Elawyers Elawyers
Washington| Change
Find Similar Cases by Filters
You can browse Case Laws by Courts, or by your need.
Find 49 similar cases
RAYMOND A. JACKSON, ET AL. vs. INDIAN RIVER COUNTY BOARD OF COUNTY COMMISSIONER, 79-002193 (1979)
Division of Administrative Hearings, Florida Number: 79-002193 Latest Update: Apr. 30, 1980

Findings Of Fact By letter dated August 10, 1979, Indian River County (hereafter "County") submitted to the Department of Environmental Regulation (hereafter "Department" or "DER") applications for construction permits for the Gifford Area sewer treatment plant and collection improvements thereto, a domestic wastewater treatment and disposal system located in the County. (DER Exhibits Nos. 1 & 2). After receiving the permit applications submitted by the County, the Department's Orlando District Office requested additional information to determine whether reasonable assurances were provided that the facility would not discharge, emit or cause pollution in violation of Department standards. (Testimony of William Bostwick; testimony of Chancellor; DER Exhibits Nos. 3, 4, 5, 6, 7 & 8). The County, through its consulting engineers Sverdrup & Parcel and Associates, Inc., responded to the Department's requests for additional information. (DER Exhibits Nos. 3, 4, 5, 6, 7 & 8). The Department presented testimony of two professional engineers in its employ, Mr. William M. Bostwick and Mr. Gerald Chancellor, both of whom were accepted as expert witnesses in the field of sewage treatment technology and the processing and evaluation of permit applications for sewage treatment plants. Both witnesses testified that in their expert and professional opinion, based on their review of all plans, test results and other information submitted by the County, the applicant provided the Department with reasonable assurances that the proposed construction and operation of the sewage treatment facility and its collection system would not discharge, emit or cause pollution in violation of Department standards. (Testimony of Bostwick; testimony of Chancellor). The standards applicable to the subject construction permit applications involve (a) treatment level and (b) ambient standards of the receiving waters. The proposed system provides a minimum of ninety (90) percent treatment to incoming wastewaters. Because of the added features of surge tanks, gas chlorination, and dual blowers and motors, the ninety (90) percent minimum treatment was expected to be exceeded. (Testimony of Bostwick; testimony of Chancellor). The secondarily treated effluent from the proposed sewage treatment plant will be dispersed by spray irrigation. Because the effluent is expected to percolate to area groundwaters, the ambient groundwater standards of Section 17-3.101, Florida Administrative Code are applicable. The discharge from the facility will not cause any violation of the groundwater quality standards of the Florida Administrative Code. (Testimony of Bostwick; testimony of Chancellor; testimony of Aront). Although the design of the plant does not contemplate surfacewater discharge, if it did, it would meet the waste load allocation of Indian River County which permits discharge to surfacewaters. When the treated waste leaves the sprinkler head, it will meet secondary water treatment standards. (Testimony of Bostwick; testimony of Chancellor). In the course of evaluating a permit application for a wastewater treatment plant, the Department considers only Chapter 403, Florida Statutes, and its implementing rules and regulations and does not consider local issues relating to zoning, the propriety of expenditure of public funds or the like. (Testimony of Bostwick). There is presently no state standard regulating permissible levels of viruses in effluent discharged to either surface of groundwaters. Large numbers of viruses exist in the effluent discharged from spray irrigation treatment plants which operate at a ninety (90) percent treatment level. The viruses contained in the discharge remain viable as they percolate through the soil. The greatest concern exists when humans are in physical contact with such discharge. However, the present sewage treatment facility in its existing condition is a greater threat to public health than the proposed spray irrigation system. (Testimony of Dr. Welling, Petitioner's Exhibits Nos. 1, 2 & 3). Research concerning viral standards for effluent discharge is in an experimental stage. The Department is examining this question for possible future rule drafting. Neither the federal government nor any state, with the exception of Maryland, has adopted viral standards. (Testimony of Welling) The design of Use Gifford plant contemplates a series of perimeter monitoring wells through which groundwater samples can be attained and tested for compliance with groundwater standards end the presence of viruses. (Testimony of Aront) The plant will spray irrigate effluent at the rate of one (1) inch per week. Although surface run off is not expected, any that occurs due to heavy rains, etc., will be discharged into a perimeter ditch surrounding the plant. The plant design is formulated to retain effluent on site. (Testimony of Chancellor). There are four (4) different types of soil on the site with a water permeability of moderately rapid to very rapid. These soils have a percolation rate which makes the site suited for the intended purpose provided surface drainage is obtained. On a conservative basis the site could accept up to fourteen (14) inches of water per day or ninety-eight (98) inches per week. (Testimony of Connell; testimony of Eng; DER Exhibit No. 6). The parties stipulated prior to the hearing to the following: The project complies with local zoning laws; and The applicable provisions of law are Sections 403.086, 403.087, 403.088, Florida Statutes, and Rules 17-3.091, 17-4.03, 17-4.07 and 17-4.26, Florida Administrative Code.

Recommendation Upon consideration of the foregoing, it is RECOMMENDED: That the Department issue a construction permit to the County on condition that sample effluent from the monitoring wells on the subject facility be regularly analyzed for compliance with Department rules and the existence of infectious viruses. DONE and ENTERED this 3rd day of March, 1980, at Tallahassee, Florida 32301. SHARYN SMITH Hearing Officer Division of Administrative Hearings 101 Collins Building Tallahassee, Florida 32301 COPIES FURNISHED: Sherman N. Smith, Jr., Esquire Post Office Box 1030 Vero Beach, Florida 32960 George G. Collins, Jr., Esquire Post Office Box 3686 Vero Beach, Florida 32960 Segundo J. Fernandez, Esquire Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32301

Florida Laws (4) 120.57403.086403.087403.088
# 1
FERNCREST UTILITIES, INC. vs. DEPARTMENT OF ENVIRONMENTAL REGULATION, 81-000080 (1981)
Division of Administrative Hearings, Florida Number: 81-000080 Latest Update: Jul. 14, 1981

Findings Of Fact Petitioner Ferncrest Utilities, Inc. owns and operates a sewage treatment plant at 3015 Southwest 54th Avenue, Fort Lauderdale, Florida. It presently services the needs of a population of about 2500 primarily located in three trailer parks, certain warehouses, a 153 room hotel, and several other business establishments. The plant was constructed and operated by a lessee of Petitioner's owners, but, in July 1979, Petitioner became the owner and operator of the facility. At that time, it was determined necessary to secure new operators and upgrade the plant equipment and method of process in order to properly service the existing and anticipated future number of customers in the area covered by a Public Service Commission franchise. Although the plant had been operating at a permitted capacity of 0.25 million gallons per day (MGD), Petitioner planned to expand the capacity to 0.60 MGD by modifying the aeration tank, and adding tertiary sand filters and equipment for clarification. Upon assuming control of the plant, Petitioner found that the 0.25 MGD permitted capacity had been exceeded by approximately 120,000 gallons per day for a number of years. Petitioner estimates that a population of 6,000 could be served under its new proposed design capacity. (Testimony of Forman, Exhibit 1) Pursuant to Petitioner's application for a construction permit, dated May 25, 1979, to modify the existing treatment plant, Respondent issued permit No. DC06-21789 on August 6, 1979. The permit specified that it was for construction of additional tank capacity for an existing 0.25 MGD wastewater treatment plant intended to approve effluent quality, and further stated that plant design capacity would remain at that figure. A subsequent letter from Respondent's subdistrict manager to Petitioner on January 15, 1980, stated that an evaluation of the quality of the surface waters receiving the plant discharge and the effect of such increased discharge would have to be made before processing a request for an increase in permitted flow. (Exhibit 7) On February 8, 1980, Respondent issued a temporary operating permit for Petitioner to temporarily operate a 0.25 MGD contact stabilization sewage treatment plant, including additional tank capacity and tertiary filtration. Specific conditions attached to the permit stated that it was issued to give the permittee a reasonable period of time to complete construction of the modification outlined in DER Permit DC06-21789 and for subsequent assessment of the effects of discharge on receiving waters. The conditions further required that the facility continue to achieve 90 percent removal of BOD5 and total suspended solids at all times with specified average daily discharges of such substances. Another condition required that the effluent from the plant be adequately chlorinated at all times so as to yield the minimum chlorine residual of 0.5 parts per million after a minimum contact period of 15 minutes. (Exhibit 8) Thereafter, on July 21, 1980, petitioner filed the instant application for an operation permit for the facility at a design capacity of 0.60 MGD. On October 7, 1980, Petitioner filed a certificate of completion of construction. By letter of December 16, 1980, Respondent's South Florida Subdistrict Manager advised Petitioner that the application for an operating permit had been denied for the reason that monitoring of the Class III receiving waters by the Broward County Environmental Quality Control Board indicated that the dissolved oxygen concentration was frequently below the minimum of 5 milligrams per liter required by Section 17-3.161(1), Florida Administrative Code, and that Petitioner's plant contributed to the substandard conditions in those waters. Petitioner thereafter requested a Section 120.57(1), F.S., hearing. (Exhibits 1-2, 4, 8) Petitioner's plant discharges into the North New River Canal through a six inch effluent pipe. The canal extends from Lake Okeechobee to the intracoastal waterway approximately five miles in distance from the point of discharge of Petitioner's plant. Monitoring of water quality in the canal for the past several years by the Broward County Environmental Quality Control Board shows that the dissolved oxygen concentrations at various sampling stations have ranged from below one part per million to in excess of five parts per million, depending upon the season of the year. However, at no station did the dissolved oxygen concentration reach an average of five parts per million. In addition, the tests also showed that BOD5 is generally low in the canal waters. (Testimony of Mazzella, Exhibits 1, 3, 5) Petitioner's modified plant is now capable of treating 0.60 MGD and meets current basic state requirements of 90 percent (secondary) removal of BOD and total suspended solids. In fact, the plant has tertiary treatment and can consistently operate at a level of 95 percent treatment. The data submitted by the applicant as to effluent water quality characteristics showed removal of 98 percent BOD, 97 percent suspended solids, 50 percent total nitrogen, and 25 percent total phosphorus with an average chlorine residual in the effluent of 0.2 parts per million. The dissolved oxygen level in the effluent has been established at 6.5 milligrams per liter. (Testimony of Hermesmeyer, Dodd, Exhibit 1) Respondent's district personnel took one 24-hour sample of the effluent from Petitioner's plant in March 1981 and determined that a concentrate of 14.6 milligrams per liter of ammonia was being discharged to receiving waters. Respondent therefore determined that the dissolved oxygen levels of the canal would be further degraded because approximately 48 to 50 parts per million of dissolved oxygen would be necessary to offset the effects of oxygen removal resulting from the ammonia discharge. Respondent further found that, although the effluent from the plant had 6.5 milligrams per liter of dissolved oxygen, the amounts of phosphorus and nitrogen being discharged could lead to algal blooms and consequent eventual eutrophication of its waters. Respondent's reviewing personnel therefore considers that there would be negative impacts upon the receiving waters if Petitioner discharged its prior licensed capacity of 250,000 gallons per day, and that a discharge of 600,000 gallons per day would double such impacts. Respondent's personnel therefore believes that although Petitioner's facility meets the basic secondary treatment requirements of Rule 17-6.01, Florida Administrative Code, it does not meet the water quality-based effluent limitation specified in Rule 17-6.10. In order to meet such requirements, it would be necessary to redesign the plant for more efficient removal of nutrients or to redirect the discharge. (Testimony of Mazzella) Other facilities adjacent to or near the North New River Canal discharge directly or indirectly into the canal waters and contribute to an unknown degree to the poor quality of the canal waters. Additionally, agricultural use of land produces stormwater runoff containing fertilizer residue into the canal in an unknown amount. A sewage treatment plant operates at optimum level of treatment when it discharges at about 50 percent of its treatment capacity. (Testimony of Mazzella) In 1983, Broward County will require Petitioner's plant to conform to state advanced waste treatment criteria which will provide for additional removal of nitrogen and phosphorus from effluent. To meet this requirement, Petitioner, plans to investigate the possibilities of utilizing a landlocked lake on its property near the treatment plant as a seepage pond. Although Petitioner's plant is identified in area regional plans to be diverted to the Hollywood wastewater treatment plant in the future, there is presently no target date for tying in to such a regional facility. (Testimony of Hermesmeyer, Exhibit 1)

Recommendation That Respondent issue a permit to Petitioner for the operation of its sewage treatment plant, with appropriate conditions as designed to protect the receiving waters. DONE and ENTERED this 27th day of May, 1981, in Tallahassee, Florida. THOMAS C. OLDHAM Division of Administrative Hearings The Oakland Building 2009 Apalachee Parkway Tallahassee, Florida 32301 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 27th day of May, 1981. COPIES FURNISHED: Alfred Clark, Esquire Deputy General Counsel Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32301 Martin S. Friedman and R.M.C. Rose, Esquires Myers, Kaplan, Levinson, Kenin and Richards 1020 East Lafayette Street Tallahassee, Florida 32301 Honorable Victoria Tschinkel Secretary, Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32301 =================================================================

Florida Laws (6) 120.57120.60403.087403.088403.886.10
# 3
DEPARTMENT OF ENVIRONMENTAL REGULATION vs. B. D. TAYLOR AND LANE MOBILE ESTATES, 83-001208 (1983)
Division of Administrative Hearings, Florida Number: 83-001208 Latest Update: Oct. 21, 1983

Findings Of Fact B. D. Taylor, Respondent, is the owner of a wastewater treatment facility near Panama City, Florida, which serves a community of some 125-150 mobile homes at Lane Mobile Home Estates. The facility has a 24,000 gallons per day capacity to provide secondary treatment of wastewater with percolating ponds. It was first permitted in 1971 upon construction and has been in continuous operation since that time. In 1980 Respondent employed the services of a consultant to apply for a renewal of its temporary Permit to operate a wastewater treatment facility. This application stated the temporary operating permit (TOP) was needed to give Respondent time to connect to the regional wastewater treatment facility. The schedule contained in the following paragraph was submitted by Respondent at the time needed to accomplish this objective, Following inspection of the facility, a TOP was issued December 5, 1980 (Exhibit 1), and expired January 1, 1983. TOPs are issued to facilities which do not comply with the requirements for Wastewater treatment. Exhibit 1 contained a schedule of compliance to which Respondent was directed to strictly comply to stop the discharge of pollutants from the property on which the facility is located. These conditions are: Date when preliminary engineering to tie into regional will be complete and notification to DER. July 1, 1981; Date when engineering to tie into regional system will be complete and notification to DER - June 1, 1982; Date construction application will be submitted to phase out present facility - March 1, 1982; Date construction will commence - June 1, 1982; Date construction is to be complete and so certified - October 1, 1982; and Date that wastewater effluent disposal system will be certified "in compliance" to permit - January 1, 1903. None of these conditions or schedules has been met by Respondent. The regional wastewater treatment facility was completed in 1982 and Respondent could have connected to this system in the summer of 1982. This wastewater treatment facility is a potential source of pollution. The holding ponds are bordered by a ditch which is connected to Game Farm Greek, which is classified as Class III waters. The size of Game Farm Creek is such that any discharge of pollution to this body of water would reduce its classification below Class III. On several occasions in the past there have been breaks in the berm surrounding the holding ponds which allow the wastewater in the holding ponds to flow into the ditch and into Game Farm Creek. Even without a break in the berm, wastewater from these holding ponds will enter Game Farm Creek either by percolation or overflow of the holding ponds caused by the inability of the soil to absorb the effluent. On January 28, 1983, this facility was inspected and the results of the inspection were discussed with the operators of the facility. The plant was again inspected on February 8 and February 18, 1983. These inspections disclosed solids were not settling out of the wastewater in the settling tanks; inadequate chlorination of the wastewater was being obtained in the chlorination tanks; samples taken from various points in the system, the ditch along side the holding tanks and in Game Farm Creek, disclosed excess fecal coliform counts; and that very poor treatment was being afforded the wastewater received at the plant as evidence by high levels of total Kejhdal nitrogen and ammonia, high levels of phosphates, high biochemical oxygen demand, and low levels of nitrates and nitrites. In July, 1983, in response to a complaint about odors emanating from the plant, the facility was again inspected. This inspector found the aeration tanks anaerobic, effluent had a strong septic odor, the clarifier was cloudy, the chlorine feeder was empty, no chlorine residual in contact tank, final effluent was cloudy, both ponds were covered with duckweed and small pond was discharging in the roadside ditch (Exhibit 14) Expenses to Petitioner resulting from the inspections intended to bring Respondent in compliance with the requirements for wastewater treatment facilities are $280.32 (Exhibit 9)

Florida Laws (2) 403.087403.088
# 4
FREDDIE PRESSLEY vs. DEPARTMENT OF ENVIRONMENTAL REGULATION, 82-001609 (1982)
Division of Administrative Hearings, Florida Number: 82-001609 Latest Update: Sep. 27, 1983

Findings Of Fact The Petitioner and his father own and operate the Hiland Park Laundry, a laundromat located at 2431 Highway 231, Panama City, Florida. The Petitioner purchased the business in 1975 and has operated continuously since that time. Wastewater from the laundry, as well as a trailer on the property, passes through a "trickling filter" wastewater treatment facility consisting of primary and secondary settling tanks as well as a trickling filter, thus discharging the treated effluent into a drainage ditch adjacent to the Petitioner's property line, from which drainage ditch the effluent is discharged into Beatty Bayou, a Class III water of the State. The treatment plant and disposal system has been operating since the early 1970's, prior to the Petitioner's purchase of the laundromat and treatment and disposal facility. In 1980, the Petitioner applied for an operating permit for his wastewater treatment facility. Because the discharge from the facility violated the effluent limitations of Chapter 17-6, Florida Administrative Code, the Petitioner was only issued a Temporary Operating Permit on February 2, 1981, which was modified by virtue of the letter from DER on June 8, 1981. The pertinent conditions in the TOP provided that the discharge from the Petitioner's wastewater treatment system must meet the requirements of Chapter 17-6, Florida Administrative Code, as to the quality of its effluent prior to its expiration. Failure to meet that condition would result in a denial of a Permanent Operating Permit and the denial of any further TOP. The pertinent effluent limitation which the TOP (and rules) required the facility to meet was 90 percent removal of biochemical oxygen demand and suspended solids. Since the issuance of the TOP, the discharge from the plant has seldom met those standards. Upon applying for the TOP, which is the subject of this proceeding, the Petitioner failed to present any concrete plans for improving the quality of the effluent from his plant. He merely stated his acknowledgment that, although the system does not comply with current DER requirements, that it will be dismantled upon the Bay County Regional Sewage Treatment and Disposal System becoming available at his location. It is not established, however, that there are any current plans to extend public sewer service to the vicinity of the Petitioner's property at the present time. (DER Exhibit 9) Upon the issuance of the Notice of Intent to Deny the request for the TOP, the Petitioner requested a formal proceeding and the cause was set for hearing before the undersigned on September 24, 1982. At the time of the hearing, the parties agreed on the record to a continuance on the basis that the Petitioner would submit within 60 days a plan certified by an appropriate engineer for a design to bring the discharge effluent into compliance with the effluent parameters of Chapter 17-6, Florida Administrative Code. It was suggested at that time to the Petitioner that his plant and system might comply with the permit exemption contained in Rule 17-4.60, Florida Administrative Code, which provides that such plants are exempt from permitting requirements if they incorporate a trickling filter, a sand filter, as well as a drain field. The Petitioner elected to avoid purchasing a sand filter unit inasmuch as a civil engineer he consulted informed him that the purchase and installation price for such a unit would be approximately $17,000.00, with the attendant drain field estimated to cost an additional $13,000.00. It was established contrarily however that because of the actual peak and average flows of the plant which equate to a daily hydraulic loading on the proposed sand filter of 7,000 gallons per day and 6,000 gallons per day, respectively, that a much smaller sand filter would be required, at a much reduced price. Thus, it was established that a figure of $9,000.00 to $10,000.00 would be the appropriate cost of installing the sand filter which would exempt the facility from the permitting requirements. The concrete slab proposed to be used by the Petitioner's engineer at a cost of in excess of $4,000.00 would not be necessary with a properly designed sand filter with underdrains and grated gravel courses. Based upon his own engineer's estimate of approximately $30,000.00 for the required upgrading, the Petitioner informed the Department that he was not able to underwrite such a high expense and would prefer to find some other solution to the problem. As of the date of the hearing, the Petitioner still was desirous of the Department conferring with him to find a less expensive solution to the problem, but failed to adduce any evidence to establish that such a less expensive solution (less than the solution proposed by the Department) existed. During the period the case was held in abeyance for 60 days after the scheduling of the first hearing in September, 1982, during which time the parties had agreed to seek a solution to the problem involving denial of the permit application, and thereafter until the subject hearing, the Petitioner made no substantial efforts to confer with the personnel of DER and attempt to arrive at a feasible solution to the treatment and disposal problem upon which the denial of the permit application was based. Carol Daugherty is a chemist whose firm supplies the Department with the Petitioner's monthly operating reports, and obtains samples of effluent upon which those reports are based. She performs the testing on the samples from the plant's effluent discharge and engages somewhat in operation of the plant. The Petitioner's discharge has consistently failed to comply with the BOD and total suspended solids effluent limitations listed in Rule 17-6.060, Florida Administrative Code, providing for 90 percent removal of those effluent constituents. William Young, accepted expert witness in the field of biology and water quality assessment, visited the site in February, 1982, and in April, 1983, taking water quality samples from a drainage ditch both upstream and downstream of the Petitioner's discharge point. Chemical analysis of the samples reveal that the Class III parameter for bacteriological quality (coliform bacteria) was violated downstream of the discharge point. An imbalance existed in the bayou in natural populations of aquatic flora and fauna establishing there to be violation of permissible nutrient levels in terms of the excessive deposition of nutrients from the Petitioner's plant into the drainage ditch and thence into the bayou. Mr. Pressley's facility is not the only source of discharge into the drainage ditch which discharges into the bayou, but is the primary source of discharge. Rick Bradburn also was accepted as a expert witness in the field of biology and water quality assessment. He has visited the Petitioner's facility on a number of occasions and periodically has reviewed the monthly operational reports supplied by the Petitioner. The Petitioner's effluent, on a regular basis, is characterized by excessive biochemical oxygen demand, excessive total suspended solids and excessive fecal coliform bacteria counts vis-a-vis the standards and the rules cited hereinbelow. The discharge from the Petitioner's facility thus seldom exceeds 85 percent removal of biochemical oxygen demand and suspended solids (over the past 23 months) and is characterized by excessive nutrient deposition in the Class III waters of the State. The Petitioner has known, or should have known, since shortly after February 2, 1981, when the original TOP was issued with the subject condition regarding required upgrading of the plant and disposal system, that additional upgrading would be required in order to render the effluent produced by plant less degradory. Since that time he knew, or should have known, that the failure to take steps to achieve such upgrading of the treatment and effluent disposal system would jeopardize his continued operation of his business. The Petitioner has made little effort to arrive at and submit plans to achieve a more qualitative level of effluent treatment and as of the time of the hearing had not yet submitted a reasonable compliance schedule nor any sort of commitment to construct needed additional treatment facilities, even though the parties do not dispute that the effluent produced by the plant does not meet the required standard of 90 percent removal of biochemical oxygen demand and suspended solids.

Recommendation Having considered the foregoing Findings of Fact, Conclusions of Law, the evidence in the record, the candor and demeanor of the witnesses, and the pleadings and arguments of the parties, it is, therefore, RECOMMENDED that the application of Freddie Pressley for a Temporary Operating Permit allowing continued operation of a wastewater treatment and disposal facility in Bay County, Florida, be and the same is hereby DENIED. DONE and ENTERED this 23rd day of August, 1983, in Tallahassee, Florida. P. MICHAEL RUFF Hearing Officer Division of Administrative Hearings The Oakland Building 2009 Apalachee Parkway Tallahassee, Florida 32301 (904) 488-9675 FILED with the Clerk of the Division of Administrative Hearings this 23rd day of August, 1983. COPIES FURNISHED: Freddie Pressley c/o Highland Park Laundry 2431 Highway 231 Panama City, Florida 32405 Dennis R. Erdley, Esquire Department of Environmental Regulation Twin Towers Office Bldg. 2600 Blair Stone Road Tallahassee, Florida 32301 Victoria Tschinkel, Secretary Department of Environmental Regulation Twin Towers Office Bldg. 2600 Blair Stone Road Tallahassee, Florida 32301

Florida Laws (2) 120.57403.088
# 5
GINNIE SPRINGS, INC. vs CRAIG WATSON AND DEPARTMENT OF ENVIRONMENTAL REGULATION, 98-000945 (1998)
Division of Administrative Hearings, Florida Filed:Gainesville, Florida Feb. 26, 1998 Number: 98-000945 Latest Update: Mar. 09, 1999

The Issue The issue to be resolved in this proceeding concerns whether the applicant, Craig Watson, has provided reasonable assurances in justification of the grant of an Industrial Waste Water Facility permit for a rotational grazing dairy to be located in Gilchrist County, Florida, in accordance with Section 403.087, Florida Statutes, and the applicable rules and policies of the Department of Environmental Protection. Specifically, it must be determined whether the applicant has provided reasonable assurances that the operation of the industrial waste water facility at issue will comply with the Department's ground water quality standards and minimum criteria embodied in its rules and relevant policy, including draft permit conditions governing the proposed zone of discharge for the project. It must be determined whether the ground water beyond the proposed zone of discharge will be contaminated in excess of relevant state standards and criteria and whether the water quality of the G-II aquifer beneath the site will be degraded. Concomitantly it must be decided whether the applicant has provided reasonable assurances that the proposed project will comply with the Department's effluent guidelines and policy for dairy operations as industrial waste water facilities, pursuant to the Department's policy enacted and implemented pursuant to its rules for granting and implementing industrial waste water facility permits, as they relate to dairy operations.

Findings Of Fact The Respondent Craig Watson has applied for an Industrial Waste Water Facility permit to authorize the construction and operation of an 850-cow, rotational grazing dairy, with accompanying dairy waste management system, to be located in Gilchrist County, Florida. The system would be characterized by ultimate spray application of waste effluent to pastures or "paddocks" located on a portion of the 511-acre farm owned by Mr. Watson. The rotational grazing method of dairy operation is designed to prevent the ground water quality violations frequently associated with traditional dairy operations. Traditional dairy operations are often characterized by intensive livestock use areas, which result in denuding of vegetation and consequent compacting of the soil, which prevents the effective plant root zone uptake method of treating dairy waste and waste water for prevention of ground water quality violations. Such intensive use areas are typically areas around central milking barns, central feeding and watering troughs, and other aspects of such operations which tend to concentrate cows in relatively small areas. The rotational grazing dairy attempts to avoid such problems by dividing a dairy farm's surface area into numerous pastures which cows can graze upon with constant and frequent rotation of cows between such pastures. This avoids overgrazing or denuding of the cover crop upon which cows graze, which is so necessary to proper treatment of wastes through root zone uptake. A rotational grazing dairy is designed to re-cycle cow manure for use as fertilizer to grow and re-grow the forage established on the site in the paddocks or pastures. The rotational grazing method is based on the theory that nutrients from cow manure can be captured in the root zone and uptaken as fertilizer for the plant upon which the cattle graze. The waste from the barn area is collected in a waste storage pond or lagoon and sprayed as liquid effluent on the grassy cover crops established in the various pastures, as is the sludge or more solid waste removed periodically from the waste storage lagoon. The applicant, the 511 acres and the project itself would use approximately 440 acres of that tract. The site is approximately 6 miles south of the Santa Fe River. The majority of the soil on the site consists of fine sand and clay-sand type soils. The dairy would contain approximately 850 cows. Lactating cows (cows being milked) would be grazed in some 36 pastures divided by fencing. They would be grazed in the pastures approximately 85 percent of the time and lactating cows would be in the milk and feed barn located in the center of the lactating cow pastures approximately 15 percent of the time. The manure from the barn, approximately 15 percent of the total animal waste, would be collected and placed in the collection lagoon for spray irrigation on the forage crops grown in the pastures. The remaining 85 percent of the waste would result from direct deposition on the pastures by the cows. The rotational grazing dairy would contain permanent watering troughs in each of the 36 pastures. This creates the possibility of numerous "high intensity areas" or areas characterized by a high level of cattle traffic. This circumstance can result in denuding the cover crop or grasses around such water trough areas which would result in a failure, for that area, of the root-zone-uptake means of waste treatment of nitrates. In order to minimize that eventuality, the cattle would be rotated on a frequent basis from paddock to paddock in an effort to maintain nitrate balance and maintain the sanctity of the cover crop, as would the option of employing movable watering troughs so that areas of denudment of the grass or forage cover can be avoided. Manure would be flushed from the milking and feeding barn with approximately 2,000 to 5,000 gallons of water after each milking and at the end of each shift. Wastewater would then flow into a sand trap or filter and thence through an underground pipeline into an 80 foot x 84 foot concrete-lined storage lagoon. The final site of the storage lagoon has not been firmly determined. The site proposed in the application is located in part over a depression which is a suspected karst feature or area that may be subject to sink hole formation. Therefore, consideration should be given locating the waste lagoon so as to avoid that depression and the permit should be conditioned on installation of the lagoon so as to avoid known karst features. Effluent from the storage lagoon would be applied to 245 acres of pasture with a movable spray gun. The settled sludge from the lagoon would be spread on the same land periodically. The primary grass crop on the site intended for cattle forage would be Coastal Bermuda grass. Coastal Bermuda grows through a large part of the year and is normally dormant, in the climate prevailing in the Gilchrist and Alachua County area, from mid-October until early March. There would thus be little nutrient uptake during that time but to off-set that dormant state rye, wheat, rye grass, sorghum and other small grains could be grown on the site during the winter months in order to continue the waste treatment function of the cover crops. MANAGEMENT PLAN The Department currently does not have in effect a specific rule requiring dairies in north Florida to obtain permits to construct and operate per se, although such a rule does prevail for dairies in the Okeechobee Basin in south Florida. Since 1990, however, the Department has, by policy, required permits for new dairy facilities in the Suwannee River Water Management District as industrial waste water facilities. This policy is derived from the general regulatory authority contained in Section 403.087, Florida Statutes, and Chapter 62-670, Florida Administrative Code.1 The Department policy is described in a letter in evidence from the Department to applicant Watson containing the required conditions on any grant of the permit, to which the applicant has agreed. Those requirements are as follows: Management Plan A site-specific plan, with design calculations, providing for collection, storage and disposal of all wastewater from milking parlor and of runoff from the 25-year 24-hour storm event from all "high intensity" areas within the dairy farm. The calculations should include stormwater computer model SCS TR-55 or similar. Supporting documentation for the plan shall include but not be limited to the following: Water budget and balance, detailed and itemized. Nutrient budget, including wastewater and solids management. Crop management plan with projected crop nutrient uptake rates. Herd management plan, including locations of barns, travel lanes, feed areas, pastures, and management of dry cows and heifers. Treatment and disposal system details, construction details and methods, pumping systems and capacities, irrigation system details, lagoon design and capacity, and site plans. Ground Water Monitoring Plan Determination of ground water depth, variability and direction(s) of flow. Topographic site plan which includes the location of facility property boundaries, sinkholes and cooling ponds. Ground penetrating radar (GPR) if located within Suwannee River Water Management District. Site borings for determination of soil properties, depth and extent of low permeability zones, and confirmation of GPR results. Proposed locations, construction, and development criteria for monitor wells. Inventory of potable wells within 1/2 mile of site. Determination of current ground water quality and compliance. Such plan shall be prepared in accordance with the standards of the USDA NRCS, at a minimum, and shall include detailed instructions for construction, operation, and maintenance of wastewater/runoff collection, storage and disposal systems. DEP Exhibit 1. The various expert and fact witnesses for the Respondents described in their testimony the constituency of that Management Plan and the reasons, within their various scientific discipline areas and their personal factual knowledge concerning why it should be required for the site and project at issue. The 850-cow herd which would be contained on the proposed dairy consists of 550 lactating cows which are milked on a daily basis but also contains 80 dry cows and 220 heifers. Thus some 300 cattle on the dairy will not be milked at any given time and consequently will not contribute to use of the high intensity barn area and the waste collected in the anaerobic lagoon to the extent that those non-milking cattle are not fed and watered in the central barn area. Their waste would more typically be deposited directly on the pastures by those cattle themselves. 10 The project is proposed to provide for on-site containment of all wastes generated by the dairy. There will be no discharge of effluent or other pollutants from the dairy to "waters of the state." The proposed permit requires that no surface water runoff be permitted from the dairy site. The anaerobic or waste collection lagoon is designed to contain all effluent from the milking barn and other high intensity cattle areas in the event of a 25-year, 24-hour storm occurrence. Additionally, a safety factor of one-foot of "free-board" or additional wall height on the anaerobic lagoon is to be provided as an additional safety factor over and above the level expected to be achieved by the above-referenced storm event. The adequacy of the design capacity of the lagoon system is not in dispute. The proposed project and design calls for four monitoring wells to be located along the northern boundary of the property, which is essentially co-extensive with the boundary of the discharge zone at issue. There would be three compliance wells and one background sampling well. The Department's expert geologist, Mr. Davis, was of the belief that an intermediate monitoring well would not be necessary since the four wells would in his view be sufficient to enforce water quality standards. Those wells are located down-gradient according to the known direction of the ground water flow underneath the site, as required by Rule 62-522.600(6), Florida Administrative Code. Although no intermediate wells are provided for by the plan, they have been required at the other two rotational grazing dairies already permitted by the Department in the Suwannee River Water Management Region at least one of which was within a mile of the outstanding Florida water of the Suwannee River. Intermediate monitoring wells at other dairies have shown increased levels of nitrate, although there is no evidence to show that nitrate levels have exceeded state standards at the boundaries of those dairies or their discharge zones. In any event, however, the totality of the expert testimony demonstrates that intermediate wells would provide an efficacious early warning system to predict increases in nitrate contamination. Thus adjustments in the waste and commercial fertilizer nitrate application could be made so that prevention of violation of nitrate standards, by the time waste water migrated to compliance wells around the boundary of the site, could be effected. This would have a substantial predictive value to avoid future nitrate contaminant violations before they occur and they should be installed as a condition on permitting. The proposed dairy design and operation involving rotational grazing is undisputed to be more beneficial to environmental water quality considerations than a traditional cattle confinement type of dairy. The rotational grazing dairy is characterized by cattle spending minimal time in high intensity milking, feeding, and watering areas. Additionally, there will be a significantly lower level of nutrient loading on the pastures with little accumulation of effluent on the land surface. In fact, the deposition of waste through spray irrigation and through the urination and defecation of the cattle directly will still result in a deficit in nitrates needed for adequate plant growth of the grass, and other crop, ground cover necessary for feeding the cattle and making the operation succeed in a waste treatment sense as well. Consequently, it will have to be supplemented by the addition of some commercial fertilizer, the costs of which will result in a natural incentive for the farmer/applicant to ensure that the nutrient loading on the pastures is at a low, environmentally acceptable level in terms of potential contamination of ground water. The proposed dairy has been demonstrated to be consistent with the Natural Resources Conservation Services' requirements and policies concerning dairies and rotational grazing dairies. It is also undisputed that phosphorus is not of an environmental concern with this application and project. There is sufficient iron and aluminum coating on the soils involved so that excess phosphorus will be retained on the site and it is undisputed that nitrogen is the only limiting factor in the design of the dairy. NITROGEN BALANCE The specific concern with regard to the application and the dairy operation is nitrate leaching below the root zone of the crops grown on the surface of the dairy. The dairy is designed to use nitrogen and nitrates by growing crops in the pastures which will then be eaten by the dairy cows, so that the nitrogen is re-cycled with the resulting animal wastes being used as fertilizer for the same grass or crops which the cattle continuously graze. It is anticipated that the amount of nitrogen produced by the dairy cows will be insufficient to optimize that plant growth. Therefore, additional fertilizer will be required to be applied to the land surface in the pastures at times. The additional nitrogen fertilizer will only be applied when testing of soil, and particularly plant tissue analysis, which will be done a regular basis, shows that application of commercial fertilizer is needed to supplement the natural cattle-waste nitrogen. Nitrogen is a concern because if too much of it is applied to the land surface, it may leach below the plant root zone and eventually migrate to ground water. Nitrogen in high concentrations can be potentially harmful to human health, so state drinking water standards have been established for nitrogen with regard to the issuance of industrial waste water permits. The state drinking water standard for nitrate is ten parts per million at the zone of discharge, that is, the zone of discharge into the ground water aquifer. The dairy is designed in such a way that nitrate levels will not exceed water quality standards. The design is determined by reviewing nitrogen balances and making sure that excess nitrogen will not leach past the root zone. The engineers evaluating and designing the project for the applicant, and testifying concerning it, arrived at a "mass balance" to estimate the nitrogen amounts on the site. This mass balancing is required by the Department in the required estimating of the pounds of nitrate leachate. Nitrogen can be removed from the dairy operating system through atmospheric losses or "volatilization" particularly from the urine component of nitrogen application. It can be removed through milk losses, whereby nitrogen is removed from the digestive system of the cattle through its being bound up to some extent in the milk produced by the cattle and sold off the dairy site, as well as some minimal leaching of nitrate through the soil. The nitrogen that is not removed by volatilization to the atmosphere (excluding the small amount re-deposited by rainfall) will be cycled through the cows and the crops along with any supplemental nitrogen applied from time to time in order ensure optimal plant growth. The mass balance, or amount of pounds of nitrate in the leachate, was determined by considering the amount of water flowing through the system. The re-charge rate was established by the applicant's engineer Mr. Holloway to be 17 inches. This means that there will be 17 inches of rainfall leaching below the root zone of the cover crops to reach ground water. The re-charge rate can be determined by computing the average of the evapo-transpiration and average rainfall and subtracting the difference. It can also be calculated by employing computer models such as the "GLEAMS" model. Mr. Holloway, the applicants engineer, used both sources or methods and reached the figure 17 inches. The GLEAMS model is a computer model that uses local data to determine water budgeting and recharge rates. Mr. Holloway also used a 50 percent volatilization rate for the nitrate losses when determining his mass balance. The applicant's experts also considered the plant uptake rates and concluded that the uptake rate would be between 500 and 700 pounds of nitrogen uptaken per year, per acre, by the plant cover. In order to be conservative and to install a sufficient safety factor in the system to avoid overloading it with nitrates and endangering ground water quality, they employed a lower uptake rate in their calculations and recommendations to the applicant, and thus to the Department, as to the amount of nitrogen applied per acre, per year, from all sources to only be 400 pounds. The conditions imposed by the Department in the "free-form" consideration process and draft permit thus limits the total pounds of nitrogen permissibly applied to this site to 400 pounds per acre, per year. Those 400 pounds of nitrogen are represented by 260 pounds applied from manure from the livestock and no more than 140 pounds applied from commercial fertilizers purchased by the farmer, Mr. Watson. The 400 pounds of nitrogen per acre, per year, as a condition on the permit is less than that allowed at the other rotational grazing dairies previously designed by Mr. Holloway and approved. Additionally, Mr. Cordova of the Department established that there are no rotational grazing dairies that have a higher nitrogen deficit than the Watson dairy. This further provides a significant safety factor not present in other approved dairies. Atmospheric losses of nitrogen up to 80 percent have been documented with similar dairy operations. Atmospheric losses can occur through both volatilization and de-nitrification. Volatilization is the process where nitrogen is removed from the system by the ammonia in the waste products, changing into a gaseous state and migrating into the atmosphere as a volatile gas. De-nitrification is the process where microbes, principally in the absence of oxygen (anaerobic) reduce nitrates to nitrogen gas and to possibly N2O, which is a volatile, and then allow it to escape into the atmosphere. The applicant has agreed, as a condition to the permit, to apply soil testing and crop tissue analysis as well as quarterly reviewing of the monitoring wells before he determines to supplement the natural fertilizer deposited from the animals with additional commercially purchased fertilizer. The commercially purchased fertilizer would represent a substantial investment in purchase costs and in labor costs for its application. This is an additional safety factor because the applicant clearly would not have an interest in applying any more fertilizer than was absolutely needed to secure optimum plant growth for grazing purposes and nitrogen uptake or waste treatment purposes. This is a further method which will prevent excessive nitrate nutrients from being deposited on the site and possibly into the ground water. Dr. Bottcher, an expert witness for the applicant, testified that he expected nitrate levels at the zone of discharge within the boundaries and beneath the surface of the dairy farm to be between 4 and 6 parts per million. Mr. Holloway expected within a reasonable degree of certainty that on a long term average, with about 4,000 pounds of nitrate leaching below the root zone system, that the concentration directly below the farm beneath the root zone would be between 2 and 3 parts per million. Indeed, the proposed operation would be similar to the existing condition at the Watson farm involving grazing beef cattle on a system of pastures, with row crop operations. Row crops typically have a higher impact of nitrates than the proposed dairy operation would have and beef cow grazing would have a similar impact, although it would be slightly less. Thus the proposed operation is similar in its nitrate impact to the existing conditions at the site. Moreover, the applicant is limited by the permit conditions already agreed to, to spray manure on the spray field area at the rate of less than one half of an inch. The spraying to that limitation would probably take from two to five hours per week. One of the important safety mechanisms in achieving a nutrient balance on the dairy site and in its operation, so as to ensure that ground water quality violations do not occur, is the application rate of nitrate to the land surface. As shown by Dr. Bottcher's testimony, the farmer may increase crop production by applying more fertilizer during seasons of heavy growth of the plant cover. The application rate can then be decreased when there is less growth and, therefore, less need for nutrients to grow the cover crops. A smaller application rate will increase the volatilization rate by avoidance of the infiltration of the nitrate bearing effluent into the soil through hydraulic action and through the saturation mechanism, since a smaller amount of application would tend to leave more of the effluent within less than one inch of the land surface, or on the land surface, thereby allowing it to be volatilized more readily. This circumstance will decrease the amount of nutrient leaching below the root zone and thus prevent the nitrates from being transmitted to the ground water. A number of crops can be grown successfully and appropriately on the site in order to provide the grazing forage needed for the operation of the dairy. Examples, depending upon the season of the year, are rye, wheat, grain sorghum, and various grasses, including Coastal Bermuda grass. Coastal Bermuda is a perennial grass, high in protein available for livestock and is already established on the site. The various other crops can be grown as well and some that grow in the winter months, such as rye, will be grown by Mr. Watson. The growing of the various cover forage crops are limited by the limitation in the permit which is conditioned on maintaining a cover crop growth situation where the average annual uptake is at least 400 pounds per acre (the evidence reveals that in reality it would be more on the order of 500 to 700 pounds per acre, per year). Dr. Pollman and Dr. Upchurch, expert witnesses for the Petitioners, question the nitrogen balancing and leachate predictions arrived at by the applicant's expert witnesses, as well as those of the Department. Neither Drs. Pollman nor Upchurch had any prior experience or expertise with testing for a nitrogen balancing on rotational grazing dairies. Instead they utilized various models to attempt to predict leachate amounts. Dr. Pollman's modeling utilized formulas prepared by the applicant's experts. His modeling showed a high percentage of the predicted outcomes to be actually within regulatory standards for nitrates, even though all of his estimates failed to take into account the variable inclusion or application rate for nitrogen through commercial fertilizer which will only be applied on an as needed basis after appropriate plant tissue and soil tests show that commercial fertilizer should be applied. Likewise, Dr. Upchurch's modeling results were also mostly within acceptable standards for nitrate concentrations unless one assumes that the nitrogen application rates exceed the amounts allowed under the permit, which will not be the case in reality because obviously the permit limits must be complied with. Dr. Upchurch also utilized a model, "NLEAP," which was neither designed nor calibrated to be used for predictive capabilities and is still considered experimental by the NRCS. WASTE LAGOON The applicant proposes to construct a waste storage lagoon designed to hold seven days' waste water generation capacity or 26,000 gallons per day. In addition to that required storage for a 25-year, 24-hour storm event, an additional safety factor of one foot of free board has been designed into the lagoon system. The lagoon will be constructed with 6 inch thick, fiber-reinforced concrete. No evidence was offered by the Petitioners that the lagoon design itself was faulty or inappropriate, rather the Petitioners contend that there is a chance that a surface failure beneath the lagoon, by the result of a sink hole developing, particularly in the present preliminary location proposed for the lagoon, could cause the lagoon to crack. The applicant will, however, in order to ensure that the area is suitable for the lagoon have the appropriate engineer "over-excavate" the site in order to minimize the change of a sink hole developing. Additionally, soil borings will be done beneath the surface to provide additional assurance that the lagoon will not fail due to voids or sink holes being present beneath it. Because the lagoon is presently preliminarily located in an area that appears to embody an old, inactive karst depression, consideration should be given to altering the site of the lagoon slightly so as to avoid this area, after soil borings and other investigation is done to ascertain whether the area poses a risk of lagoon failure. Additionally it must be pointed out that because the applicant would need to expend a substantial investment to rebuild the lagoon in the event of such a failure, he has a strong incentive to locate the most suitable geological placement for the lagoon in any event. GEOLOGIC SITE CHARACTERISTICS It is undisputed that the geology underlying the surface of the dairy site is karst in nature: that is, it is characterized by a sub-strate of limestone which can, through the dissolution process caused by percolating water, be susceptible to fissures, voids, underground conduits and sink holes. This, however, is true for essentially all areas used for agriculture in the Suwannee River Area Water Management District, the area to which the subject above- referenced policy concerning installation and permitting of dairies applies. Because of the karst nature of the area, sink holes and other potential surface openings to the ground water could occur at the site. It is most significant, however, that both Mr. Holloway's and Dr. Kwader's testimony established that the soil layer at the site was more than sufficient to protect the ground water. In fact, the soil layer averages from 45 to 50-feet thick over the underlying limestone sub-strate of the Ocala Formation. Further, the proposed permit and its conditions would require a management plan which, with the conditions already placed on the permit and recommended herein, will adequately deal with the possibility of sink holes, "pipes" or "chimneys" developing on the site. The dairy design success is derived essentially from the sufficient nutrient uptake in the root zone of the plant cover, balanced with careful control of the application rates of both the natural fertilizer from the cows and the commercial fertilizer which will supplement it from time to time. Any possibility that the treatment zone for nitrates associated with the plant root zone would be by-passed by the effluent as a result of sink holes or other types of fissures developing can be resolved by proper management practices, which the conditions proposed for the permit and those recommended herein will insure are implemented. For instance, if sink holes, other depressions or holes develop in the site, they will be filled with soil to a depth of five feet, with an impervious clay cap on top of that and then a layer of top soil to allow for re-establishment of the root zone on the surface. The permit should be so conditioned. Moreover, if sink holes or other voids develop that are too large to be so filled and pose a risk of migration of effluent below the root zone to rapidly to the ground water, they will be fenced off and cows will not be allowed in the area. The area will be removed from the irrigation application process until repairs are made, under the presently proposed conditions on the permit. An additional condition should be imposed whereby any sink holes or other voids or similar breaks in the ground surface which pose a risk of effluent rapidly migrating to ground water should be bermed around the circumference to prevent effluent or stormwater laden with nitrates from the land surface from entering the fault or cavity. The applicant is required under the proposed conditions on the permit to report to DEP any sink holes which develop within a certain period of time in the barn area. Cows are not to be permitted to enter into any of the sink hole areas by additional fencing, if necessary. If sink holes develop in the spray field there can be no discharges of fertilizer or irrigation on those areas until the sink holes have been repaired in the manner referenced above. The phosphate pits on the site will also be fenced to prevent discharges past the root zone potentially caused by cattle entering the pits. Additionally, berms are required to be constructed around the phosphate pits to prevent surface water from storm events or other means by which nitrates from the ground surface can be transported into the pits and then possibly to ground water. Any holes which may develop, also called "piping failures," around the periphery of the phosphate pits should be treated in a similar manner to prevent the migration of surface water into those holes whether or not they communicate with the phosphate pits themselves by fencing and berming. These arrangements coupled with the fact that the phosphate pits are characterized by a sufficient soil layer in the bottom of the pits between the bottom surface of the pits and the water table or aquifer will constitute reasonable assurance that the pits will not result in a conduit or path for nitrate-laden, surface water to migrate past the root zone directly into the ground water aquifer. Mr. Holloway, an engineer, testifying for the applicant conducted soil borings on the site to verify the Natural Resources Conservation Service (NRCS) surveys as accurate and to ensure that an adequate root zone for treatment purposes existed. Additionally, the NRCS did a ground penetrating radar survey or study on the property. The Petitioners also did a separate ground penetrating radar study performed by Mr. Windschauer. The Petitioners study identified a number of karst-type "anomalies" on the property. The number of anomalies located by Windschauer was not unusual for a such a karst geologic area, but, in any event, all of them had adequate soil depth to support the crops necessary to establish the root zone and maintain the nitrogen balancing. Soil borings were conducted, as well on four of the anomalies, under Dr. Upchurch's supervision. They confirmed that there was adequate soil depth to support crops and protect groundwater. The conditions already imposed on the permit to which the applicant has agreed, require a minimum of five feet of soil depth to ensure adequate treatment including the soil below the root zone and that soil depth and plant cover will have to be maintained even if repairs are necessary to karst anomalies or "sink holes," or the dairy will have to cease operation. The soil depth on the dairy is approximately 45-50 feet and the water table is approximately 55 feet below the ground surface. While the Department's expert, Mr. Davis, is satisfied that the location of the monitoring wells and the number of wells are adequate to monitor compliance with water quality standards for groundwater at the site, the draft permit conditions allow for a change in the number and the location of the monitoring wells. The evidence in the case, including that which shows that an intermediate well at another similar dairy site has shown elevated nitrate levels (although it has not been shown that other conditions are similar to those proposed in this permit application and in the evidence) would indicate that it would be prudent to install intermediate monitoring wells, upgradient, within the dairy site to serve as an early warning, predictive mechanism to avoid water quality violations at the boundary of the zone of discharge. This will allow time for steps to be taken, through various adjustments in the operation, to prevent any violations of the ten parts per million nitrate groundwater standard. The permit is recommended to be so conditioned. Dr. Kwader performed a photolinear trace analysis. He indicated that he did not find any particular linear features such as fractures. A fracture in the limestone stratum is significant in that it can provide a conduit or preferential pathway through the sub-surface rock and thus transfer contaminants from one point to another at a more rapid rate than simple percolation through soil and pores in the rocks. This could result in excessive nitrates being deposited in the groundwater aquifer before an adequate treatment time and mechanism has had its effect on the nitrates. A fracture or conduit flow will, however, cause dilution and Mr. Davis, for the Department, testified that he did not expect a higher concentration of nutrients in a fracture than in the surrounding rock. Additionally, there will be substantial dilution once the nutrients reach the aquifer and begin moving laterally. The dilution will be proportional to the water moving through the conduit, meaning that if the fracture is relatively large, then the concentration of nutrients will be proportionately smaller because of the higher volume of water. Such linear features or fractures are difficult to observe through 50 or more feet of soil existing at the site above the rock stratum and the top surface of the aquifer. Dr. Upchurch, for the Petitioners, also performed a photolinear trace analysis and identified two areas as being highly probable, in his belief, for linear fracture features beneath the farm and surrounding area. He believes there is a possibility of a number of other fractures beneath the Watson property, although the evidence does not definitely identify such nor the measures or precise locations of any such postulated fractures. The Watson property, however, is not unlike any of the surrounding karst terrain with respect to such potential linear fracture features and, in fact, much of north Florida can be so characterized. Moreover, Dr. Upchurch himself agreed that only a limited area of the Watson farm would be impacted by such features, and further, if they are present, they will not impact the nutrient balance aspect of the dairy design because it will perform above many feet of soils separating it from the fractures, if they exist. Limestone pinnacles protruding to the land surface can provide preferential pathways for water to migrate downward to the groundwater aquifer in a manner similar to that posed by a sink hole. They can also function as a break in the soil and plant root zone covering the spray effluent treatment area if allowed to remain exposed. Limestone was observed within one of the mine pits and in a sink hole. It is not clear whether it is a pinnacle which leads down to the sub-strate containing the aquifer or is merely a remnant boulder. In any event, these pinnacles or limestone outcroppings or boulders, whatever they prove to be, will not result in a preferential pathway for water to migrate to the aquifer because the management plan conditioning the permit requires that any limestone protruding to the surface be sheared off and replaced with top soil and vegetation. The permit conditions require that at least five feet of soil overlaid by vegetation must be present for all areas in the spray field. No exposed groundwater was observed in any of the sink holes. In fact the aquifer water level would be at least ten to twenty feet below the bottom of any pit or sink hole observed on the property. An additional 50-foot buffer from the property boundary surrounds all of the paddocks, providing an additional safety factor before the outside boundary of the zone of discharge is reached. The proposed dairy is located approximately six miles south of the Sante Fe River at its nearest point. The Sante Fe River is an outstanding Florida waterway in accordance with Rule 62-302.700(9)(i)27, Florida Administrative Code. The dairy site is not within the flood plain of the river and there will be no surface water discharged from the dairy, including none to the Sante Fe River. Any impact the dairy might have on a water quality in the Sante Fe River would come from groundwater flowing from the site to river. Groundwater beneath the dairy site flows first in a northeasterly direction thence apparently swinging more northerly in the direction of the river, more or less in a "banana shape" flow pattern and direction. Current permitting requirements for such a dairy require that the groundwater leaving or flowing from the zone of discharge must meet "drinking water standards." Those standards are codified in Rules 62-520.400 and 62-522.400, Florida Administrative Code. Those standards require that nitrates not exceed the standard or level of ten parts per million. Dr. Bottcher's expert opinion, which is accepted, is that the dairy design and operation will provide adequate protection to the Sante Fe River with that perameter in mind. He also established that reasonable assurances exist that the river will be adequately protected and not significantly be degraded alone or in combination with other stationary installations in addition to the dairy in question. The dairy waste management system has been established by preponderant evidence to abate and prevent pollution of the groundwater to the extent required by the applicable statutes, rules and policies, in that water or pollution will not be discharged from the dairy in violation of the above-referenced standard. Especially because of the great thickness of soil cover and because of the conditions and protective measures designed into the draft permit, and the project and recommended as conditions herein, in order to prevent effluent from bypassing the root zone treatment area due to karst features the preponderant, credible geological and hydro- geological evidence, including that of Mr. Davis, shows, within a reasonable degree of professional certainty, that there are not conditions concerning the hydro-geology or geology in the area of the site as to make it unsuitable for the proposed dairy operation in the manner conditioned and recommended herein. SECTION 120.57(1)(E) - FINDINGS The specific permitting requirements for the rotational grazing dairy at issue are embodied in a policy followed by the Department as far back as 1990. Those requirements are not contained in a Department rule. Rather, the policy is presumably enacted pursuant to the statute referenced by the parties, including the Department, in this case as the general pollution abatement statute, Section 403.087, Florida Statutes. The action of the Department in announcing its intent to grant the permit may be deemed an agency action "that determines the substantial interest of a party and that it is based on an un-adopted rule . . ." to the extent that one might deem this policy, consistently followed in a substantial area of the state since 1990, an un-adopted rule for purposes of Section 120.57(e)(1), Florida Statutes. In that context, the agency must demonstrate that the un-adopted rule comports with the statutory definitional of characteristics of a valid rule. Thus the agency must present proof that its un-adopted rule or "policy" would be valid as a rule. In that context the evidence adduced by the Department and indeed by both Respondents, since they presented a joint case, shows that the policy at issue is within the powers, functions and duties delegated by the legislature in Section 403.087,Florida Statutes, which is a generalized grant of authority designed to give the Department the power to regulate in a way to abate the pollution of waters of the state, including groundwater. It has also been adequately shown that the policy or un- adopted rule does not enlarge, modify or contravene the specific provisions of that law being implemented but rather provides sufficient regulatory details so that the general principals, stated in that statute, can be carried out in terms of the installation, regulation and operation of the subject dairy project. It has been adequately proven that the rule is not vague and that it establishes adequate standards for agency decisions on whether or not to permit such a rotational grazing dairy. It does not vest unbridled discretion in the agency nor constitute an arbitrary or capricious act or policy imposition, because the standards and requirements advanced by the Department as being necessary under this policy or un-adopted rule, for a permit to be granted, must, of legal and factual necessity, be predicated on competent, scientific expert and factual evidence. That has been shown, which likewise meets the requirement that the un-adopted rule be supported by competent and substantial evidence. Likewise, the evidence shows that under the circumstances, given the great public necessity in protection of the groundwater and the Floridian aquifer, that the requirements placed upon a grant of a permit for this project and the conditions placed upon its construction and operation do not impose, under the circumstances, excessive regulatory costs on the regulated person, Mr. Watson, or the governmental entity where the project is located, in other words, Gilchrist County.

Recommendation Having considered the foregoing Findings of Fact, Conclusions of Law, the evidence of record, the candor and demeanor of the witnesses and the pleadings and arguments of the parties, it is RECOMMENDED: That a Final Order be entered granting the permit requested by Craig Watson to construct and operate the proposed dairy waste management system in accordance with the draft permit proposed by the Department, including the general and specific conditions attached and incorporated therein and also including the general and specific conditions recommended to be adopted and implemented for the proposed system in this Recommended Order, based upon the preponderant, persuasive, credible evidence. DONE AND ENTERED this 23rd day of February, 1999, in Tallahassee, Leon County, Florida. P. MICHAEL RUFF Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 23rd day of February, 1999.

Florida Laws (2) 120.57403.087 Florida Administrative Code (7) 62-4.03062-4.24262-520.20062-520.40062-522.40062-522.41062-522.600
# 6
JEROME MASSEL AND BERNICE MASSEL vs DEPARTMENT OF HEALTH AND REHABILITATIVE SERVICES, 90-006487 (1990)
Division of Administrative Hearings, Florida Filed:Daytona Beach, Florida Oct. 12, 1990 Number: 90-006487 Latest Update: Apr. 02, 1991

Findings Of Fact Petitioners purchased property in New Smyrna Beach, Florida to build a home. The property, which was platted in the 1940's measures 50 feet by 200 feet. The east side of the property (50') is located on Engram Road. The northern 200 feet and western 50 feet of the property is waterfront, situated on a tidal inlet from the Indian River. The Indian River contains the last remaining Class II waters in Volusia County. Class II waters in Florida are waters in which the state allows shellfish harvesting for public consumption. As the last remaining Class II waters in the county, the area requires special protection from all possible sources of pollution and negative environmental impact, including sewage outflow. According to the Petitioner, the seller of the property indicated to Petitioners that the property had been approved for constructing a home. The seller substantiated his assertion with a letter from the Volusia County Planning and Zoning Department stating that a county variance had been granted to construct a single family dwelling on this property, subject to certain conditions. The county approval letter specified the required use of an aerobic wastewater treatment system. The Petitioners were unaware of the state regulations and standards for onsite sewage disposal systems. The Petitioners hired a builder who applied to the HRS Volusia County Public Health Department for a septic tank permit. The permit was denied because the proposed septic tank system violated 50 foot set back required of sewage treatment systems from Class II waters. The proposed drainfield was located within 28 feet of the mean high water line, and because of the configuration of the lot and its depth of only 50 feet the proposed site cannot meet the state standard. The Petitioners' builder subsequently applied to the state Department of Health and Rehabilitative Services for a variance from the code standards in order to obtain the septic tank construction permit. The state denied the variance stating that the "request was not considered to be a minor deviation from the minimum requirements". The Petitioners received no notification of the time and place of the Variance Review Board's meeting because the variance application was submitted by their builder. Petitioners had no opportunity to personally address the Variance Board when their application was being considered. A sewer line is located within 1000 feet of the property and a sewage grinding and pumping system could be installed to pump sewage from the site to the sewer line. Such a system, costs approximately the same amount as an onsite system. A grinding and pumping system is an economically reasonable alternative to permit development of the lot.

Recommendation Having considered the foregoing Findings of Fact, Conclusions of Law, the evidence of record, the candor and demeanor of the witness, the arguments of the parties, it is therefore RECOMMENDED: That the request for a variance be DENIED. DONE and ENTERED this 2nd day of April, 1991, in Tallahassee, Florida. STEPHEN F. DEAN Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, FL 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 2nd day of April, 1991. COPIES FURNISHED: Sam Power, Agency Clerk Department of Health and Rehabilitative Services 1323 Winewood Boulevard Tallahassee, FL 32399-0700 Linda Harris, General Counsel Department of Health and Rehabilitative Services 132 Winewood Boulevard Tallahassee, FL 32399-0700 Jerome and Bernice Massel 6426 Engram Road New Smyrna Beach, FL 32169 Charlene J. Petersen, Esquire HRS-District 4 P.O. Box 2417 Jacksonville, FL 32231-0083

Florida Laws (1) 120.57
# 8
DEPARTMENT OF ENVIRONMENTAL REGULATION vs. CAST-CRETE CORPORATION OF FLORIDA, 84-001647 (1984)
Division of Administrative Hearings, Florida Number: 84-001647 Latest Update: Aug. 12, 1985

Findings Of Fact Upon consideration of the oral and documentary evidence in the record, as well as the pleadings and joint prehearing stipulation, the following relevant facts are found: Cast-Crete owns and operates a concrete batch plant in Hillsborough County, Florida, and manufactures concrete products such as reinforced beams, lintels, seals and drainage structures on the property. The plant is located on the west side of State Road 579, 3/4 mile north of Interstate 4, Section 28, Township 28 South, Range 20 East. The concrete products are manufactured in various forms which are laid out over a large portion of Cast-Crete's property. Lubricating oils are utilized to facilitate the removal of the product from the confining forms. During this process some of the lubricating oil is spilled onto the ground. Also, cleaning solutions containing degreasers are utilized to wash the concrete trucks eight to ten times per day. This solution ends up on the ground. Aggregate limerock (crushed limestone) is used in the concrete formulation process and is stored in large piles on the property. In order to contain the dust, water is sprayed on the aggregate piles 24 hours a day. The wash water from the continuous process of wetting the aggregate, other waste water and some stormwater is channeled through the property and into a settling pond in the northwest corner of Cast-Crete's property. This pond discharges continuously off the property by way of a concrete flume into a county maintained ditch. Water in the ditch travels in a westerly direction approximately 200 to 300 yards before it passes under Black Dairy Road, where the watercourse deepens and widens. The ditch discharges into a marshy area which drains into Six Mile Creek and other water bodies. The pond at the northwest corner of Cast-Crete's property is equipped with a metal skimming device to remove oils and greases floating on the surface of the pond. Nevertheless, it is estimated that approximately 100 gallons of oil per year are discharged by Cast-Crete. Oil and grease in the outflow water is occasionally above 5 mg/L. Oil and grease layers have been observed on water at both Black Dairy Road and Six Mile Creek, probably resulting from road run- off. Approximately 90 percent of the water discharged from the property is a result of the wetting or washdown of the aggregate piles. The excess water which comes from the aggregate piles is laden with dissolved limestone, lime and limestone particles. This limestone dust raises the pH level of the water. Because of the continued wetting of the aggregate, water flows through the settling ponds and off of Cast-Crete's property at a rate of approximately 4.8 gallons per minute, or 7,200 gallons per day or 2.5 million gallons per year. During a rain event, the flow increases markedly. Except during times of heavy rainfall, water flowing from the respondent's property provides a thin stream of water in the drainage ditch approximately six inches wide and several inches deep. The pH of the wastewater from Cast-Crete's discharge flume is between 10 and 11 units. During high volume flows, the pH remains at or above 11 units. An increase of one unit of pH in the wastewater means that the wastewater has become 10 times more basic, since pH is measured on a logarithmic scale. The natural background of unaffected streams in the area of and in the same watershed as the Cast-Crete property is less than 8.5 units. Specific conductance or conductivity is the measure of free ions in the water. Typical conductivity readings from other water bodies in Hillsborough County range between 50 and 330 micromhos per centimeter. The specific conductance of Cast-Crete's wastewater ranges from 898 to 2000 micromhos per centimeter. This is due to the presence of calcium carbonate and calcium hydroxide in the water. Blue-green algae is the dominant plant species in the ditch between the Cast-Crete discharge flume and the first 150 meters of the ditch. A biological survey of the ditch system indicates that the diversity of species east of Black Dairy Road is low. This is attributable in part to the high pH of the wastewater. The low diversity can also be attributed to the fact that the County maintains the ditch by use of a dragline on an annual basis. Background samples from a site within one mile to the northwest of the Cast-Crete property were taken. The site (a stream passing under Williams Road) is an appropriate place to take background samples because the water there is unaffected by Cast-Crete's discharge or other man-induced conditions. The pH background sample ranged from 4.6 units to 5.1 units. The specific conductance background samples ranged from 70 to 100 micromhos per centimeter. Samples taken from a site potentially impacted by Cast-Crete's discharge showed a pH level of from 6.35 to 7.37 units and specific conductance of from 592 to 670 micromhos per centimeter. Cast-Crete discharges water from its concrete plants operation without a permit from the DER.

Recommendation Based upon the findings of fact and conclusions of law recited herein, it is RECOMMENDED that a Final Order be entered requiring respondent to submit a complete application for an industrial wastewater permit within thirty (30) days, and that, if it fails to do so, it cease discharging wastewater from its property until such time as an appropriately valid permit is issued by the DER. Respectfully submitted and entered this 3rd day of May, 1985, in Tallahassee, Florida. DIANE D. TREMOR Hearing Officer Division of Administrative Hearings The Oakland Building 2009 Apalachee Parkway Tallahassee, Florida 32301 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 3rd day of May, 1985. COPIES FURNISHED: David K. Thulman Assistant General Counsel Department of Environmental Regulation Twin Towers Office Building Blairstone Road Tallahassee, FL 32301 W. DeHart Ayala, Jr. 501 E. Jackson Street Suite 200 Tampa, FL 33602 Victoria Tschinkel Secretary Department of Environmental Regulation Twin Towers Office Building 2600 Blairstone Road Tallahassee, FL 32301 ================================================================= AGENCY FINAL ORDER ================================================================= STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION DEPARTMENT OF ENVIRONMENTAL REGULATION, STATE OF FLORIDA, Petitioner, vs. CASE NO. 84-1647 CAST-CRETE CORPORATION OF FLORIDA Respondent. /

Florida Laws (6) 120.52120.57120.68403.031403.0877.37
# 9
ENGLEWOOD WATER DISTRICT vs. RALPH A. HARDIN, D/B/A POLYNESIAN VILLAGE, 84-000810 (1984)
Division of Administrative Hearings, Florida Number: 84-000810 Latest Update: Apr. 09, 1984

Findings Of Fact Respondent owns and operates a waste water treatment facility at Polynesian Village Mobile Home Park, owns the land at this village, leases these lots to mobile home owners, and provides them with waste water treatment. He was last issued an operating permit on January 18, 1983, by Petitioner. Respondent posted an Operational Bond (Exhibit 2) in the amount of $7,500 with Northwestern National Insurance Company as surety to faithfully operate the treatment facility and comply with all Rules and Regulations of the Petitioner. Englewood Water District, petitioner, was established by special act of the Florida Legislature in Chapter 59-931, Florida Statutes, and is given authority in Section 4 thereof to regulate use of sewers, fix rates, enjoin or otherwise prevent violations of the act or any regulation adopted by Petitioner pursuant to the act, and to promulgate regulations to carry out the provisions of the act. Pursuant to this authority, Petitioner promulgated Waste Water Treatment Facilities Design, Construction and Operation Regulations dated June 19, 1980, and revised April 28, 1983. During an inspection of Respondent's waste water treatment facility on October 17, 1983, leaching was observed at both the north and south drain fields with effluent from the system rising to the surface. Samples of this effluent when tested showed a fecal coliform count of 2800/100 ml. The basic level of disinfectant shall result in not more than 200 fecal coliform values per 100 ml of effluent sample (Rule 17-6.060(1)(b)3a, F.A.C.). Following this test, Notice of Violation (Exhibit 4) was served on Respondent. No action was taken by Respondent to correct this condition and on January 6, 1984, a Citation (Exhibit 5) was issued to Respondent scheduling a hearing for January 26, 1984. Following the issuance of that Citation frequent inspections of the facility were conducted by employees of Respondent to ascertain if steps were being taken by Respondent to correct the deficiencies. Additionally, inspections were made by inspectors from Sarasota County Pollution Control. Inspections were conducted January 9, 16, 17, 18, 20, 23, and 31; February 1, 8, 13, 14, 16, 21, 24, 25, 26, 27, 28, and 29; and March 2, 5, 8, and 9, 1984. These inspections revealed what appears to be a "blow-out" in the south drain field where effluent bubbles to the surface and flows onto the adjacent streets and propert (Exhibits 9 and 11). Effluent tested from this source had fecal coliform counts as high as 9440/100 ml. During one of these inspections effluent from the treatment plant was being discharged directly onto the road to a drainage ditch adjacent to the plant (Exhibit 8). The coliform count of a sample taken from this ditch was 13500/100 ml. Respondent was issued a second Citation on March 2, 1984, and this hearing was held on the violations alleged in that Citation, to wit: creating a public nuisance and leaching from drain field. Respondent contends that he is dealing with the Sarasota County Engineer to correct the problems and, after failing in his attempt to get the county to provide drainage from his property, he is now in the process of installing drain pipes. Respondent contends that the natural drainage of surface waters from his land to adjacent land was stopped by development on the adjacent land and the heavy rains this winter has saturated his land and inhibited percolation in the drain fields. Accordingly, the effluent from his plant could not be absorbed by the drain field. Respondent also contends that the drain field worked fine for several years before the drainage problem arose and believes it will again work well when the drainage situation is corrected.

# 10

Can't find what you're looking for?

Post a free question on our public forum.
Ask a Question
Search for lawyers by practice areas.
Find a Lawyer