Elawyers Elawyers
Ohio| Change
Find Similar Cases by Filters
You can browse Case Laws by Courts, or by your need.
Find 49 similar cases
CAPTIVA CIVIC ASSOCIATION, INC., AND SANIBEL CAPTIVA CONSERVATION FOUNDATION vs SOUTH FLORIDA WATER MANAGEMENT DISTRICT AND PLANTATION DEVELOPMENT, LTD, 06-000805 (2006)
Division of Administrative Hearings, Florida Filed:Fort Myers Beach, Florida Jan. 03, 2007 Number: 06-000805 Latest Update: Feb. 14, 2008

The Issue The issue in this case is whether the South Florida Water Management District (SFWMD, or District) should issue a Modification to Environmental Resource Permit (ERP) No. 36-00583- S-02, Application No. 050408-15 to Plantation Development, Ltd. (PDL), for construction and operation of a surface water management system serving a 78.11-acre condominium development known as Harbour Pointe at South Seas Resort, with discharge into wetlands adjacent to Pine Island Sound.

Findings Of Fact Based on the evidence and arguments, the following facts are found: The Parties PDL, the applicant, is a limited partnership which is the successor to Mariner Group, Inc. (Mariner). SFWMD has jurisdiction over PDL's application, as amended, and has given notice of its intent to grant PDL's application, as amended, with certain conditions. Petitioners, CCA and SCCF, and Intervenor, CSWF, are Florida not-for-profit corporations that challenged the proposed ERP. Development and Permit History The property subject to PDL's application was part of approximately 310-acres on the northern end of Captiva Island in Lee County, Florida. Redfish Pass is to the immediate north, separating Captiva Island from North Captiva Island. Farther to the north is Cayo Costa Island, a large island to the south of Boca Grande Pass. Most of Cayo Costa is a State Park. To the south of Captiva Island is Sanibel Island, the site of the Ding Darling National Wildlife Refuge. To the northeast of Sanibel Island and to the east of the rest of the string of barrier islands just mentioned is Pine Island Sound, which is to the west of Pine Island. Pine Island Sound is a state-designated Aquatic Preserve and Outstanding Florida Water (OFW). Pine Island Sound also is state-designated Class II water, but shell-fishing is prohibited in the immediate vicinity of Captiva Island. To the east of Pineland Island is Little Pine Island, which is surrounded by the Matlacha Pass Aquatic Preserve, which includes the Matlacha Pass National Wildlife Refuge. All of these features are part of the Charlotte Harbor National Estuary (CHNE). San Carlos Bay is farther south. The Lee County mainland is to the east of Matlacha Pass and San Carlos Bay. The 310-acre site was purchased by Mariner in 1972 for development of a resort that became known as the “South Seas Plantation.” Mariner's property included both Captiva Island proper and a smaller island immediately to the east across Bryant Bayou to the north and Chadwick Bayou farther to the south. Bryant Bayou has a narrower inlet from the north, and Chadwick Bayou has a narrower inlet to the south. Both inlets lead to Pine Island Sound. When Mariner purchased the property, it theoretically was possible to develop a maximum of 3,900 dwelling units on the 310-acre property, pursuant to Lee County zoning. In 1973, Mariner submitted an application to Lee County for the right to develop of 912 dwelling units on its 310 acres. PDL characterizes this as a "voluntary down-zoning" for the purpose of protecting the environment and unusual for a developer to do at that point in time. However, it is speculative how much more than 912 dwelling units would have been approved by Lee County at the time. The purpose of Mariner’s application to Lee County was to create a resort where recreational, single family, multi- family, and some commercial uses would coexist in a resort setting. The overall development plan was to construct the resort while conserving many of the property’s natural resources, including several miles of mangrove and Gulf of Mexico shoreline. Lee County approved the rezoning and the concept of the South Seas Plantation in 1973. Mariner's development began with Captiva Island proper and included a marina, golf course, and a variety of residential condominiums and single-family home sites. Some of the residential units were sold, and others remained in Mariner's ownership. Mariner marketed the rental of units at South Seas Plantation and served as rental agent for units not owned by Mariner. Development of the marina included dredging, and spoil was deposited on the northern tip of the smaller island, helping to create approximately 1.4 acres of upland there. In the 1950's or 1960's, a natural sand-and-shell berm along the eastern shore of the smaller island was built up and maintained by addition of fill material to create a two-track sand/shell road, which was used for vehicular access to the northern tip via an east-west road that divided the smaller island roughly in half and connected it to Captiva Island proper and the main road at South Seas Plantation. At a later point in time, the east-west portion of the road was paved for better access to a drinking water plant, a wastewater treatment plant, and a helicopter pad used by the Lee County Mosquito Control District. In 1985, Mariner received from SFWMD a “Master Stormwater Permit” for its entire development (the 1985 Permit). At that time, SFWMD did not regulate wetland impacts, only surface water management systems. The Department of Environmental Regulation regulated wetland impacts through its dredge and fill permit program, and there was no evidence relating to any dredge and fill permitting on the property. The 1985 Permit was for surface water management systems for construction in uplands on the property. No surface water management systems were needed or permitted in any wetlands. The 1985 Permit included a surface water management system for an 18-unit hotel on the spoil uplands of the northern tip of the smaller island. Permit drawings showed plans for a golf course on much of the remainder of the smaller island, which consisted mostly of wetlands. Access to the facilities was envisioned to be by water taxi, with emergency access via the utility and sand/shell road. Together, the hotel and golf course was to become a part of the resort known as Harbour Pointe. The 1985 Permit was modified several times in the years since its initial issuance, during which time Chapter 373, Florida Statutes, was amended to give SFWMD authority to regulate activities in waters and wetlands. However, until the pending application, none of the modifications had wetland impacts. In 1998, Mariner negotiated the sale of ten resort properties it owned in Florida, including South Seas Plantation, to Capstar, which later became Meristar S.S. Plantation Co., LLC (Meristar). Meristar was a real estate investment trust which specialized in hotels. Because it was not in the development business, Meristar was not interested in purchasing the as-yet undeveloped Harbour Pointe portion of South Seas Plantation, or Mariner's remaining development rights. As a result, Meristar purchased all the developed land on South Seas Plantation but not the approximately 78 acres of undeveloped land which is the subject of the pending application, or any of Mariner's development rights. Thus, after the sale of South Seas Plantation, Mariner retained its development rights and the 78 acres of undeveloped land, which are the subject of PDL's application. In 2002, Lee County issued an Administrative Interpretation which clarified that those development rights consisted of a maximum of 35 more residential units. Eleven units subsequently were built, leaving a maximum of 24 residential units when PDL filed its application in this case. The 78-acre Harbour Pointe site consists of mangrove wetlands, privately owned submerged lands, the 1.4-acre upland area at the northern tip of Harbour Pointe and another 1.4 acres of upland, which contain a Calusa Indian mound, known as the Chadwick Mound for its location west of Chadwick Bayou. While agreements between Meristar and PDL contemplate that PDL's subsequent development at Harbour Pointe would be marketed as part of the South Seas Resort and share some amenities and services, the parcels which comprise the Harbour Pointe development are the only undeveloped lands PDL owns or controls. PDL has no contractual or other legal right to develop on property owned by Meristar. Because it was modified several times since issuance, the 1985 Permit has not expired. However, Harbour Pointe never was constructed, and that part of the 1985 Permit expired in that Mariner lost its entitlement to proceed with construction. Instead, development of Harbour Pointe would require a permit modification under the new laws and rules, which included the regulation of wetland impacts. The Application and Proposed ERP In October 2003, PDL applied to SFWMD to further modify the 1985 Permit for construction of a water taxi dock for access to Harbour Pointe. After being informed by SFWMD that modifications to the 1985 Permit for development of Harbour Pointe would be reviewed under current laws and regulations, PDL withdrew the application. In April 2005 PDL applied for modification of the 1985 Permit to construct six 9,500 square-foot, four-plex condominium buildings (each two stories over parking, and accommodating units having 3,600-3,800 square feet of air-conditioned living space), a pool and spa, a tennis court, an access road, a filter marsh and surface water management facilities. Additionally, the site plan deleted all boat docks, except for a single water taxi slip and possibly a dock for launching kayaks and canoes and proposed a drawbridge across the inlet to Bryant Bayou to connect the project site to the South Seas Resort and eliminate the need for the emergency access road on the smaller island. This application described a development site of 7.4 acres, which included 4.8 acres of direct impacts to (i.e., destruction and fill of) mangroves and .1 acre of shading impacts from construction of the drawbridge. The proposed mitigation for the mangrove impacts included: restoration (by removal and replanting) of .6 acre of the north-south sand/shell road, with resulting enhancement of the adjacent preserved mangrove wetlands through improved hydrologic connection across the former shell/sand road and improved tidal connection to Pine Island Sound to the east; and preservation of the rest of PDL's property. The preserved areas would include: approximately 36 acres of mangrove wetlands adjacent to and south of the impacted wetlands (included the road to be restored) (Parcel A); 24.5 acres of mangrove wetlands south of the utility road and east of the narrow inlet to Chadwick Bayou (Parcel B); 9.3 acres of mangrove wetlands (7.9 acres) and tropical hardwoods (1.4 acres, which includes the Chadwick Mound), south of the utility road and west of the inlet to Chadwick Bayou, (Parcel C); .9 acre of mangrove wetlands to the west of Parcel C and the South Seas Resort main road (Parcel D); and .8 acre of mangrove wetlands separated from Parcel A by Bryant Bayou and adjacent to the South Seas Resort main road. A monitoring program lasting at least five years was offered to ensure success of the restoration and mitigation proposal. The application itself incorporated some reduction and elimination of wetland impacts. The total site consists of five separate tax parcels which could be developed into a number of single-family home sites. Such a development plan would have greater direct impacts than the proposed project and would require the shell/sand road to be significantly widened to meet current code requirements. By using the bridge as access, .11 acre of wetlands would be disturbed, as compared to 3.9 acres of total impact that would occur because of the widening the road. This approach results in the entire project causing less wetland impact than would occur from the use of the road alone. After the application was filed, PDL responded to two written requests for additional information and several other questions raised during meetings, phone conversations, and email exchanges with one or more SFWMD staff members. During this process, the application was amended. The tennis court was eliminated, and the filter marsh was replaced by a five dry detention ponds. In addition, the resulting development was concentrated more into the northern tip of the island to reduce and eliminate the greater secondary impacts (from more "edge effect") to the preserved wetlands to be expected from a more linear site plan. These changes reduced the footprint of the proposed project to 5.24 acres, the building size to 6,400 square feet each, the residential unit size to 2,400 to 2,600 square feet each, and wetland impacts to 2.98 acres, plus .11 acre of shading impacts from construction of the drawbridge. In addition, since the project was more concentrated at the northern tip, another tenth of an acre of the sand/shell road was to be restored. A conservation easement was offered for the 73.31 acres to be preserved, including 71.10 acres of wetlands, in Parcels A through E. PDL also offered to purchase .11 credits of offsite mitigation from the Little Pine Island Wetland Mitigation Bank (LPIWMB). On February 2, 2006, SFWMD's staff recommended approval of the amended application with 19 standard general conditions and 30 special conditions. Some of the special conditions in the Staff Report addressed prevention of erosion, shoaling, silt, turbidity, and water quality problems during construction or operation; remediation of any such problems not prevented; and restoration of any temporary wetland impacts. A pre-construction meeting was required to discuss construction methods, including construction dewatering. Although PDL indicated that dewatering would not be necessary for construction of the project, the Staff Report recommended that a dewatering plan be submitted before any dewatering occurred and noted that PDL would have to obtain all necessary Water Use authorizations, unless the work qualified for a No-Notice Short-Term Dewatering permit pursuant to Rule 40E- 20.302(3) or is exempt pursuant to Rule 40E-2.051.1 On February 8, 2006, SFWMD's Governing Board gave notice of its intent to approve the amended application with two additional conditions that were added to the Staff Report: PDL was required to apply for and receive a permit modification for the roadway necessary to access the project (i.e., the road leading from the South Seas Resort main road to the proposed drawbridge), and the applicant for the road to the drawbridge was required to document that proposed construction was consistent with the design of the master surface water management system, including land use and site grading assumptions; and a perpetual maintenance program for restored and preserved areas, including removal of exotic and nuisance vegetation in excess of five percent of total cover between regular maintenance activities, or such vegetation dominating any one section, was required to ensure integrity and viability. The parties interpreted the first of the two additional conditions to mean that construction access to build the project would be via the new roadway and drawbridge. On May 30, 2006, to address certain issues raised by the pending challenge to SFWMD's intended action, PDL further amended the application to substitute two wet retention ponds and three dry retention ponds for the five dry detention ponds and to make associated minor changes to the proposed surface water management system's water quality treatment methods to further reduce water quality impacts from the discharge of the system into the adjacent preserved wetlands. In addition, in view of disagreements among the parties as to the ability of PDL's onsite mitigation proposal to offset wetland impacts, PDL offered to increase offsite mitigation by purchasing as many additional credits from the LPIWMB as necessary to completely offset wetland impacts, as determined by the Uniform Mitigation Assessment Methodology (UMAM). Water Quantity Impacts Pursuant to Rule 40E-4.301(1), an applicant must provide reasonable assurance that the construction, alteration, operation, maintenance, removal or abandonment of a surface water management system: will not cause adverse water quantity impacts to receiving waters and adjacent lands; will not cause adverse flooding to on- site or off-site property; will not cause adverse impacts to existing surface water storage and conveyance capabilities. Section 6.0 of the Basis of Review for Environmental Resource Permit Applications Within the South Florida Water Management District (BOR), entitled Water Quantity Criteria, outlines the criteria that the applicant must meet for water quality at the project site. As outlined in BOR Section 6.2, the off-site discharge is limited to rates not causing adverse impacts to existing off- site properties. The proposed surface water management system consists of a series of swales, dry retention, and then a wet retention system with an outfall into the areas to the south. Ordinarily, stormwater runoff eventually will be absorbed into the ground. Any discharge associated with the system, typically only in conjunction with major rain events, will flow into a preserved wetland that will be hydrologically connected to Bryant Bayou and Pine Island Sound. As outlined in BOR Section 6.2, the off-site discharge rate is limited to historic discharge rates. As required by BOR Section 6.3, a storm event of 3-day duration and 25-year return frequency is used in computing off- site discharge rates. As required by BOR Section 6.4, building floors must be at or above the 100-year flood elevations. PDL conducted a hydrologic analysis of the existing condition of the property, analyzed the runoff patterns that would result during the 25-year rainfall event and then compared the development plan hydrologic analysis to the existing condition. The conclusion was that the development plan would not adversely affect offsite area. PDL analyzed a series of storm conditions for the protection of road elevations and the protection of finished floors. There are no off-site areas that contribute to runoff through this piece of property. The proposed system will not cause adverse water quantity impacts to waters and adjacent lands, flooding to onsite or offsite properties, or adversely impact existing surface water storage and conveyance capabilities. Water Quality Impacts Rule 40E-4.301(1)(e) requires an applicant to provide reasonable assurances that the proposed project will not adversely affect the quality of receiving waters so that State water quality standards will not be violated. BOR Section 5.0 is entitled Water Quality Criteria. BOR Section 5.1 states that projects shall be designed and operated so that offsite discharges will meet State water quality standards. BOR Section 5.2.1 requires that either retention or detention, or both retention and detention be provided in the overall system in one of the following three ways or equivalent combinations thereof: Wet detention volume shall be provided for the first inch of runoff from the developed project, or the total runoff of 2.5 inches times the percentage of imperviousness, whichever is greater. Dry detention volume shall be provided equal to 75 percent of the above amounts computed for wet detention. Retention volume shall be provided equal to 50 percent of the above amounts computed for wet detention. Retention volume included in flood protection calculations requires a guarantee of long term operation and maintenance of system bleed-down ability. BOR Section 5.9 states that all new drainage projects will be evaluated based on the ability of the system to prevent degradation of receiving water and the ability to conform to State water quality standards. In the design of the system, PDL proposed a series of best management practices. The first is to treat runoff through grassed swale areas adjacent to buildings and some of the internal roadways. From there, the water would discharge through a series of dry retention areas where there would be further removal and treatment. The water would discharge through a proposed wet retention area prior to outfall under more significant rainfall events, southward into the preserved wetland area. Because of the hydrological connection from there to Bryant Bayou and Pine Island Sound, a more detailed evaluation was conducted. PDL's detailed evaluation included source control measures. The first one is a construction pollution prevention plan. PDL also proposed an urban storm water management plan. PDL is going to provide guidance to property owners about pesticide and fertilizer management control. The Applicant also submitted a street-sweeping proposal. The design of the system incorporates an additional 50 percent water quality treatment volume, over and above the requirements of the BOR. The wet retention system, located to the north of the proposed outfall structure, incorporates submerged aquatic vegetation. That is not a requirement of the District. It is an extra measure that will remove additional levels of pollutants prior to outfall. PDL proposed an urban stormwater management plan. The plan requires annual inspection of the water management facilities, and it must be documented that the system is functioning as originally designed and built. The stormwater management system is capable, based on generally accepted engineering and scientific principles, of functioning as proposed. The stormwater management system satisfies the District's water quality criteria. Petitioners and Intervenor criticized the method used by PDL's water quality consultant, Dr. Harvey Harper, for projecting and evaluating water quality impacts to be expected from PDL's stormwater management design. They contended that the so-called "Harper method" has been criticized by other experts, none of whom testified. Dr. Harper ably defended himself against the criticism leveled at him. He testified that most if not all of the components he has incorporated into his evaluation method are not new but rather have been accepted and used by experts in his field for years. He also explained that he refined his evaluation method in response to some early criticism and that the method he used in this case has been peer-reviewed and accepted by the Department of Environmental Protection for evaluation of stormwater design criteria. While some of the assumptions incorporated in his evaluation method are simple averages of a relatively small samples, and sometimes averages of averages, Dr. Harper was confident in the ability of his method to accurately evaluate the expected water quality impacts from PDL's system. While there is potential for error in any projection, Dr. Harper's evaluation provided reasonable assurances that utilization of PDL's proposed stormwater management and treatment method will not result in violation of any State water quality standards or significantly degrade the water quality of Bryant Bayou or Pine Island Sound. Value of Wetland and Surface Water Functions In general, as part of the CHNE, the mangrove wetlands to be impacted by the proposed ERP are very important. The CHNE Coast Conservation Management Plan identifies three major threats to the estuary and local ecosystem: fish and wildlife habitat loss; water quality degradation; and hydrological alteration. The plan calls for the preservation of mangroves within the CHNE. A wide array of wildlife uses the habitat in the vicinity of the mangrove wetlands to be impacted. The site is in an important coastal fly-way for migratory birds, including numerous species of waterfowl and songbirds that migrate across the Caribbean and Gulf of Mexico to and from South and Central America. The project area also provides habitat for several listed wildlife species, including the American crocodile, wood stork, and West Indian manatee. The mangrove wetlands that will be impacted directly and indirectly by the proposed ERP are in relatively good condition and are very important due primarily to their location near Redfish Pass at the northern end of Captiva Island and to their relationship to the rest of the relatively large area of contiguous and relatively undisturbed wetlands in Parcels A through E. These attributes make them especially important as a nursery ground for several valuable fish species. Existing impacts attributable to the spoil and other disturbances in the adjacent uplands, the northernmost extent of the sand/shell road, and the South Seas Plantation/Resort development to the west across the inlet to Bryant Bayou keep these impacted wetlands from being of the very highest quality. Clearly, and obviously, the project will destroy and fill 2.98 acres of these wetlands. Indirect (secondary) impacts to the adjacent preserved wetlands will result from alteration of hydrology of the 2.98 acres of directly impacted wetlands. Instead of sheet-flowing across the uplands on the northern tip of Harbour Pointe into those wetlands, surface water on the 5.24- acre development project will be directed into a series of swales, to the dry retention ponds, and to the wet retention ponds with an outfall to the adjacent preserved wetlands to the south. Secondary impacts from the Harbour Pointe project will be similar to the existing secondary impacts to the 2.98 acres attributable to the adjacent spoil and the South Seas Plantation/Resort development, if not somewhat greater due to the absence of any buffer like the inlet. On the other hand, PDL's mitigation proposal will restore .7 acre of wetlands where the northern end of the north- south sand/shell road now exists. Eventually, the restored wetland would be expected to become an extension of the existing, adjacent red and basin black mangrove forest. In addition, the resulting improved hydrologic connection to Pine Island Sound will enhance the value of functions in the preserved wetlands, including possibly expanding the existing fish nursery and making it accessible to fish larvae and juvenile fish entering from the east as well as from the west via Bryant Bayou. There was much debate during the hearing as to whether the sand/shell road is natural or man-made and whether it is reducing what otherwise would be the natural tidal and hydrologic connection between the wetlands to the west of the road and Pine Island Sound. As indicated, a prior owner added fill material to the natural sand and shell berm in the 1950's and 1960's to create better vehicular access. See Finding 9, supra. The evidence was reasonably persuasive that those man-made changes have altered hydrology and tidal connection to some extent and that the restoration project will enhance the value and functions of the preserved wetlands to some extent. Impacts to the value of wetland and surface water functions, and corresponding mitigation for impacts, are required to be assessed using UMAM. See Fla. Admin. Code R. 62-345.100. While the mitigation assessment method might be uniform, its application and results are not. Three different experts used UMAM with differing results. SFWMD's expert, Mr. Cronyn, and PDL's consultants, Kevin L. Erwin Consulting Ecologist, Inc. (KLECE), conferred after their initial assessments, resulting in changed results by both (as well as correction of errors in initial scoring by Mr. Cronyn.) Dave Ceilley, an expert for Petitioners and Intervenor, scored the 2.98 acre impact area significantly higher in its current state than the final score of either Mr. Cronyn or KLECE, resulting in a higher functional loss from its destruction and filling. He also gave no credit for restoration of the sand/shell road, in contrast to KLECE and Mr. Cronyn, and scored PDL's mitigation proposal as it affected 36.6 acres of preserved wetlands (essentially, Parcel A) as a functional loss instead of a functional gain, as scored by KLECE and Mr. Cronyn. Mr. Ceilley also scored PDL's mitigation proposal as it affected 24.5 acres of preserved wetlands (Parcel B) as a functional loss instead of a functional gain, as scored by KLECE and Mr. Cronyn. Finally, he gave no credit for preservation of Parcels A through E via a conservation easement because he was under the mistaken impression that the land already was under a conservation easement in favor of Lee County. (Actually, PDL had agreed to preserve 65 acres of mangrove forest in return for the right to develop Harbour Pointe, although a conservation easement actually was imposed on only about six acres. Although not identified, the 65 acres probably would have included the preserved wetlands in the proposed ERP.) Mr. Cronyn gave credit for preservation of Parcels B through E. KLECE did not claim credit, because KLECE did not think it was necessary, but KLECE accepts Mr. Cronyn's assessment of those parcels. Mr. Ceilley's recent onsite field work was extremely limited, and much of his assessment was based general knowledge of the area and dated (14-year old) onsite field work. In addition, this was the first "real-life" UMAM assessment performed by Mr. Ceilley. His only other use of UMAM was for practice in training. Finally, his assessment was entirely independent without the input of any other consultants to aid him. In contrast, both KLECE and Mr. Cronyn had extensive prior experience using UMAM. In addition, KLECE functioned as a three- man team in performing its UMAM assessments and talked out any initial discrepancies and disagreements (albeit with Mr. Erwin being the final arbiter). KLECE and Mr. Cronyn also consulted with one another, as well as experts in other related fields before finalizing their respective UMAM assessments. KLECE was able to draw on field work conducted during over 200 man-hours onsite in recent years. While KLECE was the retained consultant and agent for the applicant in this case, Mr. Ceilley conceded that Mr. Erwin adheres to high ethical standards. Petitioners and Intervenor were critical of credit given in the UMAM assessments performed by Mr. Cronyn for preservation of Parcels B through E. (KLECE did not claim credit for their preservation in its UMAM assessment.) Petitioners and Intervenor contend that PDL already has agreed to preserve the wetlands in those parcels in return for the ability to utilize the remaining 24 residential units of development rights at Harbour Pointe and that development of the Chadwick Mound is unlikely. Actually, as found, PDL's agreement with the County only specified six of the 65 acres of wetlands to be preserved. Besides, the preserved wetlands in the proposed ERP would implement the agreement with the County. As for the Chadwick Mound, preservation without the proposed ERP is not a certainty, although residential development there would be difficult now that its existence is common knowledge. In any event, the relative unlikelihood of development in Parcels A through E, especially after development of 24 units at Harbour Pointe, was taken into consideration by Mr. Cronyn in determining the amount of credit to be given for their preservation. Taking all the evidence into account, Mr. Cronyn's UMAM assessment of the value of wetland functions with and without the proposed ERP are accepted. According to his assessment, the proposed ERP will result in a functional loss of .34 functional units, meaning an equivalent amount of mitigation credit would have to be purchased from the LPIWMB to offset wetland impacts. Based on the functional assessment used to permit that mitigation bank, approximately an additional .9 of a mitigation bank credit would be needed, in addition to the .11 already offered. The evidence as to cumulative impacts did not clearly define the pertinent drainage basin. Logically, the pertinent drainage basin either would encompass all land draining to surface waters connected to Pine Island Sound, which would include Little Pine Island, or would be limited to the land that is subject to the proposed ERP. If the former, all offsetting mitigation would be within the same drainage basin. If the latter, there would be no cumulative impacts, since the proposed ERP would complete all development. Reduction and Elimination of Wetland Impacts According to BOR Section 4.2.1.1, if a proposed surface water management system will result in adverse impacts to wetland or other surface water functions such that it does not meet the requirements of Sections 4.2.2 through 4.2.3.7, the District must consider whether the applicant has implemented practicable design modifications to reduce or eliminate such adverse impacts. The term "modification" does not mean not implementing the system in some form, or requiring a project that is significantly different in type or function, such as a commercial project instead of a residential project. Elimination and reduction also does not require an applicant to suffer extreme and disproportionate hardship--for example, having to construct a ten mile-long bridge to avoid half an acre of wetland impacts. However, Anita Bain, SFWMD's director of ERP regulation, agreed that, in interpreting and applying BOR Section 4.2.1.1, "the more important a wetland is the greater extent you would require elimination and reduction of impact." As reflected in Findings 17-19, supra, PDL explored several design modifications in order to reduce and eliminate impacts to wetland and other surface water functions. However, several options for further reducing and eliminating wetland impacts were declined. PDL declined to eliminate the swimming pool and move one or more buildings to the pool's location at the extreme northern tip of Harbour Pointe because that would not be a practicable means of reducing the Harbour Pointe footprint. First, the undisputed testimony was that a residential building could not be sited as close to the water's edge as a swimming pool could. Second, because it would block the view from some of Meristar's residential properties, and Meristar has the legal right to approve or disapprove PDL's development on Harbour Pointe. PDL declined to reduce the number of buildings because, without also reducing the number and/or size of the residential units, reducing the number of buildings would make it difficult if not impossible to accommodate all cul-de-sacs required by Lee County for use by emergency vehicles and meet parking needs beneath the buildings, as proposed. (In addition, it would reduce the number of prime corner residential units, which are more marketable and profitable.) PDL declined to further reduce unit size because a further reduction to 2,000 square feet would only reduce the footprint of the six proposed buildings by a total of 5,000 square feet--less than a ninth of an acre. Reducing unit size to much less than 2,000 square feet would make it difficult if not impossible to market the condos as "luxury" units, which is what PDL says "the market" is demanding at this time (and also what PDL would prefer, since it would maximize PDL's profits for the units.) But it was not proven that smaller condos could not be sold at a reasonable profit. PDL declined to reduce the number of condo units at Harbour Pointe (while maintaining the conservation easement on the remainder of PDL's acreage, which would not allow PDL to develop all of the 24 dwelling units it wants to develop and is entitled to develop on its 78 acres, according to Lee County). However, it was not proven that such an option for further reducing and eliminating wetland impacts would not be technically feasible, would endanger lives or property, or would not be economically viable. With respect to economic viability, SFWMD generally does not examine financial statements or profit-and-loss pro formas as part of an analysis of a site plan's economic viability. This type of information is rarely provided by an applicant, and SFWMD does not ask for it. As usual, SFWMD's reduction and elimination analysis in this case was conducted without the benefit of such information. Rather, when PDL represented that any reduction in the number of units would not be economically viable, SFWMD accepted the representation, judging that PDL had done enough elimination and reduction based on the amount of wetland impacts compared to the amount of wetlands preserved, in comparison with other projects SFWMD has evaluated. As Ms. Bain understands it, "it's almost like we know it when we see it; in that, you wouldn't ask an applicant to build a ten-mile bridge to avoid a half an acre wetland impact, so something that's so extreme that's obvious, rather than how much profit would a particular applicant make on a particular project." Although SFWMD did not inquire further into the economic viability of modifications to reduce and eliminate wetland and surface water impacts, Petitioners and Intervenor raised the issue and discovered some profit-and-loss pro formas that were presented and addressed during the hearing. A pro forma prepared in August 2003 projected a profit of $2.79 million for the first 8 of 12 units and an additional $1.72 million profit on the next four units (taking into account construction of a drawbridge and road to the west at a cost of $1.8 million). This would result in a total profit of $4.51 million, less $800,000 for a reserve to pay for maintenance of the drawbridge (which PDL said was required under timeshare laws). Another pro forma prepared in February 2004 projected profits of $11.99 million on 16 "big-sized" units (3,000 square feet), $11.81 million on 20 "mid-sized" units (2,200 square feet), and $13.43 million on 24 "mixed-size" units (16 "mid- sized" and 8 "small-sized" at 1,850 square feet), all taking into account the construction of the drawbridge and road at a cost of $1.8 million. After production of the earlier pro formas during discovery in this case, PDL prepared a pro forma on June 7, 2006. The 2006 pro forma projected net profit to be $4.9 million, before investment in the property. However, PFL did not make its investment in the property part of the evidence in the case. In addition, Petitioners and Intervenor questioned the validity of the 2006 pro forma. PDL answered some of the questions better than others. To arrive at the projected net profit, PDL projected significantly (33%) higher construction costs overall. The cost of the drawbridge and road to the west was projected to increase from $1.8 million to $2.5 million. Based on its experience, PDL attributed the increase in part to the effect of rebuilding activity after Hurricane Charlie and in part to the effect of Sanibel Causeway construction (both increased overweight charges and limitations on when construction vehicles could cross the causeway, resulting construction work having to be done at night, at a significantly higher cost). At the hearing, PDL did not present any up-to-date market surveys or other supporting information on construction costs, and the Sanibel Causeway construction is expected to be completed before construction on the Harbour Pointe project would begin. In addition, without a full enough explanation, PDL replaced the bridge operation and maintenance reserve of $800,000 with an unspecified bridge reserve fund of $2 million. On the revenue side of the 2006 pro forma, gross sales of $1.9 million per unit were projected, which is less than PDL was projecting per square foot in February 2004, despite the assumed increased construction costs. PDL also attributes this to the effects of Hurricane Charlie. Again, there were no market surveys or other information to support the pricing assumptions. Besides predicting lower price potential, the 2006 pro forma deducts a pricing contingency of $2.3 million. PDL did not calculate or present evidence on whether it could make a profit building and selling 16 or 20 units, thereby eliminating a building or two (and perhaps some road and stormwater facility requirements) from the project's footprint. The absence of that kind of evidence, combined with the unanswered questions about the 2006 pro forma for the maximum number of units PDL possibly can build, constituted a failure to give reasonable assurance that wetland and surface water impacts would be reduced and eliminated by design modifications to the extent practicable, especially given the very high importance of the wetlands being impacted. Public Interest Test An ERP applicant who proposes to construct a system located in, on, or over wetlands or other surface waters must provide reasonable assurances that the project will “not be contrary to the public interest, or if such an activity significantly degrades or is within an Outstanding Florida Water, that the activity will be clearly in the public interest.” § 373.414(1)(a), Fla. Stat.; Rule 40E-4.302(1)(a); and SFWMD BOR Section 4.2.3. This is known as the “Public Interest Test,” and is determined by balancing seven criteria, which need not be weighted equally. See Lott v. City of Deltona and SJRWMD, DOAH Case Nos. 05-3662 and 05-3664, 2006 Fla. Div. Adm. Hear. LEXIS 106 (DOAH 2006). The Public Interest criteria are as follows: Whether the activity will adversely affect the public health, safety or welfare or the property of others. There are no property owners adjacent to the site, and the closest property owners to the site are located across the inlet which connects Bryant Bayou to Pine Island Sound. While mangrove wetlands generally provide maximum protection from hurricanes, it does not appear from the evidence that existing conditions would provide appreciably more protection that the conditions contemplated by the proposed ERP. Otherwise, the project would not adversely affect the public health, safety or welfare, or property of others. Whether the activity will adversely affect the conservation of fish and wildlife, including endangered or threatened species, or their habitats. The proposed ERP would impact (fill and destroy) 2.98 acres of very important, high quality mangrove wetlands. Even with the restoration or creation of .7 acre of probable former wetlands and improvements in the hydrologic connection of the 36.5-acre preserved wetland (Parcel A) to Pine Island Sound, the proposed ERP probably will have a negative effect on the conservation of fish and wildlife, including listed species. However, the negative effect would not be considered "adverse" if the elimination and reduction requirements of BOR 4.2.1.1 are met. Whether the activity will adversely affect navigation or the flow of water or cause harmful erosion or shoaling. The proposed drawbridge will be constructed over the inlet connecting Bryant Bayou with Pine Island Sound, a distance of approximately 65 feet. Boaters use the inlet for navigation. However, by its nature, a drawbridge allows for and not adversely affect navigation. The proposed ERP does not contain specifics on operation of the drawbridge, but PDL's consultant, Mr. Erwin, testified that there would be no adverse effect on navigation, assuming that the bridge would remain in the open position between use for crossings by road. The drawbridge would not adversely affect the flow of water or cause harmful erosion or shoaling. Whether the activity will adversely affect the fishing or recreational values or marine productivity in the vicinity of the activity. The question whether the proposed ERP will adversely affect fishing or recreational values is informed by both the UMAM functional assessment and the reduction and elimination analysis. If impacts to wetlands and surface waters are reduced and eliminated, and offset by mitigation, there should be no significant adverse effects on fishing and recreational values. Whether the activity will be of a temporary or permanent nature. The proposed development is permanent in nature. vi. Whether the activity will adversely affect or will enhance significant historical and archaeological resources under the provisions of Section 267.061, Florida Statutes. There are no significant archaeological resources on the Harbour Pointe project site. Although shell scatter left by the Calusa Indians has been found on Parcel A, they have been evaluated in the permit application process by Corbett Torrence, an archeologist, and found to be of limited historical or archaeological value. The reduced scope of the project avoids most of these areas. The proposed ERP will, however, enhance significant archaeological resources by placing a conservation easement on Parcel C, which is the site of the Chadwick Mound, one of the largest Calusa Indian mounds in Lee County. Further studies of this site could lead to a much better understanding of the Calusa culture. This Indian mound is a very valuable historical treasure, and its protection through inclusion in a conservation easement is very much in the public interest. vii. The current condition and relative value of functions being performed by areas affected by the proposed activity. This subject also was considered in the reduction and elimination analysis and in the UMAM functional assessment. As in the Findings the current condition and relative value of the functions being performed by the areas affected by the proposed activity are very valuable. That is why the reduction and elimination analysis is particularly important in this case. Assuming appropriate reduction and elimination, mitigation according to the UMAM assessment can offset unavoidable impacts to the functions performed by the areas affected by the proposed activity. Standing of CCA, SCCF, and CSWF CCA, SCCF, and CSWF each has at least 25 current members residing within Lee County and was formed at least one year prior to the date of the filing of PDL's application. CCA's mission statement includes protection of "our residents' safety, the island ecology, and the unique island ambience . . . ." CCA also is dedicated to "preserving and expanding, where possible, the amount of native vegetation on Captive Island" and preservation of natural resources and wildlife habitat on and around Sanibel and Captiva Islands. SCCF's mission is the preservation of natural resources and wildlife habitat on and around Sanibel and Captiva. It manages just over 1,800 acres of preserved lands, including mangrove forest habitat similar to that being proposed for development by PDL. Management activities involve invasive non- native plant control, surface water management, prescribed burning, native plant habitat restoration and wildlife monitoring. CSWF's purpose is to sustain and protect the natural environment of Southwest Florida through policy advocacy, research, land acquisition and other lawful means. Its four core programs are: environmental education; scientific research; wildlife rehabilitation; and environmental policy. Of CCA's 464 members, approximately 115 live within the boundaries of South Seas Plantation/Resort. Approximately 277 of SCCF's 3,156 members live on Captiva Island, and 40 live within the boundaries of South Seas Plantation/Resort. The members of CCA and SCCF who own property on Captiva Island rely on the mangrove systems for protection from storms. A substantial number of the Captiva Island residents and the other members of CCA and SCCF engage in recreational activities in the vicinity of PDL's property, including boating, fishing, bird-watching, wildlife observation, and nature study that would be adversely affected by significant water quality and wetland impacts from the proposed ERP. CSWF has 5,600 family memberships, approximately 400 in Lee County, and 14 on Sanibel. No members live on Captiva Island. There was no evidence as to how many of CSWF's members use the natural resources in the vicinity of the proposed ERP for recreational purposes or otherwise would be affected if there are water quality and wetland impacts from the proposed ERP.

Recommendation Based upon the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the proposed ERP be denied; however, if wetland and surface water impacts are reduced and eliminated to the extent practicable, the proposed ERP should be issued with the additional conditions, as represented by PDL's witnesses: that the proposed drawbridge be left drawn except when in use for road access; that construction access be via the proposed drawbridge only; and that there be no construction dewatering. DONE AND ENTERED this 8th day of November, 2006, in Tallahassee, Leon County, Florida. S J. LAWRENCE JOHNSTON Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 8th of November, 2006.

Florida Laws (8) 120.52120.569120.57267.061373.042373.4136373.414403.412 Florida Administrative Code (7) 40E-2.05140E-4.09140E-4.30140E-4.30262-302.30062-345.10062-4.242
# 1
DEPARTMENT OF COMMUNITY AFFAIRS vs ROBERT CROWDER AND POLK COUNTY, 92-002959DRI (1992)
Division of Administrative Hearings, Florida Filed:Bartow, Florida May 14, 1992 Number: 92-002959DRI Latest Update: Jun. 06, 1996

The Issue The issue in this case is whether the development order issued by Polk County for Robert Crowder's development known as Paradise Country Estates complies with Chapter 380, Fla. Stat. (1991). The Department of Community Affairs' Petition for Appeal of Development Order (the DCA Petition) alleges that the development order is contrary to Polk County's 1985 comprehensive plan for the following reasons: Paragraph 11 of the DCA Petition alleges that the development order is contrary to the provisions of Policy 9, Objective III, "Natural Resources," of the Land Use Element (LUE) of the 1985 Plan. Policy 9 states: "Structures should be placed in a manner which will not adversely affect the natural flow regime and which will not reduce the recharge capabilities." Paragraph 12 of the DCA Petition alleges that the development order is contrary to the provisions of Policy 10, Objective III, "Natural Resources," of the LUE. Policy 10 states: "Placement of structures shall be consistent with sound flood plain management practices such as compliance with the Flood Disaster Protection Act of 1973." Paragraph 13 of the DCA Petition alleges that the development order is contrary to the provisions of Policy 11, Objective III, "Natural Resources," of the LUE and Policies 9 and 10 of the "Water Resource Objective" of the Conservation Element of the Plan. Respectively, these policies state: 11. Groundwater withdrawal should not exceed the safe yield per acre as determined by Water Management Districts or successor agencies. * * * Minimize the adverse impacts of development on resources of the Floridan Aquifer, wetlands and flood-detention areas. Protect the normal quantity, quality and flow of ground water and surface water which are necessary for the protection of resources of state and regional concern. Paragraph 14 of the DCA Petition alleges that the development order is contrary to a section of Part II of the Conservation Element of the Polk County Comprehensive Plan entitled "Rare and Unique Natural Resources," which describes the Green Swamp as a "rare and unique land area resource for conservation consideration" and also states: The potentiometric high of the Floridan Aquifer lies within this area. . . . The area has a high potential for recreational and natural enjoyment. . . . The Green Swamp area is the largest expanse of forest in Polk County, with abundant water and wooded areas to provide for wildlife habitats. This area has great significance as an area for conservation of land, air, water, open space and wildlife habitats. Paragraph 15 of the DCA Petition alleges that the development order is contrary to the following section on "Density" found in Part IV of the Conservation Element, entitled "Summary of Special Problems, Areas, Issues, and Relationships": The subject of development density is a particular issue of vital importance to the county. Low density development in some areas and high density in other areas is important so that demands for public facilities can be economically and efficiently handled, so that environmental degradation is minimized, and so that land, not suitable for development, can be saved for important natural functions. The present zoning ordinance classifies most of the county in a Rural Conservation (RC) classification that permits low density development without proper regard for those areas that are best suited for development. Portions of the county should be protected from development pressures and appropriate areas should be zoned to accommodate rational densities. The present level of protection, provided by the zoning system is not brought to bear for conservation purposes. Paragraph 16 of the DCA Petition alleges that the development order is contrary to Policy 14 of the "Water Resource Objective" of the Conservation Element of the Plan: "Protect or improve existing ground and surface-water quality." Paragraph 17 of the DCA Petition alleges that the development order is contrary to Policy 2, Objective I, "Agricultural Uses," in Part V of the LUE: Protect, to the maximum extent possible, agricultural lands from encroachment of incompatible land uses and any detrimental effects of development adjacent to agricultural areas. Paragraph 19 1/ of the DCA Petition alleges that the development order is contrary to Policy 2, Objective IV, "Residential Uses," in Part V of the LUE: Promote and encourage new residential development adjacent to established growth centers, to ensure the orderly use of land and the efficient provision of facilities and services. Paragraph 20 of the DCA Petition alleges that the development order is contrary to Section 5-1(6) of Polk County Ordinance 81-28 (the County Flood Protection and Surface Water Management Code). 2/ Article V is entitled "Flood Protection Standards." Section 5-1 provides in pertinent part: GENERAL STANDARDS: The following minimum standards shall apply to new construction and substantial improvements in all areas of special flood hazard, and to any development, other than phosphate mining, within 100 feet of a watercourse: * * * (6) On-site waste disposal systems shall be located to avoid impairment to them or contamination from them during flooding. Paragraph 21 of the DCA Petition alleges that the development order is contrary to Section 5-2(4) of Polk County Ordinance 81-28. 3/ Section 5-2 provides in pertinent part: SPECIFIC STANDARDS: The following minimum standards shall apply in all areas of special flood hazard where base flood elevation data has been provided: * * * Subdivision Proposals: All subdivision proposals and other proposed developments shall be reviewed by the County Engineer. [I]f the proposal is in an area of special flood hazard, it shall be reviewed to assure that the following standards are met: All such proposals shall be reasonably safe from flood waters resulting from the base flood. All such proposals shall have public utilities and facilities such as sewer, gas, electrical and water systems located and constructed to minimize flood damage. Base flood elevation data shall be provided for all such proposals. Roads shall be reasonably safe from flood waters resulting from the base flood. Paragraph 22 of the DCA Petition alleges that the development order is contrary to Section 6-2(3)(a) of Polk County Ordinance 81-28. Article VI of Polk County's Flood Protection and Surface Water Management Code is entitled "Water Management Standards." Section 6-2 provides in pertinent part: GENERAL STANDARDS: The following minimum standards shall apply to all development which occurs within an area of special flood hazard and to any man-made change to improved or unimproved real estate . . .. * * * (3) (a) The amount of site alteration within a wetlands soil association shall be limited to ten percent (10%) of the area of wetlands soil association within any given total site.

Findings Of Fact The Proposed Project and Location. The project site is on Dean Still Road in Polk County, approximately 2 miles west of State Road 33. It is approximately 6 and 1/2 miles from Polk City and 15 miles from the City of Lakeland. The proposed project is comprised of 356 lots on approximately 1280 acres with a gross density of 1 unit per 3.6 acres. Although the average lot size varies, the project was reviewed under the Southwest Florida Water Management District's (SWFWMD) criteria for rural development which requires that at least 90% of the lots be at least 2 acres in size (excluding jurisdictional wetlands), and 10% of the lots be at least 1 acre (excluding jurisdictional wetlands). The site has been zoned Rural Conservation under Polk County's Zoning Code for approximately 12 years. This designation allows a density up to 1 unit per acre. Individual water wells and on-site waste disposal systems (septic tanks) will be utilized for each home. There are no water or sewer extensions proposed for the site or for adjacent areas by any governmental entity. Access to the site from Polk City is along Dean Still Road, which is unpaved at this time. The County has plans to pave it in the near future. Of the 1280 acres comprising the project site, 362 acres have been claimed as jurisdictional wetlands and approximately 642 acres have been mapped within the 100-year floodplain by the Federal Emergency Management Agency (FEMA). 51 of the lots platted in the project are entirely within the FEMA 100- year flood plain. Several other lots contain large portions within FEMA 100- year flood plain. Despite the significant amount of wetlands and floodplains on the site, the project is designed so that no net loss will occur in the floodplains and less than 1% (.59%) of the jurisdictional wetlands will be impacted by development. Impervious conditions on the site will only increase by 2.8% after development. All structures will be set at or above the 100 year flood elevation, as calculated by the project engineers, and will be constructed in accordance with the County's flood protection standards. The project is designed so that post-development runoff is less than pre-development runoff and post-development drainage basins conform to pre-development drainage basins. Existing drainage patterns for the site are designed to be maintained. The property comprising the project has been used through the years for a variety agricultural purposes, including harvesting watermelons, soybeans, corn, and silage. It has been drained and ditched to facilitate these activities. It is currently being used for grazing cattle. A sod farm is located to the south of the property. Additional cattle grazing lands run south from there to Polk City. To the north of the site are ranchlands which run to the border of the Withlacoochee Wildlife Area. Immediately to the west of the site are 20-30 scattered mobile homes and additional ranchlands in a subdivision known as Evans Acres. This subdivision was initially approved by DCA in 1983, and was comprised of 48 lots on approximately 1,290 acres. The original lots ranged in size from 5 to 60 acres. Apparently, individuals have since split their lots and many of the existing lots are 2 to 5 acres in size. A few of the original lots are used for both residential and ranching purposes. Including the large and small lots, there are approximately 163 lots on the property comprising Evans Acres. On the property directly to the east of the site are approximately 16 mobile homes along Melody Lane. These existing homesite numbers are small and scattered when compared to the 356 lots proposed for Paradise Country Estates. Approximately 120 families live in the general vicinity of the proposed project. The Green Swamp. The project is within the Green Swamp Area of Critical State Concern (ACSC). The site is within the drainage basin of the Withlacoochee River, which has been designated an Outstanding Florida Water (OFW) and is approximately three and a half miles to the north. The Green Swamp ACSC was designated by the Legislature. Chapter 79- 73, 380.0551, Florida Statutes (1991). It was the second area to be designated and now is one of only four areas in the State retaining this designation. The Green Swamp was designated because the area's natural resources were considered to be of regional and statewide importance and because of concerns that uncoordinated development could endanger these resources. The Green Swamp is a regionally significant area for recharge of the Floridan Aquifer. The Green Swamp is unique because the top of the Floridan Aquifer is at or near the surface over much of the area. This creates what is known as the potentiometric high of the Floridan Aquifer. The potentiometric high pressurizes the Floridan Aquifer, permitting it to be used for drinking water wells. The Florida Aquifer serves as the principal source of drinking water for central Florida. It supplies the entire State with about 48 percent of its ground water supply. The potentiometric high also serves to hold back salt water intrusion into the Floridan. Recharge is important in maintaining the potentiometric high of the Floridan Aquifer. Although the Green Swamp has been characterized as a recharge area for the Floridan Aquifer, the actual recharge capabilities of the Green Swamp vary considerably throughout the region. Some areas within the Green Swamp, such as the high, dry, sandy ridge on the eastern boundary of the Green Swamp clearly are high recharge areas. In some areas, the Floridan Aquifer rises essentially to the ground surface, with no confining layer above it. In those areas, a considerable amount of surface water filters into the Floridan Aquifer. In other areas, including in the vicinity of the project site, recharge capability is considerably less. See "G. Review under the 1985 Plan and the Flood Protection and Surface Water Management Code, (3) Ground Water Recharge." The head waters of several rivers, including the Withlacoochee River, are in the Green Swamp. Polk County's Comprehensive Plan. Polk County's Comprehensive Plan, as amended by Polk County Ordinance 85-08 (Ordinance 85-08), is referred to as Polk County's 1985 comprehensive plan, or the 1985 plan. It includes a Land Use Element (LUE) and a Conservation Element. The Land Use Element. The 1985 Plan is a "policy plan." As a "policy plan," the LUE does not map land use classifications or densities or intensities of development. The different parts of the plan must be considered together to ascertain their meaning. As stated in the Foreward to the LUE: The Policy Plan is a flexible and realistic guide to future public decisions. Existing conditions are first determined and analyzed. Then, community goals are identified providing a process of finding out where we are and where we want to go. * * * . . .. The challenge is to determine the means of achieving the identified community goals at minimal cost and the least possible hardship on any segment of our society. Under the policies planning process this is accomplished by developing all possible alternative courses of action that will advance the community toward the desire goal. The policies are then a general statement of purpose and outlining broad principles toward which the plan is guided in the implementation stage. A policy plan does not detail specific actions or locations on a map. Rather it provides a broad framework within which day-to-day decisions are made in a consistent manner toward an identified goal. The ultimate product of those community goals will be the heritage of Polk County's future. At 4-2, the LUE discusses the need to give attention to "the proper distribution of population densities in keeping with sound planning practices, the physical capabilities of the land, and the relationship of the population and housing densities to existing or proposed transportation facilities and other community services." It then speaks to "Retention of Open Spaces": A second potential problem to be faced, as urban growth continues, is the potential loss of the open space characteristics that now contribute substantially to its desirability as a community in which to live and visit. To a large extent, the desirable characteristics are provided by extensive agricultural areas. Such uses are compatible with residential and other types of urban land uses and should be encouraged to remain to the maximum extent possible. Desirable open space is also presently provided by . . . wetland areas not suited for urban development. By encouraging such areas to remain in their present condition, a substantial amount of open space can be retained to provide the needed visual relief and openness necessary within a highly urbanized community. At 4-5, discussing "Retention of Unique Agricultural Lands," the LUE states that cattle raising and field crops are subject to potential intrusion by urban development and states: "The development of planning techniques, which will encourage the retention of important agricultural lands and provide for orderly urban development, thus becomes a matter of considerable importance." The Goals, Objectives, and Policies (GOPs) of the LUE starting at 5-1 include the following: General Goal: To maintain productive and mutually compatible use of lands and waters within Polk County in a manner consistent with the economic, physical and social needs, capabilities, and desires of Polk County and its citizens. Objective I - Agricultural Uses: To ensure that a sufficient quantity of appropriate lands are available and protected for productive agricultural uses necessary to a sound economic base. Policies: * * * 2. Protect, to the maximum extent possible, agricultural lands from encroachment of incompatible land uses and any detrimental effects of development adjacent to agricultural areas. * * * 5. Provide all possible incentives for the retention of lands into agricultural production. * * * Objective III - Natural Resources Minimize adverse impacts of development on valuable natural resources including the protection of water quality and quantity in surface and ground waters. Policies: * * * 2. The subdivision and platting of land shall be permitted in accordance with the zoning district applied to the property and in compliance with the Polk County Subdivision Regulations and Flood Protection/Surface Water Management Ordinance. * * * Site alteration should be permitted only when such alteration will not adversely affect the natural flow regime or the natural recharge capabilities of the site. Site alteration should be permitted only when such alteration will not result in the siltation of wetlands or reduce the natural retention and filtering capabilities of wetlands. Site alteration activities should provide for water retention and settling facilities; should maintain an overall site runoff equivalent to the natural flow regime prior to alteration and should maintain a runoff rate which does not cause erosion. * * * Storm water runoff should be released into the wetlands in a manner approximating the natural flow regime. Structures should be placed in a manner which will not adversely affect the natural flow regime and which well not reduce the recharge capabilities. Placement of structures shall be consistent with sound flood plain management practices such as compliance with the Flood Disaster Protection Act of 1973. Groundwater withdrawal should not exceed the safe yield per acre as determined by Water Management Districts or successor agencies. Objective IV - Residential Areas To ensure that an adequate supply of appropriately located lands are available for the development and maintenance of residential areas that can be efficiently and effectively provided with necessary public facilities and services. Policies: Promote and encourage the provision of a wide range of housing opportunities, in appropriate locations, to permit a choice of housing types to suit the particular needs of all citizens. Promote and encourage new residential development adjacent to established growth centers, to ensure the orderly use of land and the efficient provision of facilities and services. * * * Encourage new residential development that can be effectively served by the existing transportation facilities. Promote new residential development in non-urban areas, that is properly designed to combine with future adjacent development, to create a neighborhood of sufficient size to facilitate the efficient and effective provision of all necessary public facilities and services. Part VI of the LUE, entitled "Alternate Approaches," discusses the pros and cons of different concepts for planning and managing of growth. It settles on a "Resource-Responsive Concept" as the preferred growth alternative. This concept holds in part: Wherever possible, future growth should be encouraged to take place in or near established urbanized areas. Scattered growth incapable of functioning as meaningful self-contained communities should be discouraged. And it is preferable that the urbanizing area, as it extends over extensive areas within the County, not be developed in one continuous, monotonous maze of residential, commercial, and industrial uses - but that there be open space provided at appropriate intervals so as to provide visual relief and a sense of scale to the overall urban community. Such open space areas can be productively utilized for agricultural and conservation purposes or recreation areas, public facilities and services required. It is proposed that the most appropriate urban growth concept to meet such guide-lines and the policy statements of this land use plan be a resource-responsive growth concept. Under this concept, urban growth and development will be guided and encouraged with respect to its responsiveness to the natural and human resource capabilities of the County. Within any given area of the County, the resources will be careful evaluated in terms of their capability to support growth, and the physical form and intensity of development will be then shaped to provide the physical form and intensity of development will be then shaped to provide a balance with such resources. Prime resources to be considered are as follows: Natural Resources Topography and soil conditions Vegetation and tree cover Wildlife habitats present Drainage characteristics; relationship to rivers and lakes Natural water supply capabilities General aesthetic qualities Human Resources Transportation facilities (roads, railroads, airports) Available water supply and sewage facilities Community facilities, such as schools, parks, libraries Protective services, such as fire and police Established land uses within the area Economic conditions and potentials. Part VII of the LUE, entitled "Implementation," states: "Initial implementation of a Comprehensive Plan and initiation of the continuing planning process for growth management requires the establishment of principals and standards for measurement of proposed activities against the adopted policies of the community." It includes a section entitled "Principles and Standards for the Control and Distribution of Population Densities and Structural/Development Intensity," which provides in part: All Types of Urban Development: * * * Each new development or land use should follow sound land planning principles to maximize site advantages, avoiding when possible, adverse impacts on the natural resources and hazards to health, safety, or general welfare. * * * Residential Development: Low-density single-family development (1-4 units/acre), other than rural residences related to agricultural operations, shall be located in areas capable of being developed into stable, cohesive neighborhoods. In a section entitled "Legal Requirements of Implementation," it states that "all actions taken by local government, whether in the form of permitting private development to occur or in the provision of public facilities and services, are required to be fully consistent with the adopted Comprehensive Plan. The plan, once adopted, must occupy a central position in the consideration of all proposed development." In another section, entitled "Coordination with Other Plan Elements," it states that the "land use element cannot be implemented alone [but] must be coordinated with the [other elements]." In another section, entitled "Needed Improvements in the Zoning Ordinance," it is recognized that "it will be essential that a thorough review of the zoning ordinance be undertaken and that the ordinance be revised as appropriate to achieve consistency with overall planning objectives." It acknowledges that there were "major identified deficiencies in the current zoning regulations" and advises that "the following needs among others should be addressed as a minimum in making revisions to the zoning ordinance": "Revision of the Density Requirement in Residential Districts." Despite the admonitions in the 1985 Plan, to date there has been no revision of the land use classifications, densities, or intensities in the County's zoning code. As before the 1985 Plan was adopted, zoning in the Green Swamp ACSC remains Rural Conservation (RC) and allows up to one unit per acre residential development. The Conservation Element. Part II of the Conservation Element of the Polk County Comprehensive Plan is a "Summary of Natural Resources." At 2-18, there appears a section entitled "Rare and Unique Natural Resources," which describes the Green Swamp, as well as other natural resources in the County, as a "rare and unique land area resource for conservation consideration." At 2-19, as amended by Ordinance 85-08, this element of the comprehensive plan also states: This area comprises the hydrologic heartland of Central Florida and contains the headwaters of the Withlacoochee, Hillsborough, Peace and Oklawaha Rivers. The potentiometric high of the Floridan Aquifer lies within this area. . . . The area has a high potential for recreational and natural enjoyment. . . . The Green Swamp area is the largest expanse of forest in Polk County, with abundant water and wooded areas to provide for wildlife habitats. This area has great significance as an area for conservation of land, air, water, open space and wildlife habitats. Part IV of the Conservation Element is a "Summary of Special Problems, Areas, Issues, and Relationships." Starting at 4-2, it addresses the following: Displacement . . .. Cities in Polk County have historically developed on the ridges and the urbanized areas are spreading outward rapidly into the prime citrus lands and the "marginal" (flood prone) lands. There is considerable concern about urban development in wetland soils and flood prone areas. The double barreled concern for development in wetland soils and wetland areas is that they might well serve valuable natural functions and the private and public problems created by development subjected to flood damages. This property damage promotes public pressure for drainage in wet areas. The issue in wetland drainage and flood control is the jeopardy of natural functions that wetlands and water fluctuations provide in natural systems and flood damage costs. . . . [C]oncern for the growing demand for uplands development which steadily displaces [good pasture land] . . . relate[s] to the use of good pasture land for development. Density The subject of development density is a particular issue of vital importance to the county. Low density development in some areas and high density in other areas is important so that demands for public facilities can be economically and efficiently handled, so that environmental degradation is minimized, and so that land, not suitable for development, can be saved for important natural functions. The present zoning ordinance classifies most of the county in a Rural Conservation (RC) classification that permits low density development without proper regard for those areas that are best suited for development. Portions of the county should be protected from development pressures and appropriate areas should be zoned to accommodate rational densities. The present level of protection, provided by the zoning system is not brought to bear for conservation purposes. * * * Water * * * Another area of concern relates to the draw down and recha[r]ge of the Floridan Aquifer and is claimed to be a rational concern of an area much larger than Polk County. * * * Pollution Environmental pollution, as it relates to water, is a major local concern. * * * Water pollution is concerned because of its effects on recreation and tourism. Water degradation and the pollution of lakes and rivers tends to remove the intangible value that Polk County enjoys in thee form of its surface water resources. * * * Also, the related cost issues of municipal sewage treatment and disposal, effluent disposal techniques, septic tank useage are environmentally economic choices to be made by the public. Discussing the topic, "Preservation and Management," starting at 4-4, Part IV of the Conservation Element states in part: Many issues relate to what, how, or when something should be conserved. * * * Lakes, rivers and canals of the county are of concern as sources of flooding and as resources for flood control, if properly managed. Flood prone areas surrounding surface water have been identified for much of the county. These water bodies are also legitimate concerns as the habitat for fish and other wildlife that provide a significant value in their own right. The area of these water bodies are also special scenic and recreational values that contribute to tourism and development. Part V of the Conservation Element is where the "Goals, Objectives and Policies" are found. It start with some general observations, including in part: . . .. It can be expected, therefore, that the natural environment of the county will continue to undergo modification of one type or another in response to the needs of people. . . . The inventory of total space will, therefore, diminish as these changes take place, resulting in corresponding losses within particular categories of natural resources. What is important is that no critical loss of impairment of a natural resource take place; that development be managed so as to create minimum disturbance of the remaining natural resource systems; and that there be compensation replenishments of resources wherever possible. It then lists a General Goal and several resource-specific objectives and policies: General Goal: Maintain, protect, develop and utilized the natural resources in a manner that will balance and replenish the natural ecological systems and will best serve and promote the desired quality of life for Polk County resident, present and future. * * * Water Resource Objective: To conserve and protect the quality and quantity of water resources through proper management. * * * 6. Identify and protect significant acquifer [sic] recharge areas for maximum recharge capability and protect the water available for aquifer recharge. * * * Minimize the adverse impacts of development on resources of the Floridan Aquifer, wetlands and flood-detention areas. Protect the normal quantity, quality and flow of ground water and surface water which are necessary for the protection of resources of state and regional concern. Protect the functions of the Potentiometric High of the Floridan Aquifer. Prevent further salt-water intrusion into the Floridan Aquifer. Protect or improve existing ground and surface-water quality. Protect the water retention and biological-filtering capabilities of wetlands. Protect the natural flow regime of drainage basins. Rare and Unique Natural Resource Objective: To conserve and protect, through proper resources management, areas having unique natural characteristics and particularly sensitive environmental balance. * * * Policies: Identify all significant areas in Polk County deemed to have unique natural resource characteristics. Encourage proper management of unique wetland areas of the County as a vital water resource. Encourage a proper system for control of development in flood prone and wetland areas to regulate alternation [sic] of the natural system of water retention and storage during periods of heavy rainfall. Preserve and protect, to the maximum extent possible, all delineated areas having valuable unique resource characteristics. Part V of the Conservation Element concludes with a "Summary," which states in part: The objectives and policies set forth above should not be considered as controls to be rigidly applied in every instance of decision-making dealing with the natural environment. Rather, in dealing with resource conservation issues, guidance is preferable to control. . . . A number of potential implementation actions and programs, presented in the following part, will further assist in establishing the direction and scope of conservation activities in the County. Part VI of the Conservation Element is entitled "Implementation." While acknowledging at 6-1 that Polk County cannot establish an implementation program unilaterally, without regard to the co-responsibilities of other governmental authorities at the regional state and federal levels, it states at 6-2 that Polk County "can and should": Utilize the general objectives and policies established by this Element as considerations in all decision making concerning the use and improvement of land within the County. * * * 3. Utilize, to the fullest extent possible, the policies and implementation controls of other elements of the Polk County Comprehensive Plan, and those of other governmental entities having jurisdiction, to further the conservation of natural resources. Starting at 6-3, Part VI discusses the Conservation Element's "Relationship to Other Plans." At 6-4, after stating that the Conservation Element will be largely implemented through the policies and programs of other comprehensive plan elements, Part VI provides: Land Use Element - This element will provide the overall framework for conservation [sic] potentialities through the manner in which land uses are distributed, arranged, and interrelated throughout Polk County. Policies and implementation programs of this element will determine the degree to which new development is properly related to soil types and capabilities, natural habitats, flood prone areas, wetlands and unique resource areas of the County. Land regulatory controls such as zoning, subdivision regulations and development impact reviews provide the basic tools for implementation of the policies of the Land Use Element. Starting at 6-5, Part VI discusses "Guidelines for Implementation." At 6-5, it points out: The nature of conservation policy, being of such broad application and diversity of interest, requires that its effective implementation utilize many approaches, techniques and procedures. Its application is carried out, for the most part, in an indirect way as a by-product of other more direct decisions and actions relation to the development and growth of the County. It is essential, therefore, that Polk County draw upon all possible alternative mechanisms and techniques which will lead to the effective conservation of its natural resource systems. Among the various approaches which Polk County may utilize to further its conservation objectives are the following. * * * Influence in the allocation of resources to achieve the objectives of the conservation plan. Control of events which determine resources allocation in keeping with the conservation plan. * * * Specific procedures and techniques which may be utilized to facilitate the implementation process include the following. * * * 7. Protect natural water bodies and adjacent wetland areas through the regulation of development densities and proper management of stormwater runoff. This would require a cooperative effort with the Water Management Districts in identifying flood plains for various flood frequencies. Polk County's Flood Protection and Surface Water Management Code. Polk County's Flood Protection and Surface Water Management Code was enacted as Ordinance 81-28 and was amended by Ordinance 85-07. Article V is entitled "Flood Protection Standards." Section 5-1 provides in pertinent part: GENERAL STANDARDS: The following minimum standards shall apply to new construction and substantial improvements in all areas of special flood hazard, and to any development, other than phosphate mining, within 100 feet of a watercourse: * * * (6) On-site waste disposal systems shall be located to avoid impairment to them or contamination from them during flooding. Section 5-2 provides in pertinent part: SPECIFIC STANDARDS: The following minimum standards shall apply in all areas of special flood hazard where base flood elevation data has been provided: * * * Subdivision Proposals: All subdivision proposals and other proposed developments shall be reviewed by the County Engineer. [I]f the proposal is in an area of special flood hazard, it shall be reviewed to assure that the following standards are met: All such proposals shall be reasonably safe from flood waters resulting from the base flood. All such proposals shall have public utilities and facilities such as sewer, gas electrical and water systems located and constructed to minimize flood damage. Base flood elevation data shall be provided for all such proposals. Roads shall be reasonably safe from flood waters resulting from the base flood. Article VI of Polk County's Flood Protection and Surface Water Management Code is entitled "Water Management Standards." Section 6-2 provides in pertinent part: GENERAL STANDARDS: The following minimum standards shall apply to all development which occurs within an area of special flood hazard and to any man-made change to improved or unimproved real estate . . .. * * * (3) (a) The amount of site alteration within a wetlands soil association shall be limited to ten percent (10%) of the area of wetlands soil association within any given total site. Review under the 1985 Plan and the Flood Protection and Surface Water Management Code. Land Use, Density and Intensity. DCA alleges that the land use, density and intensity of the development Crowder proposes for the site is inconsistent with: (1) the section on "Density" found in Part IV of the Conservation Element, entitled "Summary of Special Problems, Areas, Issues, and Relationships"; (2) a section of Part II of the Conservation Element of the Polk County Comprehensive Plan entitled "Rare and Unique Natural Resources"; (3) Policy 2, Objective I, "Agricultural Uses," in Part V of the LUE; and (4) Policy 2, Objective IV, "Residential Uses," in Part V of the LUE. 6/ As previously stated, the 1985 Plan is a policy plan that does not map land use classifications or densities or intensities of development. Crowder's Paradise Country Estates is consistent with the County's Zoning Code, which has not changed since before the 1985 plan, and Zoning Map. The development was not otherwise reviewed for land use, density or intensity. But it is clear that the 1985 plan does not condone exclusive resort to the zoning code to determine the appropriateness of the land use, density and intensity for development in the Green Swamp ACSC. See, especially, the section entitled "Density" in Part IV of the Conservation Element of the Plan. In the Green Swamp ACSC, especially, reference must also be made to the Plan itself. See Part VII of the LUE, entitled "Implementation." It is not found that all residential use on the Crowder property would be, in itself, inconsistent with the 1985 Plan. But, taking into consideration all of its land use, density and intensity provisions, it must be found that the development order issued in this case, especially at its level of density and intensity and especially in the manner of its issuance, is inconsistent with the 1985 Plan. The crux of the problem with this development, like others in the Green Swamp ACSC already permitted by County development orders, is that, first, the 1985 comprehensive plan and the County zoning regulations in place at the time were inadequate and, second, the steps envisioned in the plan to make them adequate have not been taken. For the plan and the zoning regulations to be adequate, and for a development order for a project in the Green Swamp ACSC in Polk County to be consistent with the 1985 comprehensive plan, either: (1) the plan must be amended to map land use classifications, densities and intensities of development in the Green Swamp ACSC; (2) the zoning code must be amended as envisioned in the comprehensive plan for the Green Swamp ACSC; or (3) the County must evaluate development orders for projects in the Green Swamp ACSC on a case- by-case basis for consistency with the comprehensive plan. None of these three possibilities happened in this case. 7/ Flood Plain Delineation. Paragraph 12 of the DCA Petition alleges that the Crowder development violates Policy 10 of Objective III, "Natural Resources," of the LUE: "Placement of structures shall be consistent with sound flood plain management practices such as compliance with the Flood Disaster Protection Act of 1973." Specifically, it is alleged that the use of a Federal Emergency Management Agency (FEMA) undetailed "A" zone to map the flood prone area on the site, and the failure to perform a detailed study, did not comply with the Flood Disaster Protection Act of 1973. Other allegations in the DCA Petition also implicate the delineation of the flood prone areas on the site. See, (5) Ground and Surface Water Quality, below. A FEMA "A" zone is the zone depicting the area determined by FEMA to be flood prone. In this context, FEMA defines a "flood prone" area as an area flooded in a 100-year, 24-hour storm. At the time Polk County reviewed the Crowder project for approval of the roadway and construction drainage plans, FEMA was requiring that a detailed study be performed to delineate the flood prone area. Polk County apparently was not aware of this requirement and was not enforcing it. Nor, apparently, was Crowder's engineer aware of it. In any event, Crowder did not have a detailed study performed to delineate the flood prone area on the site, and the County did not require it. In approximately March, 1992, Polk County received a written communication from FEMA advising of the requirement for a detailed study of the flood prone area in the case of developments like Crowder's. Polk County now requires compliance with this FEMA requirement. Crowder did not rely simply on the FEMA undetailed "A" zone to map the flood prone area on the site. Crowder's engineers used the existing undetailed FEMA maps as a starting point for determining base flood elevations. The engineers digitized the areas which had been designated as flood prone on the FEMA panels. The engineer then overlayed the digitized FEMA map with the on- site wetlands survey of the property, which had been field-staked and field- shot. Topographical field shots of the property which had been conducted throughout the site at one foot intervals were also overlayed on the digitized FEMA map. In addition, the engineer took into consideration mapped wetlands soils and compared flooding conditions which had occurred on adjacent property to assess whether all areas actually prone to flooding had been characterized as flood prone on the FEMA map. The methodology used by the project engineers was based on sound engineering practices. Nonetheless, it does not qualify as a "detailed study" as far as FEMA is concerned. A "detailed study" would include the application of a computer program that would "route" hypothetical flood waters onto and through the property to ascertain flood elevations in different stages of the hypothetical flood. It is not possible to determine how a detailed study would change the delineation of the flood prone area in Crowder's proposal. The total area of flood prone area could either increase or decrease; it could increase in some places and decrease in others. As it is, several of the lots platted in the Crowder development would be entirely within both the FEMA undetailed "A" zone and the flood prone area mapped by Crowder's engineers. Ground Water Recharge. DCA alleges that platting Paradise Country Estates will adversely impact recharge of the Floridan Aquifer, contrary to Policy 9 and 11, Objective III, "Natural Resources," of the LUE, and Policies 9 and 10 of the "Water Resource Objective" of the Conservation Element, of the 1985 comprehensive plan. In the vicinity of the project site, the Floridan Aquifer comes to within 35 feet approximately of the ground surface. Above the Floridan Aquifer is a shallow aquifer, which rises to within approximately 12 inches of the surface. There is a layer of clastic soils (sand and clay) between the surficial aquifer and the Floridan Aquifer. This confining layer slows the rate of recharge to the Floridan. As a result, the project site is in an area having low, or even very low, to moderate recharge capabilities, at best. USGS Professional Paper 1403-E, which was released in 1990, uses groundwater modelling to quantify recharge rates, instead of using qualitative terms such as "low," or "poor," "moderate" and "high" to describe recharge capabilities. USGS Professional paper 1403-E reports that many areas in the Green Swamp previously labeled as good, moderate or high recharge areas are actually capable of only recharging at rates of 3 to 4 inches per year. The subject property appears to be in the 2 to 3 inch range per year for recharge according to USGS Professional Paper 1403-E. Only three known sample soil borings have been taken on the project site. As a result, the extent of permeability and overall thickness of the confining layer between the surficial and Floridan aquifers is not certain. But there is no reason to believe that there are any karst features or other geologic faults in the area that would allow for direct connections between the surficial and Floridan aquifers. The soil borings that have been taken on the site verify the various geological surveys and studies describing the recharge capabilities in the area. Due to the site's limited capabilities as a recharge area, it is unlikely that the platting of this site will result in any significant reduction in its natural recharge rate. The project is not inconsistent with Policy 9 or 11, Objective III, "Natural Resources," of the LUE, or Policies 9 or 10 of the "Water Resource Objective" of the Conservation Element, of the 1985 comprehensive plan. Individual Water Well Use. DCA alleges that the planned use of individual water wells in Crowder's Paradise Country Estates will impact the quantity of the Floridan Aquifer (and the surficial aquifer) contrary to Policy 11, Objective III, "Natural Resources," of the LUE, and Policies 9 and 10 of the "Water Resource Objective" of the Conservation Element, of the 1985 comprehensive plan. The potentiometric level of the Floridan Aquifer protects the Floridan Aquifer from salt-water intrusion. Significant de-watering of the aquifer caused by large municipal or industrial wells extracting a high volume of water from the aquifer at an intense rate can lower the potentiometric pressure, thus increasing the potential for salt-water intrusion into the aquifer. (Furthermore, the lowered potentiometric pressure creates a hydraulic gradient which encourages surface waters to percolate downward at a faster rate due to the decreased pressure in the Floridan Aquifer. See the preceding sections on Ground Water Recharge and the following section on Ground and Surface Water Quality.) Large municipal, industrial or agricultural wells which exceed 6 inches in diameter must obtain consumptive use permits from the SWFWMD. The Water Management District takes into account what the District determines to be a safe yield per acre when issuing a consumptive use permit. Small, residential wells are not subject to this permitting process as their impacts are much smaller and less intense, and not a concern with regard to their effect on the potentiometric pressure. For this reason, some coastal areas have begun using smaller, individual wells as an alternative to larger municipal wells. The Floridan Aquifer is replenishing itself fast enough for residential wells not to "de-water" or "draw down" the aquifer's supply of ground water. Residential wells do not lower the potentiometric pressure of the Floridan to a significant degree. Nor would they affect the normal supply of ground water, or contribute to salt-water intrusion. Pumping tests performed within two to three miles west of the project site which utilized several residential-size wells support the foregoing conclusions. For these reasons, it is found that the development will not adversely impact the normal supply of ground water and thus will not interfere with the functions of the potentiometric high of the Floridan Aquifer, including its protection against salt-water intrusion. Since the water wells would pump only from the Floridan Aquifer, they would not impact the supply of surface water. In regard to the use of water wells, the project is not inconsistent with Policy 11, Objective III, "Natural Resources," of the LUE, or with Policies 9 or 10 of the "Water Resource Objective" of the Conservation Element, of the 1985 comprehensive plan. Ground and Surface Water Quality. DCA alleges that Paradise Country Estates will result in unacceptable contamination of the Floridan Aquifer, the surficial aquifer, and the surface water (particularly the Withlacoochee River) contrary to Policies 9, 10 and 14 of the "Water Resource Objective" of the Conservation Element. Paragraph 20 of the DCA Petition alleges that the use of individual on-site disposal systems (OSDS), or septic tank systems, in violation of Section 5-1(6) of Polk County Ordinance 81-28 (the County Flood Protection and Surface Water Management Code), 8/ in particular, will be part of the cause of the unacceptable contamination (other causes being from lawn and garden maintenance and automotive wastes.) On-Site Disposal Systems. Chapter 10D-6, Florida Administrative Code, sets forth requirements for the use of on-site waste disposal, or septic tank, systems in the State of Florida. That chapter, which is administered by the Department of Health and Rehabilitative Services ("HRS") through local health departments, provides construction standards for the installation of on-site waste disposal systems. The septic tank serves as a holding tank designed to separate solids and floatable materials and allows anaerobic digestion of organic materials. The remaining effluent exits the tank into the soil infiltrative process, which is referred to as the drainfield. The drainfield is composed of gravel placed around perforated pipes, which are designed to evenly distribute and release the effluent into soil material where the effluent undergoes aerobic digestion. Eventually, any constituents remaining in the effluent which have not been absorbed by the root zone or otherwise decomposed reach the subsurface waters which are referred to as the surficial water table. Each individual lot owner will be required to obtain a permit from the local health department prior to installing an on-site waste disposal system. Prior to issuing a permit, HRS inspects each site to assess soil limitations and to conduct a percolation test to determine the seasonal high water table for the site. Because the soils on the site are severely limited for filtration purposes and the high water table is only 10 to 12 inches below the surface, individual lot owners will be required to mound their on-site waste disposal systems to overcome these limitations. Although the fill used to mound the systems will be comprised of suitable soils, it is possible that the foreign soils will absorb moisture from the existing soils on this site, a phenomenon referred to as capillary fringe affect. This phenomenon can cause those portions of the fill which come in direct contact with the existing soils on the site to lose their filtration capabilities. Unless the fill becomes saturated from other sources, it is unlikely that capillary fringe affect will render the filtration process ineffective. The effects of capillary fringe affect can be lessened by mixing fill with soils found on the site, a practice undertaken by contractors when installing on-site waste disposal systems. In addition, increasing the amount of fill used to mound the system would decrease the potential affects of this phenomenon. 9/ Floridan Aquifer Water Quality. In some areas of the Green Swamp, the Floridan Aquifer is actually considered a surficial aquifer since no confining layers of soil or clay separate the subsurface water from the Floridan Aquifer. These areas would typically be characterized as areas with high recharge capabilities (or high potential for contamination). However, throughout the project site, a confining layer exists which is composed of clayey sands which have a very low permeability. Therefore, there is relatively little interaction between the surficial aquifer and the Floridan Aquifer on this particular site. For this reason, the use of individual on-site waste disposal systems on this site would pose no significant risk to the water quality of the Floridan Aquifer. Surficial Aquifer and Surface Water Quality.-- As for the surficial aquifer and surface water quality, Chapter 10D-6, Florida Administrative Code, requires on-site waste disposal systems be located at least 75 feet from waterbodies. Normally, and when the systems are operating properly, this assures that adequate filtration and decomposition occurs before wastewater reaches surface waters on or near the site. But, in the case of the Crowder proposal, it is necessary to consider that at least some of the mounded systems will be subjected to flooding and will become saturated. Even based on the analysis by Crowder's engineers, 51 of the lots in Paradise Country Estates are entirely flood prone; there is no place to put an OSDS on those lots that is not flood prone. If a "detailed study" had been done, it is possible that more lots would be entirely within the flood hazard zone. Other lots not entirely within the flood zone may not be able to accommodate an OSDS on the part of the lot not within the flood zone. If the OSDS mound is saturated during flood conditions, the system will fail, and untreated waste, or inadequately treated waste, will be released into the surface flood waters. This waste water will move laterally across the project site. Roots may absorb some nitrates or other organic compounds; 10/ otherwise, the waste water and its constituents will remain in the surface water. Lateral movement across the site generally will be slow, as the site is relatively flat. Some of the waste water and its constituents will get into the surficial aquifer. There are ditches or canals alongside and on the site that will direct the rest of the surface water into Pony Creek and other tributories of the Withlacoochee River, an Outstanding Florida Water approximately three and a half miles to the north. The Department of Environmental Regulation issued a dredge and fill permit for the project's road network's impact on wetlands on the site. But it did not pass on the use of OSDS in the individual lots. It also erroneously referred to the Withlacoochee as a natural Class III, instead of an Outstanding Florida Water. See F.A.C. Rule 17-302.700(9)(i). The Southwest Florida Water Management District (SWFWMD) issued a surface water management permit for the project. In evaluating a permit application, SWFWMD considers surface water quality. But the focus of SWFWMD's inquiry is the pre- and post-development peak flows. Also, when it considers water quality, SWFWMD considers the impact of site alteration on water quality, not the impact of the use of OSDS on the site. In addition, the Crowder project was reviewed under special criteria for low-density rural subdivisions that do not require the submission of as much information. It was not clear from the evidence precisely how SWFMD evaluates water quality under those criteria. For these reasons, based on the evidence, it cannot be said that the Crowder project's OSDS will be meet the minimum standard of being "located to avoid impairment to them or contamination from them during flooding," as required by Section 5-1(6) of Polk County Flood Protection and Surface Water Management Code, or that the project will "protect the normal . . . quality of ground and surface water . . . necessary for the protection of resources of state and regional concern," as required by Policy 10 of the "Water Resource Objective" of the Conservation Element of the Plan. Finally, the project will not "protect or improve existing ground and surface-water quality," as required by Policy 14 of the "Water Resource Objective" of the Conservation Element of the Plan. Other Appeal Issues. Except as set forth above, the Crowder development did not violate the 1985 comprehensive plan and Flood Protection and Surface Water Management Code provisions cited in the DCA Petition. Agency Practice - Other Development in the Area. As previously described, Evans Acres, to the west of the Crowder site, was approved by DCA in 1983. (See Finding 10, above.) As approved, it was comprised of 48 lots on approximately 1,290 acres (a density of one unit per 27 acres). The original lots ranged in size from 5 to 60 acres. Unbeknownst to the DCA, individuals apparently have since split their lots and many of the existing lots are 2 to 5 acres in size. A proposed development known as Turkey Creek is located between the project site and Evans Acres. Turkey Creek is comprised of approximately 57 lots on 170 acres with a gross density of 1 unit per 3 acres. The physical characteristics of the Turkey Creek property, including the abundance of wetlands and floodplains, are essentially the same as the proposed project site. DCA appealed Turkey Creek in June of 1992. However, in that case, the County had been approximately two years late in rendering the Turkey Creek development order to the DCA. Meanwhile, the developer incurred development expenses and already had constructed roads and drainage facilities for the development. The developer, the County and DCA executed a settlement agreement which allows the development to proceed according to the original construction plans, but requires homeowners to install dual septic tank systems and have their septic tanks cleaned and inspected every three years. Several other developments, which are in the general vicinity of the project site and have many of the same physical characteristics, including Yearling Trace and Buck Hill, have been appealed by DCA. Yearling Trace is comprised of 108 units on approximately 544 acres. Buck Hill is comprised of 55 units on approximately 214 acres. Those projects were appealed by DCA in June and April, 1992. In some of these cases, the County did not timely render development orders to DCA in a timely manner. In the case of Buck Hill, the DCA had been mailed an unapproved copy of development plans in October, 1990; in early 1992, DCA contacted the County to inquire, as no County-approved development plans ever had been sent to the DCA. In many of these cases, substantial development expenses had been incurred; in some cases, roads and drainage facilities already had been constructed. DCA decided to settle the pending appeals in which the County was late rendering the development order, and in which the developer already had constructed roads and drainage facilities, consistent with the Turkey Creek settlement. In cases where the County was late rendering the development order, but the developer had not already constructed roads and drainage facilities, the DCA determined to settle not only for stipulations to upgrade the OSDS, as in the Turkey Creek settlement, but also for requirements that a "detailed" flood zone study be done, in accordance with the FEMA requirements. Prior to the DCA appeal, Crowder had expended approximately $31,000 in permit fees. In addition, he has incurred development costs, primarily for engineering fees and related services. Through the time of the final hearing, he had spent approximately $99,000 on engineering fees and services. (The evidence was not clear how much had been incurred by the time of the DCA appeal.) However, the County was not late in rendering the Crowder development order, and Crowder has not constructed roads or drainage facilities. In view of the different circumstances in Crowder's case, DCA's prior agency practices do not compel that Crowder's development be treated in the same manner, i.e., be settled on the same terms, as the Turkey Creek and the others. DCA has argued that FLWAC's Final Order in the case of Dept. of Community Affairs v. Narbi International Company, Inc. and Lake County, 14 FALR 3223 (1992), controls this case and requires the Crowder development order to be overturned on appeal. Narbi involved development Green Swamp ACSC, albeit in Lake County. Factually, there are many differences between Narbi and this case. The Narbi development order was a rezoning from agricultural with a residential density of up to one unit per five acres to a residential planned unit development (PUD) zoning with a density of one unit per 1.35 acres. Also, Lake County's comprehensive plan had an "urban containment policy," which DCA equated with its non-rule policy preventing "urban sprawl" or "leap-frog development." Thirdly, in Narbi, it was found that a geologic fault existed on the project site which allowed a direct connection from the surficial aquifer to the Floridan Aquifer. Because of the factual differences, Narbi does not control the outcome of Crowder's case. Conditions for Approval. Based on the testimony of its witnesses, DCA has proposed that, notwithstanding its deficiencies, the Crowder project can be approved if its density is lowered to between one unit per ten acres and one unit per 20 acres. The rationale of DCA's witnesses seems to be that the proposed lower density, in and of itself, would cure at least the most significant of the deficiencies. Since the Crowder development order under review was for approval of particular road and drainage plans, the plans would have to be redrawn at the lower density and resubmitted for approval by the County subject to the final order to be entered in this case. It is not possible for the Commission to approve, on condition of lowered density, the plans that were the subject of the development order in this case.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is recommended that the Florida Land and Water Adjudicatory Commission enter a final order rescinding and denying approval for the development order in this case. RECOMMENDED this 10th day of March, 1993, in Tallahassee, Florida. J. LAWRENCE JOHNSTON Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 10th day of March, 1993.

Florida Laws (4) 163.3184380.05380.0551380.07 Florida Administrative Code (5) 28-26.00228-26.00328-27.0079J-9.0039J-9.004
# 2
DR. OCTAVIO BLANCO vs NNP-BEXLEY, LTD., AND SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT, 08-001972 (2008)
Division of Administrative Hearings, Florida Filed:Brooksville, Florida Apr. 18, 2008 Number: 08-001972 Latest Update: Sep. 02, 2009

The Issue There are two main issues in this case. The first is whether Respondent, NNP-Bexley, Ltd. (NNP-Bexley), has provided Respondent, Southwest Florida Water Management District (the District), with reasonable assurances that the activities NNP- Bexley proposes to conduct pursuant to Environmental Resource Permit (ERP) Application No. 43013740.004 (the Permit) meet the conditions for issuance of permits established in Sections 373.413 and 373.414, Florida Statutes (2007), Florida Administrative Code Rules 40D-4.301 and 40D-4.302, and the Environmental Resource Permit Information Manual, Part B, Basis of Review (BOR).1 The second is whether Petitioner, Dr. Octavio Blanco (Blanco), participated in this proceeding for an improper purpose so as to warrant the imposition of sanctions under Section 120.595(1), Florida Statutes.2

Findings Of Fact Blanco is a resident of Pasco County, Florida. Blanco is a trustee and beneficiary of an unrecorded Land Trust Agreement, dated December 19, 1996, known as Trust Number 99. The Trust holds title to real property (the Blanco Property) located to the south of the NNP-Bexley property. The Blanco property is approximately 100 acres and primarily agricultural. It has a narrow frontage along State Road (SR) 54, and is directly east of the Suncoast Parkway. A wetland known as Wetland A3 is partially located on the northern portion of the Blanco property. NNP-Bexley is a Florida limited partnership between the Bexley family and NNP-Tampa, LLC, and is the applicant for the ERP at issue in this case. Newland Communities, LLC, is the project manager for NNP-Bexley under a project management agreement. The ERP at issue in this case would authorize construction of a new surface water management system to serve Phase I of the Bexley Ranch Development of Regional Impact (DRI), which is a 6,900-acre mixed use, residential community. Phase one consists of a 1,717-acre residential subdivision in Sections 7, 8, and 16-20, Township 26 South, Range 18 East, Pasco County, Florida (the Subject Property), with 735 residential units, both single and multi-family, and associated improvements, including widening SR 54 and constructing Sun Lake Boulevard and Tower Road (collectively, the Project). The Subject Property is located North of the Blanco property. Like the rest of the land subject to the Bexley Ranch DRI, the Subject Property is predominantly agricultural land used for raising cattle, sod farming, and tree farming. There is little native vegetation and limited habitat value for wildlife in the uplands. The Subject Property is composed of approximately 654 acres of wetlands and 1063 acres of uplands. Most of the wetlands will be preserved, including many as part of a wildlife corridor along the Anclote River that is proposed to be dedicated to Pasco county. The Bexley Ranch DRI has been extensively reviewed. Including the DRI approval, it has received 23 separate development approvals to date. A Site Conditions Assessment Permit (SCAP) issued by the District established existing conditions on the NNP-Bexley Property for ERP permitting purposes, including wetland delineations, wetland hydroperiods, pre-development flows, drainage flow patterns, and the pre- development flood plain. The SCAP was not challenged and is not subject to challenge in this proceeding. Surface Water Management System The Subject Property accepts off-site drainage flows from the east and from the south. All drainage exits the Subject Property to the west, into property owned by the District. There is a culvert under an abandoned railroad crossing between the Subject Property and the Blanco property that directs surface water flows into the Subject Property. That culvert controls water elevations on the Blanco property. The surface water management system consists of a series of wet detention facilities, wetland creation areas, and floodplain mitigation designed to control water quality, quantity, and floodplain elevations. The design of the surface water management system was optimized and environmental impacts were reduced by using created wetlands for floodplain attenuation. Information from the SCAP was used to create pre- development and post-development Inter-connected Pond Routing (ICPR) computer models of drainage relevant to the Subject Property. The ICPR models were used to design a surface water management system that will avoid adverse on-site or off-site impacts and provide required water quality treatment. The ICPR models showed that the in-flows and out-flows to and from the Project site will not be adversely impacted by the proposed activities. The proposed surface water management system will not cause adverse water quantity impacts to receiving waters or to adjacent land, including Dr. Blanco's property. The Phase I project will not cause adverse impacts to existing surface water storage and conveyance capabilities and will not adversely affect the quality of receiving waters such that state water quality standards will be violated. The proposed water quality treatment system utilizes ponds for treatment and attenuation. Flow will be controlled by outlet structures. During construction, best management practices will be used to control sediment run-off. The surface water management system provides adequate water quantity and quality treatment and is designed to meet the criteria in Section 5.2 and BOR Section 6. Wetlands and Associated Impacts The wetlands within the Subject Property consist primarily of moderate-quality forested wetlands that have been selectively logged in the past. Previously isolated wetlands have been connected by surface water ditches. Through multiple iterations of design, direct wetland impacts from the Project were reduced from 86 to approximately of the 654 acres of wetlands on the Subject Property. Of those 24 acres, almost half are man-made surface water ditches. There will be direct impacts to 13.6 acres of wetlands that will require mitigation, which is approximately two percent of the total wetlands on the Subject Property. Most of the direct wetland impacts are the result of required transportation improvements such as roadway crossings. Secondary impacts also were considered. However, the proposed ERP requires a minimum of 15 feet and an average of 65 feet of buffer around wetlands on the Subject Property. The uplands have been converted into improved pasture or silviculture that lack native vegetation and have limited habitat value. According to the evidence, given buffers that exceed the District's criteria of a minimum 15 feet and average feet, no "additional measures are needed for protection of wetlands used by listed species for nesting, denning, or critically important feeding habitat"; and any secondary impacts from the expected residential development on a large percentage of the uplands on the Subject Property and subsequent phases of the Bexley DRI are not considered to be adverse. See BOR Section 3.2.7. Extensive wildlife surveys were conducted throughout the breeding season at all relevant times for sand hill cranes, wading birds, and all listed species. No colonies of listed bird species, such as wood storks, herons, egrets, or ibises, were found on the Project site; and no listed species was found to utilize the site for nesting. Mitigation Under the proposed ERP for the Project, approximately 80 acres of wetlands are to be created for floodplain attenuation and mitigation to offset unavoidable wetland impacts. The proposed mitigation areas are to be excavated to relatively shallow depths and planted. All the mitigation is on the Subject Property. The State's mandated Uniform Mitigation Assessment Method (UMAM) was used in this case to determine the amount of mitigation "needed to offset adverse impacts to wetlands and other surface waters." Fla. Admin. Code R. 62-345.100(1). Generally, UMAM compares functional loss to wetlands and other surface waters to functional gains through mitigation. In applying UMAM in this case, it does not appear that NNP-Bexley considered any functional loss to wetlands and other surface waters from the use of a large percentage of the uplands on the Subject Property and subsequent phases of the Bexley DRI for residential development. Apparently, impacts resulting in any such functional loss to wetlands and other surface waters were treated as secondary impacts that were not considered to be adverse because they were adequately buffered. See Finding 17, supra. In addition, "the amount and type of mitigation required to offset . . . [s]econdary impacts to aquatic or wetland dependent listed animal species caused by impacts to uplands used by such species for nesting or denning" are evaluated and determined by means other than "implementation of Rules 62- 345.400 through 62-345.600, F.A.C." Fla. Admin. Code R. 62- 345.100(5)(b). In any event, the undisputed evidence was that the uplands have been converted into improved pasture or silviculture that lack native vegetation and have limited habitat value, and there was ample evidence that UMAM was used properly in this case to determine the amount of mitigation "needed to offset adverse impacts to wetlands and other surface waters." Id. Without any evidence to the contrary, the evidence in the record is accepted. Based on the accepted UMAM evidence, wetland impacts resulted in 6.36 units of functional loss. The functional gain of the proposed mitigation calculated using UMAM is 18.19 units, more than offsetting Project impacts to wetlands on the Subject Property. Proposed Excavations for Ponds and Wetland Creation Blanco's expressed concerns focus on a 30-acre wetland to be created in the southwest corner of the Subject Property for mitigation with a secondary benefit of floodplain compensation credit. Referred to as M-10, this wetland is proposed to be created by excavating uplands to a depth of approximately two and one half feet, which is approximately half a foot below the seasonal high water line (SHWL). Because it is controlled by the railroad culvert near the property boundary, Wetland A3 will not be negatively impacted by M-10. It will not lose water to M-10 or any of the proposed excavations except in periods of relatively high rainfall, when those outflows would benefit Wetland A3. In addition, the existing Tampa Bay Water pipeline and the proposed Tower Road, located between the Blanco Property and the Subject Property, would restrict any drawdown effects from impacting Wetland A3. Mr. Marty Sullivan, a geotechnical engineer, performed an integrated ground and surface water modeling study to evaluate the potential for impacts to Wetland A3 from the excavation of a large-sized pond on the adjacent Ashley Glen property as part of a project that also was the subject of an ERP administrative challenge by Petitioner. Petitioner's challenge concerned impacts to Wetland A3 from excavation of an adjacent pond, known as P11. Mr. Sullivan's modeling demonstrated that there would be no adverse impacts to the hydrology of Wetland A3 from the Ashley Glen excavation although P-11 was larger and deeper than M-10, and much closer to Wetland A3. The bottom of P-11 came within 2 feet of limerock, in contrast to the minimum 10 foot separation in M-10. The Bexley and Ashley Glen sites are substantially similar in other respects, and the Ashley Glen modeling is strong evidence that M-10 would not adversely impact Wetland A3 or the wetlands on the Subject Property. Approximately 50 test borings were conducted throughout the 6,900-acre DRI site. The borings were done after considering the locations of wetlands and proposed activities. Test borings in Phase I were performed on the west side of the Subject Property. The findings from the test borings indicate that there is an inconsistent semi-confining layer that overlies the DRI site. Limestone varies in depth from 15 feet to 50 feet below the surface. Based upon the findings from the test borings, excavations for stormwater ponds are a minimum of 10 feet above the top of the limestone layer, meaning the semi-confining unit materials that cover the limestone will not be encountered or breached. Given the excavation depths of the various ponds, no adverse draw-downs are expected that would cause the groundwater table to be lowered due to downward leakance. While initially water would be expected to flow or move through the ground from existing wetlands on the Subject Property to the new M-10 wetland, water levels will stabilize, and there will be enough water for the existing wetlands and for M-10. There will be more water in the southwestern corner of the Subject Property for a longer period of time than in pre- development conditions. NNP-Bexley provided reasonable assurance that there will be no adverse impacts to Wetland A3 or the existing wetlands on the Subject Property from M-10 or any of the proposed excavations. Other Conditions for Permit Issuance The Project was evaluated under the public interest test found in Rule 40D-4.302. The evidence was that the public interest criteria have been satisfied. The Project is capable, based on generally accepted engineering and scientific principles, of being effectively performed and of functioning as proposed. The applicant has provided reasonable assurance that the construction, operation, and maintenance of the system will meet the conditions for permit issuance in Rule 40D-4.301 and 40D4.302. Improper Purpose Blanco has a history of opposing projects near his property, with mixed results. In this case, after Blanco learned of NNP-Bexley's application for an ERP, he met with Ms. Brewer on April 20, 2006, to discuss it. At the time, specifics were not discussed, but Blanco let Ms. Brewer know that his successful opposition to an earlier project by Westfield Homes resulted in significant expenditures by the developer and eventually the abandonment of the project by that developer. Blanco warned Ms. Brewer that, if NNP-Bexley did not deal with him to his satisfaction, and he challenged NNP-Bexley's application, NNP-Bexley would risk a similar fate. In August 2006, Blanco arranged a meeting at the University of South Florida (USF) with Ms. Brewer, NNP-Bexley's consultants, Blanco, and USF hydrologists, Drs. Mark Stewart and Mark Rains. At the time, Blanco's expressed concern was the impact of the NNP-Bexley project on Wetland A3. As a result of the meeting, it was agreed that there would be no impact on Wetland A3, primarily because it was upstream and its water elevations were controlled by the downstream culvert to the south of the Bexley property. Nonetheless, Ms. Brewer agreed to limit excavations in the southwest corner near the Blanco property and Wetland A3 to a depth of no more than two and a half feet, instead of the 12 feet being proposed at the time. NNP-Bexley made the agreed changes to the application and proceeded towards obtaining approval by the District. When Blanco learned that the NNP-Bexley project was on the agenda for approval by the District Board at its meeting in March 2008, Blanco took the position that NNP-Bexley had reneged on an agreement to keep him informed and insisted on an urgent meeting. At this third meeting with Ms. Brewer and some of her consultants, Blanco was told that the only change to the application was the one agreed to at the meeting at USF in August 2006. Not satisfied, Blanco asked that the application documentation be forwarded to Dr. Stewart for his evaluation. He mentioned for the first time that he was concerned about an increased risk to the Blanco property and Wetland A3 from wildfires starting on the Bexley property, spreading south, and utilizing dry muck resulting from the dewatering of wetlands in the southwest corner of the Bexley property as fuel. Blanco requested that the approval item be removed from the Board's agenda to give Dr. Stewart time to evaluate the documentation and advise Blanco. Blanco stated that, if forced to challenge Board approval, he would raise numerous issues arising from the entirety of the application, not just the muck fire issue and not just issues arising from activities in the southwest corner of the Bexley property. Ms. Brewer refused to delay Board approval for the reasons given by Blanco. When told that the item would not be removed from the agenda, Blanco stated that he would not challenge an approval that limited the excavations to the SHWL. NNP-Bexley refused because it was necessary to dig the pond to a half foot below the SHWL in order to create a mitigation wetland. At that point, Blanco proposed that he would not challenge a Board approval if: vegetation was removed from the mitigation areas to reduce the risk of wildfires; a fire break was constructed along Tower Road and mowed periodically; NNP-Bexley agreed in writing to never deepen the mitigation pond M-1 in the southwest corner of the Bexley property; and NNP-Bexley paid Blanco $50,000 for him to install a well for use in fighting any wildfire that might approach the Blanco property and Wetland A3 from the north. Ms. Brewer agreed to all of Blanco's demands except for the $50,000 payment. Instead, she offered to pay for construction of the well, which she believed would cost significantly less than $50,000. At that point, the negotiations broke down, and Blanco filed a request for a hearing. The District denied Blanco's first request for a hearing and gave him leave to amend. In the interim, the Board voted to approve NNP-Bexley's application, and Blanco timely- filed an amended request for a hearing. The amended request for a hearing did not mention fire risk. Instead, it resurrected the issue of dewatering Wetland A3, as well as wetlands on the Bexley property, caused by the excavation in the southwest corner of the Bexley property, which would "result in destruction of functions provided by those wetlands that are not accounted for by the District." The amended request for a hearing also raised numerous other issues. After Blanco's former attorney-of-record withdrew without objection, Blanco's present counsel-of-record appeared on his behalf and requested a continuance to give Blanco time to determine whether either Dr. Stewart or Dr. Rains would be willing to testify for him if the hearing were re-scheduled. That request was denied. During a telephonic prehearing conference on September 8, 2008, Blanco asked to add Mr. Patrick Tara, a professional engineer, to his witness list. This request was denied as untimely. Mr. Tara was available but was not permitted to testify at the final hearing; instead, Blanco was allowed to file an affidavit of Mr. Tara as a proffer. Blanco's request to present expert evidence on fire hazards from muck fires in dry conditions was denied as irrelevant under the District's ERP conditions of issuance. Essentially, Blanco presented no evidence to support any of the allegations in his amended request for a hearing. Blanco maintained in his testimony that he filed and persisted in this challenge on the advice of his experts, Drs. Stewart and Rains, and after September 8, 2008, also on the opinions of Mr. Tara. For that reason, Blanco was given the opportunity to file affidavits from Drs. Stewart and Rains, in addition to the affidavit of Mr. Tara, in support of his expressed basis for litigating this case. Respondents were given the opportunity to depose Drs. Stewart and Rains if desired. Drs. Stewart and Rains, as well as Mr. Tara, all told Blanco essentially that the excavation proposed in NNP-Bexley's plans for development probably would have adverse impacts on the surrounding wetlands. However, none of them told Blanco that there would be adverse impacts on Wetland A3; Drs. Stewart and Rains clearly told Blanco that there would be no adverse impacts on Wetland A3. It does not appear from his affidavit that Mr. Tara focused on Wetland A3, and there is no reason to believe that he disagreed with Drs. Stewart and Rains with regard to Wetland A3. As to the wetlands on the Bexley property surrounding the excavation in the southwest corner of the property, any potential impacts from excavation that Drs. Stewart and Rains might have discussed with Blanco prior to the USF meeting in August 2006 were reduced after NNP-Bexley agreed to limit the depth of the excavation to two and a half feet. When asked about the revised excavations again in February or March of 2008, Dr. Stewart essentially told Blanco that even the shallower excavations would make the surrounding wetlands on the Subject Property drier during dry conditions and that any such impacts could be eliminated or minimized by either limiting the excavation to the SHWL or by maintaining a buffer of undisturbed land around the excavation. Dr. Rains agreed with Dr. Stewart's assessment. Contrary to Blanco's testimony at the final hearing, there is no evidence that Dr. Stewart, Dr. Rains, or Mr. Tara ever advised Blanco to file and persist in this challenge. In their depositions, Drs. Stewart and Rains specifically denied ever giving Dr. Blanco such advice. Likewise, there is no evidence that any of them had any opinions to give Blanco about risk of fire hazards. In their depositions, Drs. Stewart and Rains specifically denied ever giving Blanco such opinions. There are additional discrepancies between Blanco's testimony and the deposition testimony of Drs. Stewart and Rains. Blanco swore that Dr. Stewart was unable for health reasons to testify for him. In his deposition, Dr. Stewart denied that his health entered into his decision. He told Blanco from the outset that he would not be willing to testify as Blanco's expert. Dr. Stewart only cursorily examined the materials Blanco had delivered to him and only responded to Blanco's questions in generalities. Most of their conversations consisted of Blanco bringing Dr. Stewart up-to-date on what was happening in the case. Blanco swore that Dr. Rains planned to testify for him at the scheduled final hearing until unexpected events made it impossible. In his deposition, Dr. Rains testified that he never agreed to testify as Dr. Blanco's expert and that his unavailability to testify at the final hearing was made known to Blanco when he was first asked to testify at the scheduled final hearing. He never even opened the box of materials Blanco had delivered to him and barely spoke to Blanco at all about hydrology. Most of Dr. Rains' communications with Blanco had to do with Dr. Rains' unavailability to participate. Based on all of the evidence, it is found that Blanco's participation in this proceeding was for an improper purpose--i.e., "primarily to harass or to cause unnecessary delay or for frivolous purpose or to needlessly increase the cost of litigation, licensing, or securing the approval of an activity." His more recent dealings with Drs. Stewart and Rains and Mr. Tara seem more designed to obtain or infer statements for Blanco to use to avoid sanctions than to obtain actual evidence to support a valid administrative challenge.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the District enter a final order issuing ERP No. 43013740.004 to NNP-Bexley. Jurisdiction is reserved to determine the appropriate amount of attorney's fees and costs to be awarded under Section 120.595(1), Florida Statutes, in further proceedings consolidated with NNP-Bexley's requests for Sections 57.105 and 120.569(2)(e), Florida Statutes. DONE AND ENTERED this 17th day of November, 2008, in Tallahassee, Leon County, Florida. S J. LAWRENCE JOHNSTON Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 17th day of November, 2008.

Florida Laws (13) 120.569120.57120.595120.68267.061373.042373.086373.413373.4136373.414373.421403.03157.105 Florida Administrative Code (7) 28-106.20140D-4.30140D-4.30262-302.30062-345.10062-345.60062-4.242
# 3
BERNARD J. PATTERSON AND VIRGINIA T. PATTERSON vs CITY OF DELTONA AND ST. JOHNS RIVER WATER MANAGEMENT DISTRICT, 04-002408 (2004)
Division of Administrative Hearings, Florida Filed:Deltona, Florida Jul. 12, 2004 Number: 04-002408 Latest Update: Jul. 25, 2005

The Issue The issue is whether the applicant for an Environmental Resource Permit ("ERP"), the City of Deltona ("City" or "Applicant"), has provided reasonable assurance that the system proposed complies with the water quantity, environmental, and water quality criteria of the St. Johns River Water Management District's ("District") ERP regulations set forth in Florida Administrative Code Chapter 40C-4, and the Applicant's Handbook: Management and Storage of Surface Waters (2005).

Findings Of Fact The District is a special taxing district created by Chapter 373, Florida Statutes, charged with the duty to prevent harm to the water resources of the District, and to administer and enforce Chapter 373, Florida Statutes, and the rules promulgated thereunder. The City of Deltona is a municipal government established under the provisions of Chapter 165, Florida Statutes. The Lake Theresa Basin is comprised primarily of a system of interconnected lakes extending from Lake Macy in the City of Lake Helen to the Butler Chain of Lakes (Lake Butler and Lake Doyle). The Lake Theresa Basin is land-locked and does not have a natural outfall to Lake Monroe and the St. Johns River. In 2003, after an extended period of above-normal rainfall in the Deltona area, the lakes within the land-locked Lake Theresa Basin staged to extremely high elevations that resulted in standing water in residential yards, and rendered some septic systems inoperable. Lake levels within the Lake Theresa Basin continued to rise and were in danger of rising above the finished floor elevations of some residences within the basin. On March 25, 2003, the District issued an Emergency Order (F.O.R. No. 2003-38) authorizing the construction and short-term operation of the Lake Doyle and Lake Bethel Emergency Overflow Interconnection. Since wetland and surface water impacts would occur, the Emergency Order required the City of Deltona to obtain an ERP for the system. The project area is 4.1 acres, and the system consists of a variable water structure on the west shore of Lake Doyle connected to a series of pipes, swales, water control structures, and wetland systems which outfall to a finger canal of Lake Bethel, with ultimate discharge to Lake Monroe and the St. Johns River. The first segment of the system extends downstream from the weir structure on the west shore of Lake Doyle via a pipe entrenched in the upland berm of the Sheryl Drive right-of-way. The pipe passes under Doyle Road and through xeric pine-oak uplands to the northeast shore of a large (approximately 15 acres) deepwater marsh. Water flows south through the deepwater marsh where it outfalls through four pipes at Ledford Drive. Two of the four pipes are overflow structures, controlled by canal gates. The pipes at Ledford Drive discharge into a ditch and into a large (greater than 20 acres) shallow bay swamp. The south end of the bay swamp is defined (and somewhat impounded) by a 19th Century railroad grade. Water flows through the bay swamp where it outfalls through five pipes at the railroad grade. Three of the five pipes are overflow structures, controlled by channel boards. The pipes at the railroad grade discharge to a 1500-foot long finger canal that was dug some time during the period 1940-1972 from the north central shore of Lake Bethel. The overflow interconnection system has three locations whereby the system can be shut down: 1) Lake Doyle--a control weir, controlled by three sluice gates; 2) Ledford Drive--two thirty-inch reinforced concrete pipes, controlled by canal gates; and 3) railroad grade--three thirty-inch reinforced concrete pipes, controlled by channel boards (collectively referred to as "Overflow Structures"). The Overflow Structures are designed to carry the discharge of water from Lake Doyle to Lake Bethel. With the Overflow Structures closed the system returns to pre-construction characteristics, meaning there will be no increase or decrease in the quantity or quality of water throughout the path of the system as a result of the project. An unequivocal condition of the permit is that the system would operate with all of the Overflow Structures closed. As an added assurance, the City proposes to place a brick and mortar plug in the Lake Doyle weir structure outfall pipe to prevent any discharge from the weir. The City has submitted to the District preliminary plans for a future phase in which the system would be modified for the purpose of alleviating high water levels within the Lake Theresa Basin when the water level in Lake Doyle rises above an elevation of 24.5 feet. The District shall require a separate permit application to be submitted for such future plans. Petitioner, Barbara Ash, has lived on Lake Theresa for 19 years. Ms. Ash lives upstream from the area of the weir that will be plugged in accordance with the ERP. She does not trust either the City of Deltona to comply with or the District to enforce the conditions of the ERP applied for by the City. Petitioner, Barbara Ash, also served as the qualified representative for Petitioners, Francell Frei, Bernard J. and Virginia Patterson, and Ted and Carol Sullivan. Ms. Ash represented that Ms. Frei has lived on Lake Theresa for 12 years, and both the Pattersons and the Sullivans live on Lake Louise, which is within the area of concern in this proceeding. Petitioner, Diana Bauer, has lived on Lake Theresa since February 2004. She fears that the lake will become too dry if the system is allowed to flow. She also believes the wildlife will be adversely affected if the water levels are too low since many species need a swampy or wet environment to thrive. She fears her property value will decrease as a result of the approval of the ERP. She also does not trust either the City to comply with or the District to enforce the conditions of the ERP. Petitioner, Howard Ehmer, lives two to three hundred yards down Lake Theresa from Ms. Bauer. He is concerned about the lake bed being too dry and attracting people on all terrain vehicles who enjoy driving around the lake bottom. He is concerned about his property value decreasing if the lake bed is dry. Further, when the lake level is too low, people cannot enjoy water skiing, boating, and fishing on Lake Theresa. Petitioner, Phillip Lott, a Florida native, has also owned and lived on property abutting Lake Theresa since 1995. Mr. Lott has a Ph.D. in plant ecology, and M.P.A. in coastal zone studies, an M.B.A. in international business, and a B.S. in environmental resource management and planning. Mr. Lott has been well acquainted with the water levels on Lake Theresa for many years. Based upon his personal observations of the lake systems in the Deltona area over the years, Mr. Lott has seen levels fluctuate greatly based upon periods of heavy and light rainfall. Mr. Lott is concerned that the District will permit the City to open the weir to let water flow through the system and cause flooding in some areas and low water levels in other areas. He fears that the District will allow the water to flow and upset the environmental balance, but he admits that this ERP application is for a closed system that will not allow the water to flow as he fears. Mr. Lott similarly does not trust the City to comply with and the District to enforce the conditions of the ERP. Petitioners, James E. and Alicia M. Peake, who were represented by Steven L. Spratt at hearing as their qualified representative, live on Lake Louise, which is interconnected with the Lake Theresa basin. The Peakes are concerned that if the level of Lake Louise drops below 21 feet, nine inches, they will not be able to use the boat launch ramps on the lake. Petitioner, Steven L. Spratt, also lives on Lake Louise, and is concerned about the water levels becoming so low that he cannot use the boat launch on the lake. He has lived on the lake since 2000, and remembers when the water level was extremely low. He fears that approval of the ERP in this case will result in low levels of water once again. Petitioner, Gloria Benoit, has live on Lake Theresa for two years. She also enjoys watching recreational activities on the lake, and feels that approval of the ERP will devalue her lakefront property. Ms. Benoit appeared at the first day of the hearing, but offered no testimony on her behalf. J. Christy Wilson, Esquire, appeared prior to the final hearing as counsel of record for Petitioners, Steven E. Larimer, Kathleen Larimer, and Helen Rose Farrow. Neither Ms. Wilson nor any of the three Petitioners she represented appeared at any time during the hearing, filed any pleadings seeking to excuse themselves from appearing at the final hearing, or offered any evidence, testimony, pre- or post- hearing submittals. Petitioner, Gary Jensen, did not appear at hearing, did not file any pleadings or papers seeking to be excused from appearing at the final hearing, and did not offer any evidence, testimony, pre- or post-hearing submittals. Both the City and the District recognize that areas downstream from the project site, such as Stone Island and Sanford, have experienced flooding in the past in time of high amounts of rainfall. The system proposed by the City for this ERP will operate with the overflow structures closed and a brick and mortar plug in the outfall pipe to prevent water flow from Lake Doyle to Lake Bethel. So long as the overflow structures are closed, the system will mimic pre-construction flow patterns, with no increase in volume flowing downstream. The District has considered the environment in its proposed approval of the ERP. The area abutting the project is little urbanized and provides good aquatic and emergent marsh habitat. With the exception of the western shore area of the deepwater marsh ("west marsh area"), the bay swamp and remaining deepwater marsh area have good ecological value. In the 1940's, the west marsh area was incorporated into the drainage system of a poultry farm that occupied the site. This area apparently suffered increased nutrient influxes and sedimentation that contributed to a proliferation of floating mats of aquatic plants and organic debris. These tussocks reduced the deepwater marsh's open water and diminished the historical marsh habitat. Water under the tussocks is typically anoxic owing to total shading by tussocks and reduced water circulation. Thick, soft, anaerobic muck has accumulated under the matted vegetation. Exotic shrubs (primrose willow Ludwigia peruvania) and other plants (cattails Typha spp.) dominate the tussocks. The construction of the project, from the 2003 Emergency Order, resulted in adverse impacts to 1.3 acres of wetlands having moderately high- to high ecological value and 0.2 acres of other surface waters. The 0.2 acre impact to other surface waters was to the lake bottom and the shoreline of Lake Doyle where the weir structure was installed. The 0.3 acres of wetland impacts occurred at the upper end of the deepwater marsh where the pipe was installed. The largest wetland impact (1.0 acre) was to the bay swamp. The bay swamp is a shallow body dominated by low hummocks and pools connected inefficiently by shallow braided channels and one acre is filled with a 1-2 foot layer of sediment following swamp channelization. Disturbance plants (e.g., primrose willow, Ludwigia peruvania, and elderberry Sambucus Canadensis) now colonize the sediment plume. Pursuant to the District's elimination and reduction criteria, the applicant must implement practicable design modifications, which would reduce or eliminate adverse impacts to wetlands and other surface waters. A proposed modification, which is not technically capable of being done, is not economically viable, or which adversely affects public safety through endangerment of lives or property is not considered "practicable." The City reduced and/or eliminated the impacts to the lake bottom and shoreline of Lake Doyle and deepwater marsh, to the extent practicable. The impacts were the minimum necessary to install the weir structure and pipe for the system; the weir structure and pipe were carefully installed on the edges of the wetland and surface water systems, resulting in a minimum amount of grading and disturbance. To compensate for the loss of 1.3 acres of wetlands and 0.2 acres of other surface waters, the City proposes to preserve a total of 27.5 acres of wetlands, bay swamp, marsh, and contiguous uplands. Included in this 27.5 acres are 6.4 acres of the west marsh, which are to be restored. The parties stipulated that the mitigation plan would adequately compensate for losses of ecological function (e.g. wildlife habitat and biodiversity, etc.) resulting from the project. Water quality is a concern for the District. Lake Monroe is included on the Florida Department of Environmental Protection's verified list of impaired water bodies for nitrogen, phosphorous, and dissolved oxygen. Water quality data for Lake Monroe indicate the lake has experienced high levels of nitrogen and phosphorous and low levels of dissolved oxygen. Prior to construction of the project, there was no natural outfall from the Lake Theresa Basin to Lake Monroe and therefore no contribution from this basin to nitrogen and phosphorous loadings to Lake Monroe. Lake Colby, Three Island Lakes (a/k/a Lake Sixma), and the Savannah are surface waters within the Lake Theresa Basin for which minimum levels have been adopted pursuant to Florida Administrative Code Chapter 40C-8. The system will operate with the overflow structures closed and a brick and mortar plug in the outfall pipe to prevent water flow from Lake Doyle to Lake Bethel, resulting in no outfall from the Theresa Basin to Lake Monroe. Minimum flows established for surface waters within the Lake Theresa Basin will not be adversely impacted. Under the first part of the secondary impact test, the City must provide reasonable assurance that the secondary impacts from construction, alteration, and intended or reasonable expected use of the project will not adversely affect the functions of adjacent wetlands or surface waters. The system is designed as a low intensity project. As proposed, little activity and maintenance are expected in the project site area. The reasonably expected use of the system will not cause adverse impacts to the functions of the wetlands and other surface waters. None of the wetland areas adjacent to uplands are used by listed species for nesting or denning. In its pre-construction state, the project area did not cause or contribute to state water quality violations. Under the second part of the secondary impact test, the City must provide reasonable assurance that the construction, alteration, and intended or reasonably expected uses of the system will not adversely affect the ecological value of the uplands to aquatic or wetland dependent species for enabling existing nesting or denning by these species. There are no listed threatened or endangered species within the project site area. Under the third part of the secondary impact test, and as part of the public interest test, the District must consider any other relevant activities that are closely linked and causally related to any proposed dredging or filling which will cause impacts to significant historical and archaeological resources. When making this determination, the District is required, by rule, to consult with the Division of Historical Resources. The Division of Historical Resources indicated that no historical or archaeological resources are likely present on the site. No impacts to significant historical and archaeological resources are expected. Under the fourth part of the secondary impact test, the City must demonstrate that certain additional activities and future phases of a project will not result in adverse impacts to the functions of wetlands or water quality violations. The City has submitted to the District preliminary plans for a future phase in which the system would be modified for the purpose of alleviating high water levels within the Lake Theresa Basin when the level in Lake Doyle rises above an elevation of 24.5 feet. Based upon the plans and calculations submitted, the proposed future phase, without additional measures, could result in minor increases in the loadings of nitrogen and phosphorous to Lake Monroe. Lake Monroe is included on the Florida Department of Environmental Protection's verified list of impaired water bodies due to water quality data indicating the lake has experienced high levels of nitrogen and phosphorous, and low levels of dissolved oxygen. Under this potential future phase, there would be an outfall from the Lake Theresa Basin to Lake Monroe. To address the impact on water quality of this potential future phase, the City has submitted a loading reduction plan for nitrogen, phosphorous, and dissolved oxygen. The plan includes compensating treatment to fully offset the potential increased nutrient loadings to Lake Monroe. Specifically, the loading reduction plan includes: Construction and operation of compensating treatment systems to fully offset anticipated increased nutrient loadings to Lake Monroe. Weekly water quality monitoring of the discharge from Lake Doyle for total phosphorous and total nitrogen. A requirement that the overflow structure be closed if the total phosphorous level reaches 0.18 mg/l or higher or the total nitrogen level reaches 1.2 mg/l or higher in any given week and will remain closed until levels fall below those limits. The implementation of these water quality mitigation measures will result in a net improvement of the water quality in Lake Monroe for nitrogen, phosphorous, or dissolved oxygen. The future phase was conceptually evaluated by the District for impacts to wetland functions. The future phase as proposed could result in adverse impacts to wetland functions. Operation of the system with the overflow structures open could impact the bay swamp and deepwater marsh. The City has demonstrated that any adverse impacts could be offset through mitigation. Based upon the information provided by the City and general engineering principles, the system is capable of functioning as proposed. The City of Deltona will be responsible for the operation, maintenance, and repair of the surface waster management system. A local government is an acceptable operation and maintenance entity under District rules. The public interest test has seven criteria. The public interest test requires the District to evaluate only those parts of the project actually located in, on, or over surface waters or wetlands, to determine whether a factor is positive, neutral, or negative, and then to balance these factors against each other. The seven factors are as follows: the public health, safety, or welfare of others; conservation of fish and wildlife and their habitats; fishing, recreational value, and marine productivity; temporary or permanent nature; 5) navigation, water flow, erosion, and shoaling; 6) the current condition and relative value of functions; and 7) historical and archaeological resources. There are no identified environmental hazards or improvements to public health and safety. The District does not consider impacts to property values. To offset any adverse impacts to fish and wildlife and their habitats, the City has proposed mitigation. The areas of the project in, on, or over wetlands do not provide recreational opportunities. Construction and operation of the project located in, on, or over wetlands will be permanent in nature. Construction and operation of the project located in, on, or over wetlands will not cause shoaling, and does not provide navigational opportunities. The mitigation will offset the relative value of functions performed by areas affected by the proposed project. No historical or archaeological resources are likely on the site of the project. The mitigation of the project is located within the same drainage basin as the project and offsets the adverse impacts. The project is not expected to cause unacceptable cumulative impacts.

Recommendation Based upon the Findings of Fact and Conclusions of Law, it is RECOMMENDED that a Final Order be entered granting the City of Deltona's application for an environmental resource permit with the conditions set forth in the Technical Staff Report, and dismissing the Petitions for Formal Administrative Hearing filed by Gary Jensen in Case No. 04-2405, and by Steven E. Larimer, Kathleen Larimer, and Helen Rose Farrow in Case No. 04-3048. DONE AND ENTERED this 27th day of May, 2005, in Tallahassee, Leon County, Florida. S ROBERT S. COHEN Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 27th day of May, 2005. COPIES FURNISHED: George Trovato, Esquire City of Deltona 2345 Providence Boulevard Deltona, Florida 32725 Diana E. Bauer 1324 Tartan Avenue Deltona, Florida 32738 Barbara Ash, Qualified Representative 943 South Dean Circle Deltona, Florida 32738-6801 Phillip Lott 948 North Watt Circle Deltona, Florida Howard Ehmer Nina Ehmer 32738-7919 1081 Anza Court Deltona, Florida 32738 Francell Frei 1080 Peak Circle Deltona, Florida 32738 Bernard T. Patterson Virginia T. Patterson 2518 Sheffield Drive Deltona, Florida 32738 Kealey A. West, Esquire St. Johns River Water Management District 4049 Reid Street Palatka, Florida 32177 J. Christy Wilson, Esquire Wilson, Garber & Small, P.A. 437 North Magnolia Avenue Orlando, Florida 32801 Gloria Benoit 1300 Tartan Avenue Deltona, Florida 32738 Gary Jensen 1298 Tartan Avenue Deltona, Florida 32738 James E. Peake Alicia M. Peake 2442 Weatherford Drive Deltona, Florida 32738 Steven L. Spratt 2492 Weatherford Drive Deltona, Florida 32738 Ted Sullivan 1489 Timbercrest Drive Deltona, Florida 32738 Kirby Green, Executive Director St. Johns River Water Management District 4049 Reid Street Palatka, Florida 32177

Florida Laws (3) 120.569120.57373.086 Florida Administrative Code (6) 40C-4.30140C-4.30240C-4.33140C-4.75162-302.30062-4.242
# 4
CITIZENS FOR SMART GROWTH, KATHIE SMITH, AND ODIAS SMITH vs DEPARTMENT OF TRANSPORTATION, MARTIN COUNTY BOARD OF COUNTY COMMISSIONERS, AND SOUTH FLORIDA WATER MANAGEMENT DISTRICT, 10-003318 (2010)
Division of Administrative Hearings, Florida Filed:Stuart, Florida Jun. 16, 2010 Number: 10-003318 Latest Update: Feb. 14, 2011

The Issue The issues are whether to (a) issue an Environmental Resource Permit (ERP) to the Department of Transportation (DOT) and Martin County (County) authorizing construction and operation of a surface water management system to serve a project known as the Indian Street Bridge; (b) issue DOT a letter of modification of ERP No. 43-00785-S authorizing roadway and drainage modifications to the Kanner Highway/Indian Street intersection; and (c) issue DOT a letter of modification of ERP No. 43-01229-P authorizing roadway and drainage modifications to Indian Street between the intersections of Kanner Highway and Willoughby Boulevard.

Findings Of Fact Based on the evidence presented by the parties, the following findings of fact are made: The Parties Petitioner Citizens for Smart Growth, Inc., is a Florida 501(c)(3) corporation with its principal place of business in Palm City, Florida. It was formed by Odias Smith in August 2001, who serves as its president. The original directors were Kathie Smith, Odias Smith, and Craig Smith, who is the Smiths' son. The composition of the Board has never changed. According to the original Articles of Incorporation, its objectives are "preserving and enhancing the present advantages of living in Martin County (Quality of Life) for the common good, through public education, and the encouragement of reasonable and considered decision making by full disclosure of impacts and alternatives for the most appropriate use of land, water and resources." The exact number of members fluctuates from time to time. There are no dues paid by any member. At his deposition, Mr. Smith stated that no membership list exists; however, Kathie Smith stated that she currently has a list of 125 names, consisting of persons who at one time or another have made a contribution, have attended a meeting, or asked to be "kept informed of what's going on or asked to be on a mailing list or a telephone list, so they could be advised when we have meetings." No meetings have been held since 2006. Therefore, the Petitions filed in these cases have never been discussed at any meetings of the members, although Ms. Smith indicated that telephone discussions periodically occur with various individuals. Kathie Smith believes that roughly 25 percent of the members reside in a mobile home park north of the project site on Kanner Highway on the eastern side of the St. Lucie River, she does not know how many members reside on the western side of the St. Lucie River, and she is unaware of any member who resides on the South Fork of the St. Lucie River immediately adjacent to the project. Although the three Petitions allege that "seventy percent of the members . . . reside and/or recreate on the St. Lucie River," and in greater detail they allege how those members use that water body or depend on it for their livelihood, no evidence was submitted to support these allegations that 70 percent (or any other percentage of members) use or depend on the South Fork of the St. Lucie River for recreational or other activities. Petitioners Odias Smith and Cathie Smith reside in Palm City, an unincorporated community just south of Stuart in Martin County. They have opposed the construction of the new bridge since they moved to Palm City in 2001. It is fair to infer that Mr. Smith formed the corporation primarily for the purpose of opposing the bridge. Their home faces north, overlooking the South Fork of the St. Lucie River, from which it is separated by Saint Lucie Shores Drive and a narrow strip of common-ownership property. A boat dock extends from the common-ownership property into the St. Lucie River, providing 5 slips for use by the Smiths and other co-owners. The home is located three blocks or approximately 1,000 feet from the proposed western landfall of the new bridge. Due to the direction that the house faces (north) and the site of the new bridge, the surface water management system elements associated with the bridge will not be visible from their property. Mr. Smith believes, however, that when looking south through a veranda window on the second floor of his home, he will be able to see at least a part of the new bridge. From the front of their house, they now have an unobstructed view of the existing Palm City Bridge, a large structure that crosses the St. Lucie River approximately six- tenths of a mile north of their home, and which is similar in size to the new bridge now being proposed by the Applicants. The Smiths' home is more than 500 feet from the Project's right- of-way, and they do not know of any impact on its value caused by the Project. While the Smiths currently engage in walking, boating, running, fishing, and watching wildlife in the neighborhood or the South Fork of the St. Lucie River, there was no credible evidence that the Project would prevent them from doing so after the bridge and other improvements are constructed. Also, there was no evidence showing that the ERP Letter Modifications will cause them to suffer any adverse impacts. In fact, as noted below, by DOT undertaking the Project, the neighborhood will be improved through reduced flooding, improved water quality, and new swales and ponds. The County is a political subdivision of the State. It filed one of the applications at issue in this proceeding. DOT is an agency of the State and filed the three applications being contested. The District has the power and duty to exercise regulatory jurisdiction over the administration and enforcement of ERP criteria pursuant to Part IV, Chapter 373, Florida Statutes, and Title 40E of the Florida Administrative Code. The Department of Environment Protection (DEP) has delegated certain authority to the District, including the authority to authorize an applicant to use sovereign submerged lands via a public easement within the District's geographic jurisdiction. The Project Construction of a new bridge over the St. Lucie River has been studied extensively by the Applicants for over twenty years. DOT has awarded the contract and nearly all of the right-of-way has been purchased. The Project will begin as soon as the remaining permits are acquired. The Project is fully funded through the American Recovery and Reinvestment Act of 2009 and County funding. The Project is located in the County and includes 62.06 acres of roadway bridge development and 12.45 acres of sovereign submerged lands. The Project begins on the west side of the St. Lucie River on County Road 714, approximately 1,300 feet west of Mapp Road in Palm City and ends on the east side of the St. Lucie River approximately 1,400 feet east of Kanner Highway (State Road 76) on Indian Street. It includes construction and operation of a surface water management system to serve the road and bridge project. The total length of the Project is approximately 1.96 miles (1.38 miles of roadway and 0.58 miles of bridge) while the total area is approximately 74.51 acres. After treatment, surface water runoff will discharge to the tidal South Fork of the St. Lucie River. The Project encompasses a bridge crossing the South Fork of the St. Lucie River and the Okeechobee Waterway. Both are classified as Class III waters. The bridge transitions from 4 to 6 lanes east of the Okeechobee Waterway and will require a 55-foot vertical clearance and a 200-foot horizontal clearance between the fender systems at the Okeechobee Waterway. The bridge will cross over a portion of Kiplinger Island owned and preserved by the County. A part of the island was donated to the County in 1993-1994 by The Kiplinger Washington Editors, Inc., and the Kiplinger Foundation, Inc. Audubon of Martin County owns another part of the island. The transfer of title to the County does not include any restriction on the use of the island for conservation purposes only. Documentation submitted at hearing refers to a "two hundred foot wide road right-of-way" easement that the bridge will cross and allows the County to designate where on the island parcel such an easement would be. Therefore, spanning the bridge over a portion of the island owned by the County is clearly permissible. The Project also includes the roadway transition and widening/reconstruction of (a) County Road 714 from the beginning of the Project to Mapp Road from 2-lane to a 4-lane divided roadway; (b) Southwest 36th Street from Mapp Road to the beginning of the bridge from a 2-lane rural roadway to a 4-lane divided roadway with wide roadway swales; and (c) Kanner Highway (along Indian Street) from a 4-lane to a 6-lane divided urban roadway. Drainage improvements on both sides of the St. Lucie River are associated with the roadway construction. DOT proposes to provide both on-site and off-site mitigation for wetland and surface waters impacts pursuant to a mitigation plan approved by the District. The ERP Permitting Criteria In order to obtain an ERP, an applicant must satisfy the conditions for issuance set forth in Florida Administrative Code Rules 40E-4.301 and 40E-4.302. Besides these rules, certain related BOR provisions which implement the rules must also be considered. The conditions for issuance primarily focus on water quality, water quantity, and environmental criteria and form the basis of the District's ERP permitting program. The parties have stipulated that the Project either complies with the following rule provisions or they are not applicable: Rules 40E-4.301(1)(a), (b), (g), (g), (h), and (k), and 40E- 4.302(1)(a)3. and 6. All other provisions remain at issue. Where conflicting evidence on these issues was submitted, the undersigned has resolved all evidentiary conflicts in favor of the Applicants and District. Based on the parties' Stipulation, the following provisions in Rule 40E-4.301(1) are in dispute and require an applicant to provide reasonable assurances that the construction, alteration, operation, maintenance, removal, or abandonment of a surface water management system: will not cause adverse impacts to existing surface water storage and conveyance capabilities; will not adversely impact the value of functions provided to fish and wildlife and listed species by wetlands and other surface waters; will not adversely affect the quality of receiving waters such that the water quality standards set forth in chapters 62- 4, 62-302, 62-520, 62-522, 62-550, F.A.C., including any anti-degradation provisions of paragraphs 62-4.242(1)(a) and (b), subsections 62-4.242(2) and (3), and rule 62-302.300, F.A.C., and any special standards for Outstanding Florida Waters and Outstanding National Resource Waters set forth in subsections 62-4.242(2) and (3), F.A.C., will be violated; will not cause adverse secondary impacts to the water resources; will be capable, based on generally accepted engineering and scientific principles, of being performed and of functioning as proposed; will be conducted by an entity with sufficient financial, legal and administrative capability to ensure that the activity will be undertaken in accordance with the terms and conditions of the permit, if issued; These disputed criteria are discussed separately below. Surface Water Storage and Conveyance Rule 40E-4.301(1)(c) requires that an applicant provide reasonable assurances that a proposed activity will not cause adverse impacts to existing surface water storage and conveyance capabilities. Through unrefuted evidence, this requirement was shown to be satisfied. The evidence also establishes that the surface water in and around the Project will actually improve if the Project is constructed as permitted. Further, it will create improved and upgraded surface water management and treatment in areas that now lack features such as swales, retention/detention ponds, curbs and gutters, and improve the overall surface water storage and conveyance capabilities of the Project and surrounding areas. In its current pre-development condition, flooding has occurred in certain areas adjacent to and within the Project area due to poor conveyance, low storage volume, and high tailwater conditions that result from high tides. The Project will remedy historic flooding issues in the Old Palm City area which lies adjacent to a portion of the Project alignment. Surface water runoff will be captured, controlled, and treated by a system of swales, weirs, and retention/detention facilities for pretreatment prior to discharging into the South Fork of the St. Lucie River. Reasonable assurances have been given that existing surface water storage and conveyance capabilities will not be adversely affected. Value of Functions to Fish, Wildlife, and Species Rule 40E-4.301(1)(d) requires that an applicant provide reasonable assurances that a proposed activity will not adversely impact the value of functions provided to fish and wildlife and listed species by wetlands and other surface waters. BOR Section 4.2.2 further implements this provision. For the following reasons, the rule and BOR have been satisfied. The evidence shows that the existing functions to fish and wildlife were assessed and analyzed by a number of federal and state fish and wildlife agencies. There were extensive review and site inspections by the District, DOT, United States Fish and Wildlife Service, United States Army Corps of Engineers, and National Marine Fisheries Commission to assess the existence of, and potential impact on, fish and wildlife that may result from the Project. These studies revealed that while portions of the South Fork of the St. Lucie River provide potential habitat for aquatic or wetland-dependent or threatened species of special concern, no nesting or roosting areas within the vicinity of the Project were observed. The evidence further supports a finding that "other surface waters" over and under the Project will not receive unacceptable impacts due to their current condition, the detrimental influences of Lake Okeechobee discharges, and tidal impacts. Many of the wetlands to be impacted by the Project were shown to have been impacted by historic activities, and they provide diminished functions to fish and wildlife. The wetland functions were assessed through the Uniform Mitigation Assessment Methodology (UMAM). The UMAM is a standardized procedure for assessing the functions provided by wetlands and other surface waters, the amount that those functions would be reduced by a proposed project, and the amount of mitigation necessary to offset that loss. Detailed UMAM assessments were prepared by the Applicants and the District. They demonstrate that while certain functional units will be lost, they will be fully offset by the proposed mitigation. No credible evidence to the contrary was presented. Water Quality of Receiving Waters Rule 40E-4.301(1)(e) requires an applicant to provide reasonable assurances that a project will not adversely affect the quality of receiving waters such that State water quality standards will be violated. BOR Section 4.2.4 implements this rule and requires that "reasonable assurances regarding water quality must be provided for both the short term and long term, addressing the proposed construction, . . . [and] operation of the system." The receiving water body is the South Fork of the St. Lucie River, which is designated as an impaired water body. The evidence establishes that the Applicants will avoid and minimize potential short-term impacts to water quality by using silt screens and turbidity barriers, and implementing other best management practices to contain turbidity during construction of the Project. They will also use a temporary trestle rather than barges in the shallow portions of the South Fork to avoid stirring up bottom sediments. Finally, a turbidity monitoring plan will be implemented during construction and dewatering activities for all in-water work. All of these construction techniques will minimize potential impacts during construction. The evidence further establishes that water quality standards will not be violated as a result of the Project. In fact, in some cases water quality will be enhanced due to the installation and maintenance of new or upgraded surface water management features in areas where they do not exist or have fallen into disrepair. Over the long term, the Project is expected to have a beneficial effect on water quality. By improving existing surface water management and adding new surface water treatment features, the Project will provide net improvement to water quality. Wetland Delineation and Impacts The Project includes unavoidable impacts to wetlands and other surface waters. A total of 18.53 acres of wetlands and other surface waters within the Project site will be impacted by the Project, including 3.83 acres of wetlands that will be directly impacted and 14.7 acres of wetlands and other surface waters that will be secondarily impacted. The delineated wetlands are depicted in the Staff Report as wetlands 2a, 19a, 19b, 22, 25-29, 30a, 30b, and 30c, with each having a detailed UMAM assessment of its values and condition. (Impacts to wetland 25 are not included in this Project because they were accounted for in a separate permit proceeding.) Using a conservative assessment and set of assumptions, the District determined that, with the exception of wetlands 19a, 19b, 22, and 27, all wetlands would be impacted by the Project. However, the wetlands that would be impacted suffer from varying historical adverse impacts that have compromised the functions and values they provide to fish, wildlife, and species. This is due to their proximity to urban development, vegetative connectivity, size, historic impacts, altered hydroperiod, and invasive plant species. Likewise, even though the wetlands to be impacted on Kiplinger Island provide certain resting and feeding functions for birds, the value of these functions is comparatively lower than other wetlands due to the presence of invasive species and lack of management. The preponderance of the evidence supports a finding that the Applicants provided reasonable assurances that the Project will not cause adverse impacts to fish, wildlife, or listed species. See Fla. Admin. Code R. 40E-4.301(1)(d). Secondary Impacts Rule 40E-4.301(1)(f) and BOR Sections 4.1.1(f) and 4.2.7. require a demonstration that the proposed activities will not cause adverse secondary impacts to the water resources, both from a wetlands and water quality standpoint. Secondary impacts are those that occur outside the footprint of the project, but which are very closely linked and causally related to the activity to be permitted. De minimis or remotely-related secondary impacts, however, are not considered unacceptable. See § 4.2.7.(a). There will be secondary impacts to 6.83 acres of freshwater wetlands and 7.87 acres of mangroves, or a total of 14.7 acres. To address these secondary impacts, the Applicants have established extensive secondary impact zones and buffers along the Project alignment, which were based in part on District experience with other road projects and another nearby proposed bridge project in an area where a State Preserve is located. While Petitioners' expert contended that a 250-foot buffer on both sides of the roadway's 200-foot right-of-way was insufficient to address secondary impacts to birds (who the expert opines may fly into the bridge or moving vehicles), the greater weight of evidence shows that bird mortality can be avoided and mitigated through various measures incorporated into the Project. Further, the bird mortality studies used by the expert involved significantly different projects and designs, and in some cases involved projects outside the United States with different species concerned. Engineering and Scientific Principles Rule 40E-301(1)(i) requires that an applicant give reasonable assurance that a project "be capable, based on generally accepted engineering and scientific principles, of being performed and of functioning as proposed." Unrefuted evidence establishes that the proposed system will function and be maintained as proposed. Financial, Legal and Administrative Capability Rule 40E-4.301(1)(j) requires that an applicant give reasonable assurance that it has the financial, legal, and administrative capability to ensure that the activity will be undertaken in accordance with the terms of the permit. The evidence supports a finding that Applicants have complied with this requirement. Elimination and Reduction of Impacts Before establishing a mitigation plan, Rule 40E- 4.301(3) requires that an applicant implement practicable design modifications to eliminate and reduce wetland and other surface water impacts. In this case, there are unavoidable, temporary wetland impacts associated with the construction of the Project, as well as unavoidable wetland impacts for direct (project footprint), secondary, and cumulative impacts of the Project. The record shows that the Applicants have undertaken extensive efforts to eliminate and reduce wetland and other surface water impacts of the Project. For example, DOT examined and assessed several innovative construction techniques and bridge designs to eliminate and avoid wetland impacts. To eliminate and reduce temporary impacts occurring during construction, DOT has reduced the effect of scour on the pier foundation and reduced the depth of the footing to minimize the amount of excavation on the mangrove island. Also, during construction, the contractor is prohibited from using the 200- foot right-of-way on the mangrove island for staging or stockpiling of construction materials or equipment. The majority of the bridge width has been reduced to eliminate and avoid impacts. Also, the Project's alignment was adjusted to the north to avoid impacts to a tidal creek. Reasonable assurances have been given that all practicable design and project alternatives to the construction and placement of the Project were assessed with no practicable alternatives. Public Interest Test Besides complying with the requirements of Rule 40E- 4.301, an applicant must also address the seven factors in Rule 40E-4.302(1)(a)1.-7., which comprise the so-called "public interest" test. See also § 373.414(1)(a), Fla. Stat. In interpreting the seven factors, the District balances the potential positive and negative effects of a project to determine if it meets the public interest criteria. Because Petitioners agree that factors 3 and 6 of the rule are not at issue, only the remaining five factors will be considered. For the following reasons, the Project is positive when the criteria are weighed and balanced, and therefore the Project is not contrary to the public interest. Public Health, Safety, and Welfare The Applicants have provided reasonable assurance that the Project will not affect public health, safety, and welfare. Specifically, it will benefit the health, safety, and welfare of the citizens by improving traffic conditions and congestion, emergency and hurricane evacuation, and access to medical facilities. In terms of safety, navigation markers are included as part of the Project for safe boating by the public. See Fla. Admin. Code R. 40E-4.302(1)(a)1. Conservation of Fish and Wildlife The activity will not adversely affect the conservation of fish and wildlife, including endangered or threatened species, or their habitats. The mitigation projects will offset any impacts to fish and wildlife, improve the abundance and diversity of fish and wildlife on Kiplinger Island, create mangrove habitat, and add to the marine productivity in the area by enhancing water quality. See Fla. Admin. Code R. 40E-302(1)(a)2. Fishing or Recreational Values The Project has features that allow for pedestrian and bicycle utilization and observation areas which should enhance recreational values. The Old Palm Bridge, approximately one mile north of the Project, has had no adverse impact on the fishing recreation along the South Fork of the St. Lucie River. Navigation will not be affected due to the height and design of the new bridge. Finally, the bridge is expected to be a destination for boating, kayaking, fishing, and bird watching. See Fla. Admin. Code R. 40E-4.302(1)(a)4. Whether the Activity is of a Permanent Nature The parties have stipulated that the Project is permanent in nature. No future activities or future phases of the project are contemplated. Temporary and permanent impacts are all being fully mitigated. See Fla. Admin. Code R. 40E- 4.302(1)(a)5. Values of Functions Being Performed in Affected Areas Due to historic impacts to the areas affected by the Project, the current condition is degraded and the relative value of functions is minimal. Although Kiplinger Island will have temporary impacts, that island is subject to exotic species and has no recreational use or access by boaters or members of the public. The Applicants propose mitigation which will improve and enhance these wetland functions and values in the areas. See Fla. Admin. Code R. 40E-4.302(1)(a)7. Summary The evidence supports a finding that the Project is positive as to whether it will affect the public health, safety, welfare, or property of others; that the Project is neutral with respect to navigation, erosion and shoaling, and water flow, as well as to historical and archaeological concerns; and that the Project is positive as to conservation of fish, wildlife, recreational values, marine productivity, permanency, and current values and functions. When weighed and balanced, the Project is not contrary to the public interest. Cumulative Impacts Rule 40E-4.302(1)(b) requires that an applicant give reasonable assurance that a project will not cause unacceptable cumulative impacts upon wetlands and other surface waters as set forth in BOR Sections 4.28 through 4.2.8.2. Cumulative impacts are the summation of unmitigated wetland impacts within a drainage basin. An analysis is geographically based upon the drainage basins described in BOR Figure 4.4.1. Petitioners' contention that Figure 4.4.1 is inaccurate or not representative of the basin in which the Project is located has been rejected. In this case, the North St. Lucie Basin was used. To assess and quantify any potential unacceptable cumulative impacts in the basin, and supplement the analyses performed by the Applicants, the District prepared a Basin Map that depicted all the existing and permitted wetland impacts as well as those wetlands under some form of public ownership and/or subject to conservation restrictions or easements. The District's analysis found that the wetlands to be mitigated were of poor quality and provided minimal wildlife and water quality functions. Cumulative impacts from the Project to wetlands within the basin resulted in approximately a four percent loss basin-wide. This is an acceptable adverse cumulative impact. Therefore, the Project will not result in unacceptable cumulative impacts. Mitigation Adverse impacts to wetlands caused by a proposed activity must be offset by mitigation measures. See § 4.3. These may include on-site mitigation, off-site mitigation, off- site regional mitigation, or the purchase of mitigation credits from mitigation banks. The proposed mitigation must offset direct, secondary, and cumulative impacts to the values and functions of the wetlands impacted by the proposed activity. The ability to provide on-site mitigation for a DOT linear transportation project such as a bridge is limited and in this case consists of the creation of mangrove and other wetlands between the realigned St. Lucie Shores Boulevard and the west shore of the St. Lucie River, north and south of the proposed bridge crossing. BOR Section 4.3.1.2 specifically recognizes this limitation and allows off-site mitigation for linear projects that cannot effectively implement on-site mitigation requirements due to right-of-way constraints. Off-site mitigation will offset the majority of the wetland impacts. Because no single on-site or off-site location within the basin was available to provide mitigation necessary to offset all of the Project's impacts, DOT proposed off-site mitigation at two established and functioning mitigation areas known as Dupuis State Reserve (Dupuis), which is managed by the County and for which DOT has available mitigation credits, and the County's Estuarine Mitigation Site, a/k/a Florida Oceanographic Society (FOS) located on Hutchinson Island. Dupuis is outside the North St. Lucie Basin and was selected to offset direct and secondary impacts to freshwater wetlands. That site meets the ERP criteria in using it for this project. The FOS is within the North St. Lucie Basin and was selected to offset direct and secondary impacts to estuarine wetlands. Like Dupuis, this site also meets the ERP criteria for the project. The preponderance of the evidence establishes that the on-site and off-site mitigation projects fully offset any and all project impacts, and in most instances before the impacts will actually occur. Sovereign Submerged Lands and Heightened Public Concern Chapter 18-21 applies to requests for authorization to use sovereign submerged lands. The management policies, standards, and criteria used to determine whether to approve or deny a request are found in Rule 18-21.004. For purposes of granting a public easement to the Applicants, the District determined that the Project is not contrary to the public interest and that all requirements of the rule were satisfied. This determination was not disputed. The only issue raised by Petitioners concerning the use of submerged lands is whether the application should have been treated as one of "heightened public concern." See Fla. Admin. Code R. 18-21.0051(5). If a project falls within the purview of that rule, the Board of Trustees of the Internal Improvement Trust Fund (Board), rather than the District, must review and approve the application to use submerged lands. Review by the Board is appropriate whenever a proposed activity is reasonably expected to result in a heightened public concern because of its potential effect on the environment, natural resources, or controversial nature or location. Id. In accordance with established protocol, the ERP application was sent by the District to DEP's review panel in Tallahassee (acting as the Board's staff) to determine whether the Project required review by the Board. The panel concluded that the Project did not rise to the level of heightened public concern. Evidence by Petitioners that "many people" attended meetings and workshops concerning the Project over the last 20 years or so is insufficient to trigger the rule. Significantly, except for general project objections lodged by Petitioners and Audubon of Martin County, which did not include an objection to an easement, no adjacent property owner or other member of the public voiced objections to the construction of a new bridge. Revised Staff Report On October 20, 2010, the District issued a Revised Staff Report that merely corrected administrative errors or information that had been previously submitted to the District. Contrary to Petitioners' assertion, it did not constitute a material change to the earlier agency action either individually or cumulatively. Therefore, it was properly considered in this proceeding. Letter Modifications The Letter Modifications were used as a mechanism to capture minor alterations made to previously issued permits for Kanner Highway and Indian Street. Neither Letter Modification is significant in terms of water quality, water quantity, or environmental impacts. Both were issued in accordance with District rules and should be approved.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the South Florida Water Management District enter a final order granting Application Nos. 091021-8, 100316-7, and 100316-6. DONE AND ENTERED this 28th day of December, 2010, in Tallahassee, Leon County, Florida. S D. R. ALEXANDER Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 28th day of December, 2010. COPIES FURNISHED: Carol Ann Wehle, Executive Director South Florida Water Management District 3301 Gun Club Road West Palm Beach, Florida 33406-3007 Jeffrey W. Appel, Esquire Ray Quinney and Nebeker, P.C. 36 South State Street, Suite 1400 Salt Lake City, Florida 84111-1401 Bruce R. Conroy, Esquire Department of Transportation 605 Suwannee Street Mail Station 58 Tallahassee, Florida 32399-0458 David A. Acton, Esquire Senior Assistant County Attorney Martin County Administrative Center 2401 Southeast Monterey Road Stuart, Florida 34996-3397 John J. Fumero, Esquire Rose, Sundstrom & Bentley, P.A. 950 Peninsula Corporate Circle Suite 2020 Boca Raton, Florida 33487-1389 Keith L. Williams, Esquire South Florida Water Management District 3301 Gun Club Road Mail Stop 1410 West Palm Beach, Florida 33406-3007

Florida Laws (4) 120.569120.57373.413373.414 Florida Administrative Code (2) 40E-4.30140E-4.302
# 5
SARAH M. LANE vs DEPARTMENT OF ENVIRONMENTAL PROTECTION AND INTERNATIONAL PAPER COMPANY, 05-001612 (2005)
Division of Administrative Hearings, Florida Filed:Pensacola, Florida May 04, 2005 Number: 05-001612 Latest Update: Aug. 09, 2007

Conclusions On May 11, 2007, the Division of Administrative Hearings (‘DOAH’) submitted a _ Recommended Order (“RO”) to the Department of Environmental Protection (‘DEP’) i in . these consolidated proceedings. Copies of the RO were served upon the Petitioners, Mellita A. Lane, Jacqueline M. Lane, Peter A. Lane, (“Lane Petitioners”); Friends of Perdido Bay,.Inc., and James A. Lane (“FOPB”); and the Co-Respondent, International Paper Company (“IP” ). On May 29, 2007, all Petitioners and Respondent IP filed Exceptions to the RO. Respondent DEP filed Exceptions to the RO and Motion for Remand. ; On June 8, 2007, the FOPB filed a Reply to IP’s Exceptions and a Response to DEP’s Motion for Remand and Exceptions. The Lane Petitioners filed their Response to iP’s and DEP’s Exceptions. Respondent DEP filed Responses to the Exceptions filed . by the FOPB, the Lane Petitioners and IP. Respondent IP filed Responses to the Exceptions of FOPB, the Lane Petitioners and DEP. This matter is now before me for. final agency action. . _ BACKGROUND » Florida Pulp and Paper Company first began operating the Cantonment paper mill in. 1941. St. Regis Paper Company (St. Regis” ) acquired the mill in 1946. In 4984, Champion International Corporation (“Champion”) acquired the mill. Champion changed the product mix in 1986 from unbleached packaging paper to bleached products such a as printing and writing grades c of paper. In 2001, Champion merged with IP, and IP took over operation of the mill. The primary product of the mill continues to | be printing and writing paper. ' The mill s wastewater effluent i is discharged into Elevenmile Creek, which is a tributary of Perdido Bay. The creek flows southwest into the northeastern portion of Perdido Bay. Elevenmile Creek is a freshwater stream for most of its length but is . sometimes tidally affected one to two miles from its mouth. Elevenmile Creek is designated as a Class I water. Perdido Bay is approximately 28 square miles in area and is bordered by Escambia County on the east and Baldwin County, Alabama, on the west. The dividing line between ‘the states runs north and south in the approximate middle of Perdido Bay. U.S. Highway 98 crosses the Bay, going east and west, and forms the boundary between what is-often referred to as the “Upper Bay” and “Lower Bay.” The Bay is relatively shallow, especially | in the Upper Bay, ranging in depth between five and ten feet. Perdido Bay i is designated asa Class ill water. Sometime around 1900, a manmade navigation channel was cut through the narrow strip of land separating Perdido Bay from the Gulf of Mexico. The channel, called Perdido Pass, allowed the salt waters of the Gulf to move with the tides up into Perdido Bay. Depending on tides and freshwater inflows, the tidal waters can move into the most northern portions of Perdido Bay and even further, into its tributaries and wetlands. The Perdido River flows into the northwest portion of Perdido Bay. Itis primarily a freshwater river but itis sometimes tidally influenced at and near its mouth. The Perdido River was designated an Outstanding Florida Water (“OFW’) in 11979. At the north end of Perdido Bay, between Elevenmile Creek and the Perdido River, isa large tract of land owned by IP called the Rainwater Tract, The northern part of the tract is primarily freshwater wetlands. The southern partis a tidal marsh. Tee and Wicker Lakes are small (approximately 50 acres in total surface area) tidal ponds within the tidal marsh. Depending on the tides, the lakes can be as shallow as one foot, or several feet deep. A channel through the marsh allows boaters to gain access to Tee and Wicker Lakes from Perdido Bay. | ' Before 1995, the mill had to have both state and federal permits. The former Florida Department of Environmental Regulation (‘DER’) issued St. Regis an industrial wastewater operating permit in 1982 pursuant to Chapter 403, Florida Statutes. The United States Environmental Protection Agency ("EPA") issued St. Regis a National Pollutant Discharge Elimination System (“ NPDES") permit i in 1983 pursuant to the Clean Water Act. When it acquired the facility in 1984, Champion continued to operate the mill under these two permits. In 1986, Champion obtained a construction permit from DER to install the oxygen delignification technology and other improvements to its wastewater treatment plant (‘WWTP’) in conjunction with the conversion of the production process from an unbleached to a modified bleached kraft production - process. In 1987, Champion applied to DER for an operating permit-for its modified WWITP and also petitioned for a variance from the Class iI water quality standards in Elevenmile Creek for iron, specific conductance, zinc, and transparency. DER's . subsequent proposal to issue the operating permit and variance was formally challenged. In 1988, while the challenges to the DER permit and variance were still pending, Champion dropped its application for the operating permit and requested a . temporary operating permit ("TOP"), instead. In December 1989, DER and Champion entered into Consent Order No. 87-1398 (‘the 1989 Consent Order’). The 1989 Consent Order included an allegation by DER that the mill's wastewater discharge was causing violations of state water quality standards in Elevenmile Creek for dissolved oxygen (“DO”), un-ionized ammonia, and biological integrity. The 1989 Consent Order authorized the continued operation of the mill, but established a process for addressing the water quality problems in Elevenmile Creek and Perdido Bay and bringing the mill into compliance in the future. Champion was required to install equipment to increase the DO in its effluent within a year. Champion was also required to submit a plan of study and, 30 months after DER's approval of the plan of study, to submit a study report on the impacts of the mill's effluent on DO in Elevenmile Creek and Perdido Bay and recommend measures for reducing or eliminating adverse impacts. The study report was also supposed to address the other water quality violations caused by Champion. A comprehensive study of the Perdido Bay system was undertaken by a team of 24 scientists lead by Dr. Robert Livingston, an aquatic ecologist and professor at Florida State University. The initial three-year study by Dr. Livingston's team of scientists was followed bya series of related scientific studies, which are referred to collectively in the RO as “the Livingston studies.” The 1989 Consent Order had no expiration date, but it was tied to the TOP, , which had an expiration date of December 1, 1994. Champion was to be in compliance with all applicable water quality standards by that date. The mill was not in compliance with all water quality standards in December 1 994. No enforcement action was taken by the Department and no modification of the 1989 Consent Order or TOP was formally proposed that would have provided a point of entry to any members of the public who might have objected. instead, the Department agreed through correspondence with . Champion to allow Champion to pursue additional water quality studies and to investigate alternatives to its discharge to Elevenmile Creek. - In 1994 and 1995, Champion applied to renew its state and federal wastewater permits, which were about to expire. The Department and EPA notified Champion that its existing permits were administratively extended during the review of the new permit applications. Today, the Cantonment mill is still operating under the 1989 TOP which, due to the administrative extension, did not terminate in December 1994, as stated on its face. In November 1 995, following EPA's delegation of NPDES permitting authority to the Department, the Department issued an order combining the state and federal ‘operating permits into a single permit identified as Wastewater Permit Number FLO002526-002-IWF/MT. During the period from 1992 to 2001, more water quality studies were conducted and Champion investigated alternatives to discharging into upper Elevenmile Creek, including land application of the effluent and relocation of the discharge to lower Elevenmiie Creek or the Escambia River. . In September 2002, while Champion's 1994 permit renewal application was still pending at DEP, IP submitted a revised permit renewal application to upgrade the WWTP and relocate its discharge. The WwTP upgrades consist of converting toa. modified activated sludge treatment process, incteasing aeration, constructing storm surge ponds, and adding a process for pH adjustment. The new WWTP would have an average daily effluent discharge of 23.8 million gallons per day (‘MGD’). IP proposes to convey the treated effluent by-pipeline 10.7 miles to the 1,464-acre wetland tract owned by IP (contained within-the larger Rainwater Tract), where the effluent would be distributed over the wetlands as it flows to lower Elevenmile Creek and Upper Perdido Bay. IP revised its permit application again in October 2005, to obtain authorization to: reconfigure the mill to produce unbleached brown paper for various grades of boxes. If the mill is reconfigured, only softwood (pine) would be used in the new process. On April 12, 2005, the Department published notice of its intent fo issue a proposed permit, consent order, experimental wetland exemption, and waiver. The — Department authorizations would allow IP to change its industrial wastewater treatment system at the mill, construct an effluent distribution system within the wetland tract, construct the 10.7-mile pipeline to transport its treated wastewater to the wetlands, and discharge the treated wastewater into the wetlands. In April 2005, Mellita A. Lane, Jacqueline M. Lane, Zachary P. Lane, Peter A. Lane, and Sarah M. Lane (“Lane Petitioners”) filed identical petitions challenging the Department authorizations on numerous grounds. The Department forwarded the petitions to DOAH for assignment of an Administrative Law Judge (“ALJ”) and to conduct an evidentiary hearing. The Lane Petitioners subsequently amended their petitions. In May 2005, Friends of Perdido Bay, Inc., and James Lane filed a petition for | hearing to challenge the Department authorizations. The FOPB petition was forwarded to DOAH and the pending cases were consolidated for the fi nal hearing. The FOPB petition was subsequently amended. In October 2005, while the cases were pending, IP applied for a revision to its NPDES permit renewal application. The cases were abated so that the DEP could review and act on the permit revision. In January 2006, DEP issued a proposed revised | NPDES permit and a corresponding First Amendment to Consent Order. On July 26, 2006, the Department filed without objection a revision to the Consent Order. On July 31, 2006, the Department filed Joint Trial Exhibit 18 that integrated the Consent Order dated April 12, 2005, the First Amendment to Consent Order dated January 11, 2006, and the Department’s Notice of Minor Revision {o Consent Order filed on July 26, 2006. The DOAH Administrative Law Judge CALL") held a lengthy final hearing in these consolidated cases on May 31, June 1, 2, and.26 through 30, and July 17, 27, and 28, 2006. Prior to the hearing, the parties filed their Joint Pre-Hearing sit on May 24, 2006. The ALJ subsequenty submitted his RO on May 11, 2007. -

# 6
KAREN AHLERS AND JERI BALDWIN vs SLEEPY CREEK LANDS, LLC AND ST. JOHNS RIVER WATER MANAGEMENT DISTRICT, 14-002610 (2014)
Division of Administrative Hearings, Florida Filed:Palatka, Florida Jun. 03, 2014 Number: 14-002610 Latest Update: Oct. 24, 2016

The Issue The issue to be determined is whether Consumptive Use Permit No. 2-083-91926-3, and Environmental Resource Permit No. IND-083-130588-4 should be issued as proposed in the respective proposed agency actions issued by the St. Johns River Water Management District.

Findings Of Fact The Parties Sierra Club, Inc., is a national organization, the mission of which is to explore, enjoy, and advocate for the environment. A substantial number of Sierra Club’s 28,000 Florida members utilize the Silver River, Silver Springs, the Ocklawaha River, and the St. Johns River for water-based recreational activities, which uses include kayaking, swimming, fishing, boating, canoeing, nature photography, and bird watching. St. Johns Riverkeeper, Inc., is one of 280 members of the worldwide Waterkeepers Alliance. Its mission is to protect, restore, and promote healthy waters of the St. Johns River, its tributaries, springs, and wetlands -- including Silver Springs, the Silver River, and the Ocklawaha River -- through citizen- based advocacy. A substantial number of St. Johns Riverkeeper’s more than 1,000 members use and enjoy the St. Johns River, the Silver River, Silver Springs, and the Ocklawaha River for boating, fishing, wildlife observation, and other water-based recreational activities. Karen Ahlers is a native of Putnam County, Florida, and lives approximately 15 miles from the Applicant’s property on which the permitted uses will be conducted. Ms. Ahlers currently uses the Ocklawaha River for canoeing, kayaking, and swimming, and enjoys birding and nature photography on and around the Silver River. Over the years, Ms. Ahlers has advocated for the restoration and protection of the Ocklawaha River, as an individual and as a past-president of the Putnam County Environmental Council. Jeri Baldwin lives on a parcel of property in the northeast corner of Marion County, approximately one mile from the Applicant’s property on which the permitted uses will be conducted. Ms. Baldwin, who was raised in the area, and whose family and she used the resources extensively in earlier years, currently uses the Ocklawaha River for boating. Florida Defenders of the Environment (FDE) is a Florida corporation, the mission of which is to conserve and protect and restore Florida's natural resources and to conduct environmental education projects. A substantial number of FDE’s 186 members, of which 29 reside in Marion County, Florida, use and enjoy Silver Springs, the Silver River, and the Ocklawaha Aquatic Preserve, and their associated watersheds in their educational and outreach activities, as well as for various recreational activities including boating, fishing, wildlife observation, and other water-based recreational activities. Sleepy Creek Lands, LLC (Sleepy Creek or Applicant), is an entity registered with the Florida Department of State to do business in the state of Florida. Sleepy Creek owns approximately 21,000 acres of land in Marion County, Florida, which includes the East Tract and the North Tract on which the activities authorized by the permits are proposed. St. Johns River Water Management District (SJRWMD or District) is a water-management district created by section 373.069(1). It has the responsibility to conserve, protect, manage, and control the water resources within its geographic boundaries. See § 373.069(2)(a), Fla. Stat. The Consumptive Use Permit The CUP is a modification and consolidation of two existing CUP permits, CUP No. 2-083-3011-7 and CUP No. 2-083- 91926-2, which authorize the withdrawal of 1.46 mgd from wells located on the East Tract. Although the existing CUP permits authorize an allocation of 1.46 mgd, actual use has historically been far less, and rarely exceeded 0.3 mgd. The proposed CUP modification will convert the authorized use of water from irrigation of 1,010 acres of sod grass on the East Tract, to supplemental irrigation of improved pasture for grass and other forage crops (approximately 97 percent of the proposed withdrawals) and cattle watering (approximately three percent of the proposed withdrawals) on the North Tract and the East Tract. An additional very small amount will be used in conjunction with the application of agricultural chemicals. CUP No. 2-083-3011-7 is due to expire in 2021. CUP No. 2-083-91926-2 is due to expire in 2024. In addition to the consolidation of the withdrawals into a single permit, the proposed agency action would extend the term of the consolidated permit to 20 years from issuance, with the submission of a compliance report due 10 years from issuance. Sleepy Creek calculated a water demand of 2.569 mgd for the production of grasses and forage crops necessary to meet the needs for grass-fed beef production, based on the expected demand in a 2-in-10 drought year. That calculation is consistent with that established in CUP Applicant’s Handbook (CUP A.H.) section 12.5.1. The calculated amount exceeds the authorized average allocation of 1.46 mgd. Mr. Jenkins testified as to the District’s understanding that the requested amount would be sufficient, since the proposed use was a “scaleable-type project,” with adjustments to cattle numbers made as necessary to meet the availability of feed. Regardless of demand, the proposed permit establishes the enforceable withdrawal limits applicable to the property. With regard to the East Tract, the proposed agency action reduces the existing 1.46 mgd allocation for that tract to a maximum allocation of 0.464 mgd, and authorizes the irrigation of 611 acres of pasture grass using existing extraction wells and six existing pivots. With regard to the North Tract, the proposed agency action authorizes the irrigation of 1,620 acres of pasture and forage grain crops using 15 center pivot systems. Extraction wells to serve the North Tract pivots will be constructed on the North Tract. The proposed North Tract withdrawal wells are further from Silver Springs than the current withdrawal locations. The proposed CUP allows Sleepy Creek to apply the allocated water as it believes to be appropriate to the management of the cattle operation. Although the East Tract is limited to a maximum of 0.464 mgd, there is no limitation on the North Tract. Thus, Sleepy Creek could choose to apply all of the 1.46 mgd on the North Tract. For that reason, the analysis of impacts from the irrigation of the North Tract has generally been based on the full 1.46 mgd allocation being drawn from and applied to the North Tract. The Environmental Resource Permit As initially proposed, the CUP had no elements that would require issuance of an ERP. However, in order to control the potential for increased runoff and nutrient loading resulting from the irrigation of the pastures, Sleepy Creek proposes to construct a stormwater management system to capture runoff from the irrigated pastures, consisting of a series of vegetated upland buffers, retention berms and redistribution swales between the pastures and downgradient wetland features. Because the retention berm and swale system triggered the permitting thresholds in rule 62-330.020(2)(d) (“a total project area of more than one acre”) and rule 62-330.020(2)(e) (“a capability of impounding more than 40 acre-feet of water”), Sleepy Creek was required to obtain an Environmental Resource Permit for its construction. Regional Geologic Features To the west of the North Tract is a geologic feature known as the Ocala Uplift or Ocala Platform, in which the limestone that comprises the Floridan aquifer system exists at or very near the land surface. Karst features, including subterranean conduits and voids that can manifest at the land surface as sinkholes, are common in the Ocala Uplift due in large part to the lack of consolidated or confining material overlaying the limestone. Water falling on the surface of such areas tends to infiltrate rapidly through the soil into the Floridan aquifer, occasionally through direct connections such as sinkholes. The lack of confinement in the Ocala Uplift results in few if any surface-water features such as wetlands, creeks, and streams. As one moves east from the Ocala Uplift, a geologic feature known as the Cody Escarpment becomes more prominent. In the Cody Escarpment, the limestone becomes increasingly overlain by sands, shell, silt, clays, and other less permeable sediments of the Hawthorn Group. The North Tract and the East Tract lie to the east of the point at which the Cody Escarpment becomes apparent. As a result, water tends to flow overland to wetlands and other surface water features. The Property The North and East Tracts are located in northern Marion County near the community of Fort McCoy. East Tract Topography and Historic Use The East Tract is located in the Daisy Creek Basin, and includes the headwaters of a small creek that drains directly to the Ocklawaha River. The historic use of the East Tract has been as a cleared 1,010-acre sod farm. The production of sod included irrigation, fertilization, and pest control. Little change in the topography, use, and appearance of the property will be apparent as a result of the permits at issue, but for the addition of grazing cattle. The current CUPs that are subject to modification in this proceeding authorize groundwater withdrawals for irrigation of the East Tract at the rate of 1.46 mgd. Since the proposed agency action has the result of reducing the maximum withdrawal from wells on the East Tract to 0.464 mgd, thus proportionately reducing the proposed impacts, there was little evidence offered to counter Sleepy Creek’s prima facie case that reasonable assurance was provided that the proposed East Tract groundwater withdrawal allocation will meet applicable CUP standards. There are no stormwater management structures to be constructed on the East Tract. Therefore, the ERP permit discussed herein is not applicable to the East Tract. North Tract Topography and Historic Use The North Tract has a generally flat topography, with elevations ranging from 45 feet to 75 feet above sea level. The land elevation is highest at the center of the North Tract, with the land sloping towards the Ocklawaha River to the east, and to several large wet prairie systems to the west. Surface water features on the North Tract include isolated, prairie, and slough-type wetlands on approximately 28 percent of the North Tract, and a network of creeks, streams, and ditches, including the headwaters of Mill Creek, a contributing tributary of the Ocklawaha River. A seasonal high groundwater elevation on the North Tract is estimated at 6 to 14 inches below ground surface. The existence of defined creeks and surface water features supports a finding that the North Tract is underlain by a relatively impermeable confining layer that impedes the flow of water from the surface and the shallow surficial aquifer to the upper Floridan and lower Floridan aquifers. If there was no confining unit, water going onto the surface of the property, either in the form of rain or irrigation water, would percolate unimpeded to the lower aquifers. Areas in the Ocala Uplift to the west of the North Tract, where the confining layer is thinner and discontiguous, contain few streams or runoff features. Historically, the North Tract was used for timber production, with limited pasture and crop lands. At the time the 7,207-acre North Tract was purchased by Sleepy Creek, land use consisted of 4,061 acres of planted pine, 1,998 acres of wetlands, 750 acres of improved pasture, 286 acres of crops, 78 acres of non-forested uplands, 20 acres of native forest, 10 acres of open water, and 4 acres of roads and facilities. Prior to the submission of the CUP and ERP applications, much of the planted pine was harvested, and the land converted to improved pasture. Areas converted to improved pasture include those proposed for irrigation, which have been developed in the circular configuration necessary for future use with center irrigation pivots. As a result of the harvesting of planted pine, and the conversion of about 345 acres of cropland and non-forested uplands to pasture and incidental uses, total acreage in pasture on the North Tract increased from 750 acres to 3,938 acres. Other improvements were constructed on the North Tract, including the cattle processing facility. Aerial photographs suggest that the conversion of the North Tract to improved pasture and infrastructure to support a cattle ranch is substantially complete. The act of converting the North Tract from a property dominated by planted pine to one dominated by improved pasture, and the change in use of the East Tract from sod farm to pasture, were agricultural activities that did not require a permit from the District. As such, there is no impropriety in considering the actual, legal use of the property in its current configuration as the existing use for which baseline conditions are to be measured. Petitioners argue that the baseline conditions should be measured against the use of the property as planted pine plantation, and that Sleepy Creek should not be allowed to “cattle-up” before submitting its permit applications, thereby allowing the baseline to be established as a higher impact use. However, the applicable rules and statutes provide no retrospective time-period for establishing the nature of a parcel of property other than that lawfully existing when the application is made. See West Coast Reg’l Water Supply Auth. v. SW Fla. Water Mgmt. Dist., Case No. 95-1520 et seq., ¶ 301 (Fla. DOAH May 29, 1997; SFWMD ) (“The baseline against which projected impacts conditions [sic] are those conditions, including previously permitted adverse impacts, which existed at the time of the filing of the renewal applications.”). The evidence and testimony in this case focused on the effects of the water allocation on the Floridan aquifer, Silver Springs, and the Silver River, and on the effects of the irrigation on water and nutrient transport from the properties. It was not directed at establishing a violation of chapter 373, the rules of the SJRWMD, or the CUP Applicant’s Handbook with regard to the use and management of the agriculturally-exempt unirrigated pastures, nor did it do so. Soil Types Soils are subject to classifications developed by the Soil Conservation Service based on their hydrologic characteristics, and are grouped into Group A, Group B, Group C, or Group D. Factors applied to determine the appropriate hydrologic soil group on a site-specific basis include depth to seasonal high saturation, the permeability rate of the most restrictive layer within a certain depth, and the depth to any impermeable layers. Group A includes the most well-drained soils, and Group D includes the most poorly-drained soils. Group D soils are those with seasonal high saturation within 24 inches of the soil surface and a higher runoff potential. The primary information used to determine the hydrologic soil groups on the North Tract was the depth to seasonal-high saturation, defined as the highest expected annual elevation of saturation in the soil. Depth to seasonal-high saturation was measured through a series of seven hand-dug and augered soil borings completed at various locations proposed for irrigation across the North Tract. In determining depth to seasonal-high saturation, the extracted soils were examined based on depth, color, texture, and other relevant characteristics. In six of the seven locations at which soil borings were conducted, a restrictive layer was identified within 36 inches of the soil surface. At one location at the northeastern corner of the North Tract, the auger hole ended at a depth of 48 inches -- the length of the auger -- at which depth there was an observable increase in clay content but not a full restrictive layer. However, while the soil assessment was ongoing, a back-hoe was in operation approximately one hundred yards north of the boring location. Observations of that excavation revealed a heavy clay layer at a depth of approximately 5 feet. In each of the locations, the depth to seasonal-high saturation was within 14 inches of the soil surface. Based on the consistent observation of seasonal-high saturation at each of the sampled locations, as well as the flat topography of the property with surface water features, the soils throughout the property, with the exception of a small area in the vicinity of Pivot 6, were determined to be in hydrologic soil Group D. Hydrogeologic Features There are generally five hydrogeologic units underlying the North Tract, those units being the surficial aquifer system, the intermediate confining unit, the upper Floridan aquifer, the middle confining unit, and the lower Floridan aquifer. In areas in which a confining layer is present, water falling on the surface of the land flows over the surface of the land or across the top of the confining layer. A surficial aquifer, with a relatively high perched water table, is created by the confinement and separation of surface waters from the upper strata of the Floridan aquifer. Surface waters are also collected in or conveyed by various surface water features, including perched wetlands, creeks, and streams. The preponderance of the evidence adduced at the final hearing demonstrates that the surficial aquifer exists on the property to a depth of up to 20 feet below the land surface (bls). Beneath the surficial aquifer is an intermediate confining unit of dense clay interspersed with beds of sand and calcareous clays that exists to a depth of up to 100 feet bls. The clay material observed on the North Tract is known as massive or structureless. Such clays are restrictive with very low levels of hydraulic conductivity, and are not conducive to development of preferential flow paths to the surficial or lower aquifers. The intermediate confining unit beneath the North Tract restricts the exchange of groundwater from the surficial aquifer to the upper Floridan aquifer. The upper Floridan aquifer begins at a depth of approximately 100 feet bls, and extends to a depth of approximately 340 feet bls. At about 340 feet bls, the upper Floridan aquifer transitions to the middle confining unit, which consists of finely grained, denser material that separates the interchange of water between the upper Floridan aquifer and the lower Floridan aquifer. Karst Features Karst features form as a result of water moving through rock that comprises the aquifer, primarily limestone, dissolving and forming conduits in the rock. Karst areas present a challenging environment to simulate through modeling. Models assume the subsurface to be a relatively uniform “sand box” through which it is easier to simulate groundwater flow. However, if the subsurface contains conduits, it becomes more difficult to simulate the preferential flows and their effect on groundwater flow paths and travel times. The District has designated parts of western Alachua County and western Marion County as a Sensitive Karst Area Basin. A Sensitive Karst Area is a location in which the porous limestone of the Floridan aquifer occurs within 20 feet of the land surface, and in which there is 10 to 20 inches of annual recharge to the Floridan aquifer. The designation of an area as being within the Sensitive Karst Area Basin does not demonstrate that it does, or does not, have subsurface features that are karstic in nature, or that would provide a connection between the surficial aquifer and the Floridan aquifer. The western portion of the North Tract is within the Sensitive Karst Area Basin. The two intensive-use areas on the North Tract that have associated stormwater facilities -- the cattle unloading area and the processing facility -- are outside of the Sensitive Karst Area Basin. The evidence was persuasive that karst features are more prominent to the west of the North Tract. In order to evaluate the presence of karst features on the North Tract, Mr. Andreyev performed a “desktop-type evaluation,” with a minimal field survey. The desktop review included a review of aerial photographs and an investigation of available data, including the Florida Geological Survey database of sinkhole occurrence in the area. The aerial photographs showed circular depressions suggestive of karst activity west and southwest of the North Tract, but no such depressions on the North Tract. Soil borings taken on the North Tract indicated the presence of layers of clayey sand, clays, and silts at a depth of 70 to 80 feet. Well-drilling logs taken during the development of the wells used for an aquifer performance test on the North Tract showed the limestone of the Floridan aquifer starting at a depth below ground surface of 70 to 80 feet. Other boring data generated on the North Tract suggests that there is greater than 100 feet of clay and sandy clay overburden above the Floridan aquifer on and in the vicinity of the North Tract. Regardless of site-specific differences, the observed confining layer separating the surficial aquifer from the Floridan aquifer is substantial, and not indicative of a karst environment. Aquifer performance tests performed on the North Tract were consistent in showing that drawdown in the surficial aquifer from the tests was minimal to non-detectable, which is strong evidence of an intact and low-permeability confining layer. The presence of well-developed drainage features on the North Tract is further evidence of a unit of confinement that is restricting water from going deeper into the subsurface, and forcing it to runoff to low-lying surface water features. Petitioners’ witnesses did not perform any site- specific analysis of karst features on or around the Sleepy Creek property. Their understanding of the nature of the karst systems in the region was described as “hypothetical or [] conceptual.” Dr. Kincaid admitted that he knew of no conduits on or adjacent to the North Tract. As a result of the data collected from the North Tract, Mr. Hearn opined that the potential for karst features on the property that provide an opening to the upper Floridan aquifer “is extremely remote.” Mr. Hearn’s opinion is consistent with the preponderance of the evidence in this case, and is accepted. In the event a surface karst feature were to manifest itself, Sleepy Creek has proposed that the surface feature be filled and plugged to reestablish the integrity of the confining layer. More to the point, the development of a surficial karst feature in an area influenced by irrigation would be sufficient grounds for the SJRWMD to reevaluate and modify the CUP to account for any changed conditions affecting the assumptions and bases for issuance of the CUP. Silver Springs, the Silver River, and the Ocklawaha River The primary, almost exclusive concern of Petitioners was the effect of the modified CUP and the nutrients from the proposed cattle ranch on Silver Springs, the Silver River, and the Ocklawaha River. Silver Springs Silver Springs has long been a well-known attraction in Florida. It is located just to the east of Ocala, Florida. Many of the speakers at the public comment period of this proceeding spoke fondly of having frequented Silver Springs over the years, enjoying its crystal clear waters through famous glass-bottomed boats. For most of its recorded history, Silver Springs was the largest spring by volume in Florida. Beginning in the 1970s, it began to lose its advantage, and by the year 2000, Rainbow Springs, located in southwestern Marion County, surpassed Silver Springs as the state’s largest spring. Silver Springs exists at the top of the potentiometric surface of the Floridan aquifer. Being at the “top of the mountain,” when water levels in the Floridan aquifer decline, groundwater flow favors the lower elevation springs. Thus, surrounding springshed boundaries expand to take more water to maintain their baseflows, at the expense of the Silver Springs springshed, which contracts. Rainbow Springs shares an overlapping springshed with Silver Springs. The analogy used by Dr. Knight was of the aquifer as a bucket with holes at different levels, and with the Silver Springs “hole” near the top of the bucket. When the water level in the bucket is high, water will flow from the top hole. As the water level drops below that hole, it will preferentially flow from the lower holes. Rainbow Springs has a vent or outlet from the aquifer, that is 10 feet lower in elevation than that of Silver Springs. Coastal springs are lower still. Thus, as groundwater levels decline, the lower springs “pirate flow” from the upper springs. Since the first major studies of Silver Springs were conducted in the 1950s, the ecosystem of Silver Springs has undergone changes. The water clarity, though still high as compared to other springs, has been reduced by 10 to 15 percent. Since the 1950s, macrophytic plants, i.e., rooted plants with seeds and flowers, have declined in population, while epiphytic and benthic algae have increased. Those plants are sensitive to increases in nitrogen in the water. Thus, Dr. Knight’s opinion that increases in nitrogen emerging from Silver Springs, calculated to have risen from just over 0.4 mg/l in the 1950s, to 1.1 mg/l in 2004, and to up to 1.5 mg/l at present,1/ have caused the observed vegetative changes is accepted. Silver River Silver Springs forms the headwaters for the Silver River, a spring run 5 1/2 miles in length, at which point it becomes a primary input to the Ocklawaha River. Issues of water clarity and alteration of the vegetative regime that exist at Silver Springs are also evident in the Silver River. In addition, the reduction in flow allows for more tannic water to enter the river, further reducing clarity. Dr. Dunn recognized the vegetative changes in the river, and opined that the “hydraulic roughness” caused by the increase in vegetation is likely creating a spring pool backwater at Silver Springs, thereby suppressing some of the flow from the spring. The Silver River has been designated as an Outstanding Florida Water. There are currently no Minimum Flows and Levels established by the District for the Silver River. Ocklawaha River The Ocklawaha River originates near Leesburg, Florida, at the Harris Chain of Lakes, and runs northward past Silver Springs. The Silver River is a major contributor to the flow of the Ocklawaha River. Due to the contribution of the Silver River and other spring-fed tributaries, the Ocklawaha River can take on the appearance of a spring run during periods of low rainfall. Historically, the Ocklawaha River flowed unimpeded to its confluence with the St. Johns River in the vicinity of Palatka, Florida. In the 1960s, as part of the Cross-Florida Barge Canal project, the Rodman Dam was constructed across the Ocklawaha River north of the Sleepy Creek property, creating a large reservoir known as the Rodman Pool. Dr. Knight testified convincingly that the Rodman Dam and Pool have altered the Ocklawaha River ecosystem, precipitating a decline in migratory fish populations and an increase in filamentous algae. At the point at which the Ocklawaha River flows past the Sleepy Creek property, it retains its free-flowing characteristics. Mill Creek, which has its headwaters on the North Tract, is a tributary of the Ocklawaha River. The Ocklawaha River, from the Eureka Dam south, has been designated as an Outstanding Florida Water. However, the Ocklawaha River at the point at which Mill Creek or other potential surface water discharges from the Sleepy Creek property might enter the river are not included in the Outstanding Florida Water designation. There are currently no Minimum Flows and Levels established by the District for the Ocklawaha River. The Silver Springs Springshed A springshed is that area from which a spring draws water. Unlike a surface watershed boundary, which is fixed based on land features, contours, and elevations, a springshed boundary is flexible, and changes depending on a number of factors, including rainfall. As to Silver Springs, its springshed is largest during periods of more abundant rainfall when the aquifer is replenished, and smaller during drier periods when groundwater levels are down, and water moves preferentially to springs and discharge points that are lower in elevation. The evidence in this case was conflicting as to whether the North Tract is in or out of the Silver Springs springshed boundary. Dr. Kincaid indicated that under some of the springshed delineations, part of the North Tract was out of the springshed, but over the total period of record, it is within the springshed. Thus, it was Dr. Kincaid’s opinion that withdrawals anywhere within the region will preferentially impact Silver Springs, though he admitted that he did not have the ability to quantify his opinion. Dr. Knight testified that the North Tract is within the Silver Springs “maximum extent” springshed at least part of the time, if not all the time. He did not opine as to the period of time in which the Silver Springs springshed was at its maximum extent. Dr. Bottcher testified that the North Tract is not within the Silver Springs springshed because there is a piezometric rise between North Tract and Silver Springs. Thus, in his opinion, withdrawals at the North Tract would not be withdrawing water going to Silver Springs. Dr. Dunn agreed that the North Tract is on the groundwater divide for Silver Springs. In his view, the North Tract is sometimes in, and sometimes out of the springshed depending on the potentiometric surface. In his opinion, the greater probability is that the North Tract is more often outside of the Silver Springs springshed, with seasonal and year—to—year variation. Dr. Dunn’s opinion provides the most credible explanation of the extent to which the North Tract sits atop that portion of the lower Floridan aquifer that feeds to Silver Springs. Thus, it is found that the groundwater divide exists to the south of the North Tract for a majority of the time, and water entering the Floridan aquifer from the North Tract will, more often than not, flow away from Silver Springs. Silver Springs Flow Volume The Silver Springs daily water discharge has been monitored and recorded since 1932. Over the longest part of the period of record, up to the 1960s, flows at Silver Springs averaged about 800 cubic feet per second (cfs). Through 1989, there was a reasonable regression between rainfall and springflow, based on average rainfalls. The long-term average rainfall in Ocala was around 50 inches per year, and long-term springflow was about 800 cfs, with deviations from average generally consistent with one another. Between 1990 and 1999, the relationship between rainfall and springflow declined by about 80 cubic feet per second. Thus, with average rainfall of 50 inches per year, the average springflow was reduced to about 720 cfs. From 2000 to 2009, there was an additional decline, such that the total cumulative decline for the 20-year period through 2009 was 250 cfs. Dr. Dunn agreed with Dr. Knight that after 2000, there was an abrupt and persistent reduction in flow of about 165 cfs. However, Dr. Dunn did not believe the post-2000 flow reduction could be explained by rainfall directly, although average rainfall was less than normal. Likewise, groundwater withdrawals did not offer an adequate explanation. Dr. Dunn described a natural 30-year cycle of wetter and drier periods known as the Atlantic Multidecadal Oscillation (AMO) that has manifested itself over the area for the period of record. From the 1940s up through 1970, the area experienced an AMO wet cycle with generally higher than normal rainfall at the Ocala rain station. For the next 30-year period, from 1970 up to 2000, the Ocala area ranged from a little bit drier to some years in which it was very, very dry. Dr. Dunn attributed the 80 cfs decline in Silver Springs flow recorded in the 1990s to that lower rainfall cycle. After 2000, when the next AMO cycle would be expected to build up, as it did post—1940, it did not happen. Rather, there was a particularly dry period around 2000 that Dr. Dunn believes to have had a dramatic effect on the lack of recovery in the post-2000 flows in the Silver River. According to Mr. Jenkins, that period of deficient rainfall extended through 2010. Around the year 2001, the relationship between rainfall and flow changed such that for a given amount of rainfall, there was less flow in the Silver River, with flow dropping to as low as 535 cfs after 2001. It is that reduction in flow that Dr. Knight has attributed to groundwater withdrawals. It should be noted that the observed flow of Silver Springs that formed the 1995 baseline conditions for the North Central Florida groundwater model that will be discussed herein was approximately 706 cfs. At the time of the final hearing in August 2014, flow at Silver Springs was 675 cfs. The reason offered for the apparent partial recovery was higher levels of rainfall, though the issue was not explored in depth. For the ten-year period centered on the year 2000, local water use within Marion and Alachua County, closer to Silver Springs, changed little -- around one percent per year. From a regional perspective, groundwater use declined at about one percent per year for the period from 1990 to 2010. The figures prepared by Dr. Knight demonstrate that the Sleepy Creek project area is in an area that has a very low density of consumptive use permits as compared to areas adjacent to Silver Springs and more clearly in the Silver Springs springshed. In Dr. Dunn’s opinion, there were no significant changes in groundwater use either locally or regionally that would account for the flow reduction in Silver Springs from 1990 to 2010. In that regard, the environmental report prepared by Dr. Dunn and submitted with the CUP modification application estimated that groundwater withdrawals accounted for a reduction in flow at Silver Springs of approximately 20 cfs as measured against the period of record up to the year 2000, with most of that reduction attributable to population growth in Marion County. In the March 2014, environmental impacts report, Dr. Dunn described reductions in the stream flow of not only the Silver River, but of other tributaries of the lower Ocklawaha River, including the upper Ocklawaha River at Moss Bluff and Orange Creek. However, an evaluation of the Ocklawaha River water balance revealed there to be additional flow of approximately 50 cfs coming into the Ocklawaha River at other stations. Dr. Dunn suggested that changes to the vent characteristics of Silver Springs, and the backwater effects of increased vegetation in the Silver River, have resulted in a redistribution of pressure to other smaller springs that discharge to the Ocklawaha River, accounting for a portion of the diminished flow at Silver Springs. The Proposed Cattle Operation Virtually all beef cattle raised in Florida, upon reaching a weight of approximately 875 pounds, are shipped to Texas or Kansas to be fattened on grain to the final body weight of approximately 1,150 pounds, whereupon they are slaughtered and processed. The United States Department of Agriculture has a certification for grass—fed beef which requires that, after an animal is weaned, it can only be fed on green forage crops, including grasses, and on corn and grains that are cut green and before they set seed. The forage crops may be grazed or put into hay or silage and fed when grass and forage is dormant. The benefit of grass feeding is that a higher quality meat is produced, with a corresponding higher market value. Sleepy Creek plans to develop the property as a grass- fed beef production ranch, with pastures and related loading/unloading and slaughter/processing facilities where calves can be fattened on grass and green grain crops to a standard slaughter weight, and then slaughtered and processed locally. By so doing, Sleepy Creek expects to save the transportation and energy costs of shipping calves to the Midwest, and to generate jobs and revenues by employing local people to manage, finish, and process the cattle. As they currently exist, pastures proposed for irrigation have been cleared and seeded, and have “fairly good grass production.” The purpose of the irrigation is to enhance the production and quality of the grass in order to maintain the quality and reliability of feed necessary for the production of grass-fed beef. East Tract Cattle Operation The East Tract is 1,242 acres in size, substantially all of which was previously cleared, irrigated, and used for sod production. The proposed CUP permit authorizes the irrigation of 611 acres of pasture under six existing center pivots. The remaining 631 acres will be used as improved, but unirrigated, pasture. Under the proposed permit, a maximum of 1,207 cattle would be managed on the East Tract. Of that number, 707 cattle would be grazed on the irrigated paddocks, and 500 cattle would be grazed on the unirrigated improved pastures. If the decision is made to forego irrigation on the East Tract, with the water allocation being used on the North Tract or not at all, the number of cattle grazed on the six center pivot pastures would be decreased from 707 cattle to 484 cattle. The historic use of the East Tract as a sod farm resulted in high phosphorus levels in the soil from fertilization, which has made its way to Daisy Creek. Sleepy Creek has proposed a cattle density substantially below that allowed by application of the formulae in the Nutrient Management Plan in order to “mine” the phosphorus levels in the soil over time. North Tract Cattle Operation The larger North Tract includes most of the “new” ranch activities, having no previous irrigation, and having been put to primarily silvicultural use with limited pasture prior to its acquisition by Sleepy Creek. The ranch’s more intensive uses, i.e., the unloading corrals and the slaughter house, are located on the North Tract. The North Tract is 7,207 acres in size. Of that, 1,656 acres are proposed for irrigation by means of 15 center- pivot irrigation systems. In addition to the proposed irrigated pastures, the North Tract includes 2,382 acres of unirrigated improved pasture, of which approximately 10 percent is wooded. Under the proposed permit, a maximum of 6,371 cattle would be managed on the North Tract. Of that number, 3,497 cattle would be grazed on the irrigated paddocks (roughly 2.2 head of cattle per acre), and 2,374 cattle would graze on the improved pastures (up to 1.1 head of cattle per acre). The higher cattle density in the irrigated pastures can be maintained due to the higher quality grass produced as a result of irrigation. The remaining 500 cattle would be held temporarily in high-concentration corrals, either after offloading or while awaiting slaughter. On average, there will be fewer than 250 head of cattle staged in those high-concentration corrals at any one time. In the absence of irrigation, the improved pasture on the North Tract could sustain about 4,585 cattle. Nutrient Management Plan, Water Conservation Plan, and BMPs The CUP and ERP applications find much of their support in the implementation of the Nutrient Management Plan (NMP), the Water Conservation Plan, and Best Management Practices (BMPs). The NMP sets forth information designed to govern the day to day operations of the ranch. Those elements of the NMP that were the subject of substantive testimony and evidence at the hearing are discussed herein. Those elements not discussed herein are found to have been supported by Sleepy Creek’s prima facie case, without a preponderance of competent and substantial evidence to the contrary. The NMP includes a herd management plan, which describes rotational grazing and the movement of cattle from paddock to paddock, and establishes animal densities designed to maintain a balance of nutrients on the paddocks, and to prevent overgrazing. The NMP establishes fertilization practices, with the application of fertilizer based on crop tissue analysis to determine need and amount. Thus, the application of nitrogen- based fertilizer is restricted to that capable of ready uptake by the grasses and forage crops, limiting the amount of excess nitrogen that might run off of the pastures or infiltrate past the root zone. The NMP establishes operation and maintenance plans that incorporate maintenance and calibration of equipment, and management of high-use areas. The NMP requires that records be kept of, among other things, soil testing, nutrient application, herd rotation, application of irrigation water, and laboratory testing. The irrigation plan describes the manner and schedule for the application of water during each irrigation cycle. Irrigation schedules for grazed and cropped scenarios vary from pivot to pivot based primarily on soil type. The center pivots proposed for use employ high-efficiency drop irrigation heads, resulting in an 85 percent system efficiency factor, meaning that there is an expected evaporative loss of 15 percent of the water before it becomes available as water in the soil. That level of efficiency is greater than the system efficiency factor of 80 percent established in CUP A.H. section 12.5.2. Other features of the irrigation plan include the employment of an irrigation manager, installation of an on-site weather station, and cumulative tracking of rain and evapotranspiration with periodic verification of soil moisture conditions. The purpose of the water conservation practices is to avoid over application of water, limiting over-saturation and runoff from the irrigated pastures. Sleepy Creek has entered into a Notice of Intent to Implement Water Quality BMPs with the Florida Department of Agriculture and Consumer Services which is incorporated in the NMP and which requires the implementation of Best Management Practices.2/ Dr. Bottcher testified that implementation and compliance with the Water Quality Best Management Practices manual creates a presumption of compliance with water quality standards. His testimony in that regard is consistent with Department of Agriculture and Consumer Services rule 5M-11.003 (“implementation, in accordance with adopted rules, of BMPs that have been verified by the Florida Department of Environmental Protection as effective in reducing target pollutants provides a presumption of compliance with state water quality standards.”). Rotational Grazing Rotational grazing is a practice by which cattle are allowed to graze a pasture for a limited period of time, after which they are “rotated” to a different pasture. The 1,656 acres proposed for irrigation on the North Tract are to be divided into 15 center-pivot pastures. Each individual pasture will have 10 fenced paddocks. The 611 acres of irrigated pasture on the East Tract are divided into 6 center-pivot pastures. The outer fence for each irrigated pasture is to be a permanent “hard” fence. Separating the internal paddocks will be electric fences that can be lowered to allow cattle to move from paddock to paddock, and then raised after they have moved to the new paddock. The NMP for the North Tract provides that cattle are to be brought into individual irrigated pastures as a single herd of approximately 190 cattle and placed into one of the ten paddocks. They will be moved every one to three days to a new paddock, based upon growing conditions and the reduction in grass height resulting from grazing. In this way, the cattle are rotated within the irrigated pasture, with each paddock being used for one to three days, and then rested until each of the other paddocks have been used, whereupon it will again be used in the rotation. The East Tract NMP generally provides for rotation based on the height of the pasture grasses, but is designed to provide a uniform average of cattle per acre per year. Due to the desire to “mine” phosphorus deposited during the years of operation of the East Tract as a sod farm, the density of cattle on the irrigated East Tract pastures is about 30 percent less than that proposed for the North Tract. The East Tract NMP calls for a routine pasture rest period of 15 to 30 days. Unlike dairy farm pastures, where dairy cows traverse a fixed path to the milking barn several times a day, there will be minimal “travel lanes” within the pastures or between paddocks. There will be no travel lanes through wetlands. If nitrogen-based fertilizer is needed, based upon tissue analysis of the grass, fertilizer is proposed for application immediately after a paddock is vacated by the herd. By so doing, the grass within each paddock will have a sufficient period to grow and “flush up” without grazing or traffic, which results in a high—quality grass when the cattle come back around to feed. Sleepy Creek proposes that rotational grazing is to be practiced on improved pastures and irrigated pastures alike. The rotational practices on the improved East Tract and North Tract pastures are generally similar to those practiced on the irrigated pastures. The paddocks will have permanent watering troughs, with one trough serving two adjacent paddocks. The troughs will be raised to prevent “boggy areas” from forming around the trough. Since the area around the troughs will be of a higher use, Sleepy Creek proposes to periodically remove accumulated manure, and re-grade if necessary. Other cattle support items, including feed bunkers and shade structures are portable and can be moved as conditions demand. Forage Crop Production The primary forage crop on the irrigated pastures is to be Bermuda grass. Bermuda grass or other grass types tolerant of drier conditions will be used in unirrigated pastures. During the winter, when Bermuda grass stops growing, Sleepy Creek will overseed the North Tract pastures with ryegrass or other winter crops. Due to the limitation on irrigation water, the East Tract NMP calls for no over-seeding for production of winter crops. Crops do not grow uniformly during the course of a year. Rather, there are periods during which there are excess crops, and periods during which the crops are not growing enough to keep up with the needs of the cattle. During periods of excess, Sleepy Creek will cut those crops and store them as haylage to be fed to the cattle during lower growth periods. The North Tract management plan allows Sleepy Creek to dedicate one or more irrigated pastures for the exclusive production of haylage. If that option is used, cattle numbers will be reduced in proportion to the number of pastures dedicated to haylage production. As a result of the limit on irrigation, the East Tract NMP does not recommend growing supplemental feed on dedicated irrigation pivot pastures. Direct Wetland Impacts Approximately 100 acres proposed for irrigation are wetlands or wetland buffer. Those areas are predominantly isolated wetlands, though some have surface water connections to Mill Creek, a water of the state. Trees will be cut in the wetlands to allow the pivot to pass overhead. Tree cutting is an exempt agricultural activity that does not require a permit. There was no persuasive evidence that cutting trees will alter the fundamental benefit of the wetlands or damage water resources of the District. The wetlands and wetland buffer will be subject to the same watering and fertigation regimen as the irrigated pastures. The application of water to wetlands, done concurrently with the application of water to the pastures, will occur during periods in which the pasture soils are dry. The incidental application of water to the wetlands during dry periods will serve to maintain hydration of the wetlands, which is considered to be a benefit. Fertilizers will be applied through the irrigation arms, a process known as fertigation. Petitioners asserted that the application of fertilizer onto the wetlands beneath the pivot arms could result in some adverse effects to the wetlands. However, Petitioners did not quantify to what extent the wetlands might be affected, or otherwise describe the potential effects. Fertigation of the wetlands will promote the growth of wetland plants. Nitrogen applied through fertigation will be taken up by plants, or will be subject to denitrification -- a process discussed in greater detail herein -- in the anaerobic wetland soils. The preponderance of the evidence indicated that enhanced wetland plant growth would not rise to a level of concern. Since most of the affected wetlands are isolated wetlands, there is expected to be little or no discharge of nutrients from the wetlands. Even as to those wetlands that have a surface water connection, most, if not all of the additional nitrogen applied through fertigation will be accounted for by the combined effect of plant uptake and denitrification. Larger wetland areas within an irrigated pasture will be fenced at the buffer line to prevent cattle from entering. The NMP provided a blow-up of the proposed fencing related to a larger wetland on Pivot 8. Although other figures are not to the same scale, it appears that larger wetlands associated with Pivots 1, 2, 3, and 12 will be similarly fenced. Cattle would be allowed to go into the smaller, isolated wetlands. Cattle going into wetlands do not necessarily damage the wetlands. Any damage that may occur is a function of density, duration, and the number of cattle. The only direct evidence of potential damage to wetlands was the statement that “[i]f you have 6,371 [cattle] go into a wetland, there may be impacts.” The NMP provides that pasture use will be limited to herds of approximately 190 cattle, which will be rotated from paddock to paddock every two to three days, and which will allow for “rest” periods of approximately 20 days. There will be no travel lanes through any wetland. Thus, there is no evidence to support a finding that the cattle at the density, duration, and number proposed will cause direct adverse effects to wetlands on the property. High Concentration Areas Cattle brought to the facility are to be unloaded from trucks and temporarily corralled for inspection. For that period, the cattle will be tightly confined. Cattle that have reached their slaughter weight will be temporarily held in corrals associated with the processing plant. The stormwater retention ponds used to capture and store runoff from the offloading corral and the processing plant holding corral are part of a normal and customary agricultural activity, and are not part of the applications and approvals that are at issue in this proceeding. The retention ponds associated with the high-intensity areas do not require permits because they do not exceed one acre in size or impound more than 40 acre-feet of water. Nonetheless, issues related to the retention ponds were addressed by Petitioners and Sleepy Creek, and warrant discussion here. The retention ponds are designed to capture 100 percent of the runoff and entrained nutrients from the high concentration areas for a minimum of a 24—hour/25—year storm event. If rainfall occurs in excess of the designed storm, the design is such that upon reaching capacity, only new surface water coming to the retention pond will be discharged, and not that containing high concentrations of nutrients from the initial flush of stormwater runoff. Unlike the stormwater retention berms for the pastures, which are to be constructed from the first nine inches of permeable topsoil on the property, the corral retention ponds are to be excavated to a depth of six feet which, based on soil borings in the vicinity, will leave a minimum of two to four feet of clay beneath the retention ponds. In short, the excavation will penetrate into the clay layer underlying the pond sites, but will not penetrate through that layer. The excavated clay will be used to form the side slopes of the ponds, lining the permeable surficial layer and generally making the ponds impermeable. Organic materials entering the retention ponds will form an additional seal. An organic seal is important in areas in which retention ponds are constructed in sandy soil conditions. Organic sealing is less important in this case, where clay forms the barrier preventing nutrients from entering the surficial aquifer. Although the organic material is subject to periodic removal, the clay layer will remain to provide the impermeable barrier necessary to prevent leakage from the ponds. Dr. Bottcher testified that if, during excavation of the ponds, it was found that the remaining in-situ clay layer was too thin, Sleepy Creek would implement the standard practice of bringing additional clay to the site to ensure adequate thickness of the liner. Nutrient Balance The goal of the NMP is to create a balance of nutrients being applied to and taken up from the property. Nitrogen and phosphorus are the nutrients of primary concern, and are those for which specific management standards are proposed. Nutrient inputs to the NMP consist generally of deposition of cattle manure (which includes solid manure and urine), recycling of plant material and roots from the previous growing season, and application of supplemental fertilizer. Nutrient outputs to the NMP consist generally of volatization of ammonia to the atmosphere, uptake and utilization of the nutrients by the grass and crops, weight gain of the cattle, and absorption and denitrification of the nutrients in the soil. The NMP, and the various models discussed herein, average the grass and forage crop uptake and the manure deposition to match that of a 1,013 pound animal. That average weight takes into account the fact that cattle on the property will range from calf weight of approximately 850 pounds, to slaughter weight of 1150 pounds. Nutrients that are not accounted for in the balance, e.g., those that become entrained in stormwater or that pass through the plant root zone without being taken up, are subject to runoff to surface waters or discharge to groundwater. Generally, phosphorus not taken up by crops remains immobile in the soil. Unless there is a potential for runoff to surface waters, the nutrient balance is limited by the amount of nitrogen that can be taken up by the crops. Due to the composition of the soils on the property, the high water table, and the relatively shallow confining layer, there is a potential for surface runoff. Thus, the NMP was developed using phosphorus as the limiting nutrient, which results in nutrient application being limited by the “P-index.” A total of 108 pounds of phosphorus per acre/per year can be taken up and used by the irrigated pasture grasses and forage crops. Therefore, the total number of cattle that can be supported on the irrigated pastures is that which, as a herd, will deposit an average of 108 pounds of phosphorus per year over the irrigated acreage. Therefore, Sleepy Creek has proposed a herd size and density based on calculations demonstrating that the total phosphorus contained in the waste excreted by the cattle equals the amount taken up by the crops. A herd producing 108 pounds per acre per year of phosphorus is calculated to produce 147 pounds of nitrogen per acre per year. The Bermuda grass and forage crops proposed for the irrigated fields require 420 pounds of nitrogen per acre per year. As a result of the nitrogen deficiency, additional nitrogen-based fertilizer to make up the shortfall is required to maintain the crops. Since phosphorus needs are accounted for by animal deposition, the fertilizer will have no phosphorus. The NMP requires routine soil and plant tissue tests to determine the amount of nitrogen fertilizer needed. By basing the application of nitrogen on measured rather than calculated needs, variations in inputs, including plant decomposition and atmospheric deposition, and outputs, including those affected by weather, can be accounted for, bringing the full nutrient balance into consideration. The numeric values for crop uptakes, manure deposition, and other estimates upon which the NMP was developed were based upon literature, values, and research performed and published by the University of Florida and the Natural Resource Conservation Service. Dr. Bottcher testified convincingly that the use of such values is a proven and reliable method of developing a balance for the operation of similar agricultural operations. A primary criticism of the NMP was its expressed intent to “reduce” or “minimize” the transport of nutrients to surface waters and groundwater, rather than to “negate” or “prevent” such transport. Petitioners argue that complete prevention of the transport of nutrients from the property is necessary to meet the standards necessary for issuance of the CUP and ERP. Mr. Drummond went into some detail regarding the total mass of nutrients expected to be deposited onto the ground from the cattle, exclusive of fertilizer application. In the course of his testimony, he suggested that the majority of the nutrients deposited on the land surface “are going to make it to the surficial aquifer and then be carried either to the Floridan or laterally with the groundwater flow.” However, Mr. Drummond performed no analysis on the fate of nitrogen through uptake by crops, volatization, or soil treatment, and did not quantify the infiltration of nitrogen to groundwater. Furthermore, he was not able to provide any quantifiable estimate on any effect of nutrients on Mill Creek, the Ocklawaha River, or Silver Springs. In light of the effectiveness of the nutrient balance and other elements of the NMP, along with the retention berm system that will be discussed herein, Mr. Drummond’s assessment of the nutrients that might be expected to impact water resources of the District is contrary to the greater weight of the evidence. Mr. Drummond’s testimony also runs counter to that of Dr. Kincaid, who performed a particle track analysis of the fate of water recharge from the North Tract. In short, Dr. Kincaid calculated that of the water that makes it as recharge from the North Tract to the surficial aquifer, less than one percent is expected to make its way to the upper Floridan aquifer, with that portion originating from the vicinity of Pivot 6. Recharge from the other 14 irrigated pastures was ultimately accounted for by evapotranspiration or emerged at the surface and found its way to Mill Creek. The preponderance of the competent, substantial evidence adduced at the final hearing supports the effectiveness of the NMPs for the North Tract and East Tract at managing the application and use of nutrients on the property, and minimizing the transport of nutrients to surface water and groundwater resources of the District. North Central Florida Model All of the experts involved in this proceeding agreed that the use of groundwater models is necessary to simulate what might occur below the surface of the ground. Models represent complex systems by applying data from known conditions and impacts measured over a period of years to simulate the effects of new conditions. Models are imperfect, but are the best means of predicting the effects of stresses on complex and unseen subsurface systems. The North Central Florida (NCF) model is used to simulate impacts of water withdrawals on local and regional groundwater levels and flows. The NCF model simulates the surficial aquifer, the upper Floridan aquifer, and the lower Floridan aquifer. Those aquifers are separated from one another by relatively impervious confining units. The intermediate confining unit separates the surficial aquifer from the upper Floridan aquifer. The intermediate confining unit is not present in all locations simulated by the NCF model. However, the evidence is persuasive that the intermediate confining unit is continuous at the North Tract, and serves to effectively isolate the surficial aquifer from the upper Floridan aquifer. The NCF model is not a perfect depiction of what exists under the land surface of the North Tract or elsewhere. It was, however, acknowledged by the testifying experts in this case, despite disagreements as to the extent of error inherent in the model, to be the best available tool for calculating the effects of withdrawals of water within the boundary of the model. The NCF model was developed and calibrated over a period of years, is updated routinely as data becomes available, and has undergone peer review. Aquifer Performance Tests In order to gather site-specific data regarding the characteristics of the aquifer beneath the Sleepy Creek property, a series of three aquifer performance tests (APTs) was conducted on the North Tract. The first two tests were performed by Sleepy Creek, and the third by the District. An APT serves to induce stress on the aquifer by pumping from a well at a high rate. By observing changes in groundwater levels in observation wells, which can be at varying distances from the extraction well, one can extrapolate the nature of the subsurface. In addition, well-completion reports for the various withdrawal and observation wells provide actual data regarding the composition of subsurface soils, clays, and features of the property. The APT is particularly useful in evaluating the ability of the aquifer to produce water, and in calculating the transmissivity of the aquifer. Transmissivity is a measure of the rate at which a substance passes through a medium and, as relevant to this case, measures how groundwater flows through an aquifer. The APTs demonstrated that the Floridan aquifer is capable of producing water at the rate requested. The APT drawdown contour measured in the upper Floridan aquifer was greater than that predicted from a simple run of the NCF model, but the lateral extent of the drawdown was less than predicted. The most reasonable conclusion to be drawn from the combination of greater than expected drawdown in the upper Floridan aquifer with less than expected extent is that the transmissivity of the aquifer beneath the North Tract is lower than the NCF model assumptions. The conclusion that the transmissivity of the aquifer at the North Tract is lower than previously estimated means that impacts from groundwater extraction would tend to be more vertical than horizontal, i.e., the drawdown would be greater, but would be more localized. As such, for areas of lower than estimated transmissivity, modeling would over-estimate off-site impacts from the extraction. NCF Modeling Scenarios The initial NCF modeling runs were based on an assumed withdrawal of 2.39 mgd, an earlier -- though withdrawn - - proposal. The evidence suggests that the simulated well placement for the 2.39 mgd model run was entirely on the North Tract. Thus, the results of the model based on that withdrawal have some limited relevance, especially given that the proposed CUP allows for all of the requested 1.46 mgd of water to be withdrawn from North Tract wells at the option of Sleepy Creek, but will over-predict impacts from the permitted rate of withdrawal. A factor that was suggested as causing a further over-prediction of drawdown in the 2.39 mgd model run was the decision, made at the request of the District, to exclude the input of data of additional recharge to the surficial aquifer, wetlands and surface waters from the irrigation, and the resulting diminution in soil storage capacity. Although there is some merit to the suggestion that omitting recharge made the model results “excessively conservative,” the addition of recharge to the model would not substantially alter the predicted impacts. A model run was subsequently performed based on a presumed withdrawal of 1.54 mgd, a rate that remains slightly more than, but still representative of, the requested amount of 1.46 mgd. The 1.54 mgd model run included an input for irrigation recharge. The simulated extraction points were placed on the East Tract and North Tract in the general configuration as requested in the CUP application. The NCF is designed to model the impacts of a withdrawal based upon various scenarios, identified at the hearing as Scenarios A, B, C, and D. Scenario A is the baseline condition for the NCF model, and represents the impacts of all legal users of water at their estimated actual flow rates as they existed in 1995. Scenario B is all existing users, not including the applicant, at end-of-permit allocations. Scenario C is all existing users, including the applicant, at current end-of-permit allocations. Scenario D is all permittees at full allocation, except the applicant which is modeled at the requested (i.e., new or modified) end-of-permit allocation. To simulate the effects of the CUP modification, simulations were performed on scenarios A, C, and D. In order to measure the specific impact of the modification of the CUP, the Scenario C impacts to the surficial, upper Floridan, and lower Floridan aquifers were compared with the Scenario D impacts to those aquifers. In order to measure the cumulative impact of the CUP, the Scenario A actual-use baseline condition was compared to the Scenario D condition which predicts the impacts of all permitted users, including the applicant, pumping at full end-of-permit allocations. The results of the NCF modeling indicate the following: 2.39 mgd - Specific Impact The surficial aquifer drawdown from the simulated 2.39 mgd withdrawal was less than 0.05 feet on-site and off- site, except to the west of the North Tract, at which a drawdown of 0.07 feet was predicted. The upper Floridan aquifer drawdown from the 2.39 mgd withdrawal was predicted at between 0.30 and 0.12 feet on-site, and between 0.30 and 0.01 feet off-site. The higher off-site figures are immediately proximate to the property. The lower Floridan aquifer drawdown from the 2.39 mgd withdrawal was predicted at less than 0.05 feet at all locations, and at or less than 0.02 feet within six miles of the North Tract. 2.39 mgd - Cumulative Impact The cumulative impact to the surficial aquifer from all permitted users, including a 2.39 mgd Sleepy Creek withdrawal, was less than 0.05 feet on-site, and off-site to the north and east, except to the west of the North Tract, at which a drawdown of 0.07 feet was predicted. The cumulative impact to the upper Floridan aquifer from all permitted users, including a 2.39 mgd Sleepy Creek withdrawal, ranged from 0.4 feet to 0.8 feet over all pertinent locations. The cumulative impact to the lower Floridan aquifer from all permitted users, including a 2.39 mgd Sleepy Creek withdrawal, ranged from 1.0 to 1.9 feet over all pertinent locations. The conclusion drawn by Mr. Andreyev that the predicted impacts to the lower Floridan are almost entirely from other end-of-permit user withdrawals is supported by the evidence and accepted. 1.54 mgd - Specific Impact The NCF model runs based on the more representative 1.54 mgd withdrawal predicted a surficial aquifer drawdown of less than 0.01 feet (i.e., no drawdown contour shown) on the North Tract, and a 0.01 to 0.02 foot drawdown at the location of the East Tract. The drawdown of the upper Floridan aquifer from the CUP modification was predicted at up to 0.07 feet on the property, and generally less than 0.05 feet off-site. There were no drawdown contours at the minimum 0.01 foot level that came within 9 miles of Silver Springs. The lower Floridan aquifer drawdown from the CUP modification was predicted at less than 0.01 feet (i.e., no drawdown contour shown) at all locations. 1.54 mgd - Cumulative Impact A comparison of the cumulative drawdown contours for the 2.36 mgd model and 1.54 mgd model show there to be a significant decrease in predicted drawdowns to the surficial and upper Floridan aquifers, with the decrease in the upper Floridan aquifer drawdown being relatively substantial, i.e., from 0.5 to 0.8 feet on-site predicted for the 2.36 mgd withdrawal, to 0.4 to 0.5 feet on-site for the 1.54 mgd model. Given the small predicted individual impact of the CUP on the upper Floridan aquifer, the evidence is persuasive that the cumulative impacts are the result of other end-of-permit user withdrawals. The drawdown contour for the lower Floridan aquifer predicted by the 1.54 mgd model is almost identical to that of the 2.36 mgd model, thus supporting the conclusion that predicted impacts to the lower Floridan are almost entirely from other end-of-permit user withdrawals. Modeled Effect on Silver Springs As a result of the relocation of the extraction wells from the East Tract to the North Tract, the NCF model run at the 1.54 mgd withdrawal rate predicted springflow at Silver Springs to increase by 0.15 cfs. The net cumulative impact in spring flow as measured from 1995 conditions to the scenario in which all legal users, including Sleepy Creek, are pumping at full capacity at their end-of-permit rates for one year3/ is roughly 35.4 cfs, which is approximately 5 percent of Silver Springs’ current flow. However, as a result of the redistribution of the Sleepy Creek withdrawal, which is, in its current iteration, a legal and permitted use, the cumulative effect of the CUP modification at issue is an increase in flow of 0.l5 cfs. Dr. Kincaid agreed that there is more of an impact to Silver Springs when the pumping allowed by the CUP is located on the East Tract than there is on the North Tract, but that the degree of difference is very small. Dr. Knight testified that effect on the flow of Silver Springs from relocating the 1.46 mgd withdrawal from the East Tract to the North Tract would be “zero.” The predicted increase of 0.15 cfs is admittedly miniscule when compared to the current Silver Springs springflow of approximately 675 cfs. However, as small as the modeled increase may be -- perhaps smaller than its “level of certainty” -- it remains the best evidence that the impact of the CUP modification to the flow of Silver Springs will be insignificant at worst, and beneficial at best. Opposition to the NCF Model Petitioners submitted considerable evidence designed to call the results generated by the District’s and Sleepy Creek’s NCF modeling into question. Karst Features A primary criticism of the validity of the NCF model was its purported inability to account for the presence of karst features, including conduits, and their effect on the results. It was Dr. Kincaid’s opinion that the NCF model assigned transmissivity values that were too high, which he attributed to the presence of karst features that are collecting flow and delivering it to springs. He asserted that, instead of assuming the presence of karst features, the model was adjusted to raise the overall capacity of the porous medium to transmit water, and thereby match the observed flows. In his opinion, the transmissivity values of the equivalent porous media were raised so much that the model can no longer be used to predict drawdowns. That alleged deficiency in the model is insufficient for two reasons. First, as previously discussed in greater detail, the preponderance of the evidence in this case supports a finding that there are no karst features in the vicinity of the North Tract that would provide preferential pathways for water flow so as to skew the results of the NCF model. Second, Dr. Kincaid, while acknowledging that the NCF model is the best available tool for predicting impacts from groundwater extraction on the aquifer, suggested that a hybrid porous media and conduit model would be a better means of predicting impacts, the development of which would take two years or more. There is no basis for the establishment of a de facto moratorium on CUP permitting while waiting for the development of a different and, in this case, unnecessary model. For the reasons set forth herein, it is found that the NCF model is sufficient to accurately and adequately predict the effects of the Sleepy Creek groundwater withdrawals on the aquifers underlying the property, and to provide reasonable assurance that the standards for such withdrawals have been met. Recharge to the Aquifer Petitioners argued that the modeling results showing little significant drawdown were dependent on the application of unrealistic values for recharge or return flow from irrigation. In a groundwater model, as in the physical world, some portion of the water extracted from the aquifer is predicted to be returned to the aquifer as recharge. If more water is applied to the land surface than is being accounted for by evaporation, plant uptake and evapotranspiration, surface runoff, and other processes, that excess water may seep down into the aquifer as recharge. Recharge serves to replenish the aquifer and offset the effects of the groundwater withdrawal. Dr. Kincaid opined that the NCF modeling performed for the CUP application assigned too much water from recharge, offsetting the model's prediction of impacts to other features. It is reasonable to assume that there is some recharge associated with both agricultural and public supply uses. However, the evidence suggests that the impact of recharge on the overall NCF model results is insignificant on the predicted impacts to Silver Springs, the issue of primary concern. Mr. Hearn ran a simulation using the NCF model in which all variables were held constant, except for recharge. The difference between the “with recharge” and “without recharge" simulations at Silver Springs was 0.002 cfs. That difference is not significant, and is not suggestive of adverse impacts on Silver Springs from the CUP modification. Dr. Kincaid testified that “the recharge offset on the property is mostly impacting the surficial aquifer,” and that “the addition of recharge in this case didn't have much of an impact on the upper Floridan aquifer system.” As such, the effect of adding recharge to the model would be as to the effect of groundwater withdrawal on wetlands or surface water bodies, and not on springs. As previously detailed, the drawdown of the surficial aquifer simulated for the 2.39 mgd “no recharge” scenario were less than 0.05 feet on-site and off-site, except for a predicted 0.07 foot drawdown to the west of the North Tract. The predicted drawdown of the surficial aquifer for the 1.54 mgd “with recharge” scenario was 0.02 feet or less. The preponderance of the evidence supports a finding that drawdowns of either degree are less than that at which adverse impacts to wetlands or surface waters would occur. Thus, issues related to the recharge or return flows from irrigation are insufficient to support a finding or conclusion that the NCF model failed to provide reasonable assurance that the standards for issuance of the CUP modification were met. External Boundaries The boundaries of the NCF model are not isolated from the rest of the physical world. Rather, groundwater flows into the modeled area from multiple directions, and out of the modeled area in multiple directions. Inflows to the model area are comprised of recharge, which is an assigned value, and includes water infiltrating and recharging the aquifer from surface waters; injection wells; upward and downward leakage from lower aquifers; and flow across the external horizontal boundaries. Outflows from the model area include evapotranspiration; discharge to surface waters, including springs and rivers; extraction from wells; upward and downward leakage from lower aquifers; and flow against the external model boundaries. Dr. Kincaid testified that flow across the external model boundary is an unknown and unverifiable quantity which increases the uncertainty in the model. He asserted that in the calibrated version of the model, there is no way to check those flows against data. His conclusion was that the inability of the NCF model to accurately account for external boundary flow made the margin of error so great as to make the model an unreliable tool with which to assess whether the withdrawal approved by the proposed CUP modification will increase or decrease drawdown at Silver Springs. The District correlates the NCF model boundaries with a much larger model developed by the United States Geological Survey, the Peninsula of Florida Model, more commonly referred to as the Mega Model, which encompasses most of the State of Florida and part of Southeast Georgia. The Mega Model provides a means to acknowledge that there are stresses outside the NCF model, and to adjust boundary conditions to account for those stresses. The NCF is one of several models that are subsets of the Mega Model, with the grids of the two models being “nested” together. The 1995 base year of the NCF model is sufficiently similar to the 1993-1994 base year of the Mega Model as to allow for a comparison of simulated drawdowns calculated by each of the models. By running a Mega Model simulation of future water use, and applying the change in that use from 1993 base year conditions, the District was able to come to a representative prediction of specific boundary conditions for the 1995 NCF base year, which were then used as the baseline for simulations of subsequent conditions. In its review of the CUP modification, the District conducted a model validation simulation to measure the accuracy of the NCF model against observed conditions, with the conditions of interest being the water flow at Silver Springs. The District ran a simulation using the best information available as to water use in the year 2010, the calculated boundary conditions, irrigation, pumping, recharge, climatic conditions, and generally “everything that we think constitutes that year.” The discharge of water at Silver Springs in 2010 was measured at 580 cfs. The discharge simulated by the NCF model was 545 cfs. Thus, the discharge predicted by the NCF model simulation was within six percent of the observed discharge. Such a result is generally considered in the modeling community to be “a home run.” Petitioners’ objections to the calculation of boundary conditions for the NCF model are insufficient to support a finding that the NCF model is not an appropriate and accurate tool for determining that reasonable assurance has been provided that the standards for issuance of the CUP modification were met. Cumulative Impact Error As part of the District’s efforts to continually refine the NCF, and in conjunction with a draft minimum flows and levels report for Silver Springs and the Silver River, the cumulative NCF model results for the period of baseline to 2010 were compared with the simulated results from the Northern District Model (NDF), a larger model that overlapped the NCF. As a result of the comparison, which yielded different results, it was discovered that the modeler had “turned off” not only the withdrawal pumps, but inputs to the aquifer from drainage wells and sinkholes as well. When those inputs were put back into the model run, and effects calculated only from withdrawals between the “pumps-off” condition and 2010 pumping conditions, the cumulative effect of the withdrawals was adjusted from a reduction in the flow at Silver Springs of 29 cfs to a reduction of between 45 and 50 cfs, an effect described as “counterintuitive.” Although that result has not undergone peer review, and remains subject to further review and comparison with the Mega Model, it was accepted by the District representative, Mr. Bartol. Petitioners seized upon the results of the comparison model run as evidence of the inaccuracy and unreliability of the NCF model. However, the error in the NCF model run was not the result of deficiencies in the model, but was a data input error. Despite the error in the estimate of the cumulative effect of all users at 2010 levels, the evidence in this case does not support a finding that the more recent estimates of specific impact from the CUP at issue were in error. NCF Model Conclusion As has been discussed herein, a model is generally the best means by which to calculate conditions and effects that cannot be directly observed. The NCF model is recognized as being the best tool available for determining the subsurface conditions of the model domain, having been calibrated over a period of years and subject to peer review. It should be recognized that the simulations run using the NCF model represent the worst—case scenario, with all permittees simultaneously drawing at their full end-of-permit allocations. There is merit to the description of that occurrence as being “very remote.” Thus, the results of the modeling represent a conservative estimate of potential drawdown and impacts. While the NCF model is subject to uncertainty, as is any method of predicting the effects of conditions that cannot be seen, the model provides reasonable assurance that the conditions simulated are representative of the conditions that will occur as a result of the withdrawals authorized by the CUP modification. Environmental Resource Permit The irrigation proposed by the CUP will result in runoff from the North Tract irrigated pastures in excess of that expected from the improved pastures, due in large measure to the diminished storage capacity of the soil. Irrigation water will be applied when the soils are dry, and capable of absorbing water not subject to evaporation or plant uptake. The irrigation water will fill the storage space that would exist without irrigation. With irrigation water taking up the capacity of the soil to hold water, soils beneath the irrigation pivots will be less capable of retaining additional moisture during storm events. Thus, there is an increased likelihood of runoff from the irrigated pastures over that expected with dry soils. The increase in runoff is expected to be relatively small, since there should be little or no irrigation needed during the normal summer wet season. The additional runoff may have increased nutrient levels due to the increased cattle density made possible by the irrigation of the pastures. The CUP has a no—impact requirement for water quality resulting from the irrigation of the improved pasture. Thus, nutrients leaving the irrigated pastures may not exceed those calculated to be leaving the existing pre-development use as improved pastures. Retention Berms The additional runoff and nutrient load is proposed to be addressed by constructing a system of retention berms, approximately 50,0004/ feet in length, which is intended to intercept, retain, and provide treatment for runoff from the irrigated pasture. The goal of the system is to ensure that post—development nutrient loading from the proposed irrigated pastures will not exceed the pre—development nutrient loading from the existing improved pastures. An ERP permit is required for the construction of the berm system, since the area needed for the construction of the berms is greater than the one acre in size, and since the berms have the capability of impounding more than 40 acre-feet of water. The berms are to be constructed by excavating the top nine inches of sandy, permeable topsoil and using that permeable soil to create the berms, which will be 1 to 2 feet in height. The water storage areas created by the excavation will have flat or horizontal bottoms, and will be very shallow with the capacity to retain approximately a foot of water. The berms will be planted with pasture grasses after construction to provide vegetative cover. The retention berm system is proposed to be built in segments, with the segment designed to capture runoff from a particular center pivot pasture to be constructed prior to the commencement of irrigation from that center pivot. A continuous clay layer underlies the areas in which the berms are to be constructed. The clay layer varies from 18 to 36 inches below the ground surface, with at least one location being as much as five feet below the ground surface. As such, after nine inches of soil is scraped away to create the water retention area and construct the berm, there will remain a layer of permeable sandy material above the clay. The berms are to be constructed at least 25 feet landward of any jurisdictional wetland, creating a “safe upland line.” Thus, the construction, operation, and maintenance of the retention berms and redistribution swales will result in no direct impacts to jurisdictional wetlands or other surface waters. There will be no agricultural activities, e.g., tilling, planting, or mowing, within the 25-foot buffers, and the buffers will be allowed to establish with native vegetation to provide additional protection for downgradient wetlands. As stormwater runoff flows from the irrigated pastures, it may, in places, create concentrated flow ways. Redistribution swales will be built in those areas to spread any remaining overland flow of water and reestablish sheet flow to the retention berm system. At any point at which water may overtop a berm, the berm will be hardened with rip—rap to insure its integrity. The berms are designed to intercept and collect overland flow from the pastures and temporarily store it behind the berms, regaining the soil storage volume lost through irrigation. A portion of the runoff intercepted by the berm system will evaporate. The majority will infiltrate either through the berm, or vertically into the subsurface soils beneath it. When the surficial soils become saturated, further vertical movement will be stopped by the impermeable clay layer underlying the site. The runoff water will then move horizontally until it reemerges into downstream wetland systems. Thus, the berm system is not expected to have a measurable impact on the hydroperiod of the wetlands on the North Tract. Phosphorus Removal Phosphorus tends to get “tied up” in soil as it moves through it. Phosphorus reduction occurs easily in permeable soil systems because it is removed from the water through a chemical absorption process that is not dependent on the environment of the soil. As the soils in the retention areas and berms go through drying cycles, the absorption capacity is regenerated. Thus, the retention system will effectively account for any increase in phosphorus resulting from the increased cattle density allowed by the irrigation such that there is expected to be no increase in phosphorus levels beyond the berm. Nitrogen Removal When manure is deposited on the ground, primarily as high pH urine, the urea is quickly converted to ammonia, which experiences a loss of 40 to 50 percent of the nitrogen to volatization. Soil conditions during dry weather conditions are generally aerobic. Remaining ammonia in the manure is converted by aerobic bacteria in the soil to nitrates and nitrites. Converted nitrates and nitrites from manure, along with nitrogen from fertilizer, is readily available for uptake as food by plants, including grasses and forage crops. Nitrates and nitrites are mobile in water. Therefore, during rain events of sufficient intensity to create runoff, the nitrogen can be transported downstream towards wetlands and other receiving waters, or percolate downward through the soil until blocked by an impervious barrier. During storm events, the soils above the clay confining layer and the lower parts of the pervious berms become saturated. Those saturated soils are drained of oxygen and become anaerobic. When nitrates and nitrites encounter saturated conditions, they provide food for anaerobic bacteria that exist in those conditions. The bacteria convert nitrates and nitrites to elemental nitrogen, which has no adverse impact on surface waters or groundwater. That process, known as denitrification, is enhanced in the presence of organic material. The soils from which the berms are constructed have a considerable organic component. In addition to the denitrification that occurs in the saturated conditions in and underlying the berms, remaining nitrogen compounds that reemerge into the downstream wetlands are likely to encounter organic wetland-type soil conditions. Organic wetland soils are anaerobic in nature, and will result in further, almost immediate denitrification of the nitrates and nitrites in the emerging water. Calculation of Volume - BMPTRAINS Model The calculation of the volume necessary to capture and store excess runoff from the irrigated pastures was performed by Dr. Wanielista using the BMPTRAINS model. BMPTRAINS is a simple, easy to use spreadsheet model. Its ease of use does not suggest that it is less than reliable. The model has been used as a method of calculating storage volumes in many conditions over a period of more than 40 years. The model was used to calculate the storage volumes necessary to provide storage and treatment of runoff from fifteen “basins” that had a control or a Best Management Practice associated with them. All of the basins were calculated as being underlain by soils in poorly-drained hydrologic soil Group D, except for the basin in the vicinity of Pivot 6, which is underlain by the more well-drained soil Group A. The model assumed about percent of the property to have soil Group A soils, an assumption that is supported by the evidence. Soil moisture conditions on the property were calculated by application of data regarding rainfall events and times, the irrigation schedule, and the amount of irrigation water projected for use over a year. The soil moisture condition was used to determine the amount of water that could be stored in the on-site soils, known as the storage coefficient. Once the storage coefficient was determined, that data was used to calculate the amount of water that would be expected to run off of the North Tract, known as the curve number. The curve number is adjusted by the extent to which the storage within a soil column is filled by the application of irrigation water, making it unable to store additional rainfall. As soil storage goes down, the curve number goes up. Thus, a curve number that approaches 100 means that more water is predicted to run off. Conversely, a lower curve number means that less water is predicted to run off. The pre-development curve number for the North Tract was based on the property being an unirrigated, poor grass area. A post-development curve number was assigned to the property that reflected a wet condition representative of the irrigated soils beneath the pivots. In calculating the storage volume necessary to handle runoff from the basins, the wet condition curve number was adjusted based on the fact that there is a mixture of irrigated and unirrigated general pasture within each basin to be served by a segment of the retention berm system, and by the estimated 15 percent of the time that the irrigation areas would be in a drier condition. In addition, the number was adjusted to reflect the 8 to 10 inches of additional evapotranspiration that occurs as a result of irrigation. The BMPTRAINS model was based on average annual nutrient-loading conditions, with water quality data collected at a suitable point within Reach 22, the receiving waterbody. The effects of nutrients from the irrigated pastures on receiving waterbodies is, in terms of the model, best represented by average annual conditions, rather than a single highest-observed nutrient value. Pre-development loading figures were based on the existing use of the property as unirrigated general pasture. The pre-development phosphorus loading figure was calculated at an average event mean concentration (EMC) of 0.421 milligrams per liter (mg/l). The post—condition phosphorus loading figure was calculated at an EMC of 0.621 mg/l. Therefore, in order to achieve pre-development levels of phosphorus, treatment to achieve a reduction in phosphorus of approximately 36 percent was determined to be necessary. The pre-development nitrogen loading figure was calculated at an EMC of 2.6 mg/l. The post—condition nitrogen loading figure was calculated at an EMC of 3.3 mg/l. Therefore, in order to achieve pre-development levels of nitrogen, treatment to achieve a reduction in nitrogen of approximately 25 percent was determined to be necessary. The limiting value for the design of the retention berms is phosphorus. To achieve post-development concentrations that are equal to or less than pre-development concentrations, the treatment volume of the berm system must be sufficient to allow for the removal of 36 percent of the nutrients in water being retained and treated behind the berms, which represents the necessary percentage of phosphorus. In order to achieve the 36 percent reduction required for phosphorus, the retention berm system must be capable of retaining approximately 38 acre—feet of water from the 15 basins. In order to achieve that retention volume, a berm length of approximately 50,000 linear feet was determined to be necessary, with an average depth of retention behind the berms of one foot. The proposed length of the berms is sufficient to retain the requisite volume of water to achieve a reduction in phosphorus of 36 percent. Thus, the post-development/irrigation levels of phosphorus from runoff are expected to be no greater than pre-development/general pasture levels of phosphorus from runoff. By basing the berm length and volume on that necessary for the treatment of phosphorus, there will be storage volume that is greater than required for a 25 percent reduction in nitrogen. Thus, the post-development/irrigation levels of nitrogen from runoff are expected to be less than pre- development/general pasture levels of nitrogen from runoff. Mr. Drummond admitted that the design of the retention berms “shows there is some reduction, potentially, but it's not going to totally clean up the nutrients.” Such a total clean-up is not required. Rather, it is sufficient that there is nutrient removal to pre-development levels, so that there is no additional pollutant loading from the permitted activities. Reasonable assurance that such additional loading is not expected to occur was provided. Despite Mr. Drummond’s criticism of the BMPTRAINS model, he did not quantify nutrient loading on the North Tract, and was unable to determine whether post-development concentrations of nutrients would increase over pre-development levels. As such, there was insufficient evidence to counter the results of the BMPTRAINS modeling. Watershed Assessment Model In order to further assess potential water quantity and water quality impacts to surface water bodies, and to confirm stormwater retention area and volume necessary to meet pre-development conditions, Sleepy Creek utilized the Watershed Assessment Model (WAM). The WAM is a peer-reviewed model that is widely accepted by national, state, and local regulatory entities. The WAM was designed to simulate water balance and nutrient impacts of varying land uses. It was used in this case to simulate and provide a quantitative measure of the anticipated impacts of irrigation on receiving water bodies, including Mill Creek, Daisy Creek, the Ocklawaha River, and Silver Springs. Inputs to the model include land conditions, soil conditions, rain and climate conditions, and water conveyance systems found on the property. In order to calculate the extent to which nutrients applied to the land surface might affect receiving waters, a time series of surface water and groundwater flow is “routed” through the modeled watershed and to the various outlets from the system, all of which have assimilation algorithms that represent the types of nutrient uptakes expected to occur as water goes through the system. Simulations were performed on the North Tract in its condition prior to acquisition by Sleepy Creek, in its current “exempted improved pasture condition,” and in its proposed “post—development” pivot-irrigation condition. The simulations assessed impacts of the site conditions on surface waters at the point at which they leave the property and discharge to Mill Creek, and at the point where Mill Creek merges into the Ocklawaha River. The baseline condition for measuring changes in nutrient concentrations was determined to be that lawfully existing at the time the application was made. Had there been any suggestion of illegality or impropriety in Sleepy Creek’s actions in clearing the timber and creating improved pasture, a different baseline might be warranted. However, no such illegality or impropriety was shown, and the SJRWMD rules create no procedure for “looking back” to previous land uses and conditions that were legally changed. Thus, the “exempted improved pasture condition” nutrient levels are appropriate for comparison with irrigated pasture nutrient levels. The WAM simulations indicated that nitrogen resulting from the irrigation of the North Tract pastures would be reduced at the outflow to Mill Creek at the Reach 22 stream segment from improved pasture levels by 1.7 percent in pounds per year, and by 0.6 percent in milligrams per liter of water. The model simulations predicted a corresponding reduction at the Mill Creek outflow to the Ocklawaha River of 1.3 percent in pounds per year, and 0.5 percent in milligrams per liter of water. These levels are small, but nonetheless support a finding that the berm system is effective in reducing nitrogen from the North Tract. Furthermore, the WAM simulations showed levels of nitrogen from the irrigated pasture after the construction of the retention berms to be reduced from that present in the pre- development condition, a conclusion consistent with that derived from the BMPTRAINS model. The WAM simulations indicated that phosphorus from the irrigated North Tract pastures, measured at the outflow to Mill Creek at the Reach 22 stream segment, would be reduced from improved pasture levels by 3.7 percent in pounds per year, and by 2.6 percent in milligrams per liter of water. The model simulations predicted a corresponding reduction at the Mill Creek outflow to the Ocklawaha River of 2.5 percent in pounds per year, and 1.6 percent in milligrams per liter of water. Those levels are, again, small, but supportive of a finding of no impact from the permitted activities. The WAM simulations showed phosphorus in the Ocklawaha River at the Eureka Station after the construction of the retention berms to be slightly greater than those simulated for the pre-development condition (0.00008 mg/l) -- the only calculated increase. That level is beyond miniscule, with impacts properly characterized as “non- measurable” and “non-detectable.” In any event, total phosphorus remains well below Florida’s nutrient standards. The WAM simulations were conducted based on all of the 15 pivots operating simultaneously at full capacity. That amount is greater than what is allowed under the permit. Thus, according to Dr. Bottcher, the predicted loads are higher than those that would be generated by the permitted allocation, making his estimates “very conservative.” Dr. Bottcher’s testimony is credited. During the course of the final hearing, the accuracy of the model results was questioned based on inaccuracies in rainfall inputs due to the five-mile distance of the property from the nearest rain station. Dr. Bottcher admitted that given the dynamics of summer convection storms, confidence that the rain station rainfall measurements represent specific conditions on the North Tract is limited. However, it remains the best data available. Furthermore, Dr. Bottcher testified that even if specific data points simulated by the model differ from that recorded at the rain station, that same error carries through each of the various scenarios. Thus, for the comparative purpose of the model, the errors get “washed out.” Other testimony regarding purported inaccuracies in the WAM simulations and report were explained as being the result of errors in the parameters used to run alternative simulations or analyze Sleepy Creek’s simulations, including use of soil types that are not representative of the North Tract, and a misunderstanding of dry weight/wet weight loading rates. There was agreement among witnesses that the WAM is regarded, among individuals with expertise in modeling, as an effective tool, and was the appropriate model for use in the ERP application that is the subject of this proceeding. As a result, the undersigned accepts the WAM simulations as being representative of comparative nutrient impacts on receiving surface water bodies resulting from irrigation of the North Tract. The WAM confirmed that the proposed retention berm system will be sufficient to treat additional nutrients that may result from irrigation of the pastures, and supports a finding of reasonable assurance that water quality criteria will be met. With regard to the East Tract, the WAM simulations showed that there would be reductions in nitrogen and phosphorus loading to Daisy Creek from the conversion of the property to irrigated pasture. Those simulations were also conservative because they assumed the maximum number of cattle allowed by the nutrient balance, and did not assume the 30 percent reduction in the number of cattle under the NMP so as to allow existing elevated levels of phosphorus in the soil from the sod farm to be “mined” by vegetation. Pivot 6 The evidence in this case suggests that, unlike the majority of the North Tract, a small area on the western side of the North Tract drains to the west and north. Irrigation Pivot is within that area. Dr. Harper noted that there are some soils in hydrologic soil Group A in the vicinity of Pivot 6 that reflect soils with a deeper water table where rainfall would be expected to infiltrate into the ground. Dr. Kincaid’s particle track analysis suggested that recharge to the surficial aquifer ultimately discharges to Mill Creek, except for recharge at Pivot 11, which is accounted for by evapotranspiration, and recharge at Pivot 6. Dr. Kincaid concluded that approximately 1 percent of the recharge to the surficial aquifer beneath the North Tract found its way into the upper Floridan aquifer. Those particle tracks originated only on the far western side of the property, and implicated only Pivot 6, which is indicative of the flow divide in the Floridan aquifer. Of the 1 percent of particle tracks entering the Floridan aquifer, some ultimately discharged at the St. John’s River, the Ocklawaha River, or Mill Creek. Dr. Kincaid opined, however, that most ultimately found their way to Silver Springs. Given the previous finding that the Floridan aquifer beneath the property is within the Silver Springs springshed for less than a majority of the time, it is found that a correspondingly small fraction of the less than 1 percent of the particle tracks originating on the North Tract, perhaps a few tenths of one percent, can reach Silver Springs. Dr. Bottcher generally agreed that some small percentage of the water from the North Tract may make it to the upper Floridan aquifer, but that amount will be very small. Furthermore, that water reaching the upper Floridan aquifer would have been subject to the protection and treatment afforded by the NMP and the ERP berms. The evidence regarding the somewhat less restrictive confinement of the aquifer around Pivot 6 is not sufficient to rebut the prima facie case that the CUP modification, coupled with the ERP, will meet the District’s permitting standards. Public Interest The primary basis upon which Sleepy Creek relies to demonstrate that the CUP is “consistent with the public interest” is that Florida's economy is highly dependent upon agricultural operations in terms of jobs and economic development, and that there is a necessity of food production. Sleepy Creek could raise cattle on the property using the agriculturally-exempt improved pastures, but the economic return on the investment would be questionable without the increased quality, quantity, and reliability of grass and forage crop production resulting from the proposed irrigation. Sleepy Creek will continue to engage in agricultural activities on its properties if the CUP modification is denied. Although a typical Florida beef operation could be maintained on the property, the investment was based upon having the revenue generation allowed by grass-fed beef production in order to realize a return on its capital investment and to optimize the economic return. If the CUP modification is denied, the existing CUP will continue to allow the extraction of 1.46 mgd for use on the East Tract. The preponderance of the evidence suggests that such a use would have greater impacts on the water levels at Silver Springs, and that the continued use of the East Tract as a less stringently-controlled sod farm would have a greater likelihood of higher nutrient levels, particularly phosphorus levels which are already elevated.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law set forth herein it is RECOMMENDED that the St. Johns River Water Management District enter a final order: approving the issuance of Consumptive Use Permit No. 2-083-91926-3 to Sleepy Creek Lands, LLC on the terms and conditions set forth in the complete Permit Application for Consumptive Uses of Water and the Consumptive Use Technical Staff Report; and approving the issuance of Environmental Resource Permit No. IND-083-130588-4 to Sleepy Creek Lands, LLC on the terms and conditions set forth in the complete Joint Application for Individual and Conceptual Environmental Resource Permit and the Individual Environmental Resource Permit Technical Staff Report. DONE AND ENTERED this 29th day of April, 2015, in Tallahassee, Leon County, Florida. S E. GARY EARLY Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 29th day of April, 2015.

Florida Laws (27) 120.54120.569120.57120.60120.68373.016373.019373.036373.042373.0421373.069373.079373.175373.223373.227373.229373.236373.239373.246373.406373.413373.4131373.414403.067403.087403.9278.031 Florida Administrative Code (12) 28-106.10828-106.21740C-2.30140C-2.33140C-44.06540C-44.06662-302.30062-330.05062-330.30162-4.24062-4.24262-40.473
# 7
BARBARA ASH vs CITY OF DELTONA AND ST. JOHNS RIVER WATER MANAGEMENT DISTRICT, 04-002399 (2004)
Division of Administrative Hearings, Florida Filed:Deltona, Florida Jul. 12, 2004 Number: 04-002399 Latest Update: Jul. 25, 2005

The Issue The issue is whether the applicant for an Environmental Resource Permit ("ERP"), the City of Deltona ("City" or "Applicant"), has provided reasonable assurance that the system proposed complies with the water quantity, environmental, and water quality criteria of the St. Johns River Water Management District's ("District") ERP regulations set forth in Florida Administrative Code Chapter 40C-4, and the Applicant's Handbook: Management and Storage of Surface Waters (2005).

Findings Of Fact The District is a special taxing district created by Chapter 373, Florida Statutes, charged with the duty to prevent harm to the water resources of the District, and to administer and enforce Chapter 373, Florida Statutes, and the rules promulgated thereunder. The City of Deltona is a municipal government established under the provisions of Chapter 165, Florida Statutes. The Lake Theresa Basin is comprised primarily of a system of interconnected lakes extending from Lake Macy in the City of Lake Helen to the Butler Chain of Lakes (Lake Butler and Lake Doyle). The Lake Theresa Basin is land-locked and does not have a natural outfall to Lake Monroe and the St. Johns River. In 2003, after an extended period of above-normal rainfall in the Deltona area, the lakes within the land-locked Lake Theresa Basin staged to extremely high elevations that resulted in standing water in residential yards, and rendered some septic systems inoperable. Lake levels within the Lake Theresa Basin continued to rise and were in danger of rising above the finished floor elevations of some residences within the basin. On March 25, 2003, the District issued an Emergency Order (F.O.R. No. 2003-38) authorizing the construction and short-term operation of the Lake Doyle and Lake Bethel Emergency Overflow Interconnection. Since wetland and surface water impacts would occur, the Emergency Order required the City of Deltona to obtain an ERP for the system. The project area is 4.1 acres, and the system consists of a variable water structure on the west shore of Lake Doyle connected to a series of pipes, swales, water control structures, and wetland systems which outfall to a finger canal of Lake Bethel, with ultimate discharge to Lake Monroe and the St. Johns River. The first segment of the system extends downstream from the weir structure on the west shore of Lake Doyle via a pipe entrenched in the upland berm of the Sheryl Drive right-of-way. The pipe passes under Doyle Road and through xeric pine-oak uplands to the northeast shore of a large (approximately 15 acres) deepwater marsh. Water flows south through the deepwater marsh where it outfalls through four pipes at Ledford Drive. Two of the four pipes are overflow structures, controlled by canal gates. The pipes at Ledford Drive discharge into a ditch and into a large (greater than 20 acres) shallow bay swamp. The south end of the bay swamp is defined (and somewhat impounded) by a 19th Century railroad grade. Water flows through the bay swamp where it outfalls through five pipes at the railroad grade. Three of the five pipes are overflow structures, controlled by channel boards. The pipes at the railroad grade discharge to a 1500-foot long finger canal that was dug some time during the period 1940-1972 from the north central shore of Lake Bethel. The overflow interconnection system has three locations whereby the system can be shut down: 1) Lake Doyle--a control weir, controlled by three sluice gates; 2) Ledford Drive--two thirty-inch reinforced concrete pipes, controlled by canal gates; and 3) railroad grade--three thirty-inch reinforced concrete pipes, controlled by channel boards (collectively referred to as "Overflow Structures"). The Overflow Structures are designed to carry the discharge of water from Lake Doyle to Lake Bethel. With the Overflow Structures closed the system returns to pre-construction characteristics, meaning there will be no increase or decrease in the quantity or quality of water throughout the path of the system as a result of the project. An unequivocal condition of the permit is that the system would operate with all of the Overflow Structures closed. As an added assurance, the City proposes to place a brick and mortar plug in the Lake Doyle weir structure outfall pipe to prevent any discharge from the weir. The City has submitted to the District preliminary plans for a future phase in which the system would be modified for the purpose of alleviating high water levels within the Lake Theresa Basin when the water level in Lake Doyle rises above an elevation of 24.5 feet. The District shall require a separate permit application to be submitted for such future plans. Petitioner, Barbara Ash, has lived on Lake Theresa for 19 years. Ms. Ash lives upstream from the area of the weir that will be plugged in accordance with the ERP. She does not trust either the City of Deltona to comply with or the District to enforce the conditions of the ERP applied for by the City. Petitioner, Barbara Ash, also served as the qualified representative for Petitioners, Francell Frei, Bernard J. and Virginia Patterson, and Ted and Carol Sullivan. Ms. Ash represented that Ms. Frei has lived on Lake Theresa for 12 years, and both the Pattersons and the Sullivans live on Lake Louise, which is within the area of concern in this proceeding. Petitioner, Diana Bauer, has lived on Lake Theresa since February 2004. She fears that the lake will become too dry if the system is allowed to flow. She also believes the wildlife will be adversely affected if the water levels are too low since many species need a swampy or wet environment to thrive. She fears her property value will decrease as a result of the approval of the ERP. She also does not trust either the City to comply with or the District to enforce the conditions of the ERP. Petitioner, Howard Ehmer, lives two to three hundred yards down Lake Theresa from Ms. Bauer. He is concerned about the lake bed being too dry and attracting people on all terrain vehicles who enjoy driving around the lake bottom. He is concerned about his property value decreasing if the lake bed is dry. Further, when the lake level is too low, people cannot enjoy water skiing, boating, and fishing on Lake Theresa. Petitioner, Phillip Lott, a Florida native, has also owned and lived on property abutting Lake Theresa since 1995. Mr. Lott has a Ph.D. in plant ecology, and M.P.A. in coastal zone studies, an M.B.A. in international business, and a B.S. in environmental resource management and planning. Mr. Lott has been well acquainted with the water levels on Lake Theresa for many years. Based upon his personal observations of the lake systems in the Deltona area over the years, Mr. Lott has seen levels fluctuate greatly based upon periods of heavy and light rainfall. Mr. Lott is concerned that the District will permit the City to open the weir to let water flow through the system and cause flooding in some areas and low water levels in other areas. He fears that the District will allow the water to flow and upset the environmental balance, but he admits that this ERP application is for a closed system that will not allow the water to flow as he fears. Mr. Lott similarly does not trust the City to comply with and the District to enforce the conditions of the ERP. Petitioners, James E. and Alicia M. Peake, who were represented by Steven L. Spratt at hearing as their qualified representative, live on Lake Louise, which is interconnected with the Lake Theresa basin. The Peakes are concerned that if the level of Lake Louise drops below 21 feet, nine inches, they will not be able to use the boat launch ramps on the lake. Petitioner, Steven L. Spratt, also lives on Lake Louise, and is concerned about the water levels becoming so low that he cannot use the boat launch on the lake. He has lived on the lake since 2000, and remembers when the water level was extremely low. He fears that approval of the ERP in this case will result in low levels of water once again. Petitioner, Gloria Benoit, has live on Lake Theresa for two years. She also enjoys watching recreational activities on the lake, and feels that approval of the ERP will devalue her lakefront property. Ms. Benoit appeared at the first day of the hearing, but offered no testimony on her behalf. J. Christy Wilson, Esquire, appeared prior to the final hearing as counsel of record for Petitioners, Steven E. Larimer, Kathleen Larimer, and Helen Rose Farrow. Neither Ms. Wilson nor any of the three Petitioners she represented appeared at any time during the hearing, filed any pleadings seeking to excuse themselves from appearing at the final hearing, or offered any evidence, testimony, pre- or post- hearing submittals. Petitioner, Gary Jensen, did not appear at hearing, did not file any pleadings or papers seeking to be excused from appearing at the final hearing, and did not offer any evidence, testimony, pre- or post-hearing submittals. Both the City and the District recognize that areas downstream from the project site, such as Stone Island and Sanford, have experienced flooding in the past in time of high amounts of rainfall. The system proposed by the City for this ERP will operate with the overflow structures closed and a brick and mortar plug in the outfall pipe to prevent water flow from Lake Doyle to Lake Bethel. So long as the overflow structures are closed, the system will mimic pre-construction flow patterns, with no increase in volume flowing downstream. The District has considered the environment in its proposed approval of the ERP. The area abutting the project is little urbanized and provides good aquatic and emergent marsh habitat. With the exception of the western shore area of the deepwater marsh ("west marsh area"), the bay swamp and remaining deepwater marsh area have good ecological value. In the 1940's, the west marsh area was incorporated into the drainage system of a poultry farm that occupied the site. This area apparently suffered increased nutrient influxes and sedimentation that contributed to a proliferation of floating mats of aquatic plants and organic debris. These tussocks reduced the deepwater marsh's open water and diminished the historical marsh habitat. Water under the tussocks is typically anoxic owing to total shading by tussocks and reduced water circulation. Thick, soft, anaerobic muck has accumulated under the matted vegetation. Exotic shrubs (primrose willow Ludwigia peruvania) and other plants (cattails Typha spp.) dominate the tussocks. The construction of the project, from the 2003 Emergency Order, resulted in adverse impacts to 1.3 acres of wetlands having moderately high- to high ecological value and 0.2 acres of other surface waters. The 0.2 acre impact to other surface waters was to the lake bottom and the shoreline of Lake Doyle where the weir structure was installed. The 0.3 acres of wetland impacts occurred at the upper end of the deepwater marsh where the pipe was installed. The largest wetland impact (1.0 acre) was to the bay swamp. The bay swamp is a shallow body dominated by low hummocks and pools connected inefficiently by shallow braided channels and one acre is filled with a 1-2 foot layer of sediment following swamp channelization. Disturbance plants (e.g., primrose willow, Ludwigia peruvania, and elderberry Sambucus Canadensis) now colonize the sediment plume. Pursuant to the District's elimination and reduction criteria, the applicant must implement practicable design modifications, which would reduce or eliminate adverse impacts to wetlands and other surface waters. A proposed modification, which is not technically capable of being done, is not economically viable, or which adversely affects public safety through endangerment of lives or property is not considered "practicable." The City reduced and/or eliminated the impacts to the lake bottom and shoreline of Lake Doyle and deepwater marsh, to the extent practicable. The impacts were the minimum necessary to install the weir structure and pipe for the system; the weir structure and pipe were carefully installed on the edges of the wetland and surface water systems, resulting in a minimum amount of grading and disturbance. To compensate for the loss of 1.3 acres of wetlands and 0.2 acres of other surface waters, the City proposes to preserve a total of 27.5 acres of wetlands, bay swamp, marsh, and contiguous uplands. Included in this 27.5 acres are 6.4 acres of the west marsh, which are to be restored. The parties stipulated that the mitigation plan would adequately compensate for losses of ecological function (e.g. wildlife habitat and biodiversity, etc.) resulting from the project. Water quality is a concern for the District. Lake Monroe is included on the Florida Department of Environmental Protection's verified list of impaired water bodies for nitrogen, phosphorous, and dissolved oxygen. Water quality data for Lake Monroe indicate the lake has experienced high levels of nitrogen and phosphorous and low levels of dissolved oxygen. Prior to construction of the project, there was no natural outfall from the Lake Theresa Basin to Lake Monroe and therefore no contribution from this basin to nitrogen and phosphorous loadings to Lake Monroe. Lake Colby, Three Island Lakes (a/k/a Lake Sixma), and the Savannah are surface waters within the Lake Theresa Basin for which minimum levels have been adopted pursuant to Florida Administrative Code Chapter 40C-8. The system will operate with the overflow structures closed and a brick and mortar plug in the outfall pipe to prevent water flow from Lake Doyle to Lake Bethel, resulting in no outfall from the Theresa Basin to Lake Monroe. Minimum flows established for surface waters within the Lake Theresa Basin will not be adversely impacted. Under the first part of the secondary impact test, the City must provide reasonable assurance that the secondary impacts from construction, alteration, and intended or reasonable expected use of the project will not adversely affect the functions of adjacent wetlands or surface waters. The system is designed as a low intensity project. As proposed, little activity and maintenance are expected in the project site area. The reasonably expected use of the system will not cause adverse impacts to the functions of the wetlands and other surface waters. None of the wetland areas adjacent to uplands are used by listed species for nesting or denning. In its pre-construction state, the project area did not cause or contribute to state water quality violations. Under the second part of the secondary impact test, the City must provide reasonable assurance that the construction, alteration, and intended or reasonably expected uses of the system will not adversely affect the ecological value of the uplands to aquatic or wetland dependent species for enabling existing nesting or denning by these species. There are no listed threatened or endangered species within the project site area. Under the third part of the secondary impact test, and as part of the public interest test, the District must consider any other relevant activities that are closely linked and causally related to any proposed dredging or filling which will cause impacts to significant historical and archaeological resources. When making this determination, the District is required, by rule, to consult with the Division of Historical Resources. The Division of Historical Resources indicated that no historical or archaeological resources are likely present on the site. No impacts to significant historical and archaeological resources are expected. Under the fourth part of the secondary impact test, the City must demonstrate that certain additional activities and future phases of a project will not result in adverse impacts to the functions of wetlands or water quality violations. The City has submitted to the District preliminary plans for a future phase in which the system would be modified for the purpose of alleviating high water levels within the Lake Theresa Basin when the level in Lake Doyle rises above an elevation of 24.5 feet. Based upon the plans and calculations submitted, the proposed future phase, without additional measures, could result in minor increases in the loadings of nitrogen and phosphorous to Lake Monroe. Lake Monroe is included on the Florida Department of Environmental Protection's verified list of impaired water bodies due to water quality data indicating the lake has experienced high levels of nitrogen and phosphorous, and low levels of dissolved oxygen. Under this potential future phase, there would be an outfall from the Lake Theresa Basin to Lake Monroe. To address the impact on water quality of this potential future phase, the City has submitted a loading reduction plan for nitrogen, phosphorous, and dissolved oxygen. The plan includes compensating treatment to fully offset the potential increased nutrient loadings to Lake Monroe. Specifically, the loading reduction plan includes: Construction and operation of compensating treatment systems to fully offset anticipated increased nutrient loadings to Lake Monroe. Weekly water quality monitoring of the discharge from Lake Doyle for total phosphorous and total nitrogen. A requirement that the overflow structure be closed if the total phosphorous level reaches 0.18 mg/l or higher or the total nitrogen level reaches 1.2 mg/l or higher in any given week and will remain closed until levels fall below those limits. The implementation of these water quality mitigation measures will result in a net improvement of the water quality in Lake Monroe for nitrogen, phosphorous, or dissolved oxygen. The future phase was conceptually evaluated by the District for impacts to wetland functions. The future phase as proposed could result in adverse impacts to wetland functions. Operation of the system with the overflow structures open could impact the bay swamp and deepwater marsh. The City has demonstrated that any adverse impacts could be offset through mitigation. Based upon the information provided by the City and general engineering principles, the system is capable of functioning as proposed. The City of Deltona will be responsible for the operation, maintenance, and repair of the surface waster management system. A local government is an acceptable operation and maintenance entity under District rules. The public interest test has seven criteria. The public interest test requires the District to evaluate only those parts of the project actually located in, on, or over surface waters or wetlands, to determine whether a factor is positive, neutral, or negative, and then to balance these factors against each other. The seven factors are as follows: the public health, safety, or welfare of others; conservation of fish and wildlife and their habitats; fishing, recreational value, and marine productivity; temporary or permanent nature; 5) navigation, water flow, erosion, and shoaling; 6) the current condition and relative value of functions; and 7) historical and archaeological resources. There are no identified environmental hazards or improvements to public health and safety. The District does not consider impacts to property values. To offset any adverse impacts to fish and wildlife and their habitats, the City has proposed mitigation. The areas of the project in, on, or over wetlands do not provide recreational opportunities. Construction and operation of the project located in, on, or over wetlands will be permanent in nature. Construction and operation of the project located in, on, or over wetlands will not cause shoaling, and does not provide navigational opportunities. The mitigation will offset the relative value of functions performed by areas affected by the proposed project. No historical or archaeological resources are likely on the site of the project. The mitigation of the project is located within the same drainage basin as the project and offsets the adverse impacts. The project is not expected to cause unacceptable cumulative impacts.

Recommendation Based upon the Findings of Fact and Conclusions of Law, it is RECOMMENDED that a Final Order be entered granting the City of Deltona's application for an environmental resource permit with the conditions set forth in the Technical Staff Report, and dismissing the Petitions for Formal Administrative Hearing filed by Gary Jensen in Case No. 04-2405, and by Steven E. Larimer, Kathleen Larimer, and Helen Rose Farrow in Case No. 04-3048. DONE AND ENTERED this 27th day of May, 2005, in Tallahassee, Leon County, Florida. S ROBERT S. COHEN Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 27th day of May, 2005. COPIES FURNISHED: George Trovato, Esquire City of Deltona 2345 Providence Boulevard Deltona, Florida 32725 Diana E. Bauer 1324 Tartan Avenue Deltona, Florida 32738 Barbara Ash, Qualified Representative 943 South Dean Circle Deltona, Florida 32738-6801 Phillip Lott 948 North Watt Circle Deltona, Florida Howard Ehmer Nina Ehmer 32738-7919 1081 Anza Court Deltona, Florida 32738 Francell Frei 1080 Peak Circle Deltona, Florida 32738 Bernard T. Patterson Virginia T. Patterson 2518 Sheffield Drive Deltona, Florida 32738 Kealey A. West, Esquire St. Johns River Water Management District 4049 Reid Street Palatka, Florida 32177 J. Christy Wilson, Esquire Wilson, Garber & Small, P.A. 437 North Magnolia Avenue Orlando, Florida 32801 Gloria Benoit 1300 Tartan Avenue Deltona, Florida 32738 Gary Jensen 1298 Tartan Avenue Deltona, Florida 32738 James E. Peake Alicia M. Peake 2442 Weatherford Drive Deltona, Florida 32738 Steven L. Spratt 2492 Weatherford Drive Deltona, Florida 32738 Ted Sullivan 1489 Timbercrest Drive Deltona, Florida 32738 Kirby Green, Executive Director St. Johns River Water Management District 4049 Reid Street Palatka, Florida 32177

Florida Laws (3) 120.569120.57373.086 Florida Administrative Code (6) 40C-4.30140C-4.30240C-4.33140C-4.75162-302.30062-4.242
# 8
SHIRLEY B. HAYNES AND EGERTON K. VAN DEN BERG vs KGB LAKE HOWELL, LLC AND ST. JOHNS RIVER WATER MANAGEMENT DISTRICT, 01-004545 (2001)
Division of Administrative Hearings, Florida Filed:Orlando, Florida Nov. 26, 2001 Number: 01-004545 Latest Update: Mar. 31, 2003

The Issue The issue is whether an Environmental Resource Permit should be issued to KGB Lake Howell, LLC, authorizing the construction of a surface water management system to serve an apartment complex known as the Estates at Lake Howell in the City of Casselberry, Florida.

Findings Of Fact Based upon all of the evidence, the following findings of fact are determined: Background In this proceeding, Respondent, St. Johns River Water Management District (District), proposes to issue an Environmental Resource Permit to Respondent, KGB Lake Howell, LLC (Applicant), authorizing the construction of a stormwater management system to serve a 240-unit apartment complex known as the Estates of Lake Howell. The project will be located on an undeveloped tract of land in the City of Casselberry (City), Seminole County, Florida, just north of the Orange County line. It will include ten three-story buildings, parking, clubhouse/ administration building, amenity complex, and wet detention pond. The project also incorporates a 3.62-acre stormwater pond, now owned and used by Seminole County (County), lying east of Lake Ann Lane across from the project site, which was included in the overall acreage calculations for the purpose of increasing apartment density on the site. The Applicant has authorization from the County to apply for the permit incorporating that tract of land. The pond will continue to function as a stormwater facility for the County and will not accommodate stormwater from the project site. The project site consists of 38.9 acres located on the north side of Howell Branch Road, east of State Road 436 (also known as Semoran Boulevard), and west of Lake Ann Lane in the City. The site is currently undeveloped and includes an abandoned orange grove and upland pine flatwoods community, which make up approximately 14.6 acres, while the remaining 24.3 acres is a mixed forested wetland system. The property is now owned by the Harold Kasik Living Trust (Kasik property), which has a contract for purchase with the Applicant. The Kasik property is in the shape of a rectangle, 648 feet by 2,530 feet, with its long sides running north- south. It is bordered on the north and east by single-family residential and vacant land, to the south by commercial development, and to the west by high-density residential and commercial development. The property has a high elevation of approximately 83 feet on its southeastern corner and falls to the north/northeast, where the edge of the wetland system is at an elevation of 63 or 64 feet. The major development constraint on the site is the large wetland tract on the northern portion of the property. In order to minimize proposed impacts to the wetlands, the Applicant proposed the transfer of the development entitlements from the County land to benefit the Applicant's property. More specifically, the Applicant will acquire the County property, the Applicant will simultaneously grant a perpetual drainage easement over the property to the County, the Applicant will maintain the landscaping of the property in perpetuity, the Applicant will convey around five acres of wetlands on the northern end of the Kasik property to the County in fee simple, and the City will allow the transfer of development rights from the property. The project will adversely impact 0.99 acres of low- quality wetlands, of which 0.72 acres are to be dredged and 0.27 acres are to be filled to provide the fencing around the wet detention facility. To offset this impact, the Applicant proposes to preserve 17.8 acres of forested wetlands, plus 1.2 acres of forested uplands, or a mitigation ratio of 18:1. The District's guidelines for preservation mitigation applicable to this project are 10:1 to 60:1 for wetland impacts and 3:1 to 20:1 for upland impacts; thus, the mitigation plan falls within these guidelines. Under current conditions, stormwater runoff from the project site sheet flows into the on-site wetland and ultimately Lake Howell (the Lake), a Class III water body which meets all applicable water quality standards and is not an Outstanding Florida Water. After development occurs, stormwater from the developed portions of the property will be conveyed to a wet detention pond for required water quality treatment and peak discharge rate attenuation. After treatment in the detention pond, the water will discharge to the on-site wetland, as it does now, and eventually will be conveyed into the Lake. Off-site flows will continue to be conveyed into the on-site wetland. The wet detention pond, which has a minimum depth of twelve feet and a permanent pool of water with a mean depth of two to eight feet, has been designed to accommodate a 25-year, 24-hour storm. Post-development discharge will be less than pre-development, and the outfall structure has been designed to avoid channelization in the wetlands after the point of discharge. Since at least the late 1940's, Petitioner, Shirley Haynes, or her relatives, have owned, or resided on, a multi-acre tract of land just north of the project site at 2764 Lake Howell Lane. She has substantial frontage on the south side of the Lake. The southern portion of her property, which are wetlands, adjoins the northern boundary of the project site. For the past three years, Petitioner, Egerton van den Berg, has resided on a ten-acre tract of land at 1245 Howell Point, which is northeast of the project site. He has approximately 235 feet of frontage on the south side of the Lake. As argued in their Proposed Recommended Order, Petitioners generally contend that the application is "materially deficient" in several respects in violation of Rule 40C-4.101; that the Applicant has failed to satisfy Rule 40C-4.301(1)(c) and (d), which in turn constitutes a failure to meet the requirements of Rule 40C-4.302(1)(a)-(c); that the Applicant failed to satisfy the criteria in Sections 12.2.3(a)-(f), 12.2.1, 12.2.1.1, 12.2.1.3, 12.2.2.3(a)-(e), 12.2.2.4(a) and (b), 12.3.2.2(c), and 12.3.8(a) of the Applicant's Handbook: Management and Storage of Surface Waters (Applicant's Handbook); that the District did not adequately consider the cumulative impacts of the project as required by Section 373.414(8)(a), Florida Statutes; that a low flow analysis of the Lake was not performed, as required by Rule 40C-8.011(5); that the Applicant did not submit detailed mitigation plans as required by Section 12.3.3.2 of the Applicant's Handbook; that the 18:1 ratio for mitigation proposed by the Applicant is inappropriate; and that the District should not approve the density of the apartments established by the City. These concerns, to the extent they have been identified as issues in the parties' Pre-Hearing Stipulation, are addressed in the findings below. Where contentions have been raised by Petitioners, such as the placement of the detention pond over a depressional area, and they have not been argued in the Proposed Recommended Order, they have been deemed to be abandoned. Conditions for issuance of permits Rule 40C-4.301(1)(a)-(k), Florida Administrative Code, specifies eleven substantive requirements for which reasonable assurance must be given in order for a standard permit to be issued. Subsection (3) of the same Rule provides that the standards and criteria contained in the Applicant's Handbook shall determine whether the foregoing reasonable assurances have been given. Additional conditions for the issuance of a permit are found in Rule 40C-4.302(1) when the project, or any part of it, is located in, on, or over wetlands or other surface waters. Therefore, because a part of the Applicant's system will be located in wetlands, the Applicant must also give reasonable assurance that the project will not be contrary to the public interest, and that it will not cause unacceptable cumulative impacts upon the wetlands or surface waters. a. Rule 40C-4.301 Paragraphs (a)-(c) of the Rule require that an applicant provide reasonable assurance that the project will not cause adverse water quantity impacts to receiving waters and adjacent lands, adverse flooding to on-site or off-site property, or adverse impacts to existing surface water storage and conveyance capabilities. If a system meets the requirements of Section 10.2.1(a) through (d) of the Applicant's Handbook, there is a presumption that the system complies with the requirements of Paragraphs (a) through (c). This presumption has been met since the evidence supports a finding that the post- development peak rate of discharge will be lower than the pre- development peak rate of discharge for a 24-hour, 25-year storm event. Therefore, the Applicant's system meets the requirements of these Paragraphs. Paragraph (d) of the Rule requires that an applicant give reasonable assurance that the project "will not adversely impact the value of functions provided to fish and wildlife and listed species by wetlands and other surface waters." To satisfy this requirement, an applicant must also demonstrate compliance with the two-prong test in Sections 12.2.2 and 12.2.2.4 of the Applicant's Handbook. Section 12.2.2 requires that an applicant provide reasonable assurance that a regulated activity will not impact the values of wetlands and other surface water functions so as to cause adverse impacts to the abundance, diversity, and habitat of fish, wildlife, and listed species. In its proposal, the Applicant proposes to fill a total of 0.99 acres of wetlands. Since these impacts will eliminate the ability of the filled part of the on-site wetland to provide functions to fish and wildlife, the filling will cause adverse impacts. Under these circumstances, Section 12.2.1.1 requires that the Applicant either implement practicable design modifications to reduce or eliminate these adverse impacts or meet one of the exceptions under Section 12.2.1.2. Under Section 12.2.1.1, a proposed modification which is not technically capable of being done, is not economically viable, or which adversely affects public safety through the endangerment of lives or property is not considered practicable. The Applicant’s design for the proposed project went through a number of iterations prior to submittal to the District to reduce adverse impacts to the wetlands. During the permitting process, the District requested that the Applicant consider a number of other suggestions to reduce or eliminate the adverse impacts to wetlands such as adding a fourth floor to the apartment buildings to eliminate the need for one apartment building, building a parking garage for the tenants, and eliminating the tennis and volleyball courts. Because the Applicant provided detailed reasons why none of those suggestions were practicable, it was not required to implement any of those design modifications. In addition, the Applicant’s decision not to include a littoral zone around the stormwater pond did not increase the amount of wetland impacts as that engineering decision resulted in a stormwater pond that was simply deeper and not wider. Therefore, the Applicant has met the requirement to reduce or eliminate adverse wetland impacts. Section 12.2.1.1 only requires an elimination and reduction analysis when: (1) a proposed system will result in adverse impacts to wetland functions and other surface water functions so that it does not meet the requirements of Sections 12.2.2 through 12.2.3.7, or (2) neither one of the two exceptions within Section 12.2.1.2 applies. In determining whether one of the two exceptions in Section 12.2.1.2 applies, the District must evaluate the long- term ecological value of the mitigation proposed by the Applicant. If the mitigation is not adequate to offset the adverse impacts of the proposed system, then it is unlikely either exception in Section 12.2.1.2 will apply. As noted above, the Applicant’s proposed dredging and filling of the southern edge of the wetlands on the project site will eliminate the ability of that wetland area to provide functions to fish and wildlife. However, the Applicant’s mitigation plan of placing 17.8 acres of wetlands and 1.2 acres of uplands under a conservation easement to preserve that property in its natural state in perpetuity will fully replace the types of functions that the part of the wetlands proposed to be impacted provides to fish and wildlife. The mitigation plan will also offset the adverse impacts that this project will have on the value and functions provided to fish and wildlife by the impacted part of the wetlands. In this case, the first exception under Section 12.2.1.2(a) applies as it meets that Section's two requirements: the ecological value of the functions provided by the area of wetland to be adversely affected is low, and the proposed mitigation will provide greater long-term ecological value than the area or wetland to be adversely affected. Also, the quality of the wetland to be impacted is low. All of the proposed impacts will occur in the area of the wetland that was historically disturbed and in which nuisance and exotic species are prevalent. Due to nuisance and exotic vegetation, the ecological value provided by that area to wildlife is low. The mitigation for the proposed project will provide greater long-term ecological value to fish and wildlife than the part of the wetland proposed to be impacted because the proposed mitigation will preserve eighteen times more wetlands that are of higher quality and provide greater value than the wetland area to be impacted. The type of wetland to be preserved, a mixed forested wetland containing hardwoods, is rare for the area. Although the mitigation plan will provide greater long-term ecological value to fish and wildlife than the part of the wetland proposed to be impacted, the Applicant did not meet the second exception in the elimination and reduction rule under Section 12.2.1.2(b) because the wetlands to be preserved are not regionally significant. In addition to meeting the elimination and reduction rule through implementation of practicable design modifications, the Applicant also satisfied the same rule by meeting the first exception found in Section 12.2.1.2(a). Thus, the Applicant has satisfied Section 12.2.2, which is the first prong of the test to determine compliance with Paragraph (d). The second prong of the test to determine whether Paragraph (d) of the Rule has been satisfied is found in Section 12.2.2.4. That Section requires that an applicant give reasonable assurance that the activity will not change the hydroperiod of a wetland so as to affect wetland functions. For the following reasons, that prong of the test has been satisfied. Since the wetlands are primarily groundwater-influenced, the construction of the stormwater pond between the project and the wetlands will not adversely affect the wetlands. As the soils surrounding the pond are very porous with a high infiltration and percolation rate, water from the stormwater pond will still reach the wetlands through lateral seepage. Further, the Applicant will install an energy dissipating device on the outfall spout at the point of discharge so that water will be spread out from the stormwater pond as it discharges into the receiving wetlands. As noted earlier, this will prevent an adverse channelization effect. Finally, stormwater runoff from the surrounding basins that currently discharge into the wetlands will not be affected by the construction of the stormwater system. That runoff will continue to flow into the wetlands on the project site. Because the Applicant has satisfied Sections 12.2.2 and 12.2.2.4, Paragraph (d) of the Rule has been met. Paragraph (e) of the Rule generally requires that an applicant provide reasonable assurance that a project will not adversely affect the quality of receiving waters. Here, the Applicant has provided such assurance. This is because the system has been designed in accordance with all relevant District criteria. Also, the Applicant has proposed to revise Permit Condition 26 as follows: Condition 26. This permit authorizes construction and operation of a surface water management system as shown on the plans received by the District on June 14, 2001, and as amended by plan sheet C4 (Sheet 07 of 207) received by the District on January 23, 2002. In view of this revision, the Applicant's wet detention system complies with all of the design criteria contained in Rule 40C-42.026(4). Under Rule 40C-42.023(2)(a), compliance with the design criteria contained in Rule 40C-42.026 creates a presumption that state water quality standards, including those for Outstanding Florida Waters, will be met. This presumption has not been rebutted; therefore, the requirements of Paragraph (e) of the Rule have been satisfied. Further, Sections 12.2.4.1 and 12.2.4.2 state, in part, that reasonable assurance regarding water quality must be provided both for the short term and the long term, addressing the proposed construction, alteration, operation, maintenance, removal, and abandonment of the system. The Applicant has provided reasonable assurance that this requirement is met through the design of its surface water management system, its long-term maintenance plan for the system, and the long and short-term erosion and turbidity control measures it proposes. If issued, the permit will require that the surface water management system be constructed and operated in accordance with the plans approved by the District. The permit will also require that the proposed erosion and turbidity control measures be implemented. Section 12.2.4.5 does not apply because there are no exceedances of any water quality standards at the proposed receiving water. Also, Sections 12.2.4.3 and 12.2.4.4 do not apply because the Applicant has not proposed any docking facilities or temporary mixing zones. Paragraph (f) of the Rule requires that an applicant not cause adverse secondary impacts to the water resources. Compliance with this requirement is determined by applying the four-part test in Section 12.2.7(a) through (d). As to Section 12.2.7(a), there are no secondary impacts from construction, alteration, and intended or reasonably expected uses of the proposed system that will cause water quality violations or adverse impacts to the wetland functions. The Applicant chose not to provide buffers abutting the wetlands but rather chose measures other than buffers to meet this requirement. The Applicant has provided reasonable assurance that secondary impacts will not occur by placing the stormwater pond between the planned project and the wetlands, so that the pond itself will serve as a buffer by shielding the wetland from the lighting and noise of the project, and by acting as a barrier to keep domestic animals out of the wetlands. In addition, the Applicant increased the amount of property to be preserved as mitigation by adding 2.97 acres of wetlands and 1.2 acres of uplands to the mitigation plan to mitigate for any remaining secondary impacts. Accordingly, the first part of the secondary impacts test in Section 12.2.7(a) is satisfied. As to Section 12.2.7(b), because there is no evidence that any aquatic or wetland-dependent listed animal species use uplands for existing nesting or denning adjacent to the project, the second part of the test has been met. No adverse secondary impacts will occur under the third part of the test in Section 12.2.7(c) because the proposed project will not cause impacts to significant historical or archaeological resources. Finally, adverse secondary impacts as proscribed by Section 12.2.7(d) will not occur because no evidence was presented that there would be additional phases or expansion of the proposed system or that there are any onsite or offsite activities that are closely or causally linked to the proposed system. Therefore, the proposed project satisfies Paragraph (f) of the Rule. Paragraph (g) of the Rule requires that an applicant provide reasonable assurance that a project will not adversely impact the maintenance of surface or ground water levels or surface water flows established in Chapter 40C-8. Minimum (but not maximum) surface water levels have been established for the Lake pursuant to Chapter 40C-8 for the basin in which the project is located. The project will not cause a decrease of water to, or cause a new withdrawal of water from, the Lake. Therefore, the project satisfies this requirement. Finally, Petitioners have acknowledged in their Proposed Recommended Order that the Applicant has given reasonable assurance that the requirements of Paragraphs (h), (i), (j), and (k) have been met. The parties have also stipulated that the receiving water (Lake Howell) meets all Class III water quality standards. Therefore, the project satisfies the requirements of Subsection 40C-4.301(2). Rule 40C-4.302 - Public Interest Test Under Rule 40C-4.302(1)(a)1.-7., an applicant must provide reasonable assurance that the parts of its surface water management system located in, on, or over wetlands are not contrary to the public interest. Similar requirements are found in Section 12.2.3. The Applicant has provided reasonable assurance that the parts of the project that are located in, on, or over wetlands (mainly the detention pond and fill) are not contrary to the public interest, because the evidence showed that all seven of the public interest factors to be balanced are neutral. Because the proposed permanent mitigation will offset the project’s adverse impacts to wetlands, no adverse effects to the conservation of fish and wildlife due to the project’s permanent nature will occur. The evidence also showed that best management practices and erosion control measures will ensure that the project will not result in harmful erosion or shoaling. Further, it was demonstrated that the project will not adversely affect the flow of water, navigation, significant historical or archaeological resources, recreational or fishing values, marine productivity, or the public health, safety, welfare or property of others. Finally, the evidence showed that the project’s design, including permanent mitigation, will maintain the current condition and relative value of functions performed by parts of the wetland proposed to be impacted. Therefore, the project meets the public interest criteria found in Rule 40C-4.302(1)(a). Rule 40C-4.302(1)(b) - Cumulative Impacts Rule 40C-4.302(1)(b) and Section 12.2.8 require that an applicant demonstrate that its project will not cause unacceptable cumulative impacts upon wetlands and other surface waters within the same drainage basin as the regulated activity for which the permit is being sought. Under this requirement, if an applicant proposes to mitigate the adverse impacts to wetlands within the same drainage basin as the impacts, and if the mitigation fully offsets these impacts, the District will consider the regulated activity to have no unacceptable cumulative impacts upon wetlands and other surface waters. The Applicant has chosen to mitigate for the impacts to 0.99 acres of wetlands by preserving 17.8 acres of wetlands and 1.2 acres of uplands on-site. Since this mitigation will occur in the same drainage basin as the impacts and the mitigation fully offsets those impacts, the Applicant satisfies the requirements of the Rule. Rule 40C-4.302 - Other Requirements The parties have stipulated that the requirements of Paragraphs (c) and (d) of Rule 40C-4.302(1) do not apply. There is no evidence that the Applicant has violated any District rules or that it has been the subject of prior disciplinary action. Therefore, the requirements of Subsection (2) of the Rule have been met. Miscellaneous Matters County Pond Site The Seminole County pond site located on the east side of Lake Ann Lane and across the street from the project is not a jurisdictional wetland and does not have any wetland indicators. It is classified as an upland cut surface water. The Applicant is not proposing to impact any wetlands at the pond site, and the site is not part of the proposed mitigation plan for the project. The permit in issue here is not dependent on the pond site, and nothing in the application ties the project with that site. Indeed, the transfer of density rights from the County property is not relevant to the District permitting criteria. Review of Application When the decision to issue the permit was made, the District had received all necessary information from the Applicant to make a determination that the project met the District's permitting criteria. While certain information may have been omitted from the original application, these items were either immaterial or were not essential to the permitting decision. The application complies with all District permitting criteria. Contrary to Petitioners' contention, the Applicant does not have to be the contract purchaser for property in order to submit an application for that property. Rather, the District may review a permit application upon receipt of information that the applicant has received authorization from the current owners of the property to apply for a permit. In this case, the Applicant has the permission of the current owners (the Harold Kasik Living Trust).

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the St. Johns River Water Management District enter a final order granting the requested permit as described above. DONE AND ENTERED this 29th day of March, 2002, in Tallahassee, Leon County, Florida. ___________________________________ DONALD R. ALEXANDER Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 29th day of March, 2002. COPIES FURNISHED: Kirby B. Green, III, Executive Director St. Johns River Water Management District Post Office Box 1429 Palatka, Florida 32178-1429 Shirley B. Haynes 2764 Lake Howell Road Winter Park, Florida 32792-5725 Egerton K. van den Berg 1245 Howell Point Winter Park, Florida 32792-5706 Charles A. Lobdell, III, Esquire St. Johns River Water Management District Post Office Box 1429 Palatka, Florida 32178-1429 Meredith A. Harper, Esquire Shutts & Bowen Post Office Box 4956 Orlando, Florida 32802-4956

Florida Laws (3) 120.569120.57373.414
# 9
STEVEN E. LARIMER, KATHLEEN LARIMER, AND HELEN ROSE FARROW vs CITY OF DELTONA AND ST. JOHNS RIVER WATER MANAGEMENT DISTRICT, 04-003048 (2004)
Division of Administrative Hearings, Florida Filed:Deltona, Florida Aug. 30, 2004 Number: 04-003048 Latest Update: Jul. 25, 2005

The Issue The issue is whether the applicant for an Environmental Resource Permit ("ERP"), the City of Deltona ("City" or "Applicant"), has provided reasonable assurance that the system proposed complies with the water quantity, environmental, and water quality criteria of the St. Johns River Water Management District's ("District") ERP regulations set forth in Florida Administrative Code Chapter 40C-4, and the Applicant's Handbook: Management and Storage of Surface Waters (2005).

Findings Of Fact The District is a special taxing district created by Chapter 373, Florida Statutes, charged with the duty to prevent harm to the water resources of the District, and to administer and enforce Chapter 373, Florida Statutes, and the rules promulgated thereunder. The City of Deltona is a municipal government established under the provisions of Chapter 165, Florida Statutes. The Lake Theresa Basin is comprised primarily of a system of interconnected lakes extending from Lake Macy in the City of Lake Helen to the Butler Chain of Lakes (Lake Butler and Lake Doyle). The Lake Theresa Basin is land-locked and does not have a natural outfall to Lake Monroe and the St. Johns River. In 2003, after an extended period of above-normal rainfall in the Deltona area, the lakes within the land-locked Lake Theresa Basin staged to extremely high elevations that resulted in standing water in residential yards, and rendered some septic systems inoperable. Lake levels within the Lake Theresa Basin continued to rise and were in danger of rising above the finished floor elevations of some residences within the basin. On March 25, 2003, the District issued an Emergency Order (F.O.R. No. 2003-38) authorizing the construction and short-term operation of the Lake Doyle and Lake Bethel Emergency Overflow Interconnection. Since wetland and surface water impacts would occur, the Emergency Order required the City of Deltona to obtain an ERP for the system. The project area is 4.1 acres, and the system consists of a variable water structure on the west shore of Lake Doyle connected to a series of pipes, swales, water control structures, and wetland systems which outfall to a finger canal of Lake Bethel, with ultimate discharge to Lake Monroe and the St. Johns River. The first segment of the system extends downstream from the weir structure on the west shore of Lake Doyle via a pipe entrenched in the upland berm of the Sheryl Drive right-of-way. The pipe passes under Doyle Road and through xeric pine-oak uplands to the northeast shore of a large (approximately 15 acres) deepwater marsh. Water flows south through the deepwater marsh where it outfalls through four pipes at Ledford Drive. Two of the four pipes are overflow structures, controlled by canal gates. The pipes at Ledford Drive discharge into a ditch and into a large (greater than 20 acres) shallow bay swamp. The south end of the bay swamp is defined (and somewhat impounded) by a 19th Century railroad grade. Water flows through the bay swamp where it outfalls through five pipes at the railroad grade. Three of the five pipes are overflow structures, controlled by channel boards. The pipes at the railroad grade discharge to a 1500-foot long finger canal that was dug some time during the period 1940-1972 from the north central shore of Lake Bethel. The overflow interconnection system has three locations whereby the system can be shut down: 1) Lake Doyle--a control weir, controlled by three sluice gates; 2) Ledford Drive--two thirty-inch reinforced concrete pipes, controlled by canal gates; and 3) railroad grade--three thirty-inch reinforced concrete pipes, controlled by channel boards (collectively referred to as "Overflow Structures"). The Overflow Structures are designed to carry the discharge of water from Lake Doyle to Lake Bethel. With the Overflow Structures closed the system returns to pre-construction characteristics, meaning there will be no increase or decrease in the quantity or quality of water throughout the path of the system as a result of the project. An unequivocal condition of the permit is that the system would operate with all of the Overflow Structures closed. As an added assurance, the City proposes to place a brick and mortar plug in the Lake Doyle weir structure outfall pipe to prevent any discharge from the weir. The City has submitted to the District preliminary plans for a future phase in which the system would be modified for the purpose of alleviating high water levels within the Lake Theresa Basin when the water level in Lake Doyle rises above an elevation of 24.5 feet. The District shall require a separate permit application to be submitted for such future plans. Petitioner, Barbara Ash, has lived on Lake Theresa for 19 years. Ms. Ash lives upstream from the area of the weir that will be plugged in accordance with the ERP. She does not trust either the City of Deltona to comply with or the District to enforce the conditions of the ERP applied for by the City. Petitioner, Barbara Ash, also served as the qualified representative for Petitioners, Francell Frei, Bernard J. and Virginia Patterson, and Ted and Carol Sullivan. Ms. Ash represented that Ms. Frei has lived on Lake Theresa for 12 years, and both the Pattersons and the Sullivans live on Lake Louise, which is within the area of concern in this proceeding. Petitioner, Diana Bauer, has lived on Lake Theresa since February 2004. She fears that the lake will become too dry if the system is allowed to flow. She also believes the wildlife will be adversely affected if the water levels are too low since many species need a swampy or wet environment to thrive. She fears her property value will decrease as a result of the approval of the ERP. She also does not trust either the City to comply with or the District to enforce the conditions of the ERP. Petitioner, Howard Ehmer, lives two to three hundred yards down Lake Theresa from Ms. Bauer. He is concerned about the lake bed being too dry and attracting people on all terrain vehicles who enjoy driving around the lake bottom. He is concerned about his property value decreasing if the lake bed is dry. Further, when the lake level is too low, people cannot enjoy water skiing, boating, and fishing on Lake Theresa. Petitioner, Phillip Lott, a Florida native, has also owned and lived on property abutting Lake Theresa since 1995. Mr. Lott has a Ph.D. in plant ecology, and M.P.A. in coastal zone studies, an M.B.A. in international business, and a B.S. in environmental resource management and planning. Mr. Lott has been well acquainted with the water levels on Lake Theresa for many years. Based upon his personal observations of the lake systems in the Deltona area over the years, Mr. Lott has seen levels fluctuate greatly based upon periods of heavy and light rainfall. Mr. Lott is concerned that the District will permit the City to open the weir to let water flow through the system and cause flooding in some areas and low water levels in other areas. He fears that the District will allow the water to flow and upset the environmental balance, but he admits that this ERP application is for a closed system that will not allow the water to flow as he fears. Mr. Lott similarly does not trust the City to comply with and the District to enforce the conditions of the ERP. Petitioners, James E. and Alicia M. Peake, who were represented by Steven L. Spratt at hearing as their qualified representative, live on Lake Louise, which is interconnected with the Lake Theresa basin. The Peakes are concerned that if the level of Lake Louise drops below 21 feet, nine inches, they will not be able to use the boat launch ramps on the lake. Petitioner, Steven L. Spratt, also lives on Lake Louise, and is concerned about the water levels becoming so low that he cannot use the boat launch on the lake. He has lived on the lake since 2000, and remembers when the water level was extremely low. He fears that approval of the ERP in this case will result in low levels of water once again. Petitioner, Gloria Benoit, has live on Lake Theresa for two years. She also enjoys watching recreational activities on the lake, and feels that approval of the ERP will devalue her lakefront property. Ms. Benoit appeared at the first day of the hearing, but offered no testimony on her behalf. J. Christy Wilson, Esquire, appeared prior to the final hearing as counsel of record for Petitioners, Steven E. Larimer, Kathleen Larimer, and Helen Rose Farrow. Neither Ms. Wilson nor any of the three Petitioners she represented appeared at any time during the hearing, filed any pleadings seeking to excuse themselves from appearing at the final hearing, or offered any evidence, testimony, pre- or post- hearing submittals. Petitioner, Gary Jensen, did not appear at hearing, did not file any pleadings or papers seeking to be excused from appearing at the final hearing, and did not offer any evidence, testimony, pre- or post-hearing submittals. Both the City and the District recognize that areas downstream from the project site, such as Stone Island and Sanford, have experienced flooding in the past in time of high amounts of rainfall. The system proposed by the City for this ERP will operate with the overflow structures closed and a brick and mortar plug in the outfall pipe to prevent water flow from Lake Doyle to Lake Bethel. So long as the overflow structures are closed, the system will mimic pre-construction flow patterns, with no increase in volume flowing downstream. The District has considered the environment in its proposed approval of the ERP. The area abutting the project is little urbanized and provides good aquatic and emergent marsh habitat. With the exception of the western shore area of the deepwater marsh ("west marsh area"), the bay swamp and remaining deepwater marsh area have good ecological value. In the 1940's, the west marsh area was incorporated into the drainage system of a poultry farm that occupied the site. This area apparently suffered increased nutrient influxes and sedimentation that contributed to a proliferation of floating mats of aquatic plants and organic debris. These tussocks reduced the deepwater marsh's open water and diminished the historical marsh habitat. Water under the tussocks is typically anoxic owing to total shading by tussocks and reduced water circulation. Thick, soft, anaerobic muck has accumulated under the matted vegetation. Exotic shrubs (primrose willow Ludwigia peruvania) and other plants (cattails Typha spp.) dominate the tussocks. The construction of the project, from the 2003 Emergency Order, resulted in adverse impacts to 1.3 acres of wetlands having moderately high- to high ecological value and 0.2 acres of other surface waters. The 0.2 acre impact to other surface waters was to the lake bottom and the shoreline of Lake Doyle where the weir structure was installed. The 0.3 acres of wetland impacts occurred at the upper end of the deepwater marsh where the pipe was installed. The largest wetland impact (1.0 acre) was to the bay swamp. The bay swamp is a shallow body dominated by low hummocks and pools connected inefficiently by shallow braided channels and one acre is filled with a 1-2 foot layer of sediment following swamp channelization. Disturbance plants (e.g., primrose willow, Ludwigia peruvania, and elderberry Sambucus Canadensis) now colonize the sediment plume. Pursuant to the District's elimination and reduction criteria, the applicant must implement practicable design modifications, which would reduce or eliminate adverse impacts to wetlands and other surface waters. A proposed modification, which is not technically capable of being done, is not economically viable, or which adversely affects public safety through endangerment of lives or property is not considered "practicable." The City reduced and/or eliminated the impacts to the lake bottom and shoreline of Lake Doyle and deepwater marsh, to the extent practicable. The impacts were the minimum necessary to install the weir structure and pipe for the system; the weir structure and pipe were carefully installed on the edges of the wetland and surface water systems, resulting in a minimum amount of grading and disturbance. To compensate for the loss of 1.3 acres of wetlands and 0.2 acres of other surface waters, the City proposes to preserve a total of 27.5 acres of wetlands, bay swamp, marsh, and contiguous uplands. Included in this 27.5 acres are 6.4 acres of the west marsh, which are to be restored. The parties stipulated that the mitigation plan would adequately compensate for losses of ecological function (e.g. wildlife habitat and biodiversity, etc.) resulting from the project. Water quality is a concern for the District. Lake Monroe is included on the Florida Department of Environmental Protection's verified list of impaired water bodies for nitrogen, phosphorous, and dissolved oxygen. Water quality data for Lake Monroe indicate the lake has experienced high levels of nitrogen and phosphorous and low levels of dissolved oxygen. Prior to construction of the project, there was no natural outfall from the Lake Theresa Basin to Lake Monroe and therefore no contribution from this basin to nitrogen and phosphorous loadings to Lake Monroe. Lake Colby, Three Island Lakes (a/k/a Lake Sixma), and the Savannah are surface waters within the Lake Theresa Basin for which minimum levels have been adopted pursuant to Florida Administrative Code Chapter 40C-8. The system will operate with the overflow structures closed and a brick and mortar plug in the outfall pipe to prevent water flow from Lake Doyle to Lake Bethel, resulting in no outfall from the Theresa Basin to Lake Monroe. Minimum flows established for surface waters within the Lake Theresa Basin will not be adversely impacted. Under the first part of the secondary impact test, the City must provide reasonable assurance that the secondary impacts from construction, alteration, and intended or reasonable expected use of the project will not adversely affect the functions of adjacent wetlands or surface waters. The system is designed as a low intensity project. As proposed, little activity and maintenance are expected in the project site area. The reasonably expected use of the system will not cause adverse impacts to the functions of the wetlands and other surface waters. None of the wetland areas adjacent to uplands are used by listed species for nesting or denning. In its pre-construction state, the project area did not cause or contribute to state water quality violations. Under the second part of the secondary impact test, the City must provide reasonable assurance that the construction, alteration, and intended or reasonably expected uses of the system will not adversely affect the ecological value of the uplands to aquatic or wetland dependent species for enabling existing nesting or denning by these species. There are no listed threatened or endangered species within the project site area. Under the third part of the secondary impact test, and as part of the public interest test, the District must consider any other relevant activities that are closely linked and causally related to any proposed dredging or filling which will cause impacts to significant historical and archaeological resources. When making this determination, the District is required, by rule, to consult with the Division of Historical Resources. The Division of Historical Resources indicated that no historical or archaeological resources are likely present on the site. No impacts to significant historical and archaeological resources are expected. Under the fourth part of the secondary impact test, the City must demonstrate that certain additional activities and future phases of a project will not result in adverse impacts to the functions of wetlands or water quality violations. The City has submitted to the District preliminary plans for a future phase in which the system would be modified for the purpose of alleviating high water levels within the Lake Theresa Basin when the level in Lake Doyle rises above an elevation of 24.5 feet. Based upon the plans and calculations submitted, the proposed future phase, without additional measures, could result in minor increases in the loadings of nitrogen and phosphorous to Lake Monroe. Lake Monroe is included on the Florida Department of Environmental Protection's verified list of impaired water bodies due to water quality data indicating the lake has experienced high levels of nitrogen and phosphorous, and low levels of dissolved oxygen. Under this potential future phase, there would be an outfall from the Lake Theresa Basin to Lake Monroe. To address the impact on water quality of this potential future phase, the City has submitted a loading reduction plan for nitrogen, phosphorous, and dissolved oxygen. The plan includes compensating treatment to fully offset the potential increased nutrient loadings to Lake Monroe. Specifically, the loading reduction plan includes: Construction and operation of compensating treatment systems to fully offset anticipated increased nutrient loadings to Lake Monroe. Weekly water quality monitoring of the discharge from Lake Doyle for total phosphorous and total nitrogen. A requirement that the overflow structure be closed if the total phosphorous level reaches 0.18 mg/l or higher or the total nitrogen level reaches 1.2 mg/l or higher in any given week and will remain closed until levels fall below those limits. The implementation of these water quality mitigation measures will result in a net improvement of the water quality in Lake Monroe for nitrogen, phosphorous, or dissolved oxygen. The future phase was conceptually evaluated by the District for impacts to wetland functions. The future phase as proposed could result in adverse impacts to wetland functions. Operation of the system with the overflow structures open could impact the bay swamp and deepwater marsh. The City has demonstrated that any adverse impacts could be offset through mitigation. Based upon the information provided by the City and general engineering principles, the system is capable of functioning as proposed. The City of Deltona will be responsible for the operation, maintenance, and repair of the surface waster management system. A local government is an acceptable operation and maintenance entity under District rules. The public interest test has seven criteria. The public interest test requires the District to evaluate only those parts of the project actually located in, on, or over surface waters or wetlands, to determine whether a factor is positive, neutral, or negative, and then to balance these factors against each other. The seven factors are as follows: the public health, safety, or welfare of others; conservation of fish and wildlife and their habitats; fishing, recreational value, and marine productivity; temporary or permanent nature; 5) navigation, water flow, erosion, and shoaling; 6) the current condition and relative value of functions; and 7) historical and archaeological resources. There are no identified environmental hazards or improvements to public health and safety. The District does not consider impacts to property values. To offset any adverse impacts to fish and wildlife and their habitats, the City has proposed mitigation. The areas of the project in, on, or over wetlands do not provide recreational opportunities. Construction and operation of the project located in, on, or over wetlands will be permanent in nature. Construction and operation of the project located in, on, or over wetlands will not cause shoaling, and does not provide navigational opportunities. The mitigation will offset the relative value of functions performed by areas affected by the proposed project. No historical or archaeological resources are likely on the site of the project. The mitigation of the project is located within the same drainage basin as the project and offsets the adverse impacts. The project is not expected to cause unacceptable cumulative impacts.

Recommendation Based upon the Findings of Fact and Conclusions of Law, it is RECOMMENDED that a Final Order be entered granting the City of Deltona's application for an environmental resource permit with the conditions set forth in the Technical Staff Report, and dismissing the Petitions for Formal Administrative Hearing filed by Gary Jensen in Case No. 04-2405, and by Steven E. Larimer, Kathleen Larimer, and Helen Rose Farrow in Case No. 04-3048. DONE AND ENTERED this 27th day of May, 2005, in Tallahassee, Leon County, Florida. S ROBERT S. COHEN Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 27th day of May, 2005. COPIES FURNISHED: George Trovato, Esquire City of Deltona 2345 Providence Boulevard Deltona, Florida 32725 Diana E. Bauer 1324 Tartan Avenue Deltona, Florida 32738 Barbara Ash, Qualified Representative 943 South Dean Circle Deltona, Florida 32738-6801 Phillip Lott 948 North Watt Circle Deltona, Florida Howard Ehmer Nina Ehmer 32738-7919 1081 Anza Court Deltona, Florida 32738 Francell Frei 1080 Peak Circle Deltona, Florida 32738 Bernard T. Patterson Virginia T. Patterson 2518 Sheffield Drive Deltona, Florida 32738 Kealey A. West, Esquire St. Johns River Water Management District 4049 Reid Street Palatka, Florida 32177 J. Christy Wilson, Esquire Wilson, Garber & Small, P.A. 437 North Magnolia Avenue Orlando, Florida 32801 Gloria Benoit 1300 Tartan Avenue Deltona, Florida 32738 Gary Jensen 1298 Tartan Avenue Deltona, Florida 32738 James E. Peake Alicia M. Peake 2442 Weatherford Drive Deltona, Florida 32738 Steven L. Spratt 2492 Weatherford Drive Deltona, Florida 32738 Ted Sullivan 1489 Timbercrest Drive Deltona, Florida 32738 Kirby Green, Executive Director St. Johns River Water Management District 4049 Reid Street Palatka, Florida 32177

Florida Laws (3) 120.569120.57373.086 Florida Administrative Code (6) 40C-4.30140C-4.30240C-4.33140C-4.75162-302.30062-4.242
# 10

Can't find what you're looking for?

Post a free question on our public forum.
Ask a Question
Search for lawyers by practice areas.
Find a Lawyer