegetation and grasses are adversely affected during the dry seasons. He has observed a noticeable decline in all lake levels. He fears that increased withdrawals from the Starkey well field would diminish the use of his property for cattle grazing and nursery operations, would create a fire hazard and would adversely affect plant, animal and human life on his property. The Authority's experts found no surface drawdowns which would extend into the Pottberg property. The District determined that the potentiometric surface drawdown resulting from the proposed increased withdrawals from the Starkey Well field would exceed five feet on the northern boundary--thus extending into the property owned by the Otto Pottberg Trust. Likewise, the water table drawdown of one foot extends beyond the property at the northwest corner. However, there was no evidence that there are lakes on the Pottberg property at or near the northwest corner of the Starkey property, or that there is an existing CUP well on the Pottberg property in the area where the potentiometric surface drawdown exceeds five feet. PASCO COUNTY'S WATER DEMANDS AND SUPPLIES Pasco County is legally authorized and required to provide an adequate public water supply for its citizens. Based upon per capita use and estimates of population growth, the quantity of public supply water needed by Pasco County has been estimated by various experts as follows: YEAR AVERAGE MGD MAXIMUM MGD 1985 11.3 20.3 1986 12.3 1988 12.8 28.6 1990 16.4 29.5 1993 18.8 40.8 1995 21.8 39.5 2000 27.2 49.0 In the year 1983, the Pasco County Utility Department actually utilized 8.1 mgd for public water supply purposes. Pasco County has a contract right and obligation to purchase the following amounts of water produced by the Authority at the Starkey Wellfield: YEAR AVERAGE AND MAXIMUM MGD 1985 7 1986 6.7 1987 6.4 1988 6.1 1989 5.8 1990 and thereafter 5.5 The City of New Port Richey also has an allocated entitlement to the remaining amounts of water withdrawn from the Starkey Wellfield under its current permit. The Water Supply Agreement for the Starkey Well field recognizes that the City and County will have increasing water supply needs, and provides that they may, upon giving the Authority two years prior notice, increase their entitlement. The Pasco County Utility Department also has 13 CUPs covering public supply wells located on or near the coast. These CUPs, which were renewed in May of 1984 and expire in May of 1992, authorize a total withdrawal of 4.54 mgd average. The majority of these wells are located in coastal areas along and to the west of the 10-foot potentiometric surface contour near the saltwater- freshwater interface. Wells west of the 10-foot contour line generally have high chloride levels. The County has experienced inefficiency in operating some of these wells, and they are considered suitable mainly for fire control and peaking purposes. A condition of the 13 CUPs requires a proportionate, or gallon by gallon, decrease of average day withdrawals should Pasco County acquire another source of public water supply. Pinellas County is contractually obligated to provide Pasco County with up to 10 mgd upon demand. Pasco County controls how much water it will take from the Pinellas County water system. This water is produced by the Authority from other wellfields located within Pasco County, is purchased by Pinellas County and then is transported to Pinellas County. Upon request by Pasco County, the water is then transported back up north again to Pasco County. The water travels approximately 25 to 40 miles from Pasco County to Pinellas County and back to Pasco County. The Pinellas County water system has sufficient capacity to continue to provide 10 mgd to Pasco County. Pasco County does not currently utilize the full 10 mgd, partially because such use would currently present difficulties in fulfilling its contractual obligation or entitlement from the Starkey Wellfield. The contract between Pinellas and Pasco Counties was not placed into evidence. No evidence was presented as to whether Pasco County is either able to or desires to eliminate or change its contract with Pinellas County. It was the position of the Pasco County Director of Public Works and Utilities that it would be more cost-effective to have an alternative source of public water supply. There was insufficient evidence produced at the hearing to determine if the Pinellas County water provided to Pasco County is more or less expensive than the rates presently charged by the Authority or by the contractual agreement between Bexley and Pasco County.
The Issue The issue in this case is whether, and what, reasonable mitigative conditions are necessary to protect the interest of the public and the environment, prior to issuing Petitioner's default permit.
Findings Of Fact Application and Default Petitioner's application is to dredge an extension, 50 feet wide by 300 feet long by 5 feet deep, to an existing 650 foot-long man-made canal of the same width and depth, normal (perpendicular) to old Central and South Florida Flood Control (now SFWMD) Rim Canal (the L-48 Borrow Canal), which is along the northwest shore of Lake Okeechobee. Petitioner's initial, incomplete application filed in DEP's Port St. Lucie office on August 31, 2000, included: the proposed project's location by County, section, township, and range; its legal description; a sketch of its general location and surrounding landmarks; a SFWMD letter verifying conformity with the requirements of a "No Notice General Permit for Activities in Uplands" of a drawing for a proposed pond expansion (to a size less than half an acre), "which will provide borrow material necessary for a house pad and access drive"; a description of water control Structure 127, together with its purpose, operation, and flood discharge characteristics, which were said to describe water levels in Buckhead Ridge, the name of the subdivision where the project was proposed; two virtually identical copies of a boundary survey for Petitioner's property (one with legal description circled) showing the existing canal, with boat basin off the canal on Petitioner's property near the L-48 Rim Canal, at a scale of one inch equals 200 feet; two more virtually identical copies of the boundary survey at the same scale showing the existing canal, with boat basin off the canal on Petitioner's property near the L-48 Rim Canal, and the proposed canal extension and house locations; and a copy of a 1996 aerial photograph of Petitioner's property and existing canal, and vicinity. The application did not describe a proposed method or any other details of construction, include any water quality information, or include a water quality monitoring plan. On September 15, 2000, Petitioner filed an additional page of the application form with DEP's Punta Gorda office. The page added the information: "Digging to be done with trac-hoe." No other specifics of the proposed construction method were included. What happened after the filing of the application is described in Tuten I and Tuten II, which are the law of the case. However, those opinions do not explain the delay between Tuten I and the issuance of DEP's proposed ERP with conditions approximately two years later. The evidence presented at the final hearing explained only that counsel of record for DEP promptly asked district staff to draft a proposed default ERP with conditions that "would probably track the RAI that had been sent out prior to the default." DEP's district staff promptly complied and forwarded the draft to DEP's Office of General Counsel in Tallahassee, which did not provide any legal advice as to the draft ERP for almost two years. There was no further explanation for the delay. As reflected in Tuten II and in the Preliminary Statement, it was DEP's position that the proper procedure to follow after its default was to issue a proposed ERP with conditions and that it would be Petitioner's burden to request an administrative hearing to contest any conditions and to prove Petitioner's entitlement to a default ERP with conditions other than those in DEP's proposed ERP. DEP's Proposed General Conditions The conditions DEP wants attached to Petitioner's default permit include general conditions taken from SFWMD's Rule 40E-4.381, which are appropriate, as indicated in the Preliminary Statement and Conclusions of Law, and as conceded by Petitioner's expert. While the Rule 40E-4.381 general conditions are appropriate, Petitioner takes the position (and his expert testified) that some of the general permit conditions contained in Rule 62-4.160, as well as Rule 62-4.070(7) (providing that "issuance of a permit does not relieve any person from complying with the requirements of Chapter 403, F.S., or Department rules"), are more appropriate general conditions to attach to Petitioner's default ERP, even if technically inapplicable, because the Chapter 62 Rules govern the operation of a permitted project (whereas the former govern the construction of a permitted project) and are "more protective of the environment." Actually, all of the rules contain general conditions that govern both construction and operation phases of an ERP, and all are "protective of the environment." There is no reason to add general conditions taken from Rules 62-4.160 and 62-4.070(7) to the applicable general conditions contained in Rule 40E-4.381. DEP's Proposed Specific Conditions (i) In General The conditions DEP wants attached to Petitioner's default permit also include specific conditions which essentially require that Petitioner provide the information in the RAI sent in December 2000, together with additional specific conditions thought necessary to protect the environment in light of the lack of detail in the application without the answers to the RAI. Some DEP's proposed specific conditions are designed to ascertain whether the application would provide reasonable assurance that permitting criteria would be met. (They make the requested information subject to DEP "approval" based on whether reasonable assurance is provided.) In general, those specific conditions no longer are appropriate since DEP is required to issue a default permit. (Looked at another way, inclusion of those specific conditions effectively would un-do the default, in direct contradiction of the court's opinion Tuten I and Tuten II.) See Conclusion of Law 52, infra. On the other hand, some of the RAI information was designed to ascertain the proposed method and other details of construction. Pending the "answers" to those "RAI conditions," DEP also wants broad specific conditions, including a baseline water quality investigation and a water quality monitoring plan, designed to be adequate for a "worst case scenario" that could result from the project. Petitioner opposes DEP's proposed broad specific conditions. He takes the position that it was incumbent on DEP in this proceeding to use discovery procedures to ascertain Petitioner's intended method of construction and tailor specific conditions to the method of construction revealed through discovery. At the same time, Petitioner opposes DEP's proposed specific conditions requiring RAI-type information, including the details of his proposed construction method. Notwithstanding the positions Petitioner has taken in this case, his expert testified that Petitioner intends to use a steel wall inserted between the water and upland at the end of the existing canal, phased excavation from the upland side, and removal of the steel wall in the final phase of construction. Assuming that method of construction, Petitioner takes the position (and his expert testified) that the statutes, rules, and permit conditions acceptable to Petitioner, and which generally prohibit pollution of the environment, are adequate. Even if the statutes, rules, and permit conditions acceptable to Petitioner would be adequate for the method of construction Petitioner now says he will use, Petitioner's application does not in fact commit to a method of construction. All Petitioner's application says is that he intends to dig with a trac-hoe. Without a binding commitment to a method of construction, it was appropriate for DEP to take the position that specific conditions were necessary to ascertain the method of construction Petitioner would use and, pending the "answers" to those "RAI conditions," and to impose broad specific conditions, including a baseline water quality investigation and a water quality monitoring plan, designed to be adequate for a "worst case scenario" that could result from the project. In his PRO, Petitioner committed to use the construction method described by his expert during the hearing, as follows: Excavation of any spoil shall be done by means of a mechanical trac-hoe; Prior to the excavation of any soil, Petitioner shall first install an isolating wall, such as interlocking sheet pile, between the existing man-made canal, and the proposed canal extension; The mechanical excavation shall be done in such a manner such that the excavated soil is not deposited in wetlands or in areas where it might be reasonably contemplated to re-enter the waters of the State of Florida; After the proposed canal extension is excavated to its project limits in the foregoing manner, the side slopes of the canal extension shall be allowed to revegetate prior to removal of the isolating wall. With a condition imposing this method of construction, fewer and narrower specific conditions will be necessary. ii. Seriatim Discussion DEP's proposed Specific Condition 1 requires a perpetual conservation easement prohibiting docking and mooring of water craft on all portions of Petitioner's property within the canal extension in order to "address cumulative impacts." But DEP did not prove that the proposed conservation easement was reasonably necessary to protect the interest of the public and the environment. First, DEP did not prove that there would be any cumulative impacts, much less unacceptable cumulative impacts, from Petitioner's project. See § 373.414(8), Fla. Stat.; Rule 40E-4.302(1)(b); and BOR § 4.2.8. Second, even if unacceptable cumulative impacts were proven, those could be addressed in other permit cases (assuming no DEP default in those proceedings), since the concept of cumulative impacts essentially requires an applicant to share acceptable cumulative impacts with other similar permittees, applicants, and foreseeable future applicants. See Broward County v. Weiss, et al., DOAH Case No. 01-3373, 2002 Fla. ENV LEXIS 298, at ¶¶54-58 (DOAH Aug. 27, 2002). As Petitioner points out, the easement further described in Specific Condition 1 appears to be overly broad for its stated purpose in that it would cover "the legal description of the entire property affected by this permit and shown on the attached project drawings," which could be interpreted to include not just the canal extension but the entire extended canal, or even the entirety of Petitioner's 6.6 acres of property. Indeed, the latter might have been the actual intention, since DEP's witness testified that Specific Condition 1 also was intended to address impacts from fertilizer runoff and septic tank leaching from new homes built along the canal. Although some of those impacts (as well as future construction of additional homes and docks) actually are secondary impacts, not cumulative impacts, it is possible that they can be addressed in DEP or SFWMD proceedings on future applications, as well as in Department of Health proceedings on septic tank installations. DEP's proposed Specific Condition 2 requires that: spoil material from the dredging to be "used for the sole purpose of constructing a single-family fill pad" on Petitioner's property under a pending permit; spoil "be placed in a manner so as not to affect wetlands or other surface waters"; and the "spoil disposal location shall be shown in the drawings required by Specific Condition #4 below." DEP did not prove that the first requirement was reasonably necessary to protect the interest of the public and the environment. First, it is unreasonable since Petitioner already has built the referenced single-family fill pad and a home on top of it. Second, the reason DEP's witness gave for this requirement was that, under an operating agreement with SFWMD (which was officially recognized), DEP only has jurisdiction to take action on single-family uses (which he defined to include duplexes, triplexes, and quadriplexes) but not on larger multi-family and certain other projects. However, the operating agreement on jurisdiction is not a reason to place Specific Condition 1 on the use of spoil material on Petitioner's default permit. SFWMD can regulate, in permitting proceedings under its jurisdiction, the placement of fill material for multi- family construction or other projects not under DEP jurisdiction. In addition, under the operating agreement, jurisdiction can be "swapped" by written agreement in cases where deviation from the operating agreement would result in more efficient and effective regulation. The second two requirements under Specific Condition 2 are reasonable and necessary to protect the interest of the public and the environment. DEP's proposed Specific Condition 3 requires disclosure of all pending and issued permits for the property from SFWMD, Glades County, or the U.S. Army Corps of Engineers (USCOE). DEP did not prove that this is reasonable or reasonably necessary to protect the interest of the public and the environment. DEP probably has all such permits and can easily obtain any it does not have. DEP's proposed Specific Condition 4 requires fully dimensional plan view and cross-sectional drawings of the property and area to be dredged, before and after dredging, including a north arrow and the water depths in and adjacent to the dredge area. DEP's witness stated that the primary purpose of this part of the condition is to provide hydrographic information normally provided in an application (or required in an RAI) so that DEP's hydrographic engineer can ascertain flushing characteristics, which are pertinent primarily to the dissolved oxygen water quality parameter and to heavy metals from boat use. As previously indicated, requests for information relating to reasonable assurance and the public interest test generally no longer are appropriate since DEP is required to issue a default permit. See Finding 9, supra. However, information regarding flushing characteristics, combined with other specific conditions, is reasonable and necessary to protect the interest of the public and the environment. See Finding 27, infra. In addition, the plan view and cross-sectional drawings required by Specific Condition 4 are to include the location of navigational obstructions in the immediate area, any roads, ditches, or utility lines that abut the property; any encumbrances, and any associated structures. DEP's witness stated that the primary purpose of this information is to determine whether Petitioner has provided reasonable assurance that the "public interest" test under Rule 40E-4.302 is met, and make sure that management, placement, and disposal of spoil material do not infringe on property rights or block culverts and cause flooding. As previously indicated, requests for information relating to reasonable assurance and the public interest test generally no longer are appropriate. See Finding 9, supra. However, information regarding the location of culverts to assure that management of spoil does not cause flooding is reasonable and necessary to protect the interest of the public and the environment. In addition to objecting to having to provide RAI information as a "default permittee," Petitioner's expert asserted that the information requested in Specific Condition 4 would be provided as part of the "as-built" drawings required by General Condition 6. But General Condition 6 does not require "as-built" drawings. Rather, it requires an "as-built" certification that can be based on "as-built" drawings or on-site observation. Besides, the purpose of the "as-built" certification is to determine "if the work was completed in compliance with permitted plans and specifications." Without the information requested in Specific Condition 4, there would only be vague and general permitted plans and specifications and hydrographic information. Finally as to Specific Condition 4, Petitioner objects to the requirement that the drawings be sealed by a registered professional engineer. However, Petitioner cites to General Condition 6, which requires that the "as-built" certification be given by a "registered professional" and cites Rule Form 62- 343.900(5), which makes it clear that "registered professional" in that context means a registered professional engineer. DEP's proposed Specific Condition 5 requires Petitioner to submit for DEP approval, within 180 days of permit issuance and before any construction, reasonable assurance that the canal extension will not violate water quality standards due to depth or configuration; that it will not cause a violation of water quality standards in receiving water bodies; and that it will be configured to prevent creation of debris traps or stagnant areas that could result in water quality violations. The reasonable assurance is to include hydrographic information or studies to document flushing time and an evaluation of the maximum desirable flushing time, taking several pertinent factors into consideration. As previously indicated, requests for information relating to reasonable assurance and the public interest test generally no longer are appropriate. See Finding 9, supra. In addition, Petitioner's expert testified without dispute that the information requested could take more than 180 days and cost approximately $20,000. However, it is reasonable and necessary to protect the interest of the public and the environment to include a specific condition that Petitioner's canal extension be configured so as have the best practicable flushing characteristics. DEP's proposed Specific Condition 6 requires Petitioner to submit for DEP approval, within 180 days of permit issuance and before any construction, reasonable assurance that construction of the canal extension will meet all permit criteria set out in Rules 40E-4.301 and 40E-4.302 and in BOR § 4.1.1. As previously indicated, requests for information relating to reasonable assurance and the public interest test generally no longer are appropriate. See Finding 9, supra. DEP's proposed Specific Condition 7 requires Petitioner to submit existing water quality information for DEP approval within 180 days of permit issuance and before any construction. In this instance, DEP's approval would not be a determination on the provision of reasonable assurance but a determination as to the reliability of the water quality information, which is necessary to establish a baseline for assessing and monitoring the impact of the project. For that reason, the information is reasonable and necessary to protect the interest of the public and the environment. Petitioner's expert testified that the information could cost $2,000-$3,000 to produce (and more, if DEP rejects the information submitted, and more information is required). He also testified that water quality information already is available, including over 25 years worth of at least monthly information on all pertinent parameters except biological oxygen demand and fecal coliform, at a SFWMD monitoring station in the Rim Canal at Structure 127 (a lock and pump station at the Hoover Levee on Lake Okeechobee) approximately 8,000 feet away from Petitioner's canal. DEP did not prove that the SFWMD information would not serve the purpose of establishing baseline water quality for Petitioner's canal for all but the missing parameters. For that reason, only water quality information for the missing parameters is reasonable and necessary to protect the interest of the public and the environment in this case. DEP's proposed Specific Condition 8 requires that, if the water quality information required by Specific Condition 7 shows any violations of state ambient water quality standards, Petitioner must submit for DEP approval, within 180 days of permit issuance and before any construction, a plan to achieve net improvement for any parameters shown to be in violation, as required by Section 373.414, Florida Statutes. See also BOR § and 4.2.4.2. Normally, if applicable, this information would be expected in an application or RAI response. Petitioner's expert testified that this condition would require Petitioner to help "fix Buckhead Ridge" (unfairly) and that it would cost lots of money. But Petitioner did not dispute that the law requires a plan for a "net improvement," which does not necessarily require a complete "fix" of water quality violations, if any. As previously indicated, requests for information relating to reasonable assurance and the public interest test generally no longer are appropriate, and Petitioner's ability to construct the canal extension should not be dependent on DEP's approval of a net improvement plan. See Finding 9, supra. But a specific condition that Petitioner implement a plan to achieve net water quality improvement in the event of any water quality violations would be reasonable and necessary to protect the interest of the public and the environment. DEP's proposed Specific Condition 9 requires Petitioner to submit for DEP's approval, at least 60 days before construction, detailed information on how Petitioner intends to prevent sediments and contaminants from being released into jurisdictional waters. DEP asserts that this specific condition asks for a detailed description of how the applicant will comply with various subsections of BOR § 4.2.4.1 that address short-term water quality to aid in providing reasonable assurance that water quality standards will not be violated, as required by Section 373.414(1), Florida Statutes, and Rule 40E-4.301(1)(e). As previously indicated, requests for information relating to reasonable assurance and the public interest test generally no longer are appropriate, and Petitioner's ability to construct the canal extension should not be dependent on DEP's approval of information submitted. See Finding 9, supra. But it is reasonable and necessary to protect the interest of the public and the environment to include a specific condition that Petitioner's canal extension be constructed using adequate turbidity barriers; stabilize newly created slopes or surfaces in or adjacent to wetlands and other surface waters to prevent erosion and turbidity; avoid propeller dredging and rutting from vehicular traffic; maintain construction equipment to ensure that oils, greases, gasoline, or other pollutants are not released into wetlands and other surface waters; and prevent any other discharges during construction that will cause water quality violations. DEP's proposed Specific Condition 10 requires Petitioner to submit, at least 60 days before construction, detailed information regarding Petitioner's plans for handling spoil from dredging, including "discharge details, locations retention plans, volumes, and data used to size the disposal cell(s)." It allows this information to be combined with the Specific Condition 2 submittal. It also requires spoil to be properly contained to prevent return of spoil to waters of the State and to be deposited in a self-contained upland site that prevents return of any water or material into waters of the State. DEP asserts that this specific condition (like Specific Condition 9) is necessary to comply with BOR § 4.2.4.1 by addressing short-term water quality to aid in providing reasonable assurance that water quality standards will not be violated, as required by Section 373.414(1), Florida Statutes, and Rule 40E-4.301(1)(e). As previously indicated, requests for information relating to reasonable assurance and the public interest test generally no longer are appropriate, and Petitioner's ability to construct the canal extension should not be dependent on DEP's approval of information submitted. See Finding 9, supra. But it is reasonable and necessary to protect the interest of the public and the environment to include a specific condition requiring spoil to be properly contained to prevent return of spoil to waters of the State and to be deposited in a self-contained upland site that prevents return of any water or material into waters of the State. DEP's proposed Specific Condition 11 requires Petitioner to submit "as-built" drawings to DEP's Punta Gorda office with 30 days after completion of construction, "as required by General Condition #6." Petitioner's expert testified that this condition was unreasonable only because it duplicates General Condition 6 and two statutes. But General Condition 6 actually does not require "as-built" drawings, see Finding 9, supra, and it is not clear what statutes Petitioner's expert was referring to. For these reasons, and because it provides a filing location, Specific Condition 11 is reasonable and reasonably necessary to protect the interest of the public and the environment. DEP's proposed Specific Condition 12 requires Petitioner to "maintain the permitted canal free of all rafted debris by removal and property upland disposal." DEP asserts that this specific condition is necessary to comply with BOR § by addressing long-term water quality to aid in providing reasonable assurance that water quality standards will not be violated, as required by Section 373.414(1), Florida Statutes, and Rule 40E-4.301(1)(e). Rafted debris, which may be of an organic or inorganic nature, can accumulate at the end of canals due to wind, waves, boats, or other forces. Such organic rafted debris may rot and, by creating a high biological oxygen demand, rob the water of dissolved oxygen. Petitioner's only expressed opposition to this condition is that the conservation easement in Specific Condition 3 might prevent compliance. While it is unclear how the easement would prevent compliance, the issue is eliminated if no conservation easement is required. DEP's proposed Specific Condition 13 requires Petitioner to use turbidity screens during construction for compliance with BOR § 4.2.4.1 by addressing short-term water quality to aid in providing reasonable assurance that water quality standards will not be violated, as required by Section 373.414(1), Florida Statutes, and Rule 40E-4.301(1)(e). The turbidity screen requirements detailed in this specific condition are typical best management practices that contractors use and are a standard condition placed in permits of this nature by DEP. Petitioner contends that turbidity screens are unnecessary given his intended construction method and that other conditions are sufficient to cover DEP's concerns. However, as indicated, the application does not commit to a method of construction. With the application in its current state, Specific Condition 13 is appropriate subject to a demonstration by Petitioner that turbidity screens are not needed for the construction method committed to in Petitioner's PRO. DEP's proposed Specific Condition 14 requires Petitioner to "ensure that any discharge or release of pollutants during construction or alteration are not released into wetlands or other surface waters that will cause water quality standards to be violated." Again, this condition is intended to ensure compliance with BOR § 4.2.4.1 by addressing short-term water quality to aid in providing reasonable assurance that water quality standards will not be violated, as required by Section 373.414(1), Florida Statutes, and Rule 40E-4.301(1)(e). While this specific condition seems general and perhaps duplicates other conditions (which was Petitioner's only point of contention), DEP added it in an attempt to make sure the possible and not uncommon release of pollutants from construction equipment was addressed. As such, the condition is appropriate. DEP's proposed Specific Condition 15 provides details on the use of turbidity screens. Petitioner's primary points of contention are that turbidity screens are not needed for his intended construction method and that other conditions are sufficient without this condition. As such, the relevant issues already have been addressed in connection with Specific Condition With the application in its current state, Specific Condition 15 is appropriate subject to a demonstration by Petitioner that turbidity screens are not needed for the construction method committed to in Petitioner's PRO. DEP's proposed Specific Condition 16 requires Petitioner to used staked filter cloth to contain any turbid run- off and erosion from created slopes of the canal extension. This is the most common best management practice and is a standard condition for ERP permits dealing with side slopes that may affect water quality. Unstable slopes can result in chronic turbidity, which is detrimental to wildlife. Unstable slopes also can lead to upland runoff being deposited into the water along with debris and sediment. Such runoff can bring deleterious substances such as heavy metals and nutrient-loaded substances that might impact dissolved oxygen levels in the water. Petitioner's primary points of contention on Specific Condition 16 are that, like turbidity screens, staked filter cloth is not needed for Petitioner's intended construction method and that other conditions are sufficient without this condition. (Petitioner also questions why the condition gives Petitioner up to 72 hours from "attaining final grade" to stabilize side slopes, but the condition also requires side slope stabilization "as soon as possible," and the 72-hour outside limit seems reasonable.) As such, the relevant issues already have been addressed in connection with Specific Condition 13 and 15. With the application in its current state, Specific Condition 16 is appropriate subject to a demonstration by Petitioner that staked filter cloth is not needed if he uses the construction method committed to in Petitioner's PRO. DEP's proposed Specific Condition 17, 18, 19, and 20: details required long-term water quality monitoring and reporting [#17]; establishes sampling intervals and requires Petitioner to submit a "plan to remediate" if monitoring shows water quality violations or "a trend toward future violations of water quality standards directly related to the permitted canal" [#18]; allows "additional water quality treatment methods" to be required if water quality monitoring shows it to be necessary [#19]; and allows water quality monitoring requirements to be modified (which "may include reduction in frequency and parameters . . . or the release of the monitoring process"), "based on long term trends indicate that the permitted canal is not a source to create water quality violations [#20]." These conditions are intended to ensure compliance with BOR § 4.2.4.2 by addressing long-term water quality to aid in providing reasonable assurance that water quality standards will not be violated, as required by Section 373.414(1), Florida Statutes, and Rule 40E-4.301(1)(e). The evidence was that these specific conditions are standard for ERP permits where a constructed system may lead to water quality violations in the long term. Contrary to Petitioner's contentions, conditions of this kind are not dependent on a post-construction finding of water quality standard violations (even though DEP defaulted on Petitioner's application). Besides contending that monitoring requirements in Specific Conditions 17 and 18 are unnecessary, Petitioner also contends that they are too extensive and not tailored to Petitioner's intended construction, but DEP proved their necessity, even assuming the construction method committed to in Petitioner's PRO. Petitioner complains that Specific Condition 19 is vague and that Petitioner's ERP does not provide for "water quality treatment." But the present absence of post-construction water quality treatment should not preclude the possible future imposition of some kind of water quality treatment if monitoring shows it to be necessary. For this kind of condition, the absence of detail regarding the kind of treatment to be imposed is natural since it would depend on future events. DEP's proposed Specific Condition 21 merely requires that Petitioner's project comply with State water quality standards in Florida Administrative Code Rules 62-302.500 and 62- 302.530. Petitioner contends that this is duplicative and unnecessary. But it certainly is not unreasonable to be specific in this regard. No Improper Purpose As part of his request for attorney's fees under Section 120.595, Florida Statutes, Petitioner necessarily contends that DEP participated in this proceeding "for an improper purpose"--i.e., "primarily to harass or to cause unnecessary delay or for frivolous purpose or to needlessly increase the cost of litigation, licensing, or securing the approval of an activity." Even assuming that DEP should be considered a "nonprevailing adverse party," Petitioner's evidence did not prove that DEP's participation was for an "improper purpose." To the contrary, DEP "participated" initially because Petitioner filed an application. DEP's denial of Petitioner's application was not proven to be "for an improper purpose" but rather for the purpose of attempting to protect the environment. The propriety of the denial was litigated in Tuten I, which made no finding that the denial was "for an improper purpose" and which ordered DEP to participate in a hearing for purposes of determining "reasonable mitigative conditions." The two-year delay between Tuten I and Tuten II was not fully explained, but Tuten II also made no finding that the denial, or the delay, or DEP's proposed ERP with conditions were "for an improper purpose" and again ordered DEP to participate in a hearing for purposes of determining "reasonable mitigative conditions." While DEP's views on the nature of the hearing to be conducted for purposes of determining "reasonable mitigative conditions" was rejected, it was not proven that DEP argued its views "for an improper purpose" or that its participation, once its views were rejected, was "for an improper purpose," as defined by statute. To the contrary, the evidence was that DEP participated in this proceeding in an attempt to place conditions on Petitioner's permit which DEP thought were necessary to protect the environment, many (although not all) of which are accepted in this Recommended Order. As Petitioner accepts and points out, it remains necessary for Petitioner to construct and operate his project in a manner that does not violate environmental statutes and rules. But without any water quality information or monitoring, DEP's enforcement of those laws and rules will be hamstrung.
Recommendation Based upon the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that DEP enter a final order issuing Petitioner a default ERP, to expire five years from issuance, to dredge an extension, 50 feet wide by 300 feet long by 5 feet deep, to an existing man-made canal, as applied for, subject to: DEP's proposed General Conditions 1-19; DEP's proposed Specific Conditions 4 and 11-21; DEP's proposed Specific Conditions 2, 5, and 7-10, as modified by the Findings of Fact; and the construction method committed to in Petitioner's PRO (see Finding 14, supra. DONE AND ENTERED this 11th day of August, 2006, in Tallahassee, Leon County, Florida. S J. LAWRENCE JOHNSTON Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 11th day of August, 2006.
The Issue Whether Bay County has demonstrated its entitlement to the Permit?
Findings Of Fact The Ecologically Diverse Florida Panhandle With its high diversity of species and richness in endemic plants, the Florida Panhandle has been identified as one of six continental "biodiversity hot spots" north of Mexico. It has more species of frogs and snakes, for example, than any other equivalently-sized area in the United States and Canada and has botanical species that do not exist anywhere else in the Coastal Plain, one of the three floristic provinces of the North Atlantic American Region. The biodiversity stems from a number of factors. The Panhandle was not glaciated during the Pleistocene Period. Several major river systems that originate in the southern Appalachian Mountains terminate on the Panhandle's Gulf Coast. Its temperate climate includes relatively high rainfall. These factors promote or produce plentiful sources of surface and groundwater that encourage botanical and zoological life and, in turn, a diverse ecology. When compared to the rest of Florida, the Panhandle is relatively free from man-made impacts to its water resources. Until recently, the population growth rate lagged behind much of the state. Despite a rapid increase in the population in the late 1990s into the early part of the twenty-first century, it remains much less densely populated than areas in the I-4 Corridor and coastal peninsular Florida to the south. The Panhandle can be divided into physiographic areas of geological variation that are highly endemic; a substantial number of plant and animal species found in these areas are found nowhere else in the world. One of these areas is of central concern to this case. Located in southern Washington County and northern Bay County, it is known as the Sand Hill Lakes Area. The Sand Hill Lakes Area The Sand Hill Lakes Area (the "Area") is characterized by unusual geology that produces extraordinary ecological value. With few exceptions (see findings related to Dr. Keppner's flora and fauna inventories on the NTC/Knight Property below), the Area has not been extensively studied. The data on biological communities and water levels that exist, sparse as it is, has been obtained from historic aerials dating to 1941. The aerials are of some use in analyzing lakes and surface waters whose source is the Surficial Aquifer, but they are of limited value otherwise. They are not of use in determining the level in the Surficial Aquifer. Nor are they of assistance in determining river height when the banks of the river are covered by hardwood forest canopy. The resolution of the aerials is insufficient to show details of the various ecosystems. They do not show pitcher plants, for example, that exist at the site of hillside seepage bogs common in the Area. An aspect of the Area that the aerials do reveal is its many karst features on the surface of the land. Karst lakes and sinkholes dominate the Area and are a component of its highly unusual geology which is part of a larger system: the Dougherty Karst Plain. The Dougherty Karst Plain is characterized by numerous karst features: springs, caverns, sinkhole lakes, and sinkholes. Sinkholes In Florida, there are three types of sinkholes: cover subsidence, cover collapse, and "rock" or "cavern" collapse. Of the three, cover subsidence sinkholes are the most common in the state. Cover subsidence sinkholes form as the result of processes that occur on the surface. A cover subsidence sinkhole is usually a shallow pan typically not more than a few feet deep. Found throughout Central and South Florida, they are the most common type of sinkholes in most of peninsular Florida. In contrast, the other two major types of sinkholes (cover collapse and cavern collapse) occur as the result of processes below the surface that cause collapse of surface materials into the substrata. Both types of "collapse" sinkholes are found in the Area, but cover collapse is the more common. Cavern collapse sinkholes are relatively rare. Typical of the Area, cover subsidence sinkholes are not found on the NTC/Knight Property. The NTC/Knight Property The majority of the NTC/Knight Property is in Washington County, but the property straddles the county line so that a smaller part of it is in northern Bay County. All of the NTC/Knight Property is within the Area. The District recognizes that the NTC/Knight Property contains natural resources of extraordinary quality as does the Area generally. Over the three years that preceded the hearing, Dr. Keppner, an NTC/Knight expert, conducted extensive inventories of the flora and fauna on NTC/Knight Property. Dr. Keppner's inventory showed the NTC/Knight Property supports more than 500 species of vascular plants (flora with a system of tubes within the stem, phloem, and the xylem that exchange materials between the roots and leaves) and 300 species of animals. Among them are at least 28 vascular plants and six animals listed as imperiled (threatened or endangered) by state or federal agencies. At least 22 of the imperiled species of vascular plants and eight of the imperiled species of animals are located within an area expected to be affected by the Wellfield for which Bay County seeks the permit modification. For example, at Big Blue Lake alone where impacts were predicted by NTC/Knight experts to take place, the following imperiled plant species are found: Smoothbark, St. John's Wort, Kral's Yelloweyed Grass, Quilwort Yelloweyed Grass, Threadleaf Sundew, Panhandle Meadowbeauty, and Crystal Lake Nailwort. In addition to the Keppner inventory, NTC/Knight commissioned other studies to determine the nature of the sinkholes and whether they are connected to the Floridan Aquifer. NTC/Knight's experts determined that the property contains cover collapse and a few cavern collapse sinkholes that connect to the Floridan Aquifer. Despite evidence to the contrary submitted by the District and Bay County, the NTC/Knight determinations are accepted as facts for a number of reasons, including the lineup of the sinkholes and sinkhole lakes along identified photo-lineaments and the distribution of them in patterns that are not random. A District study using a dye test, moreover, confirmed conduit flow exists in the Area just east of the NTC/Knight Property. With regard to the distribution of the sinkholes and sinkhole lakes on the NTC/Knight Property, Dr. Sam Upchurch used the term "String of Pearls" to describe multiple sinkholes that exist along the edges of several lakes on the property. When sinkholes closer to the center of a lake are clogged or plugged with sediment and debris, the lakes continue to leak around the plugs which causes new sinkholes to form along the edge of the plugs. Examples of the "String of Pearls" formation on the edges of existing lakes are found at White Western and Big Blue Lakes on the NTC/Knight Property and at Crystal Lake nearby in Washington County. The multiple sinkholes bordering the edge of Big Blue Lake are examples of cover collapse sinkholes that, in geological terms, are relatively young as evidenced by their steep sides. In a karst area such as the Area, there is preferential flow in the conduits because of the difference of efficiency of transmission of water flowing through a porous medium of rock compared to that flowing though a conduit. Absent pumping in the Wellfield, the underlying aquifers are relatively stable. If the requested pumping does not take place, it is likely the stability will remain for a substantial period of time. It is not known with precision what will happen in the long term to the karst environment should pumping occur at the Wellfield at the rate the District proposes. When pumping occurs, however, water in the Area affected by the Wellfield will move toward the Wellfield. "[A]s it does[,] you may get some turbulent flow or vorticity in the water." Tr. 1391, (emphasis supplied). At some point, a change in the potentiometric surface and loss of buoyancy will most likely occur. This leads to concerns for Dr. Upchurch from two perspectives: One . . . is that if there is a[n affected] sinkhole lake [on the surface,] it may induce downward flow . . . the other . . . is that if it breaks the plug it may either create a new sinkhole or create a substantial drop in the level of water in the lake . . . which drains periodically, not necessarily because of a wellfield, but because that plug breaks. Id. In the first instance, lake levels could be reduced significantly. In the second, a new sinkhole could be created or the water level could drop dramatically as occurred at Lake Jackson in Tallahassee. Sand Hill Lakes Wetlands The Area contains a number of wetland communities. These include hillside seepage bogs, steepheads, sphagnum bogs, littoral seepage slopes around certain Sand Hill Lakes, temporary ponds, and creeks and streams in forested wetlands. A number of these wetlands occur on the NTC/Knight Property within the zone of influence in the Surficial Aquifer predicted by NTC/Knight's experts employing a model known as the "HGL Model." The wetland systems on the NTC/Knight Property are diverse, by type, plant species composition, and richness. This remarkable diversity led the District to recognize that the NTC/Knight Property contains lakes of nearly pristine quality, interconnected karst features, and endemic steephead ravines, all of which are regionally significant resources of extraordinary quality. The Area's wetlands also include many streams, among them Pine Log Creek, the majority of which is located on the NTC/Knight Property. Significant recharge to the Floridan Aquifer occurs on NTC/Knight Property. To the west, north, and east of the NTC/Knight Property are major concentrations of Floridan Aquifer springs that are crucial to the quality and character of regional surface water systems, including the Choctawhatchee River, Holmes Creek, and Econfina Creek systems. All of these surficial systems are dependent on the groundwater resources of the Area. The Area's Hillside Seepage Bogs Hillside seepage bogs are marsh-like wetland usually located on gentle slopes of the sides of valleys. They form when the Surficial Aquifer intercepts the sloping landscape allowing water to seep onto the sloped surface. The plant communities in the bogs are dominated by a great number and variety of herbaceous plants that prefer full sun. Among them are carnivorous plants. These unusual plants include the Trumpet and White-Topped pitcher plants as well as other varieties of pitcher plants. Inundation or saturation for extended periods of time is necessary for pitcher plants and most of the rest of the plant communities found in the bogs to thrive and to fend off invasion by undesirable species. Hillside seepage bogs are valued because they are among the most species-rich communities in the world. A reduction in water levels in the bogs below the root zone of associated plants will kill the plant communities that live in them and pose a threat to the continued existence of the bogs. Hillside seepage bogs were once abundant in pre- settlement Florida, but their expanse has been greatly reduced. They are now estimated to only occupy between one and five percent of their original range. On NTC/Knight Property, they have been spared to a significant degree. Numerous hillside seepage bogs continue to exist on the NTC/Knight Property primarily along the margin of Botheration Creek and its tributaries. The Area's Steepheads Steepheads are unique wetland systems. Found around the globe, they are usually regarded as a rarity. More than 50 percent of the steepheads that exist in the world are in a narrow latitudinal band that extends from Santa Rosa County in the west to Leon County in the east, a major section of the Florida Panhandle. Steepheads occur in deep sandy soils where water originating in the Surficial Aquifer carries away sand and cuts into sandy soils. The seepage emerges as a "headwater" to create a stream that conveys the water from the steephead into a river, or in some rare circumstances, into a karst lake. Over time, flow of the seepage waters results in deep, amphitheater- shaped ravines with steep valley side walls. Steepheads are important to the ecologies of the areas in which they occur. They provide habitat for a number of Florida endemic animals and plants believed to be relics of once-abundant species. Water that emerges from a steephead is perennial. Because the steep slopes of the steephead have not been disturbed over a long period of time, the water remains at a relatively constant temperature, no matter the season. Sampling of aquatic invertebrates at the Russ Pond and Tiller Mill Steepheads on the NTC/Knight Property found 41 and 33 distinct taxa, respectively, to inhabit the steepheads. Among them were a number of long-lived taxa. Their presence is consistent with the hallmark of a steephead: perennial flow of water at a relatively constant temperature. Most of the known steepheads flow into streams or rivers. Between six and ten within the Area, however, flow into Sand Hill Lakes. They have no direct connection to any surface drainage basin, thereby adding to their uniqueness. The level in the Surficial Aquifer has a direct impact on where and to what extent seepage flows from the sidewalls of a steephead. The Area's Sphagnum Bogs Sphagnum moss grows in many locations within the landscape and requires moisture. Where there is a large amount of sphagnum moss, it can form a unique community known as a sphagnum bog that is capable of supporting unique plant and animal populations. In the Area, these sphagnum bogs form along the valley sidewalls of steephead ravines and are fed by Surficial Aquifer seepage from the sidewall of the ravine. These sphagnum bogs support unique plant and animal communities, including a salamander discovered by Dr. Means that is new to science and so far only known to exist in sphagnum bogs in the Florida Panhandle. The Area's Sinkhole Lakes and their Littoral Seepage Slopes Sand Hill Lakes are nutrient poor, or "oligotrophic," receiving most of their nutrient inputs through exchange with the plant and animal communities on the adjacent littoral shelves during periods of high water levels. Fluctuating water levels in the Sand Hill Lakes allow a littoral zone with many different micro-habitats. Areas closest to the lakes are inundated regularly, but higher areas of the littoral zone are generally dry and inundated only every ten or 20 years -- just often enough to prevent encroachment of trees. In a few instances, portions of the littoral zones are inundated by seepage from the Surficial Aquifer. Above the normal low water of the Sand Hill Lakes, the littoral shelf occurs along a low gradient. As the littoral shelf transitions into the lake bottom and toward the deeper parts of the lake, there is an inflection point, where the gradient of the lake bottom becomes much steeper than the littoral shelf. If lake water levels fall below that natural inflection point, gully erosion will occur. The flow of water will be changed along the littoral shelf from seepage sheet flow over a wide expanse to water flowing down gullies in a concentrated stream. This change in flow will result in a loss of area needed by certain seepage dependent plants and animals as well as increased sedimentation from erosion. Big Blue Lake is unique because it boasts the largest known littoral zone seepage area of any Sand Hill Lake. The seepage zone along Big Blue Lake supports a number of rare plant species, including the Thread-Leaf Sundew, Smoothed Barked St. Johns Wort, and Crystal Lake Nailwort. The Area's Temporary Ponds Temporary ponds are small isolated water bodies that generally have no surface water inlet or outlet. Typically very shallow, they are sometimes wet and sometimes dry. Temporary ponds can range from basins that have continuous water for three to five years, to basins that have standing water for a month or two, every two to four years. These conditions limit their occupation by fish and, therefore, provide ideal conditions for amphibian reproduction which only occurs when water levels are maintained long enough to complete a reproductive cycle. In the Area, temporary ponds are a direct expression of the Surficial Aquifer and contain no known restrictive layer that might cause water to be "perched" above the Surficial Aquifer. Temporary ponds are critical to the viability of amphibian populations and support high amphibian biodiversity. A given pond can contain between five and eight species of salamander, and between 12 and 15 species of frogs. There has been a decline recently in the population of frogs and other amphibians that depend upon temporary ponds. The decline is due in part to ditching and other anthropogenic activities that have altered the hydrology of temporary ponds. Temporary ponds have a higher likelihood of being harmed by a drawdown than larger, connected wetlands systems. Lowered Surficial Aquifer water levels would lower water levels in temporary ponds and, thereby, threaten amphibian reproduction. Creeks/Streams in Forested Wetlands Streams are classified on the basis of the consistency of flowing water, including perennial (always flowing), intermittent (flowing part of the year), and ephemeral (flowing only occasionally during rain events). The type of stream flow is important because movement of water is essential to support aquatic systems in stream habitats. The NTC/Knight Property includes a number of stream systems, including Botheration Creek and Pine Log Creek. Botheration Creek is fed by groundwater discharge and originates, in large part, on the NTC/Knight Property. Botheration Creek flows from east to west until it intersects Pine Log Creek on the southwest part of the NTC/Knight Property. Botheration Creek provides Pine Log Creek with approximately 89 percent of Pine Log Creek's flow. From the confluence, Pine Log Creek flows south and west into the Pine Log State Forest and eventually joins the Choctawhatchee River. Botheration Creek contains high quality water and a diverse mix of aquatic invertebrates and fish. Sampling at a stage recorder located approximately two miles west of the eastern boundary of the NTC/Knight Property ("BCS-01") identified 46 taxa of macroinvertebrates, including six long- lived taxa, and mussels. The water level in Botheration Creek at BCS-01 was measured to be between 0.1 and 0.32 feet by four measurements taken from October 2010 to July 2011. Nonetheless, the presence of long-lived taxa and mussels indicates that, at BCS-01, Botheration Creek is a perennial stream. Carbon export from streams provides nutrients that feed the stream system. Headwater streams like Botheration Creek and its tributaries are essential to carbon export. For carbon export to occur, a stream must have out-of-bank flood events regularly to promote nutrient exchange with the flood plain. Bay County and its Water Supply Prior to 1961, the County obtained its public water supply from wellfields located near downtown Panama City. The wellfields drew from the Floridan Aquifer. An assessment of the pre-1961 groundwater pumping appears in a District Water Supply Assessment released in June 1998. In summary, it found that near Panama City, the potentiometric surface was substantially depressed by the pumping. Due to the threat of saltwater intrusion, the Deer Point Lake Reservoir (the "Reservoir") was constructed as an alternate water supply. A local paper mill, the city of Panama City, and Tyndall Air Force Base, all began to obtain public supply water from the Reservoir. Six years after the construction of the Reservoir, the Floridan Aquifer's water levels had rebounded to pre-pumping levels. See NTC/Knight Ex. 93 at 69. The authorization for the Reservoir began in the 1950's when the Florida Legislature passed a series of laws that granted Bay County authority to create a saltwater barrier dam in North Bay, an arm of the St. Andrews Bay saltwater estuary. The laws also allowed Panama City to develop and operate a surface freshwater reservoir to supply water for public use. The Deer Point Lake Dam (the "Dam") was built in 1961 from metal sheet piling installed across a portion of North Bay. The Dam created the Reservoir. The watershed of the Reservoir includes portions of Jackson, Calhoun, Washington, and Bay Counties and covers approximately 438 square miles. The Reservoir receives freshwater inflow from several tributaries, including Econfina Creek, Big Cedar Creek, Bear Creek/Little Bear Creek, and Bayou George Creek, totaling about 900 cubic feet per second ("cfs") or approximately 582 MGD. The volume of inflow would increase substantially, at least two-fold, during a 100-year storm event. The Dam is made of concrete and steel. Above it is a bridge and two-lane county road roughly 11.5 feet above sea level. The bridge is tied to the Dam by pylons. The top of the Dam is 4.5 feet above sea level, leaving a distance between the Dam and the bridge bottom of about seven feet. There is an additional structure above the Dam that contains gates, which swing open from the force of water on the Reservoir's side of the Dam. Capable of releasing approximately 550 MGD of freshwater into the saltwater bay, the gates keep the level of the Reservoir at about five feet above sea level. The height of the Dam and the gate structure leaves a gap between the bottom of the bridge deck and the top of the structure of "somewhere between 12 and 14 inches, a little better than a foot." Tr. 140. If storm surge from the Gulf of Mexico and St. Andrew's Bay were to top the Dam and the gate structure, the gap would allow saltwater to enter the Reservoir. The gates and the Dam structure are not designed to address storm surge. The Dam is approximately four feet thick and roughly 1,450 feet long. The 12-to-14 inch gap extends across the length of the Dam. With normal reservoir levels, the volume of water it contains is approximately 32,000-acre-feet or roughly 10.4 billion gallons. Bay County needs to drawdown the lake level for fish and wildlife purposes, the control of aquatic growth, and weed control. In winter, FWS prescribes a 45-day period of time to draw down the lake to expose the banks to kill vegetation. The last time the lake was drawn down by the County, the water level dropped approximately three feet, from five feet above sea level to two feet above sea level. This process took approximately six days and 16 hours, or approximately 53 hours/foot. Repair of the Dam and its Maintenance The Dam has been repaired three times. The last repair was following Hurricane Opal which hit the Florida Panhandle in the fall of 1995. During Hurricane Opal, "saltwater . . . entered . . . the [R]eservoir . . . [t]hat took 20-some days to flush out . . . ." Tr. 135. No evidence was presented regarding the Dam's vulnerability from the perspective of structural integrity during normal or emergency conditions. Other than the inference drawn from Mr. Lackemacher's testimony that Hurricane Opal damaged the Dam in 1995, no evidence was presented to suggest that the Dam's structure is vulnerable to damage caused by a storm surge, wave effect or other conditions caused by a storm of any magnitude. After the last of the three repairs, Bay County implemented a detailed maintenance program. Based upon the latest inspection reports, the Dam is in good condition and structurally sound. No work other than routine inspection and maintenance is currently planned. The 1991 Agreement and the WTP Bay County's current withdrawal of water from the Reservoir is based on a 1991 agreement between Bay County and the District (the "1991 Agreement"). See Joint Ex. Vol. II, Tab K. The 1991 Agreement allows Bay County after the year 2010 to withdraw 98 MGD (annual average) with a maximum daily withdrawal of 107 MGD. The 1991 Agreement, still in effect, authorizes Bay County to withdraw enough water from the Reservoir to meet its needs through 2040. Water for public supply is withdrawn from the Reservoir by a water utility pump station (the "Pump Station") located a short distance from the Dam in Williams Bayou. The water is piped to the water utility's treatment plant (the "Water Treatment Plant") five miles away. The Water Treatment Plant treats 60 MGD. Following treatment, the water is distributed to Bay County's wholesale and retail customers. The Reservoir water available to Bay County utilities is more than adequate to fulfill the water consumption demands of Bay County's system through a 20-year permit horizon. The transmission line between the Pump Station and the Water Treatment Plant has fittings that were designed to allow transmission of groundwater withdrawn from groundwater wells to be located along the transmission line to the Water Treatment Plant to provide a backup supply for the Reservoir. Bay County's Current Use of Potable Water The amount of water consumed by Bay County utility customers has declined over the last five years. Bay County's current use of water, based upon the average of the 13 months prior to the hearing, was 24.5 MGD, an amount that is only 25 percent of the water allocation authorized by the 1991 Agreement. There are approximately 560,000 linear feet of main transmission lines in Bay County with small service lines accounting for another several hundred thousand linear feet. Bay County furnishes water directly to approximately 6,000 retail customers in areas known as North Bay, Bay County, and the former Cedar Grove area, which is now part of Bay County. Wholesale customers include Panama City Beach, Panama City, Mexico Beach, Callaway, Parker, Springfield, and parts of Lynn Haven. The County also furnishes potable water to Tyndall Air Force Base. Lynn Haven does have some water supply wells; however, Bay County still supplements this water supply by approximately 30 percent. No other cities serviced by Bay County produce their own water. Bay County has a population of approximately 165,000- 170,000 permanent residents, which includes residents of the cities. The Bay County area experiences seasonal tourism. From spring break to July 4th, the population can grow to more than 300,000. The users of Bay County's drinking water supplies include hospitals, Tyndall Air Force Base, and the Naval Support Activity of Panama City ("NSA"). The County has 178 doctor's offices, 56 dental offices, 29 schools, 21 fire departments, 12 walk-in-clinics, six nursing and rehabilitation homes, six major employers, three colleges and universities, and two major hospitals, all which are provided drinking water by Bay County. Panama City Beach is the community which has the highest water use. Panama City Beach's average daily use is approximately 12 MGD. The peak day of usage for all of Bay County's customers over the 13 months prior to the hearing was 40 MGD. Bay County sells water to community water utility systems referred to as a "consecutive system." They include Panama City Beach, Panama City, and Mexico Beach. Bay County's request for 30 MGD contemplates provision of water for all essential and non-essential water uses occurring within the consecutive system. Bay County and the consecutive systems are subject to the District's regulations regarding emergency water use restrictions which typically restrict the non-essential use of water during water shortage emergencies. Hurricanes, Train Wrecks, and Post-9/11 America At the District's recommendation, Bay County has been considering a backup potable water source since the mid-1980's. Bay County's main concern is that it has inadequate alternatives to the Reservoir should it be contaminated. Contamination to date has been minimal. In the period of time after the 1961 creation of the Reservoir to the present, the Dam and the Reservoir have suffered no major damage or impacts from a tropical storm. No tropical storm since 1961 has disrupted Bay County's ability to provide potable water. Even Hurricane Opal in 1995 did not disrupt the water supply. Recent hurricane activity in the Gulf of Mexico, however, has aroused the County's fears. Should a storm of sufficient magnitude make landfall in proximity to the Dam, there is potential for saltwater contamination of the Reservoir from storm surge or loss of impounded freshwater due to damage to the Dam. Mr. Lackemacher, assistant director of the Bay County Utility Department and manager of the water and wastewater divisions of the department, has experience with other hurricanes in Palm Beach, Florida, and Hurricane Hugo in Myrtle Beach, South Carolina, during which water utilities suffered disruption of their distribution systems. The experience bolsters his concern about the damage a storm could cause Bay County's source of public water supply. Bay County's intake structure at Williams Bayou is approximately one mile away from the Dam. The location of the Pump Station puts it at risk for damage from a strong storm or hurricane. There is a rail line near the Reservoir. It runs along Highway 231 and over creeks that flow into the Reservoir, including the Econfina Creek. The rail line is known as "Bayline." Bayline's most frequent customers are the paper mill and the Port of Panama City. Not a passenger line, Bayline is used for the transport of industrial and chemical supplies. In 1978, a train derailment occurred on tracks adjacent to creeks that feed the Reservoir. The derailment led to a chlorine gas leak into the atmosphere. There was no proof offered at hearing of contamination of the Reservoir. There has never been a spill that resulted in a hazardous chemical or pollutant being introduced into the Reservoir. Bay County has not imposed restrictions on the type of vehicles that are allowed to use, or the material that may pass over, the county road on the bridge above the Dam. Nonetheless, in addition to saltwater contamination, Bay County also bases the need for an alternative water source on the possibility of a discharge into the Reservoir of toxic substances from a future train derailment. Bay County is also concerned about contamination of the Reservoir from a terrorist attack. In short, Bay County is concerned about "anything that could affect the water quality and water in Deer Point Lake." Tr. 184. The concerns led Bay County to file its application for the Wellfield on lands currently owned by the St. Joe Company. Consisting of ten wells spaced over an area of approximately ten square miles, the Wellfield would have a capacity of 30 MGD. Bay County's application was preceded by the development of the District's Region III Regional Water Supply Plan and efforts to acquire funding. Funding for the Wellfield and the Region III Regional Water Supply Plan Shortly after the commencement of the planning for the Wellfield, the District, in May 2007, authorized the use of funds from the State's Water Protection and Sustainability Trust Fund ("WPSTF"). The WPSTF is intended for development of alternative water supplies. In cooperation with the District, Bay County began drilling a test well followed by analyses to evaluate the water for potable suitability. In October of the same year, the District passed a resolution to request the Department of Environmental Protection to release $500,000 from the WPSTF to the District for local utilities in Bay and Escambia Counties for "Water Resource Development." NTC/Knight Ex. 195, p. 2. The amount was to be used "to provide funding for implementation of alternative water supply development and water resource developments projects pursuant to sections 403.890 and 373.1961, F.S." Id., p. 1. In February 2008, the District began a process to develop a regional water supply plan for Bay County. If the Wellfield were designated in the applicable regional water supply plan as "nontraditional for a water supply planning region," then it would meet the definition of "alternative water supplies" found in section 373.019(1), Florida Statutes. "In evaluating an application for consumptive use of water which proposes the use of an alternative water supply project as described in the regional water supply plan," the District is mandated "to presume that the alternative water supply is consistent with the public interest " § 373.223(5). Whether the Wellfield is to be presumed to be in the public interest depends on whether the application proposes the use of an alternative water supply project as described in the District's Region III Water (Bay County) Water Supply Plan adopted in 2008. The 2008 RWSP Pursuant to the process commenced in February, the District in August 2008 produced the Region III (Bay County) Regional Water Supply Plan (the "2008 RWSP"). In a section entitled "Identification of Alternative Water Supply Development Projects," the 2008 RWSP provides the following: "All of the water supply development projects identified in Table 4 are interrelated and considered alternative, nontraditional water supply development projects." NTC/Knight Ex. 187 at 14. Table 4 of the 2008 RWSP does not specifically identify the Wellfield. It identifies three projects in general terms. The first of the three (the only one that arguably covers the Wellfield) shows "Bay County Utilities" as the sole entity under the heading "Responsible Entities." Id. at 13. The project is: "Inland Ground Water Source Development and Water Supply Source Protection." Id. Under the heading, "Purpose/Objective," the Table states for the first project, "Develop inland alternative water supply sources to meet future demands and abate risks of salt water intrusion and extreme drought." Id. The Table shows "Estimated Quantity (MGD)" to be "10.0." Id. (In July 2008, the District's executive director informed Bay County that the Wellfield could produce 10 MGD.) The "Time Frame" is listed as 2008-12, and the "Estimated Funding" is "$5,200,000 WPSPTF" and "$7,800,000 Local, NWFWMD." Id. While not specifically identified in the 2008 RWSP, Table 4's project description supports a finding that the Wellfield is, in fact, one of the inland alternative water supply sources. The 2008 RWSP, therefore, designates the Wellfield as a "nontraditional" water supply source for Region III.4/ (The Wellfield also, therefore, meets the definition of "[a]lternative water supplies" in section 373.019(1). The demonstration of a prima facie case by Bay County and the District, however, make the applicability of the presumption a moot point. See Conclusions of Law, below.) Water Supply Assessments and Re-evaluations Development of a regional water supply plan by the governing board of each water management district is mandated "where [the governing board] determines that existing and reasonably anticipated sources of water are not adequate to supply water for all existing and future reasonable-beneficial uses and to sustain the water resources and related natural systems for the planning period." § 373.709(1), Fla. Stat. (the "Regional Water Supply Planning Statute"). The District determined in its 1998 District Water Supply Assessment ("WSA") for Region III (Bay County) that the existing and reasonably anticipated water sources are adequate to meet the requirements of existing legal users and reasonably anticipated future water supply needs of the region through the year 2020, while sustaining the water resource and related natural systems. See NTC/Knight 93 at 79. In 2003, Ron Bartel, the director of the District's Resource Management Division, issued a memorandum to the Governing Board (the "2003 Re-evaluation Memorandum"), the subject of which is "Regional Water Supply Planning Re- evaluation." NTC/Knight 95 (page stamped 42). The 2003 Re-evaluation Memorandum sets out the following with regard to when a "water supply plan" is needed: The primary test we have used for making a determination that a water supply plan was "not needed" for each region is that projected consumptive use demands for water from major water users do not exceed water available from traditional sources without having adverse impacts on water resources and related natural systems. Similarly, regional water supply planning is initiated "where it is determined that sources of water are not adequate for the planning period (20) years to supply water for all existing and reasonable-beneficial uses and to sustain the water resources and related natural systems." Id. With regard to the need for a Water Supply Plan for Bay County the 2003 Re-evaluation Memorandum states: [I]n Bay County (Region III), sufficient quantities have been allocated for surface water withdrawal from Deer Point Lake Reservoir through the District's consumptive use permitting program extending through the year 2040. In this area, the District is also scheduled to complete a minimum flow and level determination for the lake by the year 2006. This determination will be useful for deciding if additional water supply planning is needed before the permit expires in 2040. Id. (page stamped 43). The 2008 RWSP's designation of the Wellfield is justified in the minutes of the Governing Board meeting at which the 2008 RWSP's approval took place: While the reservoir has largely replaced the use of coastal public supply wells historically impacted by saltwater intrusion, there remain challenges within the region that make development and implementation of a Regional Water Supply Plan (RWSP) appropriate. Development of alternative water supplies would diversify public supply sources and help drought-proof the region through establishment of facility interconnections. Development of alternative supplies would also minimize vulnerability associated with salt water potentially flowing into the reservoir during major hurricane events. Id., p. 3 of 4. The adoption of the 2008 RWSP was followed in December 2008 by the District's 2008 Water Supply Assessment Update. The update is consistent with the earlier determinations of the adequacy of the Reservoir as a water supply source for the foreseeable future (in the case of the update, through 2030). The update also voices the concern about water quality impacts from storm surge. The update concludes with the following: In Region III, the existing and reasonably anticipated surface water resources are adequate to meet the requirements of existing and reasonably anticipated future average demands and demands for a 1-in-10 year drought through 2030, while sustaining water resources and related natural systems. However, the major concern for potential water quality impacts is that resulting from hurricane storm surge. A Regional Water Supply Plan (NWFWMD 2008) has recently been prepared for Region III to address concerns associated with existing surface water systems. NTC/Knight Ex. 101, p. 3-41. The Parties Washington County is a political subdivision of the State of Florida. Washington County is located directly north of Bay County and the Wellfield and within one mile of some of the proposed wells. Washington County includes thousands of wetlands and open water systems. Because of the hydro-geologic system in the area of the Wellfield, if there are wetland, Surficial Aquifer, and surface water impacts from the withdrawal under the Permit, it is likely that impacts will occur in Washington County. Washington County has a substantial interest in protection, preservation, and conservation of its natural resources, including lakes, springs, and wetlands, and the flora and fauna that depend on these water resources, especially endangered flora and fauna. Washington County has a substantial interest in the protection of all water resources in Washington County because of the close relationship between surface waters, groundwater, and the potable water supply used by Washington County residents. NTC/Knight is the owner of approximately 55,000 acres of land located in northern Bay County and southern Washington County. The NTC/Knight Property includes thousands of acres of wetlands and open waters, including Sand Hill Lakes, steepheads, hillside seepage bogs, sphagnum bogs, littoral seepage slopes around certain Sand Hill Lakes, temporary ponds, and forested wetlands. A large portion of the NTC/Knight Property is directly adjacent to the Wellfield and within the HGL Model projected drawdown contour. Based on the projected amount of drawdown from pumping at the proposed average rate of 5 MGD, the 0.5 projected drawdown contour predicted by the HGL Modeling Report (see Finding of Fact 121, below) extends over thousands of acres of the property. NTC/Knight has a substantial interest in the protection of the surface and groundwater directly on, under, and adjacent to its property. The water supports the numerous ecosystems of extraordinary value located on the property. James Murfee and Lee Lapensohn are individuals, who reside in Bay County on property fronting on and beneath Tank Pond approximately five miles from the Wellfield. Petitioners Murfee and Lapensohn have a well which extends into the Intermediate Aquifer. The Murfee and Lapensohn properties are within the HGL Model projected drawdown contour. Petitioners Murfee and Lapensohn have a substantial interest in the protection of their drinking water supply well and the surface waters directly on and adjacent to their properties. Bay County, the applicant, is a political subdivision of the State of Florida. The District is a water management district created by section 373.069(1). It has the responsibility to conserve, protect, manage, and control the water resources within its geographic boundaries. See § 373.069(2)(a), Fla. Stat. Section 120.569(2)(p), Florida Statutes Section 120.569(2)(p), in pertinent part, provides: For any proceeding arising under chapter 373, chapter 378, or chapter 403, if a nonapplicant petitions as a third party to challenge an agency’s issuance of a license, permit, or conceptual approval, the order of presentation in the proceeding is for the permit applicant to present a prima facie case demonstrating entitlement to the license, permit, or conceptual approval, followed by the agency. This demonstration may be made by entering into evidence the application and relevant material submitted to the agency in support of the application, and the agency’s staff report or notice of intent to approve the permit, license, or conceptual approval. Subsequent to the presentation of the applicant’s prima facie case and any direct evidence submitted by the agency, the petitioner initiating the action challenging the issuance of the license, permit, or conceptual approval has the burden of ultimate persuasion and has the burden of going forward to prove the case in opposition to the license, permit, or conceptual approval through the presentation of competent and substantial evidence. The permit applicant and agency may on rebuttal present any evidence relevant to demonstrating that the application meets the conditions for issuance. Paragraph (p) was added to section 120.569(2) in the 2011 Session of the Florida Legislature. Accordingly, the final hearing commenced with the Bay County and the District's presentation of its prima facie case by submitting the application, supporting documentation, and the District's approval of the application. Respondents also presented the testimony of four witnesses in the hearing's first phase. Phase I of the Final Hearing: Bay County's Application, Supporting Documents, the District's Approval and Supporting Testimony The Application File At the final hearing, Bay County and the District offered the "application file," marked as Joint Exhibit Binder Volumes I-IV (the "Application File") in the hearing's first phase. It was admitted into evidence. A document entitled "Alternate Water Supply Report - Bay County Water Division" dated May 20, 2008 (the "Hatch Mott MacDonald Report") is contained in the Application File. See Joint Ex. Vol. I, Tab B. The Hatch Mott MacDonald Report is a preliminary evaluation of a wellfield with 22 wells, an "initial phase . . . [of] five (5) wells producing 5 MGD and the final phase . . . [of] 17 wells, producing 25 MGD." Id. at 1. The evaluation includes the gathering of information, a recommendation for the best method of treatment, an analysis of whether individual well sites or a centralized site would be superior, a hydraulic model and analysis, and the potential construction and operation costs. The report concludes in its Executive Summary: HMM's preliminary results, based upon water analysis of Well No. 1, indicate that only disinfection will be required for potable water treatment. Additionally, the hydraulic analysis indicated that the wells are capable of providing the initial 5 MGD and future 25 MGD to the proposed connection point along Highway 388 without re-pumping. Adequate storage for fire protection should be considered at current and future service areas. The use of chlorine gas at each well site during the initial phase had the lowest present worth of $16,770,270; that is, the smallest amount of funds needed today to build, operate, and maintain the system. The use of chlorine gas at each well in the final phase had a present worth of $41,245,118, only slightly more than the present worth of $40,834,245 for on-site Id. generation of disinfectant at three (3) central facilities. The Application File contains a response to a District request for additional information (the "2009 RAI Response") submitted by the Bay County Services Utility Director and received by the District in September 2009. See Joint Ex. Vol. II, Tab K. The 2009 RAI Response contains the 1991 Agreement and numerous other documents. Among them is a report prepared by HydroGeoLogic, Inc. ("HGL") entitled "Groundwater Model Development for the Assessment of a New Wellfield in Bay County, Florida" dated September 2009 (the "2009 HGL Modeling Report"). The report predicts impacts that would be created to the surrounding aquifers as a result of the Wellfield pumping, but recommends that additional data be obtained. The Application File contains the District's Notice dated March 25, 2010. See Joint Ex. Vol. III, Tab B. Attached to the Notice is a draft of the Permit and a staff report from the District recommending approval with conditions. Condition 11 of the Permit's standard conditions obligates Bay County to mitigate any significant adverse impacts caused by withdrawals and reserves the right to the District to curtail permitted withdrawal rates "if the withdrawal causes significant adverse impact on the resource and legal uses of water, or adjacent land use, which existed at the time of the permit application." Joint Ex. Vol. III, Tab B, p. 3 of 17. Attachment A to the Permit requires conditions in addition to the standard conditions contained in the body of the Permit. Paragraph 12 of Attachment A, for example, requires that Bay County implement and maintain a water and conservation efficiency program with a number of goals. Attachment B to the Permit requires a monitoring and evaluation program and wetland monitoring of adjacent properties to determine if the pumping causes adverse impacts to wetland areas, including habitat and species utilization. The Application File contains a revised modeling report also entitled "Groundwater Model Development for the Assessment of a New Wellfield in Bay County, Florida" (the "2011 Revised HGL Modeling Report" or the "HGL Model Report"). See Joint Ex. Vol. III, Tab P. The 2011 Revised HGL Modeling Report predicts impacts of the pumping of the Wellfield on the Upper Floridan Aquifer and the Surficial Aquifer. The HGL Model is based on an adaptation of an original model first developed by the U.S. Geological Survey (USGS) and then further adapted by HGL. The adapted model is known as MODFLOW-SURFACT. The MODFLOW-SURFACT Model has been used in excess of 600 applications and is used worldwide. The HGL Model predicted impact from pumping when wellfield pumping achieves a "steady state." Steady state impact is achieved after 10-12 years of constant pumping. The impact and the area of impact is depicted on Figure 5.1b(1) of the 2011 Revised HGL Modeling Report. The predicted drawdown of the Surficial Aquifer is predicted to be six inches (0.5 ft) within the areas indicated. The Application File shows that the permit was revised twice. Ultimately, a Second Revised Notice of Proposed Agency Action dated July 22, 2011, was issued by the District. Attached to the Second Revised NOPAA is the District's Permit. See Joint Ex. Vol. IV, Tab U. A revised Staff Report from the District dated July 18, 2011, is also included in Volume IV of the joint exhibits. See id., Tab Q. The Permit as supported by the staff report allows an average daily withdrawal of 5 MGD, a maximum daily withdrawal of 30 MGD for no more than 60 days per year (with a maximum of 52 consecutive days), and a maximum monthly amount of 775 million gallons. See Joint Ex. Vol. IV, Tab U. The Permit also includes the LTEMP jointly prepared by the Applicant and the District. See id., Attachment B. The Permit requires Bay County to "mitigate any significant adverse impact caused by withdrawals . . . on the resource and legal water withdrawals and uses, and on adjacent land use, which existed at the time of the permit application." Joint Ex. Vol. IV, Tab R, p. 3 of 11. If the District receives notice of an impact from the existing legal user, it contacts the utility. "Within 72 hours [the utility has] a well contractor out there and they have determined what the problem is." Tr. 615. There are no time requirements for the resolution of the impact or any other resolution procedures in the Permit. Definitions of Emergency and Maintenance Amounts The Permit does not include a definition of when the Reservoir may be considered to be unavailable as a public water supply. That determination is left to Bay County. The Permit does not set a withdrawal limit lower than the limits detailed above for maintenance of the Wellfield. There is one set of withdrawal limits. They apply irrespective of the purpose of the withdrawals, that is, whether for backup in an emergency, maintenance, or some other purpose that falls under Public Supply or Industrial Use. Conditions and Monitoring Requirements Bay County is required to mitigate any significant adverse impacts on resources and legal water withdrawals and uses caused by the County's withdrawal from the Wellfield. In addition, the District reserves the right to curtail permitted withdrawal rates if Bay County's withdrawal causes adverse impacts on local resources and legal uses of water in existence at the time of the permit application. In the event of a declared water shortage, the Permit requires Bay County to make water withdrawal reductions ordered by the District. In addition, the District may alter, modify, or deactivate all or parts of the Permit. Attachment A to the Permit, states: The Permittee shall not exceed total, combined groundwater and surface water (authorized in Individual Water Use Permit No. 19910142) withdrawals of an average daily withdrawal of 98,000,000 gallons, a maximum daily withdrawal of 107,000,000 gallons and a maximum monthly withdrawal of 2,487,750,000 gallons. Joint Ex. Vol. IV, Tab U, p. 4 of 11. The inclusion of "surface water" in the condition covers withdrawals from the Reservoir. The combination of actual withdrawals from the Wellfield and actual withdrawals from the Reservoir, therefore, means that Bay County may not exceed the limitations of the withdrawals authorized by the 1991 Agreement. Attachment A to the Permit further explains how Bay County must mitigate harm caused by groundwater withdrawals. The Permittee, within seven days of determination or notification by the District that the authorized groundwater withdrawal is causing harm to the resources, shall cease or reduce, as directed by the District, its pumping activity. The Permittee shall retain the services of a qualified, licensed professional to investigate allegations of interference with an existing, legal groundwater use. The Permittee shall ensure their chosen contractor investigates the alleged interference within 72 hours of the allegation being made. If it is determined that the use of a well has been impaired as a result of the Permittee's operation, the Permittee shall undertake the required mitigation or some other arrangement mutually agreeable to the Permittee and the affected party. The Permittee shall be responsible for the payment of services rendered by the licensed water well contractor and/or professional geologist. The Permittee, within 30 days of any allegation of interference, shall submit a report to the District including the date of the allegation, the name and contact information of the party making the allegation, the result of the investigation made and any mitigation action undertaken. Joint Ex. Vol. IV, Tab U, Attachment A, p. 4 of 11. Bay County is also required, within two years from the Permit's issuance, to submit to the District for review and approval a contingency plan to mitigate potential impacts. The County must wait one full year prior to commencing withdrawal of groundwater for production purposes. During the one-year period, the County must complete groundwater, surface water, and wetland monitoring. The requirements of the mandatory monitoring are found in Attachment B of the Permit, LTEMP. See Joint Ex. Vol. IV, Tab U, Attachment B. The LTEMP "is designed to track trends in ecological and hydrological conditions caused by naturally occurring fluctuations in rainfall, which may affect ground and surface water hydrologic conditions; and to identify potential effects caused by wellfield pumping." Joint Ex. Vol. IV, Tab U, Attachment B at 1. If a substantive deviation occurs from predictions made by the HGL Modeling, or if any other hydrologic or ecologic changes due to the withdrawals are observed at monitoring sites, the District is required to review and, in consultation with Bay County, appropriately revise the LTEMP as necessary with the aim that the monitoring will assure that the conditions for issuance of the Permit are being met. Testimony in Support of the Application In addition to the documentary evidence offered in the first phase of the proceeding, Bay County and the District presented the testimony of several witnesses. These witnesses testified as to background and the 2008 RWSP, the vulnerability of the Reservoir to saltwater contamination from storm surge, and the basis for the District's decision. Vulnerability to Storm Surge There is a one percent chance every year of a 100- year storm event. Flood Insurance Rates Maps ("FIRMS") show that the 100-year water level (the level of storm surge in a 100-year storm event) at the Dam will reach 11 feet NAVD, two feet above the top of the gate structure above the Dam. The Federal Emergency Management Agency ("FEMA") and the National Weather Service ("NWS") have developed the Sea, Lake, and Overland Surge from Hurricanes ("SLOSH") model, which estimates storm surge depths resulting from historical, hypothetical, or predicted hurricanes. A Florida Department of Emergency Management's SLOSH model of the Panama City area shows maximum surge levels for Storm Categories 1, 2, 3, 4, and 5, in NAVD feet as 3.3, 5.8, 10.8, 14.1, and 18.1, respectively. The SLOSH model, in all likelihood, is a low estimation. It is reasonable to expect surge levels in a Category 3 hurricane that passes directly over the Dam, for example, to be higher than 10.8 feet NAVD predicted by the SLOSH model at the Dam. According to the National Oceanic and Atmospheric Administration's ("NOAA") database, 43 tropical storms and hurricanes have passed within 200 miles of the Reservoir between 1970 and 2010 and 20 have come within 100 miles. None have made landfall closer than 40 miles away from the Dam. Of the 20 storms passing within 100 miles of the Reservoir, four have reached Category 3 strength or higher: Eloise, Elena, Opal, and Dennis. In 2004, Hurricane Ivan made landfall over 100 miles to the west of the Dam and raised water levels near the Dam to nearly five feet NAVD. The following year, Hurricane Dennis made landfall 76 miles to the west of the Dam. Dennis produced a surge level of nearly four feet NAVD near the Dam. "Hurricane Eloise (1975) made landfall 40 miles west of Panama City and produced water levels 15 ft above normal at Panama City ([citation omitted]). However, the storm passed through the area quickly and does not appear to have significantly affected the dam." Bay County Ex. 1, p. 3 of 9. Hurricane Opal made landfall 86 miles west of Panama City Beach and produced water levels of about 8.3 feet NAVD near the Dam. The storm surge did not overtop the gate structure above the Dam, but the gates were jammed by debris. "[C]hloride levels rose above 50 ppm at the intake pumps and two to three times above normal background levels of 8 to 10 ppm 'almost one mile up-reservoir.'" Id. The levels of chloride were "still well within drinking water limits," tr. 434, of 250 parts-per- million (ppm). Hurricane Katrina made landfall in 2005 more than 200 miles west of the Reservoir with storm surges higher than 20 feet. Katrina produced surge levels of five feet above normal tide levels in Bay County. The rate and amount of saltwater that would enter the Reservoir depends on the height of the storm surge above the Dam. The 100-year surge levels could remain above the top of the Dam for three or more hours. Such an event would introduce approximately 56,200,000 cubic feet or 1,290 acre-feet of saltwater into the Reservoir, even if the Dam were to remain intact (undamaged) and the tide gates remain closed. The salinity levels bay-side of the dam are generally 23,000 to 33,000 ppm. It is reasonable to expect that in the event of a 100-year storm event, much of the storm surge would come directly from the Gulf of Mexico, which has higher salinity levels. With the Dam intact, the introduction of 1,290 acre- feet of saltwater at 33,000 ppm would raise the average chloride concentration in the Reservoir to at least 800 ppm, more than three times the maximum drinking water chloride level of 250 ppm. Assuming the Dam remained intact during a 100-year storm event, freshwater added over time to the lake from the streams and aquifer will dilute the elevated lake chloride level and restore the lake water to a level fit for human consumption. The USGS has measured stream flow at Deer Point Lake and estimated the lake receives an average of 600 million gallons of freshwater per day or 900 cfs. Post-Opal rates were estimated at 1,500 cfs by the District. Given the estimated volume of saltwater introduced to the lake, at an inflow rate equal to the estimated post- hurricane freshwater inflow rate, Bay County's expert, Dr. Miller, estimated it would take at least two weeks to reduce salinity in the lake to drinkable levels. The inflow rate, however, is not certain. Dr. Miller estimated it is reasonable to expect that it could take anywhere from two weeks to two months for the lake to recover from the saltwater intrusion depending on the variation in the inflow rate. Nonetheless, Dr. Miller assumed that the saltwater from storm surge entering the Reservoir would mix in a uniform matter. There would be "quite a bit of mixing in a storm," tr. 485, of saltwater topping the Dam and freshwater in the Dam. But there would also be stratification due to the sinking of denser saltwater and the rising in the water column of freshwater. The above estimations assume the bridge and Dam remain intact during a major storm. The Dam and tide gates act as a solid barrier, protecting the lake from saltwater in the bay. If rainfall rises in the lake prior to a surge, the tide gates would open to release water, becoming vulnerable to damage or jamming by debris as occurred during Hurricane Opal. In the event of storm surge bringing saltwater into the Reservoir, the opening of the tide gates will assist the Reservoir in reaching chloride levels below 250 ppm provided the tide gates operate properly. Dr. Janicki, an NTC/Knight expert, used the Environmental Fluid Dynamics Code hydrodynamic model ("EFDC Model") to simulate the effects of control structures and water withdrawals on the Reservoir. Taking into consideration the factors Dr. Janicki considered relevant, he predicted that chloride levels, in the event of storm surge from a Category 3 hurricane overtopping the Dam, would only exceed 250 ppm, the drinking water standard, for approximately 3.4 days. Dr. Janicki's prediction, however, was flawed. He added too little saltwater to the lake in the event of contamination from storm surge. He assumed that saltwater would be flushed too soon from the Reservoir following contamination. He did not account for the effects of waves in his model. His model was not in accord with data for Hurricane Opal and the chloride levels near the Dam taken by Bay County after Opal. If the bridge and Dam were severely damaged, more saltwater could enter the lake. With severe damage to the Dam, the Reservoir would be exposed to normal tides. Restoration would not begin until the Dam and bridge had been fully repaired. If an event were catastrophic, the Reservoir could be offline for a lengthy period of time. The Basis for the District's Decision Bay County's reliance on the Reservoir for water for the majority of the population led the District in the mid-1980s to encourage the County to obtain a backup supply. After the District turned down several requests for withdrawals of up to 30 MGD for every day of the year, the District ultimately approved what is reflected in the Permit. The justification for the permitted withdrawal is as a backup supply in the event the Reservoir becomes unavailable and for maintenance of the system and recoupment of its cost. With regard to maintenance, the District attempted to obtain information from Bay County as to appropriate withdrawal limitations. The attempts were abandoned. Despite repeated requests by the District, Bay County did not provide the amount of water needed to be withdrawn for maintenance since it did not have "infrastructure specifics," tr. 552, needed to provide the District with a numeric limit. In contrast to the amount needed for maintenance, the District found Bay County to have demonstrated that it needs 30 MGD when the Reservoir is offline and that it is reasonable for the County to need 30 MGD up to 60 days per year. The District determined that the Bay County's application met the requirements for the issuance of a consumptive use permit found in section 373.221(1)(a)-(c). In determining whether approval of the application is in the public interest, the District did not presume that it is in the public interest on the basis of the designation in the 2008 RWSP of an inland groundwater source as an alternative water supply. The District determined that it is in the public's interest for Bay County to have a reliable and safe water supply source as a backup to the Reservoir irrespective of the statutory presumption. Nonetheless, the District maintains in this proceeding that the presumption applies. The District also applied the 18 criteria test for finding a reasonable-beneficial use found in Florida Administrative Code Rule 62-40.410(a)-(r) and determined that the application should be approved. Petitioners' Case in Opposition Washington County (Petitioner in Case No. 10-2983), NTC/Knight (Petitioner in Case No. 10-2984), and Messrs. Murfee and Lapensohn (Petitioners in Case No. 10-10100) filed individual petitions for formal administrative hearing. Although not identical, the petitions share the similarity that, in essence, each alleges that Bay County failed to establish that the proposed use of water meets the statutory and rule criteria for obtaining a permit for the consumptive use of water. For example, among the many issues listed under the heading "Disputed Issues of Material Fact and Law" in Washington County's Petition for Formal Administrative Hearing is "[w]hether Bay County has provided reasonable assurance that its proposed use of water is a reasonable-beneficial use as defined in section 373.019, Florida Statutes." See p. 5 of the Washington County petition. In like fashion, the Washington County petition and the other two petitions allege that the issues are whether Bay County provided reasonable assurance that it meets the other statutory criteria in section 373.223, and the applicable rule criteria that must be met by an applicant in order for the District to issue a permit for the consumptive use of water. The Petitioners' cases focused on five topics: 1) the limitations of the HGL Model; 2) the likelihood of impacts to wetlands and the failure of the monitoring plan to provide reasonable assurance that the District's monitoring under the plan will succeed in detecting harm to wetlands caused by the withdrawals; 3) the reasonable-beneficial nature of the proposed use of the permit, including the vulnerability of the Reservoir; 4) interference with presently existing legal users; and 5) the feasibility of alternative sources. Bay County and the District offered evidence on rebuttal to meet the Petitioners' cases. Surrebuttal was conducted by Petitioners. Modeling Groundwater models "represent what is happening in very complex physical systems." Tr. 1495. Typically, the data used by models is not sufficient to obtain a completely accurate representation. The models depend on specific data points such as information from boreholes or water level measurements that do not reveal everything that is occurring in the complex system and, therefore, are not enough to support completely accurate model predictions. As explained by Dr. Guvanasen, Bay County and the District's expert, in order to reach a representation of the entire system when the data available from boreholes and measurements is insufficient, which is typically the case, the modeler must "extrapolate a lot of information and use other knowledge of other events." Id. The "knowledge of other events" that the HGL Model used included Dr. Scott's knowledge of the karst environment in the Panhandle of Florida, the mapping of Bay and Washington County geology by the Florida Geological Society, and Dr. Upchurch's knowledge of karst topography. The HGL results of the available data and the extrapolations were placed into a mathematical model (the HGL Model) that considered the withdrawals at issue to determine the response of the system to the additional stress of the withdrawals. Mathematical models like the HGL Model lead to "non- unique solutions" in which "no model . . . is exactly 100 percent correct . . . ." Tr. 1635. Modeling results, therefore, are subject to changes as additional data is collected that demand a better representation than the model provided prior to the data's collection and analysis. HGL Modeling for this case provides examples of non- unique solutions. HGL "built a model twice . . . and got two different sets of answers." Tr. 1633. Besides the recommendation that more data be obtained after the first HGL Model results, the model was not satisfactorily calibrated and the model was recalibrated for the Revised HGL Modeling results. Mr. Davis, NTC/Knight's expert, conducted additional modeling work (the "Davis Modeling"). Using the HGL Model and additional data concerning the NTC/Knight Property, Mr. Davis found drawdowns would occur over a similar but greater area than shown in the 2011 Revised HGL Modeling Report. (Compare NTC/Knight Ex. 31 at 2 to Joint Ex. Vol. III, Tab P, Figure 51b(1).) The Davis Modeling drawdowns, moreover, ranged up to 0.8 feet, 60 percent more than the 0.5 feet determined by the second HGL Modeling results. In the area of Big Blue Lake, for example, the drawdown contours produced by the Davis Model were either 0.6 feet or 0.7 feet, 20 to 40 percent more than the 0.5 feet produced by the second HGL Modeling results. See NTC/Knight Ex. 31 at 2. Asked to rank the modeling results between the first HGL Model run, the second HGL Model run, and his own results, Mr. Davis was unable to say which was better because of the sparseness of the data. Mr. Davis opined that he could conduct another "dozen more model runs," but without additional data he would be "hard pressed" to be able to say which run was more accurate. Tr. 1633. In Mr. Davis' opinion there remain significant uncertainties that cannot be resolved without more data. Inadequate data "precludes . . . reasonable assurance as to exactly where the impacts will travel and exactly what the magnitude of those impacts will be . . . ." Tr. 1637. Ecological Impacts Bruce A. Pruitt, Ph.D., was accepted as an expert in hydrology, soil science, fluvial geomorphology, and wetland sciences. Dr. Pruitt mapped the soil types on the NTC/Knight Property using the Natural Resource Conservation Service ("NRCS") Web Soil Survey and tested soil types by hand-auguring in wetland areas. He characterized the various soil-types on the property by drainage class (relative wetness of the soil under natural conditions) and hydraulic conductivity (permeability). Dr. Pruitt ranked the vulnerability of wetlands within the zone of drawdown predicted by the HGL Model as "very high," "high," or "moderate." The categories were based on the presence of threatened and endangered species, Florida Natural Area Inventor ("FNAI") habitat designation, and the hydrology of the wetland. He assumed that if the water level in the Surficial Aquifer were to be drawn down by 0.3 feet or 0.4 feet then the water level in the seepage bogs at Botheration Creek would be drawn down by the same amount. Wetlands with a vulnerability classification of "very high" will suffer an adverse impact at a drawdown level of 0.2 feet; those at "high" at 0.3 feet and those at "moderate" at 0.5 feet in times of drought. Dr. Pruitt calculated wetland acreage by type using the Florida Cover Classification System. He assigned vulnerability rating for the wetlands within the Surficial Aquifer drawdown contours generated by the HGL Model. Based on Dr. Pruitt's calculations, a total of approximately 4,200 acres of wetlands are likely to be harmed by the predicted drawdown. A majority of these wetlands are located in Washington County. Based on Dr. Pruitt's analysis, it is likely that the NTC/Knight Property contains 1,981 acres of "very highly" vulnerable wetlands; 1,895 acres of "highly" vulnerable wetlands; and 390 acres of "moderately" vulnerable wetlands, which are likely to be harmed by the drawdown in times of drought. In reaching his opinion about the quantification of acres of wetlands likely to be harmed, Dr. Pruitt applied the Florida Uniform Mitigation Assessment Method ("UMAM"). UMAM was designed to address compensatory mitigation in dredge and fill cases. It was not designed for consumptive water use cases. In contrast and damaging to its case of reasonable assurance that natural systems will not be significantly affected, the District did not conduct an analysis to determine loss of wetland function resulting from operation under the Permit. Nor did it determine how much drawdown the affected wetlands could tolerate before they were harmed. Rather than conducting such an analysis, the District chose to rely on implementation of the LTEMP to cure any harm that might be down by drawdown to the Surficial Aquifer. The District and Bay County's wetland scientists opined that there might be a less permeable restrictive layer maintaining water levels above the Surficial Aquifer on the NTC/Knight Property. Dr. Pruitt acknowledged that the NTC/Knight Property had scattered clay layers beneath the surface. It is possible, therefore, that some of the wetland areas he identified as subject to harm have restrictive features under them which would hold water and resist dehydration. In his hand-auguring, however, Dr. Pruitt found no evidence of a less permeable layer. The auguring only went to a depth of three feet and would have to go to a depth of two meters to be definitive. Furthermore, Dr. Pruitt found no evidence of a less permeable layer from well drillings. The District and Bay County did not prove that there is, in fact, such a restrictive layer. NTC/Knight collected water-level data from shallow hand-augured wells and stage recorders at the Botheration Creek Hillside Seepage Bog. The data demonstrate that the water level in the shallow, hand-augured wells at the Botheration Creek Bog is a direct reflection of the level of the Surficial Aquifer. The Surficial Aquifer at the Botheration Creek Bog was approximately 95.5 feet NAVD, over 35 feet higher than at Big Blue Lake and the highest measured level south of Big Blue Lake. The Botheration Creek Hillside Seepage Bog is located between the 0.3 and 0.4 foot Surficial Aquifer drawdown contours predicted by the HGL Model. Based on the HGL Model, the District and Bay County's experts estimated the Surficial Aquifer drawdown at this bog would be 0.39 feet. During the approximately one year of NTC/Knight's water-level recording, a drawdown of 0.39 feet would have reduced the frequency and duration of inundation at this bog significantly. For example, an analysis of the approximately one year of data collected by NTC/Knight shows that at the intermediate water-level recorder location in the bog, one 29-day period of inundation would have been reduced to just nine days and that further down gradient in the bog, none of the five instances when the bog was inundated would have occurred. This is consistent with Dr. Pruitt's vulnerability assessment, which finds that the vulnerability of the hillside seepage bogs to drawdown is "very high," that is, these systems are likely to be harmed in times of drought at drawdown levels in the Surficial Aquifer of 0.2 feet or greater. A drawdown of 0.3-0.4 feet in the Surficial Aquifer at the hillside seepage bog along Botheration Creek increases the likelihood that the hillside seepage bogs along Botheration Creek will be lost in times of drought. The littoral shelves of Sand Hill Lakes typically occur along a low gradient above the normal low water level of the lakes. The existence of the shelf promotes seepage sheet flow along a wide expanse. The drawdown will change the flow from seepage sheet flow to concentrated stream flow within gullies. The erosion and increased sedimentation produced by the greater force of the water in the gullies will cause a loss of area needed by certain seepage dependent plants and animals. If Big Blue Lake were to be drawn down by the 0.71 feet predicted by Mr. Davis, the location of the seepage would move down 0.71 feet vertically and an estimated 24.5 feet horizontally. The result would be a reduction in the littoral shelf conducive to seepage-dependent plant communities by approximately nine acres. The impact would likely be significant since the seepage zone is in an area of "very high" vulnerability according to Dr. Pruitt. Between October 2010 and July 2011, NTC/Knight took four measurements of water level at "BCS-01," a stage recorder in Botheration Creek. The measurements showed the water level in the creek at that point to be 0.1 to 0.32 feet. NTC/Knight also sampled for taxa of macroinvertebrates in the reach of the creek. NTC/Knight identified 46 taxa, including mussels and six long-lived taxa. The presence of the long-lived taxa and mussels indicate that the reach of the creek in the vicinity of the stage recorder should be considered to be a perennial stream. Botheration Creek is high-quality water and, as shown by NTC/Knight's sampling, it contains a diverse mix of aquatic invertebrates and fish. A drop in the level of Botheration Creek of 0.2 feet predicted by the HGL Model would have caused the creek to go dry at BCA-01 during three of the four dates on which the water level was measured. Such a drop would convert the reach of the creek in the vicinity of the stage recorder from a perennial to an intermittent stream and would eliminate the reach's viability for long-lived taxa. Similarly, upstream reaches that are intermittent would become ephemeral (streams that flow only during periods of high rainfall). If the Wellfield becomes fully operational as allowed by the Permit, there will be a reduction in the Surficial Aquifer at Botheration Creek of between 0.2 and 0.3 feet. The reduction in the aquifer will reduce flow in Botheration Creek, reduce the volume downstream, including in Pine Log Creek, and reduce out-of-bank flood frequency and duration. The result will be a reduction in nutrients delivered downstream and to the floodplain to the detriment of plants and animal life that depend on them. Additionally, other reaches of the creek that have perennial flow will be converted to intermittent streams and reaches that are intermittent will become ephemeral. The result will be the elimination of plant and animal species currently living in these portions of the creek. The impact of the HGL Model predicted drawdown to steepheads depends on the individual steephead and the drawdown contour at its location and the amount of rainfall. Four steepheads on the NTC/Knight Property could suffer impacts similar to the impact at Russ Steephead to which Dr. Pruitt assigned a high probability of impact. Russ Steephead is located on the NTC/Knight Property above Russ Pond. NTC/Knight installed Surficial Aquifer wells at Russ Steephead between the HGL Model's predicted 0.5 and 0.6 foot Surficial Aquifer drawdown contours. NTC/Knight also installed a stage recorder just downstream from the steephead. During drought, NTC/Knight observed a loss of flow from the sidewall seepage areas and in the Russ Steephead Stream. If the Surficial Aquifer at Russ Pond were to be drawn down by 0.5-0.6 feet, the sidewalls of the Russ Steephead Stream and the stream itself would lose flow in times of drought. The loss of flow would lead to oxidation and loss of organic materials in the stream channel and flood plain, resulting in soil subsidence. If the water level at the terminus of the Russ Steephead Stream were drawn down, headward down cutting in the stream channel would be induced. In such a case, in the words of Dr. Pruitt, "there is a high probability that if drawdown occurs and . . . over a long period of time," the process will make the steephead "look more like a gully . . . ." Tr. 2120. The drawdown will also reduce the frequency and duration of inundation of the sphagnum bogs in the four steepheads likely to be affected by the drawdown. The bogs and the associated animals that depend upon them would be lost. Dr. Means identified a number of temporary ponds within HGL's predicted drawdown of the Surficial Aquifer. Nine were between the 0.3 and 0.6 foot drawdown contour, and two were between the 0.6 and 0.7 foot drawdown contours. These ponds and plant and animal communities dependent upon them would likely be harmed by the drawdowns. Mr. Cantrell offered testimony to rebut the Petitioners' case on wetland impacts. His testimony was based on an evaluation of aerial photography, site visits to the Wellfield, and a one-day trip to the NTC/Knight Property. It is Mr. Cantrell's opinion that if the NTC/Knight Property were to drain, it would be because of a surface water drainage system, such as ditching, not because of drawdown in the Surficial Aquifer caused by operation of the Wellfield. Mr. Cantrell's opinion is that because the Area has been subjected to a wide range of fluctuations in water levels and the wetland systems have survived, operation of the Wellfield will not have significant impacts. Mr. Cantrell's opinion, however, overlooks the effect of constant drawdown during times of severe drought. That wetlands have survived severe drought in the past does not mean they will survive severe drought conditions exacerbated by drawdown caused by operation of the Wellfield. Monitoring Special condition 19 of the Permit requires Bay County to implement the LTEMP after the Permit is issued. The LTEMP requires Bay County to establish a monitoring network, but does not provide the location of any particular monitoring site. Sites identified in the LTEMP are recommended, but the ability to use a particular site is dependent on field verification of suitability and authorization by the landowner. Over half the area designated in the LTEMP from the HGL Model's projected 0.5 foot drawdown in the Surficial Aquifer is located on the NTC/Knight Property. It will be necessary, therefore, to include sites on the NTC/Knight Property in the ultimate environmental monitoring network. The LTEMP's recommended sites do not include monitoring of some of the most susceptible wetland systems: temporary ponds, the Botheration Creek hillside seepage bogs, and the perennial headwaters of Botheration Creek. Without this monitoring, the LTEMP will be unable to detect whether these systems are harmed by withdrawals. The Permit and LTEMP require no more than one-year of baseline data to be collected prior to initiation of water withdrawals. The proposed monitoring time is inadequate to create a sufficient record for use in determining whether a reduction in water levels is attributable to water withdrawals or natural phenomena, such as drought. Baseline monitoring should be conducted for a sufficient duration to ensure that a full range of wet and dry years is captured. The LTEMP describes the types of data that are to be collected. A missing component is sampling for frogs, salamanders, and other amphibians that are sensitive to changes in hydrologic regimes and which depend upon infrequent periods of inundation in order to breed. This type of faunal sampling is particularly important in the temporary ponds and seepage environments. Without sampling for the presence of these species, the LTEMP will be unable to determine whether these populations have been harmed by withdrawals. The LTEMP includes a number of "triggers," that if tripped, require the preparation of an auxiliary report. A number of these triggers make reference to changes in water levels at the level of "significant deviation," an undefined term. More importantly, the LTEMP fails to require any statistical analysis. Without it, the LTEMP will be inadequate to establish whether a reduction in water levels is caused by water withdrawals or another cause. Similarly, other triggers lack sufficient detail to determine when they are tripped, such as those that refer to downward movement of plants. Finally, even if one of these triggers is tripped and an auxiliary report is prepared, nothing in the Permit or LTEMP sets forth the circumstances under which withdrawals would need to be curtailed and by what amount. The purpose of the LTEMP is to determine whether withdrawals are causing harm to the wetlands within the vicinity of the Wellfield. The LTEMP fails to provide reasonable assurance that it will succeed in achieving its purpose. Reasonable-Beneficial Use Use if the Reservoir is Unavailable In the event of Reservoir unavailability, Bay County is likely to need much less than 30 MGD. The need is likely to fall between 7.42 MGD and 9.71 MGD for the current population. In 2013, the need is likely to fall between 9.40 MGD and 12.29 MGD. See NTC/Knight Ex. 5, p. 4 of 4. The Permit, however, does not limit Bay County to emergency or backup use. While Bay County might voluntarily limit withdrawals to emergency use or backup supply, it has unfettered discretion to determine what constitutes an emergency or the necessity for a backup supply. The Permit is also not restricted to essential uses. Authorization of 30 MGD provides more than Bay County's current average daily demand for potable water. If the Permit restricted the use to essential uses, the authorization would be far less than 30 MDG. The District commissioned King Engineering to assist in development of a "Coastal Water Systems Interconnect Project" (the "Interconnect Project"). On average, the utilities subject to the Interconnect Project estimated that 42 percent of the average daily demand is dedicated to essential uses with the remaining 58 percent going to non-essential uses. Consistent with the estimate, the Project set a target of 50 percent of average daily demand to be allowed for use in an emergency. None of the information from the Interconnect Project, however, was used by the District in setting the limits of withdrawal in the Permit. b. Daily Use Bay County claims the 5 MGD annual average allocation under the Permit is needed for several reasons, principally the maintenance of pumps. Bay County's justification for 5 MGD is found in testimony from Mr. Lackemacher and a document he authored entitled, "Confidential Draft for Internal Use Only 5 MGD Pumping Rate" (the "Lackemacher Confidential Draft"), admitted as Bay County Ex. 24. Mr. Lackemacher's testimony follows: A. The fact is that there are no absolute knowns when we're talking about what needs to be. Q. What do you mean? A. Well, here we have a document [Bay County Ex. 24] where I talk about rationalization for 5 million gallons a day, why we would need it, mechanical reasons, financial reasons, regulatory reasons. I always felt that it was very difficult to justify a number. I don't know. We haven't designed the system. We haven't got all of the wells in. We don't know what their specific yields are. There's unknowns here. So do we need 2 million gallons a day or 5 million gallons a day? I don't know. I don't know that. But here is the rationalization for 5 million if that's in fact what we need. We may very well find out that we don't need 5 million gallons a day. Q. Is that because you don't know the precise locations of the well and how they're going to be piped and distributed? A. That's absolutely true. Q. Well, did you in this report, Exhibit 24, did you make some reasonable assumptions? A. I based it on some of the values as you discussed or as I pointed out earlier from Hatch Mott MacDonald's preliminary design. * * * Q. And do you feel confident that your analysis supported that in the area of 5 million gallons a day is what would be needed to operate the wellfield? A. Yes. And that's why the paper was generated that [is] a justification for 5 million gallons a day, here's what we think we would need. Tr. 209-10. The Lackemacher Confidential Draft is a one-page, written justification for the 5 MGD. Based on the Hatch Mott McDonald Report, see tr. 210, it considers regulatory, mechanical and financial factors. It is not supported, however, by engineering analysis. Any financial analysis found in the Hatch Mott McDonald Report, moreover, is far from complete. The factors taken into consideration are recited in the most general of terms. For example, of four such factors, the document lists the second as: "All water pumps are designed to run - turning pumps on and off is not the best situation for the overall electrical efficiency or the mechanicals of a pump." Bay County Ex. 24. Consistent with Mr. Lackemacher's testimony, the document concludes that the amount of water needed to run each well is unknown. The financial justification is based on costs shown in the Hatch Mott MacDonald Report for construction and operation of 22 wells, ten more wells than are contained in the Wellfield and without any analysis of revenue to recoup the costs. The financial justification is a bare conclusion on the part of Mr. Lackemacher: We cannot afford to operate a well field at a financial loss, based on this fact alone we would have to pump a minimum of 4.49 MGD. Combined with the fact that we don't know what volumes of water have to be turned over to ensure water quality 5 MGD seems quite reasonable. Bay County Ex. 24. The Lackemacher Confidential Draft is dated May 17, 2011. It was not part of Bay County's Application nor was it submitted to the District prior to the decision to issue the Permit. Although the District attempted to obtain information from Bay County about what was needed for maintenance, Bay County did not provide it. As Mr. Gowans testified, "[t]hen I finally told staff, [s]top asking, we're not going to get the numbers . . . ." Tr. 552. The District performed no analysis to determine the minimum amount of water needed to maintain the Wellfield. In contrast, NTC/Knight and Washington County presented the testimony of Phillip Waller, an engineer accepted as an expert in the design and construction of potable water systems, including groundwater wells, surface water, and transmission and distribution of drinking water. Mr. Waller testified that if the wells were connected to a central treatment system, there would not be the need to flush the pipeline for disinfection prior to use of the well in an emergency. Only 2.4 million gallons per year or 6,500 gallons per day would be needed to maintain optimum operating conditions, an amount far less than 5 MGD. Mr. Waller's experience when groundwater is used as a backup, moreover, is that they are operated periodically. While prudent to periodically operate backup wells especially in advance of hurricane season, vertical pumps in wells, unlike horizontal pumps, do not have a need for frequent operation because of even force distribution. They certainly do not need to be continuously operated. "In fact, wells routinely are idle for months at a time." Tr. 1123. Interference with Existing Legal Users In its Revised Staff Report dated July 18, 2011, the District wrote: Nearby Users: Under the most intensive pumping activity, drawdown in the Upper Floridan Aquifer is predicted to be approximately 15 feet in the vicinity of the nearest private wells. Water level declines of this magnitude may cause water levels to fall below the level of the pump intake in some privately-owned wells. Joint Ex. Vol. IV, Tab Q, p. 4. The District's high estimate of the number of wells used by existing legal users that might suffer impacts approaches 900. The exact number or whether any existing legal users would be likely to suffer impacts was not proven. Alternatives Groundwater wells, if installed and attached to the fitting in the existing transmission line that delivers water from the Pump Station to the Water Treatment Plant, could serve as backup to the Reservoir. Bay County did not conduct a study of whether groundwater in the area of the transmission line was adequate to serve as an alternative. Mr. Waller, on behalf of NTC/Knight and Washington County, on the other hand, testified that the transmission line could support ten wells with a capacity of 10 MGD and could be constructed at a cost of $12 million, far less than the Wellfield. The area of the transmission line is in an area identified by the District as acceptable for the creation of potable water wells. The area does not present a significant risk of saltwater intrusion if not used continuously. The water meets the drinking water requirements for the Department of Environmental Protection and the Department of Health. The existing transmission line alternative is located near the existing raw water supply line which minimizes the need for additional piping. There is sufficient length along the existing raw water pipeline to accommodate ten wells. The existing transmission line alternative, therefore, has significant potential to succeed as a water supply backup to the Reservoir. NTC/Knight and Washington County, through Mr. Waller, also proposed another alternative: an intake at Bayou George. Near Highway 231, the main pipeline from the intake would run along public right-of-way. North of the existing intake in Williams Bayou and three miles north of the Dam, the proposed intake would be less susceptible to contamination from storm surge. Neither Bay County nor the District presented a thorough analysis of any alternative to the Wellfield. In contrast, NTC/Knight and Washington County presented the testimony of Mr. Waller that there are two alternatives that could be constructed at much less cost than the Wellfield and that have significant potential of providing backup supply.
Recommendation Based upon the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the Northwest Florida Water Management District enter a final order that denies the application of Bay County for the individual water use permit at issue in this proceeding. DONE AND ENTERED this 26th day of July, 2012, in Tallahassee, Leon County, Florida. S DAVID M. MALONEY Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 26th day of July, 2012.
The Issue The issue is whether the Southwest Florida Water Management District (District) should issue water use permit (WUP) No. 2004912.006 to the City of Lakeland (City), and if so, how much water should be allocated under the permit and what conditions should be imposed on the allocation, particularly in regard to withdrawals from the City's Northeast Wellfield (NEWF).
Findings Of Fact Introduction This is an unusual case in that the District gave notice of its intent to issue a permit that the City does not want and that the District staff testified that the City is not even entitled to based upon the information submitted prior to and at the final hearing. That said, there is no disagreement between the parties that a permit should be issued to the City. Indeed, despite the District Staff's testimony that the City failed to provide “reasonable assurances” prior to or at the final hearing on a variety of issues, the District takes the position in its PRO that a permit should be issued to the City, subject to various conditions and limitations. There is also no disagreement between the parties that the permit should include an allocation of 28.03 mgd from the City’s Northwest Wellfield (NWWF). The main areas of disagreement between the District and the City are the duration of the permit; the total allocation of water under the permit; and, perhaps most significant, the total allocation from the NEWF. Parties The City is an incorporated municipality located in Polk County. The City is within the boundaries of the District and is within the Southern Water Use Caution Area (SWUCA) designated by the District. The City is the applicant for the WUP at issue in this case, No. 20004912.006. The City operates a public water utility that provides potable water and wastewater services to customers in and around the City. The utility’s water service area extends beyond the City limits into surrounding unincorporated areas of Polk County. The District is the administrative agency responsible for conservation, protection, management and control of the water resources within its geographic boundaries pursuant to Chapter 373, Florida Statutes, and Florida Administrative Code Rule Chapter 40D. The District is responsible for reviewing and taking final agency action on the WUP at issue in this case. Stipulated Facts The parties stipulated that the City’s substantial interests have been adversely affected by the District’s intent to issue the proposed permit, and that the proposed permit is different from the permit that the City applied for. The parties also stipulated that there is reasonable assurance that the City’s proposed water use will not interfere with a reservation of water as set forth in Florida Administrative Code Rule 40D-2.302; that the proposed use will not significantly induce saline water intrusion; that the proposed use will incorporate the use of alternative water supplies to the greatest extent practicable; and that the proposed use will not cause water to go to waste. The City’s Wellfields Overview The City obtains the water that its water utility provides to its customers from two wellfields, the NWWF and the NEWF. The NWWF is located north of Lake Parker in close proximity to Interstate 4 and Kathleen Road. It provides water to the Williams Water Treatment Plant, from which the water is distributed throughout the City water utility’s service area. The NWWF is located on the Lakeland Ridge, which is a geographic feature that is approximately 250 to 260 feet above sea level. The Lakeland Ridge has a thick clay intermediate confining unit that isolates the surficial aquifer from the underlying aquifers. The NEWF is located to the north of Interstate 4, adjacent to Old Polk City Road. It provides water to the Combee Water Treatment Plant (Combee), from which the water is distributed throughout the City water utility’s service area. The NEWF is located at an elevation of approximately 135 feet above sea level. The surficial aquifer at the NEWF is relatively thin, and the intermediate confining unit at the NEWF is not as thick as it is at the NWWF. The Upper Floridan Aquifer (UFA) begins at approximately 65 below land surface at the NEWF. The City’s water treatment plants are traditional lime softening plants and are not able to treat brackish groundwater or surface water to the extent necessary for human consumption. It would be cost-prohibitive to implement a process to treat brackish water at the plants. Relevant Permitting History The City’s water utility has been in operation for more than 100 years, and the NWWF has been in operation since at least the early 1980’s. The earliest permit for the NWWF contained in the record is permit No. 204912, which was issued by the District in January 1987. The permit authorized average annual withdrawals of 28.3 mgd, and had an expiration date of January 1993. The NEWF was first permitted by the District in December 1989. The permit, No. 209795.00, authorized the City to pump an average of 9.0 mgd from the NEWF. The permit had a six-year duration, with a December 1995 expiration date. The permits for the NWWF and the NEWF were combined into a single permit in October 1993. The permit, No. 204912.03, authorized the City to pump a total of 28.1 mgd, with 9.0 mgd from the NEWF. The permit had a 10-year duration, with an October 2003 expiration date. In December 2002, the City's WUP was administratively modified pursuant to the District’s SWUCA rules. The modified permit, No. 20004912.004, did not change the permitted quantities at the NEWF or the 2003 expiration date, but the total allocation was reduced to 28.03 mgd. In October 2003, prior to the expiration of the existing permit, the City submitted an application to renew and modify its WUP permit. The application requested a 20-year permit with a total allocation of 32.8 mgd, with up to 16.0 mgd from the NEWF. During the permit review process, the City amended its application to increase the requested total allocation by 4.0 mgd (from 32.8 mgd to 36.8 mgd) and to decrease the requested duration of the permit by five years (from 2023 to 2018). The 36.8 mgd requested by the City was to be allocated between the NWWF (28.03 mgd) and the NEWF (8.77 mgd). The City supplemented its application during the permit review process in response to multiple requests for additional information and clarification from the District. The information provided by the City in support of the application is extensive; the “permit file” received into evidence consisted of approximately 2,500 pages, and the entire file is approximately twice that size.2 The review process culminated in what the District staff considered to be a “negotiated permit”3 that would initially authorize pumping of 33.03 mgd, with 28.03 from the NWWF, 1.5 mgd from the NEWF, and 3.5 mgd from a production well to be constructed at Combee. The proposed permit includes a phasing schedule that would allow for increased withdrawals -- up to 35.03 mgd total and 4.0 mgd from the NEWF4 -- if the City is able to demonstrate to the District’s satisfaction that the increased pumping will not cause adverse environmental impacts. The District gave notice of its intent to issue the proposed permit on December 29, 2006, and the permit was placed on the “consent agenda” for the District Governing Board’s meeting on January 30, 2007. On January 23, 2007, before the proposed permit was considered by the Governing Board,5 the City timely filed a petition challenging the proposed permit. The petition alleges that the proposed permit does not allocate sufficient water to meet the City's projected population demands in 2018 and that it does not allocate water quantities from the NEWF and the NWWF in the manner requested by the City. The NEWF The NEWF is approximately 880 acres in size. Wetlands comprise approximately half of the site. The NEWF is located within the boundaries of the Green Swamp, which is an area of critical state concern (ACSC) designated under Chapter 380, Florida Statutes. The Green Swamp is a hydrologically and environmentally important feature of central Florida encompassing thousands of acres of cypress wetlands, marshes, and forests. In 1992, a task force recommended that public water supply wellfields “of capacity greater than 1.8 mgd (average 3.6 mgd maximum)” from the UFA be discouraged in the Green Swamp ACSC in favor of wells from the Lower Floridan Aquifer in order to “mitigate drawdown impacts to the surficial aquifer system and resulting dehydration of wetlands . . . .” There is no evidence of that recommendation being formally adopted by the District or any other governmental agency, and the District does not have more stringent permitting criteria for WUP applications in the Green Swamp, except that it considers potential adverse impacts to all isolated wetlands and not just those larger than one-half acre in size.6 The City installed five 16-inch production wells at the NEWF, along with a number of associated monitoring wells. The production wells, which are cased to approximately 120 feet with a total depth of approximately 750 feet, pump water from the UFA. Pumping at the NEWF started in October 2005. The City has been pumping 4.0 mgd from the NEWF since that time. The City has spent over $34 million to bring the NEWF into service. The costs directly related to the acquisition of the NEWF site and the installation of the wells at the site account for approximately $7.6 million of that amount; the remainder of the costs are for associated infrastructure, such as the installation of water lines from the NEWF site and the construction of Combee. The wetlands on the NEWF site are predominantly isolated cypress wetlands, although there are some connected systems. Isolated wetlands are more susceptible to impacts from water deprivation than are connected wetland systems. The uplands on the NEWF site consist primarily of open pasture and fields and areas of planted pines. Extensive drainage improvements were constructed on the NEWF site between 1941 and 1980 when the site was being used as improved pastureland for cattle grazing and managed woodland for logging and silviculture. The improvements included the construction of a network of drainage ditches, culverts, roads, a grass landing strip, and a gas pipeline. The intent and effect of the drainage improvements was to remove surface water from the onsite wetlands. Historical aerial photographs show that these efforts were successful. The wetlands on the NEWF were adversely impacted by the drainage improvements, but for the most part, they are still functioning, albeit low-quality wetlands. The extensive ditching on the NEWF site continues to have an adverse impact on the wetlands even though the ditches have not been maintained and do not function as efficiently as they once did. The planted pine trees on the NEWF site may also be adversely affecting the wetlands through increased evapotranspiration from the surficial aquifer. However, the evidence was not persuasive regarding the extent of the impact from evapotranspiration. The present condition of the wetlands at the NEWF is not the result of recent activity. The biological indicators in the wetlands (e.g., adventitious roots on cypress trunks, large oak trees in the wetlands, red maple trees in areas that had at one time been dominated by cypress trees) show that the degraded condition of the wetlands dates back decades. The progressive draining and degradation of the wetlands caused by the ditching and other drainage improvements constructed on the NEWF site is apparent in the historic aerial photographs of the site. The size of the wetlands and the “hydrologic signatures” (e.g., standing water around the rims of wetlands and across the site, extensive cypress canopies, etc.) visible on earlier aerial photographs are less visible or non- existent in more recent aerial photographs. The wetlands on the NEWF site have shown no biological indicators of impacts from the pumping at the NEWF that started in October 2005. This does not necessarily mean that the pumping is not impacting the wetlands because the parties' experts agree that it can take many years for such biological indicators to appear. The more persuasive evidence establishes that the historical drainage improvements on the NEWF site were the primary cause of the degraded condition of the wetlands.7 The more persuasive evidence also establishes that unless altered, the drainage improvements on the NEWF site will continue to have an adverse effect on the wetlands. The City proposed a conceptual Wetland Improvement Plan (WIP) that is designed to restore and enhance the wetlands on the NEWF. A central component of the WIP is the reengineering and alteration of the drainage features by installing “ditch blocks” in some areas and culverts in other areas. The WIP also includes not replanting the pine trees on the NEWF site once the existing planted pines are harvested. The ditch blocks and other modifications to the drainage features are intended to hold water on the NEWF site and redirect it to the wetlands. This will help to hydrate the wetlands, increase soil moisture levels, and allow more water to percolate into the surficial aquifer following rain events. The District staff expressed some concerns with the City’s WIP at the final hearing, but acknowledged that the plan’s “conception . . . has a lot of merit.” Indeed, in its PRO, the District recommends the “installation of ditch blocks and similar measures at the [NEWF] site.” The WIP, if properly implemented, has the potential to enhance the wetlands by returning them to a more natural condition. The City will likely need an Environmental Resource Permit (ERP) from the District before any system of ditch blocks can be installed. The details of the WIP can be worked out during the ERP permitting process.8 A good monitoring plan is part of providing reasonable assurances. The parties agree that a monitoring plan should be included as a permit condition, and the EMMPs attached to the parties’ respective PROs appear to be materially the same. The City has monitored the wetlands at the NEWF since 1994, pursuant to a specific condition in the 1993 WUP permit. The methodology used by the City to monitor the wetlands was approved by the District, and despite the fact that the City has submitted biannual monitoring reports to the District for almost 14 years, the District expressed no concerns regarding the methodology or results of the monitoring until recently. The District commenced its own wetland assessment procedure at the NEWF in May 2007, which included setting “normal pools” in several of the wetlands. “Normal pool” describes the level at which water stands in a wetland in most years for long enough during the wet season to create biological indicators of the presence of water. The establishment of normal pools was part of the District’s efforts to establish the “existing natural system” against which any post-withdrawal adverse impacts at the NEWF would be measured in accordance with Section 4.2 of the Basis of Review for Water Use Permit Applications (BOR).9 Normal pools could not be established in several of the wetlands because there was no measurable standing water above the surface in the wetland. District staff observed similar conditions –- i.e., no standing water in the wetlands –- on at least one occasion following a significant rain event prior to the start of pumping at the NEWF. The District does not have a rule governing the setting of normal pools, but the City’s experts did not take issue with the normal pools set by the District or the methodology used by the District to set the normal pools. The EMMP proposed by the City is an extensive monitoring plan that incorporates a series of onsite monitoring wells, wetland monitoring stations for vegetation and hydrogeology, monitoring of pumping rates and pumping data, and monitoring of rainfall data. The EMMP will make use of the extensive data that has been collected on the NEWF site since the 1990’s as well as the normal pools set by the District, and if properly implemented, the EMMP will detect any potential adverse impacts as they occur to allow for remedial mitigation. The District staff acknowledged at the final hearing that the EMMP proposed by the City “with some minor modifications” is an appropriate plan to monitor changes in the wetlands at the NEWF. The necessary "minor modifications" were not explained at the final hearing, and as noted above, there does not appear to be any material difference in the EMMPs attached to the parties’ respective PROs. The Green Swamp is generally viewed as a “leaky” area, with little or no confinement between the surficial aquifer and the Floridan aquifer. Regional data, including studies by the United States Geologic Survey (USGS) and the District, reflect that the NEWF is located in a “transitional area” between areas of little or no confinement to the north, northwest, and east of the NEWF and areas of thicker confinement to the south. However, at least one study (published in 1977 USGS report) shows the NEWF in an area designated as "poor" for its relative potential for downward leakage. Regional data may be used to gain knowledge about the aquifer properties at a potential well site, but such data is not a valid substitute site-specific data. Indeed, the location of the NEWF in a “transitional area” makes site-specific data even more important. The City used geologic cross-sections (e.g., soil borings and core samples) at the NEWF to determine the site’s lithologic characteristics. By contrast, the District relied primarily on USGS reports and other regional data to postulate as to the lithologic characteristics of the NEWF. As a result, the City’s position regarding the lithologic characteristics of the NEWF was more persuasive than the District’s position. The lithology of the NEWF site consists of a shallow, sandy surficial aquifer, which extends to a depth of 3 to 5 feet, proceeding downward to sandy clay and clay sand semi- confining layers, alternating with impermeable clay units, interspersed with an intermediate aquifer composed of sandy clays and clay sands that contain water, proceeding downward to the limestone of the UFA. The presence of clay layers between the intermediate aquifer and the UFA, together with clay layers between the intermediate aquifer and the surficial aquifer, provide two layers of protection between the pumped aquifer and the surficial aquifer and wetlands, and serve to ameliorate any impacts to the surficial aquifer caused by withdrawals from the UFA. “Leakance” is a measure of vertical conductivity that describes the rate at which water flows through a confining unit. As a result, leakance is one of the most important factors to consider when modeling surficial aquifer impacts and potential wetland impacts from groundwater pumping. Generally, a higher leakance value is an indication of a “leakier” system with less confinement between the surficial aquifer and the UFA. The “leakier” the system, the greater the impacts of pumping on the surficial aquifer will be. The District contends that the confining unit underlying the NEWF is “leaky” and that the pumping at the NEWF is likely to directly and adversely affect the onsite wetlands. However, the more persuasive evidence establishes that the lower leakance value derived by the City based upon the site-specific lithology of the NEWF and the data from the aquifer performance tests (APTs) conducted at the NEWF is more accurate than the higher leakance value urged by the District. The purpose of an APT is to determine the hydrologic parameters of an aquifer. In particular, an APT is used to determine the transmissivity, leakance, and storage values of the aquifer. Transmissivity is a measure of how easily water flows through the ground, and storage is a measure of the amount of water in the porous spaces of the aquifer. Generally, a higher transmissivity value and a lower storage value indicate better confinement. There have been three APTs conducted at the NEWF. The first APT (APT-1) was conducted in 1989 as part of the initial permitting of the NEWF. A high transmissivity value and a low storage value were calculated in APT-1. A leakance value was not calculated. The results of APT-1 were presented to the District to justify the City’s request to pump 9.0 mgd from the NEWF, which the District approved. The 1993 permit combining the NWWF and the NEWF required the City to conduct a long-term APT in order to “determine the leakance parameter between the surficial and intermediate aquifers and the leakance parameter between the intermediate and Upper Floridan aquifers.” The permit stated that if the hydrologic parameters obtained in the APT were different from those used in the model submitted in support of the initial WUP, the City would have to revise the model and, if necessary, modify the WUP to reduce withdrawals. This second APT (APT-2) was a seven-day test conducted by the City in January 2001 in accordance with a methodology approved by the District. An “exceedingly low” leakance value of 4.5 x 10-4 gallons per day per cubic foot was calculated in APT-2. The transmissivity and storage values calculated in APT- 2 were essentially the same as the values calculated in APT-1. The District expressed concerns with the results of APT-2, and in December 2001, the District advised the City that it should “proceed with caution during the planning of infrastructure (pipelines) for the [NEWF]” because the “wellfield may not be able to produce the volume of water the City has stated that would like from the wellfield, without causing adverse impacts.”10 Based upon these concerns, the District conducted an APT (APT-3) at the NEWF in April and May 2003. The parties’ experts agree that data from APT-3 is reliable, but the experts disagree in their interpretation of the data, particularly in regards to the leakance value. The City’s experts calculated a leakance value of 1.4 x 10-4 feet per day per foot, which is a low leakance value. The expert presented by the District, Dann Yobbi, calculated a higher leakance value of 3.4 x 10-3 feet per day per foot, which suggests relatively “leaky” aquifer. The leakance value calculated by the City’s experts is more persuasive than the value calculated by Mr. Yobbi because Mr. Yobbi did not “de-trend” the data from APT-3 based upon the general declines in water levels occurring at the time of APT-3. Indeed, Mr. Yobbi testified that he is in the process of revising his report on APT-3 to address this issue and he acknowledged that the surficial aquifer showed only a “slight response” to the pumping during APT-3. The leakance value calculated by the City’s experts in APT-3 is consistent with the leakance value calculated in APT-2. The transmissivity and storage values calculated in APT-3 are also consistent with the values calculated in APT-1 and APT-2. The reliability of the leakance values and other aquifer parameters calculated by the City’s experts for the NEWF is confirmed by water level data compiled by the City pursuant to the monitoring requirements in the existing WUP. The water level data was collected from monitoring wells at the NEWF in the surficial aquifer, the intermediate aquifer, and the UFA. The City began collecting this data in 1994 and it continues to collect and report the data to the District as required by the existing WUP. The water level monitoring data reflects that the surficial aquifer at the NEWF responds almost immediately to rain events. By contrast, the intermediate aquifer and UFA show a more subdued response to rainfall events, which is indicative of good confinement, especially between the UFA and the surficial aquifer. The water level monitoring data shows that rainfall or lack of rainfall is the major controlling factor relative to the rate of surficial aquifer recharge at the NEWF. The water level monitoring data since pumping began at the NEWF shows that the pumping at 4.0 mgd is having a minimal impact on the surficial aquifer at the NEWF. Indeed, the more persuasive evidence establishes that the general decline in water levels that has been observed in the monitoring wells at the NEWF over the past several years is more likely than not attributable to the severe drought in the area and the onsite drainage features, and not the pumping at the NEWF.11 Moreover, the more persuasive evidence shows that following the start of pumping at the NEWF in October 2005, the water levels in the surficial, intermediate, and Floridan aquifers returned to the historic patterns of up and down response to rainfall events shown throughout the thirteen-year period of record: the surficial aquifer fills quickly (as it receives the rainwater directly) and empties quickly (through a combination of surface drainage, evapotranspiration, evaporation, and leakage), while the UFA responds with more gradual rising and falling (as water enters the aquifer through recharge areas and slowly percolates into the aquifer through more confined areas). The analysis of the water level data collected during APT-3 showed a similar trend in the rates of decline in the surficial aquifer as were reflected in the hydrographic record of the monitoring well data collected by the City since 1994. The natural, post-rainfall rate of decline under non-pumping conditions was consistent with the rate of decline observed during pumping conditions in APT-3. In sum, the interpretation of the water level data by the City’s experts was more persuasive than the interpretation by the District’s experts. Modeling of Predicted Drawdowns and Impacts The City utilized two different models to predict drawdowns from the proposed pumping at the NWWF and NEWF: the USGS “Mega Model” and the District’s District-Wide Regulation Model (DWRM). The models incorporated regional data published by the USGS and the District as well as site-specific data from the NEWF, including the lithologic information collected through soil borings and the hydrologic parameters of the aquifers calculated in APT-3. The models were calibrated and de-trended to remove “background conditions” (e.g., regional water level declines) so that the models would only show the predicted effects of the pumping. Once the calibration was complete, the models were run to simulate the effect of the pumping on the groundwater flows in the area. The models produced contour maps that showed the predicted drawdowns in the surficial aquifer as a result of the pumping. The USGS Mega Model predicted that pumping the NEWF at 8.77 mgd would result in drawdowns of approximately 0.5 foot in the surficial aquifer in and around the NEWF. The DWRM model predicted a 0.18 foot drawdown in the surficial aquifer in and around the NEWF when pumping the NEWF at 4.0 mgd, and a drawdown of 0.4 foot when pumping at 8.77 mgd. The same models were used to predict the “cumulative” drawdowns by taking into account pumping by existing legal users as well as the pumping at the NWWF. The cumulative models assumed pumping of 36.8 mgd from the City’s wellfields. The USGS Mega Model predicted that cumulative drawdowns in the surficial aquifer in and around the NEWF would be an additional 0.3 feet, with 8.77 mgd of pumping at the NEWF. The DWRM model predicted that the cumulative drawdowns in the surficial aquifer in and around the NEWF would be 0.4 foot with 4.0 mgd of pumping at the NEWF, and 0.6 foot at 8.77 mgd of pumping at the NEWF. The City utilized the 1995 data set of existing legal users in its cumulative DWRM modeling because that was the data set provided by the District. The difference between the 1995 data set and the more current 2002 data set is on the order of 20 mgd, which is inconsequential in comparison to the 1.1 billion gallons per day of withdrawals included in the model that are spread over the geographic extent of the District. The predicted drawdowns in the surficial aquifers in and around the NEWF would be considerably greater if the hydrologic parameters calculated by Mr. Yobbi were used in the DWRM model. For example, the District’s modeling predicted drawdowns between 1.0 and 1.2 feet in the surficial aquifer in and around the NEWF when pumping 1.5 mgd from the NEWF, 3.5 mgd from Combee, and 28.03 mgd from the NWWF. The wetlands experts presented by the parties agreed that the level of drawdown predicted by the City at the NEWF has the potential to adversely impact the wetlands on the site. The experts also agreed that there is no bright line as to the amount of drawdown that will adversely impact the wetlands. The City’s expert, Dr. Michael Dennis, testified that drawdowns in the surficial aquifer between 0.18 foot and 0.5 foot “probably” would not affect the wetlands at all, or at least “not measurably.” He also testified that drawdowns between 0.5 foot and one foot “are the drawdowns that you need to be concerned about.” The District’s expert, John Emery, testified that a drawdown in the surficial aquifer of 0.4 foot “could” adversely affect the wetlands if no mitigation is provided, but that a drawdown of 0.2 to 0.3 foot might not.12 The WIP is expected to increase the amount of water that gets to the wetlands on the NEWF site. However, the extent to which the WIP will increase the water levels in the wetlands and offset the predicted drawdowns in the surficial aquifer is unknown at this point. Limiting pumping at the NEWF to 4.0 mgd is reasonable and prudent based upon the uncertainty regarding the effectiveness of the WIP and the experts’ testimony regarding the level of drawdowns that likely would, and would not, adversely affect the wetlands at the NEWF. In sum, the more persuasive evidence establishes that the drawdown predicted at 4.0 mgd of pumping –- 0.18 foot (individually) and 0.4 feet (cumulatively) –- is not likely to adversely impact the already significantly degraded wetlands at the NEWF, particularly if the WIP is properly implemented. Demand Projections The City did not use the full 28 mgd allocated under its existing WUP. It pumped only 21 mgd in the 12 months preceding October 2003, when the permit was scheduled to expire; it pumped only 26 mgd in 2006; and the pumping for 2007 was expected to be approximately 1 mgd lower than the pumping in 2006. The City's WUP application contained population and demand projections for different years in the future. For 2014 (the permit expiration date proposed by the District), the “functional population”13 of the service area was projected to be 183,264 and the average demand was projected to be 29.5 mgd; for 2023 (the original permit expiration date requested by the City), the projections were 203,721 people and 32.8 mgd; and for 2018 (the permit expiration date now requested by the City), the projections were 192,176 people and 30.9 mgd. The projections in the WUP application were prepared in 2003, and City's primary consultant, Charles Drake, testified that the data was “accurate” and “reliable.” However, more recent data shows that the population projections in the WUP application were slightly understated. The more recent data is contained in the “Water Services Territory Population Estimates and Projections” reports prepared by the City's utility department in March 2006 and March 2007. The reports include estimates of the functional population for prior years, and projections of the functional population for future years. The estimates reflect the “actual” population for a given year in the past, whereas the projections reflect the “expected” population for future years. The estimates and projections in these reports, like the projections in the WUP application, were prepared in accordance with the methodology contained in the BOR. The District did not take issue with the projections in the reports or the WUP application. The estimated functional population of the service area in 2003, 2004, 2005, and 2006 exceeded the population projected for those years in the WUP application. On average, the projected populations for each year understated the “actual” populations by approximately 3,500 persons.14 Likewise, the population projections for future years in the March 2007 report are higher than the population projections for the same years in the WUP application. For example, the report projects that the functional population of the service area in 2014 will be 191,208 (as compared to 183,264 in the WUP application), and that population in 2018 will be 203,247 (as compared to 192,176 in the WUP application). The City presented “revised” population projections at the final hearing in City Exhibit 140. The revised projections were based on the projections in the March 2006 report, but also included data from the “water allocation waiting list” that is part of the City’s concurrency management system that was created by the City in response to legislation passed in 2005 requiring local governments to allocate and approve requests for water for new development. The population projections in City Exhibit 140 are 234,959 in 2014; 247,390 in 2018; and 264,556 in 2023. These projections include an additional 43,471 persons related to new development in the concurrency management system, as well as the additional 2,600 to 3,000 persons projected per year in the WUP application and the March 2006 report. The City failed to establish the reasonableness of the revised population projections. Indeed, among other things, the evidence was not persuasive that the additional population attributed to the new development in the concurrency management system is not already taken into account, at least in part, in the annual population increases projected in the March 2006 report.15 The most reasonable population projections for the service area of the City's utility are those in the March 2007 report.16 The record does not contain demand projections directly related to the population projections in the March 2007 report. However, demand projections for those population projections can be inferred from the WUP application (City Exhibit 1(a)(2), at 0036) and City Exhibit 140 (at page 0015). The 2014 projected population of 191,208 in the March 2007 report roughly corresponds to the projected population for 2018 in the WUP application (192,176) for which the projected demand was 30.9 mgd; and it also roughly corresponds to the projected population for 2008 in City Exhibit 140 (193,001), for which the projected demand was 28.7. Thus, in 2014, it is reasonable to expect that demand will be between 28.7 and 30.9 mgd. The 2018 projected population of 203,247 in the March 2007 report roughly corresponds to the projected population for 2023 in the WUP application (203,721) for which the projected demand was 32.8 mgd; and it also roughly corresponds to the projected population for 2009 in City Exhibit 140 (201,983), for which the projected demand was 30.2 mgd. Thus, in 2018, it is reasonable to expect that demand will be between 30.2 and 32.8 mgd. The demand projections in the WUP for 2014 (29.5 mgd) and 2018 (30.9 mgd) fall within the range inferred for the populations in the March 2007 report. Thus, even though the population projections in the WUP application for 2014 and 2018 are understated, the demand projections for those years in the WUP are still reasonable. The demand projections in City Exhibit 140 –- 35.3 mgd in 2014 and 36.6 mgd in 2018 –- are overstated as a result of unreliable population projections upon which they are based. Other Issues Duration of Permit The 1987 permit for the NWWF had a six-year duration, as did the original 1989 permit for the NEWF. The 1993 permit had a 10-year duration, but that permit did not increase the amount of authorized withdrawals; it simply combined the authorizations for the NWWF and the NEWF into a single permit. In this case, the City is requesting a permit that expires in 2018, which was a 15-year duration at the time the application was filed, but now is a 10-year duration. The District is proposing a permit with a six-year duration, expiring in 2014. The District is authorized to approve a WUP with a duration of up to 50 years. The District’s rules provide that the duration of the permit is to be determined based upon “the degree and likelihood of potential adverse impacts to the water resource or existing users.” The District’s rules require that in order for the District to approve a permit with a duration of more than 10 years, the applicant is required to present sufficient facts to demonstrate that such a permit is “appropriate.” Section 1.9 of the BOR provides “guidelines” regarding the duration of permits. The guidelines in the BOR are not binding on the District, but the nearly identical language in Florida Administrative Code Rule 40D-2.321 is binding on the District. The BOR provides that a six-year permit is to be issued for renewal permits “with modification to increase the quantity withdrawn by more than or equal to 100,000 gpd or 10% or more of the existing permitted quantities, whichever is greater.” The BOR and Florida Administrative Code Rule 40D- 2.321(2)(b) also provide that a six-year permit is to be issued “where the potential for significant adverse impacts are predicted.” The renewal permit that the City is seeking requests an increase of 8.7 mgd (from 28.1 mgd to 36.8 mgd) over the existing permitted quantities, which exceeds the 10 percent threshold in Section 1.9 of the BOR. Moreover, there is a potential for significant adverse impact from the renewal permit that the City is seeking. Accordingly, a six-year permit is appropriate under the District’s rules and the guidelines in the BOR. The City failed to demonstrate why a longer permit duration is appropriate under the circumstances of this case. District staff testified at the final hearing that the permit term should be calculated from the date the permit is issued, which will be some point in 2008. Therefore, the permit should have an expiration date of 2014. Offsite Impacts The City used the modeling described above to predict the drawdown in the UFA from the proposed pumping in order to determine whether there will be any adverse impacts on existing legal users. The predicted drawdown in the UFA in the vicinity of the NEWF ranges from 1.6 feet to 2.4 feet with 4.0 mgd of pumping at the NEWF, and between 3.4 feet and 5 feet with pumping at 8.77 mgd. The predicted drawdown in the UFA in the vicinity of the NWWF ranges from 10.0 to 14.0 feet, with 28.03 mgd of pumping at the NWWF.17 These predicted drawdowns are not expected to have any adverse impacts on existing legal users that have wells in the UFA. Most permitted wells in the UFA use vertical turbine pumps, which can easily accommodate fluctuations in water levels of five feet or more. The City has not received any complaints from existing users since it began pumping 4.0 mgd at the NEWF in October 2005. The pumping at the NWWF, which has been ongoing for more than 20 years, has not caused any adverse impacts to existing legal users. The City is required under the existing WUP to respond to any adverse impact complaints from existing legal users, and it is required to implement mitigation, as needed. In short, City is required to do whatever is necessary (e.g., relocating or increasing capacity of pump, lowering pipes) to return any well impacted by the pumping to its prior function. The City did not evaluate the potential impacts of its proposed pumping on unpermitted wells because the District does not maintain a database of unpermitted wells. However, the City acknowledges that if its pumping impacts an unpermitted well, it will be obligated to mitigate those impacts in the same manner that it is required to mitigate impacts to existing permitted users. The predicted drawdowns for water bodies in the vicinity of the NWWF and the NEWF that have designated Minimum Flows and Levels (MFLs) -- Lake Bonny, Lake Bonnett, and the Cone Ranch wetlands -- are minimal, on the order of 0.1 foot. The City evaluated the impacts of pumping on contaminated sites listed by the Department of Environmental Protection (DEP) in the vicinity of the NWWF and NEWF. Based upon the results of the modeling conducted by the City, there is no reason to expect that pumping at the NWWF and/or NEWF will have any measurable impact on those sites or lead to pollution of the aquifer. Potential Impacts of NWWF Pumping The only concern expressed by the District with respect to the pumping at the NWWF relates to the potential environmental impacts of the pumping on Lake Bonny and Lake Bonnett. The City agreed to include those lakes in its EMMP. Combee Combee is located approximately four miles south of the NEWF. There is a relatively thick clay confining unit at Combee, which, according to the District, makes it a better location for water withdrawals than the NEWF. The District conducted an APT at Combee in 2006. The hydrologic parameters derived from the APT, and the “preliminary modeling” performed by the District show that the City may be able to withdraw at least 3.0 mgd from wells at Combee. The proposed permit authorized pumping of 3.5 mgd from Combee. The proposed permit also included a phasing schedule pursuant to which pumping at Combee would be decreased to 3.0 mgd if pumping at the NEWF reached 4.0 mgd. The City expressed an interest in obtaining water from Combee throughout the permitting process. However, the City represented at the outset of the final hearing that the Combee well is “off the table because the City wishes to maximize the withdrawal allocation from [the NEWF].” The City stated in its PRO that it is “willing to consider permitting a production well at [Combee] as a potential mitigation resource, should unexpected adverse impacts require the City to divert production to a back-up resource.” The District stated in its PRO that the Combee well is “available for mitigation purposes," and that the City “should be encouraged to apply for a WUP for withdrawals from Combee up to 3.0 mgd to provide additional mitigation for pumping from the [NEWF].” Pump rotation Rotation of pumping between the wells in a wellfield is a standard practice, and it can be an effective mitigation technique. The City utilizes well rotation programs at the NWWF and the NEWF in order to minimize the stress on the production aquifers. Rotating pumping between the production wells at the NEWF is particularly appropriate because several of the wells are located in very close proximity to wetlands. Rotating the pumping will help to minimize the potential for adverse impacts to the wetlands. The actual rotation schedule is an operational decision that is made based upon observed conditions at the wellfield site, rather than something that is typically included in the WUP. Conservation and Reuse The City has a four-tiered conservation rate structure, modeled after the District’s graduated water-rates prototype. The rate structure imposes higher unit costs as individual consumption increases, thereby discouraging wasteful uses of water. The City has a comprehensive leak detection program aimed at preventing the loss of water within the City’s water distribution system. This program has helped to reduce the per- capita per-day consumption rate for the City by reducing the volume of water that is wasted before it is delivered to the consumer. The City has implemented irrigation restrictions aimed at reducing the quantities of water used by domestic customers for lawn and garden watering. The per capita rate of water consumption is a measure of the effectiveness of a water conservation program; the lower the figure, the better. The City’s per capita rate has increased in recent years, but its adjusted gross per capita rate has decreased. The adjusted gross per capita rate takes into account “significant users,” which are defined as non-residential customers other than golf courses that use more than 25,000 gallons per day or that represent more than five percent of the utility’s annual water use.18 The City’s per capita rate in 2005 was 145.69 gallons per day, and its adjusted gross per capita rate in that year was 132.01 gallons per day. The adjusted gross per capita rate may not exceed 150 gallons per day within the SWUCA. Thus, the City will be required to continue its conservation programs (and implement additional programs, if necessary) to ensure that its adjusted gross per capita rate does not exceed 150 gallons per day over the life of the permit. A portion of the City’s treated wastewater is reused for cooling at the City’s McIntosh Power Plant pursuant to a permit from DEP under Chapter 403, Florida Statutes. The DEP permit, No. FL0039772 (Major), states in pertinent part: Industrial Reuse: Effluent is reused . . . as a non-contact cooling water at the City of Lakeland McIntosh Power Generating Plant. The volume of water used on a daily basis fluctuates on an as needed basis. There are no restrictions on the volume that can be routed to the reuse system. The power plant evaporates water in the cooling process or returns cooling water into the Glendale WWTP for final treatment in the manmade wetlands treatment system. The reuse in the power plant is not required as effluent disposal. . . . . The remainder of the City’s treated wastewater is “blended” with the water used at the power plant in order to meet the conductivity standards in the DEP permit and the conditions of certification for the power plant and/or directly discharged into an artificial wetland system that ultimately discharges to the Alafia River. Section 3.1 of the BOR (at page B3-2) provides that “Water Use Permittees within the SWUCA who generate treated domestic wastewater are encouraged to demonstrate that . . . 50% of the total annual effluent flows is beneficially reused.” (Emphasis supplied). The BOR lists a number of uses of treated wastewater that are considered to be beneficial reuse. The list includes “industrial uses for cooling water, process water and wash waters” and “environmental enhancement, including discharges to surface water to replace withdrawals.” The City’s use of treated wastewater for cooling at the McIntosh Power Plant is a beneficial reuse under the BOR. The treated wastewater directly discharged by the City into the artificial wetland system is not a beneficial reuse under the BOR because it is not replacing surface water withdrawals. The BOR requires all users within the SWUCA to investigate the feasibility of reuse, and requires the implementation of reuse “where economically, environmentally and technically feasible.” The City has not recently undertaken a study or otherwise evaluated the feasibility of increasing its reuse. The draft permit attached to the District's PRO includes a specific condition requiring the City to "provide a comprehensive study of reuse opportunities encompassing the [City's] water, wastewater, and electrical utilities systems" by January 1, 2009.
Recommendation Based upon the foregoing findings of fact and conclusions of law, it is RECOMMENDED that the District issue WUP No. 2004912.006 with the terms and conditions contained in the draft permit attached to the District’s PRO, except that: The 2014 population referenced in the permit shall be 191,208; The adjusted gross per capita rate shall not exceed 150 gallons per day; Special Condition No. 2 shall be amended to authorize withdrawals from the NEWF at 4.0 mgd annual average and 4.8 mgd peak month, and the quantities listed in the Withdrawal Point Table for the NEWF wells shall be adjusted accordingly; Special Condition No. 4 shall be replaced with a reference to the EMMP and the conceptual WIP attached to the City’s PRO, and the list of monitoring stations in the EMMP shall be amended to include Lake Bonny and Lake Bonnet; and An additional specific condition shall be added encouraging the City to pursue a WUP for the Combee site for future water needs and/or for additional mitigation of the impacts of pumping at the NEWF. DONE AND ENTERED this 4th day of January, 2008, in Tallahassee, Leon County, Florida. S T. KENT WETHERELL, II Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 4th day of January, 2008.
Findings Of Fact Background In 1983, Concerned Citizens of Citrus County, Inc. (Concerned Citizens), an intervenor in this case, filed a petition toe initiate rulemaking for single source reclassification of groundwater under the existing provisions of Rule 17-3.403, Florida Administrative Code (F.A.C.). In this manner, Concerned Citizens sought to have existent potable waters in Pinellas, Hillsborough, Pasco, Hernando, and Citrus Counties classified Class G-I groundwater, and to thereby provide them the most stringent water quality protection accorded groundwaters of the state. At a public meeting in February 1985, the Environmental Regulation Commission (ERC) deferred action on the petition of Concerned Citizens, and directed the Department of Environmental Regulation (Department) to review the existing G-I rule, prepare proposed revisions, and present its recommendations to the ERC. Following the ERC directive, the Department held numerous public meetings and workshops to explore different approaches to groundwater protection. As a consequence, it prepared the proposed revisions to Rules 17-3.021, 17-3.403, 17-3.404, and 17- 4.245, F.A.C., at issue in these proceedings. On October 31, 1986, the Department duly noticed the proposed rules in volume 12, number 44, of the Florida Administrative Weekly. The notice interested parties that a public hearing would be held on December 16, 1986, before the ERC. 1/ On December 16-17, 1986, the ERC held a public hearing at which time it considered the rules recommended by the Department. During the course of this meeting, the ERC approved and adopted the rules with certain changes. These changes were duly noticed in volume 13, number 3, of the Florida Administrative Weekly on January 16, 1987. Petitioners and Intervenors Petitioners, Adam Smith Enterprises, Inc., and Alliance for Rational Groundwater Rules (Case No. 86-4492RP), and Petitioners Aloha Utilities, Inc.; Interphase, Inc.; Phase 1 Homes, Inc.; A.C. & R., Inc.; Tahitian Development, Inc.; Great Cypress Mobile Village, Inc.; and Barrington, Ltd. (Case No. 86- 4705R), filed timely petitions to challenge the validity of the proposed rules, which petitions were consolidated for hearing. Petitions for leave to intervene were granted on behalf of Florida Electric Power Coordinating Group, Inc.; Florida Land Council, Inc.; and Pasco County. These Intervenors' interests were aligned with those of petitioners. Petitions for leave to intervene were a1so granted on behalf of West Coast Regional Water Supply Authority and Concerned Citizens of Citrus County, Inc. These Intervenors' interests were aligned with those of the Department and the ERC. Petitioner, Adam Smith Enterprises, Inc. (Adam Smith), is the owner/developer of a 3,800-acre development of regional impact (DRI) to be known as Trinity Communities. This development, which has been in the acquisition and planning stages for almost 5 years, is currently undergoing DRI review and Adam Smith anticipates that it will receive its development order by September 1987. The Trinity Communities development is located predominately in Pasco County, with just over 250 acres of its lands located in Pinellas County. These properties are predominately open pasture land, and are bordered on the north, east and west by roads and on the south by Hillsborough and Pinellas Counties. As proposed, the Trinity Communities development will include 1100 acres of parks, golf courses, and other open areas. The remaining lands will be developed to accommodate 9500 dwelling units, as well as industrial and commercial uses to service the community, over a 20-year period. At today's market value, the property represents an investment of approximately 28 million dollars. Abutting the Trinity Communities development is the Eldridge-Wilde Well Field. This well field is covered by consumptive use permits issued by the Southwest Florida Water Management District (SWFWMD), and contains major public community drinking water supply wells as defined by the rules at issue in this proceeding. Of these wells, 5 are located within 9.63 feet and 181.5 feet of the proposed development's property line, and 5 are located with 204.72 fee and 297.5 feet of its property line. Petitioner, Alliance for Rational Groundwater Rules (Alliance), is an association of landowners who united to educate themselves about the proposed rules. The proof failed, however, to establish whether Alliance had ever elected any officers or directors, or the magnitude of its membership. Consequently, the proof failed to establish that a substantial number of its members, although not necessarily a majority, were substantially affected by the proposed rules, and that the relief requested by it was of a type appropriate for it to receive on behalf of its members. Petitioner, Aloha Utilities, Inc. (Aloha Utilities), is a utility certified by the Florida Public Service Commission to provide water and sewer service to two separate service areas in southern Pasco County. Currently, Aloha Utilities operates an 850,000 gallon per day (gpd) sewage treatment facility (Aloha Gardens) and a 1.2 million gpd sewage treatment plant (Seven Springs). It also operates 10-11 producing wells, at least 7 of which are permitted by SWFWMD to withdraw at least 100,000 gpd. One of these wells is located approximately 1/4-1/2 mile from an Aloha Utility sewage treatment plant. At least 3 of Aloha Utilities' wells which are permitted to withdraw 100,000 gpd or more, will service or are servicing the Riverside projects and Aloha Gardens Unit Number 12 project discussed infra. Consequently, the proof establishes that Aloha Utilities operates a major public community drinking water supply system as defined by the subject rules. The Aloha Gardens facility is under a Department order to expand its effluent disposal capacity. To satisfy the Department's order and the need for increased disposal capacity, Aloha Utilities commenced condemnation proceedings 8-12 months ago to secure the needed property. While the condemnation proceeding is not yet completed, Aloha Utilities has already expended considerable sums for engineering studies and attorney's fees in its efforts to acquire the property. That property is located approximately 1/2 mile from an existing well that is permitted for an average daily flow of at least 100,000 gpd. The effluent disposal capacity of the Seven Springs facility is also being expanded to meet existing and future demand. In April 1987, Aloha Utilities acquired a 27-28 acre parcel of land immediately adjacent to its existing facility. Upon these lands, Aloha Utilities proposes to construct percolation ponds, a rapid rate land application effluent disposal process. As sited, these ponds would be located 1/2 to 3/4 of a mile from a well permitted for an average daily flow of 100,000 gallons or more. 2/ Petitioners, Interphase, Inc., Phase 1 Homes, Inc., and Tahitian Development, Inc., are corporations with common management which are developing three separate but geographically proximate projects in Pasco County. These projects will be, or are, serviced by Aloha Utilities. Interphase, Inc., is the owner/developer of a 100- acre tract known as Riverside Village Unit Number Four. This property is currently being developed to include 57 acres dedicated to single family use and 43 acres dedicated to multifamily use, and will require the installation of stormwater facilities and underground sewage transportation facilities. Two wells of Aloha Utilities that are permitted for an average daily flow of 100,000 gallons or more are located 1/2 mile and 1/3 mile, respectively, from this development. Interphase, Inc., is also the owner of a 17-acre parcel of vacant land in Pasco County that is zoned commercial. This property is located within 400 feet of Aloha Utilities' Seven Springs sewer treatment plant, and its development will require the installation of underground sewage transportation facilities. Phase 1 Homes, Inc., is the owner/developer of a project known as Riverside Village Townhouses. This project is fully developed and is currently serviced by Aloha Utilities. Located within 1/2 mile of the development are two wells of Aloha Utilities that are permitted for an average daily flow of 100,000 gallons or more. Tahitian Development, Inc., is the owner/developer of a 40-acre tract known as Riverside Villas. Twenty of these acres have been developed and some of the units sold. The remaining 20 acres are currently under development. In developing its remaining 20 acres, Tahitian Development would be required to install stormwater drainage systems and sewage transportation lines to connect with Aloha Utilities. Located within 1/2 mile of the development are wells of Aloha Utilities that are permitted for an average daily flow of 100,000 gallons or more. Tahitian Development also owns a 40-acre parcel in Orange County which it plans to develop for light industrial uses such as an industrial park or an office complex. Such development would result in at least a 40 percent impervious surface, including building tops, within that 40-acre parcel, and require the installation of a sewage transportation system and a stormwater drainage system. Petitioner, A.C. & R., Inc., is the owner/developer of a project in Pasco County known as Aloha Gardens Unit Number 12. The project, which currently is represented by 40-50 developed lots, is located just north of the Aloha Gardens sewage treatment facility, and is serviced by Aloha Utilities. Located within 1/2 mile of the development that is permitted for an average daily flow of 100,000 gallons or more. Petitioner, Great Cypress Mobile Village, Inc., is the owner/developer of a 149 unit mobile home park in Pasco County. Twenty of these units are completed and ready for occupancy. Completion of the project will require the installation of additional sewer lines. Located at the interior of the property is a sewage treatment plant owned by Northern Utilities which services the project, and within 600 feet of the project's boundary there is a well which services that utility. The capacity of that well was not, however, demonstrated in these proceedings, nor was it shown whether such well was part of a community water system. Petitioner, Barrington, Ltd. is a party of unknown capacity, origin, or interest. No evidence was presented on its behalf to demonstrate that its substantial interests would be affected by the proposed rules. Intervenor, Florida Electric Power Coordinating Group, Inc. (FCG), a Florida corporation, is an association of Florida's electric utilities, and is composed of 37 members. The FCG has, as part of its internal organization, an environmental committee whose purpose is to participate in regulatory development and provide mutual member assistance with regard to water related matters. This committee was authorized by the FCG executive committee to participate in the development of the rules at issue in these proceedings, as well as Intervene in these proceedings, to represent and protect the interests of FCG members. The FCG participated in the development of the subject rules by the Department, and was granted full party status by the ERC during that rulemaking process. The members of FCG are owners and operators of electric power generating facilities. These facilities“ include the power plant and ancillary facilities such as substations. Incident to the operation of these facilities are wastewater discharges associated with the production of electricity and stormwater discharges. One of these facilities, Gainesville Regional Utilities' Deer Haven generating station is located across Highway 441 from a major community drinking water supply well. Intervenor, Florida Land Council, Inc., a Florid corporation, is composed of 12 primary members who own large tracts of land in interior Florida, and who are engaged primarily in agribusiness. The Land Council's purpose is to protect the asset value of its members property and, because of that purpose, it is concerned with environmental regulations, growth management regulations, land use regulations, and comprehensive planning. To protect its interests, the Land Council sought leave to intervene in these proceedings. There was, however, no proof that any lands owned by any member of the Land Council were proximate to any major public community drinking water well. Intervenor, Pasco County, is the owner/operator of 25 wastewater treatment plants with capacities In excess of 100,000 gallons per day, and has under construction, or in the design stage, additional facilities with capacities in excess of 100,000 gallons per day. The construction of these new facilities will require the installation of new lines for the collection of wastewater. Pasco County's current, as well as its planned, wastewater treatment facilities will utilities a rapid rate land application effluent disposal process. Within a mile of any wastewater treatment plan operated by Pasco County can be found a major public community drinking water well as defined by the rules at issue in these proceedings. Pasco County also owns and operates wells within the county with permitted withdrawal rates exceeding 100,000 gpd, and participates in the ownership and management of their wells with permitted withdrawal rates exceeding 100,000 gpd through West Coast Regional Water Supply Authority. Pasco County currently has plans to add new production wells in the county with an average daily pumpage in excess of 100,000 gallons per day. Intervenor, West Coast Regional Water Supply Authority (West Coast), is an interlocal government body created in 1974 to develop, store, and supply water to its member governments so that all citizens within the areas served by the authority may be assured an adequate supply of water. Member governments served by WCRWSA are Hillsborough County, Pasco County, and the cities of St. Petersburg and Tampa. Wellfields operated by West Coast are the Starkey Wellfield located in west central Pasco County, which serves the citizens of New Port Richey and Pasco County; the South-Central Hillsborough Regional Wellfield located in south-central Hillsborough County, which serves the citizens of Hillsborough, County; the crossbar Ranch Wellfield located in north-central Pasco County, which principally serves the citizens of Pinellas, County; the Cypress Creek Wellfild located in south-central Pasco County, which serves the citizens of Hillsborough, Pinellas, and western Pasco Counties and the City of St. Petersburg; the Northwest Hillsborough Wellfield located in northwest Hillsborough County, which serves the citizens of Hillsborough County; the Section 21 Wellfield located in northwest Hillsborough County, which serves the citizens of the City of St. Petersburg; and, the Come-Odessa Wellfield located in northwest Hillsborough County, which serves the citizens of the City of St. Petersburg. 3/ Each of the wellfields operated by West Coast are public community water systems, and contain wells permitted to withdraw in excess of 100,000 gallons per day. Collectively, these wellfields serve a total population of 800,000 persons. Intervenor, Concerned Citizens of Citrus County, Inc. (Concerned Citizens), is a not-for-profit corporation, was chartered in 1981, and has 350 members who obtain their drinking water from operational community water supply wells permitted for over 100,000 gallons per day in Inverness, Crystal River, Floral City, Sugar Mill Woods, Beverly Hills, and Rolling Oaks, Citrus County, Florida. The purpose of Concerned Citizens is to protect the natural resources of Citrus County through planning and zoning regulations, and local and state legislation and regulations. It was granted party status by the ERC. General aspects of the proposed rules The proposed rules establish new eligibility criteria for designation of an aquifer segment as Class G-I groundwater. Under the existing rule, the ERC could reclassify an aquifer or portion of an aquifer as G-I within specified boundaries upon a finding that: The aquifer or portion of the aquifer is the only reasonably available source of potable water to a significant segment of the population; and The designated use is attainable, upon consideration of environmental, techological, water quality, institutional, and social and economic factors. Under the proposed revisions, an aquifer segment could be classified by the ERC as G-I provided it was: ...within the zones of protection of a major public community drinking water supply well(s) or wellfield(s) withdrawing water from unconfined aquifers or from leaky confined aquifer... and, upon consideration of: ...environmental, technologial, water quality, institutional (including local land use comprehensive plans), public health, public interest, social and economic factors. As with thee existing rule, the proposed rules require that rulemaking procedures be followed to actually designate a G-I aquifer or aquifer segment at any particular location. The scheme envisioned by the proposed rules is to provide protection to "major community drinking water supply wells", community water systems that are permitted by consumptive use permit to withdraw an average daily amount of 100,000 gallons or greater of groundwater, by preventing contaminants from entering the groundwater within a circumscribed radius of the wells. To accomplish this purpose, the proposed rules establish a methodology whereby two zones of protection would be established around such wells if they were withdrawing waters from unconfined aquifers (an aquifer exposed to the atmosphere) or leaky confined aquifers (an aquifer in which groundwater moves vertically from the water table to the top of the aquifer in five years or less). The first zone (the inner zone) would be based on a fixed radius of 200 feet. The second zone (the outer zone) would be based on a radius, calculated under the rule's methodology, of 5 years groundwater travel time. Within the inner zone, discharges would be prohibited. Within the outer zone, certain developments which discharge to groundwater would be prohibited or restricted. A major emphasis of the proposed rules is to restrict discharges to groundwater within the zones of protection. For example, the rules eliminate the zone of discharge within the zones of protection, and require that new discharges to groundwater of treated domestic effluent meet the groundwater criteria specified in rule 17-3.404, F.A.C., prior to discharge. 4/ Additionally, such wastewater treatment facilities would be required to pre-treat industrial wastewater, provide daily monitoring to insure proper treatment plant process control, and provide 24 hour a day attendance of a wastewater operator under the general supervision of a Class A certified wastewater operator. New underground lines for the transport of domestic raw wastewater would be required to be constructed so that no more than 50 gallons per inch of pipe diameter per mile per day could leak into the ground. Within the 5 year zone of protection, there are no restrictions on stormwater discharges for residential developments. However, discharges from new stormwater facilities serving an area forty acres or larger with a forty percent impervious surface, excluding building tops, are required to monitor the discharge. Construction and operation of new sanitary landfills would be prohibited. As previously noted, to be eligible for reclassification as a G-I aquifer, the aquifer or aquifer segment under consideration must be leaky confined or unconfined. Whether the aquifer is leaky confined or not will be determined through application of the "Vv" and "Tv" formulae contained in the proposed rules, and the zones of protection will be established by reference to the "r" formula contained in the proposed rule. To date, neither the Department nor any party has applied the "Vv" and "Tv" formulae to identify wells hat are withdrawing from unconfined or leaky confined aquifers, nor has anyone delineated any zones of protection by application of the "r" formula. The Department has, however, identified those areas of the state at which it is likely that major community drinking water supply wells are withdrawing from such aquifers. Based on this identification, the Department has contracted with the U.S. Geological Survey (USGS) to "map" the Middle-Gulf region (Pinellas, Hillsborough, Pasco, Hernando, and Citrus Counties) by applying the "Vv" and "Tv" formulas to each well permitted to withdraw 100,000 gpd or more to determine if it is withdrawing from such aquifers and, if so, to delineate proposed zones of protection around such wells or wellfields through application of the "r" formula. The USGS is currently mapping the Middle-Gulf region. Pertinent to this case, the Department has identified all of Pasco and Pinellas Counties, the northern half of Hillsborough County, and most of Orange County including Orlando, as areas within which wells are most probably withdrawing from unconfined or leaky confined aquifers, and for which aquifers the Department will seek G-I reclassification. Under the circumstances, the parties have established, except as heretofore noted, that there is a reasonable likelihood that the proposed rules will substantially affect their interests. The rule challenge The gravamen of the protestant's challenge is that certain definitions and formulae continued within the proposed rule are vague, ambiguous, or not supported by fact or logic. The Protestants' also challenge the adequacy of the economic impact statement. The Protestants concerns are addressed below. Definitions Rule 17-3.021, as amended, would define "Confined Aquifer", "Leaky Confined Aquifer", and "Unconfined Aquifer", as follows: (7) "Confined Aquifer" shall mean an aquifer bounded above and below by impermeable beds or by beds of distinctly lower permeability than that of the aquifer itself. For the purpose of G-I, it shall mean an aquifer confined from above by a formation(s) which restricts the movement of groundwater vertically from the water table to the top of the confined aquifer for a period of more than five years * * * (16) "Leaky Confined Aquifer" shall mean, for the purposes of G-I, an aquifer confined from above by a formation(s) which allows groundwater to move vertically from the water table to the top of the leaky confined aquifer in five years or less. * * * (34) "Unconfined Aquifer" shall mean an aquifer other than a confined aquifer. For the purpose of G-I it shall mean an aquifer other than a confined or leaky confined aquifer. 5/ Protestants contend that the definition of "confined aquifer" and "leaky confined aquifer" are vague and meaningless because they are "defined by use of the phrase being defined". Accordingly, they conclude that proposed rule 17-3.021(7) and (16) must fall because they are without thought and reason, irrational and vague. Protestants further contend that since the definitions of "confined aquifer" and "leaky confined aquifer" are flawed, proposed rule 17-3.021(34), which defines unconfined aquifer, must also fall. The Protestants' contentions are not persuasive. If one were restricted to the definition of "confined", "leaky confined" and "unconfined" aquifer to glean their meaning, the rules might be considered vague. However, these definitions are, as they specifically provide, "for the purpose of G-I" and they must be read in context with the balance of the rule. When so read, it is apparent that "top of the confined aquifer" or "top of the leaky confined aquifer" is the top of the aquifer that has been calculated as confined or leaky through manipulation of the "Vv" and "Tv" formulae. Under the circumstances, the subject definitions are not vague, arbitrary or capricious. Proposed rule 17-3.021(20) provides: "New Discharge" shall mean, for the purpose of G-I, a discharge from a new installation; or a discharge from an existing permitted installation that has been altered, after the effective date of G-I reclassification, either chemically, biologically, or physically or that has a 211 22 different point of discharge, and which causes a significantly different impact on groundwater. Protestants contend that the definition of "new discharge" is vague, arbitrary and capricious because existing installations would be classified as new dischargers, and subject to the more stringent requirements of the proposed rules, whether the alteration of their discharge significantly improved or adversely affected groundwater. As proposed, the rule would so define new discharge, and it is not vague or ambiguous. The proof demonstrated, however, that the Department only proposed to define, as new dischargers, those existing installations whose altered discharge caused a significantly different negative impact on groundwater. The Department conceded this point, and offered no proof to demonstrate the reasonableness of classifying existing installations that improve their discharge as new discharges. Under the circumstances, proposed rule 17-3.021(20) is arbitrary and capricious. Proposed rule 17-3.021(35) defines "underground storage facility or underground transportation facility as follows: "Underground storage facility" or "underground transportation facility" shall mean that 10 percent or more of the facility is buried below the ground surface. This proposed rule is, however, only pertinent to proposed rule 17-4.245, which addresses the permitting and monitoring requirements for installations discharging to groundwater. Pertinent to this case, proposed rules 17-4.245(3)(c) and (d) establish construction requirements for the following facilities within the five year zone of protection: Underground storage facilities. An underground storage facility includes any enclosed structure, container, tank or other enclosed stationary devices used for storage or containment of pollutants as defined in Section 376.301(12), F.S. or any contaminant as defined in Sect ion 403.031(1), F.S. Nothing in this paragraph is intended to include septic tanks, enclosed transformers or other similarly enclosed underground facilities.... Underground facilities for transportation of wastewater or pollutants as defined in Section 376.301(12), F.S. or any contaminant as defined in Section 403.031(1), F.S. excluding natural and liquified petroleum gas. Underground facilities for transportation of waste effluent or pollutants or contaminants include piping, sewer lines, and ducts or other conveyances to transport pollutants as defined in Section 376.301(12), F.S., and contaminants as defined in Section 403.031(1), F.S.... Protestants contend that the proposed rules are contained in two separate chapters of the Florida Administrative Code with no bridge between them. Under such circumstances, they contend the rules fail to adequately define either facility in either chapter, and that the rules are therefore vague, arbitrary and capricious. Protestants' contention is not persuasive. Proposed rule 17-3.021(35) defines "underground storage facility" or "underground transportation facility" as meaning that 10 percent or more of the facility is buried below the ground surface. Proposed rules 17-4.245(3)(c) and (d) address what type of facility is included within the terms "underground storage facility" and "underground transportation facility." Notably, Rule 17-4.021, F.A.C., provides: Definitions contained in other chapters of the Department's rules may be utilized to clarify the meaning of terms used herein unless such terms are defined in Section 17-4.020, F.A.C., or transfer of such definition would defeat the purpose or alter the intended effect of the provisions of this chapter. Under the circumstances of this case, the rules are appropriately read together. So read, the construction requirements for "underground storage facilities" and "underground transportation facilities", as required by proposed rule 17-4.245(3)(c) and (d), are applicable if 10 percent or more of the containment device used for the storage or transport of pollutants is buried below the ground surface, and the proposed rules are not vague, arbitrary or capricious. Proposed rule 17-3.021(39) defines "Zones of Protection" as follows: "Zones of Protection" shall mean two concentric areas around a major public community drinking water supply well(s) or wellfield(s) drawing from a G-I aquifer whose boundaries are determined based on radii from the well or wellfields of 200 feet and five years groundwater travel time respectively. Protestants contend that the definition of "Zones of Protection" is vague, arbitrary and capricious because nowhere within the proposed rules is "G-I aquifer" defined. protestants' contention is not persuasive. Proposed rules 17-3.403(1) and (7) adequately explain what is meant by "G-I aquifer", and proposed rule 17-3.403(8) sets forth the metodology for calculating the zones of protection. The definition of "Zones of Protection", set forth in proposed rule 17-3.02(39) is not vague, arbitrary or capricious, because of any failure to define "G-I aquifer." Mapping Priorities When considering whether to reclassify an aquifer or aquifer segment as G-I, proposed rule 17-3.403(5)(e)2 requires that the aquifer or aquifer segment: Be specifically mapped and delineated by the Department on a detailed map of a scale which would clearly depict the applicable zones of protection. Maps will be grouped and submitted for reclassification generally on a regional basis. Mapping priorities shall follow the Commission directive of February 27, 1985. The remaining areas of the state will be mapped by the Department as time and resources allow. The mapping priority directive referred to in purposed Rule 17-3.403(5)(e)2a, was an oral directive of the ERC that Pinellas, Hillsborough, Pasco, Hernando, and Citrus Counties, referred to as the Middle-Gulf region, be mapped first. That directive has not been reduced to writing and, consequently, a copy thereof has never been available for inspection. Categories of G-I Aquifers and determination of zones and protection Proposed rules 17-3.403(7) and (8), respectively, set forth the eligibility criteria for reclassification as G-I aquifers and the methodology whereby the boundaries of the zones of protection are established. To this end, proposed rule 17- 3.403 (7) provides: Categories of G-I aquifers. For aquifers or aquifer segments to be eligible for potential reclassification as G-I aquifers one of the following criteria must be met: That the aquifer or aquifer segment under consideration be within the zones of protection of a major public community drinking water supply well(s) or wellfield(s) withdrawing water from unconfined aquifers or from leaky confined aquifers.... (b)(. reserved.) Proposed rule 17-3.403(8) provides: Determination of the boundaries of the zones of protection. (a) The boundaries of the zones of protection shall be based on radii from the wellhead or wellfield (if closely clustered, so that the five year zones of protection are overlapping) measured in 200 feet for the inner zone and five years for the outer zone. The radius of the outer zone shall be determined using the following formula: percent.x4n where Q = permitted average daily flow from the well (measured in cubic feet per day); T = five years (1825 days); 3.14 = mathematical constant pi; r = radius (feet); h distance from the top of the producing aquifer to the bottom of the hole (feet); n effective porosity. Protestants contend that the foregoing provisions of the proposed rules are vague, arbitrary and capricious because the wells that would be subject to and around which a zone of protection would be established cannot be identified or, if identifiable, do not comport with the Department's intent or interpretation. Protestant's concerns are not without merit. To be eligible for consideration as a G-I aquifer, proposed rule 17-3.403(7) requires that the aquifer segment be within the zones of protection of a "major public community drinking water supply well(s) or wellfield(s). Proposed rule 17- 3.021(17) provides that "major public community drinking water supply" shall mean: those community water systems as defined in Section 17-22.103(5), F.A.C., that are permitted by consumptive use permit to withdraw an average daily amount of 100,000 gallons or greater of groundwater. Community water system" is defined by Section 17-22.103(5) as: a public water system which serves at least IS service connections used by year- round residents or regularly serves at least 25 year-round residents. Facially then, the proposed G-I rules are applicable to "community water system" that hold a consumptive use permit to withdraw an average daily amount of 100,000 gallons or greater of groundwater", and which are withdrawing from unconfined or leaky confined aquifers. Notably, the rule does not ascribe the 100,000 gpd permitted rate of withdrawal to each well, but to a permit held by a community water system. Accordingly, under the literal reading of the proposed rules, each well covered by the consumptive use permit would be subject to a zone of protection regardless of its individually permitted rate, so long as it was withdrawing from an unconfined or leaky confined aquifer. While there may be legitimate reasons to designate zones of protection around wells, regardless of their individual permitted rate when the community water system holds a consumptive use permit to withdraw groundwater at a 100,000 gpd average, the Department advanced none. To the contrary, the Department contended that zones of protection were only to be established around a well that was permitted to withdraw an average daily amount of 100,000 gallons or greater. Under the circumstances, the provisions of proposed rules 17-3.403(7) and (8) are arbitrary and capricious. 6/ The "Vv" and "Tv" formulae Proposed rule 17-3.403(7)(a) prescribes the methodology where by vertical travel time will be calculated, and therefore whether a particular aquifer will be classified as confined or leaky confined. To this end, the proposed rule provides: ... Determination of vertical travel time for leaky confinement will be by application of the following formulae: Vv= Kv h/nl where: Vv= vertical velocity (feet/day). Kv= vertical hydraulic conductivities of the surficial aquifer and underlying confining bed materials (feet/day). h= head difference between water table in the surficial aquifer and the potentiometric surface of the producing aquifer (feet). n = effective porosities of the surficial aquifer and underlying confining bed materials. 1 = distance from the water table to the top of the producing aquifer (feet). Tv= 1/Vv 365 where: Tv= vertical travel time (years). 1 = same as above. Vv= same as above. The "Vv" formula and the "Tv" formula are valid formulae, and are commonly used by hydrogeologists to calculate the vertical velocity and vertical travel time of groundwater. As proposed, the formulae present a reasonable methodology for computing the vertical velocity and vertical travel time of groundwater if the well is producing from one aquifer. The formulae cannot, however, as hereafter discussed, be reasonably applied if tee well is producing from multiple aquifers or if another aquifer intervenes between the surf aquifer and the producing aquifer. While not the most prevalent occurrence in the state wells in the Middle-Gulf regions often do penetrate more than one aquifer and do produce water from more than one aquifer. The rule defines the "Kv" element of the "Vv" formula as the "vertical hydraulic conductivities of the surficial aquifer and underlying confining bed materials (feet/day)." This is a reasonable definition and will produce a scientifically valid result provided the well does not penetrate multiple aquifers. Should the well penetrate multiple aquifers, the values derived for vertical velocity ("Vv") and vertical travel time ("Tv") will not be accurate since the hydraulic conductivities of the intervening aquifers are not, by the rule definition, factored into the calculation of "Kv". Under such circumstances, whether an aquifer was classified as confined or leaky confined would not be determined by a valid "Kv" but, rather, by chance. Protestants also contend that the rule is vague, arbitrary and capricious because it does not specify the methodology by which "Kv" is to be calculated. There are, however, methodologies commonly accepted by hydrogeologists to derive a scientifically valid "Kv", whether the well penetrates one or more than one aquifer. The infirmity of the rule is not its failure to specify a methodology, but its to include data necessary to produce a meaningful result. The rule defines the "n" element of the Vv formula as "effective porosities of the surficial aquifer and underlying confining bed materials." This is a reasonable definition and will, though the application of commonly accepted methodologies, produce a scientifically valid result. 7/ The rule defines the element "Delta h" in the Vv formula as the "head difference between the water table in the surficial aquifer and the potentiometric surface of the producing aquifer (feet)", and defines the element "1" as the "distance from the water table to the top of the producing aquifer (feet)." These elements are utilized in the formula to calculate a gradient, and must be measured using the same points of reference to yield a meaningful result. To this end, the proof demonstrates that the definitions are reasonable since they utilize the same points of reference, and that when applied in accordance with accepted hydrogeologic practice will produce a scientifically valid gradient. (See Department exhibit 7). Protestants contend, however, that the definitions of "Delta h" and "1" are vague, arbitrary and capricious because they do not specify when the measurements should be made, do not define "producing aquifer", and do not define "top" of the producing aquifer. For the reasons that follow, Protestants' contentions are found to be without merit. While a water table is a dynamic surface subject to frequent, if not daily fluctuation, resulting from variations in rainfall and the demands of man, and while a potentiometric surface is likewise a dynamic elevation that changes with time and season, protestants failed to demonstrate that there was any particular date or dates that would be most appropriate to make such calculations. Rather, protestants contended that unless such measurements were taken contemporaneously, any derivation of "Delta h" and "1" would not be reliable. While such might be the case, the rule does not mandate a divergence from the accepted hydrogeologic practice of taking such measurements contemporaneously. While the rule does not define "producing aquifer," it is an accepted hydrogeologic term and not subject to confusion. The only confusion in this case was the introduction of the issue of multiple producing aquifers and protestants' contentions that this rendered the Vv formula vague, arbitrary and capricious since it did not factor in such a consideration. Protestants' contention does not, however render the term "producing aquifer" vague. The sole purpose of the Vv and Tv formulas are to determine whether the aquifer from which water is being produced is leaky confined. To establish this, the formulae are applied to calculate whether the vertical travel time is five years or less. If a well is withdrawing water from more than one aquifer it may be necessary to calculate Vv and Tv for each aquifer to discern which of those aquifers are within the 5 year vertical travel time threshold, and therefore subject to G-I reclassification. To this end the rule is not vague, and would adequately address the multiple producing aquifer scenario. While the rule doe not define "top" of the producing aquifer, this term is an accepted hydrogeologic term and is not subject to confusion. In application there may, however, be disagreements among hydrogeologists as to where this line should be established because geologic boundaries are fine gradations, and not sharp lines which would lend themselves to the designation of precise points of reference. This is not, however, a failure of the rule, but a peculiarity of nature, and is subject to scientific proof. Notably, protestants did not demonstrate that "top" of the producing aquifer could be defined with reference to a fixed point. Under the circumstances, "top" of the producing aquifer is a reasonable reference point. Zones of Protection Proposed rule 17-3.408 provides: Determination of the boundaries of the zones of protection shall be based on radii from the wellhead or wellfield (if closely clustered, so that the five year zones of protection are overlapping), measured in 200 feet for the inner zone and five years for the outer zone. The radius of the outer zone shall be determined using the following formula: QT 2 3.14 hn where Q = permitted average daily flow from the well (measured in cubic feet per day); T = five years (1825 days); 3.14 = mathematical constant pi; r = radius (feet); h distance from the top of the producing aquifer to the bottom of the hole (feet); n effective porosity. For the purpose of this calculation the following effective porosities for representative Florida aquifers will be used: Floridan .05 Sand and Gravel .2 Biscayne .15 Surficial .2 The Department shall use more site-specific values for "Q", "n", or "h" when available for designation of the zones of protection by the Commission. Proposed rule 17-3.403(8)(a) provides that the inner zone of protection shall be based on a radius from the wellhead or wellfilled, as appropriate, of 200 feet. While denoted as an arbitrary radius, the 200 foot radius was not derived without fact or reason. Rather, it was a result reached at the workshops after consideration of existing regulations that establish buffer zones of 200-500 feet between a public water supply and a pollution source. Conceptually, the 200 foot zone was adopted because it is so small and so close to the well that it essentially constituted a zone of protection of the well head by preventing contaminants from moving into the well opening directly or the annular space around the well casing. Accordingly, the 200 foot zone has a reasonable basis. Its actual delineation is, however, as flawed as that of the five year zone discussed infra. The "r" formula defines the outer zone of protection, and calculates it as a radius equal to the distance groundwater would flow in five years toward the well. The basis for the "r" formula is the formula used to calculate the volume of a cylinder. That formula, V = pi r2 h, yields a simple volumetric measurement without any consideration of velocity. By the introduction of the element "n" (effective porosity), the "r" formula introduces a velocity component which would, properly applied, produce a radius equal to the distance groundwater would flow in 5 years. 8/ As proposed, however, the rule would establish a meaningless line around a well. Under the proposed rule, the Department would calculate "r" based on specified effective porosities ("n") for the Floridan, Biscayne, sand and gravel, and surficial aquifers absent site specific data. The Department is, however, under no requirement to generate site specific data, and currently is mapping the Middle-Gulf region based on the values established by the rule. Absent chance, the areas mapped will bear no relationship to groundwater travel time. The lithology of an aquifer and the surrounding layers is varied and diverse, and directly affects the direction and velocity of groundwater flow. By assuming "n", the "r" formula ignores the varied lithology, and produces a radius that would seldom, if ever, represent the actual rate at which groundwater moved toward any well. 9/ The zone thus circumscribed is an illusion since the groundwaters and contaminants within it may move at a rate significantly greater than or less than 5 years travel time. Notably, the Department has conducted no study or test to validate its proposed methodology. The element "Q" in the "r" formula is defined as the "permitted average daily flow from the well (measured in cubic feet per day)." Protestants contend that such definition is vague, arbitrary and capricious because the Department proposes to rely on consumptive use permits issued by the various water management districts to derive "Q", and such permits would not necessarily provide the requisite data. While the proof demonstrates that "Q" cannot always be derived by reference to a consumptive use permit, this does not render the definition of "Q" vague, arbitrary, or capricious. Rather, "Q" is a factual matter, and subject to a factual derivation through reference to consumptive use permits and other site specific data. The element "T" in the "r" formula is defined as "five years (1825) days." By its inclusion, the Department proposes to circumscribe the outer zone of protection at five years groundwater travel time. The concept of a zone of protection is premised on the theory that restrictions should be placed on discharges to groundwater within an area proximate to a public water supply for public health and safety concerns. The five year standard, which is found throughout the rules, was based on the theory that if a contaminant was introduced to groundwater a period of time should be allowed to discover the contamination and remove it or make provision for an alternate water supply before the contaminant reached the public water supply. The five years proposed by the rule was not, however, founded on fact or reason. During the workshops that under scored the proposed rule, the time factor was the subject of considerable discussion and ranged from less than two years to greater than ten years. Based on its own in-house search, the Department initially proposed a 10-year standard. That search revealed that it took 10 to 15 years between the time a contaminant was discovered and cleanup could commence, and between seven and eight years between the time a contaminant was introduced into groundwater and it discovery. Notwithstanding the results of its own in-house search, the Department, in the face of debate, elected to "compromise" and propose a five-year standard. Such standard was not the result of any study to assess its validity, and no data, reports or other research were utilized to derive it. In sum, the five- year standard was simply a "compromise", and was not supported by fact or reason. As previously noted, the lithology of an aquifer and the surrounding layers is varied and diverse, and directly affects the direction and velocity of groundwater flow. The effective porosity of those materials in the Floridan aquifer canvary from to .4 at various places. The rule proposes, however, to use an effective porosity for the Floridan aquifer of .05 to establish "r." The value ascribed to "n" is a critical value, as previously discussed in paragraph 65. It also has a profound impact on the aeral extent of the zone of protection. For example, assuming "Q" equals 3 million gallons and "h" equals 600 feet, an "n" of .02 would result in a radius of 4,406 feet or 1,400 acres, an "n" of .03 would result in a radius of 3,578 fee or 934 acres, an "n" of .05 would result in a radius of 2,787 feet or 560 acres, and an "n" of .2 would result in a radius of 1,393 feet or 140 acres. While an effective porosity of 05 for the Floridan aquifer may be a reasonable value at a particular site, it is not a value that can be reasonably ascribed to the Floridan in general. For this reason, and the reasons heretofore set forth, the rule's specification of an effective porosity of .05 for the Floridan aquifer is unreasonable. Proposed rule 17-3.403(8)(a), sets forth the manner in which the zones of protection will be drawn around a well or wellfield. That proposed rule provides: For well fields whose individual zones of protection overlap due to clustering, a single zone of protection will be calculated in the following manner: Using the permitted average daily withdrawal rate of the wells with overlapping zones of protection, the area on the surface overlying the aquifer equal to the sum of the areas of the five year zones of protection of the individual wells, shall be used to define the area which encircles the perimeter of the wellfield. In cases where a zone of protection of a single well protrudues beyond the calculated perimeter or when the configuration of the wellfield is irregular, the perimeter will be shaped to accommodate the configuration. The surface are encircling the perimeter of the wellfield shall not exceed the total surface area of the overlapping zones of protection for individual wells. In the case of unclustered wells within a wellfield, individual zones of protection around each well will be calculated. As previously discussed, the proposed G-I rules are facially applicable to "community water systems" that hold a " consumptive use permit to withdraw an average daily amount of 100,000 gallons or greater of groundwater," and which are withdrawing from unconfined or leaky confined aquifers. Under proposed rule 1773.403(8)(a), the five-year zone of protection would be drawn around each of these wells. If the wells are located so close to each other that the five year zones of protection are overlapping (clustered), those wells would be deemed a wellfield by rule definition and a five year zone of protection would be established around it. The proposed rule's description at how to determine and configure a zone of protection around a wellfield is however, vague and ambiguous. While the rule provides that when the configuration of the wellfield is "irregular", the perimeter will be shaped to accommodate the configuration", it sets forth no standard by which the perimeter will be established. Effectively, the rule vests unbridled discretion in the Department to establish the configuration of a wellfield. The Economic Impact Statements Pursuant to the mandate of Section 120.54(2), Florida Statutes, the Department prepared economic impact statements for the proposed revisions to Chapters 17-3 and 17-4, Florida Administrative Code. The economic impact statements were prepared by Dr. Elizabeth Field, the Department's chief economist, an expert in economics. Dr. Field developed the economic impact statements by examining the proposed rules and discussing their potential impact with Department staff. Additionally, Dr. Field attended the public workshops that were held concerning the proposed rules, and solicited input from those participants. The Florida Home Builders Association and the Florida Petroleum Council submitted data for her consideration, but none of the petitioners, although some were represented at such workshops, responded to her requests for information. The economic impact statements prepared by Dr. Field to address the proposed rules conclude that, apart from the cost to the Department for mapping, there are no direct costs or economic benefits occasioned by the rules. Dr. Field's conclusion was premised on the fact that the proposed rules only establish the eligibility criteria for reclassification of an aquifer to G-I and the standards for discharge to that aquifer. Under the proposed rules, further rulemaking would be required to actually designate a specific aquifer as G-I, and delineate a zone of protection. 10/ Pertinent to this case, proposed rule 17-3.403, provides: The intent of establishing G-I eligibility criteria is to determine which aquifer or aquifer segments qualify for potential reclassification to G-I aquifers. Adoption of these criteria does not imply nor does it designate aquifer or aquifer segments as G-I. Such designation can only be achieved through reclassification by the Commission after eligible segments have been mapped by the Department. (6)... the following procedure shall be used to designate Class G-I aquifers: Rulemaking procedures pursuant to Chapter 17-102, F.A.C., shall be followed; Fact-finding workshops shall be held in the affected area; All local, county, or municipal governments, water management districts, state legislators, regional water supply authorities, and regional planning councils whose districts or jurisdictions include all or part of a proposed G-I aquifer shall be notified in writing by the Department at least 60 days prior to the workshop; A prominent public notice shall be placed in an appropriate newspaper(s) of general circulation in the area of the proposed G-I aquifer at least 60 days prior to the workshop. The notice shall contain a geographic location map indicating the area of the zones of protection and a general description of the impact of reclassification on present and future discharges to groundwater. A notice of a G-I workshop shall be published in the Florida Administrative Weekly prior to the workshop(s). At least 180 days prior to the Commission meeting during which a particular zone of protection will be considered for reclassification, the Department will provide notice in the Florida Administrative Weekly and appropriate newspaper(s) of the intended date of the Commission meeting. The Commission may reclassify an aquifer or aquifer segment as a G-I aquifer within specified boundaries upon consideration of environmental, technological, water quality, institutional (including local land use comprehensive plans), public health, public interest, social and economic factors. When considering a reclassification an aquifer or aquifer segment shall: ....(Be within the zones of protection of a major public community drinking water supply well(s) or wellfield(s) withdrawing water from unconfined or from leaky confined aquifers.).... Be specifically mapped and delineated by the Department on a detailed map of a scale which would clearly depict the applicable zones or protection. Maps will be grouped and submitted for reclassification generally on a regional basis. Mapping priorities shall follow the Commission directive of February 27, 1985. The remaining areas of the state will be mapped by the Department as time and resources allow. (Emphasis added). While, if and when applied, the proposed rules would certainly have a direct economic impact as a consequence of a reclassification of an aquifer to G-I and the designation of a zone of protection, as well as the standards for discharge to that aquifer, such costs at this stage are not direct or are not quantifiable. When mapped and the zones of protection identified, a reasonable assessment of the economic cost or benefit of the proposal can be addressed. This is specifically reserved by the Commission whereby its decision to reclassify an aquifer as G-I will, pursuant to proposed rule 17-3.403(6) follow rule making procedures and be based on consideration of economic factors. This result obtains whether the affected party is a small business or some other entity. In reaching the conclusion that the economic costs or benefits of the proposed rules, apart from the cost of mapping, do not at this stage have a direct or quantifiable impact, I have not overlooked the "announcement effect" that is occasioned by the announcement of a governmental agency to regulate an activity. Such announcement certainly has a chilling effect on the community that may reasonably be impacted. The economic impact is, however, speculative or not quantifiable in the instant case. Further, the proof does not demonstrate any incorrectness or unfairness in the proposed adoption of the rules occasioned by the EIS prepared in this case.
The Issue The issue in this case is whether Bocilla Utilities, Inc. is entitled to a public drinking water construction permit for the expansion of an existing reverse-osmosis water plant located on Don Pedro Island.
Findings Of Fact Bocilla Utilities, Inc. (Applicant) was incorporated in the mid-1980s for the purpose of supplying water to a residential development being developed by some or all of the principals of the water utility. The residential development is on a bridgeless barrier island in Charlotte County. Applicant initially proposed locating the plant on the mainland with submerged pipes to the island. This proposal was approved by the Army Corps of Engineers and Department of Environmental Regulation, but the Trustees of the Internal Improvement Trust Fund denied Applicant's request for an easement across submerged state lands. After failing to obtain a submerged land easement, Applicant obtained the permits to build a reverse-osmosis (RO) water plant at its present location on the barrier island. Included among the permits was a permit from the Department of Natural Resources dated September 11, 1985, allowing Applicant to construct the water treatment plant, two underground concrete water storage tanks, and a tennis court on top of the tanks up to 100 feet seaward of the coastal construction control line. Applicant is a certificated utility that, since September 1994, has been regulated by the Public Service Commission. It was previously regulated by Charlotte County. By Application for a Public Drinking Water Facility Construction Permit filed January 26, 1995 (Application), Applicant requested a permit to expand the treatment capacity of its water plant from 30,000 gallons per day (gpd) to 120,000 gpd. By installing the new treatment equipment in two stages, the plant would have an immediate capacity of 60,000 gpd. Applicant proposes no material changes to the existing water storage tanks, distribution system, or the size or location of the building that houses the existing and proposed water treatment equipment. The Application form asks Applicant to identify any well construction permits obtained from the water management district and to provide a map showing any sanitary hazards within 500 feet of each proposed well. The Application form requires Applicant's professional engineer to attest that the project complies with Chapter 62-555, Florida Administrative Code. The Engineering Report attached to the completed Application supplies the requested information, but explains that Applicant's hydrogeologist had not, as of the date of the report, obtained the well-construction permits from the water management district. By Intent to Issue dated February 27, 1995, the Department of Environmental Protection (DEP) gave notice of its intent to issue the requested permit. Noting that it has permitting jurisdiction under Section 403.861(9), Florida Statutes, and that the project is not exempt, DEP determined that a public drinking water construction permit is required for the proposed work. The Intent to Issue is based on DEP's belief that reasonable assurances have been provided to indicate that the proposed project will not adversely impact water quality and the proposed project will comply with the appropriate provisions of Florida Administrative Code Rules 62-4, 62-550, 62- 555 and 62-699. Petitioners timely objected to the issuance of the proposed permit. Petitioners reside in Applicant's certificated area on the barrier island. They presently obtain their water from private wells or cisterns, rather than Applicant. If the permit were granted so as to expand Applicant's production capacity, Petitioners would be more likely required to obtain water from Applicant due to Charlotte County's mandatory hookup ordinance. About a week before filing the Application, Applicant applied on January 20, 1995, to the Southwest Florida Water Management District (SWFWMD) for permits for the construction of the two wells included in the draft permit. SWFWMD granted these permits on February 8, 1995, about three weeks after receiving the applications. Consistent with its normal practice in granting well-construction permits, SWFWMD did not provide interested persons with a point of entry to challenge the permits. The SWFWMD permits provide in part: Compliance with state and local county health regulations as per Chapter 17-555, Florida Administrative Code (F.A.C.), is required via the Drinking Water System Permit. Compliance with Chapters 17-532 and 17- 555, F.A.C., on construction standards and grouting procedures for Public Supply Wells shall be followed. * * * This well site has been judged as satisfactory based on the location and information provided to [SWFWMD] at the time of the well site inspection. . . . * * * Public Supply Wells must meet certain setback requirements from all potential sources of contamination. To obtain and retain your Drinking Water System Permit, please coordinate any future development of the surrounding property within 200' of your well site with the Charlotte County Health Department. * * * By letter dated February 14, 1995, from a SWFWMD representative to Applicant's hydrogeological consultant, SWFWMD acknowledged that it granted Applicant a setback variance of 100 feet from nearby septic systems in permitting the two new wells. The letter states that the "variance is based upon the known geohydrology of the area and the proposed construction of the wells," as well as an understanding that the "existing public system is working out with no problems." A month later, a letter from a DEP engineer identifies various types of sanitary hazards and implicitly ratifies the setback variance granted by SWFWMD. By letter dated March 14, 1995, Gary Maier identified sanitary hazards as septic tank systems, sewer lines, swimming pools and associated chemicals, pet excretions, and residential chemicals such as pesticides, fertilizers, paints, oils, and solvents. Mr. Maier's letter acknowledges that SWFWMD had granted a variance from 200 feet to 100 feet "due to geologic and treatment conditions," but cautions that "any further decrease in setbacks for sanitary hazards would be imprudent." Applicant's water plant is located on Don Pedro Island, which is part of an island chain consisting, from north to south, of Knight Island, Don Pedro Island, and, usually, Little Gasparilla Island. The low-lying island chain fronts the Gulf of Mexico on the west. The northern end of the island chain abuts Lemon Bay on the east. Over the years, storms have opened and closed passes at various points along the island chain. The island chain is vulnerable to flooding, and some areas are more vulnerable than others. One of the historic passes is Bocilla Pass. The plant site area is about a half mile south of this now-closed pass. The Gulf beaches on either side of the point at which the Bocilla Pass emptied into the Gulf have suffered considerable erosion in recent years, to the point that recently built homes have been inundated by water and had to be removed or razed. The plant site area includes the building housing the water treatment and other equipment, two 50,000-gallon storage tanks immediately to the west of the building, the existing water supply well located just east of the building, and the two proposed water supply wells located a short distance east and south of the building. The existing storage tanks, which mark the westernmost extent of the plant site area, are about 235 feet east of a pronounced erosion line along the Gulf shore and are separated from the Gulf by South Gulf Boulevard. Immediately adjacent to the tanks is the building housing the water treatment equipment. The two proposed wells would be located about 200 and 450 feet south of the tanks. The plant site area is much closer to water on the east. The southerly proposed well is about 12 feet west of the mean high water line of Bocilla Lagoon, and the northerly proposed well is about 16 feet west of the mean high water line of Bocilla Lagoon. The building housing the water treatment equipment is further away from the water, but still less than 50 feet. Bocilla Lagoon is a long and narrow waterway that was dredged in a north-south direction parallel to the Gulf shoreline. Bocilla Lagoon is closed off by land less than a quarter of a mile south of the plant site area. The lagoon runs to the north to connect to what remains of Bocilla Pass, which then runs easterly a short distance to a dredged extension of Lemon Bay. The building housing the water treatment equipment and the storage tanks are not located in the vulnerable FEMA V[elocity] zone. However, the record does not establish the location of the proposed wells relative to the V- zone. Testimony concerning the location of the V-zone relative to the water plant establishes only that the building, not the two proposed wells, are safely outside the V-zone. Nothing in the record establishes contour lines on the barrier island in the vicinity of the plant site area or the elevation of the land at the site of the two proposed wells. Applicant has recently upgraded the security of the storage tanks through the addition of locks to the manholes. The installation of fences is impractical and unnecessary because the tanks are topped by a six-inch, reinforced slab of concrete that also serves as tennis courts. The proposed wells would be well constructed. They would extend 167 feet into a confined artesian aquifer. The concrete pressurized grouting coupled with a potentiometric surface of seven feet make it unlikely that the wells would be vulnerable to contaminants. During severe-storm conditions, pumping would cease, leaving the system in its naturally pressurized state, so that surface water could not easily flow down into the well. Additionally, the RO filtration technology is one of the most effective at eliminating contaminants from drinking water. However, failing to have shown that the two proposed wells are outside the V-zone, Applicant has also failed to provide reasonable assurances that the two proposed wells would be protected from damage from the velocity wave action associated with the V-zone. Applicant has constructed and operated the water plant in an exemplary fashion. Applicant has at all times met or exceeded applicable standards for water quality, safety, and operations. Original construction exceeded minimum requirements and added to the durability of the fixtures. The building housing the water treatment equipment and hydropneumatic tank has been issued a floodproofing certificate by a registered engineer. The certificate states that, with human intervention in the form of bolting predrilled plywood boards over openings, the plant is waterproofed to an elevation of 14 feet NGVD, which is one foot higher than the FEMA-supplied base flood elevation of 13 feet NGVD. Applicant employs an operations manager with a Class A license rather than one with merely a Class C license, even though only a Class C operator is required for a water plant of this size. Also, Applicant maintains a low-level chlorine indicator, even though not required to do so due to the small size of the utility. The relevant sewage flows from the quantity of water that would be drawn by each proposed well would be greater than 2000 gpd. Near the proposed wells are single- and multi-family residences served by on-site sewage disposal systems, the above- described road, a swimming pool on the other side of the road, an injection well, and the treatment plant at which Applicant stores anti-scaling agents, ammonia, chlorine, and acid. However, Applicant has shown that none of these items is within 100 feet of the proposed wells. Bocilla Lagoon is not a sanitary hazard at this time. The two deficiencies in Applicant's proof relate solely to the susceptibility of the proposed wells to a significant risk of damage from flooding and other disasters and the location of the proposed wells relative to areas least subject to localized flooding. In all other respects, such as fire flow and security, Applicant has provided reasonable assurances that the applicable criteria would be satisfied or that the proposed work would have no bearing on the issue raised by Petitioners.
Recommendation It is RECOMMENDED that the Department of Professional Regulation enter a final order denying the application of Bocilla Utilities, Inc. for a public water supply construction permit. ENTERED on August 25, 1995, in Tallahassee, Florida. ROBERT E. MEALE Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings on August 25, 1995. APPENDIX Rulings on Respondents' Proposed Findings 1-4: adopted or adopted in substance. 5: rejected as irrelevant and repetitious. 6-7 (except last sentence): adopted or adopted in substance. (last sentence): rejected as unsupported by the appropriate weight of the evidence and legal argument. (except last sentence): rejected as subordinate, recitation of testimony, and irrelevant. 8 (last sentence): adopted or adopted in substance. 9: rejected as irrelevant. 10: adopted or adopted in substance, except to extent of legal argument as to effect of action of SWFWMD in granting variance. 11-12: rejected as irrelevant. 13 (except last sentence): adopted or adopted in substance. 13 (last sentence): rejected as irrelevant. 14-17 (except last sentence): adopted or adopted in substance. 17 (last sentence): rejected as legal argument. 18-21: adopted or adopted in substance. 22: rejected as unnecessary. 23: adopted or adopted in substance as to protection from only sanitary hazards. 24-26: adopted or adopted in substance as to description of aquifer, proposed well construction, and efficiency of RO filtration process, but not as reasons in support of Paragraph 23. 27 (first sentence): adopted or adopted in substance. 27 (remainder): rejected as unnecessary. 28: adopted or adopted in substance. 29: rejected as unnecessary. 30-31: adopted or adopted in substance. 32: rejected as irrelevant. 33-40: rejected as unsupported by the appropriate weight of the evidence. COPIES FURNISHED: Virginia B. Wetherell, Secretary Department of Environmental Protection Twin Towers Office Building 2600 Blair Stone Road Tallahassee, FL 32399-2400 Kenneth Plante, General Counsel Department of Environmental Protection Twin Towers Office Building 2600 Blair Stone Road Tallahassee, FL 32399-2400 Robert Starr P.O. Box 5337 Grove City, FL 34224 Betty Brenneman P.O. Box 67 Placida, FL 33946 Jim Duff P.O. Box 41 Placida, FL 33946 M. Christopher Bryant Oertel Hoffman P.O. Box 6507 Tallahassee, FL 32314-6507 Thomas I. Mayton, Jr. Assistant General Counsel Department of Environmental Protection 2600 Blair Stone Road Tallahassee, FL 32399-2440
The Issue The issue to be determined in this case is whether the proposed amendment to Florida Administrative Code Rule 62-555.360 of the Department of Environmental Protection (“Department”), pertaining to cross-connection control for public water systems, is an invalid exercise of delegated legislative authority.
Findings Of Fact The Parties Petitioner is a natural person residing at 1805 Burlington Circle, Sun City Center, Hillsborough County, Florida. The Department is the state agency with powers and duties to protect public drinking water as set forth in the Florida Safe Drinking Water Act, section 403.850, et seq., Florida Statutes (2013). Background The term “cross-connection” is defined in rule 62-550.200(26) as: any physical arrangement whereby a public water supply is connected, directly or indirectly, with any other water supply system, sewer, drain, conduit, pool, storage reservoir, plumbing fixture, or other device which contains or may contain contaminated water, sewage or other waste, or liquid of unknown or unsafe quality which may be capable of imparting contamination to the public water supply as the result of backflow. Cross-connections are prohibited unless appropriate backflow protection is provided to prevent backflow through the cross-connection into the public water system. See Fla. Admin. Code R. 62-550.360(1). There are three types of backflow prevention devices germane to this proceeding: Reduced Pressure Principle Assembly ("RP"), Double Check Valve Assembly ("DC"), and Dual Check Device ("DuC”). Typically, but not in every case, the water customer is responsible for the costs of installation, inspection, and maintenance of a backflow prevention device. It is undisputed that the RP is the most expensive to purchase, install, and maintain; followed by the DC; and then the DuC.2/ The RP and DC are installed above-ground, usually near a street. Test ports on these assemblies allow them to be tested to determine whether they are still functioning to prevent backflow. The DuC is usually installed underground and has no test ports. The Department asserts that this difference makes the DuC less reliable than the RP and DC. The rule states, and Petitioner did not refute, that the RP and DC offer greater backflow protection than the DuC. Petitioner has an auxiliary water system at his residence, which he uses to pump untreated water from a nearby lake to irrigate his lawn. There is no cross-connection between the plumbing system in Petitioner’s residence and his auxiliary water system. Petitioner does not have a backflow prevention device installed at his property. Hillsborough County has an ordinance that requires the installation of an RP device for residential customers who have auxiliary water systems, but the County currently has a moratorium on the enforcement of its ordinance. Petitioner is on a local committee established to investigate and advise the Hillsborough County Board of County Commissioners regarding cross-connection control. He believes the County is likely to modify its ordinance and allow the DuC for residential customers who have auxiliary water systems. The Department Rule The Department stated its purposes for the rule in the Notice of Proposed Rulemaking: These rules are being amended to significantly reduce the overall regulatory burden of cross-connection control requirements on community water systems (CWSs) and their residential customers by: allowing a dual check device to be used as backflow protection at or for residential service connections from CWSs to premises where there is any type of auxiliary or reclaimed water system; and (2) allowing biennial instead of annual testing of backflow preventer assemblies required at or for residential service connections from CWSs. A community water system (“CWS”) is a public water system which serves at least 15 service connections or regularly serves at least 25 year-round residents. See § 403.852(3), Fla. Stat. The Department requires each CWS to have a cross- connection control program, and Table 62-555.360-2 in the rule establishes the “Minimum Backflow Protection” that must be provided at or for the service connection from the CWS to various types of water customers. The minimum backflow protection specified in the table for a residential service connection with an auxiliary water system is a DuC. All references hereafter to “residential service connection” shall mean one with an auxiliary water system. There is a footnote for the DuC at the bottom of the table, which explains: A DuC may be provided only if there is no known cross-connection between the plumbing system and the auxiliary or reclaimed water system on the customer's premises. Upon discovery of any cross•connection between the plumbing system and any reclaimed water system on the customer's premises, the CWS shall ensure that the cross-connection is eliminated. Upon discovery of any cross- connection between the plumbing system and any auxiliary water system other than a reclaimed water system on the customer's premises, the CWS shall ensure that the cross-connection is eliminated or shall ensure that the backflow protection provided at or for the service connection is equal to that required at or for a non•residential service connection. The SERC As part of the rulemaking process for the proposed amendments to rule 62-555.360, the Department prepared a Statement of Estimated Regulatory Cost ("SERC"). Section 120.541, Florida Statutes (2013), governs the preparation of SERCs and provides that a substantially affected person may submit a “good faith written proposal for a lower cost regulatory alternative that substantially accomplishes the objectives of the law being implemented.” See § 120.541(1)(a), Fla. Stat. The parties dispute whether Petitioner challenged the SERC. In his amended petition, Petitioner states no objection to any statement in the SERC. Petitioner did not challenge the SERC. The parties dispute whether Petitioner submitted a lower cost regulatory alternative. The Notice of Proposed Rulemaking stated: Any person who wishes to provide information regarding a statement of estimated regulatory costs or provide a proposal for a lower cost regulatory alternative must do so in writing within 21 days of this notice. Within 21 days of the notice, the Department received Petitioner's written comments. In his comments, Petitioner cites section 120.52(8)(f), which provides that a rule is invalid if it imposes regulatory costs which could be reduced by adopting a less costly alternative. Petitioner recommends that the rule be changed to specify that the less costly DuC is the only acceptable backflow prevention device for residential service connections and “A CWS shall not impose a requirement for a more expensive type of backflow prevention valve.” The Department contends that Petitioner’s comments did not constitute a good faith lower cost regulatory alternative, citing pages 87-98 of the Transcript. Those pages contain some argument on the issue, but do not prove Petitioner did not submit a lower cost regulatory alternative. Petitioner’s timely written comments included a citation to the relevant statute and a plainly-worded proposal. As explained in the Conclusions of Law, Petitioner’s comments were sufficient to constitute a lower cost regulatory alternative. Petitioner’s Objections Petitioner objects to rule 62-555.360 because (1) it specifies use of the RP and DC, which he contends are unreasonably dangerous to public health and safety; (2) it specifies the DuC for residential service connections as the “minimum” protection, which he contends allows a CWS to require the more expensive RP or DC; (3) it requires testing of backflow devices “at least biennially” (once every two years), which he believes is too frequent; (4) it makes biennial testing a “minimum” testing interval, which he contends allows a CWS to require more frequent inspection; and (5) it does not require the backflow prevention device to be attached to the CWS’s water meter where Petitioner believes it should always be located. Unreasonable Danger Petitioner contends that the RP and DC are unreasonably dangerous to public health and safety because a person could intentionally pump contaminants through a test port on one of these assemblies into a public water supply. The Department does not dispute that a person could introduce contaminants into a public water supply in this way. The flaw in Petitioner’s reasoning is his failure to see the danger in proper perspective. Department personnel and other persons with expertise in public water systems throughout the United States are well aware that there are many access points in potable water collection, treatment, and distribution systems and many methods to introduce contaminants into these systems. There are many access points other than RPs and DCs. For example, there are methods available that would allow contaminants to be pumped into a public water system from any building connected to the system that has no backflow prevention device installed. RPs and DCs are primarily designed to prevent accidental introduction of contaminants into a public water system. However, they also prevent a person from intentionally pumping contaminants into the public water system from inside a house or building, hidden from view. The danger described by Petitioner assumes that the criminal who is intentionally pumping contaminants through the RP or DC will do it while standing next to the device, in the open, near a street. It is a well-known fact officially recognized by the Administrative Law Judge that criminals prefer to conduct their criminal activities hidden from sight rather than in plain view. Therefore, a criminal planning to contaminate a public water supply is more likely to choose a means other than introducing contaminants through an RP or DC. RPs and DCs are already in wide use. There is no reported incident of intentional contamination of a public water supply by pumping contaminants through one of these devices. When these factors are taken into account, the rule’s specifications for the continued use of RPs and DCs do not create an unreasonable danger to the public health and safety. Minimum Backflow Protection Petitioner contends that Table 62-555.360-2 is invalid because it violates the Department’s duty under section 120.541 to adopt “less costly alternatives.” Petitioner asserts that by specifying the DuC as the “minimum” backflow protection required for residential service connections the rule allows a local government to require the more costly RP or DC. The Department cannot dispute that the DuC substantially accomplishes the statutory objectives. The RP and DC provide greater backflow protection than the DuC, but the Department specified the DuC for residential service connections, indicating that the lower protection provided by the DuC did not make it fall short of the statutory objectives. However, as explained in the Conclusions of Law, the rule imposes the least costly regulatory alternative for residential service connections because it only requires the DuC. Biennial Testing Schedule Petitioner contends that section III.D. of Table 62-555.360-1 also violates the Department’s duty to adopt less costly alternatives because the rule requires “backflow assemblies” to be tested biennially, which Petitioner believes is too frequent. The term “backflow preventer assemblies” refers only to the RP and DC. See footnote 1 of Table 62-555.360-1. Section III.E. of Table 62-555.360-1 indicates that the DuC must be refurbished or replaced “at least once every 5 to 10 years.” Petitioner did not object to this requirement. The preponderance of the evidence presented shows that biennial testing is reasonable. Furthermore, it is determined in the Conclusions of Law that Petitioner has no standing to object to the testing frequency specified for the RP and DC, because the rule does not require him to have an RP or DC. Location of the Backflow Preventer Petitioner objects to section III.B. of Table 62-555.360-1, which requires backflow prevention devices to be “installed as close as practical to the CWS’s meter or customer’s property line.” Petitioner contends that this is an unconstitutional interference with private property and is unreasonably dangerous because it provides a means for intentional contamination. Petitioner’s private property rights claim is based on his allegation that if he were required by Hillsborough County to have an RP and DC, the device could be placed on his private property. Petitioner did not allege or present evidence to show that placing an RP or DC on his property would deprive him of all reasonable uses of his property so as to cause a taking of his private property for a public purpose without full compensation. See Art. X, § 6(a), Fla. Const. Furthermore, it is determined in the Conclusions of Law that Petitioner has no standing to raise this issue because the rule does not require him to have an RP or DC. Petitioner contends the rule should require that backflow prevention devices always be attached to the water meter because that reduces the opportunity for intentional contamination. Petitioner is not an expert in public water systems, generally, or the installation of backflow prevention devices, in particular. He is not competent to state the relevant factors and constraints associated with installation of the devices. He is not competent to express an opinion whether it is always possible or always appropriate to attach the devices directly to the water meter. Furthermore, Petitioner’s claim of unreasonable danger was refuted above.
The Issue The issues in this case essentially are whether the Respondent, the Department of Environmental Regulation (DER), should reimburse Anthony F. Kopp, Owner, La Casa Del Sol, for the difference between the cost to him of the DER's remedy for the EDB contamination of the drinking water supply at La Casa Del Sol and the remedy that is least costly to the Petitioner, together with the cost of a new irrigation system, engineering and attorney fees, and other incidental costs to the Petitioner.
Findings Of Fact The Petitioner, Anthony F. Kopp, is the owner of La Casa Del Sol (La Casa), a 40-acre development at 1255 U.S. Highway 27 North, Davenport, Florida. La Casa is divided into 309 mobile home lots, a clubhouse and five acres of common green space. In January, 1987, the Petitioner received a permit for construction of a water supply system for both drinking water and irrigation needs at La Casa. The construction permit was granted with the proviso that, when La Casa's population reached 350, a second backup drinking water well, six inches in diameter at 410 feet, with a casing to 366 feet, and an auxiliary power source would have to be installed. It would cost La Casa approximately $65,000 to install the backup well and auxiliary power source. La Casa did not reach a population of 350 until January, 1991. The St. Johns River Water Management District permitted the construction of the backup well, but the well never was constructed, and the construction permit now has expired. The auxiliary power source also was not installed. The main water supply system for La Casa was installed during the summer of 1987. It included a well and a system of lines for carrying water to each of the 309 lots. It also included hose bibs (faucets) at each lot so that the water also could be used for irrigation at each lot. The system also supplied water for irrigation of the common green space. Although all of the lots at La Casa were connected to the water supply system in the manner described, not all the lots had homes on them. During the summer of 1989, only about 175 of the lots had homes on them; by January, 1991, 198 lots had homes on them. Although not all of the lots were occupied, the entire water supply system was permitted, and no additional permits were required to provide water to the lots. However, when La Casa's population reached 350, the backup well and auxiliary power source would have to be installed under the permit conditions. In about May, 1988, DER tests showed that the La Casa water supply system was contaminated with ethylene dibromide (EDB) at levels in excess of the maximum allowable for drinking water. In October, 1988, the Petitioner completed and filed a Grant Application for EDB Clean-Up Funds. As part of the application, the Petitioner agreed that DER could: arrange for the purchase and installation of appropriate filters and inhibitors; provide a new well; or arrange for the connection of [the Petitioner's] well to an existing public supply system, whichever is more cost-effective as determined by the Department of Environmental Regulation. DER contracted with Continental Water Systems to provide a temporary carbon filter system for La Casa's water supply system to remove the EDB and supply uncontaminated drinking water to the development, pending a permanent solution to the EDB contamination. The temporary filter system was designed to provide 100 gallons per minute of water, which should have been adequate for drinking water needs at La Casa. However, water pressure problems arose due to algal growth and the use of the system for irrigation purposes in addition to the drinking water purposes for which it was designed. DER is a member of the Ground Water Task Force, which met biweekly or monthly to discuss, among other things, potable wells contaminated with EDB. Other member agencies are the Department of Heath and Rehabilitative Services, the Department of Agriculture and Consumer Services, the Department of Transportation and the Department of Community Affairs. The Task Force discussed the La Casa contamination problem and agreed that the possibility of having La Casa connected to an existing water supply should be explored. DER began negotiating both with Polk County and with Haines City for a water line connection. Connection with the Polk County line would have been more expensive, and Polk County was not particularly interested in extending its line. Negotiations continued with Haines City. Negotiations with Haines City progressed to the point that DER was able to present for consideration by the Task Force cost figures for a permanent filter system at La Casa, with ten years of projected cost of operation and maintenance, as compared to the cost of extending the Haines City line. The Task Force agreed with DER that extending the Haines City line north to La Casa and connecting La Casa to it was the most cost-effective use of state funds to remedy the EDB problem at La Casa, particularly in view of other EDB-related drinking water supply problems in the area and anticipated future drinking water supply problems in the area. The Petitioner was not invited to participate in the negotiations with Polk County and Haines City and did not participate in them. Nor was the Petitioner invited to participate in either the DER or the Task Force decision- making process, and the Petitioner did not participate in those processes, either. However, the Petitioner, through his engineering consultant, was made aware in early 1989 that DER was exploring options to have La Casa connected to an existing water supply. DER paid approximately $400,000 for the Haines City water line extension and La Casa connection. This included $90,000 for Haines City impact fees to cover the 175 then existing mobile homes at La Casa (DER actually paid $450 per unit for 200 units), as well as the plumbing contractor fees for connecting La Casa to the extended city water line. It also includes the cost of installing a water meter at La Casa. The ten-year cost to the DER to solve just the La Casa drinking water problem using an EDB filter system would have been less than the cost to the DER of extending the Haines City line and connecting La Casa to it. But the evidence is clear that, in the long run, and taking into consideration other EDB-related drinking water supply problems in the area, and anticipated future drinking water supply problems in the area, the most cost-effective use of state funds to remedy the problem was to extend the Haines City line and connect La Casa to it. (Even the Petitioner's expert witness agreed that the Haines City extension and connection was the most cost-effective use of state funds to remedy the area's EDB problem.) DER advised the Petitioner of its agreement with Haines City in approximately May or June, 1989. By letter dated July 27, 1989, DER explained to the Petitioner the details of the agreement, specifically what DER would pay and what DER would not pay. By the fall of 1989, the Petitioner knew that work was beginning. At the time, the extension of the Haines City line and connection to La Casa was projected for completion in January, 1990, but there were delays, and the city water supply was not ready to be connected to La Casa until August, 1990. By this time, a dispute had arisen between the Petitioner and DER as to the cost to the Petitioner of connecting to the city water, and actual connection was further delayed. Finally, by letter dated October 11, 1990, DER gave the Petitioner an ultimatum: either be connected to the city water supply; or forfeit any state contribution to the cost of remedying the EDB contamination of the Petitioner's water supply. Faced with the prospect of having to open the winter peak season without any drinking water, the Petitioner agreed, under protest, to be connected to the city water supply, and initiated formal administrative proceedings to challenge DER's intended decision to limit the extent to which the DER would cover the Petitioner's costs. There was evidence that the plumbing contractor hired by DER may have caused damage to the landscaping and one mobile home that has not yet been repaired. However, DER acknowledged its responsibility for the damage and intends to have the plumbing contractor repair the damage. There also was evidence that the Petitioner received a bill from Haines City for the installation of a water meter at La Casa. But the evidence also was that DER may already have paid the bill. In any event, DER acknowledges its responsibility for the cost of the water meter as part of the cost of connecting La Casa to the extended city water line. Although DER had the Haines City water line extended in response to the Petitioner's Grant Application for EDB Clean-Up Funds, two commercial properties south of La Casa were connected because of EDB contamination, and the line also was extended north of La Casa in preparation to address anticipated future EDB contamination problems. Under the DER's response to the Petitioner's Grant Application, each additional mobile home unit over 200 connected to the city water supply will require the payment of a $450 impact fee. In addition, Haines City will charge monthly water fees of $1.80 1/ per 1000 gallons for the use of water at La Casa, with a $1,000 minimum charge per month. 2/ Based on current occupancy of 200 lots, the Petitioner estimates water fees of $42,000 per year, figured at approximately $5,000 per month for six peak months (based on a recent peak season monthly bill) and $2,000 per month for six off-peak months. However, it is not clear whether some of that estimated usage includes irrigation. If, in order to save gallonage fees, the Petitioner puts in a separate irrigation system supplied by its well, it will have to put in a separate distribution system since the current system is being used to bring city water to the lots. This would cost approximately $90,000. The Petitioner has paid approximately $2,100 in engineering fees to assess the problem with the temporary filter and to propose solutions, to estimate the cost of installing a separate irrigation system, and to estimate the cost to the Petitioner of connecting to the Haines City water supply. There was no evidence as to the reasonableness of those fees. The Petitioner also has paid approximately $4,500 in attorney fees to negotiate with the DER for payment of a larger portion of the Petitioner's cost of connecting to the Haines City water supply. There was no evidence as to the reasonableness of the attorney fees.
Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is recommended that the Department enter a final order dismissing the Amended Petition for Formal Hearing in this case. RECOMMENDED this 14th day of March, 1991, in Tallahassee, Florida. J. LAWRENCE JOHNSTON Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 14th day of March, 1991.