Elawyers Elawyers
Washington| Change
Find Similar Cases by Filters
You can browse Case Laws by Courts, or by your need.
Find 49 similar cases
CITY OF CLEARWATER vs JERMAINE BENNETT, 15-007203 (2015)
Division of Administrative Hearings, Florida Filed:Clarksville, Florida Dec. 17, 2015 Number: 15-007203 Latest Update: Jun. 02, 2016

The Issue The issue is whether Respondent should be terminated from employment with the City of Clearwater (City) for violating City policies as alleged in the City's Termination and Dismissal Notice (Notice) dated July 16, 2015.

Findings Of Fact On February 2, 2009, Mr. Bennett was hired by the Clearwater public utilities department as a water distribution technician I. In April 2015, Mr. Bennett was promoted to a public utilities technician II (Tech II). As a Tech II, Mr. Bennett’s job description included: repairing water leaks, testing backflows, keeping water flowing, and providing services to customers. Additionally, as a Tech II, Mr. Bennett could be called upon by the public water department to respond to after- hours emergency calls, including nights and weekends. On Sunday, April 26, 2015, Mr. Bennett was on-call for the public water department. A city customer called and reported a water leak at his residence. Mr. Bennett was dispatched to the customer’s residence. Mr. Bennett met the customer and cleared the area around the water meter. Mr. Bennett located the water leak outside the water meter box. Mr. Bennett told the customer that a plumber would charge anywhere from $100 to $1,000 to repair the leak because the service call was on a weekend. Mr. Bennett told the customer he would repair the leak for $300. Further, Mr. Bennett provided the customer with a cell phone number so that if the repair was not satisfactory or there was more work to be done, the customer could contact Mr. Bennett. Mr. Bennett repaired the leak using plumbing supplies from the public utility department truck. After the work was completed, the customer gave Mr. Bennett a personal check for $300. There is no dispute that Mr. Bennett cashed the check on April 27, 2015. After several days the customer texted Mr. Bennett that the cost for the repair was too high. Mr. Bennett did not respond to the text. Mr. Bennett completed a “City of Clearwater Water Leak Service Order” on the repair. The work order reflected that Mr. Bennett received the service call at 7:25 p.m., and he returned home at 9:10 p.m. Mr. Bennett recorded that he found a water leak "in box @ customer's side, repaired leak." Several weeks later, when the customer received his next city water bill, he called the city customer service center to complain. The customer expressed that, after checking with friends and looking at the cost of plumbing parts, the $300 he paid Mr. Bennett was too high for the repair. The customer provided a copy of his cancelled check to the service center. The Clearwater public utilities department does not charge customers for repairs. There is a city policy that the city will repair water leaks within the meter box, but that water leaks outside the meter box are the responsibility of the customer. Following the complaint, the city conducted an investigation into the customer’s water leak repair. Glenn Daniel, Mr. Bennett's supervisor, went to the customer’s residence to examine the area around the water meter. Mr. Daniel observed several new plumbing parts installed outside the meter box. Based on the type and condition of the newly installed pipes, Mr. Daniels determined that the new pipes were from the City's inventory. Mr. Bennett admitted that he made the repair to the water pipe. He proceeded to testify that he felt “funny” about taking and cashing the $300 check. Mr. Bennett claimed he returned the $300, in cash at 2 a.m. the next morning, by placing the cash under the customer’s doormat. Mr. Bennett failed to contact the customer to tell him the money was there. When the customer was asked to look for the money, it was not under the doormat. Mr. Bennett's testimony lacks candor and is not credible. Mr. Bennett also claimed that the telephone number the customer used to text him was not his telephone number. Sergeant Ramon Cosme, of the Clearwater police department, conducted an investigation of the alleged theft of city property. In the course of his investigation, Sergeant Cosme identified the telephone number as being associated to Mr. Bennett. Mr. Bennett was paid by the City for the overtime he worked on Sunday, April 26, 2015. The City has adopted a Performance and Behavior Management Program (PBMP) manual that applies to all employees and contains Citywide, Integrity, and Departmental standards of conduct. Also, pursuant to the Code of Ordinances (Code), the Civil Service Board has adopted a set of rules and regulations that apply to all positions in civil service, including Mr. Bennett's position. Among other things, those regulations set forth additional grounds for disciplining an employee. Each employee is required to review the policies and procedures documents and to acknowledge the understanding of those policies. Mr. Bennett acknowledged being advised about those policies during his employment with the City. Civil Service Board regulations allow an employee to present the circumstances which led to his discipline and other mitigating evidence. See Ch. 13, § 8, Rules and Regs. Pursuant to that regulation, Mr. Bennett requested a disciplinary determination meeting with the Department of Human Resources, which was conducted on July 10, 2015. Mr. Bennett attended the meeting with his union representative. After considering Mr. Bennett's explanation, David Porter,2/ on behalf of the Public Utilities Department, recommended that Mr. Bennett’s employment be terminated. On July 16, 2015, the City Manager notified Mr. Bennett that his employment was being terminated effective the following day, July 17, 2015. The evidence shows that Mr. Bennett repaired a water meter leak on the customer’s side of the meter by using city property, and he accepted $300 for the repair.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the Civil Service Board of the City of Clearwater enter a final order terminating Mr. Bennett’s employment. DONE AND ENTERED this 13th day of April, 2016, in Tallahassee, Leon County, Florida. S LYNNE A. QUIMBY-PENNOCK Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 13th day of April, 2016.

Florida Laws (1) 120.57
# 1
GREENWOOD LAKES UTILITY COMPANY, INC. vs. PUBLIC SERVICE COMMISSION, 80-001521 (1980)
Division of Administrative Hearings, Florida Number: 80-001521 Latest Update: Jun. 15, 1990

Findings Of Fact Based upon the evidence presented, the following facts are determined: The UTILITY is owned by Florida Land Company, a Florida corporation, which is a wholly owned subsidiary of The Continental Group, Inc., a New York corporation. In 1975, the UTILITY constructed a water and sewage treatment system to serve a residential and commercial development known as Greenwood Lakes. The UTILITY's water and sewer rates and charges have not changed since the COMMISSION's approval of initial tariffs in 1976. (Testimony of Crosby; P.E. 1.) I. Elements of Ratemaking In fixing the water and sewer rates to be charged by a public utility, the COMMISSION must consider: (1) the value and quality of the service, (2) the utility's rate base, (3) the cost of providing the service, and (4) a fair return on the utility's rate base. Section 367.081(2), Florida Statutes (1979). Each element is addressed separately below. Quality of Service The UTILITY's water supply is provided by two deep wells with a total capacity, based on present pumps, of 2.376 million gallons per day. Treatment is provided by aeration and chlorination. The water system operates under an operating permit issued by the Department of Environmental Regulation. Water samples and reports are made monthly, and the water system presently meets all drinking water standards of the Department. (Testimony of Crosby, Heiker; R.E. 1.) The UTILITY's sewage treatment system consists of a .10 million gallon per day package plant; treatment consists of extended aeration followed by gravity flow to evapo-percolation ponds providing on-site disposal. It operates under an operation permit issued by the Department of Environmental Regulation, and complies with Department's sewage collection and treatment standards. (Testimony of Crosby.) Rate Base Rate base consists of the UTILITY property that is used and useful in providing the service for which rates are charged. In its application, the UTILITY proposed a rate base; after review, the COMMISSION suggested several adjustments, which are not opposed by the UTILITY. Use of a year-end test year is appropriate because of the extraordinary growth experienced by the UTILITY during 1979. For the test year ending December 3l, 1979, the UTILITY's adjusted water rate base is $135,977; the adjusted sewer rate base is $131,764. They are calculated as follows: RATE BASE Test Year Ending December 31, 1979 WATER SEWER Utility Plant in Service $190,969 $225,722 Construction Work in Progress 1,214 4,297 Accumulated Depreciation 18,920 2/ 14,801 2/ Contribution in Aid of Construction (CIAC)-Net of Amortization -48,831 -86,458 Working Capital Allowance 3,030 3,198 Income Tax Lag -0- - 194 RATE BASE $135,977 $131,764 (Testimony of Lowe; P.E. 1, 2, 3, R.E. 3.) Operating Statement The following Operating Statement reflects the UTILITY's revenue earned, costs of operation, and not-operating income during the test year. It shows that the UTILITY suffered a loss of $26,429 in its water operations and a loss of $19,101 in its sewer operations. OPERATING STATEMENT Test Year Ending December WATER 31 , 1979 SEWER Operating Revenues: $10,172 Operating Expenses: Operatic 25,314 $14,365 22,436 Maintenance -0- -0- Depreciation 18,199 10,132 Amortization -0- -0- Taxes Other Than Income 1,088 898 Other Expenses -0- -0- Income Taxes -0- -0- TOTAL OPERATING EXPENSES $44,601 $33,466 Operating Income ($26,429) (Testimony of Lowe; P.E. 1, 2, 3, R.E. 3.) ($19,101) The UTILITY requests an annual water revenue increase of $36,154, and a sewer revenue increase of $31,715, which would produce gross annual revenue of $54,326, and $46,080, respectively. The adjusted Operating Statement, constructed to reflect this additional requested revenue, is as follows: CONSTRUCTED OPERATING STATEMENT Test Year Ending December 31, 1979 WATER SEWER Operating Revenues: Operating Expenses: $54,326 $46,080 Operation 30,634 25,580 Maintenance -0- -0- Depreciation 3,812 2/ 3,436 2/ Amortization -0- -0- Taxes Other Than Income 2,280 1,941 Other Expenses -0- -0- Income Taxes 1,424 968 TOTAL OPERATING EXPENSES $38,150 $31,925 Operating Income $16,176 $14,155 Rate Base $135,977 $131,704 Rate of Return 11.90 percent 10.74 percent (Testimony of Lowe; P.E. 1, 2, 3, R.E. 3.) Rate of Return The capital structure of the UTILITY is as follows: AMOUNT PERCENT TO TOTAL Debt 4/ $1,450,000 60.90 Customer deposits 6,389 .27 Common Equity 924,550 30.83 TOTAL $2,380,947 100.00 The proposed annual gross water revenues of $54,326, and sewer revenues of $46,080 will allow the UTILITY to earn a rate of return of 11.90 percent on its water rate base, and 10.74 percent on its sewer rate base. With debt service costs now in excess of 12.50 percent, the return on equity will be nominal; however, there is no evidence that this will cause the UTILITY's service to suffer. (Testimony of Smith; P.E. 6.) II. Capitalization of Interest on Non-Used and Useful Equipment The UTILITY's plant is larger than necessary to serve its present customers. In its application, the UTILITY seeks COMMISSION approval to capitalize its interest costs on that portion of the UTILITY's plant which is non-used and useful, and excluded from rate base. Capitalization will allow the UTILITY to recover its interest expenses over the useful life of the property involved. The COMMISSION has previously allowed capitalization of interest under similar circumstances, Docket No. 760054-WS, Application of North Orlando Water and Sewer Corporation, Order No. 7455, dated October 4, 1976. Here, the UTILITY's request is reasonable, concurred in by the COMMISSION, and should be granted. (Testimony of NewIon, Cooke, Lowe; P.E. .) III. Rate Structure The UTILITY currently uses a conventional two-tier rate structure. A base facility charge (BFC) rate structure is a more equitable method of distributing costs associated with providing a utility service. Under a BFC structure, customers pay a base charge which covers their pro-rata share of the UTILITY's fixed costs, and a gallonage charge which covers the costs of pumping, treating, and distributing the actual water gallonage used. Such a structure would require the UTILITY to alter its current customer service policy to insure that the base charge is paid during temporary discontinuances of service. (Testimony of Washington.)

Recommendation Based on the foregoing findings of fact and conclusions of law, it is RECOMMENDED: That the UTILITY's application for increased sewer rates and charges be granted and that it be authorized to file revised tariff pages containing rates designed in accordance with the base facility charge concept to produce gross annual water revenues of $54,326 and annual sewer revenues of $46,080; That the UTILITY be required to notify each customer of any rate increase authorized, explaining the reasons for such increase. A letter of explanation should be submitted to the COMMISSION for prior approval; That the UTILITY be allowed to retain all interim revenues collected pursuant to COMMISSION Order No. 9416 and cancel the rate refunding bond previously submitted; and That the UTILITY be allowed to capitalize interest on non-used and useful equipment which is excluded from rate base. DONE AND ENTERED this 5th day of December, 1980, in Tallahassee, Florida. R. L. CALEEN, JR. Hearing Officer Division of Administrative Hearings Room 101, Collins Building Tallahassee, Florida 32301 (904) 488-9675

Florida Laws (4) 11.90120.57367.0816.08
# 2
GARY R. PEDRONI vs DAWSON DEVELOPMENT COMPANY, HAMMOND FORREST, AND DEPARTMENT OF ENVIRONMENTAL PROTECTION, 93-007175 (1993)
Division of Administrative Hearings, Florida Filed:Jacksonville, Florida Dec. 28, 1993 Number: 93-007175 Latest Update: Aug. 15, 1994

Findings Of Fact On October 16, 1992, Dawson filed an application for a permit to demuck and fill approximately 1250 square feet, and grade and sod to natural elevation approximately 3000 square feet of previously impacted wetlands adjacent to an unnamed tributary of Wills Branch, Duval County, in order to construct a pad for the construction of a single family residence. The site is Lot 34 of Hammond Forest Subdivision. The loss of wetland function was mitigated by Dawson which agreed to place two acres of wetlands adjoining Ortega River in a conservation easement to the Department. Following a review of Dawson's application, the Department issued permit # 162205542, and gave notice to the adjacent property owners, including Petitioner, who timely requested a formal hearing. Hammond Forest Subdivision consist of 45 residential lots which have been developed except for two lots, one of which is lot 34, the site of the proposed permit. The Wills Branch drainage basin runs generally north to south through the subdivision. Petitioner's lot, lot 33, and the proposed site, lot 34, are at the southernmost edge of the subdivision and adjacent to a pond which is terminus of the southerly flow of surface waters into the Wills Branch system. In October 1993, the Petitioner's home was flooded by surface water run off from the area north of Petitioner's home, including areas within and outside the Hammond Forest Subdivision. Property owners living on the northern most portion of the subdivision have drainage problems, and have experienced sheet flow of water south across their property and water damage to their driveways. In order to alleviate this problem, Dawson constructed a shallow swale along the northern border of the subdivision which is intended to catch the southerly flow of surface water and divert the water to the east where it is captured in a storm drain located at the northeast corner of lot 17. The storm sewer is suppose to move the water below ground due south to the vicinity of Hammond Forest Drive, the principle street in the subdivision, which runs west to east in front of the proposed site and the Petitioner's lot. At the street, this storm sewer is connected to the storm water collectors for the street. The street storm sewers in the vicinity of the proposed site are inadequate to handle the volume of water which runs south down the cul-de-sacs into Hammond Forest Drive. The storm sewer are unable to handle the run off, and the water backs up in the sewer all the way to the northern collector located at the western end of the shallow swale. The owner of lot 17 experiences sheet flow of storm water over his property, and down his drive. From there, the water follows Quail Walk south to Hammond Forest. The property owners on the most easterly cul-de-sac, which is an extension of Hammond Forest, experience similar sheet flows of water. This water flows south down Hammond Forest towards the proposed site and the Petitioner's lot. The surface water flow down Hammond Forest meets the flow from Quail Walk immediately across from the proposed site and the Petitioner's lot. At this point the overloaded storm sewers cannot handle the merging flow of the northern storm drain and the water collected on the lots and streets to the north. The water backs up and collects at the collector located between the proposed site and the Petitioner's lot where the swirling caused by the drain forces the water over and down the Petitioner's driveway. During the record setting October 1993 rains, the water flooded the Petitioner's house. The water was so deep it was literally running in the front door and out the back door. Subsequent to the October 1993 flood, Petitioner's contractor installed a lateral driveway drain. Since this drain was installed, there has not been a rain comparable to the October 1993 rains; however, in a serious storm after the drain was installed, the waters surged into the Petitioner's driveway and flooded his garage. The proposed site is no higher than Petitioner's lot. The storm water drainage system for the subdivision was approved by the St. John's Water Management District prior to construction of the subdivision which preceded the application for the instant permit. The collector at lot 17 was added after construction of the other storm sewers which were not designed to accept this added volume of water. Expert testimony was received that the problem with the storm drains and sewers resulted from the absorption factor applied to the property which is upland from the subdivision which was unduly optimistic. Although the system was designed to be over minimum capacity, it is insufficient to handle the actual volume of water. A storm sewer runs from the collection grate between lots 33 and 34 to the collection pond along a easement between the aforementioned lots. The size of this storm sewer is inadequate, and the collection of water in the vicinity of the collector between the proposed site and the Petitioner's lot would be alleviated by increasing the size of this sewer pipe which runs the depth of and adjacent to the proposed site. The majority of this easement lies in an area regulated by the Department, and repairs to the drain would require the Department's approval for dredge and fill. The flow of surface storm water over Petitioner's lot is directly south into the collection pond. The developer plans to avoid flooding problems on the proposed site by raising the building pad's elevation a half foot; however, this will not prevent sheet water flow over the lot during storms given the elevations on the remainder of lot 34 which are identical to those on Petitioner's lot. The development of lot 34, which is currently is in a natural state, will alter the flow of water through the Wills Branch drainage basin by eliminating the natural vegetation and by allowing additional sheet flow over the developed lot into the collection pond. This water will carry into the pond lawn chemicals, fertilizers and other contaminates which it picks up as it travels over lot 34. A swale exists along the western edge of the Petitioner's property which prevents the lateral, east-west, movement of water between lots 33 and 34. A similar swale will be constructed between the two lots after lot 34 is filled and re-graded.

Recommendation Based upon the consideration of the facts found and the conclusions of law reached, it is, RECOMMENDED: That Permit No. 162205542 be denied, or conditioned by requiring the applicant to increase the size of the sewer pipe between lots 33 and 34 to eliminate the reoccurring flooding and sheet flows of water over lot 33 and lot 34, as proposed to be developed. DONE and ENTERED this 30th day of June, 1994, in Tallahassee, Florida. STEPHEN F. DEAN, Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 30th day of June, 1994. APPENDIX A CASE NO. 93-7175 Both of the Respondents submitted proposed findings which were read and considered. The following states which of those findings were adopted, and which were rejected and why: Dawson's Proposed Findings Recommended Order Paragraph 1 Paragraph 1 Paragraph 2 Paragraph 15 Paragraph 3 Paragraph 5 Paragraph 4,5 Paragraph 13 Paragraph 6,7 Contrary to best evidence DEP's Proposed Findings Recommended Order Paragraph 1 Paragraph 1,2 Paragraph 2 Paragraph 4 Paragraph 3 Paragraph 3 Paragraph 4 Paragraph 5 Paragraph 5,6 Preliminary Stmt Paragraph 7 Paragraph 15 Paragraph 8-11 Conclusions of Law Paragraph 12 Paragraph 22 Paragraph 13,14 Paragraph 5, subsumed in 5 Paragraph 15 Conclusions of Law Paragraph 16,17 Paragraph 22 Paragraph 18 Contrary to best evidence Paragraph 19 Conclusions of Law Paragraph 20,21 Contrary to best evidence COPIES FURNISHED: Gary R. Pedroni 8682 Hammond Forest Drive Jacksonville, FL 32221 Carl D. Dawson, Sr., Esquire 320 East Adams Street Jacksonville, FL 32202 Donna M. La Plante, Esquire Department of Environmental Protection 2600 Blair Stone Road Tallahassee, FL 32399-2400 Kenneth Plante, General Counsel Department of Environmental Protection 2600 Blair Stone Road Tallahassee, FL 32399-2400 Virginia B. Wetherell, Secretary Department of Environmental Protection 2600 Blair Stone Road Tallahassee, FL 32399-2400

Florida Laws (3) 120.57373.019373.414
# 3
BECKY CLOSE, ROBERT RHOADES AND MR. AND MRS. HARTMAN, JR. vs CITY OF SARASOTA UTILITIES AND DEPARTMENT OF ENVIRONMENTAL REGULATION, 91-002470 (1991)
Division of Administrative Hearings, Florida Filed:Sarasota, Florida Apr. 24, 1991 Number: 91-002470 Latest Update: Nov. 08, 1991

The Issue The issue for consideration is whether the City of Sarasota should be issued a permit by the Department of Environmental Regulation for the construction of a dry line sewer system through the Petitioner's neighborhood.

Findings Of Fact At all times pertinent to the matters in issue herein the Petitioners, Becky Close, et al., were residents of the area in issue which is located both within and outside the boundaries of the City of Sarasota and in portions of Sarasota County contiguous thereto. The City of Sarasota, (City), is a municipality in Sarasota County which has applied to the Department of Environmental Regulation, (Department), for a permit to construct a sewage collection/transmission system in Sarasota County which Petitioners fear will adversely impact the safe, quiet enjoyment of their property. The Department is the state agency responsible for the permitting of sewage transmission, collection, treatment and disposal in this state. The City currently owns and operates a domestic wastewater collection, transmission, treatment and disposal system, including a wastewater treatment plant, which serves approximately 96% of the City's residents and which is authorized by a Construction Permit and Amended Consent Order issued by the Department. On or about November 30, 1990 the City applied to the Department for a permit to construct an additional collection and transmission system for wastewater. This permit, if issued, would provide for the City to construct several system extensions at various locations throughout the city and includes the construction of seven lift/pump stations and fourteen "tie-in" locations at which the existing system will be extended to the unserved areas. Upon completion, the system will serve approximately 99% of the City's residents. Accompanying the application was a set of engineering plans and specifications for the proposed project which had been signed and sealed by the City's engineers. Sometime after the application was filed, the Department requested additional information relating, inter alia, to the design of the lift stations in regard to flood conditions. On January 8, 1991, the City provided the requested information which was based in part on a flood insurance map prepared by the Federal Emergency Management Agency, (FEMA). Thereafter, by Notice dated March 26, 1991, the Department indicated its intention to grant the permit application. The proposed permit specifically notes that it is for the construction of the line only and before it can be placed in service, the City must secure separate approval. Specifically, the permit conditions state: 2. This permit does not authorize the connection of these collection systems to the City of Sarasota WWTP [Wastewater Treatment Plant]. The permit shall not be construed to infer any assurance that the necessary authorization for connection shall be granted. Any such authorization shall be granted only when adequate treatment in accordance with rules, regulation, and issued permits of the Department is available for any flows transported by the systems. * * * 5. Upon completion of the system and prior to use, the permittee ... shall submit to this Department a written request ... to obtain Department approval to place the system into service, .... In addition to the terms of those specific conditions relating to the limited approval effect of this permit, the General Conditions provide: 3. ... This permit is not a waiver of or approval of any other Department permit that may be required for other aspects of the total project which are not addressed in this permit. It is clear from the language of the permit that as proposed, it does not include authorization to place the covered work into service or, for that matter, to even connect it to the existing plant. The Petitioners live within an eight block area through which one of the proposed extensions, with its lift stations, will run. Many have lived in the area for decades and have experienced periodic flooding which, for the most part, results from the inability of the drainage flow to adequately handle the large amounts of rainwater which come with storms that routinely hit the area. In addition, increased paving as a part of commercial and residential development in the area has resulted in a reduction of absorption which has contributed to the flooding. The flooding which occurs usually recedes within a couple of hours and leaves a residue. Many of the residents oppose the projected permit because they fear that if the system fails during a flood period, sewage would be ejected from the system, would mix with the flood waters, and spread across the area. When the waters receded, the residue would include waste as well. William Hartman, a resident of the areas for 35 years, who is not an expert in any pertinent field, prepared a map of the area and the watershed which drains it. In doing so, he didn't consult with anyone nor can he state the total acreage or the number of impervious or pervious areas. He does not know how much rainfall there is in either a 100 year or a 25 year storm and he cannot say if any of the photographs of flooding introduced by the Petitioners depicted a 100 year storm, the last of which occurred in 1968. Nonetheless, he is still concerned. Mr. Hartman tried to make this information available to City officials before the design of the system was started but they did not seem to be much interested in it. He also tried to present the information to the City Commission before the project was voted on, but, again, it was rejected. Another resident, Mr. Williams, built a home in the area several years ago, but before he could do so, he was required to bring in fill to build up an area on which to build. Whenever it rains, the water runs off his land and onto his neighbors' and floods their houses. Since his house is built up, he does not suffer water damage, but when it floods, he has trouble getting into and out of his property. Ms. Hartman, another neighbor, was caught outdoors in the 1971 flood which brought water up to her chest. In her opinion, if sewage were released into this kind of water, it would be revolting. The evidence of periodic flooding is also supported by Mr. Lawson, the mail carrier in the area for 10 years, whose vehicle has stalled in the high water, and Mr. Riddlemoser, a resident, who has, on occasion, been unable to drive into the area due to high water. The manager of the County's Stormwater Management Division confirms there is a flooding problem in the area. Several alternatives have been proposed to deal with it. One is emergency evacuation of the residents and another is channel modification to drain the water away. Additional development in the area can be expected and any such development is required to be designed to minimize impact downstream. Nonetheless, some additional problems might be expected. The County plans to study all the reports and come up with proposed solutions to the flooding problem. Though he cannot judge whether the Corps of Engineers' report or the FEMA report has the better flood information, he would use the Corps' figures. The County's utilities plans examiner, Mr. Cole, has visited the area and attended a residents' meeting about the flooding problem. His study of the problem generates two questions. The first is what caused the flooding, and the second is that given the existence of flooding, why allow the system to be built there? He determined that the problem is caused by the fact that the City's ditches are not cleaned out and the County's are. The solution to that is to clean the ditches. Mr. Cole reviewed the application and consulted with the Department about it. Based on the information he received, he recommended the permit be issued since the plans for the design of the system are within the guidelines established by the County Code. Therefore, the County has no objection to the line being constructed. Turning to the project proposed, those portions of the system extension which will relate to the eight block area inhabited by the Petitioners are identified in the permit application as tie in extension areas C and D, and include lift stations 75 and 76, neither of which will serve any residents outside the eight block area in question. Station 75 is to be placed to the east of Central Avenue near 42nd Street and Station 76 is to be placed east of Central Avenue near 38th Street. Petitioners are concerned that in the event of flooding as a result of heavy rains or for some other reason, the sewage line as designed is incapable of protecting them against a back-up of sewage and escape of that sewage into the flood waters in the area. Evidence presented by the City indicates that at the present time, the City's existing system wastewater treatment and disposal plant capacity is 13 million gallons per day, (MGD), and average existing wastewater flow received there is only 6.467 mgd. Even with the increase in flow created by the extension of the system to existing homes, the plant is well equipped to handle the additional flow as well as that additional flow anticipated as a result of future wastewater flow when the areas to be served by the extension are fully built up. It is clear then, that the available capacity of the plant is more than sufficient to properly treat and dispose of any additional waste water flows created when and if the proposed sewer extension is approved and placed into service even after accounting for increased residential building in the area. From a technical standpoint, the proposed system must be designed and constructed according to the technical standards contained in Water Pollution Control Federation's Manual of Practice No. 9, Design and Construction of Sanitary and Storm Sewers. The evidence of record clearly indicates that the proposal here, as evidenced by the plans and specifications drawn therefor, is in compliance with those technical standards and criteria. Further, the technical standards and criteria established by the Great Lakes/Upper Mississippi River Board of State Sanitary Engineers' 1987 edition of Recommended Standard Sewage Works, also applies. The evidence of record indicates that the proposed system is in compliance with those standards as well. There is some concern as to whether privately owned property will be used for the construction of this project and the evidence indicates that this project extension for the eight block area in question will be located only on public rights of way, land owned by the City, or easements granted to the City. The evidence also demonstrates that the extension here is designed to insure the safety of the surrounding area as it pertains to runoff and other possible pollutants. In fact, the system is designed to preclude the deliberate introduction of stormwater runoff or certain other pollution such as condensate from air conditioning systems, closed system cooling water, and other sources of waste water. Specifically, both lift stations are designed to be equipped with standard receptacles for connecting portable power generating equipment to provide lift pumping capability in the event that commercial power to the area is interrupted. Both stations are also designed to discharge through the smallest possible pipes, (less than 6" in diameter), and both are designed to be equipped with risers and appropriate coupling devices at the discharge pipe so that portable pumps may be connected in the event that becomes necessary. The stations in question are designed so as to be protected from lightning and abnormal voltage surges through the affixation of lightning arresters and surge capacitors. They are designed to be equipped with phase protection and will incorporate a stand-by pumping capability to be utilized with off line power generation so that they will continue to operate even in the event of a shutdown of commercial power. The stations are equipped with locking components and barriers designed to discourage the intrusion into the station by unauthorized people or by animals, and are enclosed and designed so as to eliminate, as much as possible, any odor which might be offensive or harmful to the residents in the area. In addition, the stations are designed so as to minimize noise through the incorporation of submersible pumps. What is more, recognizing the fact that the locations of the stations have a high water table, the stations were designed so as to remain in place even when empty. In that regard, the bottom slab is designed to be broader than the overlying body of the station so that the weight of the dirt above the slab will hold the station in place. Taken together, then, the evidence indicates, and it is so found, that the proposed system extension has been designed consistent with sound engineering practices so that it will accomplish its purpose in an environmentally sound manner. A primary concern of the residents is that the City has failed to account for flooding conditions which occur in the eight block area. In support of their concerns, Petitioners introduced several photographs purporting to show flooding into evidence, yet the photographs were not specifically identified as to which flood and under what conditions the scenes represented thereon took place. The City presented expert testimony based on varying sources of information including FEMA and the Corps of Engineers. Both are sources that engineers would rely upon to determine flood elevations in the course of designing a sewer system. This evidence indicates that both lift stations would not be located in those areas depicted in the flooding photographs presented by the Petitioners. By way of background, floods are categorized in year configurations. For example, a "25 year flood", is one in which the water level is likely to occur at least once over a 25 year period. By the same token, a "100 year flood" is one in which the water level is likely to occur at least once over a 100 year period. A 25 year or 100 year flood incorporates conditions caused by "flash flooding", a term used to depict a very rapidly occurring flood which arises without warning. Use of the two flood elevation maps, that by FEMA and that by the Corps of Engineers, creates a discrepancy, however. The FEMA map indicates the stations are not located within either the 25 or 100 year flood zones. On the other hand, the Corps of Engineers reconnaissance report indicates they are. The Corps of Engineers report indicates that the 25 year flood elevation at station 75 is approximately 15.2 feet above sea level, and the 100 year elevation at that site is approximately 15.9 feet above sea level. The Mobilife engineering report, which describes actual water levels at particular locations in the eight block area during the 1962 flood, recognized as a 100 year flood, (and which considers stations 75 and 76 to be within the 100 year flood zone), shows the 100 year flood water at station 75 reached approximately 16.2 feet, the same as at station 76. Regardless of which flood level is considered accurate, however, the City's evidence shows that the electrical components in both stations, those components sensitive to water, are contained within a control panel which is sealed for protection from the weather. Further, it must be noted that the bottom of the electrical control panel is at an elevation of 18.3 feet at station 75 and at 17.7 feet at station 76. Consequently, whether one uses the FEMA/COE figures for water level or the Mobilife figures for a 100 year flood, the fact remains that the sensitive electrical components would be well above high water in either case. It is clear, then, that the design of both lift stations sufficiently addresses the potential for damage or interruption of operation because of flooding. The system is designed so that those components sensitive to flooding will be placed above the expected high water marks, and the mechanical components are designed for submerged use and are not generally affected by flood conditions. The lift stations are designed so that they will be protected from damage by wind or water and should remain fully accessible and operational during either a 25 or a 100 year flood. This evidence presented by the City was neither contradicted or rebutted by any evidence submitted by Petitioners. Even if, however, there should be a flood elevation higher than those predicted by either FEMA or the Corps or Engineers, it would be relatively easy and inexpensive, to raise the control panels even higher at those lift stations to correct any problem that might arise. There are, in addition, safeguards designed into the system which will alert the population to problems occurring in the pump function. Visual alarms are installed which will alert passersby or staff from the utility to the fact that the pumps are not operating properly. In addition, the design of both stations incorporates a reserve capacity which is sufficient to provide the City with sufficient time to correct any failures, electrical or mechanical, which might occur before damage can take place. Specifically, the design at station 75 will provide additional capacity of approximately 24 hours at maximum build-out before a back-up can be expected to occur. At station 76, this reserve capacity will permit 2.26 days of additional operation before a problem takes place and this also assumes maximum build-out. Under those circumstances, if a failure should occur at either station, there would be ample time for the City to utilize temporary electrical or pumping activities to prevent a back-up from occurring. The City contends that if flood conditions were to occur at either station that were not corrected and which resulted in the unlikely backup of sewage, the impact of such backup on residents in the area would be minimal. Its rationalization is based on the supposition that if flood conditions causing such a back-up were to occur, they would result in the Petitioners evacuating the area, and therefore, they would not be impacted. This would relate, of course, only to the impact on personal safety, but not to potential impacts such as loss of property or secondary safety consideration. This argument, which is not significant, is not considered pertinent and is rejected. Were a failure to occur at lift station 75 that resulted in sewage back-up, that back-up would occur at the lowest point in the system, the manhole at 40th Street. If a similar failure resulted in a backup in system 76, the back-up would be at 39th Street. In either case, the City claims, the back-up would not reach customers' homes. This argument, too, though not rebutted by the Petitioners, appears not to consider all the potential impacts such as odor, appearance, and the like which, while not necessarily accompanied by sewage entering the home, is, nonetheless, adverse in impact if located in the immediate area of those homes. Other factors are also pertinent to a study of the safety and propriety of the project include the fact that the system extension is designed in such a fashion as to adequately address the forces of water movement. It is also noted that the system does not include any intersection with force mains; it does not include any stub-outs on existing force mains since it is designed to accommodate the service area at full build-out. The City does not anticipate that the system will involve any sewage pipes intersections with water mains, but if such mains are encountered, the project plans contain instructions to the contractor to afford appropriate protection. The program does not envision any intersection between sewer lines, storm mains or water mains, and the project has been designed so that manhole settling and pipe settling should be minimized. In the event there is settling, however, the project proposes the use of flexible pipe and pipe connectors to minimize any damage that might result therefrom. In that regard, the project calls for the use of flexible, water-tight, wall-to-pipe joints which would compensate for any remaining differential or stress. Normal operation and maintenance will be enhanced by the use of standard size manholes in the system. Since the proposed system is not designed to cross any waterways or canals subject to maintenance dredging, there should be no damage by virtue of those activities. In addition, there is little likelihood that any part of the system could be damaged by boat anchors or by interface with underwater sewage lines. Taken together, the system appears to be well designed and compatible with accepted engineering standards. All foreseeable contingencies appear to have been provided for and the risk of back-up and resultant damage to the property or safety of residents in the area has been minimized.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is, therefore: RECOMMENDED that a Final Order be entered issuing Permit No. CS 58-189732, for the dry line construction of an expansion to the City's existing domestic wastewater collection/transmission system, as outlined in the Department's Notice of Intent dated March 27, 1991. RECOMMENDED in Tallahassee, Florida this 26th day of September, 1991. ARNOLD H. POLLOCK Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 26th day of September, 1991. APPENDIX TO RECOMMENDED ORDER IN CASE NO. 91-2470 The following constitutes my specific rulings pursuant to Section 120.59(2), Florida Statutes, on all of the Proposed Findings of Fact submitted by the parties to this case. FOR THE PETITIONERS: None submitted FOR THE CITY: 1.- 3. Accepted and incorporated herein. 4.- 10. Accepted and incorporated herein. 11. Not a proper Finding of Fact. 12.- 14. Accepted and incorporated herein. 15.- 16. Accepted and incorporated herein. 17.- 20. Accepted and incorporated herein. 21.- 28. Accepted and incorporated herein. 29.- 34. Accepted and incorporated herein. 35.- 37. Accepted and incorporated herein. 38.- 43. Accepted and incorporated herein. 44. Accepted and incorporated herein. 45.- 50. Accepted and incorporated herein. 51.- 55. Accepted and incorporated herein. 56. Accepted and incorporated herein. 57. Accepted and incorporated herein. 58. Not a Finding of Fact but a comment on the evidence. 59.- 65. Accepted and incorporated herein. 66.- 69. Accepted and incorporated herein. 70.- 73. Accepted and incorporated herein. 74.- 79. Accepted and incorporated herein. 80.- 87. Accepted and incorporated herein. 88.- 89. Accepted and incorporated herein. 90.- 95. Accepted and incorporated herein. 96. Rejected as not a appropriate Finding of Fact. 97.- 99. Accepted and incorporated herein. 100.-114. Accepted and incorporated herein. 115.-118. Accepted. 119. Not a Finding of Fact but a comment on the evidence. 120.-123. Accepted. 124. Just a comment on the evidence. 125. Accepted. 126.-128. Merely a comment on the evidence. 129. Accepted. 130 -131. Merely a comment on the evidence. 132.-133. Accepted and incorporated herein. 134.-136. Accepted. FOR THE DEPARTMENT: 1.- 6. Accepted and incorporated herein. 7.- 11. Accepted and incorporated herein. 12.- 19. Accepted and incorporated herein. 20.- 25. Accepted and incorporated herein. 26.- 36. Accepted and incorporated herein. 37. Accepted and incorporated herein. 38.- 42. Accepted and incorporated herein. 43.- 49. Accepted and incorporated herein. 50.- 54. Accepted and incorporated herein. COPIES FURNISHED: Becky Close 1380 42nd Street Sarasota, Florida 34234 William Hartman 1325 41st Street Sarasota, Florida 34234 Robert Rhoades 1335 40th Street Sarasota, Florida 34234 David M. Caldevilla, Esquire de la Parte & Gilbert, P.A. P.O. Box 172537 Tampa, Florida 33672-0537 W. Douglas Beason, Esquire Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32399-2400 Daniel H. Thompson General Counsel DER 2600 Blair Stone Road Tallahassee, Florida 32399-2400 Carol Browner Secretary Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32399-2400

Florida Laws (4) 120.57403.087403.088403.0881
# 4
WILLIAM H. AND BETSY K. LANIER vs DEPARTMENT OF HEALTH AND REHABILITATIVE SERVICES, 90-003112 (1990)
Division of Administrative Hearings, Florida Filed:Cross City, Florida May 17, 1990 Number: 90-003112 Latest Update: Dec. 21, 1990

The Issue The issue for consideration in this case concerns whether the Petitioners are entitled to an on-site sewage disposal system ("OSDS") permit authorizing the installation of an OSDS on property which they own near the Suwannee River in Dixie County, Florida, in accordance with the permitting requirements of Section 381.272, Florida Statutes, and Chapter 10D-6, Florida Administrative Code.

Findings Of Fact The Petitioners are the owners of certain real property located in Dixie County, Florida, in the proximity of the Suwannee River. The property is described as Lot 38, Highpoint Suwannee Riverfront Estates. The lot in question is 82 feet by 141 feet in size and was purchased in April, 1988 for approximately $5000.00. The lot, and the subdivision it is in, was platted in 1983. On February 21, 1990, the Petitioners made application for an on-site sewage disposal system ("OSDS") permit, seeking to install such a system on this lot in order to be able to construct a vacation cottage on the lot The proposed cottage would contain one bedroom and would have a heated and cooled area of approximately 500 square feet. Upon reviewing the application, the, Respondent informed the Petitioners that they would need to have a surveyor establish the elevation of their lot, and particularly the site of the proposed OSDS installation, as well as to establish, through contact with the Suwannee River Water Management District, the ten-year flood elevation for the property. Accordingly, the Petitioners obtained a survey by `Mr. Herbert Raker, a registered land surveyor of Cross City, Florida. That survey shows a benchmark elevation of 13.09 feet above mean sea level ("MSL") That benchmark elevation is six inches above the actual grade surface of the lot so that the elevation at the proposed OSDS installation site is 12.59 feet above MSL. The ten-year flood elevation for the property is 15 feet above MSL, as established by data from the Suwannee River Water Management District contained in a report which is in evidence as Respondent's Exhibit 1. That flood elevation data was submitted to the Respondent by the Petitioners with the application for the OSDS permit. The property in question is located within the ten- year flood plain of the Suwannee River, and it is also located within the regulatory floodway of the River. On April 24, 1990, after advising the Petitioners of the denial of the OSDS permit application, the Respondent, by letter, advised the Petitioners that they should pursue a formal administrative proceeding rather than file an informal variance application before the Respondent's own Variance Board. The Respondent took the position that a variance could not be granted from the requirements of Rule 10D- 6.47(6), Florida Administrative Code, because the subject property was located within the ten-year flood plain of the Suwannee River and because of the Respondent's interpretation of the affect of the Governor's Executive Order 90- 14, which adopted by reference the Suwannee River Task Force recommendation that all such systems be prohibited within the ten-year flood plain. The Respondent thus declined to exercise its discretion, accorded it in the statute and rule cited hereinbelow, to entertain and consider a variance application. Finally, it is established that the lot in question is not subject to frequent flooding; but because the surface grade is beneath the ten-year flood elevation, the bottom of the drain field trenches absorption bed to be installed would also be beneath the ten-year flood elevation. In other respects, the property is a amenable to the installation of an effective OSDS because the wet season water table is 48 inches beneath the surface grade and would be more than 24 inches beneath the proposed drain field. The normal water table is approximately 60 inches beneath the surface grade. Appropriate limited soils are present beneath the first six inches of soil below the surface and consist of fine sand, light brown and brown fine sand, down to 60 inches, which is appropriate for effective subterranean treatment and disposal of sewage effluent. The Petitioners established a definite hardship on their part by the fact that they have paid a substantial sum for the lot and are now unable to develop it unless they receive entitlement to an OSDS or some reasonable alternative. In that regard, no sufficient proof of truly effective, reasonable alternatives was established by the Petitioners. However, they did establish that an anaerobic septic tank and drain field disposal system might be an effective alternative treatment and disposal method for the property in question. An aerobic system involves the injection of air into the attendant septic tank to support aerobic bacteria which break down and treat sewage at a faster, more effective rate than does the normal anaerobic bacteria-based system. The resulting effluent is substantially lower in BOD and suspended solids than is the effluent from the normal subterranean and anaerobic septic tank and drain field disposal system. The problem with such an aerobic system is that it involves mechanical equipment, especially, an external electric motor and pump to force air into the system. This is disadvantageous in that, if the equipment suffers a breakdown, then treatment and appropriate disposal of the effluent stops. The untreated sewage can then rise to the surface of the property or otherwise pollute ground or surface waters and potentially cause a public health hazard. Thus, such systems would require inspection periodically to insure that they are in adequate working order because if the mechanical system malfunctions, the system will continue to put effluent through its drain field without adequate treatment. In this circumstance, the occupants of the dwelling served by the system might not notice for long periods of time that it is inoperative because the system will continue to dispose of effluent, but just of an untreated nature. Accordingly, when the motor and air pump system becomes inoperative, there is less incentive for the owner to repair it. Thus, it is likely that if such a system were installed, some means would have to be found to insure that the owner keeps the system in good repair and working order. The means by which such an arrangement for insuring that such an aerobic system works properly at all times was not established in this record, however. Consequently, the Petitioners failed to establish that reasonable alternatives to the proposed conventional system exist and what they might consist of.

Recommendation Having considered the foregoing findings of Fact, Conclusions of Law, the evidence of record, the carndor and demeanor of the witnesses, and the pleadings and arguments of the parties, it is therefore, RECOMMENDED that a Final Order be entered denying the Petitioners' application for an OSDS permit. DONE AND ENTERED this 21st day of December, 1990, in Tallahassee, Leon County, Florida P. MICHAEL RUFF Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 21st day of December, 1990. APPENDIX TO THE RECOMMENDED ORDER IN CASE NO. 90-3112 The Petitioners filed no proposed findings of fact. Respondent's Proposed Findings of Fact: 1-9. Accepted. COPIES FURNISHED: Sam Power, Agency Clerk Department of HRS 1323 Winewood Boulevard Tallahassee, FL 32399-0700 Linda K. Harris, Esquire General Counsel Department of HRS 1323 Winewood Boulevard Tallahassee, FL 32399-0700 Betsy K. Lanier, pro se P.O. Box 238 Old Town, FL 32680 Frances S. Childers, Esq. Assistant District III Legal Counsel Department of HRS 1000 N.E. 16th Avenue Gainesville, FL 32609

Florida Laws (1) 120.57
# 5
SAVE TRAIL RIDGE AND THE ENVIRONMENT, INC. vs TRAIL RIDGE LANDFILL, INC., AND DEPARTMENT OF ENVIRONMENTAL REGULATION, 90-007295 (1990)
Division of Administrative Hearings, Florida Filed:Jacksonville, Florida Nov. 19, 1990 Number: 90-007295 Latest Update: Apr. 19, 1993

Findings Of Fact The Parties The Applicant, Trail Ridge Landfill, Inc. (Trail Ridge), is a corporation formed in 1989 for the purpose of developing a landfill project and providing waste disposal capacity for the City of Jacksonville. Trail Ridge Landfill, Inc. is a wholly-owned subsidiary of Waste Management of North America, Inc. Its operating division is involved in the waste collection, recycling and disposal business. Waste Management of North America, Inc. is a wholly-owned subsidiary of Waste Management, Inc., which is involved in all facets of solid waste collection and disposal nationally. The Florida Department of Environmental Regulation (DER) is an agency of the State of Florida charged with the responsibility of regulating solid waste management facilities and with permitting their initial construction and operation. It is charged with reviewing applications for permits for construction of such facilities, for reviewing applications for dredge and fill permits in wetlands or waters of the State and, as pertinent to the project involved in this proceeding, for storm water management and storage of surface water and the regulation thereof through its permitting and enforcement authority contained in Chapters 403 and 373, Florida Statutes, and Titles 40C and 17, Florida Administrative Code. The Petitioners are Coastal Environmental Society, Inc. (CESI), a not- for-profit Florida corporation established for the purpose of protecting natural resources. St. Johns Preservation Association, Inc. (SJPA), also a not-for- profit Florida corporation established for the purpose of protecting the community, including environmental concerns; Baldwin-Maxville Coalition, Inc., also a not-for-profit corporation established to promote the health and welfare of its community, including environmental concerns; William McCranie, a resident of Jacksonville, Florida; Darryl Sperry, a resident and citizen who lives 1 1/4 miles from the proposed landfill site in Baker County. All Petitioners have been established to be substantially affected by the proposed permitting and the projects related thereto and all have met pertinent standing requirements as a matter of fact and law. The Respondents do not contest the standing of the Petitioners. Background and Purpose of the Project The purpose of the proposed landfill facility is to address the solid waste disposal needs of the City of Jacksonville and Duval County (the City). The City currently disposes of solid waste at two landfills. One is on the east side of Jacksonville on Gervin Road, and the other is located in the north area of Jacksonville on Island Road. The presently used, east landfill is an unlined landfill currently operated pursuant to a DER Consent Order, in connection with which closure of that landfill is planned. The north landfill consists of three unlined cells and one lined cell. The City currently has unused landfill capacity at these two landfills which will last approximately one more year, but has also sought approval for expansion of the north landfill which would provide about two more additional years of capacity, if approved. The proposed landfill project, if approved, constructed and operated, would meet these solid waste disposal needs for approximately 20 to 25 years. The project at hand began when the City issued a Request For Proposal for private companies to submit bids to the City for construction of additional landfill capacity somewhere to the northwest of Jacksonville in Duval County. Two companies that met qualifying requirements submitted proposals in response to the request for proposals. Trail Ridge was one of those two qualifying bidders. The City selected the Applicant for contract award and then entered into a contract. The Applicant has an option to purchase the proposed landfill site from Gilman Timber and Land Company (Gilman, Gilman Paper Company). After issuance of the permits to the Applicant, the option would be exercised. Thereafter the property would be immediately conveyed to the City from the Applicant. Thus the site of the proposed facility will ultimately be owned and controlled by the City, although the Applicant will operate the landfill under its contract with the City. Gilman presently uses the 1,288 acre site and several thousand surrounding acres for growing timber, principally pine trees, in a pine plantation-type operation grown for use as pulp wood. Much of the site and surrounding Gilman land is characterized by pine trees grown to an age of 20 years or less and then harvested. A great deal of the site property has recently been cut, chopped, plowed re-bedded and re-planted with pine trees. Although some of the site is characterized by mature timber, much of the timber has been recently planted or is otherwise timber not yet mature enough for harvest. The option agreement provides that Trail Ridge will purchase the property from Gilman for $10,000 per acre. The City will then purchase the 1,288 acres from the Applicant for $2,600 per acre, which the Applicant maintains is the current, fair-market-value for the land as it is currently used as pine plantation for growing pulp wood. These terms and conditions are a part of the City's Request For Proposals. In addition to paying the Applicant $2,600 per acre for the 1,288 acre site, the City will pay the Applicant a fee over the life of the operation of the proposed landfill. The fee, amortized over the 20- year span of the agreement, will make up the difference between the Applicant's $10,000 per acre purchase price paid to Gilman and the City's $2,600 per acre initial purchase price paid to the Applicant. The City will thus ultimately re- pay Trail Ridge the $10,000 per acre for the purchase price for the property. The Applicant corporation will operate the landfill over its entire useful life and then close it. Thus, the Applicant's own figures show the land is valued at $3,348,800. The record does not reflect the reason for the purchase price paid to Gilman being $12,880,000, of which the City will repay $9,000,000 to the Applicant in the form of the operation fee, over and above the initial payment to the Applicant of $3,348,800. In any event, the utilities payment to the Applicant of the $12,880,000 for the land and the operation of the landfill only represents the recompense to the Applicant for the purchase funds expended for it to buy the site from Gilman. Additionally, the Applicant, through its option agreement with Gilman, is required to pay Gilman a $60,000 per month option fee. $15,000 per month of that must be paid during the pendency of the option, with the remainder of the $45,000 monthly fees due upon closing of the purchase. The portion of the operation fee paid by the City over and above the $2,600 per acre initial purchase price, attributable to the land appraisal itself, will be paid by the City on the basis of a certain dollar fee-per-ton of solid waste handled and disposed of in the landfill by the Applicant. Testimony indicates this will be approximately $8.00-$15.09 per ton, although the evidence as to which amount is indefinite. The testimony of Applicant's witness Allen, in any event, references these amounts as applicable to the City's solid waste "stream" handled by Trail Ridge at the proposed facility. Its contact with the City assures the Applicant of a minimum of 569,000 tons of waste per year to which the fee would apply. The City currently generates approximately 750,000 tons of waste per year. There is no evidence of what the construction or other capital costs or operation expenses related to the proposed facility will be over the useful life of the facility for the Applicant or related corporations. Site and Design The proposed site is 1,288 acres in size, located in southwestern Duval County, approximately three miles south of Interstate Highway 10, 1.5 miles west of U.S. Highway 301 and 1.14 miles north of State Road 228. The site is located in a sparsely populated area approximately 4 to 6 miles from the City of Baldwin, 5 miles from the City of Macclenny and 2 miles from the City of Maxville. A substantial portion of the proposed site will be left undisturbed and used as a buffer area to separate it from any surrounding development. There are water supply wells within fairly close proximity to the site. One well is within a mile of the site and three are approximately 1.5 miles southeast of the site. The proposed facility will include both a Class I and Class III solid waste disposal area. The Class I area will be approximately 148 acres in size, and the Class III area, 28 acres. The Class III disposal area will only be used for non- household refuse such as construction debris, tree and shrubbery clippings and the like, which will not generate deleterious substances in liquid or gaseous form, as will the Class I landfill. The remainder of the 1,288 acres will be used for buffer zones, dirt borrow areas, storm water management facilities and ancillary facilities necessary to the day to day operation of the landfill. No part of the Class III disposal area will be located within 200 feet of jurisdictional wetlands, which are the closest bodies of water. The project will be located on "Trail Ridge," which is a relatively elevated geographic feature, extending generally in a north-south direction in western Duval County. Geologically, it is an ancient sand dune. There is a substantial decline in elevation of this portion of the ridge from west to east, which produces surface water drainage patterns in a west to east direction at the site, also accompanied by surface water drainage patterns in a southerly- northerly direction into wetlands which occur on the south and north verge of the site, because the site is a prong or easterly extension of Trail Ridge lying between wetlands which occur on the northerly, southerly and easterly boundaries of the Class I disposal site. The 1,288 acres, including the landfill sites themselves, have been used for silvi-culture practices since 1948 or earlier, and are currently managed primarily as a slash pine plantation grown for pulp wood purposes. The present owner of the site, Gilman Paper Company, plans to continue this use of the site should the landfill project not be approved and constructed. Since 1948, the entire site, including much of the wetlands thereon, have been logged, some portions of it as many as three times. The silvi-culture practices at the site include clear- cutting, chopping, burning, harrowing, tilling and bedding of the soil, and planting of pine trees. The pine trees are grown to be harvested on a 20-year cycle or less. Due to these intensive silvi-cultural practices, the natural conditions of the site have been significantly altered and much natural vegetation, such as bottom-land hardwoods, has been replaced by planted pine trees. The area has been extensively ditched for drainage purposes and logging roads have been constructed throughout the site. The design of the Class I disposal area of the landfill includes three major components: a liner system, which includes a permanent leachate collection and removal system, a cap and closure system and a gas control system. The Class I disposal area is designed to be 140 feet high when the landfill is completed and closed in approximately 20-25 years. It will have typical landfill refuse "lifts," of approximately 8 to 12 feet in height, with a side slope grade of three horizontal feet to one vertical foot of elevation gain. This is the maximum grade steepness allowed by DER rules. The Class III landfill, in which no household garbage, chemicals, oils and greases or other deleterious substances will be deposited, will include only a cap and closure system. In order to carry out Department regulatory requirements designed to contain waste permanently in a well- defined area and to minimize the amount of leachate produced within a landfill, as well as to collect and remove leachate that is produced, the landfill will have, in effect, a double liner system. The liner system is designed to contain the leachate produced when rain water contacts waste in the landfill and to cause that leachate to percolate vertically downward through the landfill, capture it in the liner system, prevent it from contacting groundwater and to remove it and treat it. Leachate from the Class I disposal area will be contained by the liner system and removed by a leachate collection and removal system. The liner system, starting from the bottom and proceeding upward, will consist of a 6 inch thick layer of compacted, subgrade soil. Over that layer, a prefabricated "bentonite" clay-like material will be deposited. Directly over the bentonite layer will be a high density polyethylene liner (the secondary liner) called a "geomembrane." The bentonite material has the characteristic of swelling when contacted by a liquid so that, if the geomembrane leaks, the bentonite will swell and plug the hole in the liner above it. On top of the bentonite layer and the geomembrane layer, is a synthetic drainage material called "geonet." Geonet has a very high transmissivity rate and therefore has great capacity to conduct water within its own plane. Lying immediately above the geonet material is a geotextile filter designed to keep sand out of the pores or interstices of the geonet. Above that geotextile filter is a second geomembrane (the primary liner). Above the second geomembrane is another geonet layer, as well as another geotextile filter layer. Then to protect the entire liner system from damage, two feet of clean sand will be placed above the uppermost geotextile filter layer. The two feet of sand also acts as a drainage layer for the uppermost geonet. The leachate that percolates down through the waste and the sand will contact the geonet and then be carried down slope on top of the geomembrane. This constitutes the leachate collection system. The bottom geonet is called the "leak detection system." This is because, if a hole develops in the primary liner, any leachate coming through the hole will be quickly drained away through the bottom geonet. The bottom geonet thus operates as a backup leachate collection system, since any leachate reaching the bottom geonet will also be discharged into the leachate removal system. If a leak should develop in the secondary liner, the bentonite material would quickly plug the leak, swelling and absorbing that liquid. The Petitioners have stipulated that the Applicant has proposed a liner system and leachate collection system for the Class I disposal area which meets all criteria of Chapter 17-701, Florida Administrative Code, except as to the requirements of Rule 17-701.050(5)(c), (e)3. and 4. and (f)3., Florida Administrative Code. The Applicant demonstrated that the liner system and leachate collection system will meet the criteria of Rule 17- 701.050(5)(c), Florida Administrative Code. The liner system will be installed in accordance with a quality assurance plan. A specific condition already agreed upon will require the Applicant to submit for approval a revised quality control and assurance plan for installing the Class I synthetic liner system, after selection of the liner manufacturer and prior to the liner's installation. The liner system is designed so that it will be protected from puncture by waste materials or landfill operation equipment. In addition to the two feet of sand placed on top of the entire liner system to protect it, when initial waste disposal begins, the first lift of waste across the entire area of the liner system, as it is installed in phases, will be composed of 6-8 feet of "select waste" to protect the liner from puncture. Select waste is waste containing no pipes, roots or other potentially puncturing objects which could penetrate the sand layer to damage the liner system. A quality assurance engineer will be on site full-time supervising the initial placement of the select waste until that phase of the landfill operation is completed. A grant of the permit should be so conditioned. The Applicant has established that the liner system and leachate collection system will meet the criteria of Rule 17-701.050(5)(e), Florida Administrative Code. The leachate depth on top of the primary and secondary liners will not exceed a foot because the geonet has the capacity to quickly remove leachate from the liner. The actual hydraulic head of leachate on the primary liner will be only approximately 1/4 inch. The depth on the secondary liner was shown to be even less. The liner system and leachate collection system will meet the criteria of Rule 17-701.050(5)(e)3. and (f)3., Florida Administrative Code. The design of the collection system, including the geotextile filter, will prevent clogging of the system throughout the active life and closure period of the landfill, primarily by placing a gravel aggregate around the collection pipe so as to prevent debris from entering the system. A pilot line will also be installed in each collection pipe to facilitate access for mechanical cleaning, should it be necessary. In the unlikely event of an obstruction in the system, the leachate would simply bypass that area and continue down-grade to the next downstream leachate collection pipe and be removed from the landfill for treatment by that means. The liner system and leachate collection system will also meet the criteria of Rule 17-701.050(5)(e)4., Florida Administrative Code. The leachate collected will be carried downhill to pipes at the east end of the landfill. The leachate will then be pumped from the pipes into storage tanks. Trucks will then be filled with leachate to be transported to the City's Buckman Regional Wastewater Treatment Plant, owned and operated by the City, for treatment and disposal. Unrefuted evidence shows that this plant has adequate capacity and treatment capability to safely treat and handle the leachate. The truck loading areas will be equipped with berms and other means of protecting the surrounding wetlands, surface and groundwaters from leachate spills during the truck filling process. The Applicant's evidence does not demonstrate, however, that the tanks themselves and the area surrounding them will have protective measures for containing leachate spills. In order to comply with the above rule, the totality of the evidence concerning the leachate collection, disposal system and treatment method demonstrates that the tanks should be accompanied by a surrounding containment system (walls or berms) which will have the capability of containing the entire capacity of a tank should failure of a leachate collection tank or related piping or valving occur. Any grant of the permit should be so conditioned. The Petitioners have stipulated, and the Department agrees, that the Class III disposal area is exempt from the liner system and leachate collection system requirements of the above-cited rule provisions. Covering and Closure System Both the Class I and Class III landfills are designed with a composite soil covering system to minimize the amount of rainfall which can come into contact with the solid waste so as to minimize the creation of leachate. During the day to day landfill operations, a 6 inch initial cover will be applied to enclose each Class I landfill disposal cell on a daily basis, except for the working face itself, where waste is currently being deposited. The working face may be left uncovered, so long as solid waste is scheduled to be placed on it within an 18 hour period. A 6 inch initial cover will also be applied once every week to enclose each Class III landfill disposal cell. Thereafter, an intermediate cover of one foot of compacted earth will be applied on top of the initial cover within seven days of initial completion, if a final cover or additional lift on top of that completed cell is not to be applied within 180 days of cell completion. The initial cover will consist of sandy soil, over which will come the intermediate cover of one foot of compacted earth. The final cover will be applied to those portions of the landfill which have been filled with waste to the extent of designed dimensions at the time those portions have been filled. The final cover, to be placed on the sides of the landfill and ultimately upon the top at the end of its useful life, will be placed on top of the 12 inches of intermediate soil layer and will consist of 12 inches of compacted clay with a permeability of 1 X 10/-7 cm/sec. Next will come a layer of 12 inches of compacted soil and then a final layer of 12 inches of top soil, upon which the Applicant will plant grass for erosion control. Erosion of the cover layers on the side slopes is designed to be minimized by closing areas of the landfill as they are filled, an operational procedure commonly referred to as "close as you go." The final cover layers placed on the landfill outside of the clay cap are designed to allow the establishment of a planted grass cover as soon as possible to minimize erosion of the cover material and the side slopes. In addition, the intermediate cover placed on top of and between each cell, beneath the clay layer surrounding the outside perimeter of the landfill, has a high permeability, thereby acting as a drainage layer to direct rainfall and leachate vertically downward to the leachate collection system, as well as to collect runoff so as to retard erosion. Erosion is also retarded, as is the runoff of storm water/leachate over the side slopes of the landfill, by containing storm water which comes into contact with the working face of the landfill cells. This will be accomplished by minimizing the size of the working face to approximately 42 feet width. This will serve to reduce the potential for storm water to contact waste. Additionally, berms will be constructed around the working faces of each active cell which will cause any runoff or storm water which gets inside the working face of the cell to remain there and to percolate through the land fill to eventually be collected as leachate by the collection system. If enough rain falls on the working face of a cell to cause an overflow of storm water over the berms, additional berms placed on the interior slopes of the landfill will catch the overflow and divert it back through the landfill and the leachate collection system. The Applicant contends that normal maintenance equipment and personnel will be able to maintain the exterior side slopes of the landfill and thus minimize erosion. However, if erosion should become a problem, the Applicant proposes to install interceptor berms constructed on the side slopes, accompanied by various geotextural fabrics or synthetic materials proposed to be imbedded on the side slopes to help anchor the interceptor berms. These berms, however, have been demonstrated by Petitioner's witness, Mr. Peavy, to be inadequate to retard erosion. In fact, they may promote erosion because they would be insufficiently anchored to the side slope (as designed with 3:1 slope) and the downhill slope of the berms themselves is considerably steeper than a 3:1 ratio, which will actually promote erosion. The erosion problem will be discussed in further detail infra, but the proposed "optional" berm system, consisting of two proposed berms down the length of the 450 foot side slope will have to be redesigned in order to serve the purpose of retarding side slope erosion. The cap or cover for the exterior side slopes of the landfill will consist of a relatively impermeable clay layer overlain by a sand layer, as well as a top soil layer. Mr. Lithman, an expert in geotechnical engineering testifying for the Applicant, established that as a result of the side slope stability analysis he conducted of the clay layer for the Class I disposal area, that the clay layer would be stable, with a safety factor of 2.9-3, which is more than adequate for a slope as designed for the Class I disposal area (3:1). Mr. Evander Peavy, testifying for the Petitioners and accepted as an expert witness in the fields of civil engineering, soil mechanics, surface water hydrology and hydraulics, agreed that there was an adequate safety factor in the clay cap layer itself and that no plane of failure would likely occur in that layer. The problem, however, lies in the sand layer immediately predetermined or potential plane of failure will occur at the interface between the sand layer and clay layer. This is where the side slope of the landfill is most likely to fail. Failure means that the weight of the sand and soil layers on the outside of the clay layer would exceed the resisting forces, holding them back on the slope of the landfill, which would result in a deformation, slumping or break in the sand layer. If this slumping or break occurs in the sand layer and is not immediately repaired, rain water can erode the clay layer, which is highly erodible if exposed to rainfall. If not redressed soon, this could result in exposure of the waste of the landfill to rain water with the result that leachate could seep out of the side slopes of the landfill and enter surface waters of the State through the functioning of the storm water system. The most likely layers a civil engineer would analyze to determine the stability of the side slope would be the sand and soil layers above the clay layer because they are the weaker layers in terms of adhesion, shearing and resistance to downward movement under stress. However, Mr. Lithman, Trail Ridge's expert who conducted a side-slope stability analysis, only analyzed failure in the clay layer initially, until he was called on rebuttal to address findings of Mr. Peavy. The DER rule provision that allows 3:1 ratio side slopes for the sides of such landfills only serves as a guideline or maximum steepness criteria for design engineers. It does not relieve an engineer from analyzing slope stability in accord with good engineering practices. Analyzing side slope stability must be done in terms of establishing "safety factors." An acceptable safety factor for a landfill is 1.5 because, if failure occurs, solid waste can quickly be uncovered which can cause leachate contamination to surface waters of the State. A safety factor of 1.5 is the commonly accepted factor for earthen dam design because of the risks posed by failure of such slopes or embankments. Mr. Peavy is extensively experienced in the design of earthen dams and similar earth works, including extensive analysis of slope constituents and design for stability under shear forces and other failure-inducing factors, as well as for resistance to erosive forces. He was engaged in such phases of engineering work for approximately 26 years, during which period he designed and oversaw construction of numerous dams, revetments and other earthen embankments and works of many types. Because of this, and because of the commonly accepted engineering methods and calculations he used in analyzing the stability and integrity of the side slopes of the landfill, involving plane of failure analysis and erosion damage analysis, his testimony is credited over that of the other witnesses testifying on the subject matters involving side slope integrity of the landfill. Because of this, a safety factor was established for the side slopes of the landfill, for the sand and soil layers of 1.5. Safety factors of 1.25 are indeed commonly used for highway embankments, but highway embankments are not designed with predetermined or potential planes of failure, such as is involved at this landfill (as presently designed) between the sand-soil layers and the clay layer. Trail Ridge's expert witness in this area, Mr. Lithman, had testified that a safety factor of 1.25 would be adequate because it was typical of DOT earthen embankments for roadways. Mr. Niehoff testified that a 1.3 safety factor was sufficient. In fact, however, Mr. Peavy, testifying for the Petitioners, calculated the safety factor of the side slopes of the landfill to actually be 0.85, using his initial assumption of a weight for a cubic foot of the sand-soil layer of approximately 100 pounds. Mr. Niehoff testifying for Trail Ridge found no basic fault with Mr. Peavy's analysis of the safety factor and alleged that his analysis was done with accepted engineering procedures, but only with use of slightly different assumptions. He testified that if he had used the same assumptions as Mr. Peavy, he would have reached the same conclusions. Mr. Peavy also calculated his safety factor again by employing the same equation used by Trail Ridge's expert, Mr. Lithman, and assumed instead that the unit of sand-soil layers was 125 pounds per cubic foot, as did Mr. Lithman. This assumption coupled with the internal angle of friction of 35 degrees used by Mr. Peavy, which was shown to be a conservative assumption, resulted in a calculated safety factor of 1.05, which is still unacceptable, even under Mr. Lithman's analysis, because Mr. Lithman opined that the safety factor should be 1.25. Using Mr. Peavy's equation, but his own assumptions as to angle of friction and weight per cubic foot of the sand-soil layer, Mr. Niehoff, testifying for the Applicant, calculated a safety factor of 1.3. This safety factor also is unacceptable because it is less than the 1.5 safety factor established as proper by Mr. Peavy's testimony and, indeed, if Mr. Lithman's safety factor of 1.25 could be deemed acceptable, the 1.3 figure would result only in a marginal safety factor at best. The major difference between the safety factor calculations of Mr. Peavy and Mr. Niehoff is that Mr. Peavy assumed that the sand-soil layer above the clay layer would be saturated, while Mr. Niehoff assumed that only 19 inches of the 24 inch sand-soil cover layer would be saturated by rainfall. However, Trail Ridge's own experts, Mr. Lithman and Mr. Niehoff, offered conflicting testimony between themselves on the amount of saturation to be expected. Like Mr. Peavy, Mr. Lithman did his analysis on the basis that the sand-soil layers would be saturated completely, contrary to Mr. Niehoff's subsequent testimony that this would not happen beyond a 19 inch depth in the layer. Mr. Niehoff's conclusions that the sand-soil layer would not become saturated or valid only if there is a complete grass cover over the entire side slopes of the landfill. He admitted that if the sand-soil layer became saturated, the safety factor would only be 1.1 or less according to his own calculations. Trail Ridge offered no preponderant evidence to establish that an adequate grass cover could be established so as to prevent saturation of the sand-soil layer during the design 25-year, 24-hour storm event (approximately 8- 9 inches rainfall in 24 hours). The evidence indicates, rather, that establishing and maintaining a grass cover on the side slopes of the landfill will be very difficult to achieve on a uniform, completely grassed basis. This is because of erosion and because of the damage by equipment necessary to repeatedly repair erosion damage and because of the fact that much of the side slopes of the landfill will be, in effect, under construction until the landfill is completely built out and completed at the end of approximately 20 years. Even if the lower several lifts of the landfill, when covered on the "cover as you go" basis can achieve them, more recently deposited, will not have a complete grass cover. Thus, there is a substantial likelihood of saturation of the sand-soil layer, during storm events of the type for which the landfill is designed. Further, the volume of water that would saturate into the sand-soil layer, even if the landfill was completely grassed, will still be sufficient to totally saturate the lower 90 feet of the landfill side slopes above the clay layer in the event of a 25-year, 24-hour storm event. If the sand-soil layers become saturated, sloughing or failure of those layers will occur at the toe of the landfill. If that occurs, then the clay layer, protective cap can be quickly eroded by subsequent rainfall and surface runoff. This will cause the waste within the landfill to be exposed to rainfall, generating leachate which can migrate to the surface of the landfill and thence to the storm water system and ultimately to the surface waters of the State. No provisions have been made in the design to remove water from the sand-soil layers once it reaches the area near the toe of the landfill to prevent sand-soil layer failure. The impermeability of the clay layer would prevent the rainfall from migrating through the clay layer and continuing to the interior bottom of the landfill to be collected properly as leachate because the clay layer properly should be an impermeable barrier to storm water. Thus, a saturated condition of the sand-soil layers would be most likely to cause their sloughing and failure near the toe of the landfill, with resulting damage by erosion or cracking to the clay layer with the effect of allowing leachate to escape to surface waters of the State. Although the Applicant's expert, Mr. Lithman, opined that side slope stability had not been a problem with the 3:1 ratio slopes at the City's Rosemary Hill Landfill, he admittedly was unaware of the height or length of the side slopes of that landfill. The longer the side slopes and the higher the landfill, the more likely it is that the sand-soil layers will become saturated and fail during design storm events or shortly thereafter, especially as the landfill, in its later years is built both longer and higher toward its final configuration. Further, Mr. Lithman and the Applicant's evidence does not reveal the composition of the side slopes of the Rosemary Hill Landfill, in terms of whether or not the clay and sand-soil layers designed in the proposed landfill are present. Due to the height of the proposed landfill, the lengths of its side slopes and the absence of design features such as terraces and benches, failure of the side slopes, especially in the later years of the landfill's life and, indeed, after closure (closed landfills can generate leachate) is likely to occur, based upon the facts established through Mr. Peavy's testimony. The likely side slope failure is a result of the design flaw and is not a problem which can be cured by normal operation and maintenance activities. Indeed those activities may aggravate the problem through their deleterious effect on the establishment of a uniform, complete grass cover. Because of the height of the proposed landfill, the length and slopes of its sides and the lack of design features such as benches or terraces, it is likely to experience significant side slope erosion due to storm water. The volume of rain water that would accumulate and flow down the sides of the landfill will achieve velocities which would destroy even a well established grass cover, especially in the later years of the landfill's life when the sides have reached significant length and height. Storm water would thus gain sufficient velocity to destroy a grass cover and to particularly attack those portions where the grass cover is incomplete, thinned or possessed of an insufficient root mat to hold the soil. Once erosion starts, small rills will form which will soon develop into deeper gullies, ultimately penetrating the sand-soil layer. It can then quickly erode away the resulting exposed clay cap layer, exposing the waste to storm water. Leachate could thus leak from the landfill. Because of the present design of the Class I landfill, the only way to repair erosion damage is to push material from the bottom with heavy machinery, such as bulldozers. These erosion maintenance activities themselves would prevent the establishment of a uniform solid grass cover. The presently operated East Landfill in Duval County exhibits both side slope failure and erosion damage due to rainfall on its 3:1 slopes, including damage to the grass cover. Erosion damage to the slope layers due to erosion maintenance activities of the type which would be necessary to repair damage at the proposed landfill has occurred. Both erosion and side slope failure will ultimately result in exposure of solid waste to rainfall runoff and assure side slope seepage of leachate. The material eroded or sloughed away from the side slopes can obstruct the drainage conveyance system surrounding the landfill, rendering the MSSW/storm water system inoperative. Because of the presently proposed design of the landfill, it would be impossible to effectively correct side slope erosion or failure, due especially to maintenance activities. Even if a uniform grass cover could be established in the last years of landfill operation and after closure, the great length and slope of sides of the landfill by that time would result in erosion even if the grass cover were initially uniform and solid on the entire slope of the landfill. A change in the design of the landfill, however, whereby 15 foot wide benches or terraces would be incorporated into the sides of the landfill every 20 or so vertical feet, would likely prevent the side slope erosion and failure established to be likely by Mr. Peavy. In fact, benches or terraces similar to those found to be required by Mr. Peavy have had to be recently installed at the East Landfill in Duval County in order to resolve side slope erosion and failure problems on those 3:1 slopes. The mere installation of interceptor berms, as depicted in TRL Exhibit 28, would not alleviate side slope failure and erosion problems, but rather would aggravate them and would reduce the safety factor of the side slopes to 0.5. Consequently, in order to grant the permit, it should be conditioned on the landfill being re-designed and constructed so as to incorporate benches or terraces at approximately 20 foot intervals on the slope of the landfill from bottom to top. Although this may potentially reduce the volume of space within the landfill, depending on how it is accomplished, it has been established that, without the use of the bench or terrace system, pollutant leachate cannot be reasonably assured to be prevented from entering State waters and wetlands. Leachate Control Leachate is any water coming in contact with solid waste. The chemical constituents of leachate which are present and will be present in the Duval County solid waste stream, to be disposed of at the proposed landfill, include chlorobenzene, volatile organics of various types, benzene, acetone, phenolic compounds, gasoline constituents, chloroform, methylethylketone, methylene chloride, toluene, xylene, ethylbenzene, total organic carbon, nitrogen, phosphorus and metals such as aluminum, chromium and zinc. Leachate thus contains toxic, hazardous and priority pollutants which will be disposed of in the landfill. The breakdown and degradation of solid waste can also generate additional toxic or hazardous compounds and substances. Leachate can potentially be discharged in a proposed landfill into groundwater and surface waters in a number of ways, including leakage from the bottom of the landfill liner into groundwaters, including into the Class I storm water pond and surface waters of the State through discharge from the groundwater into the storm water pond system. It could also be deposited into the storm water system through spillage of leachate where tanker trucks are loaded, through seepage of leachate through the side slopes of the proposed landfill by damage to the integrity of those side slopes as found above. The Petitioners maintain that side slope seepage of leachate will occur because the permeability of the intermediate cover layers surrounding the cells of the landfill is significantly less than the permeability of solid waste. This will have the result, according to Petitioners, that leachate will migrate horizontally through the intermediate cover layers to the sides of the landfill. Once there it arguably would migrate to the surface of the landfill side slopes through erosion of the outer cover, and fissures in the clay due to drying from exposure to the sun and through erosion. Additionally, the Petitioners maintain that leachate will migrate downward through the peripheral intermediate cover layer under the clay and contact the impermeable clay anchor cap, build up hydraulic head pressure and thus seep out through landfill sides near the toe of the landfill. The Petitioners maintain that Trail Ridge's policy and proposal to punch holes in the intermediate cover layers atop the cells of the landfill to encourage downward migration of leachate and discourage horizontal migration of leachate through the intermediate cover layers will be ineffective because the intermediate cover is more permeable than the solid waste itself so that punching holes in the intermediate cover to allow the leachate to migrate down through solid waste will actually not occur. Additionally the Petitioners contend that the filter system and the storm water pond will not treat the dissolved chemical components of the leachate specified in Petitioner's Exhibit 2 and that these dissolved components will move through the sand filters into waters of the State. Contrary to Petitioner's contentions, however, the Applicant has demonstrated that leachate will not avoid capture by the leachate collection system by seeping horizontally through the cover or cap and out the sides of the landfill, provided that the side slope failure and erosion prevention measures found to be necessary in the above Findings of Fact are instituted in the design, construction and operation of the landfill. The design of the cap and closure system is basically a side slope seepage prevention system, except for the absence of terraces or benches. The intermediate soil cover beneath the clay cap and surrounding each cell of the landfill acts as a drainage medium. It will channel any seepage of leachate from the cells of solid waste through the permeable, intermediate soil cover, generally in a downward direction, both in and between the cells of the landfill throughout its cross-section, as well as downward through the intermediate soil cover lining immediately beneath the clay cap around the periphery of the landfill. This system, if the above design deficiency is corrected, will tend to force the leachate downward into the collection system, as opposed to horizontally out the cover or the sides of the landfill. The reason this system will work in this manner is because the intermediate cover soil is more permeable than the solid waste itself. The permeability of the intermediate cover will promote vertical movement of the leachate because, as the leachate migrates across each cell, it will encounter the vertical, intermediate soil cover layer at the side of each cell and that will promote its moving downward toward the collection system. The water in the landfill will thus follow the path of least resistance, so that the vertical portions of the intermediate cover layers surrounding each cell and surrounding the sides of the landfill beneath the clay cap, coupled with the force of gravity, will provide a preferential path downward toward the leachate collection system. This finding includes consideration of the Petitioners' contention that leachate will migrate downward and contact the impermeable clay anchor cap and build up head pressure so that it will seep out of the sides at the toe of the landfill. The intermediate cover layer underlying the sides of the landfill beneath the clay anchor cap is connected with the leachate collection system underlying the bottom of the landfill. Thus, a continuous conduction of leachate down through the intermediate cover, permeable layer will allow the leachate to seep downward all the way to the leachate collection system rather than pooling behind the impermeable clay anchor cap. This condition will be enhanced by the fact that surrounding each cell is the approximately vertical, permeable intermediate cover layer, throughout the entire cross-section of the landfill, such that much of the leachate will migrate downward in the interior of the landfill. Because of the ready conductance of leachate in a downward direction by the intermediate cover layers, Trail Ridge's policy of punching holes in the intermediate cover layer on the top of each cell in order to seek to prevent side slope seepage of leachate will be ineffective because the intermediate cover is more permeable than the solid waste. Thus, this procedure is unnecessary and, in fact, could become counter-productive to the extent that punching holes in the intermediate cover would allow rain water mixed with leachate to contact more of the solid waste contents of the landfill as it migrates down through the interior of each solid waste cell. This would result in a more highly concentrated form of leachate, which could pose more deleterious threats to ground and surface waters should it escape to ground and surface waters. Therefore, any grant of the permit should be conditioned on a prohibition of the Applicant thus violating the integrity of the intermediate cover layer overlying each cell as the landfill is built up in lifts. Gas Control System The Class I disposal area is designed with a gas control system which will prevent explosions and fires caused by the accumulation of methane gas due to decomposition of the waste in the landfill. The gas control system will prevent damage to the vegetation on the final cover of the closed portions of the landfill or vegetation beyond the perimeter of the property. It will prevent objectionable odors off site. The Petitioners have stipulated that the Applicants' gas control system will be designed in accordance with Rule 17- 701.050(5)(j), Florida Administrative Code. Although the Petitioners presented testimony of various persons who live in close proximity to other landfills, which were at one time operated by Waste Management subsidiary companies, neither the persons who testified of odor problems at those landfills, nor other witnesses presented testimony to show whether any of the landfills utilized a gas control system or one of equivalent design to that proposed for the subject facility. No evidence was presented to support a finding that the proposed landfill facility would produce objectionable odors to any significant degree. The Petitioners have further stipulated that the Class III disposal area is exempt from the gas control system requirements set forth in Rule 17- 701.050(5)(i) and (j) and (6)(i), Florida Administrative Code, and the Department agrees. Hydrogeology and Ground Water Monitoring The Applicant filed as part of its application, and placed in evidence, a hydrogeological survey and groundwater monitoring plan, contained in TRL Exhibit 51. The hydrology of the proposed landfill site may fairly be characterized as complex because it contains many different features such as recharge and discharge areas, varying zones of conductivity, a sand component to the surficial aquifer as well as a rock aquifer component and multi-directional groundwater flows. Additionally, wetland systems occur down-gradient from the higher levels of the surficial aquifer on the north, east and south sides of the proposed Class I disposal area. From the surface grade down to a depth of approximately 100 feet lies the surficial aquifer, which primarily consists of a coarse sand medium. Lying below the sand aquifer is a confining unit (relatively impermeable) identified as the Hawthorn Group, which consists of denser marls, dolomites and silver clays. Beneath the Hawthorn layer, at a depth of approximately 300-400 feet, is the Floridan aquifer, which serves as the principal deep water supply source for this part of Florida. Additionally, immediately above the Hawthorn layer in the deep zone of the surficial aquifer, a "rock aquifer" exists under a portion of the landfill site, generally the eastern-most portion. It was not shown to be continuous throughout the site. The rock aquifer is connected to the sand surficial aquifer lying above it. Zones of varying higher and lower permeability occur at various places within the surficial aquifer. Generally, groundwater at the site flows down-gradient in an easterly direction, caused by rain or surface water recharging the surficial aquifer on the higher portions of Trail Ridge, including the western side of the landfill Class I disposal site. The surficial aquifer then discharges this groundwater to the land surface and the wetlands lying on the eastern side of the site. Additionally, some northward and southward flow of groundwater occurs from recharge areas to the wetlands lying on the northerly and southerly boundaries of the Class I disposal site in the wetlands. The specific condition 19 contained in the Department's Notice of Intent to issue permit and draft permit requires the Applicant to periodically (quarterly) sample monitoring wells to ensure that water quality standards are not exceeded at the boundary of a zone of discharge established by that specific condition and authorized by Rule 17-28.700(4)(a), Florida Administrative Code. A groundwater monitoring plan has been developed by the Applicant, with accompanying hydrogeological survey as mandated by Rule 17-28.700, Florida Administrative Code. The proposed groundwater monitoring system consists of 42 monitoring wells in and around the area of the proposed Class I and Class III landfill sites. The system is designed to monitor upgradient and downgradient flows in wells constructed to sample from the shallow and intermediate zone and from the deep zone (to some extent) on the east boundary of the Class I disposal site. Specific condition number 18 of the Notice of Intent to grant the permit and draft permit, to which the Applicant has agreed, requires that a detailed chemical characterization of a representative sample of leachate be performed, so as to allow for any necessary modifications to the list of chemical substances to be analyzed in water samples drawn from the monitoring wells on a quarterly basis. Although there are up-gradient monitoring wells for the shallow and intermediate portions of the surficial aquifer, there are no upgradient monitoring wells for the deep zone of the surficial aquifer. There are no upgradient monitoring wells on the west side of the landfill in the deep zone. The deep zone of the surficial aquifer is the zone between the intermediate zone and the top of the Hawthorn confining bed. The rock aquifer is present beneath the proposed landfill site and was encountered at well locations B-7, B-8, B-12 and B-14. That rock aquifer is hydrologically connected to and part of the deep zone, which is hydrogeologically connected throughout the site to the uppermost portions of the surficial aquifer lying beneath the landfill. The rock aquifer is a significant source of drinking water in Duval County and the surrounding northeast Florida area and is used as a supply source for domestic and commercial wells within one and one-half miles of the landfill Class I site. "Sinkers" are immiscible liquids contained in landfill leachate that are denser than water. When released from the landfill they would sink to the first low permeability unit in the surficial aquifer. This would be at the bottom of the surficial aquifer at the rock unit. Once they encountered a lower permeability unit or strata, sinkers would then move in a more lateral direction downgradient in undetermined directions. The silty clay layer depicted on Figure 9 of TRL Exhibit 51 would intercept those sinkers and cause them to tend to move in a direction toward the silty clay layer intercepted by well B-1. At that point the sinkers would then have a tendency to move in a north or south direction on top of the confining zone. The direction those sinkers would move, following a gradient, cannot be determined at present from the groundwater monitoring plan because no deep wells are proposed in either of those areas which could detect sinkers. The groundwater monitoring plan is thus not adequate for the deep zone or to detect pollutants that could migrate off site in the rock aquifer because there are no monitoring wells in the deep zone on the west, north and south sides of the Class I landfill area. Monitoring for sinker compounds in the deep zones is thus insufficient and water supply wells nearby in the deep zone would be at risk because there is no way to detect pollutants between those water supply wells and the source of the pollutants at the landfill. The groundwater monitoring plan is inadequate because there is insufficient information to determine the direction of water flow in the deep zone. Sufficient upgradient monitoring wells in the deep zone are necessary in order to determine the direction of water flow in the deep zone which will in turn indicate where additional deep zone monitoring wells should be located to detect contaminants migrating off site. Leachates also contain contaminant constituents or compounds called "floaters." Floaters are immiscible liquids which are lighter or less dense than water. They tend to float on top of the groundwater table. The hydrologic information depicted with the application and the Applicant's evidence is not sufficient to determine where floaters might migrate. The shallow monitoring wells referenced in TRL Exhibit 42 would not adequately detect floaters at or near the water table surface. Due to the lower lying stream or wetland systems on the north and south side of the Class I landfill on Trail Ridge, groundwater flows in the vicinity of those areas are likely moving northward and southward to some extent. Thus, TRL Exhibit 51, and particularly Figure 14 of that exhibit, is insufficient to support a determination of where monitoring wells should be located because it does not include the impact of the stream or wetland systems on the north and south sides of the landfill. Groundwater contours bend into the stream areas on the north and south sides of the landfill which would indicate groundwater flow to the south and the north instead of just from west to east. The general shape of these contour lines would resemble the contour lines depicted in Figure 16 of TRL Exhibit 51. These contour lines bend back to the east and the west on the north and south sides of the Class I landfill. Since there is groundwater flow to the north and to the south from the Class I landfill, intermediate and deep monitoring wells in addition to shallow wells, should be located along the west, north and south sides of the landfill. Because they are not in the groundwater monitoring plan thus far, the plan is inadequate. A grant of the permits should be conditioned on such additional wells being installed and made a part of the monitoring program, in accordance with the above findings. A zone of discharge for the proposed landfill has been established pursuant to Rule 17-28.700(4)(a)2., Florida Administrative Code, which is intended to extend vertically from the base of the surficial aquifer and horizontally 100 feet beyond the footprint of the landfill or to the compliance groundwater monitoring wells, whichever is less. (See pages 611- 618 of the transcript.) Therefore, even if the groundwater monitoring wells are closer than 100 feet to the footprint of the landfill, they are to be used for monitoring for compliance with applicable water quality standards, including the primary and secondary drinking water standards for G-II groundwater, as contained in Rules 17-550.310 and 17-550.320, Florida Administrative Code. The Applicant has agreed to this location of the wells, their spatial relationship to the footprint of the landfill, to the zone of discharge and to their use for compliance purposes. Storm Water and Surface Water Management System The Applicant proposes as part of its permit application a storm water discharge and surface water management system. The application for permitting for that system was submitted to the DER which reviewed it using the Water Management District's permitting criteria set forth in Chapters 40C-4 and 40C- 42, Florida Administrative Code. Pursuant to its independent permitting authority set forth in Section 373.413, Florida Statutes, the DER noticed its intent to issue the MSSW permit to the Applicant, based upon its opinion that the project will comply with applicable rules. The proposed storm water discharge/surface water management system (MSSW system) will utilize roadside swales, perimeter ditches, catch basins, culverts, detention ponds and pump stations to manage storm water in compliance with Chapters 17-25, 40C-4 and 40C-42, Florida Administrative Code. The solid waste disposal areas will operate as watersheds, routing storm water in to the MSSW system. The retention areas have been designed to handle the retention treatment requirements of a 25-year, 24-hour "design storm" runoff, resulting from approximately eight to nine inches of rainfall. The system is comprised of three independent parts; the Class I landfill system, the Class III landfill system and the separate roadway surface water management system. The Class I system will use temporary berms to intercept storm water runoff from the cap cover system of the landfill, on top of the solid waste disposal area. These top berms will divert the storm water runoff to regularly spaced pipes which will convey the storm water into the perimeter swale located at the foot of the landfill side slopes. The runoff will then be diverted through a culvert into a concrete-lined perimeter ditch which will convey it to the pond. The top berms of the landfill also operate as erosion control features, capturing and channelling some storm water runoff away from the side slopes of the landfill, thereby assisting in erosion control. The Class I retention pond covers an area of approximately ten acres and will contain approximately 43 million gallons of water at design water levels. The peak flow of storm water runoff from a design 25-year, 24-hour storm can be accumulated and released at predetermined rates. The runoff from the first one inch of rainfall in a 72 hour period is retained and stored in the pond. No discharge will be allowed to the pond's outfall system, rather all the outfall from the runoff from the first inch of rainfall will be routed through the sand filter system prior to discharge. When storm water runoff enters the pond, it will mix with the water already in the pond and become part of the total water column. When a rainfall event then produces greater than one inch of rainfall, some water will have to be discharged from the pond by passing it through the sand filter and then discharging through the outfall structure. The water discharged is water which was already resident in the pond before the rainfall event, mixed with the current rainfall runoff from that hypothetical rainfall event. The volume of the pond is so large that storm water runoff will constitute a very small fraction of the actual water volume in the pond at any given time. On the average, it will take 33 days for a given molecule of storm water runoff to travel through the pond, the sand filter and then be discharged through the outfall system. the sand filter system operates on a water level trigger device involving floats in wet wells attached to electrical switching mechanisms. When a certain water elevation in the wet wells, reflective of the elevation in the pond, is reached, the pumps automatically start and pump water into the filter chambers, causing the water to flow over a filtering sand. The filter will be maintained periodically by lowering of the water level to permit removal and replacement of the top six inches of sand in the filter. The Class III storm water pond is similar in design to the Class I pond except that it will not use a top berm. Rather, a perimeter swale will function similarly to the Class I landfill top berm, intercepting storm water runoff from the top and side slopes of the Class III landfill. The Class III storm water pond is equipped with the same type of filtration and pumping system as the Class I pond. The Class III system is designed also to retain the first inch of storm water runoff from a "design storm" rainfall in a 72 hour period. All of that runoff from the first inch of rainfall will likewise be routed through sand filtering prior to discharge. The roadway storm water system utilizes grassed roadside swales to act as a retention structure to filter the storm water runoff. The runoff retained in the swales will be conveyed by pipe to a smaller detention and dispersion pond located between the Class I and Class III disposal areas and built with the same design constraints as the Class I pond. The roadway system will not use a pumping system to operate, but rather discharge will occur through natural action of gravity through the dispersion pond. The filtered storm water runoff from the Class I and Class III disposal areas will be discharged into adjacent wetlands after it leaves the ponds. The discharge will be performed by a wetland irrigation system. The irrigation system will discharge the filtered storm water through conveyance pipes to the wetland boundaries. There a series of perforated pipes will extend outward from the conveyance pipes themselves and serve as a means of gradually releasing the filtered storm water into the wet land area as a means of wetland replenishment and mitigation. Concerning the issue of surface water quality, it has been established that the sand filtering systems on the Class I and Class III storm water ponds are capable of providing 100 percent of the treatment required by State water quality standards when considered in conjunction with the treatment capability of the ponds themselves as natural lake systems. The individual sand filters each provide twice the capacity for treatment necessary which equates to a safety factor of 2. With both filters operating, there is a combined safety factor of 4. Although the Class I and Class III retention ponds are designed with filtration systems, the primary pollution removal system will be the ponds themselves operating as natural lakes. Once storm water enters the ponds, the average residence time is adequate to allow the biological processes of uptake and assimilation to function to remove the bulk of the pollutants, including those derived from any spillage of leachate into the storm water management system and ultimately deposited into the ponds. The volatile organic compounds which can occur in the leachate can largely be removed simply by the process of evaporation, due to the adequate retention time of any leachate- containing storm water which reaches the ponds. It has been established that, due to the storm water pond's natural treatment mechanisms, especially the long retention time, the size and volume of the ponds, as well as the vegetated sides of the ponds, that, considering also the operation of the filter system, the water discharging from the Class I and Class III storm water treatment facility will have very low concentrations of total nitrogen, phosphorous, biochemical oxygen demand (BOD), suspended solids and heavy metals. The Applicant's expert witness on water quality and water chemistry, Dr. Harper, also assumed that the Class I retention pond would have some leachate migration into the pond through groundwater influx. Worst case scenarios were used to estimate this possible influx and the results established a maximum deposition of 2.46 gallons of leachate into the pond over a 65 day period. This amount would be diluted by a factor of 14 million solely by new storm water runoff and rain normally expected under average rainfall conditions during such a 65 day period, without even considering the considerable dilution by the existing water volume of approximately 43 million gallons already in the pond in such a period. Dr. Harper's testimony is accepted. It is unlikely that any runoff can enter the retention pond on one day and then exit within one day's time through the outfall overflow device. Even assuming that runoff occurs in excess of the designed one inch, that runoff would dilute with the large volume of water already present in the storm water pond. Thus, the new storm water would be mixed, diluted and subject to natural biological processes and the process of evaporation (of volatile organic compounds), operative in the pond before it can be released through the outfall structure. The runoff will enter the pond at the west end and discharge through the opposite or east end of the pond. The majority of water caused to be discharged through the outfall because of a larger-than-design storm event runoff would thus actually be water already present in the pond as opposed to incoming runoff from the recent rain event being deposited in the west end of the pond where the storm water system discharges from the Class I disposal area. Even a rainfall event producing twice the designed-for volume would produce no effect on the water quality of the discharge. Further, along with the filter systems and the natural processes of biological uptake, assimilation as well as evaporation in the natural lake system which would operate in the pond, the side slopes of both ponds will be vegetated so as to further assist in uptake and removal of any pollutants present in the runoff, further mitigating any potential for water quality impacts. It has been established that the surface water management system is designed to segregate surface water from leachate by minimizing the size of the landfill working face and reducing the potential for storm water to contact waste and become leachate. Further, a berm will be constructed around each working face which will encompass the entire active cell of the landfill, causing any runoff water entering the working face to remain there and percolate through the landfill to the leachate collection system, rather than entering the storm water system. If a severe rainfall event could cause leachate to overflow those berms, the design includes additional berms on the interior slopes of the landfill to catch that overflow and divert it back through the leachate collection system. The berms are relocated as the working face of the landfill changes, so they will continue to fulfill these functions on an ongoing basis. In terms of a worst case event, the Applicant has also established that the estimated impact of runoff from approximately one acre of exposed solid waste entering the retention pond would still cause no water quality impacts. Further assurance of leachate segregation from surface waters is provided in a spillage control plan which would be activated in the event of leachate spillage from a tanker truck. In connection with this, any grant of the permit should be conditioned upon an adequate berm system surrounding the tank truck leachate filling device in order to contain any such spill to prevent the leachate from entering the storm water retention facilities and surface waters. Such a system should also be characterized by (and the permit conditioned upon) retention berms or other forms of containment being placed around each leachate storage tank, designed to retain the full capacity of such a leachate storage tank in the event of a catastrophic tank valve, piping or other failure. It has been demonstrated, moreover, that if the leachate-storm water separation and control system were to fail in some way so that leachate directly entered the retention pond, the volume of leachate entering the pond would have to exceed approximately 150,000 gallons to cause any water quality violation in the storm water retention pond, even assuming the high concentration of contaminants in the leachate envisioned in the opinion of Dr. Robert Livingston, the Petitioners' aquatic ecologist and toxicologist. He raised concerns that pollution of the head water systems of the St. Johns and St. Mary's Rivers might result from the operation of the project. The Applicant has rebutted the concerns expressed by Dr. Livingston and Dr. Parks and established reasonable assurances that toxins and contaminants occurring in leachate will not deposit in surface waters of the State in any significant or rule-violative amounts for the reasons expressed in the above Findings of Fact. Draw-Down Effects The Petitioners contend that there will be a draw-down of groundwater levels in surrounding wetlands caused by these storm water ponds and associated pumping, in violation of the Water Management District's rules and policy embodied in MSSW Handbook Section 10.6.3. This section presumes an adverse impact on wetlands will result if the system causes the groundwater table to be lowered more than five feet lower than the average dry season low water table. The Petitioners' expert in this area, Dr. Motz, estimated that a measurable draw-down of groundwater of one to two feet in the wetlands water table would extend outward as far as maybe 1,000 feet in all directions from each of the storm water ponds. Dr. Motz used a large error convergence factor in his calculations, however, and also used a model for a confined aquifer, which was not shown to exist at the subject site. He did not use a model which should be appropriate for unconfined or semiconfined aquifers which the evidence reveals is the more appropriate hydrogeology which would be employed in groundwater modeling for the subject site. Dr. Motz' use of a large error convergence factor can potentially result in an answer which is far from the actual appropriate draw-down figure. Numerical models are approximations of reality and the smaller the error convergence factor, then the closer to the real number of the cone of depression, or draw-down level, the model will give. Consequently, the use of an analytical groundwater, cone of depression model was shown by the Applicants' witnesses to give a more accurate result, especially in view of the large error convergence factor employed by Dr. Motz in his numerical model. It was not shown that Dr. Motz had actually "calibrated" the groundwater model he employed. The Applicants' hydrogeology expert, Don Miller, used three analytical and two empirical methods to determine radius of influence or draw-down from the storm water ponds and calibrated the models he used. Validating the data or calibrating the model is a way of making sure the model actually represents the situation intended. Calibration is performed in this instance by inputting some data and then seeing if the model itself could accurately predict the remainder of the data of interest. Using these various methods, Dr. Miller arrived at a range of radius of influence likely to occur from the Class I storm water pond of 167 feet to 184 feet at the western end of the pond and approximately 40 feet at the eastern end. The maximum radius of influence for the Class III storm water pond was shown to be approximately 160 feet at the western end and 0 at the northeastern corner. The other hydrogeology expert for the Applicant, Dr. Leve, performed a separate analytical analysis of draw-down using the Southwest Florida Water Management District's "KOCH" model to produce a projected radius of influence of approximately 167 feet, which is comparable to the projections of Dr. Miller. In conjunction with this, it was shown that Dr. Motz' use of a small value for groundwater infiltration and the large error convergence factor served to increase his predicted radius of influence in an inaccurate way. Dr. Motz also used a higher value for transmissivity or hydraulic conductivity ("K"). The Applicant's experts relied on the average of the actual permeability test results obtained for the site. A different figure for transmissivity or hydraulic conductivity results from Dr. Motz taking into account two test wells in which hydraulic conductivity could not be measured because the well water level rose too quickly to obtain a measurement. Consequently, he predicted or assumed that that factor might affect the hydraulic conductivity at the site by a whole order of magnitude, which resulted in his 1,000 foot prediction for draw-down cone of influence. The problem here is that the evidence does not demonstrate clearly that this much- greater hydraulic conductivity factor with regard to these two wells, which was an isolated incident compared to all other wells tested, is not some mechanical or human error in the installation or evaluation of the wells. Further, even if one predicts the hydraulic conductivity of the unmeasured, apparently highly conductive wells at the geometric mean of all the hydraulic conductivity measurements for the water table zone (except for the marl zone) at 3.0 X 10 cm/sec or three times greater than the value used by the Applicant, it would result in a cone of influence of 265 feet instead of 184 feet. If one also assumed a value for the two ignored wells, as data points, by assuming that they had a hydraulic conductivity value of 3.5 x 10/-3 cm/sec, the highest reported well conductivity value, and then employed that in the empirical formula used by Donald Miller, it would still not greatly exceed the 265 foot cone of depression number. No evidence was adduced to demonstrate that a cone of depression of that magnitude would have any adverse affect on the wetlands, especially in view of the recharging of the wetlands through the storm water pumping and irrigation system. In summary, the totality of the evidence in the Applicant's case, especially on rebuttal, demonstrates that Dr. Motz' methodology significantly overestimated the radius of influence for draw-down at both storm water ponds. The parties agree that the maximum draw-down of 16 feet would occur within the Class I storm water pond, where a "seepage face" would be formed where the pond would cut into the water table through earth borrowing activities. The maximum draw-down inside the Class III storm water pond, where a seepage face would be formed by the excavation into the water table to construct the pond, will be 14 feet. The lowered groundwater within the storm water ponds is due in part to the natural sloping land surface of that area and the concurrent natural slope of the water level before the ponds are even excavated. The slope of draw-down will decrease rapidly, that is, much of the 14 foot or 16 foot apparent draw-down amount will be the result of the relatively sheer seepage face formed by the pond excavation. At the top of that seepage face, the groundwater cone of depression will flatten out considerably and very rapidly so that, as the slope of the draw-down decreases rapidly in the immediate vicinity of the pond, the groundwater outside the ponds themselves will actually be lowered less than five feet. The groundwater levels used in the application were based upon seasonal high water level for the site, rather than "average dry season low" water levels, as referenced in Section 10.6.3 of the Water Management District's Applicant's handbook. Therefore, the projected draw-downs are very conservative and would overestimate the actual draw-down for dry season low water table groundwater levels. Consequently, the weight of the evidence supports the Applicant's predictions on the effects of draw-down. The evidence demonstrates that draw-down from the storm water ponds associated with both landfills will have either no impact or minimal impact on wetland species, either transitional or submerged, in the surrounding wetlands. Silvi-culture activities on the site have considerably altered the area and lowered the natural water table through the construction of drainage structures by the timber company in the past. In general, the wetland jurisdictional lines from the storm water ponds are based on United States Army Corps of Engineers (Corps) wetland criteria and thus do not contain species generally considered to be wetland species for purposes of DER dredge and fill or Water Management District MSSW jurisdictional purposes. Many species used by the Corps in determining jurisdiction, such as slash pine, can grow both in uplands or wetlands. The edges of the areas delineated as jurisdictional wetlands are dominated by transitional and upland plant species such as slash pine, gallberry, palmetto, grapevine and huckleberry, which can tolerate dry conditions. It is only as one's investigation proceeds waterward or toward the center of the delineated wetlands, (in which area the land surface slopes down- gradient at the same area where the draw-down cone of influence rapidly diminishes to an insignificant level), that the plant species change to those species adapted to regular and periodic inundation for purposes of the State agencies' wetlands jurisdiction. The draw-down maximum for any wetland location using the maximum projected radius from Dr. Miller's efforts of 184 feet, (17 feet beyond the projection based upon the Water Management District's model), is on the southwest edge of the Class I pond. Maximum draw-down there will be 24' inches at the wetland boundary line, that is, the Corps jurisdictional boundary line where the dominant plant species are transitional or upland plants such as slash pine, gallberry and bay trees. Pine trees at this point exhibit tall and vigorous growth which indicates that the water table, before installation of the ponds, is already well below the surface, otherwise these upland trees would lack sufficient oxygen to grow if water levels were closer to the surface. The potential draw-down here would thus have little effect on this vegetation. There will be essentially no draw-down effect further down-gradient beyond the DER Water Management District jurisdictional boundary, where the pines are already of diminished stature because of water existing close to the land's surface and where DER wetland jurisdictionally-listed plants predominate. The draw-down at the wetland boundary line on the southeastern part of the Class I pond will be 9 2/3 inches. Wetland species which could be affected are found 50-60 feet beyond that radius of influence at this point. The radius of influence on the northern side of the Class I pond will not cross any wetland boundary until it widens at the northwestern corner. The maximum draw-down at the wet land line near the northwestern corner of the pond would be approximately 15 1/2 inches. Here again the predominant plant species are the upland species of slash pine and gallberry and thus the draw-down will have little effect on those species for reasons mentioned above. On the western edge of the Class III pond is an isolated wetland for purposes of the Water Management District MSSW and Corps jurisdiction only. The edge of that wetland is dominated by slash pine and gallberry. The estimated draw-down on the boundary line of that land in the area dominated by slash pine and gallberry is six inches. There will be no draw-down from that Class III borrow pond area in any wetland dominated by transitional or submerged species. In addition to the above considerations and factual findings concerning the effect of the draw-down, the Applicant is proposing an irrigation systems as delineated above, which will deliver water to the wetlands to mitigate and replenish any minimal impacts of groundwater draw-down. The irrigation system will increase the degree and duration of saturation of the soils at the wetlands' boundary. This will mitigate any minimal effect of draw- down and may actually have the effect of enhancing the health and quality of the wetlands over time, from the wetlands' boundary waterward. In order that the irrigation system will pose the maximum benefit and most closely imitate the natural systems, the irrigation system will be designed for flexible operation. A wetlands ecologist will review the wetlands quarterly and adjust the irrigation system as necessary, as to location and operational regime, in order to properly maintain the health, including water levels and hydro-periods in the wetlands. The Applicant has agreed that the grant of the permit be conditioned to allow for this ongoing quarterly investigation and adjustment. Dr. Motz indicated in his testimony his belief that, to a large extent, the water pumped to the wetlands through the irrigation system would simply immediately migrate to the groundwater and immediately back to the storm water pond, through the effects of the draw-down, and not serve the purpose of replenishing the wetlands. He admitted, however, that he did not know whether the proposed irrigation system would work or not. The Applicant's expert witness in this regard, Dr. Leve, established that the irrigation system would effectively distribute water into the wetlands and saturate the surface due to the "mound effect" of water at the irrigation systems' discharge point at the wetland boundary. He used a standard, generally-accepted "mounding model" to predict the effects of the mounding for the irrigation system. Mounding is a hydrogeological phenomenon whereby water will mound up and create a zone of saturation in the soil at the point of discharge to the ground surface. Mr. Leve ran that model for a cross-section of each of the storm water pumps. He also ran the model for two different values of groundwater inputs into the ponds. A figure of 28,800 gallons of groundwater infiltration into the pond per day, as predicted by the Applicant's expert witnesses, and the 100,000 gallon per day groundwater input predicted by Dr. Motz was used. For both cross- section locations examined by Dr. Leve, the discharge of 28,000 gallons per day at the wetland boundary would raise groundwater levels by approximately three inches. The discharge of 100,000 gallons per day at the same locations through the irrigation system would increase water levels by approximately nine inches. These calculations ware based upon the discharge of the groundwater inputs into the storm water pond only. Discharge additionally of the inputs from storm water runoff from the surface of the landfill into the pond and then through the irrigation system would also be delivered into the wetlands as warranted. Additionally, a berm system will prevent surface water runoff from entering the north dirt borrow area. A berm will be constructed at the eastern boundary of the north borrow area to maintain an interior water elevation of 125 feet or one foot above the natural ground, whichever is higher. Water levels will thus be maintained at the north borrow area so that there will be no lowering or de-watering of the groundwater table. Additionally, storm water will be diverted by berms along the west end of both the Class I and Class III landfills upgradient and into the wetlands, so that the adjoining wetlands receive significant surface water recharge that previously did not flow into those wetlands. Mitigation A mitigation plan was proposed for purposes of both the dredge and fill permit application and, in the solid waste landfill application, for the MSSW permitting. It was incorporated into the draft dredge and fill permit and draft landfill permit incorporated in the Department's Notice of Intent to issue. The mitigation plan and other measures will offset the impacts from filling and other activities caused by the project in both the dredge and fill and MSSW jurisdictional wetlands on the site. The proposed mitigation measures include the creation of 4.76 acres of new wetlands; the irrigation of the wetlands surrounding the Class I and Class III storm water ponds, as delineated above, and the diversion of surface water around the landfills into the wetlands to aid in their recharge. A high quality, forested wetland will be created utilizing the reliable method of mulching and, an extensive hardwood planting program which will include red maple, sweetgum, cypress and tupelo trees. The created wetland will contain deep water and transitional zones. The area will be monitored to insure 80 percent survival of the trees planted and routine maintenance will be performed. Approval of this mitigation plan and any issuance of the permits should include the requirement that rapid replanting be done to replace any dead trees and such approval should also be conditioned on the use of the largest trees possible to be planted, by appropriate tree planting equipment, so that the beneficial uptake and filtering functions, as well as wildlife habitat functions of such hardwood wetlands can begin operating as a mitigatory factor as soon as possible. The created wetland area will replace lost wetlands with a wetland type of higher quality and potentially higher habitat function, depending upon the maturity of the trees planted (see above condition). The wetland replacement ratio attendant to the creation of this wetland area is proposed to be 2.8:1 and the permit should be conditioned on at least that ratio being observed in the mitigation wetland installation plan. Although there was some testimony critical of the wetland creation proposal because it would alter 4.76 acres of uplands which might be of significance to the wildlife in the area, in fact the site of the mitigation area is currently pine plantation which has been greatly altered from its natural state. It does not currently provide high quality upland wildlife habitat. Additionally, only 30-40 percent of the uplands on the entire tract will be altered by the entire project construction proposed. This leaves a majority of the uplands presently on the site in their current condition to the extent that it serves as wildlife habitat at the present time. A conversion of the subject area into a high quality hardwood forest wetland, which would remain bordered by upland on one side in any event, will not have any significant impact on the present value of the mitigation areas as habitat. Wetlands Assessment and Impacts Through the use of consultant personnel skilled in the fields of surveying, biology and botany, the Applicant established jurisdictional lines demarcating the boundaries of DER jurisdiction for dredge and fill permitting purposes and MSSW permitting purposes in the field and adduced evidence of those boundaries at the hearing. The jurisdictional lines established were conservative in the sense that they reflect the jurisdictional standards of the U.S. Army Corps of Engineers, which is generally landward of the lines which would be established by the plant communities characteristic of DER dredge and fill and Water Management District MSSW jurisdiction. The locations of the flags as placed by the biology-botany consultant were then professionally surveyed and plotted by a trained surveyor such that the jurisdictional line was signed and sealed as a "specific purpose of survey." Further, a biologist met with the surveyors weekly to review the plotted line to ensure accuracy. That survey was submitted to the Department in connection with the applications herein. The Department supports that jurisdictional determination in this proceeding. The Department's own jurisdictional determination staff members were on the sites of the jurisdictional determinations for approximately eight days. The location of the wetland jurisdictional line for purposes of MSSW permitting has not been challenged by Petitioners, and no evidence regarding MSSW jurisdiction has been presented by Petitioners in this proceeding. The wetlands jurisdictional survey prepared by the Petitioners, however, showed "new" DER jurisdictional wetlands which would represent, if accepted, an alteration of the DER jurisdictional wetland boundary. Additionally, the challenge to the DER. jurisdictional determination is restricted by the Petitioners to the area around the Class I landfill footprint and its associated storm water pond. No evidence has been presented regarding the jurisdictional determination for the remainder of the site and project, including the access road. Witness Don Garlic has a degree in marine biology with additional coursework and training in the field of botany, including field training in wetland species. He visited the site for seven days for the purpose of critiquing the dredge and fill DER jurisdictional line established by the Applicant and offered as proof by the Applicant in this proceeding. In the 2-3 mile segment of the jurisdictional line around the Class I landfill and associated storm water pond, Mr. Garlick opined that there were three gaps 18-20 feet wide where he did not agree with the dredge and fill jurisdictional line determination. These areas represented by the gaps, if the gaps were determined to be jurisdictional, would add rather long, linear features of putative wetlands to the jurisdictional wetlands already encompassed by the proposed Class I portion of the project. They would add approximately 1/2 acre of additional DER jurisdictional wetlands impacted by the project. The Petitioners, however, did not establish the duration of water flow at any of the areas in which dredge and fill jurisdiction was contested. Mr. Garlick stated that water was flowing each of the seven days he was on the site, from March 28 to May 8, 1991, but stated that it was raining when he was there on April 23. He did not review rainfall data to determine whether it had rained prior to any of his visits. Likewise, he was not shown to have reviewed any groundwater data or to have performed any tests to ascertain groundwater levels in relation to claiming jurisdiction over the disputed Areas A, B, C and D depicted on Petitioners' Exhibit 8. This site has not experienced a prolonged drought. For the period 1988 through the hearing, only the latter portion of 1990 reflected a significant lack of rainfall based on rainfall data obtained from the National Oceanic and Atmospheric Administration Office (NOAA) at the U.S. Navy's nearby Cecil Field, as well as the Jacksonville International Airport. Nineteen eighty-eight, in fact, had above-average rainfall of 61 inches. The Class I landfill area was originally "flagged" in September and early October 1989. July, August and September 1989 were months of above average rainfall. September 1989 had 14 inches of rain, twice the normal rainfall. Nineteen ninety had slightly less than half of its average rainfall for the year, although it started out with normal rainfall and became dry in the fall months. There has since been twice the normal rainfall for the few months of 1991 prior to the hearing. A drought of the type and duration experienced in the latter part of 1990 would have had no significant effect on the plants at the sites in question (sites A, B, C and D). They are perennial plants that remain year-round and therefore are adapted to drought and flood conditions. (T-2047) 1/ The Applicant's jurisdictional determination based upon dominant plant species, established by its consultant in evidence was based upon perennial plant species. Therefore, the hydrological conditions on the site were normal ones when these areas were originally reviewed in 1989 and the jurisdictional delineations established and the conditions found at the site shortly prior to the hearing in March through early May 1991 by Mr. Garlick were unusually wet conditions and do not reflect the normal conditions prevailing at the site. Mr. Byron Peacock was accepted as an expert in wetlands ecology and botany with a B.S. degree in each of those disciplines, with emphasis on Florida wetland species, especially with regard to Florida fresh water wetlands. Mr. Peacock is quite familiar with the site, having been to the site "dozens of times" since September 1989, almost every month for a 21-month period. Mr. Godley, another of Applicant's expert witnesses, also visited the areas put into contention by Mr. Garlick in his testimony for purposes of testifying in rebuttal and also concluded that these areas were not jurisdictional for purposes of the DER's dredge and fill jurisdiction. Mr. Mike Eaton of DER visited at least one of the areas or sites in contention and was of the same opinion. Mr. Garlick had relied on flowing water being present and the plants present to determine that Area A, a ditch along Hells Bay Road, was a jurisdictional wetland area. The areas on both sides are upland. Mr. Garlick testified that there were breaks in the vegetation in Area A and that the vegetation was sufficient to establish a connection. Area A does not contain sufficient water to support a dominance of listed wetland species under either the "a or b tests," as provided in Rule 17-301.400(1)(a) and (b), Florida Administrative Code. There is upland vegetation growing all the way across the ditch on both sides at its connecting point and point of discharge to dredge and fill wetlands. If the ditch held water it would be wettest at this point of discharge into the jurisdictional wetlands, but the ditch does not contain water on a regular and periodic basis, as established by the testimony of Mr. Peacock. Therefore, the water observed in the ditch by Mr. Garlick would have been surface water runoff from the recent high rainfall. Concerning Area B in the Class I storm water pond footprint, Mr. Garlick indicated that he relied on herbaceous wetland plants as a basis for his finding of that as a jurisdictional area. He used the "b test" vegetation method of at least 80 percent transitional plants, less than 10 percent submerged or upland species, as well as the presence of "other indicators" of regular and periodic inundation for that Area B for purposes of the rule cited last above. Area B is a logging road and lies between upland stands of planted pines. It has been used as a road within the past year and there are "rutted- out" or gouged areas in the road caused by vehicular traffic which have puddled water, but between the puddles are areas dominated by upland vegetation. There is also a clear vegetative break in jurisdiction at the point where Area B connects to the jurisdictional line at Area B's southern end. The vegetation at that connecting point is a mixture of red. root, a transitional plant and many upland species, the dominant one being amphicarpum muhlenbergianum, which looks similar to red root in the field. Mr. Garlick testified that red root was the predominant plant in Area B. Mr. Garlick may have mistaken amphicarpum muhlenberqianum for red root. He was not familiar with that upland species and did not know if it was found at the site. A review of photographs from the 1950s, 1960s, 1970s and 1980s showed that Area B had historically always been uplands. The evidence shows that this area holds water only in limited areas following rainfall and that there is no hydrological, "a or b test" vegetative connection between these areas and jurisdictional waters of the State. Area C, located on the west side of the present West Fiftone Road, also contains part of an old road bed, as well as a ditch. Area C was determined to be within MSSW jurisdiction by the Applicant, but was also claimed as a dredge and fill jurisdictional area by Mr. Garlick for the Petitioner. Mr. Garlick indicated in his testimony that plants in Area C were mixed transitional and submerged species, but were sufficient to make out the area as within DER jurisdiction, based upon those plants. He also testified that different parts of Area C met the "a test" or the "b test." The ditch on the eastern side of Area C is dominated by upland vegetation, including amphicarpum grass, slash pine and goldenrod. The slash pines growing in the ditch, as shown by a photograph in evidence, were several years old. This ditch was dry on all of Mr. Peacock's visits to the site except recently during heavy rains. The remainder of Area C is characterized by a canopy of slash pines, a subcanopy of titi shrub of an upland type, with less than ten percent of the vegetation being characterized by bay and tupelos. There is a ground cover over most of that area consisting of upland species such as chokeberry, gallberry and reindeer moss. This area was determined to be jurisdictional for MSSW purposes because of a wet area in the middle containing fetter bush and sweet gallberry, which are both transitional species for jurisdictional purposes. The entire Area C was delineated as MSSW in the permit application, even though it may not all be jurisdictional, simply for ease of delineation and survey. The MSSW wetland areas within Area C, however, have no vegetative or hydrologic connection to the dredge and fill jurisdictional wetlands. Area C thus does not contain sufficient water or vegetation under either the A or B test connected with other jurisdictional areas to be considered jurisdictional for purposes of the DER's dredge and fill jurisdiction. Area D consists of a rutted trail-road used on a regular basis by persons visiting the tract. There is an upland pine plantation on either side of the roadway. Mr. Garlick contended there was a "flow way" in Area D, but that the vegetation was spotty or sporadic. During the past 21 months, Area D was dry every time Mr. Peacock was on the site, except recently after prolonged, heavy rains. At the eastern end of Area D near its connection to Area C, there is a patch of upland amphicarpum grass, growing all the way across the ditch and road. There is also the presence of beak rush, an upland plant which looks similar to submerged rush. There is insufficient water or wetland vegetation under either the a or b test to establish that this Area D is jurisdictional. The evidence thus did not support the Petitioner's contention that additional dredge and fill wetlands would be impacted by the project. The areas claimed by the Petitioners as additional jurisdictional wetlands did not contain sufficient water to be determined jurisdictional, pursuant to DER Rule 17-301, Florida Administrative Code. These areas held water only at certain times of the year in direct response to heavy or frequent rainfall and were normally influenced, that is, fed, by surface water rather than groundwater. Likewise, these areas did not contain sufficient plant species in the canopy, subcanopy or ground cover to be considered jurisdictional pursuant to vegetation indices and procedures delineated in Rule 17- 301.400(1)(a) or (b), Florida Administrative Code. Mr. Mike Eaton of DER testified and established a 1990 DER policy embodied in a memorandum admitted into evidence explaining how the Department employs the above-cited rule for purposes of using hydric soils in making dredge and fill jurisdictional determinations. Both Mr. Eaton and the DER policy in evidence established that hydric soils are not used by the Department except as an indicator of regular and periodic inundation once "b test" vegetation has been determined to be present for purposes of the above rule. Mr. Garlick testified that he used hydric soils as a "back up" to jurisdictional determinations based upon hydrology and plants. He did not identify any area where his jurisdictional determination was based on soils alone. The Department policy memorandum in evidence emphasizes the importance, in jurisdictional determinations with hydric soils as an aid, of not merely determining whether the soil in question is hydric, but also of investigating the specific characteristics of the soil profile, which the Department maintains must be performed by a soils scientist. Mr. Carlisle, a soil scientist, visited the site and took samples of the areas indicated by Mr. Garlick. These locations were located in an approximate fashion by Mr. Garlick on Petitioner's Exhibit 8 at the hearing. Thirty-four of the 35 samples taken were determined to be hydiric by Dr. Carlisle. There are, however, breaks of up to approximately 525 feet between the hydric soils test findings in Areas A, B and D and yet the distance between one hydric and non-hydric soil test finding was shown to be approximately 50 feet. No soil samples were taken by Dr. Carlisle in Area C. These samples are found to provide an insufficient basis for determining the presence of hydric soils throughout Areas A-D. Additionally, Areas A-D did not contain areas of "b test" vegetation contiguous to other jurisdictional areas. Therefore, even if hydric soils had been present throughout these areas, these soils standing alone, without supporting "b test" vegetation, are insufficient to establish jurisdiction in the areas maintained to be so by Mr. Garlick. General Wetland Impacts This project will impact wetlands subject to the DER jurisdiction and which are jurisdictional for MSSW purposes under Chapter 40C-4, Florida Administrative Code, the rules of the St. Johns River Water Management District. Thus, a dredge and fill permit is required pursuant to Section 403.91 et seq., Florida Statutes, and DER Rule 17-312, Florida Administrative Code. Areas subject to DER dredge and fill jurisdiction and MSSW permitting jurisdiction are considered pursuant to DER Rules 17- 301 and 40C-4, Florida Administrative Code. The 1,288 acre site contains approximately 550 acres of wetland, much of which contains planted pines as well as some naturally occurring pines, as well as hardwood swamp, cypress and gum swamp, seepage slope, ditches and swales. Virtually all of the wetlands have been adversely affected in some way by the forestry practices which have occurred and are still occurring on the site. Most of the sloughs and natural flow-ways have been channelized. Ditching has drained the adjacent wetlands and significantly altered the hydrology of the entire wetland system on the site. The wetland known as Hells Bay Swamp, immediately east of the landfills, is currently being clear cut by the Gilman Paper Company. The 550 acres of wetlands are jurisdictional for either dredge and fill or MSSW purposes or both. Some 3.17 acres of MSSW wetlands will be impacted by project construction; 1.61 acres of these are also dredge and fill wetlands. The 1.61 acres of the impacted dredge and fill and MSSW wetlands consist of roadside ditches along the Hells Bay Road and a road on the north side of the Class I landfill. These roads are currently subject to logging traffic, which decreases the usage of the roadways and ditches by wildlife. Consequently, the master of species present and using these ditches is limited. In addition to the 1.61 acres of ditches, the impacted MSSW wetlands also include 0.16 acres of wetland ditches along the entrance road in proximity to dredge and fill wetlands, a 0.80 acre isolated cypress head wetland located within the footprint of the Class I landfill and a 0.60 acre wetland located along West Fiftone Road extending into the south border of the Class I landfill footprint. The 0.80 acre cypress head has already been impacted by a logging road or fire break, and ditches have been constructed through the interior of it. The larger cypresses have been logged, and the remaining vegetation is sparse, rendering it of little quality as habitat for fish and wildlife. The 0.60 acre wetland extending into the south border of the Class I landfill is an old road bed with evidence of ruts from vehicular traffic depicted on photographs in evidence. This area has a slash pine canopy and is dominated by titi shrubs, with a few black gum and traditional wetland plant species such as fetter bush and gallberry in disconnected areas. It is a low quality wetland of scant value as habitat for fish or wildlife. Prior to and during construction, as a condition on a grant of the permits, all wetlands on the site will be protected from erosion, siltation, scouring or excessive deposition of turbidity, de-watering or other construction and operationally-related impacts by the installation and use of siltation barriers placed at wetland boundaries. Because of the significant possibility of the impacts mentioned above, especially siltation and turbidity, to the wetlands during the construction phase of the facilities and attendant to ultimate operation of the landfill itself, grant of the permit should be conditioned on acceptance of monthly inspections by DER enforcement personnel once construction has begun. Wildlife and Archaeological Resource Impacts Wildlife surveys were conducted by expert witness Isaac Rhodes Robinson and members of his staff, as well as by Biological Research Associates, Inc. in the months preceding the hearing. Mr. Robinson and the biologists on his staff spent approximately 1,000 man hours surveying the site, and Mr. Robinson, accepted as an expert in wildlife ecology and wetland ecology, testified on behalf of the Applicant in this proceeding. Assessments of the site were performed by reviewing relevant literature as well as conducting field surveys for both upland and wetland species. No evidence was found of any threatened or endangered species on the site. Mr. Robinson and his staff conducted surveys in 1990 and in early 1991 and biologists from Mr. Robinson's staff were present on the site at various times from September 1989 through the time of the hearing. Surveys performed by Mr. Robinson and his personnel were conducted in accordance with Florida Game and Fresh Water Fish Commission (FGFWFC) guidelines and exceeded that agency's guidelines by surveying 100 percent of the upland areas. No testimony of any witness in this proceeding indicated any physical evidence of use of the site by any endangered or threatened species. Wildlife surveys revealed a shall colony of gopher tortoises, listed as a species of special concern by the FGFWFC in a marginal habitat zone on the extreme western boundary of the Class I disposal area. The colony consists of less than ten individuals and there will not be a significant impact to the tortoises because the individuals will be trapped and relocated to a more suitable habitat on another area of he Applicant's tract, which will be undisturbed by the landfill or its operations, or else to a suitable habitat area off-site, as directed by the FGFWFC. Jay Stephen Godley was accepted as an expert in wildlife ecology and wetlands ecology. He directed an independent assessment of the site and project's impacts. The assessment included reviewing permitting documents, aerial photographs and literature pertaining to wildlife use of the site, as well as over 90 man hours spent at the site. He confirmed that the small population of gopher tortoises was the only significant species on the site and that the project would not significantly impact any listed wildlife species. Extensive trapping and investigation of gopher tortoise and armadillo burrows reveal no evidence of listed "commensal" species, or those species commonly found in association with gopher tortoises, such as Florida mice, gopher frogs, Florida pine snakes, or Eastern indigo snakes. In additions the isolated cypress head in the Class I landfill footprint was sampled for gopher frog tadpoles, and none were found. Florida pine snakes prefer scrub or sand hill habitats, neither of which are found on the site. Pine flatwoods environments, without the presence of either sand hill or scrub habitat, like this site, are not good indigo snake habitat. No indigo snakes' shed skins or other evidence of indigo snake frequency were observed on the site. Indigo snakes are large black snakes which are active during daylight hours and easy to observe in the course of extensive surveys such as those that were conducted for purposes of this project. Considering the amount of time spent by the various biologists on the site, it is quite likely that indigo snakes would have been observed if they frequented this site. The project will have no significant impact on wading birds. All wetlands were surveyed for listed bird species for a minimum of five days using FGFWFC guidelines. No wading birds were observed on the site during the 21 month period of review by Mr. Robinson's firm. The existence of the wood stork, bald eagle or Florida sand hill crane was not established on this site and is considered unlikely by the expert witnesses, whose opinions are accepted. No eagle nests were observed and, since the tree cover provides very limited extent of open water, the site is less than satisfactory as habitat for the little blue heron, snowy egret and Louisiana heron. The only wading bird observed by the Petitioner's expert witness on wildlife issues was a little blue heron observed in a wetland area east of the site, which is off the site being purchased by the Applicant and which was recently clear-cut by the Gilman Paper Company. The project will have no significant adverse impact on the Florida black bear's habitat. The black bear is a threatened species, but black bears do not use the site. No evidence was presented that black bears have ever been present on or in the immediate vicinity of the site. No witness, including Mr. Goodowns, an employee of Gilman Paper Company who has frequently visited and worked on this site over many years, has ever observed a black bear or any sign of a black bear present on the site. Bee hives have been kept at the site since at least 1969 and, although these are very attractive to black bears, they have never been known to have disturbed the hives, nor has it ever been necessary for bee keepers to erect electric fences or other devices to protect the hives from bears. The site presently is not far isolated from human activity, which fact deters the use of it as a habitat or an occasional travel way for black bears. It is located in an area completely enclosed by I-10, State Roads 228 and U.S. Highway 301, all heavily traveled public highways, as well as in close proximity to the town of Maxville, approximately two miles away, and Macclenny, approximately five miles away. Highways with high traffic volumes are significant barriers to movements of black bears, rendering it even less likely that black bears have or will frequent the site. The only evidence of potential black bear presence anywhere near the site presented by the Petitioners was the site's position near the Osceola Black Bear Range, as interpreted from one published article, as well as indication of three bear road kills from six to 15 miles away from the site, and supposed black bear movements recorded by the FGFWFC, all represented on a hand-drawn map, only admitted a corroborative hearsay pursuant to Section 120.58, Florida Statutes. The map exhibit contained the expert's own redrawing of his interpretation of the extent of the Osceola Black Bear Range from the article he referenced, which itself was not offered into evidence. Bear movements depicted on the map really consisted of those of a bear apprehended by the FGFWF and released in the area. The map did not show any roads, therefore making location and distances to the reported road kills speculative at best. Because black bears do not use this site and because of its encirclement by significant human activity, the site is not significant as a bear dispersal corridor or travelway between the Osceola Forest bear population and the Ocala Forest population. No direct evidence by radio-telemetry data or otherwise was offered to show that black bears actually move between the Osceola and Ocala Forest populations, nor particularly that they move through the area in the immediate vicinity of the project site. Construction of the landfill would not prevent the movement or foraging of black bears through the site. Neither fencing nor presence of traffic on the landfill access roads only during daylight hours would prevent such movement. It is also unlikely that bears would likely be hit by traffic on the roads because the noisy trucks which will use the road would provide ample warning to bear's of any danger from traffic so they would avoid it. If the landfill were constructed on this site, less than one-half of 5/100 of one percent of the 3,800 square- mile area of the Osceola Black Bear Range, referenced by the Petitioners' expert witness, would be impacted. The site itself does not provide high quality black bear' foraging or denning habitat. Even the Petitioners' expert characterized it as "good" or "better than average" habitat. All but 3.17 acres of the area to be impacted by the project is upland, consisting primarily of pine flatwoods. Authoritative studies show that flatwoods are not heavily utilized by bears, which spend 70 percent of their time in swamp or wetland habitat. The 550 acres of wetlands, including approximately 280 acres of swamps, which will be left undisturbed on the site, will provide habitat and travel corridors for the black bears should any ever frequent the site. Additionally, the 4.76 acres of hardwood wetlands to be created as mitigation, would add high quality wetland habitat for black bears. Therefore, due to the extremely small area involved, the unlikelihood of use by black bears and the mitigation proposed, the landfill will have virtually no impact on black bear habitat, travelways or populations. The evidence thus established that the project will not have an adverse impact on endangered or threatened species or their habitats. Because the site has been under extensive commercial forest management and harvest operations for over forty years, the density of plant and animal life has been reduced, thus making the site as a whole, low quality wildlife habitat.

Recommendation Having considered the foregoing Findings of Fact, Conclusions of Law, the evidence of record, the candor and demeanor of the witnesses and the pleadings and arguments of the parties, it is, therefore RECOMMENDED: That a Final Order be entered by the Department of Environmental Regulation approving Trail Ridge Landfill, Inc.'s applications for the above-referenced permits for the proposed solid waste management facility, including a solid waste management facility permit, a storm water/management and storage of surface waters permit and a dredge and fill permit, provided those mandatory conditions specified in the Notices of Intent to issue such permits, as well as those conditions found to be necessary in the above Findings of Fact and Conclusions of Law are made mandatory conditions of permitting and subsequent facility operations. DONE AND ENTERED this 20th day of September, 1991, in Tallahassee, Leon County, Florida. P. MICHAEL RUFF Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, FL 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 20th day of September 1991.

Florida Laws (13) 120.57120.68267.061373.042373.413373.414373.416403.031403.702403.707403.813403.927471.025 Florida Administrative Code (3) 40C-4.09140C-4.30140C-42.061
# 6
JOHN W. HOLIAN AND BETTY HOLIAN vs DEPARTMENT OF HEALTH AND REHABILITATIVE SERVICES, 90-003109 (1990)
Division of Administrative Hearings, Florida Filed:Cross City, Florida May 17, 1990 Number: 90-003109 Latest Update: Dec. 19, 1990

The Issue The issues for consideration in these cases concern whether the Petitioners are entitled to an on-site sewage disposal system ("OSDS") permit, or the grant of a variance from the permitting requirements embodied in the statutes and rules cited herein, so as to authorize installation of an OSDS for property they own near the Suwanee River in Dixie County, Florida. See, Section 381.272, Florida Statutes, and Chapter 10D-6, Florida Administrative Code.

Findings Of Fact The Petitioners are the owners of certain real property located in Dixie County, Florida, in close proximity to the Suwanee River, more particularly described as Lots 22 and 37, High Point Suwanee Riverfront Estates, a subdivision platted and recorded in 1983. Lot 22 is approximately 150 feet by 127 feet by 121 feet, and Lot 37 is approximately 100 feet by 175 feet by 176 feet in dimension. The lots were purchased on September 22, 1987 and December 10, 1987, respectively. The parties have stipulated that evidence and factual testimony adduced in this proceeding shall apply equally to the circumstance of both lots since they are in close proximity to each other and have similar elevations and other site characteristics. Accordingly, these Findings of Fact will be based upon that stipulated, combined evidence; and all Findings of Fact will apply to both lots, except as to elevation figures peculiar to each lot and as otherwise noted in these Findings of Fact. The Petitioners purchased Lot 22 for $14,995.00 and Lot 37 for $12,500.00. They were purchased in September and December of 1987, respectively. The Petitioners purchased them with the intent of holding them for investment and building a retirement-type home on one of the lots. On March 22, 1990, the Petitioners applied for an OSDS permit for the lots in question. The new systems applied for would be for a frame-type "stilt home", which would contain three bedrooms and a heated and cooled area of 1,232 feet, which equates to a 350-450 gallons per day sewage flow under the standards contained in the Respondent's rules. Hubert H. Raker, a certified, land surveyor of Cross City, Florida, performed a survey on the property, shown by Petitioners' Exhibit NO. 1 in evidence. That survey establishes a benchmark elevation for Lot 22 of 11.79 feet above mean sea level ("MSL"). That benchmark is actually six inches above the grade level elevation of the property at the benchmark location. Lot 37 was established to have a benchmark elevation of 12.25 feet above MSL, also six inches above the actual grade level of the lot at the benchmark elevation site. The site of the proposed installation of the OSDS has an elevation of 11.19 feet above MSL, as to Lot 22, and 11.75 feet above MSL, as to Lot 37. The ground water level, at the time the site evaluation was made by the Respondent's representative, was 60 inches below the surface of the grade for Lot 22 and 54 inches below the surface of the grade for Lot 37. The wet season water table for both lots was shown, by "mottling" existing in the soil beneath the surface of the lots, to be 54 inches below `:he surface of both lots. The soil type for both lots, starting with six inches below the surface, is of a "slight limited" soil characteristic and is fine sand down to approximately 48 inches and from 48 inches to 72 inches, consists of "loamy-sand". Such soils are well adapted to OSDS installation and operation. The property was shown, by the Respondent's own Composite Exhibit NO. 2 in evidence, to not be subject to frequent flooding. The property is, however, as to both lots, beneath the ten-year flood elevation established by the Suwanee River Water Management District's calculations and admitted into evidence in this proceeding as a part of Respondent's Composite Exhibit NO. 2. The ten-year flood elevation for both lots was shown to be 15 feet above MSL. Thus the surface elevation of both lots is somewhat below the 15-foot, ten-year flood elevation. The bottom of the drain-field or absorption-bed trenches, if the systems were installed on the lots, would be a greater distance beneath the ten- year flood elevation. Thus, the property is located within the ten-year flood elevation of the Suwanee River and is also located within the regulatory floodway of the Suwanee River. Other properties and lots in the immediate proximity of the Petitioners' two lots are equipped with OSDS's, including a number of "mounded systems", involving the placement of septic tanks and drain fields in elevated earthen mounds in order to elevate them above the ten-year flood elevation. Petitioner, John W. Holian, testified in a general way that such a system might be feasible and advisable in his situation, as well as the possibility of installing an aerobic septic tank treatment and disposal system, involving the injection of air into the septic tanks so that aerobic, (as opposed to anaerobic), bacteria could perform the sewage treatment function, which typically perform the function better than does a conventional anaerobic system. Petitioner Holian, did not offer any detailed testimony or evidence which would explain and establish how such a system could work without endangering the health of the Petitioners or members of the general public, if placed on the lots in question below the ten-year flood elevation, nor if or how such a system would protect against degradation of the ground or surface waters involved in the proximity" of the sites. If the system were mounded above the ten-year flood elevation, the Petitioners did not establish, through proper engineering testimony and other evidence generated by a registered engineer, that the use of the fill for the earthen mound for such a system would not raise the level of the "base flood." In summary, although the Petitioners suggested such a mounded system or an aerobic system or such a system possibly used in combination, the Petitioners did not go beyond suggesting an alternative and did not offer evidence which could establish that such an alternative would be a reasonable operationally feasible one and would adequately protect the ground or surface waters and the members of the general public from health hazards associated with sewage effluent. See, Rule 10D-6.47(6), Florida Administrative Code. On May 1, 1990, the Respondent, by letter, advised the Petitioners that they should pursue a formal administrative proceeding upon the initial denial of their OSDS permit application and advised them that an application for a variance from the requirements of Rule 10D-6.47(6), Florida Administrative Code, regarding the ten-year flood elevation problem at issue, should not be pursued but rather, the formal hearing process before the Division of Administrative Hearings should be employed by the Petitioners. The Respondent asserts, that the Petitioners were not accorded the opportunity to avail themselves of the variance procedure because of the Respondent's interpretation of the Governor's Executive Order 90-14, which it opines precludes it from granting any variances or permits for OSDS within the ten-year flood elevation. The Governor's Executive Order, which incorporated the "Suwanee River Task Force" recommendation to preclude such systems beneath the ten year flood elevation was entered on January 17, 1990. The Respondent has, in effect, interpreted that Executive Order as precluding it from exercising its discretion to entertain and grant or deny variance applications. The Petitioners apparently took-that advice because no variance application was filed. It is noted, somewhat parenthetically, however, that in terms of the requirements for the establishment of a right to a variance, the Petitioners have not shown that no reasonable alternatives exist to a standard subterranean septic tank and drain field OSDS, (such as those alternatives referenced in the paragraph next above, which efficacy was, nonetheless, not established by the Petitioners). Neither did the Petitioners establish, in terms of the variance requirements in the authority referenced below, that the installation of an OSDS would not have an adverse effect on the public's health or the quality of the ground or surface waters involved at the sites. Because these two necessary elements of proof necessary to establish the right to a variance, through hardship, were not proven by the Petitioners, the elements of proof necessary to establish the right to a hardship variance have not been made out by the Petitioners and one could not be granted under the proof of record in this proceeding, even had the Petitioners made formal application for such a variance. That is not to say, however, that with proper preparation and presentation of evidence, entitlement to a variance could not be established in the future.

Recommendation Having considered the foregoing Findings of Fact, Conclusions of Law, the evidence of record, the candor and demeanor of the witnesses, and the pleadings and arguments of the parties, it is therefore, RECOMMENDED that a Final Order be entered denying the Petitioner's application for an OSDS permit. DONE AND ENTERED this 19th day of December, 1990, in Tallahassee, Leon County, Florida. P. MICHAEL RUFF Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 20th day of December, 1990. APPENDIX TO RECOMMENDED ORDER IN CASE NO. 90-3109 AND 90-3445 The Petitioners filed no proposed findings of fact. Respondent's Proposed Findings of Fact 1-9. Accepted. COPIES FURNISHED: Sam Power, Agency Clerk Department of HRS 1323 Winewood Boulevard Tallahassee, Florida 32399-0700 Linda K. Harris, Esquire General Counsel Department of HRS 1323 Winewood Boulevard Tallahassee, Florida 32399-0700 John W. Holian 466 South Lake Triplet Drive Casselberry, Florida Frances S. Childers, Esquire Assistant District III Legal Counsel Department of HRS 1000 N.E. 16th Avenue Gainesville, Florida 32609

Florida Laws (1) 120.57
# 7
CITY OF ORLANDO AND DEPARTMENT OF ENVIRONMENTAL REGULATION vs. DEPARTMENT OF ENVIRONMENTAL REGULATION, 76-001573 (1976)
Division of Administrative Hearings, Florida Number: 76-001573 Latest Update: Jul. 11, 1977

The Issue Whether Petitioner should be granted a water pollution operation permit for the Bennett Road Sewage Treatment Facility under Chapter 403, Florida Statutes.

Findings Of Fact Petitioner owns and operates a sewage treatment plant known as the Bennett Road Sewage Treatment Facility in Orlando, Florida. The plant was originally built in the 1950's and its method of treatment has been modified and improved over the years. At the present time, the plant serves about 60 percent of the sewage treatment needs of the city. The sewage is first treated for the removal of biological compounds by means of trickling filters, followed by chemical treatment for removal of BOD, suspended solids, and phosphorus. In the latter process, aluminum sulfate is used, together with a polymer to assist in forming larger particles for more rapid settlement. These processes are followed by final settling, clorination and discharge through an outfall pipe approximately five miles to the Crane Strand Creek and thence to the Little Econlockhatchee River (Little Econ) which meets the Big Econlockhatchee River approximately twelve miles downstream and flows into the St. Johns River twenty- seven miles downstream. About 60 percent of the flow from Crane Strand Creek into the Little Econ is derived from the Bennett Road plant and there is no other significant source of pollutants from the remainder of the discharge. (Testimony of Jewett, Matthes, Petitioner's Composite Exhibits 1,2) In 1973, Respondent's predecessor, the State Department of Air and Water Pollution Control, issued a temporary operation permit to Petitioner, subject to certain conditions, for the Bennett Road plant. The permit was effective until June 1, 1976, "or sooner pursuant to the permittee upgrading his facility to provide 90 percent treatment and obtaining an operation permit in accordance with the rules and regulations of the Department Of Pollution Control." On May 7, 1976, Petitioner submitted an application for an operation permit wherein it was stated that the facility would be abandoned as soon as the Orlando Easterly Regional Facilities were constructed with a new treatment plant to be located in the vicinity of Iron Bridge Road. Respondent's manager of the St. Johns River District advised Petitioner by letter of July 21, 1976, of the Department's intent to deny the application for an operating permit. The reasons given were that (1) available data was insufficient to show sustained secondary treatment as defined in Chapter 403, Florida Statutes, and Chapter 17- 3, Florida Administrative Code; and (2) the facility's discharge caused violation of Section 17-3.09(3), F.A.C. The latter provision establishes one of the criteria for classification of Class III waters and provides generally that the concentration of dissolved oxygen in all such surface waters shall not average less than 5 mg/l in a twenty-four hour period and never less than 4 mg/l. Class III waters are designated in Rule 17-3.09 as "Recreation - propagation and management of fish and wildlife." In its above-mentioned letter, Respondent suggested that the Petitioner apply for a temporary operation permit. Petitioner chose to request an administrative hearing on the proposed denial and did so by petition filed herein on August 5, 1976. At the commencement of the hearing, the parties orally stipulated that Petitioner has been meeting the statutory and regulatory requirements as to secondary treatment so as to warrant withdrawal of Respondent's objection to granting the permit on that ground. The parties also agreed that the only matter remaining in issue is the question of whether Petitioner's discharge violates water quality criteria. (Petitioner's Exhibits 6,7) Petitioner began consideration of the need to replace or expand the Bennett Road plant about 1968. These plans have reached a stage where the Petitioner is now in the process of purchasing land and concluding a planning study required under federal law to construct a regional facility to service the eastern part of Orlando and a few of the northerly communities, including some in Seminole County. Such regionalization of sewage treatment facilities is encouraged by the federal government which provides 75 percent of the funding necessary for construction under Public Law 92-500 . It is anticipated that the proposed facility will be completed in 1980 at which time the Bennett Road plant will cease operations. The regional facility is to be located at Iron Bridge Road and its discharge would flow into the Little Econ several miles downstream of the present Bennett Road discharge. (Testimony of Matthes, Schneider, Petitioner's Composite Exhibit 2) Operation permits have been granted from 1971 to 1976 to a number of sewage treatment plants that will tie-in to the proposed regional facility. These permits were issued even though the discharge of most of the plants did not meet water quality standards. However, practically no secondary treatment plant can meet water quality standards in Central Florida without an extensive mathematical "modeling." These calculations made by Respondent are formulated from surveys of the body of water in question and result in what is termed "a waste load allocation." This term deals with a treatment standard that is computed to ascertain the assimilative capacity of a receiving body of water to take in pollutants from a particular source in order that water quality standards in terms of dissolved oxygen levels may be maintained. The waste load allocation is the standard which the treatment from the source must perform before it can be discharged. None of the above-mentioned plants nor the Bennett Road plant had been provided an assigned waste load allocation at the time of Respondent's adverse action on Petitioner's application. Neither had it been a past requirement of Respondent to require information concerning dissolved oxygen from an applicant in order to issue an operation permit. However, a preliminary survey of the Little Econ had been completed by Respondent by February 1976, and from this, a mathematical model was later computed based on chemical analysis of water samples taken from designated areas in that body of water. In the aforesaid permits that were granted, a clause provided that the plants would have to work with the City of Orlando in resolving discharge problems and cooperate in the achievement of a regional system. Although water quality criteria had not changed in recent years, they had not been enforced because Respondent had had insufficient background water data. At the time Petitioner's permit application was recommended for denial, the primary basis therefor was the fact that the Bennett Road plant had not then reached 90 percent treatment capability over a sustained period. The question of water quality was incidental in view of the fact that that office did not then have the final determination of water quality as evidenced by the intensive survey of the Little Econ and the final math modeling. (Testimony of Jewett, Davenport; Petitioner's Exhibit 4) By interoffice memorandums from the Respondent's Director of the Division of Environmental Permitting to district and subdistrict managers, dated January 28 and April 13, 1976, Subject: Temporary Operating Permits, the said managers were instructed that no operating permits should be issued for any source not achieving secondary treatment of its wastes or not meeting water quality standards. In such cases, only temporary operating permits were to be issued. Further, it was stated in the April 13 memorandum that enforcement action would be initiated against municipal facilities if they were either not achieving 90 percent removal Of BOD and suspended solids or not meeting water quality requirements, and had either (1) not applied for a federal grant, (2) was not following up to ensure receipt of the grant, or (3) had received a federal grant but was not expeditiously accomplishing the grant requirements. It was stipulated at the hearing that the memorandums had not been promulgated as rules by Respondent under Chapter 120, F.S. (Respondent's Exhibits 1, 2, Stipulation) Although the Little Econ is a highly degraded body of water, upstream of the Bennett Road discharge point it has a dissolved oxygen level of over 6 mg/l. After mixture with the Bennett Road discharge, the level drops to about 2 1/2 mg/l. Based upon the intensive survey taken by the Respondent in 1976, it was determined that water quality violations existed below the Bennett Road plant's discharge point but not above that point. It was further determined that the Bennett Road facility was contributing about 89 percent of the oxygen demanding substances in the system. In fact, the dissolved oxygen levels downstream from the Bennett Road discharge reached as low as one milligram per liter at several points. They ranged from that level up to approximately four and one-half milligrams per liter throughout the entire 27 miles of the system. The foregoing was the conclusion of Respondent's environmental specialist based on field data taken on August 30, 1976, at a time of the day when the dissolved oxygen levels would be at their highest. However, the drop in dissolved oxygen level to an even greater extent at certain points occurs in Respondent's mathematical model prediction that does not take into account any discharge from the Bennett Road plant. In fact, in such a "no discharge" situation, Respondent's prediction is that the dissolved oxygen level at points immediately following several control structures in the waters will produce an even greater drop than with the Bennett Road discharge taken into consideration. Although the control structures do not affect the actual oxygen demand on the system, they do increase the residence time of the water and permit substances to settle out. However, when the water flows over the dam, it creates reaeration that increases the oxygen level again. Therefore, although the control structures aggravate the problem, the Bennett Road discharge is in turn further aggravating the situation because some of the pollutants continue downstream. Part of the problem is due to the effect of deposits already on the bottom of the system and it is unknown to what extent they would be eliminated if the Bennett Road facility were taken out of the system. Although it is not anticipated that there would be a great rise in dissolved oxygen levels if the Bennett Road plant discharge were to be discontinued, Respondent's experts are of the opinion that there would be a definite increase in dissolved oxygen levels overall. Further, the field data and model predictions were based on high flow conditions but the 89 percent figure for pollutants from the Bennett Road facility was based on a low flow condition where it would be of more significance. Although the field data showed that at no point in the 27 mile course did the dissolved oxygen level of the water reach state standards of 5.0 milligrams per liter dissolved oxygen for Class III waters, the model prediction with no discharge from the Bennett Road facility shows that the dissolved oxygen level still would not meet state standards under high flow conditions. Under low flow conditions, though, the dissolved oxygen level without discharge from the Bennett Road plant would reach the state standards roughly halfway down the system. High flow conditions are more representative of an average of dissolved oxygen level during the year than under low flow conditions. The Bennett Road plant contributes approximately 60 percent of the total water flow reaching the St. Johns River. Even if the plant were to achieve advanced waste treatment standards, it still would not meet water quality standards. No evidence was presented as to the possibility of Petitioner using alternative methods of waste disposal, such as deep well injection, land irrigation, or the use of lakes and ponds. In fact, no discharge from the Bennett Road plant could be such as to raise the entire stream to meet the state requirement of 5.0 milligram per liter dissolved oxygen. (Testimony of Sawicki, Davenport, Armstrong, Horvath, Brown, Petitioner's Composite Exhibit 2, Respondent's Exhibit 3) An interoffice memorandum of Respondent's Grants section, dated October 28, 1976, pointed out that enforcement action had been shown to be a "great motivator in the area of bringing awareness to governmental agencies of their responsibilities in the field of pollution abatement." The memorandum sought compliance investigations of the various governmental entities within the area where the proposed regional sewage treatment system for East Orlando was to be undertaken, with recommendations that enforcement action be taken in the case of any violations of state standards. The memorandum further stated that enforcement action was already underway against the City of Orlando. The author of the memorandum denied that it was an attempt to force Respondent to proceed more vigorously with the regional system. (Testimony of Schneider, Petitioner's Exhibit 5) The Orange County Pollution Control Board requires variances from its rule that no treated effluent shall be discharged into the surface waters of the county. The Bennett Road plant operates under such a variance and at the present time is meeting county standards for sewage treatment. On May 19, 1976, the Orange County Assistant Pollution Control Director advised Respondent that the Bennett Road plant was meeting current state performance requirements and recommended approval of the operation permit. Although the county maintains records of the Little Econ River at various points, it has not used a mathematical model to determine whether the Bennett Road plant causes water quality violations. (Testimony of Sawicki, Petitioner's Exhibit 3)

Recommendation That the application of Petitioner City of Orlando, Florida for a water pollution operation permit for the Bennett Road sewage treatment facility be denied. DONE and ENTERED this 25th day of May, 1977, in Tallahassee, Florida. THOMAS C. OLDHAM Division of Administrative Hearings Room 530, Carlton Building Tallahassee, Florida 32304 (904) 488-9675 COPIES FURNISHED: Vance W. Kidder, Esquire Assistant General Counsel Department of Environmental Regulation 2562 Executive Circle East Montgomery Building Tallahassee, Florida Gretchen R. H. Vose, Esquire Assistant City Attorney 16 South Magnolia Avenue Post Office Box 793 Orlando, Florida 32802 ================================================================= AGENCY FINAL ORDER ================================================================= STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION CITY OF ORLANDO, FLORIDA, Petitioner, vs. CASE NO. 76-1573 STATE OF FLORIDA, DEPARTMENT OF ENVIRONMENTAL REGULATION, Respondent. /

Florida Laws (3) 120.57403.061403.088
# 8
SAVE THE ST. JOHNS RIVER vs ST. JOHNS RIVER WATER MANAGEMENT DISTRICT, 90-005247 (1990)
Division of Administrative Hearings, Florida Filed:Titusville, Florida Aug. 21, 1990 Number: 90-005247 Latest Update: Aug. 30, 1993

The Issue The central issue in this case is whether the application for a surface water management permit (permit no. 4-009-0077AM) filed by the Respondent, David A. Smith (Applicant), should be approved.

Findings Of Fact Based upon the prehearing stipulations of the parties, the testimony of the witnesses, and the documentary evidence received at the hearing, the following findings of fact are made: The Applicant is the owner of the subject property. The Applicant filed an application for a permit to construct a stormwater management system which was proposed to serve a residential and golf course development to be known as Sabal Hammocks. The site of the proposed project is approximately 720 acres in size and is located in township 24 south, sections 28, 29, 30, 32, 33, and 34, range 35 east, Brevard County, Florida. The entire project site for the Sabal Hammocks development is located within the boundaries of the St. Johns River Water Management District. To the west of the project site is an 140 acre public park that treats its own stormwater and releases pre-treated stormwater during some storm events into the canals on the Sabal Hammocks site. The Applicant's site is located adjacent to Lake Poinsett and prior uses of the land have included cattle grazing and the cultivation of rye and oats. The Applicant filed his application for the stormwater management permit (permit NO. 4-009-0077AM) on December 22, 1989. That application was deemed complete by the District on June 19, 1990. The District issued a notice of its intended action to approve the permit application on June 28, 1990. Save timely filed a petition challenging the proposed action. By law the District is the appropriate agency charged with the responsibility of reviewing applications for stormwater management permits within the subject area. Save is an association of individual persons and representatives from groups who utilize the waters of Lake Poinsett and its surrounding areas for recreational and business purposes. The receiving waters for stormwater discharge from the proposed Sabal Hammocks development will be Lake Poinsett. That water body is classified as Class III waters. Currently, a dike system exists along the southern boundary of the subject property. That dike system separates the internal grazing lands of the parcel from the lower marsh and flooded areas external to the dike. A series of ditches cross the parcel to drain the interior areas. Two agricultural discharge pumps are currently in use at the site. The operation of those pumps has been authorized pursuant to a consent order approved by the District's governing board on December 13, 1990. The dike system on the subject site has been in place since the 1970s. The original construction specifications of the dike are unknown. Sometime in the 1980s, several openings or breaches were cut in the dike system. Those breaches were opened pursuant to permits issued by the District and the Department of Environmental Regulation (DER) . The breaches were cut to a sufficient width and depth to allow boats to navigate through to interior areas of the subject property during those times when the water levels outside the dike would allow such entrance. The breaches were not cut to ground level and the original dike remained intact and uncompromised by the breaches. That is, the dike has not failed to impede water movement and the integrity of the dike was not weakened by the breaches. The original outline, dimension of the dike, remained visible despite the breaches. In 1986, the Applicant requested permission from the District staff in order to close or restore the dike breaches. At that time, the District staff advised David Smith that a permit would not be required to restore the dike since such improvements would be considered a maintenance exemption. Subsequently, and in reliance upon the representations made by the District's director,, the Applicant closed the breaches and restored the continuity of the dike system of the subject property. The Applicant's work to close the breaches was performed in an open manner, would have been visible to persons using the adjacent marsh or water areas for recreational purposes, and was completed at least one year prior to the application being filed in this case. Neither the District nor DER has asserted that the work to complete the original dike in the 1970s, nor the breaches completed in the 1980s, nor the restoration of the breaches in 1986 was performed in violation of law. Further, the District had knowledge of the subject activities. Save contends that the restoration of the dike system was contrary to law and that it was not afforded a point of entry to contest the closure of the breaches. Additionally, Save infers that the original construction of the dike system in the early 1970s was without authorization from authorities. Save's contention is that the prior condition of the property, ie. the parcel with breached openings, must be considered the correct pre- development condition of the land. The District, however, considered the pre- development condition of the parcel to be that of a diked impoundment separated from Lake Poinsett. The same assumption was made regarding the pumping of water from the area enclosed by the dike via an existing 36 inch pump which discharges to Bass Lake (and then to Lake Poinsett) and an existing 12 inch pump that discharges into the marsh areas adjacent to the property (between it and Lake Poinsett). The District's consideration of the site and the application at issue was based upon the actual condition of the land as it existed at the time this application was filed. The pre-development peak rate and volume of discharge from the site was calculated based upon the maximum discharge capacity of the two existing pumps (described above). Accordingly, the maximum pre-development rate of discharge from the two existing pumps is in the range of 90-107 cubic feet per second. The pre-development volume of discharge, based upon actual pump records, was calculated as 710 acre-feet for a 25 year, 96 hour storm event. The total areas encompassed by the Applicant's proposal are the 720 acre site where the golf course and residential homes will be located together with 140 acres from an adjacent public park. The runoff entering the stormwater system from that public park will have already been treated in its own stormwater management system. The Applicant's proposed stormwater system will consist of a series of lakes and interconnected swales. This wet detention system will capture the runoff and direct its flow through the series of swales and lakes via culverts. The waters will move laterally from the northwestern portion of the parcel to she southeastern end of the site. From the final collecting pond, she waters will be pumped to Bass Lake and ultimately flow to Lake Poinsett. Wet detention systems generally provide greater pollutant treatment efficiencies than other types of stormwater treatment systems. The maintenance associated with these systems is also considered less intensive than other types of treatment systems. The wet detention system proposed for Sabal Hammocks accomplishes three objectives related to the flow of stormwater. The first objective, the collection of the. stormwater, requires the creation of several lakes or pools into which water is directed and accumulates. The size and dimension of the lakes will allow the volume of accumulated water to be sufficient to allow stormwater treatment. The capacity of the lakes will also provide for a sufficient volume to give adequate flood protection during rainfall events and storms. The second objective, the treatment of the stormwater, requires the creation of a littoral zone within the system. The littoral zone, an area of rooted aquatic plants within the lakes or ponds, provide for the natural removal of nutrients flowing into the system. The plants serve as a filtering system whereby some nutrients are processed. The proposed littoral zone in this project constitutes approximately 37 percent of the detention system surface area and therefore exceeds District size requirements. The depth of the treatment volume for the proposed system will not exceed 18 inches. A third objective accomplished by the creation of the series of lakes is the provision for an area where pollutants flowing into the detention system may settle and through sedimentation be removed from the water moving through the system. The average residence time estimated for runoff entering the Sabal Hammocks detention system is 48 days. The permanent pool volume will, therefore, be sufficient to assure the proposed project exceeds the District's requirements related to residence time. The design and volume of the Sabal Hammocks system will also exceed the District's requirements related to the dynamic pool volumes. In this case the Sabal Hammocks system will provide for approximately 65 acre-feet of runoff. Thus, the proposed system will adequately control and detain the first 1 inch of runoff from the site. The length to width ratio for the proposed lakes, 18:1, exceeds the District's minimum criteria (2:1). The final lake or pond into which the stormwater will flow will be 17 acres and will have 15 acres of planted wetland vegetation. Before waters will be released into Bass Lake, the site's runoff will pass through 3100 linear feet of this final lake before being discharged. The proposed project will eliminate the two agricultural pumps and replace them with one pump station. That station will contain four pumps with a total pumping capacity of 96 cubic feet per second. Under anticipated peak times, the rate of discharge from the proposed single station is estimated to be less than the calculated peak pre-development rate of discharge (90-107 c.f.s.). The estimated peak volume of discharge will also be lower than the pre-development discharge volumes for the comparable storm events. The proposed pump station is designed to be operated on electrical power but will have a backup diesel generator to serve in the event of the interruption of electrical service. Additionally, the pumps within the station will be controlled by a switching device that will activate the pump(s) only at designated times. It is unlikely that all four pumps will activate during normal rainfall events. The Applicant intends to relinquish maintenance responsibilities for the stormwater system including the pump station to Brevard County, Florida. Finished floor elevations for all residential structures to be built within the Sabal Hammocks development will be at a minimum of 18.2 mean sea level. This level is above that for a 100 year flood. The floor elevations will be at least one foot above the 100 year flood elevation even in the event of the dike or pump failure or both. Finished road elevations for the project will be set at 17.5 feet mean sea level. This elevation meets or exceeds the County's requirements regarding the construction of roadways. It is estimated that the Sabal Hammocks system will retain at least 26 percent of all storm events on site. If the lake system is utilized to irrigate the golf course the proposed system could retain 45 percent of all storm events on site. Of the 31.27 acres of wetlands within the proposed site, only 4.73 acres of wetlands will be disturbed by the construction of this project. Some of the wetlands are isolated and presently provide minimal benefits to off-site aquatic and wetland dependent species. No threatened or endangered species are currently utilizing the isolated wetlands. The areas of wetlands which are productive and which will be disturbed by the development will be replaced by new wetlands to be created adjacent to their current location at a lower elevation. The new wetlands should provide improved wetland function since those areas will be planted with a greater diversity of wetland plant species. Additionally, other wetland areas will be enhanced by the removal of invader species and increased hydroperiod in the area. The integrated pesticide management plan for the proposed project will be sufficient with the additional condition chat use of Orthene, Subdue, and Tersan LSR will be authorized when approved insecticides or fungicides have not been effective. In this case, the estimates regarding the water quality for the proposed project were based upon data from studies of multifamily residential projects. Data from single family/ golf course developments was not available. Therefore, based upon the data used, the projected runoff concentrations for this project should over estimate pollutants and are more challenging to the treatment system than what is reasonably expected to occur. In this regard, the overall treatment efficiencies are estimated to be good for all of the parameters of concern with the exception of nitrogen. The projected increase in nitrogen, however, will not adversely impact the receiving water body. The projected average concentration for each constituent which may be discharged is less than the state standard with the exceptions of cadmium and zinc. In this regard, the District's proposed conditions (set forth in the District's exhibits 4 and 9) adequately offset the potential for a violation of state water quality standards. More specifically, the use of copper-based algaecides in the stormwater management system should be prohibited; the use of galvanized metal culverts in the stormwater management system, or as driveway culverts, should be prohibited; and the use of organic fertilizers or soil amendments derived from municipal sludge on the golf course should be prohibited. Additionally, a water quality monitoring plan should be implemented by the Applicant. The monitoring plan mandates the collection of water samples from areas in order to adequately monitor the overall effectiveness of the treatment facility. The source of cadmium is not be expected to be as great as projected since the most common source for such discharge is automobiles. It is unlikely that the golf course use will generate the volume of discharge associated with automobile use that the multifamily data presumed. The projected quality of the discharges from this project should be similar to the ambient water quality in Lake Poinsett. In fact, the post- development pollutant loading rates should be better than the pre-development pollutant loading rates. The discharge from the proposed Sabal Hammocks project will not cause or contribute to a violation of state water quality standards in Lake Poinsett nor will the groundwater discharges violate applicable state groundwater quality standards. The floodways and floodplains, and the levels of flood flows or velocities of adjacent water courses will not be altered by the proposed project so as to adversely impact the off- site storage and conveyance capabilities of the water resource. The proposed project will not result in the flow of adjacent water courses to be decreased to cause adverse impacts. The proposed project will not cause hydrologically-related environmental functions to be adversely impacted The proposed project will not endanger life, health, or property. The proposed project will not adversely affect natural resources, fish and wildlife. The proposed project is consistent with the overall objectives of the District.

Recommendation Based upon the foregoing, it is RECOMMENDED: That the governing board of the St. Johns River Water Management District enter a final order approving the application for permit number 4-009-0077AM with the conditions outlined within the District's exhibits numbered 4, 8, and 9 and as previously stated in the notice of intent. DONE and ENTERED this 2 day of July, 1991, in Tallahassee, Leon County, Florida. Joyous D. Parrish Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32301 (904)488-9675 Filed with the Clerk of the Division of Administrative Hearings this 2 day of July, 1991. APPENDIX TO CASE NO. 90-5247 RULINGS ON THE PROPOSED FINDINGS OF FACT SUBMITTED BY THE APPLICANT: Paragraphs 1 through 3 are accepted. Paragraph 4 is rejected as irrelevant. Paragraphs 5 and 6 are accepted. The first sentence of paragraph 7 is accepted the remainder is rejected as irrelevant. Paragraph 8 is accepted. Paragraphs 9 through 11 are accepted. Paragraph 12 is rejected as irrelevant. 8 Paragraphs 13 through 21 are accepted. Paragraph 22 is rejected as irrelevant. Paragraphs 23 through 25 are accepted. The last two sentences of paragraph 26 are accepted, the remainder is rejected as irrelevant. Paragraph 27 is accepted. Paragraph 28 is rejected as comment, irrelevant, or unnecessary to the resolution of the issues of this case. Paragraph 29 is accepted. Paragraph 30 is rejected as irrelevant. Paragraph 31 is rejected as argumentative. Paragraphs 32 and 33 are accepted. With regard to paragraph 34 it is accepted that compensating storage was not required. Otherwise, unnecessary, irrelevant, or comment. With regard to paragraph 35, it is accepted the proposed system meets the first 1 inch of runoff requirement otherwise, unnecessary or irrelevant or comment. Paragraph 36 is accepted. Paragraphs 37 through 41 are rejected as irrelevant, argumentative or comment. Paragraphs 42 and 43 are accepted. With the deletion of the last sentence which is irrelevant, paragraph 44 is accepted. Paragraphs 44 through 49 are accepted. The second sentence of paragraph 50 is accepted, the remainder of the paragraph is rejected as irrelevant or contrary to the weight of the evidence. The first sentence of paragraph 51 is accepted, the remainder is rejected as irrelevant or contrary to the weight of the evidence. Paragraphs 52 through 56 are rejected as irrelevant, comment, or recitation of testimony. Paragraph 57 is accepted. Paragraph 58 is accepted. Paragraphs 59 and 60 are rejected as irrelevant, comment, or argumentative. Paragraphs 61 and 62 are accepted. The first sentence of Paragraph 63 is accepted. The remainder of the Paragraph is rejected as contrary to the weight of the evidence. The proposed project will benefit the wetland areas in an unquanitifiable measure due to the enhancements to prior wetlands and the creation of new wetlands. The first sentence of paragraph 64 is accepted. The remainder is rejected as contrary to the weight of the evidence. Paragraph 65 is accepted. Paragraph 66 is rejected as argument or irrelevant. Paragraph 67 is accepted. Paragraphs 68 and 69 are accepted. Paragraph 70 is rejected as irrelevant or contrary to the weight of the evidence. Paragraphs 71 through 73 are accepted. Paragraph 74 is rejected as irrelevant or unnecessary. Paragraphs 75 through 78 are rejected as argument, irrelevant, or unnecessary to the resolution of the issues of this case. Paragraphs 79 through 82 are accepted. Paragraph 83 is rejected as irrelevant. Paragraphs 84 and 85 are rejected as argument or comment. It is accepted that the Corp and DER are aware of the restoration of the dike and that neither has asserted such work was performed contrary to law. Paragraph 86 is rejected as comment on the evidence or irrelevant. It is accepted that the District advised Applicant that he could restore the dike system and that the District was apprised of the completion of that work. With regard to paragraph 87, it is accepted that the restoration of the dike entailed filling the breaches to conform to the dike's original design; otherwise, rejected as irrelevant. Paragraphs 88 and 89 and the first sentence of Paragraph 90 are accepted. The remainder of paragraph 90 and Paragraphs 91 through 93 are rejected as irrelevant, argument, or comment. Paragraph 94 is accepted. RULINGS ON THE PROPOSED FINDINGS OF FACT SUBMITTED BY THE DISTRICT: Paragraphs 1 through 78 is accepted. Paragraph 79 is rejected as argumentative. Paragraph 80 is accepted. RULINGS ON THE PROPOSED FINDINGS OF FACT SUBMITTED BY SAVE: None submitted. COPIES FURNISHED: Mary D. Hansen 1600 S. Clyde Morris Boulevard Suite 300 Daytona Beach, Florida 32119 Brain D.E. Canter HABEN, CULPEPPER, DUNBAR & FRENCH, P.A. 306 North Monroe Street Tallahassee, Florida 32301 Wayne Flowers Jennifer Burdick St. Johns River Water Management District Post Office Box 1429 Palatka, Florida 32178

Florida Laws (13) 120.52120.57120.68373.016373.026373.042373.114373.406373.413373.617380.06403.088403.813 Florida Administrative Code (9) 40C-4.03140C-4.04140C-4.09140C-4.30140C-41.06340C-42.02540C-42.02740C-42.06142-2.014
# 9
JAMES L. SMITH vs DEPARTMENT OF HEALTH, 05-004131 (2005)
Division of Administrative Hearings, Florida Filed:Jacksonville, Florida Nov. 14, 2005 Number: 05-004131 Latest Update: May 04, 2006

The Issue The issue to be resolved in this proceeding concerns whether the Petitioner violated Florida Administrative Code Rules 64E-6.022(1)(b)2, 64E-6.022(1)(d), and 64E-6.022(1)(p) by making repairs to an on-site sewage disposal system without a permit, and by missing required inspections of the system, as outlined in the citation issued by the Respondent Agency dated August 29, 2005.

Findings Of Fact The State of Florida, Department of Health and Duval County Health Department (Department) is an Agency of the State of Florida, charged with enforcing the statutory and regulatory provisions regarding septic tank and drain field installations and repairs, in Florida, in accordance with Section 381.0065, Florida Statutes, and Florida Administrative Code Rule Chapter 64E-6. The Petitioner is the qualifying registered septic tank contractor for All Florida Septic Tank Service, Inc. (All Florida). He holds registration number SR00011389. He has 15 years of experience in the field of septic tank system construction and repair. All repairs of on-site sewage treatment and disposal systems (septic systems), are required to be performed under the supervision and control of a registered septic tank contractor. Mr. David Adeeb is president of United Properties of North Florida, Inc. He owned property (a residence) at 375 North Cahoon Road, in Duval County Florida. He was informed by his tenants at that residence that the septic tank and drain field were malfunctioning and needed to be repaired or replaced, sometime in April 2004. He therefore contacted All Florida, asking them to inspect the septic system at that residence and advise what repairs might be needed. He was advised by some representative of All Florida that the drain field needed to be replaced and was quoted a price of $2,000.00. All Florida requested that payment be made before the work was performed. Since Mr. Adeeb was out-of-town at the time he asked his tenant to temporarily pay All Florida for the cost of the repairs and/or installation, which they agreed to do. All Florida then issued a contract/proposal to United Properties on April 12, 2004. It was signed by a representative of All Florida, Michael Carver. Mr. Carver was an employee of All Florida. The contract/proposal indicated that a 360 square foot drain field would be installed at 375 Cahoon Road, for a price of $2,000.00, to be paid in cash. The contract/proposal was on All Florida letterhead and included a warranty. Mr. Adeeb was told by his tenant that the Petitioner, who is personally known to that tenant, was on the property while the work was being performed. No one applied for a permit to make any repairs to the septic system and the work was completed without a permit being obtained. Some five months later the system began leaking sewage from the new drain field. It had malfunctioned. Mr. Adeeb therefore again called All Florida to demand that they repair any malfunctions pursuant to the warranty. All Florida informed Mr. Adeeb that a new drain field with a mounded system and pump was needed. When Mr. Adeeb told a representative of All Florida that they had just replaced the drain field in April of that year, he was told that another $2,000.00 would be required to correct the drain field problem. Mr. Adeeb had just recently entered into a contract to sell the property at 375 Cahoon Road so, time being of the essence in closing the sale of the property, he felt he had no choice but to ask All Florida to go ahead with the repair work on the system which All Florida had been asked by him to repair five months previously in April of 2004. After the new system was installed Mr. Adeeb found that a permit had never been obtained for the first drain field work which he had requested from All Florida and that All Florida had done the work incorrectly. Mr. Adeeb objected to paying another $2,000.00 for the second repair job, performed in approximately September of 2004 and after much discussion with All Florida's representatives agreed to pay $1,000.00 dollars for the second stint of repair work. He made the payment and he received a warranty from All Florida for one year, good through September 22, 2005. The warranty was signed by Mr. Wayne Joyner, operations manager for All Florida. Mr. Joyner is also the qualifying registered septic tank contractor for AA Septic Tank Service, Inc., apparently a second corporation domiciled at the same facility and address as All Florida Septic Service, Inc. In May of 2005 Mr. Adeeb was again contacted by the now former tenant who had purchased the property from Mr. Adeeb. He was thus informed that the system had failed again and sewage was leaking onto the surface of the property from the drain field. Mr. Adeeb again contacted All Florida on May 23, 2005. A representative of All Florida informed him that he should fax a copy of the paid receipt and the warranty to them and that they would take care of the problem. On June 20, 2005, the home owner again contacted Mr. Adeeb and told him that no one from All Florida had repaired the drain field as yet. A faxed copy of the paid receipt and warranty was requested once again by All Florida. After numerous phone calls with representatives of All Florida, Mr. Adeeb was told that the problem was not due to All Florida's repair work and that Mr. Adeeb would need to get someone else to repair the system. The Petitioner, James L. Smith, the registered qualifying septic tank contractor for All Florida, testified that Michael Carver had performed the initial repair job in April of 2004 for Mr. Adeeb without the knowledge of the Petitioner or All Florida. He claims that Michael Carver never worked for All Florida. He introduced into evidence a letter purported to be from Michael Carver which was dated September 30, 2005, but signed on October 5, 2005. That letter states that Mr. Carver performed the first drain field repair job without the knowledge of All Florida and that he had created the receipt form which was apparently given to either the tenants at the residence in question, or to Mr. Adeeb, on All Florida letterhead without the knowledge of any officer, employee, or representative of All Florida. That letter, however, was not authenticated because Mr. Carver was not present at the hearing and could not be examined concerning it, or the details of Mr. Carver's involvement with the initial repair project. Moreover, the Petitioner was unable to explain how Mr. Carver would have known about the job at all if he had never worked for All Florida. This is because Mr. Adeeb established that in obtaining all of the repair work during 2004-2005 he had only contacted representatives of All Florida. He had never had contact with Mr. Carver. The Petitioner denied ever telling counsel for the Department in a telephone conversation that Michael Carver had worked for him during the week (i.e. All Florida) but that he let Mr. Carver do "side jobs" on his own on weekends. He claimed that Mr. Carver did the job in question in April of 2004 because the tenants knew him personally and arranged for him to do the work. The testimony of Mr. Adeeb and the Department's evidence in the form of its composite exhibit, is accepted as more credible than the self-serving testimony of the Petitioner, and it is found that All Florida and the Petitioner were responsible for the repair jobs at issue in this case because Mr. Adeeb contracted with All Florida for the work in question. Even if the initial job was performed by Mr. Carver, it is determined that he did so as employee or agent of All Florida and the Petitioner. Under the authority cited herein the Petitioner was responsible, as the qualifying, registered septic system contractor for All Florida, with performance and supervision of the work in question.

Recommendation Having considered the foregoing Findings of Fact, Conclusions of Law, the evidence of record, the candor and demeanor of the witnesses, and the pleadings and arguments of the parties, it is, therefore, RECOMMENDED that a final order be entered by the Respondent Department finding that the violations charged have been established and that a fine of $2,500.00 dollars be imposed for the violations. DONE AND ENTERED this 30th day of March, 2006, in Tallahassee, Leon County, Florida. S P. MICHAEL RUFF Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with Clerk of the Division of Administrative Hearings this 30th day of March, 2006. COPIES FURNISHED: James L. Smith 8300 West Beaver Street Jacksonville, Florida 32220 Catherine R. Berry, Esquire Department of Health 515 West Sixth Street Jacksonville, Florida 32206-4311 R. S. Power, Agency Clerk Department of Health 4052 Bald Cypress Way, Bin A02 Tallahassee, Florida 32399-1701 Timothy M. Cerio, General Counsel Department of Health 4052 Bald Cypress Way, Bin A02 Tallahassee, Florida 32399-1701

Florida Laws (4) 120.569120.57381.0065381.00655
# 10

Can't find what you're looking for?

Post a free question on our public forum.
Ask a Question
Search for lawyers by practice areas.
Find a Lawyer