Findings Of Fact Respondent, Textron Petroleum Products Company, Inc., has applied for a construction permit to construct a sanitary landfill in Sections 3 and 10, Township 1 North, Range 2 East, Leon County, Florida. The proposed site consists of ninety (90) acres and is approximately 2,000 feet from U.S Highway 90 at Its closest point to that highway. The application is in proper form and contains all information required by the Department of Environmental Regulation. towns and areas to be served by the application are the City," of Tallahassee and Leon County. The facility is designed to serve a population of 135,000 people. Although evidence was presented for the purpose of showing that the City of Tallahassee and Leon County, as governmental entities, do not intend to use the proposed sanitary landfill as an "official" landfill site for those governmental bodies, this evidence did not establish that the area to be served and the population to be served by the proposed sanitary landfill is other than that stated above. The applicant, Textron Petroleum Products Company, Inc. does not have a franchise from any county, municipality or other governmental agency with regard to solid waste resource recovery and management responsibilities. The applicant, Textron Petroleum Products Company, Inc., had not, at the time of hearing, posted a performance bond or other approved security with the agency within whose jurisdiction the proposed site is located. The "owner" as that term is used in Section 17-4.21(1)(d), F.A.C., is the applicant, Textron Petroleum Products Company, Inc. The unrebutted evidence presented,at hearing established that the applicant has a net worth of $1 million and is financially responsible. The evidence presented did not establish any violation of the State Resource Recovery And Management Program set out in Part II, Chatper 17-7, F.A.C. There is a public supply well located in the Homestead Ridge area. This system serves 38 or more customers at an averave rate of about 200,000 gallons per month. The well is located more than 2,700 feet from the site boundary of the proposed sanitary landfill. As found by the Northwest Florida Water Management District, even if the consumption of that well system were increased to 2.16 million gallons of water per month, the drawdown at a radius of 2,000 feet would be 0.13 feet. Therefore, it was concluded that the cone of influence of the public water supply does not extend under the proposed sanitary landfill site. As a condition for issuance of a construction permit the Department of Environmental Regulation proposes the requirement of a monitoring system of wells which would include a deep well located between the proposed site and the Homestead Ridge public supply, the purpose of which would be to detect the potential intrusion of leachate or other contaminants into the public water supply from the sanitary landfill. It is improbable that the proposed sanitary landfill will produce any significant quantity of leachate. However, the application proposes that if monitoring indicates that lechate control is needed, a well point system will be installed in the completed cells and underground pipe drains installed in the new cells. It further provides that, dependent upon the quantities involved, the leachate.will be transported to the City of Tallahassee Sewage Treatment Facilities for disposal or it will be treated on-site by transporting the leachate to the settling pond which will at that time be equipped with suitable aeration and chlorination equipment for treatment of the leachate. The proposed design of the sanitary landfill provides that all final discharge from the sedimentatlon pond will conform to the water quality standards set out in Chapter 17-3, F.A.C, even though this may require the constrjction of treatment equipment by the applicant. The application, at pages 12 and 14,.provides for the equipment to be used on-site in the operation of the proposed sanitary landfill as well as for the method of providing adequate site supervision. No evidence was presented showing these provisions to be other than adequate. The evidence presented did not establish that the utilization of U.S. Highway 90 by vehicles transporting waste to the proposed sanitary landfill would create any unusual 0rincreased traffic and safety hazard. The application, at page 3, proposed the installation of electronic signalization equipment to alleviate any hazard which might be created by traffic using the proposed site. No evidence was presented showing this proposal to be inadequate. According to a letter to Mr. James Barrineau, Leon County Department of Pollution Control, from Mr. Mark Stamps, Assistant Zoning Director, Tallahassee Leon County Planning Department, the proposed site is currently zoned Agricultural 2. The letter further states that an Agricultural 2 zoning allows a sanitary landfill as a permitted use. A small portion of the proposed sanitary landfill site is open to public view from,U.S. Highway 90 which is a major thoroughfare. It was estimated by a witness that the distance to the proposed site from that section of U.s. Highway 90 from which the site was open to public view was one (1) mile. An examination of the plot plan of.the proposed site contained in the application shows that at the closest point, the site boundary is approximately 2,000 feet from U.5 Highway 90. The site is screened from public view from most places on Highway 90 by the existing topography and ground cover.
Findings Of Fact Respondent Jackson County proposes to build a Class I landfill in western Jackson County, about 1.5 miles south of Campbellton on the west side of State Road 273. The named petitioners live near the proposed site, and all parties stipulated to petitioners' standing or party status on account of the proximity of their homes. The forecast is that the proposed landfill would be in service for 15 years, during the last of which it would receive wastes generated by 16,000 persons. Contingent on issuance of the construction permit it seeks in these proceedings, Jackson County has agreed to purchase 85 to 89 acres in section 15, township 6N, range 12W, of which 55 acres would be devoted to the proposed landfill. About ten of the remaining acres are covered by the southern reaches of Grant Pond. Grant Pond may be a sinkhole, but there is no connection between its waters and the Florida aquifer. There is no evidence of sinkhole activity on the site at the present time. One hundred ten feet from the southwest boundary of the proposed site long-time residents have shallow wells from which they once drew water with buckets. There are mostly small farms in the area. A trailer and 6 to 8 homes are located within 1,000 yards of the proposed site. LEACHATE NOT ANTICIPATED Jackson County contemplates eventually dumping 215 cubic yards daily of residential, commercial and agricultural wastes including sewage sludge, in a series of "cells" to H developed seriatim on the site. Developing a cell would entail digging a pit 15 feet deep, 200 feet wide and 650 feet long, lining it with some of the clay removed in excavating, and compacting the two-foot-thick clay bottom liner to 90 percent Proctor. The uncontroverted testimony was that such a liner would be impermeable. A cell is expected to accommodate about a year's worth of refuse. The plan is to have one cell in operation and another in reserve at all times. Waste would be compacted and then covered over with clay soils daily to minimize the possibility of leachate formation. In addition, a six-inch layer of clay would be put down at the end of each "lift," more or less weekly. Once the cell was completely filled, it would be covered with an even thicker layer of clay and/or other materials specified by applicable regulations. Against the possibility of leachate formation before the cell is finally sealed off, the bottom of the cell would be sloped (4:1) so that any leachate generated would accumulate at one point in the cell, from which it could be pumped to a leachate holding pond. The leachate holding pond is also to be lined with impermeable clays. The engineer who designed the project predicts that no leachate whatsoever will be generated and the project plans do not identify the specific method for disposing of leachate, once it reaches the holding pond. Depending on the quality and consistency of any leachate, it could be left in the holding pond to evaporate, or be removed by truck for disposal off site; or be treated biologically and/or chemically before being spread on site. STORMWATER The stormwater management system consists of a series of elongated detention ponds and two ditches, or swales, that drain into Grant Pond. The detention ponds are to be 1.2 feet deep, have varying widths (26.5 to 64 feet), with sides sloping at a 4:1 ratio, and vary in length from 1,000 to 1,600 feet. Water that would accumulate in them as a result of 3.2 inches of rainfall (the amount a 25-year one-hour storm would bring) would fill the ponds. The ponds are designed to overflow through baffled culverts along the swales into Grant Pond. The soils are such that 3.2 inches of rainfall could percolate into the unsaturated soil from the holding ponds in 72 hours. The closest baffle to Grant Pond would be some 200 feet distant; significant sheet flows would also enter Grant Pond. The landfill is designed to insulate stormwater runoff from contamination by waste or leachate. Only when wastes in an almost filled cell had not yet been covered would there be danger that stormwater falling on wastes would end up in the flow of stormwater draining across the surface of the proposed site and ultimately into Grant Pond. This danger could be all but eliminated by placing the last layer of wastes deeply enough in the cell. The plan is to ring the cells with excavated material, as well. If leachate is generated and pumped to the leachate holding pond and if there is enough of it to fill the pond or nearly to fill it, a storm might result in an overflow from the leachate holding pond that would drain eventually into Grant Pond. This danger, too, could be all but eliminated by operating the landfill so that the level of leachate in the holding pond always remained low enough, and by disposing of all leachate, if the facility generates any, off site, rather than "by landspreading on site." Jackson County's Exhibit No. 6. The same people who manage the landfill in eastern Jackson County would manage the landfill here proposed. No leachate has been generated at Jackson County's eastern landfill, but litter that can blow out of the cells at the eastern landfill does. If the same practices obtain at the new site, airborne litter that does not reach Grant Pond on the wing, may later be washed into the Pond by stormwater, even though the baffles would eliminate floatables in the water flowing out of the detention ponds. TWO AQUIFERS The parties are in agreement "that the leachate and or other pollutants will probably never reach the Floridan Aquifer." Petitioners' Closing Argument, p. 4. The Floridan aquifer is a limestone rock formation underlying the proposed site at depths varying between 30 and 130 feet, and separated by a layer of stiff clay from the overlying silts and sands. The stringers of saturated sands lying near the surface comprise a distinct, surficial aquifer that lies between five and twenty feet below ground over most of the site but crops out as Grant Pond on the northern edge of the property. No cell would be built within 200 feet of the highwater line of Grant Pond. The water table in the surficial aquifer, which yields potable water, is a subdued replica of the ground topography. Surface water from the southwest part of the proposed landfill site, where wells are closest, flows into Grant Pond. Water sometimes stands on the southeast part of the site, an area one witness described as boggy. A trailer stands on a parcel adjoining the property to the southeast with its near boundary 300 or 400 feet from the site proposed for the first working cell. No cell is to be dug within 500 feet of any existing or proved potable water well. The application contemplates monitoring wells. Groundwater in the Floridan aquifer flows south. Three wells to a depth of about 45 feet each are planned for south of the cells so that, in the unlikely event that pollution reached the Floridan aquifer, it could be promptly determined. There will also be a monitoring station in Grant Pond so the effect of stormwater runoff on water quality in the pond can be gauged. One well, 250 feet east of the west property boundary and 250 feet south of the north boundary, is planned for monitoring the surficial aquifer. TOXIC WASTES Toxic wastes are generated in Jackson County. Hundreds of drums with a little something still left in them are brought to the County's eastern landfill. No toxic wastes can lawfully be dumped at landfills like the one Jackson County proposes to build near Campbellton, but containers which once held toxic substances can lawfully be disposed of at such landfills, provided they have been rinsed out with water three times. Signs to this effect are to be posted. The landfill would have a single entrance. An attendant would be on duty during the landfill's hours of operation (8 to 5, five days a week), but would not be expected to have sampling equipment or to enforce the triple rinsing requirement, if past practice at the eastern landfill is any indication. When the landfill is not open, according to the applicant's engineer, green boxes will nevertheless be available for dumping. SCREENING Litter fences are planned only "if needed." A green belt 100 feet wide is proposed along the southern and the eastern perimeter of the property. "Appropriate trees and shrubs" are to be planted there, perhaps bamboo or oleander. SEPTAGE DISPOSAL PITS In a letter dated December 1, 1982, under the heading "septage disposal pits", C. G. Mauriello, the engineer who designed the proposed landfill, wrote DER's Wayne Hosid: This item was not shown on the original application but should be included. It has been recognized by the County that disposal of this type waste material should be handled at the new west site and therefore, provisions will be made for the disposal. Basically, a trench type operation similar to the East Site will be provided. The location of the disposal area will be to the south of the Future Holding Pond and north of the Salvage Area. Jackson County's Exhibit No. 6. A drawing prepared by the same person in July of 1982 shows a "septic tank/drainfield" southeast of the location described for the "septage disposal pits." DER's Exhibit No. 1. The permit DER proposes to issue contains numerous conditions, including the following: Construction of septage drying beds will be identical to those permitted under Permit No. 5032-22067 for Jackson East Sanitary Landfill as modified on July 20, 1981. Jackson County's Exhibit No. 9. Permit No. 5032-22067 was not made a part of the record in these proceedings. Incidentally, the word "septage" does not appear in Webster's Third New International Dictionary (1971). A septic tank or any similar system would differ significantly from the systems described by the witnesses who testified at hearing. Septic tanks eventually discharge their contents into surrounding soils, after treatment by anaerobic bacteria. Septic tanks cannot be sealed off by clay or anything else from the earth around them, if they are to function properly. Sooner or later discharge from any septic tank on site could be expected to enter the surficial aquifer and, ultimately, through the groundwater, Grant's Pond. Nothing in the evidence indicates how long it might take for any such effluent to reach the groundwater or leach into Grant Pond; or what its chemical composition might be. MORAL OBJECTION STATED Petitioners' witness Frederick L. Broxton, Sr. testified that, even conceding the absence of a scientific or legal basis for objection to the proposed project, it was immoral for the County Commission to choose a site so close to people's homes, when there was so much land available in that part of the county, where nobody lived. PROPOSED FINDINGS CONSIDERED All parties filed posthearing submissions which have been considered in preparation of the foregoing findings of fact. Respondent Department of Environmental Regulation filed proposed findings which have been adopted, in substance, for the most part. Where proposed findings have not been adopted, it is because they have been deemed immaterial, unsupported-by the weight of the evidence, subsidiary or cummulative.
Recommendation Upon consideration of the foregoing, it is RECOMMENDED: That the Department of Environmental Regulation issue Jackson County a permit for construction of a landfill at the site proposed subject to the conditions (except condition No. 24) stated in the proposed permit, Jackson County's Exhibit No. 9, and subject to the following additional conditions: (a) any leachate generated shall be disposed of off site (b) the whole landfill shall be fenced, and the view from State Road 273 shall be obstructed (c) portable fences shall be placed around any cell in use (d) an additional monitoring well shall be placed between the well southeast of the site and the nearest cell and (e) no septic tank or "septage" disposal pits shall be built on site. DONE and ENTERED this 17th day of August, 1983, in Tallahassee, Florida. ROBERT T. BENTON, II Hearing Officer Division of Administrative Hearings The Oakland Building 2009 Apalachee Parkway Tallahassee, Florida 32301 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 17th day of August, 1983. COPIES FURNISHED: Robert L. Travis, Jr., Esquire 229 East Washington Street Quincy, Florida 32351 J. Paul Griffith, Esquire P. O. Box 207 Marianna, Florida 32446 E. Gary Early, Esquire Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32301 Victoria Tschinkel, Secretary Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32301
The Issue The issue in this case is whether Pasco County's application for a permit to construct a Class III landfill should be approved by the Department of Environmental Regulation (Department). Pasco County called Robert Hauser, Jr., who was accepted as an expert in sanitary landfills, and the Department called Kim Ford, who was accepted as an expert in professional engineering with expertise in solid waste. Petitioner Collins testified on behalf of the Petitioners. Two exhibits were received on behalf of Pasco County and two on behalf of the Petitioners. One exhibit offered by Petitioners (P-3) was rejected. No transcript of the hearing was filed. The parties were given ten days following the hearing to file their proposed recommended orders, including proposed findings of fact. A ruling on each timely filed proposed finding of fact is included in the Appendix to this Recommended Order.
Findings Of Fact Pasco County filed an application with the department on or about January 29, 1983, to construct a Class III sanitary landfill. The location of the landfill would be near Hays Road and County Road 52, near Aripeka, in Pasco County, Florida. Pasco County owns the property on which the landfill would be located. After review, the Department issued an Intent to Issue on or about December 2, 1988, by which it proposed to issue Permit No. SC 51-144683 to Pasco County. The proposed landfill site is approximately 60 acres in size, with 20 acres to be used for disposal of household trash, yard trash consisting of grass clippings and other vegetative matter resulting from landscape maintenance or land clearing operations, construction or demolition debris, paper, cardboard, cloth, glass, street sweepings, vehicle tires, and other nonputrescible materials. Pasco County will install a 60 mil thick, high density polyethylene synthetic liner with a leachate collection system which is designed to eliminate discharge to the Floridan Aquifer within the landfill boundaries. An extensive geotechnical investigation of subsurface conditions at the site was conducted by the County's consultants in order to determine the suitability of the site for a Class III landfill, and to evaluate the ability of the site to provide an adequate foundation for the facility. Soil boring and ground penetrating radar were used. It was established that the site is of relatively uniform stratigraphy, characterized by a uniform layer of surficial sand, a reasonably continuous clay semi-confining layer from six to ten feet thick, under which lies the limestone groundwater bearing formation known as the Floridan Aquifer. The hydrogeological survey conducted by the County included a foundation analysis which demonstrates that the subgrade will support loads and stresses imposed by the proposed landfill. It also has a low potential for sinkhole development, and the synthetic liner and leachate collection system are reasonable mitigation steps which address sinkhole potentials. Pasco County's application includes a surface water management system, which has already received approval from the Southwest Florida Water Management District, and which is adequate to control surface water discharged from the Class III landfill site. The groundwater monitoring plan included in the application provides for no less that 10 pairs of monitor wells to be located approximately 100 feet from the boundary of the proposed landfill area. This meets the requirements of the Department, and is adequate to monitor both the surficial and Floridan Aquifer, and to provide early detection of any discharges to the groundwater. Reasonable assurances have been provided, through site specific geotechnical analysis and enhanced design features, that the site can be developed and operated as a Class III landfill without adverse impact to the Floridan Aquifer, despite the fact that the site is located in an area designated by the Southwest Florida Water Management District as a high recharge area. The County has demonstrated that it has the financial ability to construct, operate and close this Class III landfill in accordance with the Department's rules. The operations plan included in the County's application establishes the County's ability to operate the proposed landfill in accordance with rules of the Department. The proposed design of Pasco County's proposed Class III landfill offers reasonable assurances that the Department's standards will be met, and in fact, the design as proposed by the County exceeds the standards required by the Department for a Class III landfill, in that this project includes a liner and leachate collection system which are not mandatory. Competent substantial evidence was not presented by the Petitioners to establish that they would be substantially affected, or affected in any way, from the construction and operation of this Class III landfill.
Recommendation Based upon the foregoing, it is recommended that the Department issue Permit NO. SC 51-144683 to Pasco County. DONE AND ENTERED this 23rd of May, 1989 in Tallahassee, Florida. DONALD D. CONN Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 Filed with the Clerk of the Division of Administrative Hearings this 23rd day of May, 1989. APPENDIX The Petitioners did not file Proposed Findings of Fact. Rulings on Pasco County's Proposed Findings of Fact: 1. Adopted in Finding of Fact 3. 2-4. Adopted in Finding of Fact 5. 5. Adopted in Finding of Fact 4. 6-8. Adopted in Finding of Fact 6. 9. Adopted in Finding of Fact 11. 10-11. Adopted in Finding of Fact 7. 12. Adopted in Finding of Fact 10. 13-14. Adopted in Finding of Fact 8. 15. Adopted in Finding of Fact 9. Rulings on the Department's Proposed Findings of Fact: Adopted in Findings of Fact 1, 2. Rejected since this is a conclusion of law. Adopted in Finding of Fact 3. Adopted in Findings of Fact 4, 5, 11. Adopted in Finding of Fact 11. Adopted in Finding of Fact 7. Adopted in Finding of Fact 6. Adopted in Finding of Fact 7. Adopted in Finding of Fact 10. Adopted in Finding of Fact 9. Adopted in Finding of Fact 8. COPIES FURNISHED: Robert G. Collins 1750 Blue Heron Lane Spring Hill, FL 34610 Robert D. Odell 12636 Box Drive Rolling Oaks Estates Hudson, FL 34667 J. Ben Harrill, Esquire 7530 Little Road, Room 203 New Port Richey, FL 34654 Richard T. Donelan, Jr., Esquire Twin Towers Office Building 2600 Blair Stone Road Tallahassee, FL 32399-2400 Daniel H. Thompson, Esquire Twin Towers Office Building 2600 Blair Stone Road Tallahassee, FL 32399-2400 Dale Twatchmann, Secretary Twin Towers Office Building 2600 Blair Stone Road Tallahassee, FL 32399-2400
Findings Of Fact This proceeding concerns an application for authority to construct and operate a 20-acre Class I, Class III, and an asbestos municipal solid waste landfill, as well as to close an existing 25.5-acre Class I municipal solid waste landfill located in Holmes County, Florida. This facility would function as a new regional landfill, in part, to replace the existing landfill in Holmes County. The applicant, EPAI, is a Florida corporation formed for the purpose of constructing and operating the proposed facility. EPAI has an option to purchase the site involved from its present owner, which will be accomplished after the facility is permitted, if it is, and all necessary permits for construction and operation have been obtained, then the applicant will sell stock in its corporation to City Management Corporation (City) domiciled in Detroit, Michigan. EPAI will then continue to exist as a wholly-owned subsidiary of City and will proceed to construct and operate the new landfill and initiate and complete all closure operations for the existing landfill. The Department of Environmental Regulation is an agency of the State of Florida subject to the provisions of Chapter 120, Florida Statutes, and charged with enforcing the provisions of Chapter 403, Florida Statutes, and Chapter 17- 701, FAC, as pertinent to this proceeding. It is thus charged with regulating solid waste management facilities, including permitting their construction, operation, and closure. It is charged with reviewing applications for such projects and issuing permits therefor if the statutes and rules it is charged with enforcing are found to have been complied with by a permit applicant. It has performed that function in this case up until the point that jurisdiction of the permit application dispute engendered by the filing of the subject petition resulted in transfer of the matter to the Division of Administrative Hearings. The Petitioner, CVA, is a group of Holmes County citizens opposing issuance of the landfill permit at issue. Based upon rulings on the motions to dismiss and extant law, CVA was required to present proof of its standing at the final hearing held in this cause. CVA called two witnesses, neither of whom presented evidence relevant to the issue of standing. CVA did not present any evidence, either through testimony or exhibits, to identify its members, to establish that a substantial number of its members would be affected by the issuance of the permit and the construction and operation of the landfill nor evidence which would identify members whose substantial interests will be affected by the construction and operation in a way different from any effect on the interests of the public at large. Project Background Holmes County currently leases a site on which its existing landfill is located. The site consists of 84 acres owned by Stone Container Corporation, the successor in interest to International Paper Company. The existing landfill itself covers approximately 25.5 acres. The proposed facility to be located on the same tract would serve as a new regional landfill to meet the solid waste disposal needs of Holmes County, as well as surrounding counties. The proposed facility would consist of approximately 20 acres divided into Class I, Class III, and asbestos landfill facilities. The project will be located on To Shoo Fly Bridge Road, lying approximately 3.3 miles northwest of the City of Bonifay in Holmes County. The northern portion of the present landfill is an unlined cell operated by the county which began receiving waste in 1979 and ceased depositing waste sometime in 1987. The southside cell of the landfill is clay lined with a leachate collection system. That portion of the county facility ceased accepting waste sometime in 1990. Holmes County is unable to properly operate or to close the existing landfill. Consequently, in June of 1989, the county and the Department entered into a consent order whereby the county agreed to meet certain operational, groundwater monitoring, landfill cell design, administrative and other requirements within certain time periods. The county attempted to meet the terms of that consent order but was unable to do so, primarily for financial reasons. In 1990, the county applied to the Department for a permit to close the existing landfill in accordance with the pertinent provisions of Chapter 403, Florida Statutes, and Chapter 17-7, FAC. The closure permit application was denied by Department order of May 22, 1991. Waste disposal at the Holmes County landfill had ceased in 1990, but it has not been properly closed pursuant to law and Department rules. Currently, it only has a temporary cover of soil and seeded grass in order to stabilize its slopes on the portion of the landfill commonly known as the "highrise". The closure costs for the existing landfill were estimated at approximately $700,000.00, which is beyond the resources of the county. Residents of unincorporated Holmes County currently are disposing of their solid waste by hauling it to the regional landfill in Campbellton in Jackson County nearby or by dumping it in unauthorized disposal areas, such as streams or roadsides. The City of Bonifay disposes its solid waste in the Campbellton landfill, as well. The Campbellton landfill, however, does not accept several solid waste components, such as yard trash. Since the county was unable to obtain the necessary permits to either operate or to close the existing landfill and was unable to meet State-mandated solid waste disposal and recycling requirements, it entered into an agreement with EPAI in May of 1990, whereby that entity assumed financial and legal responsibility for closure of the existing landfill, including obtaining the necessary permits from DER to close it, upon issuance of DER permits necessary to construct and operate a new Class I, Class III, and asbestos landfill at the same general site. The May 21, 1990 agreement between EPAI and the county authorized EPAI to so proceed before DER. Once EPAI obtained the permits necessary, the agreement provided that the county would surrender all right, title and interest in the 84-acre site to EPAI, convey all structures, equipment and appurtenances theretofore used by the county for its landfill operation to the corporation and to assign EPAI any legally assignable benefits which the county would receive under the 1988 Solid Waste Management Act, including recycling grants, if applicable. EPAI, the applicant, has an option to purchase the 84-acre site from Stone Container Corporation. After the issuance of any permits for closure and for construction and operation of the new facilities, the option would be exercised and the property would be conveyed by Stone Container Corporation to EPAI. Once it has purchased that property and the county has abandoned its lease on the property, pursuant to the May 21, 1990 agreement, EPAI would then hold fee title ownership and possession rights to the site. Once it obtained the necessary permits for construction and operation of the new landfill, EPAI will sell its stock to City. EPAI would then continue to exist as a wholly- owned subsidiary of City and will construct and operate the new landfill and close the existing landfill. City is a wholly-integrated waste management corporation based in Detroit, Michigan. It has been operating in the solid waste management field since 1961 and has extensive experience in landfill construction, operation and closure. It operates seven regional landfills, approximately ten transfer stations, and 30-40 residential and commercial solid waste collection companies in Michigan. It also operates hazardous waste facilities in Michigan and in Tampa, Florida. Through construction and operation of its regional landfill and hazardous waste facilities, it is familiar with and accustomed to compliance with all pertinent state and federal regulations applicable to such facilities. City holds a DER permit for its hazardous waste facility in the Tampa, Florida, area and has had a history of no major violations of applicable laws and rules. The corporation was shown to be financially sound. EPAI will operate the proposed facility, should it be permitted, as a regional landfill serving neighboring counties between Okaloosa and Jackson Counties, south to the Gulf of Mexico, and north to the Alabama border. The economic feasibility, however, was not shown to depend on interstate transport or disposal of out-of-state wastes in the landfill. Section 17-701.030, FAC, sets forth the permit submittal requirements for solid waste management facilities. CVA stipulated that EPAI met all applicable permit application submittal requirements in this section, except those in Sections 17-701.030(5)(h) & (i) and 17-701.030(7), FAC. EPAI has an option to purchase the landfill site from Stone Container Corporation, the current owner. EPAI has met the ownership requirement in Section 17-701.030(5)(h), FAC. The applicant will establish an escrow account to insure financial responsibility for closing and long-term care and maintenance of the landfill. A specific condition has been agreed to be placed in the permit requiring the applicant to submit written proof of having established financial assurance for closure and long-term care of the entire site 60 days prior to the acceptance of any solid waste at the facility and within 30 days after permit issuance for operations at the existing landfill. City has the financial ability to establish the escrow account and to provide the necessary financial assurance within 30 days after permit issuance. The applicant has thus satisfied the requirements of 17-701.030(5)(i), FAC, with regard to financial responsibility. Section 17-701.030(7), FAC, requires DER to forward a copy of the permit application to the Water Management District within seven days of receipt of the application. The Water Management District would then prepare an advisory report for DER on the landfill's potential impact on water resources with recommendations regarding disposition of the application. The Department sent the application to the Northwest Florida Water Management District, but the District did not prepare an advisory report. The administrator for the waste management program for the Department's northwest district office, who oversees solid waste facility permitting, testified that, as a matter of course, the District does not prepare an advisory report. Moreover, because the reports are advisory only, DER is not required to respond to any comments or follow any recommendations which may be made by the District in such a report. The Department normally issues solid waste facility permits as a matter of policy without having received a water management district report. 1/ Location and Site Requirements An aerial photograph of this area was prepared, as required by Section 17-701.050(4)(a), FAC. It shows the land uses, zoning, dwellings, wells, roads, and other significant features within one mile of the proposed landfill. This map shows several dwellings located within a mile of the site. The closest dwelling, as determined by aerial photograph and performance of a "windshield" survey, is approximately 2,400 feet from the site. The closest potable water well is at the dwelling located approximately 2,400 feet from the site. There are no existing or approved shallow wells within 500 feet of the proposed waste disposal areas at the landfill. Accordingly, the proposed landfill satisfies the condition in Section 17-701.040(2)(c), FAC, that solid waste not be disposed of within 500 feet of an existing or approved shallow water well. The surficial aquifer is located approximately 30 feet from the ground surface at the landfill site. The sediments in the area in which waste is to be disposed of consists of layers of clay and sandy clay having a very low vertical conductivity. The waste disposal cells will not be excavated down to the surficial aquifer. Therefore, waste will not be disposed of in ground water. Waste will not be disposed of in a sinkhole or in a limestone or gravel pit, as prohibited by Sections 17-701.030(2)(a) and 17-701.040(2)(b), FAC. The 100-year flood zone is located at approximately 120 feet national geodetic vertical datum (NGVD). The proposed landfill will be located at approximately 125 feet NGVD elevation and within a perimeter berm system. Therefore, waste will not be disposed of in an area subject to periodic and frequent flooding, as prohibited by Section 17-701.040(2)(e), FAC. The waste disposal areas are over 200 feet from Long Round Bay, the closest water body. Therefore, the 200-foot setback requirement is met. See, Section 17-701.040(2)(g), FAC. To Shoo Fly Bridge Road, on which the landfill is located, is not a major thoroughfare. There are no other major thoroughfares in the vicinity from which the landfill is visible. Accordingly, waste will not be disposed of in an area open to public view from a major thoroughfare. See, Section 17- 701.040(2)(h), FAC. The landfill site is not located on the right-of-way of a public highway, road or alley, and is not located within the bounds of any airport property. The landfill will not be located within a prohibited distance from airports, as proscribed by Section 17-701.040(2)(k), FAC. See also, Sections 17-701.040(2)(j) and (2)(i), FAC. There are no Class I surface waters within 3,000 feet of the landfill site so the setback provisions in Section 17-701.040(7), FAC, are satisfied. No lead-acid batteries, used oil, yard trash, white goods, or whole waste tires will be accepted at the Class I landfill cell. Only trash and yard trash will be accepted at the Class III cell. Therefore, the prohibitions in Section 17- 701.040(8), FAC, are not violated. A ground water monitoring plan has been developed for the landfill site, pursuant to Section 17-28.700(6), FAC, as required by Section 17- 701.050(3)(a), FAC. The original ground water monitoring plan was prepared by Post, Buckley, Schuh, and Jernigan, Inc. and submitted as part of the initial permit application. This plan addresses monitoring well placement, monitoring, and monitoring plan requirements. It proposes corrective action, as required by Section 17-28.700(6), FAC. Subsequent modifications to that plan were developed by Dr. Thomas Herbert, an expert in geology, hydrogeology, well installation and water quality monitoring. These modifications particularly address monitoring well location and provide additional assurances that the ground water monitoring plan complies with Section 17-28.700(6), FAC. These proposed modifications were submitted to DER prior to hearing. A site foundation analysis using appropriate ASTM methods to determine stability for disposal of waste, cover material, and structures constructed on site was performed and the results were submitted to DER as part of the initial application. Additional foundation stability information and the results of another field investigation regarding sinkhole development potential at the site was submitted to the Department. The field investigations and reports in evidence provide assurance that the disposal site location will provide adequate support for the landfill, as required by Section 17-701.050(3)(b), FAC. The landfill site is easily accessible by collection vehicles and other types of vehicles required to use the site. The site design provides for all weather roadways to be located throughout the site for ready ingress, egress, and movement around the site. The proposed landfill is located to safeguard against water pollution originating from disposal of solid waste. See Section 17-701.050(3)(c)2., FAC. The bottom of the waste disposal cells will be located at least six feet above the top of the surficial aquifer. To ensure that ground water is not polluted by waste disposal, the Class I cell will be lined with a composite liner system comprised of a lower unit consisting of 24 inches of compacted clay having a maximum permeability of 1 X 10-7 centimeters per second, and an upper synthetic liner unit consisting of a high density polyethylene (HDPE) of 80 mil thickness. Leachate generated by the waste in the landfill will be collected by a leachate collection and removal system. The leachate control system consists of a two- foot thick layer of sand having a minimum permeability of 1 X 10-3 centimeters per second, with a permeable geotextile filter cloth layer and a highly permeable geonet layer to collect and direct the leachate into a drainage system consisting of a collection pipe system to transfer the leachate to a containment lagoon. Once in the leachate lagoon, the leachate will be evaporated, recirculated over the working face of the landfill, or transported off site for treatment at a waste water treatment plant. The waste disposal areas are located at approximately 125 foot NGVD elevation. This is well above the 100- year flood plain and they are not located in water bodies or wetlands. An adequate quantity of acceptable earth cover is available on site. See, Section 17-701.050(3)(c)3., FAC. The soil for cover will be obtained from the northeast portion of the site located across To Shoo Fly Bridge Road from the landfill site. The landfill site was shown to conform to proper zoning, as required by Section 17-701.050(3)(c)4., FAC. The 1991 Comprehensive Plan Future Land Use Element for Holmes County designates this site for "public/semi- public/educational" land uses. The "public facilities land uses" designation includes "utilities and other service facilities" of which municipal solid waste landfills are an example. No other land use designation in the Holmes County 1991 Comprehensive Plan expressly includes landfill uses. CVA adduced testimony from Hilton Meadows, its expert witness, as to plant species he observed in the vicinity of the site. He observed plants that he identified as being species that grow on the edge of or in wetlands, but none of these species were shown to exist on the landfill site itself. Mr. Meadows observed them in locations outside the perimeter berms of the landfill site but did not identify their specific locations other than a general direction from the perimeter berms outside of which he observed the plants. He did not quantify the wetland species he observed so as to establish their dominance and did not conduct a jurisdictional wetland survey, as envisioned by Chapter 17- 301, FAC. Landfill Design Requirements As required by Section 17-701.050(4)(a), FAC, an aerial photograph was submitted with the permit drawings. Plot plans were submitted with the permit application, in evidence as EPAI exhibit 1, showing dimensions of the site, location of soil borings, proposed trenching or disposal areas, original elevations, proposed final contours, and previously-filled waste disposal areas. Topographic maps were also submitted with the correct scale and contour intervals required by Section 17-701.050(4)(c), FAC, which show numerous details such as proposed fill areas, borrow areas, access roads, grading, and other details of the design and the site. The design plans also include a report on the current and projected population for the area, the geographic area to be served by the landfill, the anticipated type, quantity and source of the solid waste, the anticipated useful life of the site, and the source and characteristics of cover materials. The landfill will be a regional facility serving the residents of Holmes and surrounding counties. The current population of the area to be served is approximately 63,183 with the projected population for the year 2000 being 76,792. The landfill will receive municipal sanitary solid waste, asbestos, petroleum-contaminated soils, and yard trash. It will not receive used oil, lead-acid batteries, biomedical wastes, hazardous wastes, or septic sludge. The permit application was shown to satisfy all design requirements of Section 17-701.050(4), FAC. Geology, Hydrogeology, and Foundation Stability Dr. Thomas Herbert, a registered professional geologist and licensed well driller in Florida testified of geologic and hydrogeologic investigations and analyses he performed. Mr. Herbert has over 25 years experience in the fields of geology and hydrogeology and was tendered and accepted as an expert in those fields. Dr. Herbert drilled shallow and deep core borings, which were converted into monitor wells to monitor ground water in the surficial and deep aquifers under the landfill site. In addition, he drilled several medium-depth borings along the western boundary of the site to analyze geologic and hydrogeologic conditions in this area, which is the portion of the site closest to Long Round Bay. Dr. Herbert used a hollow stem auger to take the soil borings and install the monitoring wells. This is a device which allows sampling tools to be placed down a hollow drill barrel for more accurate sediment sampling. Dr. Herbert used a continuous sampling system wherein a five-foot core barrel sampled the soil conditions ahead of the turning drill auger. Continuous sampling is preferable to other types of soil sampling equipment because it provides a detailed representative sample of the soil on the site and enables the sampler to precisely determine whether soil materials occur in small thin layers or bands on the site or whether there is a massive deposit of relatively uniform soils. The continuous sampling method also minimizes mixing of soils and creates an undisturbed profile that can be examined once the core barrel is opened. This type of sampling yields a very accurate picture of soil conditions on the site. In addition to the borings taken on the site by Dr. Herbert, other core borings were taken on site by Ardaman & Associates, a geotechnical engineering firm, for the purpose of analyzing the site foundation to determine the site's stability and potential for developing sinkholes. These core boring profiles were analyzed, along with those performed by Dr. Herbert, in determining the site geologic and hydrogeologic conditions. In addition to the core borings, Dr. Herbert reviewed studies on the geology and hydrogeology of the area, as well as the field investigations reported by Post, Buckley, Schuh, and Jernigan, as part of the original permit application submittal. In order to gather additional information on the geology and hydrogeology of the site, gamma ray logging was performed on the wells installed by Dr. Herbert, as well as on the existing wells at the site. Gamma ray logging measures natural gamma radiation from the sediments and permits identification of soil type based on the amount of gamma radiation coming through the soils. Generally, the higher the clay content, the higher the gamma ray count. Gamma ray logging provides an accurate means for determining clay, sand, or sandy clay soils. By examining gamma ray logs of wells he installed and sampled, as well as for wells already existing on the site, Dr. Herbert was able to obtain extensive information about the subsurface soil conditions at the site. Based on these information sources, the geology of the site was determined. The sediments ranging from the surface of the site down to more than 100 feet below the surface are part of the citronelle formation, which consists of consolidated to partially cemented sand, silt, and clay sediments, called clastics, deposited in the Plio-Pleistocene age, between one and four million years ago. The citronelle formation at the site is predominantly clay, with some thin sand lenses running through the clays. The sand lenses or "stringers" grade laterally into the clays or silts. A surficial aquifer is located between 30 and 40 feet below the land surface at the site and is confined immediately above and below by dense, dry clay layers. The top confining unit is estimated to be approximately 10 feet thick. The lower clay confining unit, down to approximately 100 feet below the land surface, consists of dense, dry clays with thin units of sandy or silty clays or clayey sands. Below the citronelle foundation, at approximately 100 feet below land surface, there is a sequence of weathered carbonate rock or mud, termed "residuum". This material is too fine-grained to yield water in usable quantities. Competent limestone is first encountered below the carbonate "residuum" at approximately 262 feet below the surface. This limestone is likely part of the lisbon- tallahatta formation, which is part of the Claiborne Aquifer. In order to investigate an area in the western portion of the site depicted in the Post, Buckley report as being sandy, Dr. Herbert installed a deep core boring and analyzed the soils in that area. He thus determined that rather than being solid sand, as depicted in the Post, Buckley report, the sediments in this area are actually sands interbedded with clay and silt stringers, which decrease the sediments' horizontal and vertical conductivity. He determined that the area is a sandy channel bounded laterally and below by dense clays. As with the rest of the site, the surficial aquifer also is confined in this area. As part of his ground water monitoring plan recommendations, Dr. Herbert recommended installation of an additional monitor well in this area. The core borings and gamma ray logging allowed accurate determination of the site hydrogeology. Transient surface water, termed "vadose" water, percolates down from the land surface through layers of clay, sand, and silt. Within these sediment layers, there are lenses of clay ranging from a few inches to a foot thick. Vadose water is trapped on top of the clay layers, creating shallow saturated zones called "perched" zones, ranging from one to a few inches thick. The vadose water and perched zones are not connected to any ground water systems. Below these perched zones, dense, dry clay layers create a confining layer above the surficial aquifer. The surficial aquifer occurs in discontinuous sandy layers 30 to 40 feet below the land surface. Beneath the surficial aquifer, dense, dry clay layers form a lower confining unit. These confining clay layers overlying and underlying the surficial aquifer create pressure or hydraulic "head", on the water in the surficial aquifer. When a core boring or well penetrates through the upper clay confining layer, the water in the surficial aquifer rises up the well or core casing, due to the hydraulic head, to a level called the potentiometric surface, which is at a higher elevation than the elevation at which the surficial acquifer is actually located. Based on the confined nature of the surficial aquifer, it was determined that water table elevations reported in the hydrogeologic report initially submitted as part of the application are actually potentiometric surface elevations. This is consistent with the information provided in the additional information submittal as part of the permit application which indicates that the potentiometric surface at the landfill site may be five to seven feet below the bottom of the liner. This was confirmed at hearing by Mike Markey, a professional geologist with the Department, who reviewed the permit application and hydrogeologic report submitted by Dr. Herbert and prepared a memorandum dated September 2, 1992, stating that his "previous concern regarding separation of the 'water table' aquifer and HDPE liner is no longer an issue because the 'water table' aquifer was not found" by Dr. Herbert. The surficial aquifer on the landfill site cannot yield enough water to support long-term use as a potable water source. Due to the high clay content in the aquifer, the water has a high sediment content and low water quality, rendering it unusable for domestic purposes. The overall horizontal conductivity for the surficial aquifer on a site-wide basis is estimated to be low due to the discontinuous sand layers comprising the surficial aquifer on the site. While some zones within the aquifer may have high horizontal conductivity, these zones have limited lateral extent and change rapidly into zones of low horizontal conductivity. The steep hydraulic gradient from the highest to lowest areas of the site further indicates that the surficial aquifer has low horizontal conductivity. If water were rapidly moving through the surficial aquifer across the site, the hydraulic gradient would be much less steep. The presence of the hydraulic gradient across the site indicates that the clay in the surficial aquifer system is so pervasive that the water in that system essentially is stagnant. Based upon his extensive experience and familiarity with the clastic sediments like those found at the landfill site, Dr. Herbert estimated the vertical permeability of the sediments comprising the upper and lower confining layers of the surficial aquifer to be in the range of 1 X 10-6 to 1 X 10-8 centimeters per second. These projected permeability values are very low, thus, very little water is moving vertically through the surficial aquifer to deeper depths. The original hydrogeology report on the site submitted as part of the application indicated that the ground water flow is to the west, southwest, and northwest based upon monitoring well and piezometric data. Dr. Herbert's subsequent field investigations confirmed the ground water flow direction as reported in the permit application. Dr. Herbert estimated that the surficial aquifer will be located between 8 and 15 feet below the finished bottom elevation of the Class I waste disposal cell. The intermediate aquifer system is located beginning 80 or 90 feet below the landfill site and is defined as all strata that lie between and retard the exchange of water between the surficial aquifer and the underlying Floridan aquifer, including the lower clay confining unit directly underlying the surficial aquifer. In this part of west Florida, the intermediate system is estimated to be 50 to 60 feet thick and acts as an "aquatard", which means that it retards the passage of water from the surficial aquifer to lower levels. The standard penetration test (SPT), which is an engineering test of soil density, yielded values of 40 to 50 blows per inch for soils sampled in the top 20 feet of the intermediate system throughout the site. These SPT values indicate the soils in the intermediate system are extremely dense, over-compacted clay materials. Below the clays, the lower portion of the intermediate system consists of a weathered limestone residuum. Due to the extremely fine grain size of the residuum, it will not yield water in quantities sufficient to support a well. The deep core borings taken at the site indicate that the Floridan aquifer limestone underlying the landfill site has undergone paleokarst evolution. The underlying limestone has been dissolved away over a long period of time, creating the limestone residuum detected in the deep core borings. Based on the deep core borings taken at the site, Dr. Herbert concluded there is no competent Floridan aquifer limestone capable of supporting wells underlying the landfill site, and the Floridan aquifer either is not present under the site or exists only as a relict or remnant of the limestone formations that make up the Floridan aquifer system in other parts of Florida. The core borings taken on site indicate that the paleokarst terrain underlying the landfill contains no cavities, large openings, sinkholes or other features in the rock that could cause the landfill foundation to collapse. All karst features in this area are filled in and "healed" by the carbonate residuum overlying the limestone under the landfill. Dr. Herbert also investigated the geologic nature of Long Round Bay. In addition to reviewing literature regarding the geology of west Florida in the vicinity of Holmes County and topographic maps depicting the site, Dr. Herbert took at least one sediment core boring in Long Round Bay and also circumnavigated the perimeter of the Bay. Based on information from these sources, Dr. Herbert opined that Long Round Bay, like many other drainage basins in the area north of Bonifay, is a collapse feature of the paleokarst sequence in the vicinity, and is a topographic depression caused by weathering away of the limestone over time. The sediments underlying Long Round Bay consist of deep citronelle clays washed into the collapse feature. Long Round Bay is relatively flat with poorly defined outlets and receives surface drainage from the surrounding area. Because there are no defined channels connecting Long Round Bay to Wright's Creek, water movement from Long Round Bay into Wright's Creek is extremely slow. Long Round Bay is likely not an aquifer recharge area because there is no direct karst connection between Long Round Bay and any aquifer. Clays have run off the surrounding area and accumulated in Long Round Bay for thousands of years sealing off any connections between it and any underlying aquifer. In addition to Dr. Herbert's determination of the potential for active karst formation under the landfill site, Ardaman & Associates performed the foundation analysis of the site, as required by Section 17-701.050(3)(b), FAC. The foundation analysis was supervised by William Jordan, a registered professional engineer. He has an extensive education in geotechnical engineering, as well as 11 years of experience in that field. He was tendered and accepted as an expert in geotechnical engineering and materials testing. As part of the foundation analysis, Ardaman & Associates performed two deep core borings to determine the potential for development of sinkholes at the site. Both borings were taken on the western side of the landfill site, closest to Long Round Bay. One of the borings was performed in an area having a relatively high sand content in the soil, as identified in the hydrogeology report submitted in the permit application. The borings were drilled down to approximately 160 feet below the surface, to the top of the weathered limestone horizon. In Mr. Jordan's extensive experience in foundation testing and analysis, presence or potential for sinkhole development is usually evident at the horizon of the limestone or within the top 15 feet of the limestone. The core borings did not reveal any joints, open seams, cavities, or very loose or soft zones at the horizon or on top of the limestone. In addition, the sediments overlying the limestone horizon were determined to consist of medium dense to dense and medium stiff to stiff sediments, which indicate lack of sinkhole activity or potential. No indication of active or imminent sinkhole conditions were found on the site, either through the core borings or from surficial observation. In addition to the deep core borings, Ardaman & Associates, under Mr. Jordan's supervision, also performed four other core borings to a depth of 60 feet below the land surface. These borings indicated the sediments at the site are composed of clayey sands, very clayey sands, "lean" sandy clays, and sandy "fat" clays. The SPT tests performed on the soils indicate the site soils range from medium to high density and are stiff to very stiff and hard. Mr. Jordan performed a settlement analysis of the landfill based on the types of sediments present on site and assuming a compacted unit weight of 37 pounds per cubic foot for the landfill waste. This unit weight is a typical weight value for compacted municipal waste. For settlement analysis, Mr. Jordan used the SMRF elastic compression and consolidation methods, both of which are professionally accepted standard methods for determining settlement of large structures, including landfills. Using these methods, he determined that the total settlement for the landfill over its total life would be between three and five and one-half inches. Based on the uniformity of the subsurface conditions and density of the soils on the site, any settlement would be uniform and thus would not result in tearing or other failure of the landfill liner. Mr. Jordan performed a bearing capacity analysis of the site. Based on the sediments on site, he estimated the safety factor against bearing capacity to be in excess of 10. The minimum acceptable safety factor for large habitable structures, such as buildings, is in the neighborhood of two to three. Thus, the safety factor determined for the landfill site far exceeds the minimum standard for bearing capacity. Mr. Jordan performed an embankment slope stability analysis for the perimeter berm of the landfill. The inside slope of the perimeter berm has a 3:1 slope and the outside slope has a 4:1 slope. Mr. Jordan's stability analysis was performed on the inside slope of the berm which is steeper and, therefore, less stable. Due to the stability of the clay sediments composing the subgrade of the perimeter berm, and based on his extensive experience in slope stability analysis, Mr. Jordan determined there is no danger of deep circular arc failure of the landfill berm. He used a professionally accepted standard slope stability evaluation method called the "infinite slope" method, to analyze the probability for shallow circular arc failure of the berm. He determined a safety factor of 2.0 to 2.4 for the embankment slope, which is between 1.5 and 2.0 times greater than the minimum accepted safety factor of between 1.3 and 1.5 for embankment slopes. Mr. Jordan also performed an analysis of the site subgrade stability for compaction. Mr. Jordan's analysis showed that the stiff or medium dense silty to clayey sands and clays on the site provide a stable base against which compaction over the life of the landfill can safely occur. Based on the foundation analysis performed by Mr. Jordan on the landfill site, it is evident that the landfill will not be located in an open sinkhole or in an area where geologic foundations or subterranean features will not provide adequate support for the landfill. (See Section 17-701.040(2)(a), FAC). The foundation analysis indicates the landfill will be installed upon a base or in a hydrogeologic setting capable of providing support to the liner and resistance to pressure gradients above and below the liner to prevent failure of the liner due to settlement compression, as required by Section 17- 701.050(5)(b)2., FAC. The foundation analysis further indicates the site will provide support for the landfill, including the waste, cover and structures built on the site (See Section 17-701.050(3)(b), FAC). Section 17-701.050(5)(d)1.a, FAC, requires the lower component of the landfill liner to consist of a compacted soil layer having a maximum hydraulic conductivity of 1 X 10-7 centimeters per second. Mr. Jordan analyzed nine additional core borings to determine if the native soils on the site meet the conductivity standard in the rule or if off-site soils must be blended with on- site soils to achieve the standard. To test whether the on-site soil will meet the conductivity standard, soils were compacted to approximately 95% of the standard maximum for density, which is the industry standard compaction for soil permeability testing. The soils from eight of the nine borings taken at the site exhibited conductivity values of approximately 4.8 X 10-8 centimeters per second. This value is five times less conductive than the value required by the above-cited rule. Only one boring exhibited a conductivity value in excess of the maximum value established in the rule. Based on the conductivity values determined at the site, it is likely the native soils on the landfill site will meet or exceed the maximum conductivity value mandated in the above-cited rule. If the on-site soils do not meet this standard, then bentonite or another material from off site will be blended with the on-site soils to achieve the conductivity standard mandated by the rule. Ground Water Monitoring and Water Quality As required by Section 17-701.050(3)(a), FAC, a ground water monitoring plan for the landfill site was completed in accordance with Section 17-28.700(6), FAC. The original ground water monitoring plan was submitted as part of the application. This plan was incorporated into the notice of intent and the attached draft permit for the landfill, as part of specific condition The ground water monitoring plan subsequently was modified and supplemented by Dr. Herbert to include monitor wells required to be installed by Holmes County on the site, pursuant to the consent order entered into by the county and DER on June 26, 1989, as well as the wells installed by Dr. Herbert as part of his hydrogeologic investigation. DER established a zone of discharge for the landfill site, as required by Rule 17-28.700(4), FAC. The horizontal boundary of the zone of discharge extends to the ground water monitoring compliance wells located at the western, northern, and southern portions of the site and to a line coextensive with the eastern property line for the southeastern portion of the property. The horizontal zone of discharge boundary is located inside the western, northern, and southern property boundaries. The vertical zone of discharge extends from the land surface down to the top of the clay layer underlying the site at approximately +50 to +60 feet NGVD. These zones are established in compliance with Section 17-28.700(4), FAC. The groundwater monitoring plan provides for 15 monitor wells to be located in close proximity to the waste disposal areas and the site boundaries to monitor compliance with all applicable ground water quality standards in Sections 17-3.402, 17-3.404, and 17-550.310, FAC. Four of these wells will be located near the western property boundary to closely monitor water quality to insure contaminants do not seep into Long Round Bay. To detect contamination that may violate applicable surface water quality standards in Sections 17-302.500, 17-302.510, and 17-302.560, FAC, at the edge of and beyond the zone of discharge, the ground water monitoring plan provides for several surface water sampling points on the landfill site near the edge of the zone of discharge. If contaminants are detected in the surface water monitoring system, remediation activities can be implemented to insure the surface water quality standards set forth in the above-cited rules are not violated outside the zone of discharge. As required by Section 17-28.700(6)(g)1., FAC, the ground water monitoring plan provides for a well to be located to detect natural, unaffected background quality of the ground water. The monitoring plan also provides for a well to be installed at the edge of the zone of discharge downgradient from the discharge site, as required by Section 17-28.700(6)(g)2., FAC, and for installation of two intermediate wells downgradient from the site within the zone of discharge to detect chemical, physical, and microbial characteristics of the discharge plume, in excess of the requirement for one such well contained in Section 17-701.050(6)(g)3., FAC. The location of the other wells in the ground water monitoring plan was determined according to the hydrogeologic complexity of the site to insure adequate reliable monitoring data in generally accepted engineering or hydrogeologic practice, as required by Section 17-28.700(6)(g)4., FAC. Due to the essentially stagnant nature of the ground water in the surficial aquifer system, and given the location of the intermediate monitoring wells, any contamination detected at the site can be remediated through recovery wells before it reaches the edge of the zone of discharge. Moreover, due to the confined nature of the surficial aquifer system, there is very little free water in the aquifer. Accordingly, any contamination could be quickly removed by recovery of ground water and de-watering of the area in which the contamination is detected through remediation wells. Also, given the location of the monitoring wells on the site, the northerly direction of the surficial aquifer ground water flow on the northern portion of the site near the existing landfill, and the essentially stagnant nature of the ground water in the surficial aquifer, contamination emanating from the existing cell could be discerned from that emanating from the new cell and recovery and remediation operations directed accordingly. The DER intent to issue and draft permit specify an extensive list of parameters which must be sampled at the ground water monitoring wells and surface water sampling points on the landfill site, as required by Sections 17- 3.402, 17-302.510, 17-302.560, and 17-550.310, FAC. These parameters must be sampled and reported to DER on a quarterly basis. In addition, annual water quality reports must be submitted to DER for the site. Based on the large amounts of clay content and the low horizontal and vertical conductivity values of the on-site sediments, the stagnant nature of the surficial aquifer system, the virtual absence of the Floridan aquifer under the site, and the location of the monitoring wells, the ground and surface water monitoring program provides reasonable assurance that the applicable water quality standards in the rules cited above will not be violated within and outside the zone of discharge. Liner Design, Performance, Quality Control, and Installation Section 17-701.050(5)(d)1., FAC, requires that a composite liner and leachate collection and removal system be installed in a landfill such as that proposed. Mr. Leo Overmann, is a registered professional engineer specializing in landfill engineering. He has over 10 years experience in landfill engineering, design, and construction and has worked on the design and construction of over 50 landfill facilities and 250 landfill disposal cells. He was tendered and accepted as an expert in liner design, quality control plans, and leachate control systems design and performance. It is thus established that the composite liner will have an initial 24-inch layer of compacted clay having a maximum hydraulic conductivity of 1 X 10-7 cm/sec. The 24-inch clay layer proposed by the applicant exceeds the 18- inch minimum thickness provided in the above-cited rule and will be placed in the field in layers or lifts of six inches or less. Each lift will then be treated and compacted to proper specifications in accordance with sound engineering practice in order to insure a tight bond between the clay layers. In the process of placing the clay lifts on the site, any roots, holes, channels, lenses, cracks, pipes, or organic matter in the clay will be broken up and removed, as required by the above-cited rule. In order to insure conductivity of the clay liner component does not exceed the above figure, testing will be done at the site or off-site by constructing a "test pad". A test pad is a site at which the liner construction techniques are tested using the clay material that will comprise the lower liner unit. Once the pad is constructed, the hydraulic conductivity of the clay can be tested to determine the most suitable construction methods in order to meet the above-mentioned conductivity standard and the other design and performance standards in the rule section cited last above. The applicant's liner quality control plan provides for testing of the clay liner hydraulic conductivity and compliance with the other liner design and performance standards in the rule (See Section 17- 701.050(5)(c), FAC). A synthetic geomembrane liner consisting of high density polyethylene (HDPE) will be placed directly on top of and in contact with the clay liner. If the geomembrane should leak, the clay will then retard leachate migration. Although Rule 17-701.050(5)(d)1.a., FAC, only requires a 60-mil thickness liner, the applicant has proposed to use a 80-mil liner. The thicker HDPE liner is less susceptible to stress and wear and tear in the daily landfill operation than is the thinner 60-mil liner required by the rule. The water vapor transmission rate of the 80-mil liner will be approximately 1 X 10-12 cm/sec, which is 10 times less transmissive than the maximum water vapor transmission standard of 1 X 10-11 cm/sec established in Rule 17-701.050(5)(d)1.a., FAC. The design also provides for a drainage layer and primary leachate collection and removal system to be installed above the HDPE liner, as required by the above-cited rule. The drainage layer above the liner consists in ascending order, of a layer of geonet material having an equivalent permeability of approximately three cm/sec; a layer of non-woven, needle-punched geotextile cloth, and a two-foot thick layer of sand. The sand provides a permeable layer which allows liquid to pass through it while protecting the underlying synthetic components of the drainage system and liner. The geotextile cloth component of the drainage layer filters fine particles while allowing liquid to pass through it to the geonet layer. The geonet layer is approximately 3,000 times more conductive than required by Section 17-701.050(5)(f), FAC, so as to allow rapid drainage of leachate off of the HDPE liner. The drainage layer is designed to reduce the leachate head or hydraulic pressure on the liner to one inch within one week following a 25-year, 24-hour storm event. This was determined by use of the Hydrologic Evaluation of Landfill Performance (HELP) model. This model is the standard computer model used in the landfill design and construction industry to determine leachate depth over the synthetic liner in lined landfills. The HELP model calculations submitted in the permit application were prepared by Pearce Barrett, the EPAI landfill design engineer, an expert witness. The HELP model analyzes water and rainfall that falls on active waste disposal cells and percolates through the waste, and the model helps determine the amount of leachate that will accumulate on top of the liner. To determine this amount, the HELP model uses several parameters, including rainfall amount, landfill size, and the number of waste and protective cover layers. The HELP model in this instance involved employment of Tallahassee-collected rainfall data because long-term, site-specific data for the landfill site was not available. The Tallahassee rainfall average is greater than the rainfall average for Chipley, which is closer to the landfill site and, therefore, provides a more conservative, "worst-case" rainfall figure for employment in the HELP model calculations. The HELP is itself a very conservative model, generating a worst-case determination of the amount of leachate that will end up on top of the landfill liner. The model's analysis and calculations indicate that the leachate will be reduced to a one-inch depth on the liner within one week after a 25-year, 24-hour storm event. The landfill project design specifications, in the permit application, provide that all materials in direct contact with the liner shall be free of rocks, roots, sharps, or particles larger than 3/8 of an inch. The geonet and geotextile material are in direct contact with the top of the HDPE liner and the clay liner is located directly below the HDPE liner. The project design specifically provides that the clay material comprising the clay liner component will not contain roots, rocks, or other particles in excess of 3/8 of an inch. No waste materials thus will come into contact with the clay liner. The design specifications also provide additional protection for the liner by requiring that the initial waste placed in the landfill be select waste that is monitored and screened for such things as metal objects, wooden posts, automobile frames and parts, and other sharp, heavy objects which could tear the liner. The liner design contained in the application meets the design requirements of Rule 17-701.050(5)(d), FAC. Section 17-701.050(5)(b), FAC, requires that the liner be constructed of materials having appropriate chemical properties and sufficient strength and thickness to prevent failure due to pressure gradients, physical contact with the waste or leachate to which they are exposed, climatic conditions, stress of installation, and daily operations. The liner is constructed of HDPE, which is superior to other types of plastic for use as municipal and hazardous waste landfill liners due to its physical and chemical properties. It is a material composed of long polymeric chain molecules, which are highly resistant to physical failure and to chemical weakening or alteration. The liner is of sufficient strength and thickness to resist punctures, tearing, and bursting. The liner has a safety factor of over seven, which is three and one-half times greater than the minimum acceptable safety factor of two, required in the Department's rules for landfill liners. The liner proposed in this instance will not fail due to pressure gradients, including static head or external hydrogeologic forces. Mr. Overmann evaluated the effects of a hydrologic head of one foot over the HDPE liner and the clay liner component and determined that the protective sand layer will insure the HDPE liner does not fail. Mr. Overmann relied on the testimony of Dr. Herbert with respect to hydrogeologic site characteristics in concluding that hydrogeologic forces will not cause liner failure. The 80-mil liner proposed by EPAI will be more resistant to the stresses of installation and daily operation than will a 60-mil liner. The two-foot sand layer above the drainage layer and the HDPE liner will also help protect the liner from stresses of daily operation. Mr. Overmann analyzed the liner's potential for failure between the point at which it is anchored on the edge of the landfill and the base of the landfill where settlement is greatest due to waste deposition. He determined that the HDPE liner would elongate on the order of one percent of its length. This is far less than 700 to 800 percent elongation required to break the liner material. Based on the site foundation analysis and the proposed liner design for the landfill, the liner will not fail due to hydrogeologic or foundation conditions at the site. The liner meets the performance requirements set forth in Rule 17-701.050(5)(b)2., FAC. The liner meets requirements that it cover all of the earth likely to be in contact with waste or leachate. The liner extends beyond the limits of the waste disposal cells to an anchor trench where the HDPE liner is anchored by soils and other materials to hold it in place during installation and operation. The liner design provides reasonable assurance that the liner performance standards contained in the above rule will be satisfied. There are no site- specific conditions at the Holmes County landfill site that would require extraordinary design measures beyond those specified in the rule cited above. The permit application includes a quality control and assurance plan for the soil and HDPE liner components and for the sand, geotextile, and geonet components of the drainage layer. A quality control plan is one in which the manufacturer or contractor monitors the quality of the product or services; a quality assurance plan is one in which an independent third party monitors the construction methods, procedures, processes, and results to insure they meet project specifications. The quality control/quality assurance plan requires the subgrade below the clay liner to be prepared to insure that it provides a dry, level, firm base on which to place the clay liner. The plan provides that low- permeability clay comprising the liner will be placed in lifts of specified thickness and kneaded with a sheepsfoot roller or other equipment. Low- permeability soil panels will be placed adjacent to the clay liner and scarified and overlapped at the end to achieve a tight bond. Each clay lift will be compacted and tested to insure it meets the specified density requirements and moisture specifications before a subsequent lift is placed. Lined surfaces will be graded and rolled to provide a smooth surface. The surface of the final low- permeability soil layer will be free of rocks, stones, sticks, sharp objects, debris, and other harmful materials. If any cracks should develop in the clay liner, the contractor must re-homogenize, knead, and recompact the liner to the depth of the deepest crack. The liner will be protected from the elements by a temporary protective cover used over areas of the clay liner exposed for more than 24 hours. The plan also provides specifications for visual inspection of the liner, measurement of in-place dry density of the soil, and measurement of hydraulic conductivity on undisturbed samples of the completed liner. These tests will be performed under the supervision of the professional engineer in charge of liner installation to insure that performance standards are met. There will be a quality control plan for installation of the HDPE liner in accordance with the DER approved quality control plan that incorporates the manufacturer's specifications and recommendations. The quality assurance and quality control plan calls for the use of numbered or identified rolls of the HDPE liner. The numbering system allows for identification of the manufacturing date and machine location, so that the liner quality can be traced to insure that there are no manufacturing anomalies, such as improper manufactured thickness of the liner. The plan also addresses in detail the installation of the HDPE liner. The liner is installed by unrolling it off spools in sections over the clay liner. As it is unrolled, it is tested for thickness with a micrometer and is visually inspected for flaws or potential flaws along the length of the roll. Flaws detected are marked, coded, and repaired. Records are prepared documenting each flaw. If flaws appear frequently, the HDPE is rejected and removed from the site. As the sheets are installed, they are overlapped and bonded together by heat fusing to create a watertight seam. As the sheets are seamed, they are tested in place by nondestructive testing methods to insure seam continuity and detect any leaks or flaws. If flaws are detected, they are documented and the seam is repaired. The seams are also subject to destructive testing, in which a sample of the seam is removed in the field and tested in the laboratory for shearing or peeling apart of the sheets. If destructive testing reveals seam flaws, additional field and laboratory testing is performed and necessary repairs are made. All tests, repairs, and retests are carefully documented, and a map depicting the location of all repairs is prepared for quality control and performance monitoring. The plan for the installation of the geonet, geotextile, and sand layers provides specifications for storage, installation, inspection, testing, and repair of the geonet and geotextile layers. The liner construction and installation will be in conformance with the methods and procedures contained in EPA publication EPA/600/2-88/052, Lining of Waste Containment and Other Impoundment Facilities, as required by Section 17-701.050(5)(a), FAC. The quality assurance and quality control plan proposed exceeds the requirements contained in Section 17-701.050(5)(c), FAC. Leachate Collection and Removal System The landfill design includes a leachate collection and removal system. See Section 17-701.050(5)(e)&(f), FAC. The leachate collection and removal system meets the requirements in the above rule by providing that the design incorporate at least a 12-inch drainage layer above the liner with a hydraulic conductivity of not less than 1 X 10-3 cm/sec at a slope to promote drainage. The drainage layer consists of a geonet layer, a geotextile layer, and a two- foot sand layer. The geonet has a hydraulic conductivity of two to three cm/sec, many times more permeable than required by the rule; and the sand layer will have a hydraulic conductivity of approximately 1 X 10-3 cm/sec. The leachate collection and removal system meets regulatory requirements contained in the above-cited rule that the design include a drainage tile or pipe collection system of appropriate size and spacing, with sumps and pumps or other means to efficiently remove the leachate. The design provides that the Class I cell will be divided into operating disposal cells. The design includes a piping system consisting of a 6-inch diameter pipe to be placed down the center of each of the operating cells and encased in a granular river rock medium. The HELP model calculations included in the permit application and evidence indicate that the leachate will be removed efficiently and effectively and that the leachate head will be maintained in compliance with the performance standards in the rule. The piping system is on a slope that drains to a central location or sump. Based on a design preference of City, the piping design will be slightly modified in the construction drawings to provide that rather than going through the HDPE liner, the leachate piping will run up the side of the cell wall and leachate will be pumped out of the cell into the leachate lagoon. The leachate collection and removal system design provides for a granular material or synthetic fabric filter overlying or surrounding the leachate collection and removal system to prevent clogging of the system by infiltration of fine sediments from the waste or drainage layer. A layer of non-woven, needle-punched geotextile will be wrapped around the granular river rock material surrounding the piping system to filter out fine particles. The design also provides a method for testing whether the system is clogged and for cleaning the system if it becomes clogged. A clean-out tool can be run through the openings in the leachate collection piping system to monitor and pressure clean the pipes if they become clogged. Thus, the leachate collection and removal system will satisfy the leachate system design requirements of Section 17-701.050(5)(f), FAC. The leachate collection and removal system will meet the performance standards in paragraph (e) of that rule, as well. The leachate collection and removal system will be located immediately above the liner and will be designed, constructed, operated, and maintained to collect and remove leachate from the landfill. The HELP model analysis and calculations indicate that the leachate depth will not exceed one foot on top of the liner. The leachate collection and removal system will be constructed of materials which are chemically resistant to the waste disposed of in the landfill and leachate expected to be generated. The geonet will be comprised of HDPE, which is chemically resistant to waste and leachate due to its molecular structure. The collection piping system also will be composed of HDPE. The geotextile layer will be composed of a non-woven polyester or polypropylene fabric, which has been determined to be resistant to and compatible with municipal solid waste leachates. The sand layer will consist of non-carbonate materials that are chemically resistant to or compatible with leachate. The evidence shows that the system will be of sufficient strength and thickness to prevent collapse under the pressures exerted by overlying waste, cover materials, and equipment used at the landfill. Geonet drainage layers, HDPE piping, geotextile fabric, and sand layers such as those proposed are routinely and effectively used in landfills, including those that are deeper than the landfill proposed in the instant situation. The leachate collection and removal system meets requirements in paragraph (e) of the above rule, as well, that the system be designed and operated to function without clogging through the active life and closure period of the landfill. The geonet and geotextile layers will prevent the piping system from clogging. If clogging occurs, the system is designed to allow cleaning of the pipes. The collection and removal system will be designed and constructed to provide for removal of the leachate within the drainage system to a central collection point for treatment and disposal. The leachate will drain by gravity from the sump into the leachate lagoon, but will be altered during construction to provide for pumping of leachate out of the system into the lagoon in order to prevent having to penetrate the HDPE liner with piping. Once the leachate is pumped into the lagoon, it will be recirculated over the landfill face, evaporated from the lagoon, or removed off site for treatment and disposal at a waste disposal and treatment plant. Surface Water and Storm Water Management System The storm water management system for the landfill is designed and sized according to local drainage patterns, soil permeability, annual precipitation calculations, area land use, and other characteristics of the surrounding watershed. (See Rule 17-701.050(5)(h), FAC). The engineering expert for the applicant, Mr. Barrett, designed the storm water management system. He considered the presence of dense clay soils on the site which do not provide good percolation because of low permeability, with regard to storm water falling on the site. He also took into account existing drainage patterns, as well as the annual precipitation. The retention and detention ponds and drainage ways designed into the system consist of three detention basins located at the north, southeast, and southwest quadrants of the site and one retention basin located on the western portion of the site. The site is divided into watersheds and is drained by an on-site gravity system consisting of runoff collection pipes to intercept the overland flow and convey the runoff into the retention and detention facilities. Runoff from the northern watershed is treated in detention basin 1, that from the southeast watershed in basin 3, and runoff from the southwest watershed area in detention basin 4. Runoff from the western area or watershed is treated in retention basin 2. A computer model was used by Mr. Barrett in determining the appropriate design for the storm water management system. The model is called the hydrologic engineering center-1 model developed by the U.S. Army Corps of Engineers. It is a model routinely and widely accepted in the storm water engineering design profession and discipline for designing such systems. It has historically been accepted by the Florida Department of Transportation, DER, the Corps of Engineers, and a number of counties and municipalities. A number of parameters, such as total runoff area, watershed characteristics, rainfall amount, time of concentration, lag time, and route description, were put into the model to develop the storm water management system design. Because no actual runoff data was available to calibrate the model, the model was run using data for two hypothetical storm events, the 25-year, 24-hour storm and the 10- year, 24-hour storm. Total rainfall amounts for these events were obtained from rainfall intensity duration-frequency curves developed by the Florida Department of Transportation (FDOT) for this geographical area. The detention basins are wet treatment facilities having permanent pools of water. Wetlands vegetation grows on the littoral slopes of the detention basins and removes pollutants from the storm water by natural uptake of pollutants contained in the water through the roots, stems, and leaves of the plants. Based on the HEC-1 model, the detention basins are designed to store one inch of runoff over the permanent pool control elevation and to retain the first one-half inch of rainfall, as required by Section 17-25.040(5), FAC, for projects having drainage areas of less than 100 acres. Each basin has several pipes to allow outflow when the water level exceeds the one-half retention level. As water rises to the outflow pipe level, it flows out of the basin and eventually discharges off site. The outflow pipes are two to three inches in diameter, allowing discharge of a controlled volume of water at a controlled rate. The discharge structures will be constructed in accordance with construction drawings that will include erosion control devices, such as rip- rap. The basins also have vertical riser pipes that discharge if water reaches a higher set elevation, specified in the permit application. Only if the water level rises to an elevation exceeding the 25-year, 24-hour storm elevation would the water flow over the berm. As required by Section 17-25.025(8), FAC, the storm water management system design provides for skimmers to be installed on discharge structures to skim oil, grease, and debris off water discharged from the basins. No more than one-half of the volume will be discharged in the first 60 hours following a storm event. The detention basin slopes that exceed a four to one slope down to a depth of two feet below control elevation will be fenced for safety purposes. See Rule 17-25.025(6), FAC. The retention basin is designed to retain the first one-half inch of rainfall with filtration of the first one-half inch through a sand filter bed in the bottom of the basin within 72 hours following the storm event. The sand filter bed will consist of clean well-graded sand having a minimum horizontal and vertical conductivity or percolation rate of six inches per hour. The retention basin has vertical risers, as provided in the application. Erosion and sediment control "best management practices" will be used during construction to retain sediment on site, as referenced in Rule 17-25.025(7), FAC. Other best management practices, such as sodding embankments or stabilizing slopes with geomats or sand bags will be used. The system is designed to minimize mixing of the storm water with the leachate. (Rule 17-701.050(5)(h)3., FAC). As waste is placed in the landfill, berms are constructed laterally across the cell face to segregate the waste disposal areas from other areas in the cell not yet receiving waste. Storm water coming into contact with waste flows down through it and eventually is collected and removed from that cell by the leachate collection and removal system described above. Storm water falling in a portion of a cell in which waste has not been deposited is collected by piping and pumped to the storm water management system for treatment of storm water because it does not constitute leachate, not having traversed on or through waste. Storm water will not come into contact with the waste within the system as designed. There are not any pipes connecting the waste disposal cells to the storm water system or basins. The storm water system in the permit application was designed in accordance with the criteria enunciated in the above-cited rule. This fact was established by the unrefuted expert testimony of Mr. Barrett and was independently confirmed by three other engineers, including the storm water program engineer of DER, each of whom reviewed the storm water system design. The storm water program engineer inspected the site and determined that the proposed management system will not pose any risk to downstream property, as required by the statute and rules enforced by the Northwest Florida Water Management District (NWFWMD). CVA adduced the testimony of Mr. Hilton Meadows in an effort to demonstrate that the storm water management system design in EPAI's application, and case-in-chief, does not meet applicable criteria in Chapters 17-701 and 17- 25, FAC, referenced above. Mr. Meadows attempted to demonstrate, by calculations determined using the "rational formula", that storm water will be discharged off the landfill site at a rate of 16.11 acre feet per minute during a 25-year, 24-hour storm event. An acre foot of water is a depth of one foot of water covering a surface acre in area. According to Mr. Meadows, all storm water would be thus discharged off site at a single discharge point creating a "blowout" of the storm water management system structure at that point which would flood and erode Long Round Bay off the site. In rebuttal, however, Mr. Barrett explained that Mr. Meadows' calculations merely determined the total amount of water that would fall on the landfill site during a 25-year, 24-hour storm event and failed to consider the time-volume reduction of storm water off the site over a 24-hour time period. Mr. Barrett clearly established that 16.11 acre feet of water would not be discharged per minute off the site during the 25-year, 24-hour storm event. It was further demonstrated that Mr. Meadows did not perform any computer modeling in analyzing site-specific compliance of the proposed storm water management system design against the framework of the applicable design and performance standards in Chapters 17-25 and 17-701, FAC. CVA did not adduce any preponderant evidence which would demonstrate that the storm water management system proposed will not meet the design performance standards contained in the rules and rule chapters referenced above. In view of the more extensive background, education, knowledge, and training acquired both through education and experience; in view of the more extensive and detailed investigation and calculations underlying his design, including the computer modeling effort referenced above; and in view of his corroboration by three other witnesses within the storm water engineering discipline, the opinions of Mr. Barrett, and the witnesses corroborating his testimony, are accepted over that of Mr. Meadows. Gas Control System The gas control system for the landfill will meet the design requirements contained in Rule 17-701.050(5)(j), FAC. It will be a passive system, meaning that no mechanical methods are necessary to withdraw gas from the landfill. A ventilation system will be installed as the final cap is placed on the landfill and will consist of perforated PVC pipes placed vertically down through the soil cover layers, to reach the solid waste disposal areas. The pipes are wrapped in geotextile fabric in order to prevent them from being infiltrated by fine soil particles which could cause clogging of the system. The pipes will run laterally across the top of the waste disposal areas to transfer gas to the vertical vents which vent the gases to the atmosphere. If gas production should exceed the capacity of the passive ventilation system, vegetation will be damaged and odor will become objectionable. If that occurs, a pump can be connected to the system to extract gases mechanically and vent them into the atmosphere or flame them off as a more positive control method. The proposed gas system is typical for landfills of this size and has been well tested for efficiency at other such facilities. The gas control system will not interfere with or cause failure of the liner or the leachate control systems. The gas control system is designed to prevent explosion and fires due to methane accumulation, damage to vegetation on the final cover of the closed portions of the landfill or vegetation beyond the perimeter of the property. It will control any objectionable odors migrating off site. The system, as proposed and proven in this case, meets the design requirements contained in the above-cited rule. Landfill Operation Paul Sgriccia, vice president of City, is a registered professional engineer specializing in landfill design, operation, and management. He has extensive professional experience in (and supervises a 20-person staff) designing landfills, obtaining permitting, and overseeing daily operation, environmental regulation compliance, compliance monitoring, hydrogeology, and groundwater monitoring with regard to landfill projects proposed, being constructed, or operated by City. Additionally, he is trained as an engineer. He was tendered and accepted as an expert in the fields of landfill operations and landfill management. The above-cited rule chapter requires landfills to have a ground water monitoring system that complies with monitor well location, construction, and sampling requirements of Sections 17-3.401, 17-4.26, and 17-28.700, FAC, and ground water sampling and testing in accordance with those sections, as well as Section 17-22, Parts III and IV, FAC. Mr. Sgriccia's testimony shows that the ground water monitoring plan proposed and considered in conjunction with the hydrogeologic investigation and ground water monitoring recommendations made by Dr. Herbert will meet these regulatory requirements. The recommendations made by Dr. Herbert concerning ground water monitoring should be incorporated as conditions on issuance of the permit. The applicant has voluntarily agreed to notify DER one year in advance of its ground water monitoring schedule so that DER can be present to collect "split samples", as referenced in Rule 17- 701.050(6)(a)3., FAC. Any grant of a permit should also be conditioned on this policy being strictly followed. The application also contains an operation plan, as required by the above-cited rule at paragraph (6)(b). The operation plan provides that EPAI will be the entity responsible for the operation and maintenance of the landfill. The plan provides that in the event of a natural disaster or equipment failure that would prevent waste from being deposited at the landfill, the waste will be disposed of at the Springhill landfill in adjacent Jackson County, pursuant to an agreement between EPAI and Waste Management, Inc., the operator of that landfill. The operation plan contains detailed procedures to control the type of waste received at the facility. Hazardous waste, biomedical waste, lead-acid batteries, white goods, used oil, and waste tires will not be accepted for disposal at the proposed landfill. Asbestos will only be accepted if it is in the proper regulatory approved containers. The operation plan specifies inspection procedures and procedures to be followed if prohibited wastes are discovered. All vehicles hauling waste to the landfill will be weighed and inspected by the operator or appointed attendants at the entry to the landfill. A load inspection will be performed to determine if the waste conforms to the approved waste description before the waste can be disposed. Paperwork, checks, controls, and records maintenance will be performed, as well as random load inspections for municipal solid waste generated by households. Spotters will observe the actual unloading of each vehicle at the active cells. Unacceptable waste will be rejected and cannot be disposed of at the site. Unacceptable waste that is already unloaded inadvertently at the site will be required to be removed immediately. DER will be notified of attempts to dispose of unacceptable waste at the landfill site. The operation plan provides for weighing and measuring of incoming waste and vehicle traffic control and unloading control. All these vehicles will be weighed and inspected before proceeding to disposal cells. The operation plan provides a method and sequence for filling waste into the disposal cells. Waste disposal will begin in the southwest corner of cell one and waste will be disposed in that cell up to an established final grade and the final capping process will be commenced before beginning disposal in another cell. Waste will be compacted on a daily basis when a load is received. Compaction equipment operates continuously over disposed waste loads to obtain maximum compaction. A daily cover of six inches of clean soil will be applied at the end of the day unless more waste will be disposed on the working face within 18 hours. Daily cover helps reduce disease-vectors, such as flies and rodents, as well as to reduce windborne litter. The gas control system will be maintained to insure that riser pipe vents are not dislodged and will be monitored to insure that explosive limits of methane are not reached. When leachate levels in the lagoon reach a certain level, the leachate will be withdrawn and recirculated back over the working face of the disposal area or else hauled off site to a waste water treatment facility for treatment and disposal. Leachate recirculation is becoming an accepted treatment method by regulatory agencies and is considered an effective industry standard treatment method. Leachate is recirculated by application to the active working face of the disposal cell by a watering truck and is dropped on the cell through a distribution bar or open valve pipe at the back of the truck. Leachate will not be applied during rainfall nor will it be aerially sprayed on the cell. Municipal solid waste has significant absorption capacity, so that large quantities of recirculated leachate are absorbed by the waste. The leachate that does eventually run through the waste is collected in the leachate collection and removal system and does not mix with runoff going into the storm water management system. The leachate lagoon is surrounded by a containment dike area with a loading station inside the dike for removal of leachate by truck for off-site treatment at a waste water treatment plant. A hose is hooked to a tank truck and leachate is pumped into the truck. Any spills during the loading process will be contained by the dike and will flow back into the leachate lagoon. The storm water management system will be operated to insure that there is no mingling of leachate with storm water runoff. The design provides for three diversion berms running the length of the Class I disposal cell which divide the cell into four smaller working cells. Any rainwater falling in the clean, unused cells will be removed to the storm water management system. The rain coming into contact with the working face is leachate and is collected and removed from the cell by the leachate control system. The operation plan addresses and satisfies each requirement of Section 17-701.050(6)(b), FAC. Rule 17-701.050(6)(c), FAC, requires certain operational design features to be incorporated in the landfill. Thus, the entire site will be enclosed by a minimum four-foot high fence with a gate that will be locked during off hours. To Shoo Fly Bridge Road is a county-maintained, all-weather road that provides main access to the landfill site. In addition, the roads on the site will be stabilized, all-weather roads. The operation plan provides for signs indicating the name of the operating authority, traffic flow, hours of operation, and any disposal charges, as well as scales for weighing the waste loads received at the site. Dust will be controlled by water spraying to avoid contaminated runoff due to chemical sprays and oils. Dust will be further minimized by use of paved roads, minimizing the areas of disturbed soil, vegetating stockpiles as soon as possible, and vegetating final and intermediate cover areas. Daily cover, use of portable fences, and cleaning operations by operating personnel will provide litter control. Firefighting equipment and facilities adequate to insure the safety of employees will be located on site. Daily cover will be used to minimize the potential for fire and fire extinguishers and water will be used to fight fires. If a fire is too large to effectively fight with on-site equipment, the Holmes County Fire Department will be called to assist. The operation plan for the landfill meets the requirements depicted in the above-cited rule at paragraph (d) in terms of personnel and facilities requirements. A certified attendant will be on site during all hours of operation and a telephone will be located on site. Equipment requirements are contained in the above-cited rule at paragraph (e). The applicant will thus maintain and operate a large bulldozer, soil scraper, front-end loader, water truck, motor-grader for cleaning roads, and portable pumps for storm water management and leachate management. In the event of an equipment breakdown, the plan provides for an agreement between the operator and a local heavy-equipment company to provide a compactor and other essential equipment within 24 hours. The equipment will have protective roll bars or roll cages, fire extinguishers on board, and windshields. The operation plan otherwise provides for protective devices and gear for heavy equipment and for personnel themselves, such as dust masks and hearing protection devices, hygienic facilities in the maintenance building and office, potable water, electric power, emergency first aid facilities and the like. Employees will be hired locally and trained in appropriate safety procedures and practices. In accordance with the provisions of Section 17-701.050(6)(j), FAC, the operation plan calls for solid waste in the Class I cell to be spread in layers of approximately two-feet in thickness and compacted to approximately one-foot thickness before the next layer is applied. Weekly compaction of the waste will be accomplished by heavy equipment at the Class III cell. The compostible materials and the yard trash at the Class III cell will be removed and composted on site. Bulky materials that are not easily compacted will be worked into the other waste materials to the extent practicable. As required by paragraph (k) of the above-cited rule, the compacted solid waste material will be formed into cells with the working face and side grades above surface at a slope of no greater than 30 degrees. The cell depth will be determined by the area in operation, daily volume of waste, width of the working face, and good safety practices. Waste will be placed into the cell beginning at the southwest corner and spread northward, eventually reaching grade level. As elevation of the cell approaches final grade, intermediate and final cover is applied to the cell. The final slope grade will be approximately 4:1 and will be terraced. The operation plan meets the requirements contained in paragraph (6)(1) of the above-cited rule that the cell working face be only wide enough to accommodate vehicles discharging waste and to minimize the exposed area and use of unnecessary cover material. The waste will not be spread across the entire cell immediately but instead will be spread on a small working face. The typical working area may be 50 feet by 50 feet or slightly larger, and will become larger as more loads of waste are received. Waste is deposited on the working face and compacted until final grade is reached, working across the face of the active cell in a terraced effect. Intermediate and final cover are applied to the portions of the cell that have reached design dimensions. The working face is kept as small as possible to minimize leachate generation, disease-vector problems, and the need for daily cover. The landfill operation meets the requirements contained in paragraph (6)(m) of the above-cited rule to the effect that initial cover will be applied to enclose each working cell except the working face, which may be left uncovered if solid waste will be placed on the working face within 18 hours. If there are adverse environmental impacts or problems with disease-vectors, initial cover will be placed on the working face at the end of each day for the Class I landfill cell and once a week for the Class III cell. The operation plan provides that an intermediate cover of one foot of compacted soil will be applied in addition to the six-inch daily cover within seven days of completion of the cell if final cover or an additional lift is not to be applied within 180 days of cell completion, as required by paragraph (6)(n) of the above-cited rule. The landfill will be closed in accordance with Sections 17-701.050(4) and 17-701.070-.076, FAC. The operation plan further provides that daily cover will control disease-vectors, such as flies, rather than employing use of pesticides. Uncontrolled or unauthorized scavenging will not be permitted at the landfill and will be controlled by fences and on-site personnel. Class III Cell The proposed Class III cell will be located over the old Class I cell last used by Holmes County. This area has a recompacted clay liner and a leachate collection system in place. Only yard trash will be deposited in the Class III cell, however. Based upon the Class III cell design and operating plan that will permit only yard trash disposal in it, any leachate generated from the Class III cell will not pose any threat to or violate applicable water quality standards in or outside the zone of discharge. Asbestos disposal is proposed at the landfill site. A separate asbestos disposal cell is proposed. The operation plan will provide that the asbestos be covered daily with a proper dust suppressant or six inches of non- asbestos material or will be disposed of in an area where proper warning signs, fences and barriers are present. Asbestos accepted for disposal at the landfill will be bagged and accompanied by shipping documents as required by EPA rules appearing in Title 40, Code of Federal Regulation. Persons working around asbestos will be specifically trained in its handling and must use appropriate protective equipment, as required by the National Emission Standards for Hazardous Air Pollutants set forth at 40 CFR 61.25 and other applicable federal regulations. The applicant proposes to dispose of petroleum contaminated soils at the landfill, as well. These soils will be mixed in with the waste on the working face. The soils will not be used as an intermediate cover or come into contact with surface water that will be conveyed to and treated in the storm water management system. Landfill Closure The application includes general plans and schedules for closure of the new and existing landfills. Once final grade is reached, an intermediate cover is applied over the daily cover if the working face will not receive any more waste or will receive final cover within 180 days. The gas control system will then be installed and the final cover consisting of an impermeable synthetic cap will be applied. The final cover will be a plastic cap constructed of polyvinyl chloride (PVC), HDPE, or some other synthetic material and covered by one foot of protective soil, topped by six inches of topsoil to promote vegetation growth. Soils for the closure effort will be obtained on site and will not be obtained by dredging in any jurisdictional wetlands. The final design provides for a terraced landfill profile for the new Class I cell. The waste levels will not exceed 10 feet in height and will be terraced at a 4:1 slope. The terraces will slope back against the cell wall and will be underlain by a subdrain to collect runoff and convey it to the storm water management system. This will prevent erosion of the final cover, waste exposure, and thus, additional leachate generation. The application contains a closure plan containing a general landfill information report and various other plans, investigations, and reports addressing all criteria and factors required to be addressed by Section 17- 701.073(6)(a)-(i), FAC. All such plans, reports and investigations were certified by Pearce Barrett, a registered professional engineer, expert witness and landfill designer for the applicant. The application contains a detailed estimate of closure costs and a monitoring and long-term care plan for the landfill meeting the requirements of Sections 17-701.075 and 17-701.076, FAC. An interest-bearing escrow account will be established for the landfill within 30 days of permanent issuance to cover the closure costs. Funds for closure, monitoring and long-term care of the landfill will be set aside as tipping fees are paid. As portions of the landfill are closed, funds in the escrow account will be available to pay for closure. This type of landfill closure and closure funding is termed "close as you go". This insures that available funds to close the landfill will be present so that funding problems such as those associated with the existing landfill will not arise. The long-term care plan provided for in the permit application and in the applicant's evidence provides for monitoring and maintenance of the landfill for a 20-year period after closure is complete. The storm water management system will be maintained and ground water monitored as part of this long-term care plan.
Recommendation Having considered the foregoing Findings of Fact, Conclusions of Law, the evidence of record, the candor and demeanor of the witnesses, and the pleadings and arguments of the parties, it is RECOMMENDED that a Final Order be entered by the Department of Environmental Regulation dismissing the petition filed in opposition to the permit application and approving EPAI's application for the permit at issue, authorizing construction and operation of a 20-acre Class I, Class III, and asbestos landfill, as well as authority to close the existing 25.5-acre Class I landfill in Holmes County, Florida, in the manner and under the conditions delineated in the application, as amended, the Intent to Issue and draft permit and the above Findings of Fact and Conclusions of Law. It is further RECOMMENDED that the motion for attorney's fees and cost be denied. DONE AND ENTERED this 6th day of April, 1993, in Tallahassee, Florida. P. MICHAEL RUFF Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 6th day of April, 1993.
The Issue The issue in this case is whether the Department of Environmental Regulation (Department) should issue a solid waste construction permit to the David J. Joseph Company (Applicant) to construct lined cells at its existing Class I solid waste landfill in Tampa, Hillsborough County, Florida. It is the position of the applicant and the Department that all statutory and rule criteria for the issuance of said permit have been met, while Mr. & Mrs. David Brenner (Petitioners) contend that the application fails to meet the criteria for the issuance of this permit.
Findings Of Fact The applicant filed an application for a solid waste construction permit with the Department on May 2, 1988. This application was given permit number S029-77041. The applicant proposes to expand its existing solid waste Class I sanitary landfill located near Kingsway Road and Interstate 4, east of Tampa, Hillsborough County, Florida, through the construction of a lined addition. This entire site consists of approximately 16 acres, but the lined portion for which this permit is sought comprises about eight acres. This site was purchased by the applicant in 1978, to landfill shredder waste, or "fluff", produced at its Tampa shredder. In fact, the applicant has operated this site as a landfill since 1978, under two previous permits issued by the Department in 1978 and 1983, and approximately nine acres of the site have already been filled. The Department gave notice of its intent to grant this permit on September 23, 1988, subject to specified conditions. The Petitioners, thereafter, timely requested this administrative hearing. The applicant is engaged in the ferrous scrap business at fourteen locations throughout the United States, and provides steel mills with raw material for their use in the production of new steel. It operates a large shredding plant in Tampa, Florida, which consists primarily of an automobile shredder and related equipment. The shredder is a large crushing and grinding piece of equipment which, in approximately 20 seconds, grinds scrap autos into small chunks of scrap the size of a man's fist. A conveyor system separates the scrap produced in the shredding process into three streams. The first stream consists of steel scrap that is sold to a steel mill. Approximately 80% of automobile scrap is steel. The second stream consists of non-ferrous material, primarily aluminum, zinc, copper, brass and other non-steel items found in autos, which are then sold to dealers in that particular type of metal. The third stream is waste material, or "shredder fluff". Approximately 17% of the material in automobile scrap is fluff. Guidelines have been established by the applicant which limit the type of material which will be accepted at the shredder facility as feedstock for the shredder operation. These guidelines prohibit acceptance of lead-acid batteries, gas tanks, tires, catalytic converters, and loose mufflers and tail pipes. Automobiles which are accepted by the applicant at its Tampa plant have already been crushed at separate locations by other companies engaged in the car crushing business prior to their purchase by the applicant. In the crushing process, most automobile fluids are liberated, but oil and other fluids not liberated during the crushing process are then liberated in the shredding process, and are intermingled with all three product streams produced at the shredder mill. Shredder fluff consists largely of automotive components such as upholstery, plastic, glass, rubber, dirt, and other non-magnetic and non-ferrous materials. The applicant's shredder operation in Tampa generates approximately seven to eight tractor trailer loads of fluff per day which are deposited at their current landfill. During 1988, the fluff from approximately 200,000 autos was disposed at this site. The existing landfill is located approximately 550 feet off of the roadway, and is accessible by an entrance road leading to the main gate of the site. The landfill is completely fenced with barbed wire around its perimeter, and there is a locked gate at the access road. There is a full time manager on site. Only shredder fluff produced by the applicant's Tampa shredder is deposited at this site. The applicant delivers its waste to this landfill using its own equipment and personnel. The applicant has taken reasonable steps to insure that only authorized persons enter the landfill site, and that there will be no unauthorized dumping. In order to continue using this landfill site, the applicant proposes to construct a liner system and leachate collection system for the remaining unfilled portion of the landfill, and also to establish a stormwater management system serving the entire site. A geotechnical and foundation investigation has been performed on the site to determine the physical and chemical characteristics of site soils, and the ability of those soils to support the landfill construction. The potential for movement in foundation soils was specifically addressed. It is to be noted that the applicant has been operating a landfill at this site for ten years without any sinkhole or foundation problems. There are no active sinkholes on the site, nor was there competent substantial evidence that any sinkhole had historically existed on this site. While the site geology is complex, the soils and subsurface geology will support the proposed project. Thus, the site is suitable for construction of lined Class I landfill cells. Beneath a surficial sand layer of approximately 30 feet in depth, lies an interbedded layer of sands, clay and heavily weathered limestone lenses approximately 40 feet thick, under which lies the Floridan Aquifer. The applicant will excavate below the level of the existing pit floor to remove any limestone protrusions which could adversely affect liner integrity. A dense clay layer, graded to remove rocks and other protrusions, will be used as a secondary barrier to retard the movement of contaminants into groundwater, and to further minimize the potential impact from limestone pinnacles upon liner integrity. The primary containment system will be a liner system constructed of a thick, high density, 60 millimeter polyethylene membrane, applied to both the bottom and sides of the landfill. Below-grade portions of the landfill will be lined completely. A layer of geotextile material is placed between the synthetic liner and clay layer to act as a cushion against stresses on the liner. The liner will be constructed in 30 foot wide strips with welded seams, every inch of which is vacuum tested. Laboratory testing is also conducted on sample coupons of welded seams to insure that the seams are as strong, or stronger, than the original material, and the areas from which coupons are taken are then extrusion welded and vacuum tested. The liner system is designed to withstand stresses, and any differential settlement, that are reasonably expected to occur at this site. It will minimize the risk of leakage of leachate to the environment, as was recognized by Dr. Richard Strom, an expert in hydrogeology called by Petitioners, who stated this is an improvement in the previous unlined operations at this site, and decreases, although it does not completely eliminate, the possibility of ground water pollution. The applicant's project design includes a leachate collection system which will allow leachate generated in the landfill to flow through a 12 inch thick gravel layer, which will act as a drain in the base of the landfill. Fluids will run to low spots and will then be channeled to sumps, where leachate is collected so that it can be disposed of by pumping away from the liner system and spraying onto the active face of the landfill. Natural evapotransporation will then reduce the volume of the leachate. An approved groundwater monitoring program is currently in place, and is being operated at the applicant's existing landfill. It consists of an upgradient well in the northeast corner of the site, and three down gradient wells, one in the southwest corner, one on the west and one on the south sides of the property. These down gradient wells are adequately placed to intercept groundwater flow from the site since the predominate groundwater flow is from the northeast to southwest. These wells all monitor the Floridan Aquifer. The applicant's groundwater monitoring program is adequate and appropriate to detect any leachate or other contaminates emanating from the landfill which might pollute the groundwater, and provides reasonable assurance that water quality standards will not be violated by the landfill operations. The applicant has proposed a stormwater management system for the entire site which is designed to separate non- contact stormwater from that water which actually falls on, or comes into contact with, the waste material. All rainwater coming in contact with waste will be treated as leachate, and handled through the leachate collection system. The non-contact stormwater will be collected in a series of bermed drainage ditches around the site, and will be drained away to retention ponds for infiltration. During times of normal rainfall, there will be sufficient capacity in retention ponds to store all non- contact stormwater on site until it either evaporates or percolates into the ground. During extreme storm events, excess stormwater can be channeled off site to a nearby sinkhole for discharge. Routine monitoring will be conducted to ensure that water in the system has not been contaminated with leachate. The Department has delegated stormwater plan approval authority to the Southwest Florida Water Management District, which reviewed and approved the applicant's stormwater management system through the issuance of a permit in 1988. Noxious odors do not emanate from the existing landfill operations, although there is a slight odor similar to an auto garage service bay close to the disposal materials. This is not a sickening or noxious odor, as acknowledged even by Dr. Strom. The applicant has provided reasonable assurance that leachate sprayed on the active face of the landfill, after having been collected through the leachate collection system, will not result in, or cause, noxious odors at the landfill site. The applicant has established that this project to enlarge its existing landfill with a lined addition will not release contaminants into the underlying soils and groundwater.
Recommendation Based upon the foregoing, it is recommended that the Department of Environmental regulation enter a Final Order approving the application of the David J. Joseph Company and issuing permit number S029-77041. DONE AND ENTERED this 21st day of June, 1989 in Tallahassee, Florida. DONALD D. CONN Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 Filed with the Clerk of the Division of Administrative Hearings this 21st day of June, 1989. APPENDIX (DOAH Case No. 88-6009) Rulings on the Petitioners' Proposed Findings of Fact: Rejected in Findings 1, 9-12. Rejected in Findings 10-14. Rejected in Finding 16. Rejected in Finding 16, but Adopted in part in Finding 13. Rejected in Findings 10-12. Rejected in Finding 15. Rejected in Finding 14. Rulings on the Respondents' Proposed Findings of Fact: 1. Adopted in Findings 1, 2. 2-3. Adopted in Finding 3. Adopted in Finding 4. Adopted in Finding 5. Adopted in Finding 6. 7-8. Adopted in Finding 1. 9-10. Adopted in Finding 7. 11. Adopted in Finding 8. 12-15. Adopted in Findings 9-11. Adopted in Finding 12. Adopted in Finding 9. Adopted in Finding 13. 19-21. Adopted in Finding 14. Adopted in Finding 15. Adopted in Findings 9 and 16. Adopted in Finding 17. COPIES FURNISHED: John W. Wilcox, Esquire Katherine Harasz, Esquire 100 South Ashley Drive Suite 1650 Tampa, FL 33602 William D. Preston, Esquire Thomas M. DeRose, Esquire 123 South Calhoun Street Tallahassee, FL 32301 Richard T. Donelan, Jr., Esquire Twin Towers Office Building 2600 Blair Stone Road Tallahassee, FL 32399-2400 Dale Twatchmann, Secretary Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, FL 32399-2400 Daniel H. Thompson, Esquire General Counsel 2600 Blair Stone Road Tallahassee, FL 32399-2400
The Issue The manner and extent to which the criteria of Rule 17-7.07, F.A.C., entitled "Dump Closing" may be required by Respondent with respect to the Town of Surfside Dump.
Findings Of Fact In 1949, Petitioner purchased approximately 378.8 acres of land located in the northwest section of Miami, Florida. It sold approximately 250 acres of the eastern portion in 1959 to County Line Development Company. Petitioner utilized the remaining land as a solid waste disposal facility known as the "Surfside Dump," and in early 1955, other municipalities in North Dade and South Broward Counties also began using the facility for waste disposal. Originally, "white" goods, rubbish, garden trash, vehicle bodies, and tires were disposed of at the site, in addition to domestic garbage. Somewhat later, the receipt of vehicle bodies and other oversize waste was discontinued. For a number of years, the basic procedure for disposal was to dump the refuse into open trenches where it was compacted by bulldozers and covered with a layer of locally available material. The dump presently is bounded by Northwest 215th Street on the north, Northwest 47th Avenue on the west, Snake Creek Canal on the south, and the land previously conveyed to County Line Development Company on the east. A large portion of the dump area on the west side has not been used since 1972. (Petitioner's Exhibits 1, 3) Inspections of the dump conducted by Department of Pollution Control representatives at various times from 1973 through 1975 revealed that waste was not being covered in a satisfactory manner in that trenches were dug from old refuse, raw garbage was pushed into the water-filled trenches and then recovered with the old refuse. In 1975, the County Line Land Company filed suit against the Petitioner in the Dade County Circuit Court complaining that the dump constituted a public and private nuisance and was being operated in violation of the county code relating to uncovered garbage, Chapter 10D-12 of the Rules of the Department of Health and Rehabilitative Services governing disposal of garbage, and Chapter 17-7 of the Department of Pollution Control pertaining to regulation of solid waste. The Circuit Court found that the dump adversely affected the health and welfare of the surrounding area, and that although the facility was being used for revenue purposes by Petitioner, the conditions existing there had not been improved over the years. It therefore enjoined Petitioner from accepting further refuse at the site commencing June 30, 1976, except from within its own boundaries. It further gave Petitioner until August 1, 1976, to show that it had complied with Chapter 17-7 of the rules of Respondent or that it had received a temporary operating permit under the pertinent regulations. The decision was affirmed by the First District of Appeal on January 4, 1977. State regulations in effect since 1962 have required sanitary landfills to dispose of garbage in compacted layers with not less than a daily six inches of cover material and a final covering of two feet of compacted earth unless otherwise approved by the regulating state agency. (Rule 170C-10.07, State Board of Health; Rule 10D-12.07, Department of Health and Rehabilitative Services)(Respondent's Exhibits 1-3) On February 4, 1975, the Department of Pollution Control sent Petitioner a Letter of Notice advising that the Surfside Dump was in violation of various provisions of Chapter 403, Florida Statutes, and Chapter 17-7, Florida Administrative Code, by not applying for a temporary operation permit. By letter of March 28, 1975, that Department sent a Warning Notice to Petitioner along the same lines and advising of civil penalties for violation of pollution control laws. On May 3, 1975, Petitioner filed an incomplete application for the temporary operating permit. However, it was not until January 20, 1976, that Petitioner ostensibly furnished the necessary exhibits and public notice of its application. By letter of February 9, 1976, the acting district manager of the Respondent, which had succeeded the Department of Pollution Control, informed Petitioner that the Public Notice which had been published did not meet departmental requirements. (Testimony of Quaas, Respondent's Exhibits 5, 13) On June 1, 1976, the Respondent issued a Notice of Violation to Petitioner which stated that the Surfside Dump was being operated without a valid and current permit in an unsafe and unsanitary manner and thereby had violated various provisions of Chapter 403, Florida Statutes, and Chapter 17-7 Florida Administrative Code. The notice included a section entitled "Orders for Corrective Action" which provided that the Petitioner should reimburse the Respondent for expenses, cease to accept any solid material as of September 30, 1976, and implement a specified system of operation and render monthly reports on the same. It also required Petitioner to close the site no later than July 1, 1977, with a final cover of two feet of clean compacted fill with side slopes not to exceed 3:1 slope, and for the entire site to be seeded or planted with grass or other suitable cover vegetation. The orders also required the Petitioner to complete his operating permit application by sending Respondent a compliance schedule and proof of publication of a Public Notice. Subsequently, on January 16, 1977, the parties entered into a "Consent Agreement and Final Department Orders" after having conducted informal negotiations in the matter. The agreement provided that Petitioner waived any right to a hearing under Chapter 120, F.S., and that it would close the site or convert it to a sanitary landfill within the time established in Rule 17-7.07, F.A.C. It required Petitioner to submit plans for closing or converting the site within a certain time period and for implementation of an Operation plan to cover each day's waste and any existing exposed waste with six inches of clean compacted fill. It further required the Petitioner to submit a plan for monitoring ground water for leachate no later than January 30, 1977. Thereafter, on February 25, 1977, Nathaniel M. Zemel, a consulting engineer employed by Petitioner, submitted a "Landfill Closing Plan" to Respondent's West Palm Beach office which provided for a minimum of 24 inches of earth cover over all refuse on the site. Mr. Zemel estimated that between 250 thousand and 300 thousand cubic yards of fill material would be required to complete the covering operation. However, by letter of March 25, 1977, Petitioner advised Respondent that it did not concur in Mr. Zemel's plan and that Dr. Damodar S. Airan would "further refine the plan to reflect new information." The Airan report was submitted to Respondent on October 5, 1977, and essentially concluded that the existing vegetation on the site would be killed and that other harmful effects would result if a final cover of two feet of fill were to be placed over the landfill area. The report therefore recommended that exposed areas of the dump be covered with approximately six inches of clean fill and that corrective measures for surface drainage be accomplished, including sloping, grading, and possible catchment and retention of surface runoff by a drainage canal leading to a small retention basin on the site. A closing plan with drawings to accomplish the report's recommendations was filed with Respondent on November 1, 1977. (Petitioner's Exhibit 1, Respondent's Exhibits 6, 7, 14-17) Respondent's staff reviewed the Airan report and closing plan and was of the opinion that the study did not prove the basic premise that six inches of cover over the dump area was adequate. Thereafter, on December 4, 1977, Respondent issued a Final Consent Order for Dump Closing," Order No. 91, which ostensibly permitted the Petitioner time to undertake a soil and vegetation effectiveness study conditioned upon its agreement to implement and adhere to a final closing and cover plan as determined by the Department upon its review of the results of the study. This order obviously had been framed prior to the submission of the Airan report since that report was the "soil and vegetation effectiveness study" referred to in the consent order which was to be submitted not later than October 5, 1977. The order also provided that Respondent's determination of a final closing and cover plan would be made no later than December 1, 1977 and that the final closing would be accomplished no later than March 1, 1978. Again, the terms of the Consent Order provided that the Petitioner waived any right to a hearing or administrative or judicial review of its terms. Respondent's review and determination of Petitioner's aforesaid study was reflected in a letter to Petitioner from its subdistrict manager, Warren G. Strahm, dated January 3, 1978. It stated that Petitioner's study did not provide evidence that six inches of final cover would minimize and control potential water pollution from vertical percolation of surface water, but that Petitioner's own report showed that thirty-two million gallons more of percolation would result from a six inch as opposed to a two foot final cover. The letter therefore directed Petitioner to implement and adhere to a final closing and cover plan that included a final cover of no less than two feet of compacted earth, grading and sloping of the area, seeding or planting the site with grass or suitable cover vegetation, monitoring of ground water for leachate , and compliance with all other requirements of Rule 17-7.07, F.A.C., by March 1, 1978. Petitioner thereafter filed suit against Respondent in the First District Court of Appeal, Case No. 11-447. The suit was dismissed on May 19, 1978, by joint stipulation of the parties wherein it was agreed that Petitioner would seek a Section 120.57, F.S., hearing. On May 25, 1978, Petitioner filed such a petition with Respondent seeking to have that agency declare Petitioner's final cover and closing plan requiring six inches of final cover to be valid, and that final cover only be required on those portions of the Surfside Dump which were actually used on or after October 1, 1974. (Petitioner's Exhibit 2, Respondent's Exhibits 8, 18, 19) The Surfside Dump has been closed to the receipt of solid waste since March 1977. Although some clandestine dumping of waste has occurred since that time, it has mostly been confined to an area outside of the fenced portion of the site. There are presently relatively small areas of exposed waste in about fifty per cent of the landfill area. Some waste may be seen at the ground level in vegetated areas. A certain amount of ponding occurs in areas of both sparse and dense vegetation. There is a heavy vegetative growth over approximately 90 to 95 per cent of the dump site, consisting primarily of torpedo grass, para grass, guineagrass, common rag weed, caster bean, and sedge. Torpedo grass is a principal species and is abundant in about two thirds of the vegetated area. (Testimony of Quaas, Conn, Hudson, Stotts, Hussin, Gatewood, Busey, Airan, Petitioner's Exhibits 1, 4, 5, Respondent's Exhibits 10-12) Ground water or infiltrating surface water moving through solid waste can produce leachate, a solution containing dissolved and finely suspended solid matter and microbial waste products. Leachate may leave a landfill at the ground surface as a spring or percolate through the soil and rock that underlie and surround the waste. However, since the solid waste is of variable composition, it is not possible to accurately predict contaminant quantities. In completed fills, the amount of leachate can be expected to decrease with time. Leachate percolating through soils underlying and surrounding the solid waste is subject to purification of the contaminants in a variety of ways, but is diluted very little in ground water. Although leachate from a landfill can contaminate ground water, it is necessary to determine the quality of ground water and the aquifer's flow rate and direction to assess its results. Grading of the landfill is a means of diminishing surface infiltration by promoting surface water runoff. Vegetation of a landfill helps to stabilize cover material and thus reduce infiltration. It also reduces infiltration by intercepting and evapotranspiring some of the precipitation. The soil cover over a landfill also reduces percolation into the landfill depending upon its permeability. Clayey and silty loams are well suited for final cover, but are not readily available in South Florida. Sandy soils are primarily available in that area, but allow increased infiltration of precipitation. As a landfill ages, the earth cover will be subject to settlement and maintenance may be required to fill in depressions to avoid ponding of rain water. Such a program should provide for repairing cracks in the fill area due to uneven settlement and reseeding and fertilizing as necessary on the repaired areas, to prevent major erosion and surface water ponding. Leachate leaving the bottom of solid waste can be undesirable for drinking water, surface water, industrial water or irrigation water. However, it is most difficult to determine the character and amount of leachate from a particular area due to the many complex factors involved in such an assessment. The most common method for leachate control is to minimize the amount of water infiltrating the site. Ground water monitoring is accomplished by obtaining samples from wells placed at various locations on and near the landfill. It is generally agreed among the expert authorities that a minimum of two feet of compacted soil is required for the final cover when closing a landfill under normal circumstances. It has been the policy of Respondent to apply the sanitary landfill closing requirements of a two foot final cover, as specified in Rule 17- 7.05(3)(m), F.A.C., to the closing of dumps. (Testimony of Quaas, Conn, Hudson, Stotts, Hussin, Busey, Snider, Respondent's Exhibits 21-27) Expert testimony establishes that most of the vegetative cover on the Surfside Dump will be killed if a two foot cover is placed over it. The plants would re-colonize after such disturbance, but it takes almost two years for new plant growth to reach maturity. The present vegetation has been on the site for a number of years. Vegetation normally will grow at a better rate if its roots extend through the cover soil into the solid waste. However, certain gases created from waste material can be deleterious. A six inch final cover over vegetation would permit certain species to survive well, including torpedo grass, which is abundant on the site. In bare areas, it is best to sprig torpedo grass which provides relatively rapid growth, or to plant bahia grass. (Testimony of Hudson, Gatewood, Busey, Petitioner's Exhibit 1) The landfill site consists of an undulating terrain with surface drainage going in different directions from high to low level areas, but the overall drainage pattern is in a northerly direction. Two low-lying areas in the center and eastern portions of the landfill are subject to ponding after rainfall. These areas need to be filled, graded and planted in order to provide an overall northward direction of flow, together with grading and sloping on the eastern and southern boundaries of the area. Petitioner proposes to install subsurface drainage pipes, if found necessary, to promote horizontal movement of surface water and to provide catchment and retention of surface runoff diverted from the landfill area. This may include a shallow drainage canal along the northern boundary leading to a small retention basin in the northwest corner. Although these proposals were included in Petitioner's final closing plan submitted to Respondent, they were not considered by the latter's staff in evaluating requirements for the dump closing. Some profile corrections of the site were accomplished during the past year which eliminated ponding in the southwest corner of the landfill and improved drainage in the western portion. When further profile corrections are made to remove the remaining low spots, it is estimated that surface and subsurface runoff would increase and result in less leachate reaching the ground water table. (Testimony of Hudson, Airan, Petitioner's Exhibits 1, 4) Field and laboratory tests performed to determine the permeability of the soils on the landfill were performed by Petitioner at representative sites and by surface and subsurface soil samples. These tests showed that the infiltration rate at unvegetated locations was lower than that of adjacent vegetated areas, but this was attributed to the fact that in unvegetated areas, the soil is heavily compacted, very rocky, or no fill material is present. When infiltration was measured directly on waste material, it was found to be lower than that for surface soil. Mathematical calculations as a result of the tests showed that a maximum of 32 million gallons more would percolate annually through a six inch soil cover than a two foot cover. However, these calculations did not take into consideration the amount of surface and subsurface runoff. Petitioner's experts estimate that at least half of the percolation would be dissipated in that manner, leaving approximately 16 million gallons annually that would penetrate through the solid waste to the ground water. In considering this fact and the amount of water flowing laterally through the waste material, Petitioner concludes that only approximately one per cent of the total water flowing through the average ten foot waste layer under the water table would consist of vertical percolation. (Testimony of Airan, Petitioner's Exhibits 1, 4, 6-8, 10-13, Respondent's Exhibit 31-33) The Surfside Dump overlies the Biscayne aquifer. The Snake Creek Canal at the southern boundary of the dump site flows into Biscayne Bay some miles distant. There is a well field approximately one mile south of the dump at Carol City. Upstream of the Snake Creek Canal to the west is the North Dade County Landfill which is still in use. Snake Creek Canal is approximately fifteen feet wide and the bottom of the canal is approximately fifteen feet below original ground level. It is approximately thirty feet below the top of the landfill surface. Ground water flows generally in a southeasternly direction through the landfill. Approximately ten per cent of the ground water flows through the solid waste and the remaining 90 per cent bypasses and goes around the perimeter of the landfill. In May, 1977, a water quality monitoring program was undertaken by Petitioner that utilized nine sampling wells in three clusters of three each located in the northwest corner, center, and southeast corner of the landfill. In each cluster, one well was drilled to about five feet below the solid waste layer, the second ten feet below that point, and the third was ten feet above the waste layer. Water samples were taken in 1977 and in 1978. Tests of the samples showed that water quality generally improved with the depth of the well, and that the center group of wells had the highest level of contaminants because they were drilled in the middle of solid waste layers. In a number of instances, the pollutant levels for various substances were in excess of state standards. One well in the center of the landfill was dry during the rainy season which could indicate that the center of the landfill is less permeable than the outer layers and that a certain amount of water had been subject to subsurface runoff. It is conceded by both parties that the location and method of sampling wells does not provide sufficient definitive information concerning water quality in the area and that further monitoring needs to be undertaken in the future. Testing of Snake Creek Canal from points upstream and downstream of the Surfside Dump show that the surface water quality is most affected by contaminants from upstream. The North Dade County Landfill west of the Surfside Dump is undoubtedly a major influence on the quality of Snake Creek Canal water prior to reaching the Surfside Dump area. Leachate has not been found in canal water samples even though it is sufficiently deep to intercept the same if present. However, it is conceivable that any leachate plume could extend below the bottom of the canal. (Testimony of Stotts, Hussin, Snider, Airan, Patton, Petitioner's Exhibits 1, 4, 9, 12, Respondent's Exhibits 29 a-f) Based on the foregoing Findings of Fact, it is further found: The Surfside Dump presently is contributing to contamination of the ground water table in an unknown amount and is a potential source of pollution to the Snake Creek Canal and Biscayne Bay; The amount of pollution caused by leachate can be reduced through the implementation of corrective measures for surface drainage, including the filling of low lying areas, and grading and sloping to permit maximum surface water runoff. Additionally, infiltration of water into the landfill will be reduced by preserving the existing vegetation thereon which is an important factor in stabilizing surface cover and reducing percolation through evapotransportation most of the present vegetation will not survive if a two foot cover of soil is placed over it, and reestablishment of vegetation to its present state will take approximately two years. A surface cover of six inches over the vegetation would permit survival of most existing vegetation.
Recommendation That Respondent issue a final order requiring Petitioner to comply with the requirements set forth in paragraph 6 of the foregoing Conclusions of Law with regard to closing the Surfside Dump. DONE and ENTERED this 11th day of January, 1979, in Tallahassee, Florida. THOMAS C. OLDHAM Division of Administrative Hearings Room 530, Carlton Building Tallahassee, Florida 32304 (904) 488-9675 COPIES FURNISHED: Silvia M. Alderman, Esquire Assistant General Counsel Department of Environmental Regulation Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32301 Joseph C. Jacobs, Esquire Melissa L. Allaman, Esquire Ervin, Varn, Jacobs, Odom and Kitchen Post Office Box 1170 Tallahassee, Florida 32302 Stephen Cypen, Esquire 825 Arthur Godfrey Road Miami Beach, Florida ================================================================= AGENCY FINAL ORDER ================================================================= STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION TOWN OF SURFSIDE, Petitioner, vs. CASE NO. 78-1021 STATE OF FLORIDA, DEPARTMENT OF ENVIRONMENTAL REGULATION, Respondent. /
The Issue Whether the City of Jacksonville has provided reasonable assurances that a proposed modification of its permit to operate the City of Jacksonville North Sanitary Landfill by allowing an additional 35 feet of waste to be disposed of in Phase IIIb of the City of Jacksonville North Sanitary Landfill will not cause pollution in violation of any of the provisions of Chapter 403, Florida Statutes, or the rules promulgated thereunder? Whether the City of Jacksonville proposed modification of its permit to operate the City of Jacksonville North Sanitary Landfill by allowing an additional 35 feet of waste to be disposed of in Phase IIIb of the City of Jacksonville North Sanitary Landfill should be denied because of alleged violations of the City of Jacksonville's permit or Florida law?
Findings Of Fact Introduction. The City of Jacksonville North Sanitary Landfill. The City of Jacksonville (hereinafter referred to as the "City") operates two solid waste disposal facilities. One, the City of Jacksonville North Sanitary Landfill (hereinafter referred to as the "North Landfill"), is located at the intersection of New Berlin Road and Island Drive in the northern part of the City and Duval County, Florida. The North Landfill is operated pursuant to permit #SC16-12205 (hereinafter referred to as the "Permit"), issued by the Department on June 6, 1988. The Permit was issued "for operation of the City of Jacksonville North Sanitary Landfill, Phases I, II, and 111a; and of a new disposal area at the North Sanitary Landfill, Phase IIIb." The area in which the North Landfill is located is generally commercial property, with some rural and residential property: The North Landfill is bounded on the north by unimproved land owned by the City. This property stretches to Cedar Point Road. A few parcels within the property owned by the City to the north of the North Landfill are owned by others, including Mr. and Mrs. Leigh. The property to the east of the North Landfill is also unimproved property. It is owned by the St. Johns River Power Park. The St. Johns River Power Park is a power plant facility operated as a joint venture by the City, the Jacksonville Electric Authority and Florida Power and Light. The plant is located on the southern boundary of the North Landfill. The west boundary of the North Landfill is New Berlin Road. The property to the west of New Berlin Road is owned by a number of persons, including M & M Dairy. Phase IIIb of the North Landfill is located in the northeast quadrant of the landfill. The North Landfill primarily serves northern, and a part of western, Duval County. Approximately 3,000 tons of solid waste is disposed of each day in Jacksonville. Approximately 55% of the solid waste is disposed of at the North Landfill. The solid waste disposed of at the North Landfill consists primarily of mixed municipal solid waste and commercial solid waste. The North Landfill is open seven days a weeks from 5:00 a.m. to 11:00 p.m. All phases of the North Landfill are permitted to a height of 75 feet. The land on which the North Landfill is located is approximately 25 to 30 feet above sea level. Therefore, approximately 45 to 50 feet of solid waste can be disposed of at the North Landfill. All phases of the North Landfill have some remaining capacity for the disposal of additional solid waste. The Petitioners. Ms. Holzendorf's residence is approximately ten miles from the North Landfill. Her office is located approximately seven miles from the North Landfill. She does not own any real property located in the immediate vicinity of the North Landfill. Ms. Holzendorf can smell the odor from the North Landfill at her residence when the wind is blowing from the North Landfill toward her residence. Ms. Holzendorf is a Florida State Representative for District 16. District 16 includes the population of approximately one-third of Duval County, The North Landfill is located within District 16. Ms. Holzendorf has received complaints from some of her constituents about the North Landfill. Ms. Holzendorf drives by the North Landfill approximately twice a week. She has visited the site on several occasions. Robin G. and Geraldine Leigh own real property adjacent to Cedar Point Road. The land is unimproved except for a well. The Leigh's land is located north of the unimproved City property located adjacent to the northern boundary of the North Landfill. The Leighs' land is approximately three-fourths of a mile from the North Landfill. The City's Proposal. On August 3, 1988, the City filed an application with the Department for a modification of its Permit. In its application the City requested a "construction permit modification" of its Permit consisting of "extending the height of Phase IIIb of the North Landfill to a constructed elevation including final cover of no greater than 110 feet, NGVD." The City's requested modification of the Permit will provide the City with an additional six months of solid waste disposal capacity. The Department proposed to grant the City's requested modification. The Department issued a proposed Permit modification (hereinafter referred to as the "Modified Permit"). Structural Design of Phase IIIb. Leachate Control System. Waste dumped at the North Landfill is covered daily. Rain falling on the site is disposed of either as "leachate" or stormwater. Leachate is liquid which passes through, and emerges from, solid waste. Leachate on Phase IIIb of the North Landfill is collected and disposed of by a control system which was designed by George Knecht. Mr. Knecht described the leachate control system as follows: The leachate collection system consists of a two-foot drainage layer placed on top of the plastic liner. In this case the city used a plastic liner rather than a clay liner. It's HDPE, which is high-density polyethylene, and that collects the liquid and lets it flow downhill in this drainage layer to the central point, at which point the city has installed a six-inch perforated pipe which is wrapped in a filter media, which is basically a stone, a rock, which in turn is wrapped in a filter media which is porous cloth, and the purpose is that the liquid coming through the landfill gets into this drainage layer, runs downhill in the drainage layer, goes through the filter cloth, and the filter cloth keeps the sand from penetrating into the granular rock, goes through the rock and into the pipe, and then pipes are laid in a sloping downhill direction so that the fluid, once it gets in there, runs downhill. It's collected in manholes at the end of each one of these pipes. Transcript of Formal Hearing, page 49, lines 4-23. The leachate control system of Phase IIIb was properly installed and designed. Although the Petitioners raised questions concerning the manner in which the leachate control system was installed and designed, they did not offer sufficient evidence to contradict the evidence presented by the City that the system was properly installed and designed. The evidence also failed prove that the addition of 35 feet of solid waste to Phase IIIb will adversely affect the operation of the leachate control system. The addition of 35 feet of solid waste to Phase IIIb will probably ultimately have a beneficial effect on the leachate control system of Phase IIIb of the North Landfill. When Phase IIIb reaches its currently authorized height of 75 feet, the leachate depth on the liner of the control system is expected to be an average of approximately three inches. If an additional 35 feet of waste is added to Phase IIIb, the leachate depth on the liner of the control system is expected to decrease to an average of approximately two inches. The depth of leachate on the liner of the leachate control system of Phase IIIb will not exceed one foot. Specific Condition 3 of the Permit required that the City arrange for Department representatives to inspect the facility in the company of the Permittee, Engineer, and onsite operator after completion of construction activities. Cells I and II of the leachate control system of Phase IIIb were not inspected by the Department. The Department was provided with a certification from a registered professional engineer that the installation was inspected and met state requirements. The Department normally relies upon such certificates. Stormwater Disposal System. Rainwater which does not percolate through the waste, thus becoming leachate, runs off in the form of stormwater. Stormwater will consist primarily of rain which strikes the sides of the pyramid formed by the waste deposited on Phase IIIb of the North Landfill. The existing stormwater disposal system of all phases of the North Landfill consists of a series of ditches which collect stormwater and channel the stormwater to other ditches which surround the perimeter of the North Landfill. Stormwater travels through the ditches to collecting ponds located at the northeast corner of the North Landfill. Water reaching the holding ponds is treated by sunlight, oxidation and sedimentation. Ultimately, water reaching the holding ponds runs into Brown's Creek. The existing stormwater collection system of Phase IIIb is in compliance with the Department's permitting requirements. The proposed increase in height of Phase IIIb should not have any appreciable impact on the quality of stormwater eventually emptied into Brown's Creek. Phase IIIb will be capped with an impermeable cap when it is closed. The City has had a stormwater management system designed to take into account the effect of the cap on stormwater disposal. The stormwater collection system which will be installed when Phase IIIb is closed will consist of ditch blocks which will separate the stormwater collection system of Phase IIIb from the other phases of the North Landfill. Stormwater from Phase IIIb will be directed to a new holding pond. Stormwater will eventually be discharged into Brown's Creek. The stormwater collection system which will be installed when Phase IIIb is closed will meet the requirements of Rule 17-25, Florida Administrative Code, and the St. Johns River Water Management District. The system will actually have a positive impact on water quality. Foundation. The earth beneath the leachate control system of Phase IIIb, because of the weight of the solid waste to be deposited above it, is expected to settle approximately twelve inches under 75 feet of solid waste. The addition of 35 feet of solid waste to Phase IIIb is expected to cause the earth beneath the leachate control system to settle an additional six inches for a total of one and one-half feet. The additional 35 feet of solid waste will not adversely affect the structural integrity or functional capacity of the leachate control system of Phase IIIb. The proposed 35 foot addition of solid waste should not affect the ability of the earth beneath Phase IIIb to support the loads and stress it will be subjected to. III Alleged Violations. Water Quality There is a marsh located to the northeast of the North Landfill. The marsh forms the headwaters of Brown's Creek. Brown's Creek flows into the St. Johns River, south of the North Landfill. Alfred Mintz, the former owner of Clapboard Creek Fish Camp, a fish camp located approximately four miles from the North Landfill, testified about a "black gooey substance" which was on the surface of Clapboard Creek and Brown's Creek. Clapboard Creek flows to the northeast and east of the North Landfill. It eventually flows into the St. Johns River. The substance came from the direction of the North Landfill. Mr. Mintz did not know what the substance was and was unable to identify the source of the substance. The evidence failed to prove what the substance was or that the North Landfill was the source of the substance. Anita James, a commercial fisher, testified about a "film" which she saw on Brown's Creek near the St. Johns River. The substance was not identified. Nor was the source of the substance identified. Ms. James' belief that the film came from the North Landfill is not sufficient to support a finding of fact that the film whatever it was, came from the North Landfill. Mr. Mintz and Ms. James also testified about dead and diseased fish, and a dead dolphin and a dead manatee which they had seen in Clapboard Creek, Brown's Creek and other waters in the vicinity. No competent substantial evidence was presented to prove that the deaths or the disease was caused by waste disposed of at the North Landfill. No evidence concerning what killed the fish, dolphin or manatee, or what caused the diseased fish, was presented. Specific Condition 13 of the Permit requires the City to monitor water at three points along the stormwater disposal system of the North Landfill. One of the three monitoring points is approximately one-tenth of a mile east of the North Landfill in Brown's Creek. During approximately ten years of monitoring of water conditions only two parameters, iron and coliform, have been found in excess of state standards. The evidence did not prove what the cause of the excess iron and coliform was. It is possible that the excesses were caused by leachate from Phases I, II and 111a, which do not have lined leachate control systems like Phase IIIb, seeping into the stormwater disposal system. Leachate from Phase IIIb does not aggravate the problem because the leachate control system of Phase IIIb is lined. The City and the Department entered into a Consent Agreement on July 14, 1989 (hereinafter referred to as the Consent Order). Pursuant to the Consent Order the City is required to update its monitoring of stormwater. Quarterly monitoring of 37 parameters will be required. Specific Condition 19 A 2) of the Modified Permit also specifies that 37 parameters are to be analyzed quarterly. Specific Condition 13 A 2 of the Permit only required analyses of 14 parameters. The requested modification of the Permit should not contribute or extend any adverse affect of the North Landfill on water quality. The Consent Order and Specific Condition 20 C of the Modified Permit require that the City analyze 35 parameters quarterly at four wells located inside the North Landfill. The City has contracted for the preparation of a groundwater monitoring plan consistent with the Consent Order and with the requirements of Rule 17-701.050, Florida Administrative Code. Based upon a review of a well inventory conducted by the City and groundwater studies, wells in the vicinity of the North Landfill, including the well on Mr. & Mrs. Leigh's property and the M & M Dairy, are not at risk of contamination. The requested modification of the Permit should not increase the risk of contamination of wells in the vicinity of the North Landfill. Violation of Height Limits. In 1988 the City filled some portions of Phases I, II and IIIa above their 75 foot limit. The City did not, however, intentionally violate the Permit height limits. The City exceeded the height limit of the Permit only because it believed that solid waste placed on the landfill in excess of 75 feet would eventually settle to less than 75 feet and that this was consistent with the Permits limits. The Department disputed the City's actions in exceeding the 75 foot limit for Phases I, II and IIIa in an administrative action separate from this proceeding. On July 14, 1989, the City and Department settled their dispute and entered into the Consent Order. Pursuant to the Consent Order, the City paid a fine of $1,800.00. The City also built a laser tower for use in measuring the height of the North Landfill and agreed to use it to make more frequent surveys of the landfill. The City was not required to immediately remove the excess height. The City has been allowed to wait until closure. Prior to closure the City can request permission from the Department to leave the excess height. In the modification of the Permit at issue in this proceeding, Specific Condition 3 specifically provides for the manner in which waste may be disposed of in Phase IIIb in an effort to avoid the problems with excessive height experienced with Phases I, II and IIIa. B. Litter. Specific Condition 17 of the Permit provides that [l]itter control devices shall be installed as necessary to prevent litter from leaving the disposal area. Litter outside of the perimeter of the North Landfill along the roads leading to the landfill comes primarily from trucks bringing waste to the North Landfill. A small amount of the litter also comes from the site itself. Although the trucks are not City trucks, the City's litter collection efforts have been extended to cover the main portions of the roads leading to the North Landfill. Litter around and on the North Landfill has been a problem. The City has taken a number of steps to control the amount of litter in and around the landfill: Waste deposited at the North Landfill is covered with six inches of soil. Although the City is not required to do so, six months before the formal hearing of these cases the City began covering the area of the landfill where waste is being deposited (hereinafter referred to as the "working surface") with six inches of dirt. The working surface is also located away from wind. Fences have been installed around the perimeter of the North Landfill. Fences are also placed around the working surface on windy days. Prior to 1989 the City patrolled the immediate vicinity around the North Landfill to collect litter which had not been covered. Collection was performed on a variable time schedule. Only three part-time employees participated in the collection patrols. Beginning in early 1989, the City expanded its litter collection patrols. The roads surrounding the North Landfill (New Berlin Road, Faye Road, Alta Road and Island Drive), are now patrolled daily by five full- time employees. The extent of the patrols prior to 1989 and since early 1989 is depicted on City exhibit 8. The inside of the perimeter of the North Landfill is patrolled for litter collection five days a week and on the weekend, as needed. The stormwater ditches are inspected on a daily basis. At the time of the formal hearing of these cases the stormwater ditches and retention ponds were being excavated. This process had been going on for approximately four to six months. The Modified Permit contains Specific Condition 13, which is essentially the same as Specific Condition 17 of the Permit. Additionally, the Modified Permit contains Specific Condition 8, which provides: The Permittee shall maintain litter controls to prevent litter from entering the collection ditches and from leaving the landfill site. In addition to litter control fences, the Permittee shall provide daily manual collection of litter entering collection ditches and leaving the site. Litter can best be controlled by compacting the waste, picking up litter regularly and using fences. The City has employed these methods of litter control. The City's efforts have been reasonable. The proposed increase in height of Phase IIIb will not adversely affect the amount of litter associated with the North Landfill or the City's litter collection efforts. The City is not required to continue to patrol the roads leading to the North Landfill which it is currently patrolling to pick up litter that is attributable to trucks bringing waste to the North Landfill. Odor. There is no dispute that there is undesirable odor associated with the disposal of solid waste. This is true of the North Landfill. There is undesirable odor associated with the North Landfill most of the time. The nature of the odor associated with landfill's generally, and the North Landfill in particular, was described at the formal hearing as follows: Q The odor that you noticed, is it to some degree all the time? A Some days it won't, but that's very rare. Usually it may be more. Some days it may be in the afternoon, it may not smell in the morning, it may be in the afternoon. Some days it may be in the morning and may not be in the afternoon. Q Could you quantify what percentage of the time? A Probably about 75 percent of the time. Q And you indicate that at times it's much stronger than at other times? A Yes. Q You mentioned odor from the landfill. This was back in time now a good way. When did you start noticing an odor from that landfill? A When did I first start noticing it? Q Yes. A The very day they started dumping. Q And that odor has persisted since then? A Not every -- not every single day, but yes. Q Some days you will have it, some days you won't? A Yes. Q How many years are we talking about since they opened approximately? A Well, we have been out there 17 years. . Q So, over that 14 or 15 years, is it fair to say that basically you have an odor, and some days it will be worse than the average odor, and some days `it will be better than the average odor? A Yes. Transcript, page 511, lines 9-15, page 514, lines 9-13, page 516, line 25, and page 517, lines 1-21. Specific Condition 16 of the Permit provides that 1[o]bjectionable odors originating from the site shall be effectively controlled during all phases of operation. The most effective method of dealing with undesirable odor associated with landfills is to cover the waste daily and minimize the contact of waste with water. The City has been covering the waste disposed of at the North Landfill on a daily basis. The City's efforts have resulted in the North Landfill being as odor free as a "well run" landfill can be. A City ordinance provides for citizen participation in controlling odors in Jacksonville. This ordinance is enforced by the City's Bio- Environmental Services Division. As part of enforcing the odor ordinance the City provides a 24-hour telephone service which citizens can call and complain about odors. Since January, 1988, the City has received 5,500 complaints--an average of 280 complaints a month. Complaints received about odor are investigated by nine inspectors employed by the City. If five or more validated complaints are received about an odor producer during a 90-day period, the City issues a citation. Since January, 1988, the City has received only three complaints about the North Landfill from citizens. No citations have been issued against the North Landfill. Specific Condition 16 of the Permit is included in the Modified Permit as Specific Condition 15. The Modified Permit also includes Specific Condition 6, which provides: The Permittee shall apply no less than 6 inches of compacted initial cover to the top and sides of each cell by the end of each working day, except on the working face which may be left uncovered if additional solid waste will be placed on the working face within 18 hours. An intermediate cover of one (1) foot of compacted earth, in addition to the six (6) inch initial cover, shall be applied within seven (7) days of cell completion if final cover or an additional lift is not to be applied within 180 days of cell completion. The Permittee shall ensure that an adequate quantity of acceptable cover material is available for use during each day of operation of the landfill. The modification of the Permit will not increase the odor associated with the North Landfill. It will, however, extend the period of time that odors emanate from the North Landfill. Access to the North Landfill and Dust. Specific Condition 20 of the Permit provides that "[d]ust free, all- weather access roads to the site and active disposal area, or alternative wet weather disposal area shall be maintained." This condition has been complied with by the City. This condition is included as Specific Condition 12 in the Modified Permit. The roads used to access the North Landfill are paved, two-lane roads. The lanes are twelve feet wide. The speed limit on the access roads is 45 m.p.h. Appropriate turn lanes are available. During December, 1988, New Berlin Road and the North Landfill were able to effectively handle 600 trucks per day, an average of 80 to 90 trucks an hour during peak hours. Normally, the North Landfill effectively handles approximately 300 garbage trucks and 100 cover-dirt trucks a day with a peak of approximately 60 trucks per hour. The unpaved right-of-way on the side of the roads leading to the North Landfill is worn and the source of dust. Dust associated with the North Landfill comes from the roads leading to the landfill. The evidence failed to prove that dust comes from within the perimeter of the North Landfill. Tire Storage. Whole tires have been stored and processed at the North Landfill. At the time of the formal hearing there were more than 1,000 tires at the landfill. The evidence failed to prove how long any specific quantity of tires had been stored at the North Landfill. The City has not allowed the disposal of any whole tires at the North Landfill since July 1, 1989. The City has been shredding tires at the North Landfill. At the time of the formal hearing the City had contracted for the shredding of all the tires which had been located at the North Landfill at the time the contract was entered into in early July, 1989. The contract in existence at the time of the formal hearing was scheduled to expire in October, 1989. The City, however, expected to enter into a follow-up contract to continue shredding tires. In February or March, 1989, the previous tire- shredder contractor walked off the job. Mosquitoes at the North Landfill are managed by the City's Bio- Environmental Services Mosquito Control Division. Spraying is only done "as needed", however. F. Hazardous Waste, Oil Recycling and Infectious Waste. The City has not established an independent hazardous waste disposal program, a used oil recycling program or a infectious waste disposal program. The City attempts to prevent disposal of hazardous waste, used oil and infectious waste through educating the public with signs posted at the North Landfill entrance and periodic inspections of waste disposed of at the North Landfill. The evidence failed to prove that hazardous waste, used oil or infectious waste is being disposed of at the North Landfill. The evidence also failed to prove that approval of the Modified Permit will cause the disposal of hazardous waste, used oil or infectious waste on Phase IIIb of the North Landfill. Specific Condition 5 of the Modified Permit prohibits the disposal of hazardous waste and infectious waste at Phase IIIb of the North Landfill. This condition also requires that the City provide a minimum of one spotter for each working fact of Phase IIIb to watch for unauthorized waste.
Recommendation Based upon the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that a final order be issued by the Department approving issuance of the Modified Permit, modified by the inclusion of a Specific Condition requiring that the City continue its litter patrols as represented at the formal hearing. DONE and ENTERED this 3rd day of January, 1990, in Tallahassee, Florida. LARRY J. SARTIN Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 3rd day of January, 1990. APPENDIX Case Numbers 89-0532, 89-0569 All of the parties except the Petitioners in case number 89-0569, have submitted proposed findings of fact. It has been noted below which proposed findings of fact have been generally accepted and the paragraph number(s) in the Recommended Order where they have been accepted, if any. Those proposed findings of fact which have been rejected and the reason for their rejection have also been noted. Ms.'s Holzendorf's Proposed Findings of Fact Proposed Finding Proposed Finding Paragraph Number in Recommended Order of Fact Number of Acceptance or Reason for Rejection See 49-52. The Consent Order was entered into on July 14, 1989. The last sentence is not supported by the weight of the evidence. See 49. 80. Whether a violation of Chapter 17- 711, Florida Administrative Code, has occurred is a conclusion of law. The weight of the evidence failed to prove that there is not program for the disposal of tires. The last paragraph of this proposed finding of fact is not supported by the weight of the evidence. IV See 54-55, 61-63, 73 and 77. IV-Hazardous Waste: 86. See 87-89. The second sentence is not supported by the weight of the evidence. Argument. Not supported by the weight of the evidence. V-Used Oil Recycling Plan: 86. See 87-89. The second sentence is not supported by the weight of the evidence. 86. See 87-89. The last paragraph is not supported by the weight of the evidence. Not supported by the weight of the evidence. Not relevant to this proceeding. The Modified Permit only involves a lined portion of the North Landfill. The Department's Proposed Findings of Fact Proposed Finding Paragraph Number in Recommended Order of Fact Number of Acceptance or Reason for Rejection 1 1-3. 2 2. 3 15. 4 18-19 and 26. 5 20. 6 22-23. 7 34-36. 8 26-29. 9 32-33. 10 30. 11 41-42. 12 43. 13 37-40. 14 49. 15 61-62 and 64. 16 55. 17 56 and 58. 18 74-78. 19 80 and 82-83. The City's Proposed Findings of Fact Proposed Finding Paragraph Number in Recommended Order of Fact Number of Acceptance or Reason for Rejection Contrary to testimony of Ms. Holzendorf. Statement of law. 3-4 Hereby accepted. 5 Statement of law. 6 10. 7-8 13. 9 9. 10 1-2. 11 1-2 and 7. 12 4. 13 5. 14 1. 15 6. 16-19 3. 20 14. 21 Hereby accepted. 22 7. 23 8 and 49. 24 16. 25-26 20. 27-28 Hereby accepted. 29-30 25. 31 Hereby accepted. 32-35 22. 36-43 Hereby accepted 44 35-36. 45 Hereby accepted. 46 35. 47 See 36. 48-49 Hereby accepted. 50 44. 51-52 46. 53-58 Hereby accepted. 59 47. 60 48. 61 46. 62-63 Hereby accepted. 64 27. 65-66 43. 67 31. 68 Hereby accepted. 69 33. 70 Hereby accepted. 71 33. 72 30. 73 32. 74 43. 75 30. 76-77 26. 78 42. 79 Not relevant to this proceeding. 80 45. 81-82 Hereby accepted. 83-84 44. 85-86 49-51. 87 49. 88 52. 89 Hereby accepted. 90 55-56. 91-93 56. 94 50. 95 56. 96 59. 97-100 56. 101 55. 102 Hereby accepted. 103 58. 104-112 These proposed findings of fact correctly quote testimony presented the formal hearing. at 113 61 and 64-65. 115 72. 116 66. 117 Hereby accepted. 118 67. 119 Hereby accepted. 120 69. 121 70. 122-123 70 and hereby accepted. 124 See 65. 125 65. 126-129 See 61-62. 130-131 77. 132 Hereby accepted. 133 75. 134 Not relevant to this proceeding. 135 77. 136 79. 137-139 These proposed findings of fact correctly quote testimony presented at the formal hearing. 140 80. 141 82-84. 142 84. 143 81. 144 85. 145-147 Hereby accepted. 148 Cumulative. 149 37-38. 150-152 38. 153-155 40. 156 39-40. 157-161 Hereby accepted. COPIES FURNISHED: Lacy Mahon, Jr., Esquire Mark H. Mahon, Esquire Russell L. Healey, Esquire Lacy Mahon, Jr. & Mark Mahon, P.A. 1120 Blackstone Building Jacksonville, Florida 32202 Robin G. Leigh and Geraldine Leigh 6026 Heckscher Drive Jacksonville, Florida 32226 William H. Congdon Assistant General Counsel Department of Environmental Regulation Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32399-2400 Daniel D. Richardson, Esquire Dale H. Twachtmann, Secretary Robin A. Deen, Esquire Department of Environmental Office of General Counsel Regulation Environmental Law Division 2600 Blair Stone Road City of Jacksonville Tallahassee, FL 32399-2400 Towncentre, Suite 715 421 West Church Street Jacksonville, Florida 32202
Findings Of Fact On November 29, 1988, Respondent, Trans Pac, Inc., (Trans Pac), a development company, filed its initial application for a construction permit to build a hazardous waste treatment and storage facility in Escambia County, Florida. Trans Pac's stock is owned by James Dahl of Los Angeles, California. Trans Pac's president is Steven Andrews. Steven Andrews is also president of The Andrews Group, d/b/a Chemical Development Company. Chemical Development Company is in the business of developing hazardous waste facilities. Sometime after filing its application, Trans Pac advertised for interested persons to contact it about the possible sale of the facility. At the time of the hearing, Trans Pac had not had any serious offers for the property and had not finally decided whether it will sell the facility. Trans Pac is seriously considering a joint venture arrangement, although no specifics as to such an arrangement have been formalized or finalized. When consideration is given to the unripe nature of this "proposed sale", it cannot be concluded that the above facts constitute competent and reliable evidence which would support the conclusion that Trans Pac had failed to give such reasonable assurances that the facility would be operated in accordance with Florida law. Too much speculation is required before such a conclusion can be reached. However, Trans Pac has stipulated that it will publish a notice of any sale prior to the closing of that sale if that event should occur. The notice would be published in accordance with the provisions and time periods established in Rule 17-103.15, Florida Administrative Code, and should afford an affected person a reasonable time to challenge the sale before the sale closes. Any contract of sale would incorporate the notice requirements and the sale would be made contingent upon compliance with the above conditions. Such a notice would afford any affected person the opportunity to challenge the ability of the transferee to operate the facility. With the above stipulation made a part of any permit, there is no failure by Trans Pac to provide reasonable assurances that the facility will be operated in accordance with Florida law. Escambia County is within the West Florida Planning Region. The West Florida Planning Region consists of Bay County, Escambia County, Holmes County, Okaloosa County, Santa Rosa County, Walton County and Washington County. The proposed site for the facility is just outside the community of Beulah, on County Road 99, northeast of and adjacent to the Perdido Landfill. The site is not within, but adjacent to the area designated by the West Florida Regional Planning Council as an area on which a hazardous waste temporary storage and transfer facility could be located. 2/ The proposed site is approximately one mile away from the Perdido River, an outstanding Florida water. The area is primarily a rural area. When the proposed location of this facility was announced in the local news, the value of property around the proposed site decreased. One person, who was within a few miles of the proposed site, lost the contract of sale on his property and was advised by the purchasers that no reduction in price would renew their interest. Another individual's property in the same area decreased in value by approximately $10,000. Many people in the Beaulah area had their dreams and the quiet enjoyment of their property threatened by the location of this facility. Some cannot afford to sell their property and relocate. At present there is no mechanism by which any of the property owners in proximity to the proposed site can recoup their losses. Some property owners believe that such a mechanism should include the establishment of some type of independent trust fund funded with enough money to cover an estimate of such losses, and an independent review of any disputed claims of loss. However, there is no provision under Florida law to impose a permit condition which establishes a procedure to cover the pecuniary losses of property owners close to the facility. The proposed facility will be a permanent storage and treatment facility and will have a maximum waste storage capacity of 106,000 gallons and a maximum treatment capacity of 2,000 gallons per day for neutralization, 5,000 gallons per day for organic separation, 2,000 gallons per day for ozonation, and 4,000 gallons per day for solidification. Hazardous waste is a solid waste which exhibits one or more of the following characteristics: a) ignitability, b) corrosivity, c) reactivity, d) EP toxicity. Such waste can be further classified as a toxic waste or as an acute hazardous waste. 3/ An acute hazardous waste is a solid waste which has been found to be fatal to humans in low doses or, has been shown in studies to have an oral, inhalation or dermal toxicity to rats or rabbits at a certain level, or has been shown to significantly contribute to an increase in serious irreversible, or incapacitating reversible, illness. A toxic waste is any waste containing any one of a number of specified constituents. A "characteristic" of hazardous waste is identified and defined only when a solid waste with a certain type of characteristic may: a) cause or significantly contribute to, an increase in mortality or an increase in serious irreversible, or incapacitating reversible, illness, or b) pose a substantial present or potential hazard to human health or the environment when it is improperly treated, stored, transported, disposed of or otherwise managed, and the characteristic can be: a) measured by an available standardized test, or b) can be reasonably detected by generators of solid waste through their knowledge of their waste. Put simply, hazardous waste is very dangerous to both humans and the environment and will kill or permanently incapacitate living beings and/or make the environment unlivable. Such waste has the potential to create a hazardous waste desert. A solid waste has the characteristic of ignitability if: a) it is a liquid, other than an aqueous solution containing 24 percent alcohol, which has a flashpoint of 60.C (140.F), b) it is not a liquid and is capable, under standard temperature and pressure, of causing fire through friction, absorption of moisture or spontaneous chemical changes and, when ignited burns so vigorously and persistently that it creates a hazard, c) it is an ignitable compressed gas, or d) it is an oxidizer. A solid waste has the characteristic of corrosivity if: a) it is aqueous and has a pH less than or equal to 2 or greater than or equal to 12.5 (strong acids or bases), or b) it is a liquid and corrodes steel at a rate greater than 6.35 millimeters (0.250 inch) per year at a test temperature of 55.C (130.F). A solid waste has the characteristic of reactivity if: a) it is normally unstable and readily undergoes violent change without detonating, b) it reacts violently with water, c) it forms potentially explosive mixtures with water, d) when mixed with water, it generates toxic gases, vapors or fumes in a quantity sufficient to present a danger to human health or the environment, e) it is a cyanide or sulfide bearing waste which, when exposed to pH conditions between 2 and 12.5, can generate toxic gases, vapors or fumes in a quantity sufficient to present a danger to human health or the environment, f) it is capable of detonation or explosive reaction if it is subjected to a strong initiating source or if heated under confinement, g) it is readily capable of detonation or explosive decomposition or reaction at standard temperature and pressure, or h) it is a forbidden or Class B explosive as defined in another federal rule. A solid waste has the characteristic of EP toxicity, if, using certain test methods, the extract from a representative sample of the waste contains certain contaminants (arsenic, barium, cadmium, chromium, lead, mercury, selenium, silver, endrin, lindane, etc.) at a concentration greater than or equal to specified levels for that contaminant. Although the above definitions sound exotic, the wastes which are defined are more often than not the waste generated by routine, normal living. Such waste is the result of almost any type of motor vehicle or machinery maintenance, such as oil and battery changes, metals manufacturing and finishing services, including auto body repair services, transportation services, construction and building repair services, medical and laboratory services, boat building and repair services, dry cleaning, printing of newspapers and 4/ magazines or agriculture, such as gardening. Further, such waste is generated by almost every commercial business category. Almost every person is either directly responsible through use or manufacture, or indirectly responsible through demand for a product or life-style, for the generation of hazardous waste in small quantities. These small individual quantities of hazardous waste add up to a significant portion of all the hazardous waste generated in this state and a significant portion of this waste is not disposed of properly. Improper disposal includes sending the waste to a local landfill or pouring such waste down the drain. Trans Pac's proposed facility will not be permitted for radioactive waste. The types of waste which will be treated and/or stored at the proposed facility are: Singularly or in any combination: D002 Waste --- A solid waste that exhibits the characteristic of corrosivity, but is not listed as a hazardous waste in Subpart D of 40 CFR 261. D003 Waste --- A solid waste that exhibits the characteristic of reactivity, but is not listed as a hazardous waste in Subpart D of 40 CFR 261. D004 Waste --- EP toxicity, contaminant arsenic D005 Waste --- EP toxicity, contaminant barium D006 Waste --- EP toxicity, contaminant cadmium D007 Waste --- EP toxicity, contaminant chromium D008 Waste --- EP toxicity, contaminant lead D010 Waste --- EP toxicity, contaminant mercury D011 Waste --- EP toxicity, contaminant silver Singularly or in any combination: F001 Waste --- TOXIC -- Spent halogenated solvents used in degreasing: tetrachloroethylene trichloroethylene, 1,1, 1-trichloroethane, methylene chloride, carbon tetrachloride, and chlorinated fluorocarbons, all spent solvent mixtures/blends used in degreasing containing, before use, 10 percent or more of one or more of the above halogenated solvents or those listed in F002, F004, or F005; still bottoms from the recovery of these solvents and mixtures F002 Waste --- TOXIC -- Spent halogenated solvents: tetrachloroethylene, methylene chloride, trichloroethylene, 1,1,1- trichloroethane, chlorobenzene, 1, 1, 2-trichlor-1, 2, 2-trifluoroethane, ortho-dichlorobenzene trichlorofluoromethane, 1, 1, 2 - trichloroethane, spent solvent mixtures/blends containing, before use, a total of 10 percent or more of one of the solvents listed in F001, F004, F005; and still bottoms from the recovery of these spent solvents and mixtures F003 Waste --- IGNITABLE -- Spent non-halogenated solvents: xylene, acetone, ethyl acetate, ethyl benzene, ethyl ether, methyl isobutyl ketone, n-butyl alcohol, cyclohexanone, methanol, all spent solvent mixtures/blends containing, before use, one or more of the above non-halogenated solvents and a total of 10 percent or more of the solvents listed in F001, F002, F004, F005; and still bottoms from the recovery of these spent solvents and mixtures F004 Waste --- TOXIC -- Spent non-halogenated solvents: creosols and cresylic acid, nitrobenzene, spent solvent mixtures/blends containing, before use, a total of 10 percent or more of the above non-halogenated solvents or the solvents listed in F001, F002, F005; and still bottoms from the recovery of these spent solvents and mixtures F005 Waste --- IGNITABLE, TOXIC -- Spent non- halogenated solvents: toluene, methyl ethyl ketone, carbon disulfide, isobutanol, pyridine, benzene, 2-ethoxyethanol, 2- nitropropane, spent solvent Mixtures/blends containing, before use, a total of 10 percent or more of the above non-halogenated solvents or those solvents listed in F001, F002, F004; and still bottoms from the recovery of these spent solvents and mixtures F006 Waste ---TOXIC -- Wastewater treatment sludges from electroplating from certain specified processes Singularly or in any combination: F007 Waste --- REACTIVE, TOXIC -- Spent cyanide plating bath solutions from electroplating operations F008 Waste --- REACTIVE, TOXIC -- Plating bath residues from the bottom of plating baths from electroplating operations where cyanides are used in the process F009 Waste --- REACTIVE, TOXIC -- Spent cleaning and stripping bath solutions from electroplating operations where cyanides are used in the process F010 Waste --- REACTIVE, TOXIC --Quenching bath residues from oil baths from metal heat treating operations where cyanides are used in the process F011 Waste --- REACTIVE, TOXIC -- Spent cyanide solutions from salt bath pot cleaning from metal heat treating operations F012 Waste --- TOXIC --Quenching wastewater treatment sludges from metal heat treating operations where cyanides are used in the process Singularly or in any combination: Petroleum refining: K048 Waste --- TOXIC -- Dissolved air flotation (DAF) float from the petroleum refining industry K049 Waste --- TOXIC -- slop oil emulsion solids from the petroleum refining industry K050 Waste --- TOXIC -- heat exchanger bundle cleaning sludge from the petroleum refining industry K051 Waste --- TOXIC -- API separator sludge from the petroleum refining industry K052 Waste --- TOXIC --- tank bottoms (leaded) from the petroleum refining industry Iron and steel: K062 Waste --- CORROSIVE, TOXIC -- spent pickle liquor generated by steel finishing operations of facilities within the iron and steel industry Ink formulation: K086 Waste --- TOXIC -- solvent washes and sludges, caustic washes and sludges, or water washes and sludges from cleaning tubs and equipment used in the formulation of ink from pigments, driers, soaps and stabilizers containing chromium and lead Secondary lead: K100 Waste --- TOXIC -- wastewater leaching solution from acid leaching of emission control dust/sludge from secondary lead smelting The federal law which governs hazardous waste is the Resource Conservation and Recovery Act (RCRA) and its amendments. The RCRA was part of the initial federal effort to manage hazardous waste and expressed a clear preference for the reduction of hazardous waste over managing such wastes at treatment, storage or disposal facilities. The Act required EPA to develop a national plan to manage and regulate hazardous waste and provide states with incentives to develop state hazardous waste management plans. Most of the incentives were based on the availability of federal funds. The federal funds were contingent on the states assuring EPA that a particular disposal site would be available for disposal of any waste generated by a remedial action taken under the Act. In 1980, Congress passed the Comprehensive Emergency Response Liability Act (CERCLA). The Act granted EPA the authority and funds to respond to uncontrolled site cleanup, emergency remedial activities, spills and other incidents due to hazardous waste. 5/ As of November, 1989, five such remedial sites are located in Escambia County. The Act also defines the liability of businesses that generate, transport and dispose of hazardous waste. Generators of hazardous waste, generally, have "cradle to grave" liability for the waste they generate. In 1980, the Florida Legislature enacted the state's first hazardous waste law. The law primarily adopted the federal regulations and guidelines on hazardous waste and established separate procedures for permitting and site selection of hazardous waste facilities. The act also directed DER to develop and implement a state hazardous waste management plan. The portions of the 1980 law relative to site selection (403.723, Florida Statutes) provided a cabinet override of a local decision adverse to the location of a hazardous waste facility. In order to obtain a cabinet override, the facility had to have been issued a permit by DER. Need for a hazardous waste facility was not addressed in either the permitting or site selection processes of the Act. In 1983, the legislature passed the Water Quality Assurance Act. The Act amended 403.723, Florida Statutes, to provide that each county prepare a Hazardous Waste Facility Needs Assessment and "designate areas within the County at which a hazardous waste storage facility could be constructed to meet a demonstrated need." The Act further provided in 403.723, Florida Statutes, that, after the counties had completed their assessments, each regional planning council, likewise, would prepare a regional Hazardous Waste Facility Needs Assessment and "designate sites at which a regional hazardous waste storage or treatment facility could be constructed." The regional Assessment included a determination of the quantities and types of hazardous waste generated in the region, a determination of the hazardous waste management practices in use within the region, a determination of the demand for offsite hazardous waste management services, a determination of existing and proposed offsite management capacity available to hazardous waste generators, a determination of the need for additional offsite hazardous waste facilities within the region, and the development of a plan to manage the hazardous waste generated in the region and/or to provide additional offsite hazardous waste treatment or storage facility needs. As noted earlier, these plans and designations were required to be made part of the county and regional comprehensive plans. The regional Assessment was completed by the West Florida Regional Planning Council in August of 1985. The assessment was based on a survey of suspected hazardous waste generators in the region. An overall response rate of 76.8 percent was received. The study showed that all types of hazardous waste, except for cyanide waste, are generated within the West Florida Planning Region. 6/ The quantity of hazardous waste produced annually within the region was estimated to be 14,245,064 pounds. The estimates for each County were as follows: Escambia County, 4,582,872 pounds; Okaloosa County, 3,203,534 pounds; Bay County, 2,433,343 pounds; Santa Rosa County, 1,866,831 pounds; Holmes County, 381,840 pounds; Walton County, 229,984 pounds; and Washington County, 170,244 pounds. Based on the survey responses, the study estimated that 11,903,738 pounds (83.6%) of hazardous waste generated annually within the region was not being properly treated or disposed of. The vast majority of the waste (78.1%) found to be improperly treated was a combination of waste oils and greases, spent solvents, and lead-acid batteries. Neither the waste oil and greases or lead- acid batteries are wastes which will be managed at the proposed Trans Pac facility. The study found that a recycling or reuse market existed for waste oil and greases, spent solvents and lead-acid batteries; and therefore, there was no need for a transfer/temporary storage facility. The remaining 2,602,630 pounds of hazardous waste not being properly managed was generated by both large and small quantity generators and is subject to a variety of appropriate waste management methods. The management plan adopted by the West Florida Regional Planning Council sought to encourage first waste reduction, second waste recycling, reuse or recovery, third onsite treatment or incineration methods, and fourth transporting wastes to offsite temporary storage facilities. One of the goals of the plan was to discourage, as much as possible, the importation of hazardous waste from outside the region, and particularly, with the close proximity of the Alabama state line, from outside the state. The plan concluded that due to the small quantity of mismanaged hazardous waste in the region there was no need for a permanent treatment and storage facility. The only need found to exist within the region was for a temporary transfer and storage facility. That need has since been met by a temporary transfer and storage facility located in Pensacola, Florida. 7/ However, Escambia County issued a Certificate of Need for a hazardous waste transfer, storage and treatment facility to Trans Pac on February 28, 1989. The Certificate of Need was issued pursuant to County Ordinance Number 85-7. The ordinance provides in relevant part that a Certificate of Need may be issued upon the Board's determination that the service or facility for which the certificate is requested "answers a public need, is necessary for the welfare of the citizens and residents of the county, is consistent with any solid waste management plan adopted pursuant to [this ordinance], and will not impair or infringe on any obligations established by contract, resolution, or ordinance." The ordinance further provides that no Certificate of Need may be denied solely on the basis of the number of such certificates in effect at the time. The issuance of that certificate appears to have been granted on the sole representations of need given by Trans Pac to gain issuance of the certificate and at a time when the Board's attention and consideration of the facility was on matters other than the true need as established in the regional plan or the exact service Trans Pac would actually provide. The evidence suggests that no formal or informal investigation of Trans Pac's representations or on the actual need of the region was conducted by the Board. Such an investigation was informally conducted by some of the Board members after the proposed facility became apparent to members of the public. The members of the public raised a great hue and cry of opposition towards the construction of the facility and prompted a closer look at Trans Pac's representations. The Board members who did conduct the informal investigation found there was no need for the facility within the county or region and discovered that the Certificate of Need had been issued in error. No evidence was presented that the County had ever formally rescinded the issuance of Trans Pac's certificate. However, the evidence did show that there was a de facto rescission of Trans Pac's certificate when the County authorized the filing of this administrative action. 8/ Trans Pac would have the ability to treat and store some of the waste generated in the region and some waste which is not generated in the region. Trans Pac would not treat or store a large part of the waste generated in the region. The small amount of regional waste which Trans Pac would be capable of handling would not be profitable. In order to be profitable, most of Trans Pac's waste would have to come from outside the region and/or the State. In 1986, Congress passed the Superfund Amendments and Reauthorization Act (SARA). The Act amended CERCLA to provide that, three years after the Act's effective date, a state could not receive any superfund monies unless the state entered into an agreement with the President providing assurance of the availability of hazardous waste treatment or disposal facilities which would have enough capacity for the treatment, disposal or storage of all hazardous waste generated within the state over the next 20 years. SARA was enacted because Congress did not believe that Superfund money should be spent in states that were taking insufficient steps to avoid creation of more superfund sites. Such steps included some provision for the future secure disposal or management of hazardous waste generated within that state. It was feared that certain states, because of public opposition and political pressure, could not create and permit enough hazardous waste facilities within their borders to properly manage, either through disposal or treatment, the hazardous waste generated within those states. Put simply, SARA requires each state to keep its own house clean and be responsible for the hazardous waste generated within its borders. SARA did not require the states to develop or permit hazardous waste facilities. The Act only required that each state provide assurances that the state possessed the capacity to manage or securely dispose of hazardous waste produced in that state over the next 20 years. Such assurances could take the form of developing hazardous waste treatment and storage facilities within that state's borders or by exporting its waste to another state. However, in order to provide adequate assurances of capacity if a state chose to export its hazardous waste, that state must enter into an interstate or regional agreement with the importing state. Such agreements could include contracts to ship hazardous waste to public or private facilities. Other assurances of capacity could be obtained through programs for the reduction of hazardous waste within the state. Whatever method of assurance adopted by a state, the goal of SARA was to force the states to provide assurances that their legislative program for the management of hazardous waste generated within their borders could work and would be used. In October, 1979, Florida entered into a Capacity Assurance Plan (CAP) with the President. The CAP established and implemented the statewide management plan required under the state statutes described earlier and under the SARA. The CAP is made up of four major components and includes a regional agreement between Florida and the other EPA Region IV Southeastern States. The four major components of the CAP are: 1) an assessment of past hazardous waste generation and capacity at facilities within or outside of Florida; 2) documentation of any waste reduction efforts that exist or are proposed for the future; 3) future projections of waste generation and capacity either within or outside of Florida and an assessment of any capacity shortfalls; and 4) descriptions of plans to permit facilities and a description of regulatory, economic, or other barriers which might impede or prevent the creation and permitting of such new facilities. The data gathered for the CAP showed that Florida currently has and will have a shortfall in its capacity to properly manage and dispose of its own hazardous waste. Therefore, Florida must provide and implement a way to increase its capacity for the management and disposal of the waste it now generates and will generate in the future or lose its funding for cleanup of superfund sites. Florida's plan to meet that shortfall consists of the interstate agreement, a commitment to a multistate treatment and storage facility and underfunded and understaffed incentives to reduce the generation of hazardous waste. The interstate agreement between the EPA Region IV Southeastern States is an effort at cooperative planning between these states for the management of hazardous waste. In reality, every state, including Florida, imports some hazardous waste from other states. Florida's imports are predominantly spent solvents and waste which can be burned as fuel. All of the imported waste was treated at recovery facilities located within the state. The majority of these imports came from Alabama, Georgia, Louisiana, Virginia and South Carolina. However, even with these imports, Florida is primarily an exporter of hazardous waste. The main recipients of Florida's exports are Alabama and South Carolina. 9/ The agreement, therefore, includes provisions on applicable interstate waste flow characteristics and quantities and on projected exports and imports between and among the participating states. The agreement provides that hazardous waste facilities presently exist or will be created and permitted to manage such exported waste. Besides the interstate agreement, Florida's plan includes a commitment to permit a multipurpose hazardous waste storage and treatment facility. The site selected for the facility is located in Union County. The permit has not yet been issued for this facility. However, the application for the facility is being processed by DER under the special statutes dealing with the Union County facility. Trans Pac's proposed facility is not required for the state to meet its assurances under the CAP entered into with the President. The hoped for benefit of the commitment to a statewide multipurpose facility is to allow Florida to reduce the amount of waste requiring export, but, at the same time allow enough waste to be exported, in accordance with the interstate agreement, to supply a sufficient waste stream to facilities in other states which need such additional waste in order to stay open. Florida's CAP also includes a waste reduction plan. The waste reduction plan is embodied in its Waste Reduction Assistance Program. The philosophy of the program is that recycling (particularly waste oil) and reduction of hazardous waste will produce greater long term across-the-board cost savings to both business and government, as well as the obvious benefit of having less of this very dangerous pollutant around in the environment. The program is not mandatory and is information-oriented. It consists of technical assistance, limited economic incentives (some of which have not been funded by the legislature), research and development, education and a waste exchange program operated by FSU and the Chamber of Commerce. The waste exchange program puts businesses in touch with other businesses who can use their waste for recycling or recovery. Additionally, in conjunction with Florida's CAP, the legislature passed Senate Concurrent Resolution #1146. The resolution states in part that, except for the siting of the Union County facility, "the Legislature has not and does not intend to enact barriers to the movement of hazardous waste and the siting of hazardous waste facilities for the storage, treatment, and disposal, other than land disposal, of hazardous waste." As can be seen from an overview of Florida's CAP, Trans Pac's proposed facility, while not being directly a part of the CAP, will have an impact on the implementation of that plan should state need not be a criteria for the issuance of a permit. A few of these potential impacts are listed below. First, a facility the size of Trans Pac's proposed facility has the potential to divert some waste away from the proposed Union County facility and may cause that facility to be unprofitable and inoperable. Second, Trans Pac's proposed facility may enable the State to handle more of its waste within its borders, thereby reducing its exports and Florida's dependency on the good offices of other states. Such reduction may or may not have an adverse impact on the interstate agreement contained in the CAP if Florida cannot meet the amount of waste established for export under that agreement. Third, Trans Pac's proposed facility has the potential to decrease the effectiveness of the State's hazardous waste reduction program by encouraging the use of its facilities instead of reduction, recycling or recovery methods. Such a decrease would be highly dependent on the prices charged by various hazardous waste facilities vis. a vis. reduction, recycling or recovery expenses, the cost of transportation to the various types of facilities, and the ease of use among the various types of facilities and reduction methods. Fourth, not considering at least the needs of the State for a hazardous waste facility allows the state to become a dumping ground for hazardous waste generated in other states. 10/ No evidence was presented on any of these points and because of the conclusions of law such an issue is not ripe for consideration in this case.
Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the Department of Environmental Regulation enter a final order granting the application of Trans Pac, Inc., for a permit to construct a hazardous waste treatment and storage facility in Escambia County, Florida subject to a permit condition requiring a pre-sale notice as described in this Recommended Order. DONE and ENTERED this 16th day of April, 1990, in Tallahassee, Florida. DIANE CLEAVINGER Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 Filed with the Clerk of the Division of Administrative Hearings this 16th day of April, 1990.
Findings Of Fact The site of the proposed landfill is located near Seffner, Florida, and is northwest of and adjacent to two previously used landfill sites. The proposed site meets all zoning requirements, is not located in the vicinity of an airport so as to be subject to Federal Aviation Administration regulations, and no natural or artificial body of water is located within 200 feet of the site. Inasmuch as the operation of the earlier used landfills created much of the opposition presented at this hearing, a short history of Hillsborough County's landfill operation follows. Hillsborough County opened the old Taylor Road landfill, a tract containing 42 acres, in 1976 and closed it in 1980 when it became full. The old Taylor Road landfill site abuts to the southeast the site being applied for it these proceedings. In 1977, pursuant to a consent decree between the City of Tampa and the Federal Environmental Protection Agency (petitioners' Exhibit 14) , the City of Tampa's incinerator, at which most of the solid waste in Hillsborough County was disposed, was ordered closed by 1979. The City of Tampa engaged consultants to locate an acceptable site for use as a sanitary landfill. In 1978, Hillsborough County, pursuant to an agreement with the City of Tampa (Petitioners' Exhibit 15), assumed the responsibility for solid waste disposal throughout Hillsborough County. Thereafter, it was determined that the best site, from an ecological point of view, was adjacent to the old Taylor Road landfill. Prior to obtaining DER approval to expand this site, the selection of which the County Commission approved in April 1979, time for closing the incinerator was running out and the County was given permission to utilize a 10.6 acre borrow pit, adjacent to and west of the old Taylor Road site, which bad been given to the County by the State Department of Transportation. This approval was given by DER in January 1980. When Hillsborough County assumed the responsibility for waste disposal throughout the County, waste from Temple Terrace and Plant City was added which waste had not been disposed of by the City of Tampa incinerator. The County entered into a contract with Waste Management Inc., a large company specializing in developing and operating waste disposal facilities in many parts of the United States and abroad, to design and operate Hillsborough Heights Sanitary Landfill. The 10.6 acre site would quickly be filled so it was necessary for the County to `reapply to DER for a permit to operate a landfill capable of serving the County until 1984. At that time, modification to the incinerator to comply with clean air standards and operate as an energy recovery unit will be complete and it can be restored to operation. Before that hearing was held the 10.6 acre site filled, and it became necessary for the County to request an emergency permit from DER to operate a landfill on part of the proposed site. Following a hearing on this request, DER issued an order in July 1980, authorizing Hillsborough County to operate a sanitary landfill on 41.5 acres adjacent to the old Taylor Road landfill and the 10.6 acre borrow pit site. By the application here under consideration, as modified by Stipulation and Settlement Agreement, the Petitioners are seeking to expand this 41.5 acre site to 64 acres, thereby adding 22.5 acres to the already approved site. Two thousand tons of solid waste are deposited at this site daily, six days a week. The primary concern respecting a sanitary landfill in the proposed location is the potential for pollution of the Floridan aquifer which underlies this site and the fact that the site is located in a karst area. Unless an impervious surface lies naturally or is constructed between the base of the proposed landfill and the Floridan aquifer, pollution of the aquifer could occur should leachate from the site accumulate and percolate to the aquifer. All of Hillsborough County and much of Florida is underlain by limestone containing karst features. One unfortunate characteristic of the karst formation is the potential for the limestone to dissolve thereby creating cavities into which the surface overburden falls to create a sinkhole. Some liquids, including leachate, will dissolve limestone, thereby creating cavities into which the overburden can fall. This risk is reduced by the thickness of the clay layer over the limerock which inhibits the entry of surface water into the aquifer. The proposed site has a basal clay from five feet to twenty feet thick above the limerock. However, this base clay is not believed to be continuous throughout the site to this minimum thickness due to sand columns, pinnacles and other anomalies that have formed. Petitioners propose to remove some 35 to 45 feet of the overlying sand and intermediate clay down to the base clay to form the pit into which waste will be deposited. The thickness of this base clay over the limerock will then be tested. If at least five feet of clay is not over the limestone, Petitioners will install a minimum of five feet of recompacted clay liner with a density of at least 2.5 - X 10 (to the seventh power) cm/sec. over the bottom of the landfill. Impervious sidewalls around the edges of the landfill will be constructed of either a minimum of five feet of compacted lay or of Hypalon, a synthetic sidewall liner material, in accordance with the Stipulation Agreement. If Hypalon is used, it will be covered with at least two feet of soil before waste is put in the landfill. Petitioners will install a leachate collection system for monitoring and removing, if necessary, leachate that may collect in the bottom of this landfill. Perimeter ditches will be constructed around the bottom of the landfill with the floor of the landfill sloped toward the perimeter ditches. These ditches will contain perforated pipe to conduct leachate to sumps from which the leachate can be removed. Should leachate be generated before the landfill is closed, the leachate will be extracted by pumping; and discharged for absorption by solid waste at the landfill, or trucked to a treatment plant for processing. After each day's operations at this landfill, at least six inches of soil will be placed over the compacted solid waste accepted that day. This should provide reasonable protection for rodents and insects. Final soil coverage to be used as a top liner for this landfill will consist of at least eighteen inches of compacted clayey soil overlain by six inches of loosely compacted soil in order to provide a final cover to minimize infiltration of surface water runoff. The final surface of the landfill will be graded and sloped so rainfall will not puddle on the landfill but run off to the perimeter of the landfill. Thus, when completed, the deposited waste will be encased in a relatively impermeable container on all surfaces. Perimeter ditches will be installed to keep surface waters out of the landfill, and these ditches will be lined with 18 inches of clay to inhibit seepage of water to the landfill from these ditches. The ditches will discharge into holding ponds located south and southwest of the site. Surface waters in this vicinity flow south to southwesterly. Access to the landfill will be controlled by a perimeter fence and entry gate which will be manned during all hours of operation and locked when not manned. Disposal of hazardous or infectious waste will not be allowed. Spotters will be stationed at the dump site to inspect waste entering the site and to detect any hazardous or infectious waste that may reach the landfill. Household wastes will be accepted and these may include small quantities of paints, insecticides and other material that in large quantities would be considered hazardous. Litter will be controlled by temporary fencing or portable litter fences. Bare limestone exposed by excavation will be protected from flow of water from the active landfill area by berms until such time as the limestone is covered by the five feet of compacted base clay. During excavation of the landfill, a geologist or hydrologist will be stationed at the site by the operator of the landfill to determine the nature and extent of earth materials encountered. Anomalies found during excavation will be recorded and reported. This will serve to insure the impervious five feet clay base between the landfill and the limestone. Methane gas control will be provided by the base clay underlying the landfill, the liners to be constructed around the landfill perimeter, and the clay soil cover. Rising gas will vent through the soil cover. If odor problems occur, gas vents will be installed at the high point of the landfill to provide a controlled path for these gases which can then be flared. Groundwater monitoring wells will be installed around the perimeter of the site to detect any leachate which may escape. Wells upgrade of the site will be installed to determined whether metals or other impurities detected in the downgrade monitoring wells come from the landfill or are in the groundwater before it gets to the landfill. The geology of the site is complex. Numerous test borings have been taken in the 218.6 acre tract, sinkholes in the area have been studied, special photographs of the site have been taken to show where changes and moisture in soil occur as well as other geologic features. All available information shows the 64 acre parcel in the southern part of the 218.6 acre site to be the safest in the site from a catastrophic subsidence (sinkhole) Although the Intervenors contend that the site is subject to sinkholes, no credible evidence was presented that this site is more subject to a catastrophic subsidence than is the remainder of Hillsborough County. Competent evidence was presented that a sinkhole is less likely to develop at the proposed 64 acre site than in other areas of Hillsborough County. Intervenors' and the public witnesses' primary complaint and vehement opposition to the granting of the permit here requested stem largely from the manner in which the predecessor landfills in this area have been operated; and rightly so. Infectious waste has been dumped on the site on several occasions; inadequate daily cover has been provided; dogs have roamed the site; birds have been killed by insecticides dumped on the site; papers have blown over the site; surface waters from the site have been pumped outside the site in such a manner that well water could be contaminated; inadequate precautions have been taken to prevent rodent and insect infestation of the site; and unpleasant odors have emanated from the site. These complaints go to conditions that existed in the past; they are not necessarily harbingers of things to come. Hillsborough County's lease law should preclude dogs roaming the site. Strict adherence to the conditions of the permit will eliminate the vast majority of those complaints.
Findings Of Fact The Petitioner is comprised of residents of the residential neighborhood in close proximity to the construction and demolition debris disposal site or pit maintained by Whitrock Associates, Inc.. Its President is Jim Whitfield, a party Respondent to the subject Consent Order. The Petitioner complains that illegal dumping is occurring at the disposal site, that there is no guard maintained at the gate, and that the gate is not locked when no one is present. It complains that DEP does not inspect the facility enough by only inspecting it once per year and that the facility should be closed down. Its chief objections are that refuse is being dumped in what it considers to be a stocked fishing lake. The "lake" is a borrow pit partially filled with water, which resulted when excavation of the dirt in the pit penetrated below the ground water table. The chief objections raised by the Petitioner amount to the nuisance "eye-sore" nature of the facility and the concomitant deleterious effect its presence and activity has arguably had on property values and the Petitioner's members' ability to re-sell homes. The Petitioner's standing is not contested. The Respondent is an agency of the State of Florida charged with regulating landfills, construction and demolition debris disposal sites and other such waste sites, within the purview of Section 403.161, Florida Statutes, concerning pollution discharge and, more specifically, rules contained in Chapter 62-701, Florida Administrative Code, concerning solid waste and similar materials and disposal facilities. DEP is a party Respondent to this proceeding because the Consent Order it has entered into with the owner and operator of the site, Whitrock Associates, Inc., has been challenged, within the point of entry period afforded by that Consent Order, by the above-named Petitioner. Whitrock Associates, Inc. maintains a construction and demolition debris disposal site, in the form of an excavated pit, located between Carmel Drive and Vicky Leigh Road in Fort Walton Beach, Okaloosa County, Florida. An inspection of the facility by DEP personnel on October 13, 1994 revealed the disposal of organic debris in surface water at the site, the disposal of which is illegal in ground or surface waters. It also came to DEP's attention at this time that the facility was operating with an expired general permit. Consequently, an enforcement action was initiated against the owner and operator of the facility. After extensive negotiations, the subject Consent Order resulted, which has been challenged by the Petitioner. The essential provisions of the Consent Order would require that the Respondent to it, meaning Whitrock Associates, Inc., cease disposal of construction and demolition debris at the facility, which is not "clean debris". "Clean debris" is inert debris, such as brick, glass, ceramics, and uncontaminated concrete, including embedded pipe or steel. The Consent Order provides that within 60 days of its effective date, all such non-conforming construction and demolition debris shall be removed from the water at the site and that the Respondent, Whitrock Associates, Inc., shall submit a notification of intent to use a general permit for the construction and demolition debris disposal facility to DEP. Failure to proceed to obtain the general permit would result in closure of the facility, pursuant to Rule 62-701.803(10), Florida Administrative Code. The Consent Order also provides that a $2,300.00 civil penalty and cost payment shall be made to DEP in full settlement of the matters addressed in the Consent Order. That payment shall be made within 30 days of the effective date of the Consent Order. The Consent Order then enunciates, in great detail, the manner in which future penalties will be assessed for any violation of the Consent Order and related time limits, as well as payment methods and circumstances. It also provides a means for handling of delays in compliance with the Consent Order. It provides the means for enforcement of the terms of the Consent Order. Billy Ross Mitchell is an Environmental Specialist with 14 years of experience with DEP. He works in the solid waste section. Among his other duties, he inspects solid waste disposal facilities. He has a degree in environmental resource management. Mr. Mitchell established that this is the type of facility, where, because of the disposal of inert construction debris, which does not pose a significant pollution threat, a so-called "general permit" is sufficient authorization for operation of the facility. The facility was operating with an expired general permit at the time of Mr. Mitchell's inspection, but a new general permit has since been authorized. Mr. Mitchell performed the inspection of the facility, at which he observed illegal construction debris being placed in the water at the site. DEP's rules allow inert material, such as brick, glass, ceramics, and so forth to be placed in water at the site, which, in essence, is a borrow pit. The rules forbid organic materials, such as shingles, lumber and other similar materials, which can sometimes be constituted of pollutant substances, from being placed in the surface or ground water. As shown by the Respondent's Exhibit 3, a letter from Mr. Cooley, a District Director of DEP, to Mr. Lawrence Sidel of the Petitioner, uncontaminated dirt and "clean debris", such as chunks of concrete and the like, are not considered under Florida law to be solid waste. DEP takes the position that there is no prohibition against a person using clean fill, without a required permit, to fill land or bodies of water that are not "state jurisdictional water." The water body on the Whitrock property is not a state jurisdictional lake or water body. It is an old borrow pit, wholly contained on the Whitrock property. State law allows its owners to fill it with dirt or clean fill. Whitrock is not allowed to use any material classified as "solid waste" in filling the pit, hence the violation cited to that firm in the particular mentioned above, concerning the non-inert construction debris that was placed in the water. The Respondent's Exhibit 4 is an engineer's report prepared for the Whitrock facility involving the "notification of proposed use of a general permit" process for the operation of the construction and demolition debris disposal facility. This is the general permit notification process and general permit referenced in the Consent Order. 1/ The site has been used for many years as a borrow pit for dirt fill material or sand, as well as a disposal site for construction debris. In the general permit achievement process, the owner proposes to grade the site so that the final grade is the original, natural grade, with a slight two percent top slope to promote runoff to surrounding retention swales which will be installed at the site. The soil borings reflect that at all depths tested, sand is the underlying soil at the site. The borrow pit has been excavated below the natural water table, which has resulted in ponding of water on the floor of the borrow pit. This is proposed to be filled with "clean" debris, as it is received on site. Clean debris is solid waste which is virtually inert and which poses no pollution threat to ground or surface waters, is not a fire hazard, and is likely to retain its physical and chemical structure under expected conditions of disposal or use. Examples of it are as depicted in paragraphs six and seven, supra. Clean debris disposal is thus proposed within the pit bottom to an elevation of one foot above water table, above which construction and demolition debris will be disposed. The owner of the facility will be the person responsible for operation, maintenance, and closure of the proposed disposal facility. Procedures will be followed to control the types of waste received, the unloading, compaction, application of cover, final cover, and control of storm water at the site. The existing perimeter fence will remain with a lockable gate at the entrance to the site. In accordance with Rule 62-701.803(8), Florida Administrative Code, at least one spotter/operator will be on duty when the site is operating to inspect incoming waste. If prohibited waste is discovered, it will be separated from the waste stream and placed in appropriate containers for disposal at a properly-permitted facility. A commercial dumpster is located on site for unpermitted waste and is regularly emptied by a sanitation contractor. This practice is proposed to continue with the issuance of the general permit for the construction and demolition debris facility. Construction and demolition debris filling operations will proceed from the northwest corner of the site and progress in an easterly direction along the north property fence line. Due to the depth of the existing cut, approximately 25 feet, it will take approximately three separate "lifts" of waste and compacted material in order to reach a finished grade elevation, to match the original grade of the surrounding terrain. Additional soils required for intermediate cover material and final cover will be obtained off site from other sources. Filling operations should allow for approximately a 100-foot wide working face to aide in keeping a manageable disposal area. A dozer and front-end loader will be available on the site to compact waste material into the "working face." Each lift will be six to eight feet thick. Closure of each portion of the facility will occur as waste compaction approaches original grade. Final cover, seeding or planting of vegetated cover will be placed during stages, within 180 days after reaching final-design waste elevations. The final cover will consist of a 24-inch thick soil layer, with the top six inches being capable of supporting vegetation. The site shall be graded to eliminate ponding, while minimizing erosion. Upon final cover placement across the site, the owner will notify DEP within 30 days. Storm water will be controlled via retention swales surrounding the site. The swales are sized to accommodate one-half inch volume across the site. These specifications are those proposed to be installed and operated at the site in return for the grant of the general permit and are necessary elements of the negotiations and ultimate settlement agreement reached embodied in the Consent Order. Thus, they are required by the Consent Order, should it become final agency action. Chief among the Petitioner's concerns is the matter of the alleged non-compliance of the disposal site and facility with zoning for that area and land-use ordinances, as well as concerns regarding property values, tax assessments and the inherent difficulty in re-sale of homes caused by the presence and operation of the facility. 2/ The Petitioner, whose members, among others, are a number of adjoining landowners, some of whom testified, also complains of pollution of the water body involved, the standing water in the bottom of the borrow pit. Witness Mitchell, as well as Respondent's Exhibit 4, concerning the conditions under which the general permit will be obtained and operated (conditions also repeated in the Consent Order), established that the deposition of only construction and demolition debris and clean fill in the water will pose no pollution which violates Section 403.161, Florida Statutes, and attendant rules. The terms in the Consent Order, which require the general permit and the conditions referenced in the Respondent's Exhibit 4, concerning the general permit, will result in minimal hazards of pollutants entering surface or ground waters, or in polluted air or water emanating from the site in violation of regulatory strictures, assuming frequent inspections by DEP are made to insure compliance. Thus, it has been established that the proposed Consent Order is reasonable under the circumstances. 3/
Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the Consent Order issued in the case of State of Florida, Department of Environmental Protection v. Whitrock Associates, Inc. be ratified and adopted as final agency action, in accordance with Chapter 120, Florida Statutes. DONE AND ENTERED this 16th day of January, 1996, in Tallahassee, Florida. P. MICHAEL RUFF, Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 22nd day of January, 1996.