Elawyers Elawyers
Washington| Change
Find Similar Cases by Filters
You can browse Case Laws by Courts, or by your need.
Find 49 similar cases
ROLLING ACRES ENTERPRISES, CITY OF BROOKSVILLE, AND HERNANDO COUNTY vs. CONROCK UTILITY CO., 89-002700 (1989)
Division of Administrative Hearings, Florida Number: 89-002700 Latest Update: Jan. 24, 1990

The Issue The issues to be adjudicated in this proceeding concern whether Conrock Utility Company's application for a water certificate in Hernando County meets the requirements of Sections 367.041 and 367.051, Florida Statutes, and, therefore, whether it should be granted.

Findings Of Fact 1. Applications and notices of intent to apply for a water certificate for a particular service area are required to be noticed in a newspaper of general circulation in the service area involved. In this proceeding, an affidavit was introduced from the "Sun Coast News," to the effect that Conrock had caused to be published in that newspaper its notice of intent to apply for the water certificate. That newspaper is published on Wednesdays and Saturdays in New Port Richey, Pasco County, Florida. Conrock's proposed service area, or territory, is in that portion of Hernando County lying east of the City of Brooksville. This newspaper is a free publication and states on the front page that it is circulated in Pasco and Hernando Counties. There is some testimony to the effect that the newspaper is only circulated in that portion of Hernando County lying westward of Brooksville near the Pasco County border, which is an area removed from Conrock's proposed service territory. No evidence was presented to the effect that that newspaper actually circulates in Conrock's proposed service territory. 2. Rules 25-30.030(2)(f), 25-30.035(3)(f) and 25-30.035(3)(h), Florida Administrative Code, require that the utility provide evidence that it owns the land where the treatment facilities are to be located or provide a copy of an agreement providing authority for the continuous use of the land involved in the utility operations and that a system map of the proposed lines and facilities be filed with the Commission. It was not established that Conrock owns or has a written lease for the land where the water facilities are proposed to be located. No actual lease has been executed providing for long-term continuous use of the land. It is true, however, that a verbal agreement exists with the Williams family members and/or the Williams Family Trust, who own the land upon which the facilities would be located, authorizing the use of the land for the proposed operations and facilities. That unrebutted evidence does establish, therefore, that Conrock has authorization to use the land where the water facilities, including the wells, are, or will be located. Although there is no extant written agreement, as yet, providing for the continuous use of the land involved, Conrock did establish that such an agreement can be consummated in the near future based on the verbal agreement it already has. Conrock did place into evidence a territorial map of the proposed service area. It did not, however, provide a system map or otherwise provide concrete evidence of where distribution lines and other facilities would be located for its proposed system. It submitted instead a "planning study" directed to the question of whether a water utility is needed for the proposed territorial area. It submitted no design specifications for the proposed system into evidence however. Conrock has not filed any tariff rate schedules for any water service it might conduct, if granted a certificate. Concerning the question of the need for the proposed water service, it was established by Conrock that 900 acres of the proposed service territory are mainly owned by the Sumner A. Williams Family Trust (Family Trust). Additionally, some small tracts are owned by S. A. Williams Corporation, a related family corporation. The majority of the 900-acre tract is zoned agricultural and the S.A.W. Corporation operates a construction/demolition landfill on that property. There is no evidence that it contemplates a real estate development on that 900-acre tract or other tracts in the area which could be served by the proposed water utility. Neither is Conrock attempting entry into the utility business in order to supply water to a development of the above-named corporation or any related party, person or entity. The proposed service area is rural in nature. The majority of people living in the area live on tracts of land ranging from 1 to 200 acres in size. The people living in the proposed territory either have individual wells or currently receive water service from the City of Brooksville or from Hernando County. Both of those entities serve small subdivisions, or portions thereof, lying wholly or in part in the proposed service territory of Conrock. Conrock has not received any requests for water services from residents in the proposed service territory. There is some evidence that discussions to that effect may have occurred with an entity known as TBF Properties, lying generally to the north of the proposed service territory. TBF Properties apparently contemplates a real estate development on land it owns, which also encompasses part of the Williams family property; some of which lies within the proposed service territory. Plans for TBF's residential construction development are not established in the evidence in this case however. There is no evidence which shows when or on what schedule the construction of that development might occur, nor whether it would actually seek service from Conrock if that entity was granted a water certificate. TBF Properties is the only entity or person in Conrock's proposed service territory that has expressed any interest to the City of Brooksville concerning receiving water service from the city. There have been no requests to the county for water service in the proposed service territory, except by Budget Inn, a motel development. The proposed service area includes a number of small subdivisions. These subdivisions are Mundon Hill Farms, Eastside Estates, Cooper Terrace, Country Oak Estates, Chris Morris Trailer Park, Potterfield Sunny Acres, Gunderman Mobile Home Park, and Country Side Estates. Mundon Hill Farms is an undeveloped subdivision. Eastside Estates and Cooper Terrace have limited development and the Country Oak Estates consist of only three homes. The Chris Morris Trailer Park has a small number of mobile homes but is not of a high density. Potterfield Sunny Acres has six to eight homes. Gunderman Mobile Home Park is a minor development. The Country Side Estates development has its own independent water system. Some subdivisions in Conrock's proposed service area already receive water service from the city or the county. Conrock was incorporated in the past year and as yet has not had any active business operations. It currently has no employees. Mark Williams, the President of Conrock, manages the construction/demolition landfill operation owned by the S.A.W. Corporation. The landfill business is the most closely related business endeavor to a water utility business in the experience of Mr. Williams, Conrock's president. If Conrock were granted a water certificate, either Ms. Donna Martin or Mr. Charles DeLamater would be the operations manager. Neither of these persons possesses any license or training authorizing him or her to operate a water utility system. No evidence was presented as to Ms. Martin's qualifications to operate a water utility system. Mr. DeLamater manages a ranch at the present time and also works in a management capacity in the landfill operation for the Williams family. There is no evidence that he has received any training in the operation of a water utility. It is true, however, that the representatives of the engineering and consulting firm retained by Conrock, who testified in this case, do possess extensive water and sewer design and operation expertise. The evidence does not reflect that those entities or persons would be retained to help operate the utility, but Conrock established that it will promptly retain operating personnel of adequate training and experience to operate the water system should the certificate be granted. Conrock has not established what type of system it would install should the certificate be granted, but a number of alternatives were examined and treated in its feasibility study (in evidence). One alternative involves the use of well fields alone, without treatment, storage or transmission lines. In this connection, the feasibility study contains some indication that the water quality available in the existing wells is such that no water treatment is necessary. In any event, Conrock has not established of record in this case what type of facilities it proposes to install in order to operate its proposed water service. Further, that feasibility study, designed to show a need for the proposed water service, is based upon the actual population, density and occupancies in the homes and subdivisions of the proposed service territory, even though those current residents and occupants have independent water supplies at the present time, either through private wells or through service provided by the City of Brooksville or Hernando County. Thus, the feasibility study itself does not establish that the proposed service is actually needed. Concerning the issue of the proposed facility's financial ability to install and provide the service, it was shown that Conrock stock is jointly held between the Williams family and the S.A.W. Corporation. The Conrock Corporation itself has no assets. The president of Conrock owns 100 shares of the utility corporation, but has not yet committed any personal funds to the venture. No efforts, as yet, have been made to obtain bonds, loans or grants. In fact, the first phase of the proposed project, which is expected to cost approximately $400,000, can be provided in cash from funds presently held by the Williams Family Trust and the S.A.W. Corporation. The various system alternatives proposed in Conrock's feasibility study, in evidence, range in cost from $728,200 to $5,963,100. Conrock has no assets and therefore no financial statement as yet. The financial statements of Mr. and Mrs. Sumner A. Williams, the parents of Conrock's president, include approximately $3,069,907. This is the corpus of the family trust mentioned above, and with other assets, amount to a net worth for those individuals of approximately 5.8 million dollars. Mr. Williams, Conrock's president, has an income interest in the family trust. The financial statements of the S.A.W. Corporation indicate it has a net worth of $1,588,739. The Family Trust financial statement shows a net worth of $3,069,907 of which $1,444,165 consists of stock in the S.A.W. Corporation. The Family Trust owns 90.9 percent of the S.A.W. Corporation stock. It is thus a close-held corporation, not publicly traded and thus has no value independent of the corporation's actual assets. In spite of the fact that Conrock, itself, the corporate applicant herein, does not have assets or net worth directly establishing its own financial responsibility and feasibility, in terms of constructing and operating the proposed water service, the testimony of Mr. Williams, its president, was unrefuted and does establish that sufficient funds from family members and the trust are available to adequately accomplish the proposed project. Concerning the issue of competition with or duplication of other systems, it was established that the City of Brooksville currently provides water service to the Wesleyan Village, a subdivision within the Conrock proposed service territory. The City has a major transmission line running from its corporate limits out to the Wesleyan Village. The Wesleyan Village is receiving adequate water service at the present time, although there is some evidence that water pressure is not adequate for full fire flows. The City also has another water main running from US 41 down Crum Road, which is in the proposed service territory of Conrock. By agreement with Hernando County, a so-called "interlocal agreement," the City of Brooksville is authorized to provide water and sewer utility service in a 5-mile radius in Hernando County around the incorporated area of Brooksville. This 5-mile radius includes much of the proposed service territory of Conrock. The City of Brooksville comprehensive plan, approved by the Florida Department of Community Affairs, contains an established policy discouraging "urban sprawl" or "leap frogging"; the placing of developments including separate, privately owned water utilities in predominantly rural areas. It, instead, favors the installation of subdivision developments in areas which can be served by existing, more centralized, publicly owned water and sewer utilities such as the City of Brooksville or Hernando County. Thus, the installation of the separate, privately owned system in a rural area of the county would serve to encourage urbanization away from area contiguous to the municipality of Brooksville which is served, and legally authorized to be served, by the City of Brooksville. Such a project would be in derogation of the provisions of the approved comprehensive land use plan. Further, Conrock's proposed system would be in partial competition with and duplication of the city and county water systems in the proposed service territory. The county provides some water service through its water and sewer district system to some of the subdivisions and residents in the proposed service territory of Conrock and much of Conrock's territory, as mentioned above, lies within the 5-mile radius urban services area of Brooksville, authorized to be served by the city and county interlocal agreement. Such interlocal agreements, including this one, are contemplated and authorized by the comprehensive plan approved by the Department of Community Affairs and the city/county agreement involved in this proceeding was adopted in 1978 in accordance with certain federal grant mandates in Title 201 of the Federal Safe Water Drinking Act. In terms of present physical competition and duplication, Conrock's proposed system would likely involve the running of water lines parallel to and in duplication of the county's lines within the same subdivision.

Recommendation Having considered the foregoing findings of fact, conclusions of law, the evidence of record, the candor and demeanor of the witnesses and the pleadings and arguments of the parties, it is therefore RECOMMENDED that the application of Conrock Utilities Corporation for a water certificate authorizing it to operate a water utility in Hernando County, Florida, as more particularly described herein, be denied. DONE AND ENTERED in Tallahassee, Leon County, Florida, this 23rd day of January 1990. P. MICHAEL RUFF Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearing this 24th day of January 1990. APPENDIX Petitioners, City of Brooksville, Hernando County, and Hernando County Water and Sewer District's proposed findings of fact. Accepted. Accepted. Accepted. Rejected as subordinate to the Hearing Officer's findings of fact on the subject matter. Rejected as subordinate to the Hearing Officer's findings of fact on the subject matter. Rejected as subordinate to the Hearing Officer's findings of fact on the subject matter. Respondent's proposed findings of fact. Accepted. Accepted. Rejected as subordinate to the Hearing Officer's findings of fact on this subject matter and as not entirely in accordance with the preponderant weight of the evidence. Accepted. Accepted. Rejected as subordinate to the Hearing Officer's findings of fact on this subject matter and as not entirely in accordance with the preponderant weight of the evidence. Intervenor's proposed findings of fact. Accepted. Rejected as subordinate to the Hearing Officer's findings of fact on this subject matter and not in itself materially dispositive. Accepted. Accepted. Accepted. Accepted. Accepted. Accepted. Accepted. Accepted. Accepted, but not in itself materially dispositive and subordinate to the Hearing Officer's findings of fact on this subject matter. Accepted. Accepted. Rejected as subordinate to the Hearing Officer's findings of fact on this subject matter and as not in itself materially dispositive. Accepted, but not in itself materially dispositive. Accepted, but subordinate to the Hearing Officer's findings of fact on this subject matter. Accepted, but subordinate to the Hearing Officer's findings of fact on this subject matter. Accepted. Accepted. Accepted. Accepted. Copies furnished to: William B. Eppley, Esquire Post Office Box 1478 Brooksville, Florida 34605 Peyton B. Hyslop, Esquire 10 North Brooksville Avenue Brooksville, Florida 34601 James F. Pingel, Jr., Esquire South Ashley Drive Suite 1400, Ashley Tower Post Office 1050 Tampa, Florida 33601 David C. Schwartz, Esquire Florida Public Service Commission East Gaines Street Tallahassee, Florida 32399-0855 Steve Tribble, Director Records and Recording Florida Public Service Commission 101 East Gaines Street Tallahassee, Florida 32399-0850 David Swafford Executive Director Florida Public Service Commission 101 East Gaines Street Tallahassee, Florida 32399-0850 Susan Clark, General Counsel Florida Public Service Commission 101 East Gaines Street Tallahassee, Florida 32399-0850 =================================================================

Florida Laws (7) 120.57120.68163.3161163.3164163.3171163.3211367.011 Florida Administrative Code (3) 25-22.06025-30.03025-30.035
# 1
DEPARTMENT OF ENVIRONMENTAL REGULATION vs. DESERET RANCHES OF FLORIDA, INC., 78-002040 (1978)
Division of Administrative Hearings, Florida Number: 78-002040 Latest Update: Sep. 17, 1979

The Issue Whether Petitioner should take enforcement action against Respondent for alleged violations of Chapter 403, F.S., and Chapter 17, F.A.C., as set forth in Notice of Violation and Orders for Corrective Action, dated September 4, 1978.

Findings Of Fact Respondent Deseret Ranches of Florida, Inc., (Deseret), a wholly owned subsidiary of the Church of Jesus Christ of Latter Day Saints, conducts agricultural and ranching operations on approximately 283,000 acres of land owned by the Church which is located in parts of Orange, Osceola, and Brevard Counties. Over 80 percent of the acreage consists of unimproved and semi- improved pasture or range land, and the remainder is utilized for production of sod, clover, and citrus. Citrus production involves the use of 1800 acres. An average cattle herd of 44,500 head is maintained on the pastureland with an average density of 5.4 acres per head. Some 104,000 acres consists of lowlands which are subjected to periodic flooding. This land is located a short distance to the west of the St. Johns River and over 60,000 acres are channelized with canals, ditches, and dikes to improve drainage in order that the pastureland will remain relatively dry in periods of excessive rainfall. To prevent water in the interior canals from flooding the land, pumping stations are located at a number of points which periodically discharge water from the interior canals into larger canals which flow into the St. Johns River. Both diesel and electrically operated pumps are used for this purpose. There are also canals which discharge by gravity flow to the St. Johns River. Deseret Ranch is divided into north and south areas that are separated by land owned by others. The northern portion is bordered on the east by the North Mormon Outside Canal which parallels the St. Johns River. The southern portion is bordered on the east by the South Mormon Canal which also parallels the St. Johns River. The Bulldozer Canal forms the northern border of the southern portion of the ranch. The latter two canals meet at the northeastern corner of the southern area at the St. Johns River. The ranch has a number of artesian wells which are used primarily for providing water for stock and for agricultural irrigation during dry periods of the year. The St. Johns River Water Management District has authorized an annual allocation of 2522 million gallons of ground water per year for these purposes. (Testimony of Dahl, Petitioner's Exhibits 26, 27, 35, Respondent's Exhibit 1) On January 7, 1976, a Department of Environmental Regulation (DER) biologist observed turbidity at the southern end of Lake Hellen Blazes which is in the St. Johns River near the confluence of the Bulldozer and South Mormon Canals. He determined that a Deseret operating pump discharging into Bulldozer Canal was the cause of the turbid water. Water samples taken at various points upstream and downstream from the discharge were analyzed and showed violations of state water quality standards relating to turbidity. DER thereafter advised Respondent to apply for a temporary operating permit for the discharges from the ranch, but it declined to so. At informal meetings during 1976, Respondent explained that the turbidity problem had arisen during a time when interior canals were being cleaned and it was necessary for the pump to be placed into operation to move out the water in order that a dragline operator could accomplish the cleaning task. Respondent agreed at these meetings not to operate its pumps in the future when cleaning canals and there have been no observable turbidity violations since that time. (Testimony of Cormier, Dahl, Hulbert, Petitioner's Exhibits 1, 2, 31, 32-34, Respondent's Exhibit 6) On July 25, 1978, a fish kill in the vicinity of Camp Holly near U.S. Highway 192 was reported to DER personnel. Camp Holly is a fish camp located approximately eight to ten miles north of Bulldozer Canal on the St. Johns River. About 30 dead fish were observed around Camp Holly and several more between that location and Bulldozer Canal. Investigation disclosed that pumps at two stations on the Bulldozer Canal were in operation on that day, and water samples taken upstream and downstream of the operating pumps showed dissolved oxygen levels ranging from 1.8 mgs to 2.8 mgs per liter. A dragline was observed in an interior canal on the Deseret Ranch, but it is unknown if it was then in operation. The St. Johns River was high in 1978. (Testimony of Hadley, Cataldo, Auth, Petitioner's Exhibits 3, 4, 4A, 25, Respondent's Exhibit 5) The flood plain of the St. Johns River South of Lake Washington has decreased significantly over the years due, in part, to the fact that large areas are now behind dikes in order that the land may be used for various agricultural purposes. To maintain low water levels in these reclaimed areas, extensive canal and pumping systems have been installed to remove excess water. Conversion of an area from natural conditions to agricultural use increases pollutant loading of receiving waters from the use of fertilizer and pesticides. Disturbances of the land surface by removal of natural cover and modifications of natural drainage patterns reduce the detention time of storm water flow to the St. Johns River and the natural assimilative or purification processes of the original system. (Testimony of Sullivan, Cox, Petitioner's Exhibit 24) Water quality parameters that could potentially be influenced by the pumping activities of Respondent include turbidity, dissolved oxygen, biological oxygen demand (BOD) , specific conductance, chlorides, total phosphorus and total nitrogen. Available data concerning water quality in the upper St. Johns River include bimonthly water sampling by personnel of the Florida (came and Fresh Water Fish Commission from 1973 to 1976 at 24 stations, irregular sampling by DER personnel from 1975 to 1978 primarily in the Blue Cypress Lake region, and sampling in the summer of 1978 and in January, 1979 by DER and a consulting firm employed by Respondent. The collective data obtained show that the waters in the upper St. Johns River do not consistently meet state water quality standards in various respects and that the most serious deficiency is low dissolved oxygen concentrations. The data show a general downstream trend of increasing specific conductance with seasonal fluctuations due to dilution during the summer rainfall season. Conductivity increases are generally attributable to inputs of mineralized ground water, some of which occurs from irrigation wells. The specific conductance levels in the upper St. Johns regularly exceed the Class I standard of 500 micromhos per centimeter. Although Respondent has over 170 artesian wells under state permits, the wells are only used when irrigation water is necessary and are capped and controlled by valves at other times. Although specific conductance has been shown to increase beyond state standards in "Respondent's canals, primarily during the dry winter season, it is basically a ground water problem and is not considered by Petitioner and other state monitoring authorities to constitute a serious situation. Chloride levels generally increase in the area of Respondent's exterior canals during the summer, but they are almost always below the Class I water quality standard of 250 mgs per liter. Phosphorus concentrations increase somewhat as the river passes the confluence with the North Mormon Outside Canal, but the average total phosphorus concentration in the canal is essentially the same as that in the river upstream of the canal confluence. As to nitrogen concentrations, the data show that there is no pattern of increased concentrations arising from Respondent's canal discharges. Turbidity has not been shown to be a problem since Respondent discontinued pumping during dragline operations. BOD values have not been shown to be sufficiently high as to constitute a water quality problem. (Testimony of Cox, Shannon, Hulbert, Auth, Petitioner's Exhibits 8, 9, 11, 16, 18, 19, 24, 26, 27-29) It is generally agreed by water quality experts that low dissolved oxygen levels are natural to the upper St. Johns River, particularly during periods of high rainfall during the summer and fall. Agricultural activities in the St. Johns River basin contribute to oxygen depletion by the nutrient load that is pumped into the receiving waters after having remained in interior canals for varied periods of time during the dry season. Highly mineralized artesian well water which has migrated to canals, collected plant debris, fertilizer, and cattle waste all serve to depress oxygen values when discharged into the river system. Aquatic plants, such as hyacinths, tend to proliferate in stagnant canals during the dry season and are released into the river during pumping operations. They accumulate in the river lakes where spraying operations by the St. Johns River Water Management District cause decomposition of the plant material which also serves to reduce the oxygen supply. This, in turn, is detrimental to the fish habitat and has caused fish kills in extreme situations. Studies have shown that the population of fish in the river has decreased over the years due to the degradation of water quality and limited access to spawning and grazing areas. Less dissolved oxygen affects the food supply and growth of fish. However, Respondent's interior canals have been a plentiful source of fish over the years. Another cause of reduced oxygen levels in the upper St. Johns River is the natural loading of nutrients from accumulated detritus from adjacent marshes and wetlands. In particular, the trees and plant life in the area from Lake Washington to south of Lake Winder consist of a swamp forest which produces a larger amount of detrital material than grass marshlands. During the wet season of June through October, average dissolved oxygen levels in the upper St. Johns River range from 2.0 to 4.0 mgs per liter and can, at times, fall as low as 0.0. However, samples from lake areas in the upper St. Johns show average levels ranging from 4.9 mg/1 to 7.9. Although water samples showing dissolved oxygen values of zero were measured in Bulldozer Canal in 1978, a sample from the river upstream of the canal showed the same value. In January 1979, six locations were sampled along Bulldozer Canal and in Respondent's canals located behind the dike. No pumps were operating and the data did not indicate any appreciable water quality problem. Samplings in the North Mormon Outsider Canal consistently show dissolved oxygen concentrations of less than 2.0 mg/1. In most cases, the dissolved oxygen concentration in the canal was less than in the river upstream, and in some cases a drop in dissolved oxygen concentration in the river occurred as it passed the canal. Respondent's pumps normally operate during the rainy season after a two to four inch rainfall. There are some twenty-three potential periods for Pumping during the months July to October, but normally the pumps are operated for only about fourteen days a year. It is estimated that the pumps contribute less than one percent of the river content during such periods. Water samples taken from Respondent's exterior canals in October 1978, both before and after pumping, failed to reveal any significant change in dissolved oxygen levels. Insufficient data exists to show the effect of pumping on dissolved oxygen levels at the present time. The organic material discharged by pumping operations undoubtedly depresses oxygen values to some unknown extent, but seasonal monitoring is necessary to ascertain precise data in this regard. The Florida Game and Fresh Water Fish Commission studies showed that only at one time was there found to be a low dissolved oxygen level when the pumps were operating. Initially, at least, pumping serves to aerate the water to some degree with consequent increase in dissolved oxygen. Other ranching and agricultural operations along the upper St. Johns River, together with organic material flushed from adjacent lands, provide an unknown contribution to the depressed oxygen values of the upper St. Johns River. Temporary operating permits have been issued to a number of ranches and farms adjacent to the river which call for monitoring of water quality from structures and pump discharge for evaluation of the effects of the discharge upon the receiving waters. Respondent is one of several such sources in the upper St. Johns River who has declined to submit an application. Although the term "stormwater discharge" is not defined in Chapter 403 or DER rules, pumped discharges of water that has been dormant for a considerable period of time with accumulated plant debris, nutrients, and other wastes are not considered by DER, as a matter of policy, to be "stormwater discharge" within the meaning of Rule 17-4.248, F.A.C. (Testimony of Parks, Sullivan, Hulbert, Justesen, Cornwell, Shannon, Dahl, Mapes, Pate, Ross, Petitioner's Exhibits 6-7, 10-10A, 12-15, 20-24, 26, Respondent's Exhibit 2) The Deseret Ranch contains pine flatwoods, and numerous cypress domes, strands, and marshes. Approximately 50 percent of the ranch area has been left in a natural system and therefore is one of the most productive areas in Florida for the propagation of wildlife. The ranch creates an excellent environment for such productivity by a mixing of natural and developed environment. A wide variety of animal, bird, aquatic and plant life are found throughout the ranch property. Approximately 30,000 deer are estimated to inhabit the ranch area. (Testimony of Cornwell, Dahl, Sullivan, Mapes, Pate, Justesen, Shannon, Respondent's Exhibits 7-10, Petitioner's Exhibit 26) Three public witnesses testified at the hearing. One witness who operates Camp Holly, a fish camp on the St. Johns River, attested to the importance of the river system for recreational and fishing purposes, and expressed concern as to fish kills and the adverse effects on fishing from recent high water. Another witness who is a professional fisherman expressed similar concerns about recent flooding and consequent detrimental effects on fishing. The third witness testified as to his opinion that Petitioner is a responsible agency that is cautious in development and analysis of data in carrying out its statutory responsibilities. (Testimony of Cataldo, Hunter, Nicolay, Hearing Officer Exhibit 1) At the hearing, Petitioner submitted in evidence a summary of its costs of investigating the activities of Deseret in preparation for this administrative proceeding in the amount of $632.94. However, agency records supporting the expenditures were net made available to Respondent and, consequently, Respondent had no opportunity to determine the accuracy of such costs. It is therefore found that Petitioner's costs are not supported by competent evidence. (Testimony of Kozlev, Petitioner's Exhibit 30)

Recommendation That Petitioner issue a final order for corrective action requiring Respondent to submit an application for an operation permit covering its Pumping stations within sixty (60) days from the date of such final order, under the authority of Section 403.121(2)(b), Florida Statutes. DONE and ENTERED this 29th day of June, 1979, in Tallahassee, Florida. THOMAS C. OLDHAM Hearing Officer Division of Administrative Hearings Room 101, Collins Building Tallahassee, Florida 32301 (904) 488-9675 COPIES FURNISHED: Segundo Fernandez, Esquire Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32301 Philip N. Watson, Esquire 17th Floor CNA Building Post Office Box 231 Orlando, Florida 32802

Florida Laws (5) 403.031403.087403.088403.121403.161
# 2
ALLIANCE FOR RATIONAL GROUNDWATER RULES AND ADAM SMITH ENTERPRISES, INC. vs. DEPARTMENT OF ENVIRONMENTAL REGULATION, 86-004492RP (1986)
Division of Administrative Hearings, Florida Number: 86-004492RP Latest Update: Apr. 07, 1988

Findings Of Fact Background In 1983, Concerned Citizens of Citrus County, Inc. (Concerned Citizens), an intervenor in this case, filed a petition toe initiate rulemaking for single source reclassification of groundwater under the existing provisions of Rule 17-3.403, Florida Administrative Code (F.A.C.). In this manner, Concerned Citizens sought to have existent potable waters in Pinellas, Hillsborough, Pasco, Hernando, and Citrus Counties classified Class G-I groundwater, and to thereby provide them the most stringent water quality protection accorded groundwaters of the state. At a public meeting in February 1985, the Environmental Regulation Commission (ERC) deferred action on the petition of Concerned Citizens, and directed the Department of Environmental Regulation (Department) to review the existing G-I rule, prepare proposed revisions, and present its recommendations to the ERC. Following the ERC directive, the Department held numerous public meetings and workshops to explore different approaches to groundwater protection. As a consequence, it prepared the proposed revisions to Rules 17-3.021, 17-3.403, 17-3.404, and 17- 4.245, F.A.C., at issue in these proceedings. On October 31, 1986, the Department duly noticed the proposed rules in volume 12, number 44, of the Florida Administrative Weekly. The notice interested parties that a public hearing would be held on December 16, 1986, before the ERC. 1/ On December 16-17, 1986, the ERC held a public hearing at which time it considered the rules recommended by the Department. During the course of this meeting, the ERC approved and adopted the rules with certain changes. These changes were duly noticed in volume 13, number 3, of the Florida Administrative Weekly on January 16, 1987. Petitioners and Intervenors Petitioners, Adam Smith Enterprises, Inc., and Alliance for Rational Groundwater Rules (Case No. 86-4492RP), and Petitioners Aloha Utilities, Inc.; Interphase, Inc.; Phase 1 Homes, Inc.; A.C. & R., Inc.; Tahitian Development, Inc.; Great Cypress Mobile Village, Inc.; and Barrington, Ltd. (Case No. 86- 4705R), filed timely petitions to challenge the validity of the proposed rules, which petitions were consolidated for hearing. Petitions for leave to intervene were granted on behalf of Florida Electric Power Coordinating Group, Inc.; Florida Land Council, Inc.; and Pasco County. These Intervenors' interests were aligned with those of petitioners. Petitions for leave to intervene were a1so granted on behalf of West Coast Regional Water Supply Authority and Concerned Citizens of Citrus County, Inc. These Intervenors' interests were aligned with those of the Department and the ERC. Petitioner, Adam Smith Enterprises, Inc. (Adam Smith), is the owner/developer of a 3,800-acre development of regional impact (DRI) to be known as Trinity Communities. This development, which has been in the acquisition and planning stages for almost 5 years, is currently undergoing DRI review and Adam Smith anticipates that it will receive its development order by September 1987. The Trinity Communities development is located predominately in Pasco County, with just over 250 acres of its lands located in Pinellas County. These properties are predominately open pasture land, and are bordered on the north, east and west by roads and on the south by Hillsborough and Pinellas Counties. As proposed, the Trinity Communities development will include 1100 acres of parks, golf courses, and other open areas. The remaining lands will be developed to accommodate 9500 dwelling units, as well as industrial and commercial uses to service the community, over a 20-year period. At today's market value, the property represents an investment of approximately 28 million dollars. Abutting the Trinity Communities development is the Eldridge-Wilde Well Field. This well field is covered by consumptive use permits issued by the Southwest Florida Water Management District (SWFWMD), and contains major public community drinking water supply wells as defined by the rules at issue in this proceeding. Of these wells, 5 are located within 9.63 feet and 181.5 feet of the proposed development's property line, and 5 are located with 204.72 fee and 297.5 feet of its property line. Petitioner, Alliance for Rational Groundwater Rules (Alliance), is an association of landowners who united to educate themselves about the proposed rules. The proof failed, however, to establish whether Alliance had ever elected any officers or directors, or the magnitude of its membership. Consequently, the proof failed to establish that a substantial number of its members, although not necessarily a majority, were substantially affected by the proposed rules, and that the relief requested by it was of a type appropriate for it to receive on behalf of its members. Petitioner, Aloha Utilities, Inc. (Aloha Utilities), is a utility certified by the Florida Public Service Commission to provide water and sewer service to two separate service areas in southern Pasco County. Currently, Aloha Utilities operates an 850,000 gallon per day (gpd) sewage treatment facility (Aloha Gardens) and a 1.2 million gpd sewage treatment plant (Seven Springs). It also operates 10-11 producing wells, at least 7 of which are permitted by SWFWMD to withdraw at least 100,000 gpd. One of these wells is located approximately 1/4-1/2 mile from an Aloha Utility sewage treatment plant. At least 3 of Aloha Utilities' wells which are permitted to withdraw 100,000 gpd or more, will service or are servicing the Riverside projects and Aloha Gardens Unit Number 12 project discussed infra. Consequently, the proof establishes that Aloha Utilities operates a major public community drinking water supply system as defined by the subject rules. The Aloha Gardens facility is under a Department order to expand its effluent disposal capacity. To satisfy the Department's order and the need for increased disposal capacity, Aloha Utilities commenced condemnation proceedings 8-12 months ago to secure the needed property. While the condemnation proceeding is not yet completed, Aloha Utilities has already expended considerable sums for engineering studies and attorney's fees in its efforts to acquire the property. That property is located approximately 1/2 mile from an existing well that is permitted for an average daily flow of at least 100,000 gpd. The effluent disposal capacity of the Seven Springs facility is also being expanded to meet existing and future demand. In April 1987, Aloha Utilities acquired a 27-28 acre parcel of land immediately adjacent to its existing facility. Upon these lands, Aloha Utilities proposes to construct percolation ponds, a rapid rate land application effluent disposal process. As sited, these ponds would be located 1/2 to 3/4 of a mile from a well permitted for an average daily flow of 100,000 gallons or more. 2/ Petitioners, Interphase, Inc., Phase 1 Homes, Inc., and Tahitian Development, Inc., are corporations with common management which are developing three separate but geographically proximate projects in Pasco County. These projects will be, or are, serviced by Aloha Utilities. Interphase, Inc., is the owner/developer of a 100- acre tract known as Riverside Village Unit Number Four. This property is currently being developed to include 57 acres dedicated to single family use and 43 acres dedicated to multifamily use, and will require the installation of stormwater facilities and underground sewage transportation facilities. Two wells of Aloha Utilities that are permitted for an average daily flow of 100,000 gallons or more are located 1/2 mile and 1/3 mile, respectively, from this development. Interphase, Inc., is also the owner of a 17-acre parcel of vacant land in Pasco County that is zoned commercial. This property is located within 400 feet of Aloha Utilities' Seven Springs sewer treatment plant, and its development will require the installation of underground sewage transportation facilities. Phase 1 Homes, Inc., is the owner/developer of a project known as Riverside Village Townhouses. This project is fully developed and is currently serviced by Aloha Utilities. Located within 1/2 mile of the development are two wells of Aloha Utilities that are permitted for an average daily flow of 100,000 gallons or more. Tahitian Development, Inc., is the owner/developer of a 40-acre tract known as Riverside Villas. Twenty of these acres have been developed and some of the units sold. The remaining 20 acres are currently under development. In developing its remaining 20 acres, Tahitian Development would be required to install stormwater drainage systems and sewage transportation lines to connect with Aloha Utilities. Located within 1/2 mile of the development are wells of Aloha Utilities that are permitted for an average daily flow of 100,000 gallons or more. Tahitian Development also owns a 40-acre parcel in Orange County which it plans to develop for light industrial uses such as an industrial park or an office complex. Such development would result in at least a 40 percent impervious surface, including building tops, within that 40-acre parcel, and require the installation of a sewage transportation system and a stormwater drainage system. Petitioner, A.C. & R., Inc., is the owner/developer of a project in Pasco County known as Aloha Gardens Unit Number 12. The project, which currently is represented by 40-50 developed lots, is located just north of the Aloha Gardens sewage treatment facility, and is serviced by Aloha Utilities. Located within 1/2 mile of the development that is permitted for an average daily flow of 100,000 gallons or more. Petitioner, Great Cypress Mobile Village, Inc., is the owner/developer of a 149 unit mobile home park in Pasco County. Twenty of these units are completed and ready for occupancy. Completion of the project will require the installation of additional sewer lines. Located at the interior of the property is a sewage treatment plant owned by Northern Utilities which services the project, and within 600 feet of the project's boundary there is a well which services that utility. The capacity of that well was not, however, demonstrated in these proceedings, nor was it shown whether such well was part of a community water system. Petitioner, Barrington, Ltd. is a party of unknown capacity, origin, or interest. No evidence was presented on its behalf to demonstrate that its substantial interests would be affected by the proposed rules. Intervenor, Florida Electric Power Coordinating Group, Inc. (FCG), a Florida corporation, is an association of Florida's electric utilities, and is composed of 37 members. The FCG has, as part of its internal organization, an environmental committee whose purpose is to participate in regulatory development and provide mutual member assistance with regard to water related matters. This committee was authorized by the FCG executive committee to participate in the development of the rules at issue in these proceedings, as well as Intervene in these proceedings, to represent and protect the interests of FCG members. The FCG participated in the development of the subject rules by the Department, and was granted full party status by the ERC during that rulemaking process. The members of FCG are owners and operators of electric power generating facilities. These facilities“ include the power plant and ancillary facilities such as substations. Incident to the operation of these facilities are wastewater discharges associated with the production of electricity and stormwater discharges. One of these facilities, Gainesville Regional Utilities' Deer Haven generating station is located across Highway 441 from a major community drinking water supply well. Intervenor, Florida Land Council, Inc., a Florid corporation, is composed of 12 primary members who own large tracts of land in interior Florida, and who are engaged primarily in agribusiness. The Land Council's purpose is to protect the asset value of its members property and, because of that purpose, it is concerned with environmental regulations, growth management regulations, land use regulations, and comprehensive planning. To protect its interests, the Land Council sought leave to intervene in these proceedings. There was, however, no proof that any lands owned by any member of the Land Council were proximate to any major public community drinking water well. Intervenor, Pasco County, is the owner/operator of 25 wastewater treatment plants with capacities In excess of 100,000 gallons per day, and has under construction, or in the design stage, additional facilities with capacities in excess of 100,000 gallons per day. The construction of these new facilities will require the installation of new lines for the collection of wastewater. Pasco County's current, as well as its planned, wastewater treatment facilities will utilities a rapid rate land application effluent disposal process. Within a mile of any wastewater treatment plan operated by Pasco County can be found a major public community drinking water well as defined by the rules at issue in these proceedings. Pasco County also owns and operates wells within the county with permitted withdrawal rates exceeding 100,000 gpd, and participates in the ownership and management of their wells with permitted withdrawal rates exceeding 100,000 gpd through West Coast Regional Water Supply Authority. Pasco County currently has plans to add new production wells in the county with an average daily pumpage in excess of 100,000 gallons per day. Intervenor, West Coast Regional Water Supply Authority (West Coast), is an interlocal government body created in 1974 to develop, store, and supply water to its member governments so that all citizens within the areas served by the authority may be assured an adequate supply of water. Member governments served by WCRWSA are Hillsborough County, Pasco County, and the cities of St. Petersburg and Tampa. Wellfields operated by West Coast are the Starkey Wellfield located in west central Pasco County, which serves the citizens of New Port Richey and Pasco County; the South-Central Hillsborough Regional Wellfield located in south-central Hillsborough County, which serves the citizens of Hillsborough, County; the crossbar Ranch Wellfield located in north-central Pasco County, which principally serves the citizens of Pinellas, County; the Cypress Creek Wellfild located in south-central Pasco County, which serves the citizens of Hillsborough, Pinellas, and western Pasco Counties and the City of St. Petersburg; the Northwest Hillsborough Wellfield located in northwest Hillsborough County, which serves the citizens of Hillsborough County; the Section 21 Wellfield located in northwest Hillsborough County, which serves the citizens of the City of St. Petersburg; and, the Come-Odessa Wellfield located in northwest Hillsborough County, which serves the citizens of the City of St. Petersburg. 3/ Each of the wellfields operated by West Coast are public community water systems, and contain wells permitted to withdraw in excess of 100,000 gallons per day. Collectively, these wellfields serve a total population of 800,000 persons. Intervenor, Concerned Citizens of Citrus County, Inc. (Concerned Citizens), is a not-for-profit corporation, was chartered in 1981, and has 350 members who obtain their drinking water from operational community water supply wells permitted for over 100,000 gallons per day in Inverness, Crystal River, Floral City, Sugar Mill Woods, Beverly Hills, and Rolling Oaks, Citrus County, Florida. The purpose of Concerned Citizens is to protect the natural resources of Citrus County through planning and zoning regulations, and local and state legislation and regulations. It was granted party status by the ERC. General aspects of the proposed rules The proposed rules establish new eligibility criteria for designation of an aquifer segment as Class G-I groundwater. Under the existing rule, the ERC could reclassify an aquifer or portion of an aquifer as G-I within specified boundaries upon a finding that: The aquifer or portion of the aquifer is the only reasonably available source of potable water to a significant segment of the population; and The designated use is attainable, upon consideration of environmental, techological, water quality, institutional, and social and economic factors. Under the proposed revisions, an aquifer segment could be classified by the ERC as G-I provided it was: ...within the zones of protection of a major public community drinking water supply well(s) or wellfield(s) withdrawing water from unconfined aquifers or from leaky confined aquifer... and, upon consideration of: ...environmental, technologial, water quality, institutional (including local land use comprehensive plans), public health, public interest, social and economic factors. As with thee existing rule, the proposed rules require that rulemaking procedures be followed to actually designate a G-I aquifer or aquifer segment at any particular location. The scheme envisioned by the proposed rules is to provide protection to "major community drinking water supply wells", community water systems that are permitted by consumptive use permit to withdraw an average daily amount of 100,000 gallons or greater of groundwater, by preventing contaminants from entering the groundwater within a circumscribed radius of the wells. To accomplish this purpose, the proposed rules establish a methodology whereby two zones of protection would be established around such wells if they were withdrawing waters from unconfined aquifers (an aquifer exposed to the atmosphere) or leaky confined aquifers (an aquifer in which groundwater moves vertically from the water table to the top of the aquifer in five years or less). The first zone (the inner zone) would be based on a fixed radius of 200 feet. The second zone (the outer zone) would be based on a radius, calculated under the rule's methodology, of 5 years groundwater travel time. Within the inner zone, discharges would be prohibited. Within the outer zone, certain developments which discharge to groundwater would be prohibited or restricted. A major emphasis of the proposed rules is to restrict discharges to groundwater within the zones of protection. For example, the rules eliminate the zone of discharge within the zones of protection, and require that new discharges to groundwater of treated domestic effluent meet the groundwater criteria specified in rule 17-3.404, F.A.C., prior to discharge. 4/ Additionally, such wastewater treatment facilities would be required to pre-treat industrial wastewater, provide daily monitoring to insure proper treatment plant process control, and provide 24 hour a day attendance of a wastewater operator under the general supervision of a Class A certified wastewater operator. New underground lines for the transport of domestic raw wastewater would be required to be constructed so that no more than 50 gallons per inch of pipe diameter per mile per day could leak into the ground. Within the 5 year zone of protection, there are no restrictions on stormwater discharges for residential developments. However, discharges from new stormwater facilities serving an area forty acres or larger with a forty percent impervious surface, excluding building tops, are required to monitor the discharge. Construction and operation of new sanitary landfills would be prohibited. As previously noted, to be eligible for reclassification as a G-I aquifer, the aquifer or aquifer segment under consideration must be leaky confined or unconfined. Whether the aquifer is leaky confined or not will be determined through application of the "Vv" and "Tv" formulae contained in the proposed rules, and the zones of protection will be established by reference to the "r" formula contained in the proposed rule. To date, neither the Department nor any party has applied the "Vv" and "Tv" formulae to identify wells hat are withdrawing from unconfined or leaky confined aquifers, nor has anyone delineated any zones of protection by application of the "r" formula. The Department has, however, identified those areas of the state at which it is likely that major community drinking water supply wells are withdrawing from such aquifers. Based on this identification, the Department has contracted with the U.S. Geological Survey (USGS) to "map" the Middle-Gulf region (Pinellas, Hillsborough, Pasco, Hernando, and Citrus Counties) by applying the "Vv" and "Tv" formulas to each well permitted to withdraw 100,000 gpd or more to determine if it is withdrawing from such aquifers and, if so, to delineate proposed zones of protection around such wells or wellfields through application of the "r" formula. The USGS is currently mapping the Middle-Gulf region. Pertinent to this case, the Department has identified all of Pasco and Pinellas Counties, the northern half of Hillsborough County, and most of Orange County including Orlando, as areas within which wells are most probably withdrawing from unconfined or leaky confined aquifers, and for which aquifers the Department will seek G-I reclassification. Under the circumstances, the parties have established, except as heretofore noted, that there is a reasonable likelihood that the proposed rules will substantially affect their interests. The rule challenge The gravamen of the protestant's challenge is that certain definitions and formulae continued within the proposed rule are vague, ambiguous, or not supported by fact or logic. The Protestants' also challenge the adequacy of the economic impact statement. The Protestants concerns are addressed below. Definitions Rule 17-3.021, as amended, would define "Confined Aquifer", "Leaky Confined Aquifer", and "Unconfined Aquifer", as follows: (7) "Confined Aquifer" shall mean an aquifer bounded above and below by impermeable beds or by beds of distinctly lower permeability than that of the aquifer itself. For the purpose of G-I, it shall mean an aquifer confined from above by a formation(s) which restricts the movement of groundwater vertically from the water table to the top of the confined aquifer for a period of more than five years * * * (16) "Leaky Confined Aquifer" shall mean, for the purposes of G-I, an aquifer confined from above by a formation(s) which allows groundwater to move vertically from the water table to the top of the leaky confined aquifer in five years or less. * * * (34) "Unconfined Aquifer" shall mean an aquifer other than a confined aquifer. For the purpose of G-I it shall mean an aquifer other than a confined or leaky confined aquifer. 5/ Protestants contend that the definition of "confined aquifer" and "leaky confined aquifer" are vague and meaningless because they are "defined by use of the phrase being defined". Accordingly, they conclude that proposed rule 17-3.021(7) and (16) must fall because they are without thought and reason, irrational and vague. Protestants further contend that since the definitions of "confined aquifer" and "leaky confined aquifer" are flawed, proposed rule 17-3.021(34), which defines unconfined aquifer, must also fall. The Protestants' contentions are not persuasive. If one were restricted to the definition of "confined", "leaky confined" and "unconfined" aquifer to glean their meaning, the rules might be considered vague. However, these definitions are, as they specifically provide, "for the purpose of G-I" and they must be read in context with the balance of the rule. When so read, it is apparent that "top of the confined aquifer" or "top of the leaky confined aquifer" is the top of the aquifer that has been calculated as confined or leaky through manipulation of the "Vv" and "Tv" formulae. Under the circumstances, the subject definitions are not vague, arbitrary or capricious. Proposed rule 17-3.021(20) provides: "New Discharge" shall mean, for the purpose of G-I, a discharge from a new installation; or a discharge from an existing permitted installation that has been altered, after the effective date of G-I reclassification, either chemically, biologically, or physically or that has a 211 22 different point of discharge, and which causes a significantly different impact on groundwater. Protestants contend that the definition of "new discharge" is vague, arbitrary and capricious because existing installations would be classified as new dischargers, and subject to the more stringent requirements of the proposed rules, whether the alteration of their discharge significantly improved or adversely affected groundwater. As proposed, the rule would so define new discharge, and it is not vague or ambiguous. The proof demonstrated, however, that the Department only proposed to define, as new dischargers, those existing installations whose altered discharge caused a significantly different negative impact on groundwater. The Department conceded this point, and offered no proof to demonstrate the reasonableness of classifying existing installations that improve their discharge as new discharges. Under the circumstances, proposed rule 17-3.021(20) is arbitrary and capricious. Proposed rule 17-3.021(35) defines "underground storage facility or underground transportation facility as follows: "Underground storage facility" or "underground transportation facility" shall mean that 10 percent or more of the facility is buried below the ground surface. This proposed rule is, however, only pertinent to proposed rule 17-4.245, which addresses the permitting and monitoring requirements for installations discharging to groundwater. Pertinent to this case, proposed rules 17-4.245(3)(c) and (d) establish construction requirements for the following facilities within the five year zone of protection: Underground storage facilities. An underground storage facility includes any enclosed structure, container, tank or other enclosed stationary devices used for storage or containment of pollutants as defined in Section 376.301(12), F.S. or any contaminant as defined in Sect ion 403.031(1), F.S. Nothing in this paragraph is intended to include septic tanks, enclosed transformers or other similarly enclosed underground facilities.... Underground facilities for transportation of wastewater or pollutants as defined in Section 376.301(12), F.S. or any contaminant as defined in Section 403.031(1), F.S. excluding natural and liquified petroleum gas. Underground facilities for transportation of waste effluent or pollutants or contaminants include piping, sewer lines, and ducts or other conveyances to transport pollutants as defined in Section 376.301(12), F.S., and contaminants as defined in Section 403.031(1), F.S.... Protestants contend that the proposed rules are contained in two separate chapters of the Florida Administrative Code with no bridge between them. Under such circumstances, they contend the rules fail to adequately define either facility in either chapter, and that the rules are therefore vague, arbitrary and capricious. Protestants' contention is not persuasive. Proposed rule 17-3.021(35) defines "underground storage facility" or "underground transportation facility" as meaning that 10 percent or more of the facility is buried below the ground surface. Proposed rules 17-4.245(3)(c) and (d) address what type of facility is included within the terms "underground storage facility" and "underground transportation facility." Notably, Rule 17-4.021, F.A.C., provides: Definitions contained in other chapters of the Department's rules may be utilized to clarify the meaning of terms used herein unless such terms are defined in Section 17-4.020, F.A.C., or transfer of such definition would defeat the purpose or alter the intended effect of the provisions of this chapter. Under the circumstances of this case, the rules are appropriately read together. So read, the construction requirements for "underground storage facilities" and "underground transportation facilities", as required by proposed rule 17-4.245(3)(c) and (d), are applicable if 10 percent or more of the containment device used for the storage or transport of pollutants is buried below the ground surface, and the proposed rules are not vague, arbitrary or capricious. Proposed rule 17-3.021(39) defines "Zones of Protection" as follows: "Zones of Protection" shall mean two concentric areas around a major public community drinking water supply well(s) or wellfield(s) drawing from a G-I aquifer whose boundaries are determined based on radii from the well or wellfields of 200 feet and five years groundwater travel time respectively. Protestants contend that the definition of "Zones of Protection" is vague, arbitrary and capricious because nowhere within the proposed rules is "G-I aquifer" defined. protestants' contention is not persuasive. Proposed rules 17-3.403(1) and (7) adequately explain what is meant by "G-I aquifer", and proposed rule 17-3.403(8) sets forth the metodology for calculating the zones of protection. The definition of "Zones of Protection", set forth in proposed rule 17-3.02(39) is not vague, arbitrary or capricious, because of any failure to define "G-I aquifer." Mapping Priorities When considering whether to reclassify an aquifer or aquifer segment as G-I, proposed rule 17-3.403(5)(e)2 requires that the aquifer or aquifer segment: Be specifically mapped and delineated by the Department on a detailed map of a scale which would clearly depict the applicable zones of protection. Maps will be grouped and submitted for reclassification generally on a regional basis. Mapping priorities shall follow the Commission directive of February 27, 1985. The remaining areas of the state will be mapped by the Department as time and resources allow. The mapping priority directive referred to in purposed Rule 17-3.403(5)(e)2a, was an oral directive of the ERC that Pinellas, Hillsborough, Pasco, Hernando, and Citrus Counties, referred to as the Middle-Gulf region, be mapped first. That directive has not been reduced to writing and, consequently, a copy thereof has never been available for inspection. Categories of G-I Aquifers and determination of zones and protection Proposed rules 17-3.403(7) and (8), respectively, set forth the eligibility criteria for reclassification as G-I aquifers and the methodology whereby the boundaries of the zones of protection are established. To this end, proposed rule 17- 3.403 (7) provides: Categories of G-I aquifers. For aquifers or aquifer segments to be eligible for potential reclassification as G-I aquifers one of the following criteria must be met: That the aquifer or aquifer segment under consideration be within the zones of protection of a major public community drinking water supply well(s) or wellfield(s) withdrawing water from unconfined aquifers or from leaky confined aquifers.... (b)(. reserved.) Proposed rule 17-3.403(8) provides: Determination of the boundaries of the zones of protection. (a) The boundaries of the zones of protection shall be based on radii from the wellhead or wellfield (if closely clustered, so that the five year zones of protection are overlapping) measured in 200 feet for the inner zone and five years for the outer zone. The radius of the outer zone shall be determined using the following formula: percent.x4n where Q = permitted average daily flow from the well (measured in cubic feet per day); T = five years (1825 days); 3.14 = mathematical constant pi; r = radius (feet); h distance from the top of the producing aquifer to the bottom of the hole (feet); n effective porosity. Protestants contend that the foregoing provisions of the proposed rules are vague, arbitrary and capricious because the wells that would be subject to and around which a zone of protection would be established cannot be identified or, if identifiable, do not comport with the Department's intent or interpretation. Protestant's concerns are not without merit. To be eligible for consideration as a G-I aquifer, proposed rule 17-3.403(7) requires that the aquifer segment be within the zones of protection of a "major public community drinking water supply well(s) or wellfield(s). Proposed rule 17- 3.021(17) provides that "major public community drinking water supply" shall mean: those community water systems as defined in Section 17-22.103(5), F.A.C., that are permitted by consumptive use permit to withdraw an average daily amount of 100,000 gallons or greater of groundwater. Community water system" is defined by Section 17-22.103(5) as: a public water system which serves at least IS service connections used by year- round residents or regularly serves at least 25 year-round residents. Facially then, the proposed G-I rules are applicable to "community water system" that hold a consumptive use permit to withdraw an average daily amount of 100,000 gallons or greater of groundwater", and which are withdrawing from unconfined or leaky confined aquifers. Notably, the rule does not ascribe the 100,000 gpd permitted rate of withdrawal to each well, but to a permit held by a community water system. Accordingly, under the literal reading of the proposed rules, each well covered by the consumptive use permit would be subject to a zone of protection regardless of its individually permitted rate, so long as it was withdrawing from an unconfined or leaky confined aquifer. While there may be legitimate reasons to designate zones of protection around wells, regardless of their individual permitted rate when the community water system holds a consumptive use permit to withdraw groundwater at a 100,000 gpd average, the Department advanced none. To the contrary, the Department contended that zones of protection were only to be established around a well that was permitted to withdraw an average daily amount of 100,000 gallons or greater. Under the circumstances, the provisions of proposed rules 17-3.403(7) and (8) are arbitrary and capricious. 6/ The "Vv" and "Tv" formulae Proposed rule 17-3.403(7)(a) prescribes the methodology where by vertical travel time will be calculated, and therefore whether a particular aquifer will be classified as confined or leaky confined. To this end, the proposed rule provides: ... Determination of vertical travel time for leaky confinement will be by application of the following formulae: Vv= Kv h/nl where: Vv= vertical velocity (feet/day). Kv= vertical hydraulic conductivities of the surficial aquifer and underlying confining bed materials (feet/day). h= head difference between water table in the surficial aquifer and the potentiometric surface of the producing aquifer (feet). n = effective porosities of the surficial aquifer and underlying confining bed materials. 1 = distance from the water table to the top of the producing aquifer (feet). Tv= 1/Vv 365 where: Tv= vertical travel time (years). 1 = same as above. Vv= same as above. The "Vv" formula and the "Tv" formula are valid formulae, and are commonly used by hydrogeologists to calculate the vertical velocity and vertical travel time of groundwater. As proposed, the formulae present a reasonable methodology for computing the vertical velocity and vertical travel time of groundwater if the well is producing from one aquifer. The formulae cannot, however, as hereafter discussed, be reasonably applied if tee well is producing from multiple aquifers or if another aquifer intervenes between the surf aquifer and the producing aquifer. While not the most prevalent occurrence in the state wells in the Middle-Gulf regions often do penetrate more than one aquifer and do produce water from more than one aquifer. The rule defines the "Kv" element of the "Vv" formula as the "vertical hydraulic conductivities of the surficial aquifer and underlying confining bed materials (feet/day)." This is a reasonable definition and will produce a scientifically valid result provided the well does not penetrate multiple aquifers. Should the well penetrate multiple aquifers, the values derived for vertical velocity ("Vv") and vertical travel time ("Tv") will not be accurate since the hydraulic conductivities of the intervening aquifers are not, by the rule definition, factored into the calculation of "Kv". Under such circumstances, whether an aquifer was classified as confined or leaky confined would not be determined by a valid "Kv" but, rather, by chance. Protestants also contend that the rule is vague, arbitrary and capricious because it does not specify the methodology by which "Kv" is to be calculated. There are, however, methodologies commonly accepted by hydrogeologists to derive a scientifically valid "Kv", whether the well penetrates one or more than one aquifer. The infirmity of the rule is not its failure to specify a methodology, but its to include data necessary to produce a meaningful result. The rule defines the "n" element of the Vv formula as "effective porosities of the surficial aquifer and underlying confining bed materials." This is a reasonable definition and will, though the application of commonly accepted methodologies, produce a scientifically valid result. 7/ The rule defines the element "Delta h" in the Vv formula as the "head difference between the water table in the surficial aquifer and the potentiometric surface of the producing aquifer (feet)", and defines the element "1" as the "distance from the water table to the top of the producing aquifer (feet)." These elements are utilized in the formula to calculate a gradient, and must be measured using the same points of reference to yield a meaningful result. To this end, the proof demonstrates that the definitions are reasonable since they utilize the same points of reference, and that when applied in accordance with accepted hydrogeologic practice will produce a scientifically valid gradient. (See Department exhibit 7). Protestants contend, however, that the definitions of "Delta h" and "1" are vague, arbitrary and capricious because they do not specify when the measurements should be made, do not define "producing aquifer", and do not define "top" of the producing aquifer. For the reasons that follow, Protestants' contentions are found to be without merit. While a water table is a dynamic surface subject to frequent, if not daily fluctuation, resulting from variations in rainfall and the demands of man, and while a potentiometric surface is likewise a dynamic elevation that changes with time and season, protestants failed to demonstrate that there was any particular date or dates that would be most appropriate to make such calculations. Rather, protestants contended that unless such measurements were taken contemporaneously, any derivation of "Delta h" and "1" would not be reliable. While such might be the case, the rule does not mandate a divergence from the accepted hydrogeologic practice of taking such measurements contemporaneously. While the rule does not define "producing aquifer," it is an accepted hydrogeologic term and not subject to confusion. The only confusion in this case was the introduction of the issue of multiple producing aquifers and protestants' contentions that this rendered the Vv formula vague, arbitrary and capricious since it did not factor in such a consideration. Protestants' contention does not, however render the term "producing aquifer" vague. The sole purpose of the Vv and Tv formulas are to determine whether the aquifer from which water is being produced is leaky confined. To establish this, the formulae are applied to calculate whether the vertical travel time is five years or less. If a well is withdrawing water from more than one aquifer it may be necessary to calculate Vv and Tv for each aquifer to discern which of those aquifers are within the 5 year vertical travel time threshold, and therefore subject to G-I reclassification. To this end the rule is not vague, and would adequately address the multiple producing aquifer scenario. While the rule doe not define "top" of the producing aquifer, this term is an accepted hydrogeologic term and is not subject to confusion. In application there may, however, be disagreements among hydrogeologists as to where this line should be established because geologic boundaries are fine gradations, and not sharp lines which would lend themselves to the designation of precise points of reference. This is not, however, a failure of the rule, but a peculiarity of nature, and is subject to scientific proof. Notably, protestants did not demonstrate that "top" of the producing aquifer could be defined with reference to a fixed point. Under the circumstances, "top" of the producing aquifer is a reasonable reference point. Zones of Protection Proposed rule 17-3.408 provides: Determination of the boundaries of the zones of protection shall be based on radii from the wellhead or wellfield (if closely clustered, so that the five year zones of protection are overlapping), measured in 200 feet for the inner zone and five years for the outer zone. The radius of the outer zone shall be determined using the following formula: QT 2 3.14 hn where Q = permitted average daily flow from the well (measured in cubic feet per day); T = five years (1825 days); 3.14 = mathematical constant pi; r = radius (feet); h distance from the top of the producing aquifer to the bottom of the hole (feet); n effective porosity. For the purpose of this calculation the following effective porosities for representative Florida aquifers will be used: Floridan .05 Sand and Gravel .2 Biscayne .15 Surficial .2 The Department shall use more site-specific values for "Q", "n", or "h" when available for designation of the zones of protection by the Commission. Proposed rule 17-3.403(8)(a) provides that the inner zone of protection shall be based on a radius from the wellhead or wellfilled, as appropriate, of 200 feet. While denoted as an arbitrary radius, the 200 foot radius was not derived without fact or reason. Rather, it was a result reached at the workshops after consideration of existing regulations that establish buffer zones of 200-500 feet between a public water supply and a pollution source. Conceptually, the 200 foot zone was adopted because it is so small and so close to the well that it essentially constituted a zone of protection of the well head by preventing contaminants from moving into the well opening directly or the annular space around the well casing. Accordingly, the 200 foot zone has a reasonable basis. Its actual delineation is, however, as flawed as that of the five year zone discussed infra. The "r" formula defines the outer zone of protection, and calculates it as a radius equal to the distance groundwater would flow in five years toward the well. The basis for the "r" formula is the formula used to calculate the volume of a cylinder. That formula, V = pi r2 h, yields a simple volumetric measurement without any consideration of velocity. By the introduction of the element "n" (effective porosity), the "r" formula introduces a velocity component which would, properly applied, produce a radius equal to the distance groundwater would flow in 5 years. 8/ As proposed, however, the rule would establish a meaningless line around a well. Under the proposed rule, the Department would calculate "r" based on specified effective porosities ("n") for the Floridan, Biscayne, sand and gravel, and surficial aquifers absent site specific data. The Department is, however, under no requirement to generate site specific data, and currently is mapping the Middle-Gulf region based on the values established by the rule. Absent chance, the areas mapped will bear no relationship to groundwater travel time. The lithology of an aquifer and the surrounding layers is varied and diverse, and directly affects the direction and velocity of groundwater flow. By assuming "n", the "r" formula ignores the varied lithology, and produces a radius that would seldom, if ever, represent the actual rate at which groundwater moved toward any well. 9/ The zone thus circumscribed is an illusion since the groundwaters and contaminants within it may move at a rate significantly greater than or less than 5 years travel time. Notably, the Department has conducted no study or test to validate its proposed methodology. The element "Q" in the "r" formula is defined as the "permitted average daily flow from the well (measured in cubic feet per day)." Protestants contend that such definition is vague, arbitrary and capricious because the Department proposes to rely on consumptive use permits issued by the various water management districts to derive "Q", and such permits would not necessarily provide the requisite data. While the proof demonstrates that "Q" cannot always be derived by reference to a consumptive use permit, this does not render the definition of "Q" vague, arbitrary, or capricious. Rather, "Q" is a factual matter, and subject to a factual derivation through reference to consumptive use permits and other site specific data. The element "T" in the "r" formula is defined as "five years (1825) days." By its inclusion, the Department proposes to circumscribe the outer zone of protection at five years groundwater travel time. The concept of a zone of protection is premised on the theory that restrictions should be placed on discharges to groundwater within an area proximate to a public water supply for public health and safety concerns. The five year standard, which is found throughout the rules, was based on the theory that if a contaminant was introduced to groundwater a period of time should be allowed to discover the contamination and remove it or make provision for an alternate water supply before the contaminant reached the public water supply. The five years proposed by the rule was not, however, founded on fact or reason. During the workshops that under scored the proposed rule, the time factor was the subject of considerable discussion and ranged from less than two years to greater than ten years. Based on its own in-house search, the Department initially proposed a 10-year standard. That search revealed that it took 10 to 15 years between the time a contaminant was discovered and cleanup could commence, and between seven and eight years between the time a contaminant was introduced into groundwater and it discovery. Notwithstanding the results of its own in-house search, the Department, in the face of debate, elected to "compromise" and propose a five-year standard. Such standard was not the result of any study to assess its validity, and no data, reports or other research were utilized to derive it. In sum, the five- year standard was simply a "compromise", and was not supported by fact or reason. As previously noted, the lithology of an aquifer and the surrounding layers is varied and diverse, and directly affects the direction and velocity of groundwater flow. The effective porosity of those materials in the Floridan aquifer canvary from to .4 at various places. The rule proposes, however, to use an effective porosity for the Floridan aquifer of .05 to establish "r." The value ascribed to "n" is a critical value, as previously discussed in paragraph 65. It also has a profound impact on the aeral extent of the zone of protection. For example, assuming "Q" equals 3 million gallons and "h" equals 600 feet, an "n" of .02 would result in a radius of 4,406 feet or 1,400 acres, an "n" of .03 would result in a radius of 3,578 fee or 934 acres, an "n" of .05 would result in a radius of 2,787 feet or 560 acres, and an "n" of .2 would result in a radius of 1,393 feet or 140 acres. While an effective porosity of 05 for the Floridan aquifer may be a reasonable value at a particular site, it is not a value that can be reasonably ascribed to the Floridan in general. For this reason, and the reasons heretofore set forth, the rule's specification of an effective porosity of .05 for the Floridan aquifer is unreasonable. Proposed rule 17-3.403(8)(a), sets forth the manner in which the zones of protection will be drawn around a well or wellfield. That proposed rule provides: For well fields whose individual zones of protection overlap due to clustering, a single zone of protection will be calculated in the following manner: Using the permitted average daily withdrawal rate of the wells with overlapping zones of protection, the area on the surface overlying the aquifer equal to the sum of the areas of the five year zones of protection of the individual wells, shall be used to define the area which encircles the perimeter of the wellfield. In cases where a zone of protection of a single well protrudues beyond the calculated perimeter or when the configuration of the wellfield is irregular, the perimeter will be shaped to accommodate the configuration. The surface are encircling the perimeter of the wellfield shall not exceed the total surface area of the overlapping zones of protection for individual wells. In the case of unclustered wells within a wellfield, individual zones of protection around each well will be calculated. As previously discussed, the proposed G-I rules are facially applicable to "community water systems" that hold a " consumptive use permit to withdraw an average daily amount of 100,000 gallons or greater of groundwater," and which are withdrawing from unconfined or leaky confined aquifers. Under proposed rule 1773.403(8)(a), the five-year zone of protection would be drawn around each of these wells. If the wells are located so close to each other that the five year zones of protection are overlapping (clustered), those wells would be deemed a wellfield by rule definition and a five year zone of protection would be established around it. The proposed rule's description at how to determine and configure a zone of protection around a wellfield is however, vague and ambiguous. While the rule provides that when the configuration of the wellfield is "irregular", the perimeter will be shaped to accommodate the configuration", it sets forth no standard by which the perimeter will be established. Effectively, the rule vests unbridled discretion in the Department to establish the configuration of a wellfield. The Economic Impact Statements Pursuant to the mandate of Section 120.54(2), Florida Statutes, the Department prepared economic impact statements for the proposed revisions to Chapters 17-3 and 17-4, Florida Administrative Code. The economic impact statements were prepared by Dr. Elizabeth Field, the Department's chief economist, an expert in economics. Dr. Field developed the economic impact statements by examining the proposed rules and discussing their potential impact with Department staff. Additionally, Dr. Field attended the public workshops that were held concerning the proposed rules, and solicited input from those participants. The Florida Home Builders Association and the Florida Petroleum Council submitted data for her consideration, but none of the petitioners, although some were represented at such workshops, responded to her requests for information. The economic impact statements prepared by Dr. Field to address the proposed rules conclude that, apart from the cost to the Department for mapping, there are no direct costs or economic benefits occasioned by the rules. Dr. Field's conclusion was premised on the fact that the proposed rules only establish the eligibility criteria for reclassification of an aquifer to G-I and the standards for discharge to that aquifer. Under the proposed rules, further rulemaking would be required to actually designate a specific aquifer as G-I, and delineate a zone of protection. 10/ Pertinent to this case, proposed rule 17-3.403, provides: The intent of establishing G-I eligibility criteria is to determine which aquifer or aquifer segments qualify for potential reclassification to G-I aquifers. Adoption of these criteria does not imply nor does it designate aquifer or aquifer segments as G-I. Such designation can only be achieved through reclassification by the Commission after eligible segments have been mapped by the Department. (6)... the following procedure shall be used to designate Class G-I aquifers: Rulemaking procedures pursuant to Chapter 17-102, F.A.C., shall be followed; Fact-finding workshops shall be held in the affected area; All local, county, or municipal governments, water management districts, state legislators, regional water supply authorities, and regional planning councils whose districts or jurisdictions include all or part of a proposed G-I aquifer shall be notified in writing by the Department at least 60 days prior to the workshop; A prominent public notice shall be placed in an appropriate newspaper(s) of general circulation in the area of the proposed G-I aquifer at least 60 days prior to the workshop. The notice shall contain a geographic location map indicating the area of the zones of protection and a general description of the impact of reclassification on present and future discharges to groundwater. A notice of a G-I workshop shall be published in the Florida Administrative Weekly prior to the workshop(s). At least 180 days prior to the Commission meeting during which a particular zone of protection will be considered for reclassification, the Department will provide notice in the Florida Administrative Weekly and appropriate newspaper(s) of the intended date of the Commission meeting. The Commission may reclassify an aquifer or aquifer segment as a G-I aquifer within specified boundaries upon consideration of environmental, technological, water quality, institutional (including local land use comprehensive plans), public health, public interest, social and economic factors. When considering a reclassification an aquifer or aquifer segment shall: ....(Be within the zones of protection of a major public community drinking water supply well(s) or wellfield(s) withdrawing water from unconfined or from leaky confined aquifers.).... Be specifically mapped and delineated by the Department on a detailed map of a scale which would clearly depict the applicable zones or protection. Maps will be grouped and submitted for reclassification generally on a regional basis. Mapping priorities shall follow the Commission directive of February 27, 1985. The remaining areas of the state will be mapped by the Department as time and resources allow. (Emphasis added). While, if and when applied, the proposed rules would certainly have a direct economic impact as a consequence of a reclassification of an aquifer to G-I and the designation of a zone of protection, as well as the standards for discharge to that aquifer, such costs at this stage are not direct or are not quantifiable. When mapped and the zones of protection identified, a reasonable assessment of the economic cost or benefit of the proposal can be addressed. This is specifically reserved by the Commission whereby its decision to reclassify an aquifer as G-I will, pursuant to proposed rule 17-3.403(6) follow rule making procedures and be based on consideration of economic factors. This result obtains whether the affected party is a small business or some other entity. In reaching the conclusion that the economic costs or benefits of the proposed rules, apart from the cost of mapping, do not at this stage have a direct or quantifiable impact, I have not overlooked the "announcement effect" that is occasioned by the announcement of a governmental agency to regulate an activity. Such announcement certainly has a chilling effect on the community that may reasonably be impacted. The economic impact is, however, speculative or not quantifiable in the instant case. Further, the proof does not demonstrate any incorrectness or unfairness in the proposed adoption of the rules occasioned by the EIS prepared in this case.

USC (2) 5 U.S.C 5535 U.S.C 706 Florida Laws (13) 120.52120.53120.54120.545120.56120.57120.68376.301403.031403.061403.803403.804403.805
# 3
AHMAD THALJI vs SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT AND H.B.J. INVESTMENTS, 99-001919 (1999)
Division of Administrative Hearings, Florida Filed:Tampa, Florida Apr. 28, 1999 Number: 99-001919 Latest Update: Jun. 18, 2004

The Issue The issue is whether Respondent HBJ Investments, Inc. is entitled to an environmental resource permit to facilitate the construction of the Betty Jones Spa on property adjacent to property owned by Petitioner.

Findings Of Fact On November 17, 1998, Respondent HBJ Investments, Inc. (Applicant) filed an application (Application) with the South Florida Water Management District (District) for an environmental resource permit (ERP). The Application is for a Standard General (minor systems) ERP. The Application states that the proposed surface water management system is to serve a 11,564 square foot health spa with associated infrastructure improvements, such as parking, utilities, landscaping, and a stormwater detention facility. Section H of the Application responds to form questions that are intended to determine whether an application meets the requirements of a standard general ERP for a minor surface water system. Among the threshold requirements is that the proposed discharges from the site "will meet State water quality standards, and the surface water management system will meet the applicable technical criteria for stormwater management in the Basis of Review." Another threshold requirement is that the proposed activities will not cause significant adverse impacts individually or cumulatively. The Application states that the water quality treatment system will be on-line detention with effluent filtration. The Application and related documents describe the system in greater detail. The system consists of drains, inlets, a swale, an underground vault to provide effluent filtration through a sand filter and perforated pipe, an internal oil and grease skimmer, a control box, and a 15-inch diameter reinforced concrete pipe providing outfall from the vault. By Notice of Final Agency Action for Approval dated February 4, 1999, the District proposed the issuance of a "Standard General for Minor Surface Water Management Systems" ERP for the construction, operation, and maintenance of the proposed system (Permit). Permit Specific Condition 2 requires: "The discharges from this system shall meet state water quality standards as set forth in Chapter 62-302 and Rule 62-4.242, F.A.C., for class waters equivalent to the receiving waters." Permit Specific Condition 8 requires, for vault systems, that the system become dry within 72 hours after a rainfall event. Permit Specific Condition 9 requires the operation and maintenance entity to submit inspection reports for inspections to be performed every 18 months. Permit Specific Condition 10 requires a water quality monitoring program for systems, such as the proposed system, using an internal oil and grease skimmer. This condition obligates HBJ to take three samples during each of the first two annual rainy seasons following the commencement of operation of the system. The monitoring must take place immediately after rainfall events of sufficient magnitude to cause a discharge from the outfall structure. If the discharged water does not meet water quality standards for oil and grease, as established by Rule 62.302.510(3)(k), Florida Administrative Code, then the permittee must alter the system to attain compliance for this water quality parameter. The subject parcel is bounded by Fourth Avenue South on the north, First Street South on the east, Second Street South on the west, and an unnamed alley on the south. This site is just south of Al Lang Field. In its present state, the parcel is nearly entirely pervious surface. Some of the stormwater flowing onto the parcel percolates into the soils, and the remainder flows into City of Saint Petersburg stormwater sewers, from which it is carried about two city blocks to Tampa Bay, where it is discharged. The parcel was formerly used for single-family residential housing, but is now mostly cleared. The runoff from the site presently carries mostly sediments. After the proposed construction, 79 percent of the parcel would consist of impervious surface. Although small areas of the developed parcel might remain vegetated, and thus add nutrients into the runoff, the primary change in the runoff will consist of the addition of automobile-related contaminants, including, but not limited to, oil and grease. HBJ's engineer designed the proposed surface water management system to treat the first one-half inch of stormwater runoff. The engineer's report notes, in a letter dated November 13, 1998, that siltation in the vault reduces storage volume, so it is "required that cleaning be done every six (6) months." The report suggests the removal of grass clippings from the parking area, so that they are not transported to the retention vault. The report suggests that the underdrain system should be backflushed periodically, and the control structure should be checked monthly and all debris cleared. In general, the system would collect runoff from the roof downspouts and parking area. The system would provide treatment of the first 1/2 inch of runoff by capturing it in the vault, where it would filter through a layer of several cubic feet of sand before entering a perforated pipe leading to the City stormwater sewer. Runoff from rainfall in excess of the first 1/2 inch would receive little, if any, treatment. It is implicit that the first 1/2 inch of rainfall contains the first flush of contaminants from impervious surfaces. Nothing in the record specifies the efficacy of treatment provided by this standard, although it obviously is less than 100 percent efficient because of the higher standard imposed upon systems discharging into Outstanding Florida Waters (OFW). However, a pre- and post-development analysis of the runoff from the subject parcel would reveal an unknown additional volume of runoff from the developed site, due to the replacement of pervious surface with impervious surface. It is unclear whether the developed site would generate a reduced volume of sediments in this increased volume of runoff. Although little vegetated surface would exist post-development, the record does not reveal the extent to which the pre-development pervious area fails to capture the sediments prior to their entering the City stormwater system. More problematic are the automobile-related contaminants, such as oil and grease, that will be introduced into the runoff by the developed site. Presumably, the runoff from the undeveloped site contains few, if any, such contaminants. Thus, any automobile-related contaminants discharged from the surface water management system would likely be an increase from the amount of such contaminants presently discharged from the site. The runoff from the developed site would enter the City of Saint Petersburg stormwater sewer system and would be released in the nearby Tampa Bay. The record does not disclose the stormwater sewer line transporting the discharge, nor the outfall of the line into Tampa Bay. By stipulation, the parties agreed that Tampa Bay is an OFW and that discharge from the developed site would enter the City of Saint Petersburg stormwater sewer system. Tampa Bay is classified as Class II waters, which are approved for shellfish harvesting. The record does not disclose the point of discharge of the City stormwater line that would receive discharge from the developed site. However, the proximity of the site to Tampa Bay strongly suggests that the outfall would be in Tampa Bay, and it is only slightly less probable that the outfall would be at a point in the bay in the immediate vicinity of the site. The record suggests that the waters of Tampa Bay likely to receive the discharge from the site are impaired. For example, water quality conditions mandated the closing of "Lower Tampa Bay" to shellfish harvesting, for an unstated period of time, effective at sunset on July 5, 1999. Also, the Department of Environmental Protection listed two bayous in the immediate vicinity of the site as noncompliant with federal water quality standards due to excessive coliform bacteria counts and nutrients and insufficient levels of dissolved oxygen. The Basis of Review (BOR) is a document adopted by the District. It contains specific "criteria" for permitting. However, as BOR Section 1.3 explains, the goal of these criteria is to meet District water resource objectives, and the criteria are "flexible." Alternative methods of meeting "overall objectives" may be acceptable, depending upon the "magnitude of specific or cumulative impacts." The criteria, which are flexible, are the means by which the District assures that it meets its objectives, which are not flexible. BOR Section 3.1.0 recognizes that "a wide array of biological, physical and chemical factors affect the functioning of any wetland or other surface water community. Maintenance of water quality standards in applicable wetlands and other surface waters is critical to their ability to provide many of these functions." BOR Section 3.1.0 elaborates: "It is the intent of the Governing Board [of the District] that the criteria in subsections 3.2 through 3.2.8 be implemented in a manner which achieves a programmatic goal and a project permitting goal of no net loss of wetlands or other surface water functions." BOR Section 3.1.1 requires that an applicant provide "reasonable assurance" of several things. BOR Section 3.1.1(a) requires that "a regulated activity will not adversely impact the value of functions provided to fish, wildlife and listed species, including aquatic and wetland dependent species, by wetlands and other surface waters and other water related resources of the District. (paragraph 40D-4.301(1)(d), F.A.C.) (see subsection 3.2.2)." BOR Section 3.1.1(c) provides that: a regulated activity will not adversely affect the quality of receiving waters such that the water quality standards set forth in Chapters 62-3, 62-4, 62-302, 62-520, 62-522 and 62-550, F.A.C., including any antidegradation provisions of Sections 62-4.242(1)(a) and (b), 62-4.242(2) and (3), and 62-302.300 and any special standards for Outstanding Florida Waters . . . set forth in sections 62-4.242(2) and (3), F.A.C., will be violated (paragraph 40D-4.301(1)(e), F.A.C.). BOR Section 3.1.1(d) provides that "a regulated activity . . . located in close proximity to Class II waters . . . will comply with the additional criteria in subsection 3.2.5 (paragraph 40D-4.302(1)(c), F.A.C.)." BOR Section 3.1.l(f) provides that "a regulated activity will not cause adverse secondary impacts to the water resources (paragraph 40D-4.301(1)(f), F.A.C.) (see subsection 3.2.7)." BOR Section 3.1.1(g) provides that "a regulated activity will not cause adverse cumulative impacts upon wetlands and other surface waters . . . (paragraph 40D-4.302(1)(b), F.A.C.) (see subsection 3.2.8)." BOR Section 3.2.4 provides that an applicant must provide "reasonable assurance that the regulated activity will not violate water quality standards in areas where water quality standards apply. . . . The following requirements are in addition to the water quality requirements found in Chapter 5." BOR Section 3.2.4.2(c) provides that the applicant must address the long-term water quality impacts of a proposed system, including "prevention of any discharge or release of pollutants from the system that will cause water quality standards to be violated." BOR Section 3.2.5 provides: The special value and importance of shellfish harvesting waters to Florida's economy as existing or potential sites of commercial and recreational shellfish harvesting and as a nursery area for fish and shell fish is recognized by the District. In accordance with section 3.1.1.(d), the District shall: (b) deny a permit for a regulated activity in any class of waters where the location of the system is adjacent or in close proximity to Class II waters, unless the applicant submits a plan or proposes a procedure which demonstrates that the regulated activity will not have a negative effect on the Class II waters and will not result in violations of water quality standards in the Class II waters. BOR Section 3.2.7 provides that an applicant must provide "reasonable assurance" that "a regulated activity will not cause adverse secondary impacts to the water resource" as described in this section. However, this section explicitly disregards negligible or remotely related secondary impacts. BOR Section 3.2.8 provides that an applicant must provide "reasonable assurance" that "a regulated activity will not cause unacceptable cumulative impacts upon wetlands and other surface waters " BOR Section 4.2 limits off-site discharge "to amounts which will not cause adverse off-site impacts." For a proposed activity within an open drainage basin, as is the subject proposed activity, the allowable discharge is (presumably the greatest of) any amount determined in previous District permits, the legally allowable discharge at the time of the permit application, or historic discharge. Historic discharge is the peak rate at which runoff leaves a parcel of land by gravity under existing site conditions. BOR Section 5.1 requires that proposed discharges meet applicable state water quality standards. This chapter of the BOR requires that proposed systems satisfy certain quantitative criteria, depending on the type of water treatment system. However, BOR Section 5.1 warns: in certain instances a design meeting those standards may not result in compliance with the state water quality standards referenced above. Unless an applicant has provided reasonable assurance that a design will not cause or contribute to a violation of state water quality standards, the District may apply more stringent design and performance standards than are otherwise required by this chapter. Projects designed to the criteria found in this section shall be presumed to provide reasonable assurance of compliance with the state water quality standards referenced above. . . . BOR Section 5.2 sets quantitative criteria for various types of surface water management systems. The subject system is a detention, on-line treatment system. BOR Section 1.7.5 defines "detention" as the "delay of storm runoff prior to discharge into receiving waters." BOR Section 1.7.28 defines "on-line treatment system" as a "dual purpose system that collects project runoff for both water quality and water quantity requirements. Water quality volumes are recovered through percolation and evaporation while water quantity volumes are recovered through a combination of percolation, evaporation, and surface discharge." BOR Section 5.2.b applies to "[d]etention with effluent filtration system (manmade underdrains)." BOR Section 5.2.b.1 provides that proposed activities draining less than 100 acres "shall treat the runoff from . . . the first one-half inch runoff." BOR Section 5.2.b.6 adds: "Maintenance of filter includes proper disposal of spent filter material." BOR Section 5.2.c applies to "on-line treatment system[s]." This section also requires the treatment of the first one-half inch of runoff. However, BOR Section 5.2.e provides: Projects discharging directly into Outstanding Florida Waters (OFW) shall be required to provide treatment for a volume 50 percent more than required for the selected treatment system . . .. Applicant has provided reasonable assurance that the proposed surface water management system would not cause adverse water quantity impacts to receiving waters and adjacent lands and would not cause flooding. In terms of water quantity, the proposed system is designed to meet the requirements of the ten-year storm. The subject site is a short distance from Tampa Bay, and, as already noted, it is very likely that the runoff discharges into Tampa Bay at a location not far from the subject site. Thus, water quantity and flooding are irrelevant to this case. However, Applicant has not provided reasonable assurance that the proposed surface water management system would not cause adverse impacts to the value of functions provided to fish and wildlife by nonwetland surface waters and would not adversely affect the quality of receiving waters. The receiving waters of the discharge from the subject site are Class II waters that are OFW. However, these waters are also impaired sufficiently as to be in violation of certain federal water quality standards and to require the closure, at least at times, of shellfish harvesting. There are three deficiencies in the proposed permit. First, it does not specify, in clear and enforceable language, an inspection and maintenance program, which includes the undertaking by the Applicant to backwash the system at specified intervals, to replace the sand filtration medium at specified intervals, to dispose of the sand filtration medium so that the captured contaminants do not reenter waters of the state, to monitor the water discharged from the oil and grease skimmer at specified intervals following the first two years' monitoring, and generally to take any necessary action to correct deficiencies uncovered from inspections. Second, the treatment of the first 1/2 inch of runoff is insufficient for the system, which is discharging directly into an OFW. BOR Section 5.2.e raises this standard to 3/4 inch. Direct discharges requires the identification of the first receiving waters. Receiving waters are waters of the state that are classifiable as Class I-V waters. Receiving waters thus do not include waters in a stormwater sewer pipe, which are not waters of the state nor are they classifiable. Water quality determinations often require comparison of the quality of the discharged water with quality of the receiving waters. The off-site piping of the discharged water does not preclude such comparison. In such case, the analysis extends to the first receiving waters into which the pipe empties. The District's argument to the contrary invites circumvention of those provisions enacted and promulgated for the protection of OFWs. For example, several owners of land abutting an OFW could establish a jointly owned stormwater sewer line so that the point of comparison for their discharge would be the waters in the pipe rather than the OFW. Third, Applicant failed to submit a plan or propose a procedure demonstrating that the proposed activity would not have a negative effect on the Class II waters of Tampa Bay and would not result in violations of water quality standards in these Class II waters. The District failed to determine the outfall of the discharge from the subject site, so it failed to enforce the requirement of the plan required by BOR 3.2.5 for the protection of the special value of Class II waters. Although required to account for cumulative impacts, the plan will necessarily reflect the characteristics of the site--e.g., 1.6 acres contributing largely automobile-based contaminants and not nutrients--and the characteristics of the receiving waters--e.g., Tampa Bay is vast and relatively impaired, though, in the vicinity of the subject site, more likely due to excessive nutrients.

Recommendation It is RECOMMENDED that the Southwest Florida Water Management District enter a final order denying the ERP application of HBJ Investments, Inc. DONE AND ENTERED this 23rd day of December, 1999, in Tallahassee, Leon County, Florida. ROBERT E. MEALE Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 23rd day of December, 1999. COPIES FURNISHED: E. D. "Sonny" Vergara, Executive Director Southwest Florida Water Management District 2379 Broad Street Brooksville, Florida 34609-6899 John R. Thomas Wyckoff & Thomas, P.A. 233 Third Street North, Suite 102 Saint Petersburg, Florida 33701 Michael Jacobs Director, Legal Affairs 25 Second Street North, Suite 160 Saint Petersburg, Florida 33701 Anthony J. Mutchler Assistant General Counsel Southwest Florida Water Management District 2379 Broad Street Brooksville, Florida 34609-6899

USC (1) 33 U. S. C. 1313 Florida Laws (4) 120.57373.042373.086373.414 Florida Administrative Code (9) 40D -40.30140D-4.09140D-4.30140D-4.30240D-40.30140D-40.30262 -4.24262-302.30062-4.242
# 4
DEPARTMENT OF ENVIRONMENTAL PROTECTION vs JOHN J. D`HONDT, 06-002235 (2006)
Division of Administrative Hearings, Florida Filed:Orlando, Florida Jun. 22, 2006 Number: 06-002235 Latest Update: May 15, 2007

The Issue Whether Respondent, John J. D'Hondt, as a licensed operator, should be disciplined for violations of Florida Administrative Code Rule 62-602.650(2), (4) and (4)(f).

Findings Of Fact Based upon the testimony and evidence received at the hearing, the following facts were established by clear and convincing evidence: Petitioner is the State agency vested with the responsibility of regulating Florida's air and water resources, administering Chapter 403, Florida Statutes (2006), and the rules promulgated in Florida Administrative Code Rule Chapter 62. Petitioner has the statutory authority to establish qualifications; examine and license drinking water and domestic wastewater treatment plant operators and to place an operator on probation; and issue, deny, revoke, or suspend an operator's license pursuant to its rules. Respondent is the owner, supplier of water, and licensed operator of the Double D Mobile Home Ranch's drinking water and domestic wastewater treatment plants located in Volusia County, Florida. He holds Certified Operator Drinking Water License No. 0000542 and Certified Operator Wastewater License No. 0006032. The Volusia County Health Department is a county health department that has been approved by Petitioner pursuant to Subsection 403.862(1)(c), Florida Statutes (2006), to enforce Chapter 403, Florida Statutes (2006), and the rules promulgated for the State's drinking water program for Volusia County. As a result of not having received Respondent's September 2004 MOR, by letter dated October 20, 2004, the Volusia County Health Department notified Respondent that MORs were to be submitted to the Volusia County Health Department by the tenth of the month following the month of operation. The November 2004 MOR was to have been submitted to the Volusia County Health Department by December 10, 2004. Respondent signed and dated the November 2004 MOR on December 12, 2004; it was received by the Volusia County Health Department on December 27, 2004. The December 2004 MOR was to have been submitted to the Volusia County Health Department by January 10, 2005. On February 4, 2005, Respondent was sent a late reporting violation letter stating that the December 2004 MOR had not been received. This letter again reminded Respondent that MORs were to be submitted within ten days after the month of operation. The December 2004 MOR was received on February 11, 2005. The April 2005 MOR was to have been submitted by May 10, 2005. Respondent signed and dated the April 2005 MOR on May 17, 2005. It was received on May 27, 2005. The September 2005 MOR was to have been submitted by October 10, 2005. It was received on October 18, 2005. The November 2005 MOR was to have been submitted by December 10, 2005. It was signed and dated December 14, 2005, and received on December 19, 2005. Respondent did not timely submit MORs for the months of November 2004, December 2004, April 2005, September 2005, and November 2005. In 2004, the Volusia County Health Department inspected the Double D Mobile Home Ranch's drinking water treatment plant and found that Respondent maintained a combined logbook for the drinking water and domestic wastewater treatment plants. Respondent was informed that he was required to keep a separate operation and maintenance logbook for each of the drinking water and domestic wastewater treatment plants. On August 10, 2004, Petitioner inspected the Double D Mobile Home Ranch's domestic wastewater treatment plant and found that there was a combined logbook for the drinking water and domestic wastewater treatment plants. Respondent was again informed that he was required to keep separate logbooks for each plant. A non-compliance letter dated October 12, 2004, and a copy of the August 10, 2004, inspection report were sent to Respondent informing him that he needed to separate his operation and maintenance logbook. In 2005, the Volusia County Health Department inspected the Double D Mobile Home Ranch's drinking water treatment plant and found that Respondent still maintained a combined logbook for the drinking water and domestic wastewater treatment plants. During the inspection, Respondent was again informed that he was required to keep a separate operation and maintenance logbook for the drinking water and domestic wastewater treatment plants. On June 15, 2005, Petitioner inspected the Double D Mobile Home Ranch's domestic wastewater treatment plant and again found that Respondent was keeping a combined logbook for the drinking water and domestic wastewater treatment plants. During this inspection, Respondent was again informed that he was required to keep separate logbooks. A non-compliance letter and a copy of the June 15, 2005, inspection report were sent to Respondent again informing him that he was required to maintain separate logbooks for the drinking water and domestic wastewater treatment plants. On February 13, 2006, the Volusia County Health Department inspected the Double D Mobile Home Ranch's drinking water treatment plant and found that Respondent still maintained a combined operation and maintenance logbook for the drinking water and domestic wastewater treatment plants. During this inspection, Respondent was again informed that he was required to maintain a separate logbook for each plant. Over the extended period reflected by the inspections cited in paragraphs 11 through 15, Respondent failed to maintain separate logbooks for the operation and maintenance of the Double D Mobile Home Ranch's drinking water and domestic wastewater treatment plants. On August 10, 2004, Petitioner inspected the Double D Mobile Home Ranch's domestic wastewater treatment plant and found that the logbook did not contain sufficient entries of the performance of preventative maintenance and repairs or request for repairs of equipment. During this inspection, Respondent was informed that he was required to keep adequate entries of preventative maintenance and repairs or request for repairs of equipment for the domestic wastewater treatment plant. A non-compliance letter and a copy of the August 10, 2004, inspection report were sent to Respondent informing him that he was required to maintain entries of the performance of preventative maintenance and repairs or request for repairs of equipment for the domestic wastewater treatment plant. On June 15, 2005, Petitioner inspected the Double D Mobile Home Ranch's domestic wastewater treatment plant and again found that Respondent was not keeping adequate entries of the performance of preventative maintenance or repairs for the domestic wastewater plant. During this inspection, Respondent was again informed that he was to keep such entries. A non-compliance letter and a copy of the June 15, 2005, inspection report were sent to Respondent informing him that he needed to maintain such entries for the domestic wastewater treatment plant. Photocopies of the combined logbook have essentially no entries for the performance of preventative maintenance or repairs or requests for repairs to a domestic wastewater treatment plant. Infrequent margin notes are not decipherable and do not differentiate between the two activities.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the licenses of John J. D'Hondt, as a Certified Operator Drinking Water and a Certified Operator Wastewater, be disciplined as set forth in the "probation" letter of March 15, 2006. DONE AND ENTERED this 13th day of February, 2007, in Tallahassee, Leon County, Florida. S JEFF B. CLARK Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 13th day of February, 2007. COPIES FURNISHED: Ronda L. Moore, Esquire Department of Environmental Protection 3900 Commonwealth Boulevard Mail Station 35 Tallahassee, Florida 32399-3000 John J. D'Hondt 2 Tropic Wind Drive Port Orange, Florida 32128 Lea Crandall, Agency Clerk Department of Environmental Protection Douglas Building, Mail Station 35 3900 Commonwealth Boulevard Tallahassee, Florida 32399-3000 Michael W. Sole, Secretary Department of Environmental Protection Douglas Building, Mail Station 35 3900 Commonwealth Boulevard Tallahassee, Florida 32399-3000 Tom Beason, Acting General Counsel Department of Environmental Protection Douglas Building, Mail Station 35 3900 Commonwealth Boulevard Tallahassee, Florida 32399-3000

Florida Laws (6) 120.569120.57403.061403.862403.867403.876
# 5
ANTHONY F. KOPP AND LA CASA DEL SOL vs DEPARTMENT OF ENVIRONMENTAL REGULATION, 90-007520 (1990)
Division of Administrative Hearings, Florida Filed:Lakeland, Florida Nov. 29, 1990 Number: 90-007520 Latest Update: Mar. 14, 1991

The Issue The issues in this case essentially are whether the Respondent, the Department of Environmental Regulation (DER), should reimburse Anthony F. Kopp, Owner, La Casa Del Sol, for the difference between the cost to him of the DER's remedy for the EDB contamination of the drinking water supply at La Casa Del Sol and the remedy that is least costly to the Petitioner, together with the cost of a new irrigation system, engineering and attorney fees, and other incidental costs to the Petitioner.

Findings Of Fact The Petitioner, Anthony F. Kopp, is the owner of La Casa Del Sol (La Casa), a 40-acre development at 1255 U.S. Highway 27 North, Davenport, Florida. La Casa is divided into 309 mobile home lots, a clubhouse and five acres of common green space. In January, 1987, the Petitioner received a permit for construction of a water supply system for both drinking water and irrigation needs at La Casa. The construction permit was granted with the proviso that, when La Casa's population reached 350, a second backup drinking water well, six inches in diameter at 410 feet, with a casing to 366 feet, and an auxiliary power source would have to be installed. It would cost La Casa approximately $65,000 to install the backup well and auxiliary power source. La Casa did not reach a population of 350 until January, 1991. The St. Johns River Water Management District permitted the construction of the backup well, but the well never was constructed, and the construction permit now has expired. The auxiliary power source also was not installed. The main water supply system for La Casa was installed during the summer of 1987. It included a well and a system of lines for carrying water to each of the 309 lots. It also included hose bibs (faucets) at each lot so that the water also could be used for irrigation at each lot. The system also supplied water for irrigation of the common green space. Although all of the lots at La Casa were connected to the water supply system in the manner described, not all the lots had homes on them. During the summer of 1989, only about 175 of the lots had homes on them; by January, 1991, 198 lots had homes on them. Although not all of the lots were occupied, the entire water supply system was permitted, and no additional permits were required to provide water to the lots. However, when La Casa's population reached 350, the backup well and auxiliary power source would have to be installed under the permit conditions. In about May, 1988, DER tests showed that the La Casa water supply system was contaminated with ethylene dibromide (EDB) at levels in excess of the maximum allowable for drinking water. In October, 1988, the Petitioner completed and filed a Grant Application for EDB Clean-Up Funds. As part of the application, the Petitioner agreed that DER could: arrange for the purchase and installation of appropriate filters and inhibitors; provide a new well; or arrange for the connection of [the Petitioner's] well to an existing public supply system, whichever is more cost-effective as determined by the Department of Environmental Regulation. DER contracted with Continental Water Systems to provide a temporary carbon filter system for La Casa's water supply system to remove the EDB and supply uncontaminated drinking water to the development, pending a permanent solution to the EDB contamination. The temporary filter system was designed to provide 100 gallons per minute of water, which should have been adequate for drinking water needs at La Casa. However, water pressure problems arose due to algal growth and the use of the system for irrigation purposes in addition to the drinking water purposes for which it was designed. DER is a member of the Ground Water Task Force, which met biweekly or monthly to discuss, among other things, potable wells contaminated with EDB. Other member agencies are the Department of Heath and Rehabilitative Services, the Department of Agriculture and Consumer Services, the Department of Transportation and the Department of Community Affairs. The Task Force discussed the La Casa contamination problem and agreed that the possibility of having La Casa connected to an existing water supply should be explored. DER began negotiating both with Polk County and with Haines City for a water line connection. Connection with the Polk County line would have been more expensive, and Polk County was not particularly interested in extending its line. Negotiations continued with Haines City. Negotiations with Haines City progressed to the point that DER was able to present for consideration by the Task Force cost figures for a permanent filter system at La Casa, with ten years of projected cost of operation and maintenance, as compared to the cost of extending the Haines City line. The Task Force agreed with DER that extending the Haines City line north to La Casa and connecting La Casa to it was the most cost-effective use of state funds to remedy the EDB problem at La Casa, particularly in view of other EDB-related drinking water supply problems in the area and anticipated future drinking water supply problems in the area. The Petitioner was not invited to participate in the negotiations with Polk County and Haines City and did not participate in them. Nor was the Petitioner invited to participate in either the DER or the Task Force decision- making process, and the Petitioner did not participate in those processes, either. However, the Petitioner, through his engineering consultant, was made aware in early 1989 that DER was exploring options to have La Casa connected to an existing water supply. DER paid approximately $400,000 for the Haines City water line extension and La Casa connection. This included $90,000 for Haines City impact fees to cover the 175 then existing mobile homes at La Casa (DER actually paid $450 per unit for 200 units), as well as the plumbing contractor fees for connecting La Casa to the extended city water line. It also includes the cost of installing a water meter at La Casa. The ten-year cost to the DER to solve just the La Casa drinking water problem using an EDB filter system would have been less than the cost to the DER of extending the Haines City line and connecting La Casa to it. But the evidence is clear that, in the long run, and taking into consideration other EDB-related drinking water supply problems in the area, and anticipated future drinking water supply problems in the area, the most cost-effective use of state funds to remedy the problem was to extend the Haines City line and connect La Casa to it. (Even the Petitioner's expert witness agreed that the Haines City extension and connection was the most cost-effective use of state funds to remedy the area's EDB problem.) DER advised the Petitioner of its agreement with Haines City in approximately May or June, 1989. By letter dated July 27, 1989, DER explained to the Petitioner the details of the agreement, specifically what DER would pay and what DER would not pay. By the fall of 1989, the Petitioner knew that work was beginning. At the time, the extension of the Haines City line and connection to La Casa was projected for completion in January, 1990, but there were delays, and the city water supply was not ready to be connected to La Casa until August, 1990. By this time, a dispute had arisen between the Petitioner and DER as to the cost to the Petitioner of connecting to the city water, and actual connection was further delayed. Finally, by letter dated October 11, 1990, DER gave the Petitioner an ultimatum: either be connected to the city water supply; or forfeit any state contribution to the cost of remedying the EDB contamination of the Petitioner's water supply. Faced with the prospect of having to open the winter peak season without any drinking water, the Petitioner agreed, under protest, to be connected to the city water supply, and initiated formal administrative proceedings to challenge DER's intended decision to limit the extent to which the DER would cover the Petitioner's costs. There was evidence that the plumbing contractor hired by DER may have caused damage to the landscaping and one mobile home that has not yet been repaired. However, DER acknowledged its responsibility for the damage and intends to have the plumbing contractor repair the damage. There also was evidence that the Petitioner received a bill from Haines City for the installation of a water meter at La Casa. But the evidence also was that DER may already have paid the bill. In any event, DER acknowledges its responsibility for the cost of the water meter as part of the cost of connecting La Casa to the extended city water line. Although DER had the Haines City water line extended in response to the Petitioner's Grant Application for EDB Clean-Up Funds, two commercial properties south of La Casa were connected because of EDB contamination, and the line also was extended north of La Casa in preparation to address anticipated future EDB contamination problems. Under the DER's response to the Petitioner's Grant Application, each additional mobile home unit over 200 connected to the city water supply will require the payment of a $450 impact fee. In addition, Haines City will charge monthly water fees of $1.80 1/ per 1000 gallons for the use of water at La Casa, with a $1,000 minimum charge per month. 2/ Based on current occupancy of 200 lots, the Petitioner estimates water fees of $42,000 per year, figured at approximately $5,000 per month for six peak months (based on a recent peak season monthly bill) and $2,000 per month for six off-peak months. However, it is not clear whether some of that estimated usage includes irrigation. If, in order to save gallonage fees, the Petitioner puts in a separate irrigation system supplied by its well, it will have to put in a separate distribution system since the current system is being used to bring city water to the lots. This would cost approximately $90,000. The Petitioner has paid approximately $2,100 in engineering fees to assess the problem with the temporary filter and to propose solutions, to estimate the cost of installing a separate irrigation system, and to estimate the cost to the Petitioner of connecting to the Haines City water supply. There was no evidence as to the reasonableness of those fees. The Petitioner also has paid approximately $4,500 in attorney fees to negotiate with the DER for payment of a larger portion of the Petitioner's cost of connecting to the Haines City water supply. There was no evidence as to the reasonableness of the attorney fees.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is recommended that the Department enter a final order dismissing the Amended Petition for Formal Hearing in this case. RECOMMENDED this 14th day of March, 1991, in Tallahassee, Florida. J. LAWRENCE JOHNSTON Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 14th day of March, 1991.

Florida Laws (3) 120.57376.30376.307
# 6
MANUEL RODRIGUEZ, JR. vs DEPARTMENT OF ENVIRONMENTAL REGULATION, 89-004052 (1989)
Division of Administrative Hearings, Florida Filed:Miami, Florida Jul. 19, 1990 Number: 89-004052 Latest Update: Feb. 13, 1991

The Issue Whether Petitioner has documented that he has the requisite experience to qualify to take the Class A Domestic Drinking Water Plant Operator certification examination.

Findings Of Fact Petitioner, Manuel Rodriguez, Jr., applied for and received certification from DER as a Florida Class C Domestic Drinking Water Plant Operator in 1985. The requirements for certification as a Class C Operator included three years of actual or recognized constructive experience with at least one year of actual experience in the operation, supervision, and maintenance of a drinking water plant. In the processing of this application, DER accepted Mr. Rodriguez's claimed 12.96 months of actual experience without requiring documentation of that experience. Mr. Rodriguez applied for and received certification from DER as a Class B Domestic Drinking Water Plant Operator in 1988. The requirements for certification as a Class B Operator included eight years of actual or recognized constructive experience with at least two years of actual experience in the operation, supervision, and maintenance of a drinking water plant. In the processing of this application, DER accepted Mr. Rodriguez's claimed 38.76 months of actual experience without requiring documentation of that experience. The requirements for certification as a Domestic Drinking Water Plant Operator at the A, B, and C levels of certification have not changed since 1985. DER should have required Mr. Rodriguez to document his actual experience when he applied for his C level of certification and for his B level of certification, but it did not do so. On or about May 5, 1989, Mr. Rodriguez, submitted to DER an "Application for Certification for Operators of Domestic Wastewater or Drinking Water Plants" on a DER form found at Rule 17-1.210(1), Florida Administrative Code. This application was for certification as a drinking water operator at certification level "A". The application form for certification at the "B" and "C" levels were on the same form used for the "A" level. The criteria for certification has not changed since 1982. Such an application for certification must be reviewed and accepted by DER before the applicant is permitted to sit for the requisite examination. The application submitted by Mr. Rodriguez was rejected by DER because the application failed to document that Mr. Rodriguez met the actual experience requirements for certification at the "A" level. In order to qualify to take the Class A level certification examination, an applicant must document 12 years (144 months) of total experience. Of this, 4 years (48 months) must be actual experience. DER considers 2,080 hours of experience as being equal to one year of experience. DER's application form (which has been adopted as a rule) requires an applicant to document his experience by: (a) listing the name and address of each public drinking water system at which the applicant has performed work that qualifies for actual experience credit, (b) listing the class designation of that water system, and (c) detailing the number of hours the applicant has worked at that system. On his application for his Class A Certification, Mr. Rodriguez claimed 49.85 months of actual experience for his employment with Atlantic Salt & Water Treatment, a company Mr. Rodriguez owns and operates. This company is not a water treatment plant, but provides services to residential customers and to certain public drinking water systems. The application provided no documentation as to the public drinking water systems at which Mr. Rodriguez claimed to have performed services. Mr. Rodriguez also claimed actual experience based on information on file with DER in past applications. Mr. Rodriguez was notified that his application was rejected because of his failure to document his actual experience. The Notice of Final Order of Denial, dated May 31, 1989, based the rejection of the application on the following: You have not accumulated the 4 years of satisfactory full-time on-site employment in the operation of a treatment plant, as required by Section 17-16.03, F.A.C. Your application indicates that you have only 11 years, 0 months of operational experience on the date of the application. The Notice of Final Order of Denial, dated May 31, 1989, erroneously reflected that Mr. Rodriguez had been credited with 11 years, 0 months of operational experience. This erroneous statement was caused by a computer error. Mr. Rodriguez was aware of this error and was aware that DER had credited him with having no actual experience because his application failed to document that experience. Following the rejection of his application, Mr. Rodriguez filed an amendment to his application which provided additional information regarding his work experience. This information, submitted in late June 1989, claimed 76 months of actual experience as follows: 39 months between March 1985 and June 1989 while employed as the owner and operator of Atlantic Salt (the full name of Petitioner's company was not spelled out on the amendment). This claimed experience is based on services rendered to Jones Fish Camp (twice a week) and to South Dade Storage and Industrial Park (once a week). 14 months between October 83 and December 84 while employed by Home Refinement. This claimed experience is based on services to South Dade Shopping Center (twice a week), Commercial Carriers (once a week), Dennys Restaurants Miami Beach (once a week), Dennys S. Dixie Highway (once a month), Bank of Homestead (twice a week), Tivoli Shopping Plaza (twice a week), Florida Power & Light Princeton Complex (twice a week), Florida Rock & Fill (twice a week), Florida Transport (twice a week), The Dialysis Center Homestead (once a month), and Botanical Garden (once a month). 12 months while employed by Culligan Water between October 1978 and October 1979. This claimed experience is based on services to Jackson Memorial Hospital (twice a week), Mercy Hospital (twice a week), Coral Reef Hospital (twice a week), Baptist Hospital of Miami (once a month), Howard Johnson Hotel Downtown (once a month), Americana Hotel Miami Beach (twice a month), Kings Bay Club (once a month), and Standard Concrete Plant (twice a month). 7 months while employed by Enviropact, Inc., between March 1977 and October 1978 (sic). This claimed experience is based on services to Quality Inn S. Dixie Highway (once a week). 4 months while employed by Florida Water Treatment between January 1977 and March 1977 (sic). This claimed experience is based on services to Hialeah Garden School for the Handicapped (once a week). The application, as amended, did not contain the required documentation of actual experience. There was no listing of the address of each respective water system, the class designation for each system, or the number of hours Mr. Rodriguez claimed to have worked at each water system. DER maintains a computer list which contains a complete inventory listing of all public drinking water systems recognized as such be DER, including inactive systems. DER checked the establishments for which Mr. Rodriguez claimed experience against its computer records to determine which of those establishments are DER approved public drinking water systems. Although such a computer check is not authorized by rule, this type check is routinely performed by DER and the computer records are verified for accuracy and for completeness. Mr. Rodriguez correctly contends that inclusion on the DER computer inventory should not determine whether an entity is a public drinking water system because that determination should be made by application of the pertinent DER rules. However, in the absence of documentation to the contrary, this computer check provides a reasonable means of determining whether an entity is a public drinking water system. On July 7, 1989, DER notified Mr. Rodriguez that the amendment was insufficient in a letter that provided, in part, as follows: The Department carefully reviewed your amend- ment to your application. Of the establish- ments you listed only Jones Fish Camp and Botanical Garden (Morey's Garden Center) are public drinking water systems. We estimated that you have spent approximately 200 hours over four years at these businesses. This is not sufficient to meet the criteria for an "A" level water treatment license. DER determined that at most Mr. Rodriguez has documented 200 hours of actual experience for work at Jones Fish Camp and the Botanical Garden. (It was determined after the letter of July 7, 1989, that no credit should have been given for the Botanical Garden because the entity to which Mr. Rodriguez referred was not the same Botanical Garden that appeared on the computer inventory.) DER properly awarded no actual experience credit to Mr. Rodriguez for services he rendered to any other entity he listed in his amended application because none of the other entities were on DER's computer inventory of DER approved public drinking water systems or otherwise documented by Mr. Rodriguez to have been public drinking water systems as defined by DER. Mr. Rodriguez has not provided an accurate or detailed statement as to the number of hours he has spent during the course of his employment in the operation of those entities he asserts should be considered to be public drinking water system. Mr. Rodriguez's inability to give details about the services he has provided has been impaired because his former employers are now his competitors and they refused to cooperate with him. However, there was no evidence that Mr. Rodriguez attempted to subpoena any of the records from these former employers. Mr. Rodriguez has received appropriate constructive experience credit for his education and specialized training. He has successfully completed all of the required course work for the Class A water treatment plant operator certification, and it was only his inability to document his actual experience that prevented his sitting for the Class A examination. Each level of certification is independent of each other, and a lower level certification is not necessary in order to receive a higher level. DER determined that the credit for actual experience given to Mr. Rodriguez based on his application for Class C certification and his application for Class B certification should not have been given because he did not document that experience, and did not credit him with the experience for the Class A certification to the extent he was unable to document such experience. Mr. Rodriguez failed to document that he has the requisite experience to sit for the Class A examination. While Mr. Rodriguez may in fact have such experience with public water systems, he has not documented that experience either in his application or at the formal hearing.

Recommendation Based upon the foregoing Findings of Fact and Conclusions of Law, it is recommended that a Final Order be entered which upholds the Department of Environmental Regulation determination that Petitioner, Manual Rodriguez, Jr., has failed to document that he has the actual experience required for Class A Domestic Drinking Water Plant Operator, and which upholds the rejection of his application to sit for the Class A Domestic Drinking Water Plant Operator examination. RECOMMENDED in Tallahassee, Leon County, Florida, this 13th day of February, 1991. CLAUDE B. ARRINGTON Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 13th day of February, 1991. APPENDIX TO RECOMMENDED ORDER, CASE NO. 89-4052 The following rulings are made on the proposed findings of fact submitted on behalf of the Respondent. The proposed findings of fact in paragraphs 1-5, 7-8, and 10-15 are adopted in material part by the Recommended Order. The proposed findings of fact in paragraphs 6 and 9 are rejected as being subordinate to the findings made. The proposed findings of fact in paragraph 16 are rejected as being unnecessary to the conclusions reached. COPIES FURNISHED: Calvin Fox, Esquire Elena Tauler, Esquire TAULER & FOX, P.A. 3477 S.W. Third Avenue Miami, Florida 33145 Cynthia K. Christen, Esquire Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32399-2400 Carol Browner, Secretary Department of Environmental Regulation Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32399-2400 Daniel H. Thompson General Counsel 2600 Blair Stone Road Tallahassee, Florida 32399-2400

Florida Laws (2) 120.57403.852
# 7
RALPH SANCHIOUS vs DEPARTMENT OF ENVIRONMENTAL REGULATION, 89-007002 (1989)
Division of Administrative Hearings, Florida Filed:Polk City, Florida Dec. 21, 1989 Number: 89-007002 Latest Update: Mar. 07, 1990

The Issue Whether the Respondent, the Department of Environmental Regulation (DER), should deny the Petitioner's application for a Class C drinking water treatment plant operator certificate based on the Petitioner's alleged cheating on the examination.

Findings Of Fact The Respondent, the Department of Environmental Regulation (DER), previously determined that the Petitioner, Ralph Sanchious (Sanchious), was eligible for certification as a Class C Water Treatment Operator, subject only to successful completion of DER's examination. Sanchious sat for the November 2, 1989, examination administered at the Polk Correctional Institution (PCI) in Polk City, Florida. Although the examination notice that had been mailed to Sanchious, as well as to the other examinees, stated that examinees were not allowed to have "[a]ny other papers or notes . . . in the examination room," Sanchious brought his examination notice itself and the envelope it came in. At least one other examinee did the same. During the examination, which was multiple choice, Sanchious copied the question numbers on the envelope and marked next to each question number the letter signifying the choice he had made as his answer. He did not try to hide what he was doing. He did it openly right in front of the examination proctor, Henry P. Ziegler, Jr. Sanchious intended to take the record of his exam answers with him when he left the examination to help him pass a reexamination, if he did not pass the November 2, 1989 exam. Since examinees must give the examination booklet containing the multiple choice questions to the proctor at the end of the examination, it is not clear how a record of his answers would help him pass a reexamination unless Sanchious knew or believed he could learn when the same examination would be re-administered. It must be inferred that Sanchious knew or believed he could learn when the same examination would be re-administered, although it is not clear how he knew or why he believed he could learn this. Ralph Nichols, the instructor who taught the course that prepared Sanchious to take the examination, did not know or believe he could learn when the same examination would be repeated unchanged, and he did not think any of the examinees knew or could learn this. Neither the DER rules, the written examination notice, nor the oral instructions of the examination proctor advised Sanchious or the other examinees that he was not permitted to record his answers or take the record of his answers with him when he left the exam. Sanchious did not think what he was doing was wrong, was cheating or was in violation of any rules or regulations of either the DER, PCI or any test-taking "conventions." If he did, he would have tried to hide what he was doing from the proctor. At the end of the examination, Ziegler, the proctor, collected the examination answer sheets, test booklets and scratch paper, if any, from all examinees. Normally, Ziegler would return the answer sheet and exam booklet to the testing agency and destroy the scratch papers to maintain test security. But he confiscated Sanchious' answer sheet, examination booklet and materials, including the record of his answers that he had made on the envelope, and asked Sanchious what was on the envelope. Sanchious answered truthfully and told Ziegler what he planned to do with his record of the answers. Ziegler, an accepted expert in proctoring examinations, understood from examination "conventions" he had learned as an examination proctor that it is a breach of examination security, and therefore forbidden for proctors to allow, an examinee to record examination answers and leave the examination site with them. Ziegler conferred with Barbara Jacobs, PCI Educational Program Manager, to ask her what she thought should be done. Jacobs then told Sanchious he would not be permitted to remove the envelope on which he had recorded his answers. Sanchious replied with words to effect "fine, I already finished the examination, and all my answers are on the answer sheets." Ziegler, Jacobs and Nichols conferred further to decide whether what Sanchious had done was "cheating." They decided it was and declined to forward Sanchious' answer sheet to DER. Ziegler's letter to DER explained that he and Jacobs "deem taking out answers to these tests to be a serious breach of test security, since it is possible that Sanchious might have wanted to sell the answers to other inmates on his compound. We are both sure that you would not want Sanchious to do this, so we have withdrawn his answer sheets from the rest of the test takers' sheets and are not forwarding Sanchious' answer sheet to you for scoring. We trust you agree with our decision to not allow this inmate's test to be scored due to what we firmly believe was an unacceptable breach of security of your tests on the part of Sanchious." Although the DER did not respond to Ziegler's letter, it denied his application certification because it did not consider Sanchious to have passed the exam. Sanchious' answer sheets remain in the possession of Barbara Jacobs at PCI. DER authorizes the use of scratch paper in their certification examinations. DER has no rules or written notification of any kind that examinees may not record their answers on scratch paper during the examination. In fact, DER now encourages examinees to keep track of where they are on the examination by marking the examination booklet; and marking the answers on the booklet, as well as the answer sheet, would be one acceptable way of keeping track. It is understood that the examination proctor will collect the exam booklets and all scratch paper. DER always has allowed examinees other than prison inmates, and now allows all examinees, to review their scored examination answer sheets and the examination booklet to verify any incorrect answers. Persons choosing such a review are not permitted to take notes of the correct answers with them after the review. On two occasions, DER has discovered that an examinee smuggled "crib sheets" (summary notes of substantive information that probably would assist an examinee) into the exam site. Once, the proctor caught the examinee; the other time, it could not be determined who had smuggled the "crib sheets." Once DER received anonymous information that an individual in Orlando regularly was obtaining a list of what purported to be the actual answers to questions and was furnishing the list to certain examinees as a favor. This information has not resulted in any findings, and it is not clear how the individual would have obtained a written list of correct answers to the questions on a particular examination. On the most recent examination in Jacksonville, DER caught an examinee smuggling into the examination a list of the actual answers to the questions. Again, it is not clear how the answers were obtained. None of these incidents involved an examination at PCI, and none involved an examinee recording his own answers to exam questions on a separate piece of paper with intent to leave with the record of the answers after the examination.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is recommended that the Respondent, the Department of Environmental Regulation, enter a final order that the Petitioner's answers to the November 2, 1989, Class C Water Treatment examination be scored and, if the Petitioner scored a passing grade, that the Petitioner be certified as a Class C Water Treatment Plant Operator. RECOMMENDED this 7th day of March, 1990, in Tallahassee, Florida. J. LAWRENCE JOHNSTON Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904)488-9675 Filed with the Clerk of the Division of Administrative Hearings this 7th day of March, 1990. APPENDIX TO RECOMMENDED ORDER, CASE NO. 89-7002 To comply with the requirements of Section 120.59(2), Florida Statutes (1989), the following rulings are made on the Respondent's proposed findings of fact (the Petitioner not having filed any): 1.-3. Accepted and incorporated to the extent not subordinate or unnecessary. Rejected as not proven by the evidence. Ziegler first conferred with Nichols before deciding that Sanchious had "cheated." Otherwise, accepted and incorporated. Rejected as not proven by the evidence. It was not proven whether Sanchious knew or could learn when the same examination would be re- administered, knowledge that would be indispensable to the use of Sanchious' exam answers to cheat on a subsequent examination. Otherwise, accepted and incorporated. 6.-10. Accepted and incorporated to the extent not subordinate or unnecessary. 11. First sentence, accepted and incorporated to the extent not subordinate or unnecessary; second sentence, see 5., above. 12.-13. Accepted and incorporated to the extent not subordinate or unnecessary. 14. Rejected as not proven by the evidence. First, Setchfield agreed that whether Sanchious or someone else knew or could learn when the same examination would be re-administered would be indispensable to the future use of his exam answers to improve one's odds of choosing or guessing correct answers. Second, she testified that she could not answer the "philosophical" question whether the "cheating" she described would have occurred when Sanchious recorded and removed the answers with the intent to try to use them to improve his odds of choosing or guessing correct answers on a future exam or when he actually used the information on a future examination. COPIES FURNISHED: Ralph Sanchious (W-44) Polk Correctional Institution 3876 Evans Road, Box 50 Polk City, Florida 33868 Cynthia K. Christen, Esquire Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32399-2400 Dale H. Twachtmann, Secretary Department of Environmental Regulation Twin Towers Office Building 2600 Blair Stone Road Tallahassee, FL 32399-2400 Daniel H. Thompson General Counsel Department of Environmental Regulation Twin Towers Office Building 2600 Blair Stone Road Tallahassee, FL 32399-2400 =================================================================

Florida Laws (2) 120.57120.68
# 8
PINKHAM E. PACETTI vs. DEPARTMENT OF ENVIRONMENTAL REGULATION, 84-003810 (1984)
Division of Administrative Hearings, Florida Number: 84-003810 Latest Update: Feb. 28, 1986

The Issue The issues set forth in DOAH Case No. 84-3810 concern the question of whether the State of Florida, Department of Environmental Regulation (DER) should issue a permit to Homer Smith d/b/a Homer Smith Seafood (Homer Smith) to construct a wastewater treatment facility which is constituted of a screening mechanism, dissolved air flotation treatment system, sludge drying bed, pumping station and subaqueous pipeline. In the related action, DOAH Case No. 84-3811, the question is raised whether DER should issue a dredge and fill permit to Homer Smith for the installation of the aforementioned pipeline along submerged lands in Trout Creek, Palmo Cove and the St. Johns River.

Findings Of Fact Introduction and Background In 1982, Homer Smith, under the name of Homer Smith Seafood, established a calico scallop processing facility in the vicinity of the intersection of State Road 13 and Trout Creek in St. Johns County, Florida. From that point forward, Smith has owned and operated the processing plant. His plant adjoins Trout Creek, which is a tributary to the St. Johns River. Both Trout Creek and the St. Johns River are tidally influenced waters that are classified as Class III surface waters under Rule 17-3.161, Florida Administrative Code. The processing undertaken by Smith's operation at Trout Creek contemplates the preparation of the scallops for human consumption. In particular, it involves the purchase of calico scallops from Port Canaveral, Florida, after which the scallops are transported by refrigerated trucks to the processing plant. They are then unloaded into metal hoppers and directed into rotating tumblers which separate out the scallops from sand, mud and other extraneous material. The scallops are placed in a steam tumbler that removes the shells and then passed through a flow tank that washes away sand, grit and shell particles. The scallops are next passed through eviscerators. These eviscerators are long tubes of aluminum with roughened surfaces that pull the viscera off of the scallops. The detached scallops are then sent along a conveyor belt, with scallops in need of further cleaning being picked out and sent to a second eviscerator. The eviscerated scallops are then chilled and packed for marketing. It is the viscera and wastewater associated with this material that is the subject of permitting. Homer Smith is one of about six automated scallop processing plants located in Florida. Two other plants are within St. Johns County, on the San Sebastian River in St. Augustine, Florida. Three other plants are located in Port Canaveral, Florida. When Smith commenced his operation of the scallop processing plant in the summer of 1982, he discharged the scallop processing wastewater into an area described as a swamp with an associated canal which connected to Trout Creek. By the fall of 1982, Smith had been told by representatives of the Department of Environmental Regulation that to operate his facility with the discharge would require a permit(s) from DER. At the time of this discussion, automatic scallop processing was an industry for which appropriate wastewater treatment alternatives had not been specifically identified by the Department of Environmental Regulation or the United States Environmental Protection Agency. This was and continues to be the case as it relates to the promulgation of technology-based effluent limitations designed for calico scallop processors. This circumstance is unlike the situation for most other industries for which DER has established technology-based effluent limitations. To rectify this situation, Florida Laws 85-231 at Section 403.0861, Florida Statutes, requires DER to promulgate technology-based effluent limitations for calico scallop processors by December 1986. In the interim, consideration of any permits that might be afforded the calico scallop processors by the exercise of DER's regulatory authority must be done on a case-by-case basis, when examining the question of technology-based effluent limitations. DER sent a warning letter to Smith on April 20, 1983, informing the processor that discarding its wastewater into Trout Creek without a DER permit constituted a violation of state law. After the warning letter, scallop harvesting declined to the point that by mid-June of 1983 the plant had closed down, and it did not reopen until the middle part of September 1983. Upon the recommencement of operations, DER issued a cease and desist notice and ordered Smith to quit the discharge of wastewater from the facility into Trout Creek. On the topic of the cease and desist, through litigation, Smith has been allowed the right to conduct interim operation of his business which involves direct discharge of wastewater into Trout Creek, pending assessment of wastewater treatment alternatives and pursuit of appropriate DER permits. 1/ When Smith filed for permits on April 10, 1984, he asked for permission to dredge and fill and for construction rights pertaining to industrial wastewater discharge into the St. Johns River. The application of April 10, 1984, involved the installation of a wastewater treatment system and an associated outfall pipeline to transport treated wastewater to the St. Johns River from the plant location. This system would utilize a series of settling tanks and a shell-filter lagoon as the principal wastewater treatment. DER, following evaluation, gave notice in October 1984 of its intent to issue permits related to dredge and fill and the construction of the wastewater treatment facility. In the face of that notification, the present Petitioners offered a timely challenge to the issuance of any DER permits. In considering treatment alternatives, Homer Smith had employed various consultants and discovered that treatment beyond coarse screening had not been attempted in processing calico scallop wastewater. Those consultants were of the opinion that conventional treatment methods such as clarification, sand filtration, vortex separation, breakpoint chlorination, polymers and spray irrigation were of limited viability due to the inability to remove key constituents within the waste stream or based upon certain operational difficulties that they thought would be experienced in attempting those methods of treatment. As envisioned by the April 10, 1984, application for permit, interim treatment of the wastewater was provided by the use of a series of settling tanks and a shell-filter lagoon, within which system adjustments were made to the delivery of wastewater treatment. The April 10, 1984, permit application by Smith did not envision any chemical treatment of the wastewater aside from that which might occur in association with the settling and filtration through the shell-filter lagoon. Following DER's statement of intent to issue a permit for construction of the wastewater treatment facility as described in the April 10, 1984, application by Smith, DER became concerned about the potential toxicity of calico scallop wastewater, based upon its own studies. As a consequence, Smith amended the application for wastewater treatment facility to include use of chemical coagulation and flotation. This amendment occurred in March 1985, and the wastewater treatment process in that application envisioned the use of an electroflotation wastewater system. In view of toxicity problems experienced with the testing related to the use of an electroflotation wastewater treatment system, this treatment alternative was discarded in favor of a dissolved air flotation (DAF) system. This system was pursuant to an amendment to the application effective May 31, 1985. This amendment of May 1985 was in furtherance of the order of the hearing officer setting a deadline for amendments to the application. DER issued an amended intent to grant permits for the DAF unit and the associated pipeline and that action dates from June 28, 1985. The Petitioners oppose the grant of these permits for the DAF unit and pipeline, and under the auspices of their initial petition have made a timely challenge to the grant of a permit for the installation of the DAF wastewater treatment unit and associated pipeline. It is the DAF unit and pipeline that will be considered in substance in the course of this recommended order. On July 6, 1984, Smith sought an easement from the State of Florida, Department of Natural Resources (DNR) for the installation of the pipeline. This was necessary in view of the fact that the pipeline would traverse sovereignty lands which were located beneath Trout Creek, Palmo Cove and the St. Johns River. On December 17, 1984, DNR issued a notice of intent to submit that application to the Board of Trustees of the Internal Improvement Trust Fund with a recommendation of approval. This action was challenged by the Petitioners on January 7, 1985, in a petition for formal hearing challenging the grant of the easement. DOAH Case No. 85-0277 concerns this challenge to grant of an easement. Originally, by action of January 28, 1985, the easement case was consolidated with the present DER permit actions. At the instigation of DNR, the easement case was severed from consideration with the present action. The order of severance was entered on July 31, 1985. The DNR case will be heard on a future date yet to be established. The DNR case was severed because that agency preferred to see test results of treatment efficiencies following the construction of the DAF unit. By contrast, the present DER cases contemplate a decision being reached on the acceptability of the construction of the DAF unit and attendant features, together with the pipeline on the basis of theoretical viability of this entire system. This arrangement would be in phases in which the construction of the upland treatment system would occur within 90 days of the receipt of any construction permit from DER, followed by a second phase within which Smith would construct the pipeline within 60 days of receipt of any other necessary governmental approval, such as the DNR easement approval. Furthermore, DER would wish to see the results of an integrated treatment system involving the upland treatment by the DAF unit and its attendant features and the use of the pipeline and the availability of a mixing zone, that is to say the end of pipe discharge, before deciding on the ultimate question of the grant of an operating permit for the wastewater treatment system. The quandary presented by these arrangements concerns the fact that discharge from the DAF treatment unit would be temporarily introduced into Trout Creek, pending the decision by DNR to grant an easement for the pipeline and the necessary time to install that pipeline. Given the difficult circumstances of these actions, there is raised the question of the propriety of discharging wastewater into Trout Creek pending resolution of the question of whether DNR wishes to grant an easement to place the pipeline over sovereignty submerged lands. This is a perplexing question in view of the fact that DNR requested severance from the present action, thereby promoting further delay in the time between any installation of the upland treatment system and the pipeline. Finally, Trout Creek is an ecosystem which has undergone considerable stress in the past, and it is more susceptible to the influences of pollution than the St. Johns River would be as a point of ultimate discharge from the pipeline. This dilemma is addressed in greater detail in subsequent sections within the recommended order. Petitioner River Systems Preservation, Inc., is a nonprofit organization comprised of approximately seven hundred persons. The focus of the organization is to protect and enhance the environment of northeast Florida. The individual Petitioners, Pinkham E. Pacetti, Robert D. Maley, Ruth M. Whitman and others, are members of the corporation who own property or live near the scallop processing plant of Respondent Smith. In addition, Pacetti owns a marina and recreational fishing camp that is located across Trout Creek from Smith's plant. Pacetti's fish camp dates from 1929. On the occasion of the opportunity for the public to offer their comments about this project, a significant number of persons made presentations at the public hearing on August 29, 1985. Some members of the public favored the project and others were opposed to the grant of any permits. St. Johns County Board of County Commissioners, in the person of Commissioner Sarah Bailey, indicated opposition to the project, together with Bill Basford, President of the Jacksonville City Council. Warren Moody, the vice-chairman of the Jacksonville Waterways Authority spoke in opposition to the project. The Florida Wildlife Federation and the Jacksonville Audubon Society expressed opposition to the project. The officials related the fact of the expenditure of considerable amounts of public tax dollars to improve water quality in the St. Johns River and their concern that those expenditures not be squandered with the advent of some damage to the St. Johns River by allowing the permits in question to be issued. These officials considered the St. Johns River to be a significant resource which they are committed to protecting. The City of Jacksonville, Clay County, Green Cove Springs, the Jacksonville Waterways Authority, the Northeast Florida Regional Planning Council and St. Johns County expressed opposition to the project contemplated by the present permit application, through the adoption of certain resolutions. These broad-based statements of opposition were not spoken to in the course of the hearing by members of any technical staffs to these governmental institutions. Private members of the public, some of whom are affiliated with River Systems Preservation, Inc., expressed concern about water quality violations, harm to fish and other environmental degradations that have been caused by the Homer Smith operation in the past and their belief that these problems will persist if the permits at issue are granted. Those persons who favored the project, in terms of public discussion, primarily centered on the idea that, in the estimation of those witnesses, fairness demanded that Smith be afforded an opportunity to demonstrate that this proposed system of treatment was sound and the quality of the water being discharged from the Homer Smith plant was not as bothersome as had been portrayed by the persons who opposed the grant of environmental permits. Industrial Wastewater Construction Permit Treatment System Description of Homer Smith's Plant and Its Operation. The source of water used for the processing of the scallops at the Homer Smith plant is a well which is located on that property. Homer Smith is allowed to withdraw 300,000 gallons of water per day in accordance with a consumptive use permit that has been issued by the St. Johns River Water Management District. To ensure Smith's compliance with this permit, a metering device is located on the well. Typically, the plant operates an eighteen-hour day, five days a week, using water at a rate of 200 gallons per minute. This would equate to 215,000 gallons per day over an eighteen-hour day. Prior to the imposition of restrictions by the Department of Environmental Regulation through the consent order, this facility had processed as much as 40,000 pounds of scallops each day, for a total of 36,000 gallons each week, at a gross revenue figure of $225,000 per week. Characteristics and Frequency of Effluent Discharge The wastewater generated by the scallop processing that is done at the Homer Smith plant is principally constituted of the well water used to clean the scallops, proteinaceous organic materials, and metals. The metals are introduced into the wastewater stream from the scallop tissue. The wastewater stream also has a certain amount of sand and grit, together with shell fragments. The concentrations of organic materials within the wastewater stream are at high levels. There is also an amount of fecal coliform bacteria and suspended solids. The pollution sources within the wastewater stream include total suspended solids (TSS), biochemical oxygen demand (BOD), nutrients (nitrogen and phosphorus) and the coliform bacteria. In the neighborhood of 30 percent of the BOD in the wastewater is soluble. The balance of the BOD is associated with the suspended solids. With time the organic materials in the wastewater stream will decompose and with the decomposition present certain organic decomposition products, which would include ammonia, amines and sulfides. Heavy metals in the wastewater have been in the scallop tissue and are released with the cleaning of the scallops. These metals include cadmium, copper, zinc, iron, manganese, silver and arsenic. The presence of these metals within the tissues of the scallops are there in view of the fact that the scallops are "filter-feeders" which have taken in these elements or metals that naturally occur in the ocean water. The permit application contemplates an average of five days a week of operation for eighteen hours a day. Notwithstanding the fact that in the past the Homer Smith Seafood operation had processed scallops seven day week, twenty- four hours per day, Smith does not desire to operate more than five and a half days a week in the future. That is perceived to mean five eighteen-hour days and a twelve-hour day on the sixth day. The treatment system contemplated here is for a flow volume of around 200 gallons per minute during normal operation. The system can operate as high as 300 gallons per minute. That latter figure approaches the design capabilities of the treatment system proposed. Wastewater is discharged only when scallops are being processed. There is basically 1:1 ratio between the volume of well water used to process the scallops and the amount of wastewater discharged. Proposed Treatment System and Alternatives As already stated, there is no specific industry standard set forth in the DER rules which would describe technology-based standards for the treatment of calico scallop wastewater. In those instances where the agency is confronted with an industry for which technology-based standards have not been established, DER examines the question of whether that effluent is amenable to biological treatment as contemplated in Rule 17-6.300(1)(n)1., Florida Administrative Code, as an alternative. Biological treatment is a treatment form normally associated with domestic waste and the imposition of this treatment technique is in furtherance of achieving a secondary treatment standard found in Chapter 17-6, Florida Administrative Code, which results in 20 mg/L of BOD and TSS, or 90 percent removal of those constituents, whichever is the greater performance in removal efficiency. In the absence of specific standards related to the calico scallop industry, and in the face of the interpretation of its rules in which DER calls for an examination of the possibility of biological treatment as an alternative to treatment specifically described for a given industry, it was incumbent upon this Applicant to examine the viability of biological treatment of the scallop wastewater product. The Applicant has considered biological treatment as an alternative and rejected that treatment form, in that Smith's consultants believe the wastewater is not amenable to biological treatment. By contrast, Petitioners' consultants believe that biological treatment should be the principal focus in treating the scallop wastewater and contend that biological treatment is a more viable choice when contrasted with the option chosen by the Applicant. If this waste is not amenable to biological treatment, Rule 17-6.300(1)(n)1., Florida Administrative Code, envisions an acceptable or minimum level of secondary treatment shall be determined on a case-by-case basis. In the instance where biological treatment is not a reasonable choice, the Applicant is expected to achieve treatment results which are comparable to those arrived at in treating domestic waste by the use of biological treatment techniques. On this occasion, DER had not established what they believe to be a comparable degree of treatment for calico scallop waste, assuming the unavailability of biological treatment. The present case is a matter of first impression. As a result, the idea of a comparable degree of treatment shall be defined in this hearing process, assuming the inefficacy of biological treatment. In that event, DER must be assured that the proposed treatment plan has an efficiency that rivals the success which biological treatment promotes with domestic waste, taking into account the quality of the effluent prior to treatment, available technology, other permitting criteria and the ambient conditions where the waste stream is being discharged. In arguing in favor of biological treatment, Petitioners pose the possibility of an integrated system in which primary settling tanks or clarifiers would be used together with a biological treatment step, which is referred to as a trickling filter, followed by final settling by the use of tanks or clarifiers in an effort to achieve BOD concentrations in the range of 200 mg/L to 400 mg/L. In this connection, the dissolved air flotation system is seen in the role of alternative to the initial stage of settling of the constituents within the wastewater stream. It is not regarded as the principal means of treatment of the waste. The trickling filter system as a biological treatment medium involves the use of a bacterial culture for the purpose of consuming the oxygen-demanding constituents, BOD. The trickling filter technique, if a viable choice, has the ability to remove 70 to 75 percent of BOD and TSS. Petitioners suggest further treatment of the waste beyond primary and final settling and trickling filter can be afforded by involving activated sludge, which according to their experts would end up with a biological oxygen demand in the 20 mg/L range. Although the constituents of the Smith plant's waste are of a highly organic nature, and, at first blush a candidate for biological treatment by use of the trickling filter, the problem with this form of treatment has to do with the intermittent flow in the Smith operation. This intermittent flow is caused by the fact that the plant does not operate throughout the year. The plant operations are seasonal, depending on calico scallop harvesting which does not occur on a routine basis. Therefore, the problem is presented of trying to keep the biological treatment system "alive" and operating at levels of efficiency which can be expected to maintain the percentage of removal of BOD and TSS that a healthy system can deliver. The bacteria colonies which are vital to the success of the biological treatment system must be fed on a continuous basis to maintain balance in the population of the colony. This would be a difficult undertaking with the Smith operation, given the interruptions in operations which could lead to the decline in the bacterial population and a poorer quality of treatment once the operations were resumed. This finding takes into account the fact that the colony can survive for a week or two by simply recirculating water over the filter. Obviously, in order to maintain necessary efficiencies within this biological treatment, the bacteria must do more than survive. The further suggestion that has been offered that the bacteria could be sustained for longer periods of time by feeding them seafood waste or dog food are not found to achieve the level of efficiency in the operation that would be necessary in posing biological treatment as an alternative. Again, it is more of an intervening measure designed to assure the survival of bacteria pending the continuation of the operations of the plant, as contrasted with a system which is continual and taking into account the uniformity of the waste product more efficient. Another problem with feeding the bacteria when the plant is not operating is that of disposing of the waste produced when this auxiliary feeding is occurring. Just as importantly, biological treatment is questionable given the long retention times necessary for that process and the build-up of toxic levels or concentrations of ammonia. The Applicant had employed an aerated lagoon in attempting to treat the waste and experienced problems with ammonia build up. Although this system did not call for the degree of treatment of the waste prior to the introduction into the lagoon that is contemplated by the present proposal of the Applicant, it does point to the fact of the problems with ammonia in the biological treatment system. Dr. Grantham, a witness whose testimony was presented by the Petitioner, conceded the difficulty of removing ammonia from the trickling filter. Moreover, the biological treatment system is not especially efficient in removing metals and phosphorus from the wastewater. Alternative treatment would be necessary to gain better efficiency in removals of those constituents. The trickling filter is expected to gain 50 percent metals removal, which is inadequate given the concentrations of heavy metals found in the scallop wastewater. Phosphorus could be removed after treatment by the trickling filter by the use of lime or alum. Assuming optimum conditions in the use of biological treatment after primary and final settling, thereby arriving at a BOD level of 200 mg/L, it would then be necessary to make further treatment by the use of activated sludge to see 20 mg/L BOD. The problem with activated sludge is related to the fact that this form of treatment is particularly sensitive to interruptions in flow, which are to be expected in this wastewater treatment setting. On balance, biological treatment does not present a viable choice in treating scallop waste. That leaves for consideration the question of whether the Applicant's proposal would afford a comparable degree of treatment to that expected in the use of biological treatment of domestic waste. The manufacturer of the dissolved air flotation unit or DAF system proposed, known as the Krofta "Supracell," offers another piece of equipment known as the "Sandcell" which in addition to the provision for dissolved air flotation provides sand filtration. The Sandcell might arrive at BOD levels of 400 mg/L. However, the testimony of the witness Lawrence K. Wang, who is intimately familiar with the Krofta products, in responding to questions about the use of the Sandcell system and suggestion that the system would arrive at 400 mg/L BOD responded "could be." This answer does not verify improvement through the contribution of sand filtration. For that reason inclusion of a Sandcell for filtration of BOD is not suggested in this fact finding and the system as proposed must be sufficient in its own right. Having realized the need to provide greater treatment than screening or filtering the waste stream, the Applicant attempted to design a treatment system using flotation technology together with chemical precipitation and coagulation. At first the Applicant examined the possibility of the use of electroflotation (EF). This involved the collection of wastewater in a retention tank and the generation of an electric current to create a series of bubbles to float insoluble flocs. Those flocs are caused by the use of ferric chloride, sodium hydroxide and various polymers which are added to the waste stream. The flocs are then pushed to the top of the chamber by the air bubbles, and this particulate matter is skimmed off by the use of a paddle. Pilot testing was done of the electroflotation technology and showed promising results, so promising that a full-scale electroflotation unit was installed and tested. The full-scale electroflotation showed reasonable removal of BOD, TSS, nutrients, coliform and trace metals. This technique was discarded, however, when bioassay testing of the treated effluent was not successful. In examining the explanation for the failure, the experts of the Applicant were of the opinion that certain chemical reactions were occurring as a result of the passage of the electrical current through the wastewater stream. When this problem with acute toxicity could not be overcome through a series of adjustments to the process, the Applicant decided to test another form of flotation, which is referred to as dissolved air flotation (DAF). This system employs the use of chemicals to create insoluble flocs. Unlike the electroflotation unit, though, it does not utilize electrical currents to create the air bubbles employed in the flotation. The dissolved air flotation thereby avoids problems of toxicity which might be attributed to the passage of electrical current through the water column. The present system as proposed by the Applicant has a number of components. The first component of treatment involves the passage of raw wastewater through a mechanical screening device, which is designed to remove a certain number of particulates by catching those materials on the screen. That material is then removed from the plant and disposed of off site. The balance of the wastewater after this first stage of treatment passes into a sump area and from there into a primary mix/ aeration tank. This water is then chemically treated to facilitate the formation of insoluble flocs. The chemically treated wastewater then enters a premanufactured Krofta Supracell 15 DAF unit which is designed to form bubbles by the use of pressurized air, with those bubbles floating the waste materials within the floc to the surface. Again, this method does not use electrolysis. The floated solid materials are then skimmed from the surface and directed to a holding tank and subsequently pumped to sludge drying beds. Some of the treated wastewater is recycled through the DAF unit after pressurization and in furtherance of forming the necessary bubbles for the DAF unit. The balance of the water is directed to a force main lift station. This water would then be transported through the eight-inch PVC pipe some 13,000 feet into the main channel of the St. Johns River where it is distributed through a five port diffuser. The screening mechanism spoken of had been installed in mid-December 1984 and has been used since that time to filter the wastewater. The screening mechanism is in substitution of settling tanks and shell pits. The shell pits which had been used before presented problems with odors as well as the ammonia build up which has been addressed in a prior paragraph. The removal efficiency of the screening mechanism is 30 percent of particulates associated with pollution parameters, as example BOD, total Kjeldahl nitrogen, total phosphorus and TSS. The frequency of the transport of these screened materials to the off site disposal is four to six times a day and the screen is decontaminated at the end of each day when the operations are closed. The application contemplates the same operating procedures of disposal and maintenance with the advent of any construction permit. The primary mix/aeration tank aerates the wastewater and through that process and the retention time contemplated, equalizes the flow regime and promotes a more balanced concentration of waste materials prior to the introduction of that wastewater for chemical coagulation and flotation. This step in the treatment process enhances the treatment efficiency. Some question was raised by the Petitioners on the size of the primary mix-aeration tank as to whether that tank was sufficient to equalize the flow, and conversely, the impacts of having too much retention time built into that tank, which would promote the build-up of toxic concentrations of ammonia in the wastewater. The retention time within the sump and the primary mix-aeration tank approximates one and one-half hours. The retention time and size of the primary mix-aeration tank are found to be acceptable. This design appropriately addresses concerns about the build-up of decomposition products and toxicity, to include ammonia. The sludge which collects in the primary mix-aeration tank will be pumped back to the sump pit by return flow. The sump pit itself will be pumped out in the fashion of cleaning a septic tank on the basis of once a week. The sump pit also receives the return flow of leachate from the sludge drying bed. Once equalization of flow is achieved in the primary mix-aeration tank, that wastewater is then treated by the use of alum, sodium aluminate and polymers. The purpose of this treatment is to convert soluble and insoluble organic matter such as TSS and BOD, trace elements and phosphorus into insoluble flocs that can be removed by flotation. These combinations of chemicals and dosage rates have been tested in electroflotation and dissolved air flotation bench and pilot scales for use associated with this project and a list of appropriate chemicals and ranges of dosage rates has been determined. It will be necessary for these chemicals and general dosages to be adjusted in the full- scale operation under terms of the construction permit. This facet of the treatment process must be closely monitored. Once the wastewater stream has received the chemical treatment, it is introduced into the Krofta Supracell 15 DAF unit. This unit is 15 feet in diameter, and within this cylinder bubbles are generated by pressurizing some of the chemically treated wastewater and potentially clean tap water. The use of clean tap water promotes dilution of the wastewater stream as well as greater efficiency in the production of the bubbles. Chemically treated wastewater is brought into the cylinder through the back of a revolving arm that moves around a center column of the DAF unit at the speed of the effluent flow. The purpose of this mechanical arrangement is to eliminate horizontal water velocity, to protect the integrity of the flocs that are being formed by the use of the chemicals. Those flocs float to the surface in a few minutes' time, given the normal turbulence and shallow depth of the DAF unit. This limited retention time also avoids ammonia build up. The floating material is then scooped and poured into a stationary center section and is discharged by gravity to the sludge holding tank. Wiper blades which are attached to the revolving arm scrape the bottom and sides of the tank and discharge any settled sludge to a built-in sump in the DAF unit. These materials which are settled in the bottom of the DAF cylinder are transported through the sludge holding tank and eventually placed in the sludge drying beds. The treated wastewater is removed by an extraction pipe associated with the center section of the DAF unit. It is then discharged. The use of clean tap water from the well and the ability to recycle the waste stream can promote greater treatment efficiency in terms of removal of undesirable constituents of the waste stream and the reduction of concentrations of those materials. As a measurement, approximately 8 percent of the wastewater flow will be removed as sludge. This sludge is sufficiently aerated to be reduced in volume by about one-half over a period of ten to thirty minutes in the sludge holding tank. It is then sent to the sludge drying beds. The sludge drying beds are designed to accommodate 30,000 gallons of sludge. They are 60 feet long, 25 feet wide and 4 feet deep. Those drying beds are of greater size than is necessary to accommodate the volume of sludge. The sludge drying beds have a sand and gravel bottom. The water drains from the sludge as leachate and returns to the sump pit in the treatment system at a rate of five to ten gallons a minute. Some concern has been expressed that the "gelatinous" nature of the sludge will make it very difficult to dewater or dry. This opinion is held by experts of the Petitioners, notwithstanding the fact that polymers are used in the treatment process. One expert in particular did not believe that the sludge would adequately dry. Having Considered the evidence, the opinion that the sludge will not dry sufficiently is rejected. Nonetheless, it is incumbent upon the Applicant to monitor drying conditions of the sludge very carefully and, if need be, to add some chemical such as calcium hydroxide to enhance the drying capacity of the sludge material. It is anticipated that the sludge will be removed once a day and this arrangement should be adhered to. With adequate drying, the sludge material can be removed with the use of shovels, rakes and a front-end loader as proposed by the Applicant. With frequent removal and adequate drying, problems with odors can be overcome, and problems with ammonia build up and the generation of unreasonable levels of bacteria can be avoided. Should problems with odors, ammonia and bacteria occur, it would be necessary for the Applicant to purge the drying beds, to include the sand and gravel which had been invested with the sludge materials that had caused the problems. Although Smith has not tested the drying bed leachate as to specific nature, the treatment process can be expected to deal with problems of any build-up of ammonia concentrations, fecal coliform bacteria and other organic decomposition products. This pertains to the ability to remove these offending substances from the site in terms of removal of the residual solids and the ability to treat those parameters within the leachate as the wastewater is cycled through the system. The treated wastewater will be transported to a pumping station by gravity flow and then pumped via the pipeline to the proposed point of discharge in the main channel of the St. Johns River. This pipeline is constituted of fabricated sections of pipe 20 feet in length, connected with bell and spigot joints, rubber gaskets and solvent welding. The treated wastewater is released into the river through a five point diffuser which has three-quarter inch openings angled at ten degrees from the horizontal bottom. The pipeline is anchored with prefilled 80-pound concrete bags attached with polypropelene straps which are placed at 8-foot intervals. These are placed to keep the pipe from floating. The diffuser is supported by four piles driven into the river bottom and surrounded by a series of concrete bags. The purpose of this arrangement is to hold the diffuser in place and to protect it against potential damage from anchors or other possible impact. The Applicant acquiesces in the choice to have the pipeline tested for leaks once a month in the period June through September and every other month during other parts of the year. If leaks are found, the Applicant would be responsible for repairing those leaks. As stated before, it is necessary for the Applicant to receive permission from the State of Florida to be granted an easement before the pipe can be installed. Prior to that permission being granted, the treated wastewater would be placed in Trout Creek, which is adjacent to the processing plant. Predicted End of Pipeline Quality of the Effluent In trying to predict the quality of effluent at the end of the pipeline, bench scale and pilot scale testing was done related to the DAF technology. This testing was done related to screened wastewater that was collected from the plant in April 1985. In this connection two series of DAF bench scale tests were performed. They related to samples collected on April 18 and 19, 1985, which were packed in ice and shipped directly to a research laboratory in Lenox, Massachusetts, where they were treated with chemicals and a laboratory size DAF unit. The concentration of the wastewater parameters were measured and recorded before and after treatment, and the results of those tests are set forth in the Applicant's Exhibit A-4(B)(3), at Table 2-1. The pilot scale testing that was done in this case related to a 4-foot diameter DAF unit which had been installed at the Homer Smith plant. This testing occurred in April 1985. The basis of the testing was samples taken on April 15 and 19, 1985. Again, wastewater parameters were measured before and after treatment and the results are set forth in Applicant's Exhibit A-4(B)(3), at Table 2-1. When the initial testing was done with the DAF, results for total coliform bacteria uniformly fell below a range of 35 organisms/100 ml. Subsequent pilot tests yielded higher bacterial counts which would indicate that there was a build-up of bacteria within the DAF unit. This verifies the need to require that the DAF unit contemplated by the application be routinely cleaned or sanitized to avoid the build-up problem. TSS in the pilot unit effluent was reduced to 40 mg/L and lower. The capacity for metals removal in the pilot scale testing was good pertaining to copper and zinc. The ability to remove cadmium showed a result of 0.013 and 0.015 mg/L. The best performance in the pilot scale testing related to BOD removal showed a value of 510 mg/L. It should be noted that the bench scale testing and pilot scale testing were in the face of significant variations in the amount of BOD presented by the screened wastewater. This identifies the need to pay close attention to the removal efficiency of the system related to the BOD parameter in order to achieve consistent levels of BOD following treatment. The system under review is referred to as full-scale treatment. This treatment can be expected to exceed the levels achieved in the DAF bench and pilot scale testing because: (a) As a general proposition, treatment efficiency improves as the scale of machinery increases from bench to pilot to full-scale; (b) The bench and pilot scale tests were run without the benefit of the primary mix-aeration tank and the benefits derived from that part of the treatment apparatus, that is to say, uniformity of the flow and better dispersion of the constituents of the wastewater stream, prior to chemical treatment; (c) The pilot DAF unit used exclusively recycled wastewater to undergo pressurization for the creation of the air bubbles. In the course of the hearing it was established that approximately 50 gallons per minute of clean tap water could be brought in to the treatment process resulting in the formation of more bubbles and the facilitation of up to 10 percent greater treatment efficiency based upon that change. The other contribution made by the use of clean tap water was the possibility of as much as a 20 percent dilution of the wastewater stream, in terms of concentration of constituents within the wastewater stream; (d) In a full-scale operation, the opportunity is presented to routinely adjust the chemical dosages as well as select among a range of chemicals in order to achieve the greatest treatment efficiency; (e) In employing routine sanitization of the DAF unit by use of a mild chlorine compound, the tendency to accumulate coliform bacteria can be overcome. Removal of this adverse influence improves the water quality. In traveling through the pipeline, the transit time is in the range of two to three hours. At a normal rate of 250 gallons per minute of discharge, the transit time in the pipeline is 2.25 hours. Given the constituents of the wastewater, bacterial populations can be expected and could conceivably consume sufficient amounts of oxygen to affect the dissolved oxygen levels within the wastewater as it exits the pipe at the diffuser ports. In addition, there is some possibility of ammonia build up within the pipeline. To avoid the build up of bacteria at harmful levels, sanitation of the DAF unit must be accomplished. In addition, the pipeline itself should be flushed with clean water at the close of operations each day and treated with small amounts of chlorine to address bacteria which may form within the pipeline. This avoids the increasing concentrations of ammonia and protects against lowered dissolved oxygen concentrations and the possibility of increased levels of toxic substances in the effluent which might be attributable to the proliferation of bacteria and the build-up of ammonia during the transport through the pipeline. Taking into the account the nature of this wastewater and the velocity associated with the transport and the sanitization of the pipeline, sedimentation associated with organic solids or other materials will not present a problem. The pollution parameters associated with the treated effluent at the point of discharge from the pipeline can be expected to meet Class III orders, excepting unionized ammonia, specific conductance, copper, cadmium, pH and zinc. In order to achieve satisfactory compliance with regulatory requirements related to those parameters, the Applicant has requested a two-meter mixing zone. The purpose of that mixing zone would be to afford an opportunity for dispersion and mixing in the ambient water before imposition of water quality standards. The implications of that mixing zone are discussed in a subsequent section to the fact finding within the Recommended Order. In effect use of the mixing zone will promote compliance with standards pertaining to the subject parameters. Petitioners point out the fact that the Applicant has based its assumptions on the results of treatment on the availability of four sets of data which were obtained from DAF effluent--two sets of data coming from the bench tests and two sets of data from the pilot plant. Further, there is an indication of the variation in quality of the effluent from one test to the next and the need to employ different dosage rates of chemicals in the face of those variations. The full-scale system utilizes a number of techniques to gain some uniformity in the quality of the effluent prior to chemical treatment and thereby some uniformity in the amount of chemicals necessary to treat the effluent. This overall system can then be expected to produce treated wastewater that is basically uniform in its constituents. Petitioners point out the limited amount of data in the testing related to BOD. There were, in fact, only two data points: one related to the bench system and one related to the pilot system pertaining to BOD, both of these the product of different chemical dosages for treatment. Again, the system that is at issue in this proceeding can be expected to arrive at a more consistent level of BOD than is depicted in the results pertaining to bench scale and pilot scale testing. In fact, those results were not remarkably disparate in that the bench sale test produced 560 mg/L and the pilot scale test produced 510 mg/L. While the data related to BOD is limited, it still gives sufficient insight as to the probability of successful full-scale treatment and the test data is found to be a reliable indication of success in achieving the goal of 510 mg/L BOD. Contrary to the Petitioners' perceptions, the treatment efficiency is improved with the system that is under review. Petitioners believe that the bench and pilot scale testing not only is unrepresentative of the full-size DAF system, they also believe that the full-size system represents a lesser quality of treatment. In this regard reference is made to features which would adversely affect the treatment efficiencies. The first of those pertains to leachate which drains from beneath the sludge drying beds and is recirculated to the existing sump pit and added to the waste stream. Sludge which sits in the drying bed does decompose and causes biochemical reactions to occur, as Petitioners suggest. Moreover, no specific testing has been done of the leachate to ascertain the ammonia concentrations, pH or other chemical characteristics. Nonetheless, given the intention to clean out the residual matter within the sump pit frequently, and the flexibility to make that cleanup more routinely, and the fact that this amount of leachate is comparatively small in its ratio to wastewater which is being sent through the system for treatment, the leachate is not found to be an unmanageable problem. Nor is the sludge a problem. Likewise, the amounts of heavy metals within the leachate can be accommodated. Concerns expressed by the Petitioners related to the organic materials in the primary mix-aeration tank that is being returned to the sump pit can also be dealt with by the evacuation of the materials in the bottom of the sump pit. This can be achieved more frequently than on a weekly basis if that becomes necessary, and in doing so avoid problems with concentrations of ammonia, bacteria, amines, sulfides and general organic decomposition products. These materials which are returned to the treatment process as wastewater reintroduced into the primary mix-aeration tank can be adequately addressed in the subsequent treatment that occurs by reaeration, the use of the chemicals and DAF flotation. The retention inherent in the sump pit, primary mix-aeration tank and sludge drying bed has a potential to cause problems with ammonia build-up; however, the problems can be satisfactorily addressed, as well as potential problems with other toxic substances in the effluent, by routinely taking the residual material in the sump pit and sludge drying bed out of the treatment system. While the specific chemicals and precise dosage rates to be used with a full-size DAF system remain open, the basic concept of chemical treatment has been identified sufficiently. The precaution that is necessary is to make certain that close monitoring is made of the results of changes in the chemicals and dosage rates. Likewise, special attention should be paid to the implications of adjustments in the pH of the effluent to make certain that compliance is achieved with the Class III water criterion related to changes in pH above background. Adjustments can be made without violating Class III water standards related to pH. In testing that was done pertaining to the electroflotation effluent, a number of other chemicals were observed, to include trimethylamine, dimethyl sulfide, chloroform and other hydrocarbons. There is some indication of the presence of dichleoroethane, ethylbenezene and other aromatics. The possibility exists that these substances may also be products within the DAF effluent. In that event, the critical question would be whether they have any adverse effect in the sense of influences on the ability of the effluent to pass bioassays and the ability of the effluent to comply with standards related to other parameters such as dissolved oxygen, BOD, and TSS. The routine testing which is called for by the draft permit, which is deemed to be appropriate, would create a satisfactory impression of the materials set forth in the paragraph in the sense of the implications of their presence and allow any necessary adjustments in treatment. While the effluent produced in the testing on the part of the Applicant is different, it is representative, and the treated effluent which will be produced in the full-scale system will be of a better quality and present less adverse impacts than shown in the past testing. Petitioners question whether the Applicant has given a conservative portrayal in analyzing the effluent. In particular, it is urged that the Applicant claimed to be vying for use of the bench scale testing as a conservative depiction of the results of treatment. In this connection, the impression given in the hearing was that of ascendancy in treatment efficiency beyond the use of bench scale, pilot scale and ending in full-scale treatment. As pointed out by Petitioners, in making his case the Applicant has used results of bench and pilot scale testing. As example, use was made of the results of testing in the pilot scale in describing the removal effioiencies related to cadmium, whereas in the measurements of nitrogen concentrations the bench scale result was better than that of the pilot testing and was utilized. The real question is whether the overall testing has given some reasonable indication of success in full-scale treatment. To that end, use of results from either the bench scale or pilot scale testing is appropriate, and those results point to success in the full-scale operation. The system that is proposed is designed to address fluctuations in flow and concentrations in the effluent, given the primary mix-aeration tank contribution and the ability to recycle flow within the DAF unit, with the use of clean tap water. This will allow the Applicant to deal with the remarkable differences in BOD that were seen in the test period, ranging from 900 to 3000 mg/L. COD data as well as BOD data is limited but is found to be an ample depiction of potential treatment efficiencies related to that former parameter. In addition to the aforementioned references to changes in chemicals in the treatment process, Petitioners characterize the use of clean tap water in the recycle flow as being "unsubstantiated speculation." While the use of tap water was discussed in a theoretical vein, that discussion is found to be an accurate assessment of the value of the contribution of clean tap water to the treatment system. Impacts on St. Johns River Ambient Water Quality and Conditions The St. Johns River and the area of the proposed discharge is a riverine estuary. It has a freshwater source flowing from the south and a tidal ocean boundary to the north. The confluence of freshwater flow and tidal influences causes the water movement within this area to be oscillatory. That is to say that at different times the water will flow downstream, to the north, and upstream, to the south. There are occasions in which the net flow over a given tidal cycle will be zero; however, the water is always moving. Conductivity and chloride data indicate that the freshwater flow is the dominant flow compared to tidal influences. The extrapolation of available flow data indicates that there is a net downstream flow of fresh water averaging approximately 6,000 CFS. The St. Johns River at the point of discharge is over one and a half miles wide and relatively shallow with maximum depth in the range of 3 to 3.5 meters. Given the fact of the width and depth in this segment of the river, and the imposition of wind conditions and tidal influence, the water is well mixed and flushed. There is no stratification in this portion of the river. The Applicant looked into the question of current bearing and velocity in depths between two to fourteen feet in the water column. Eleven sampling stations were utilized in arriving at information about current bearing. This observation was over an eleven-nautical-mile stretch of the main channel of the St. Johns River. These stations are depicted on Applicant's Exhibit 38. In this portion of the river the current at all measured depth was flowing up and down the main channel. Within these sections there is no indication of a pronounced subsurface water movement toward the east and west banks of the river. Current velocities within the three stations closest to the POD averaged in the range of 0.5 feet per second and velocities in the other stations found within the main channel were within that range of movement. By contrast current velocities within the embayment areas along the east bank of the river were substantially weaker. DER conducted two studies using tracing dyes poured into the St. Johns River at the approximate point of discharge and monitored the course of dispersement of that dye. During this observation the dye was constantly replenished while being carried on the currents. While the dye remained within the area of the main channel, it stayed on the east side of the river as it moved down river on the outgoing tide in the direction of Smith's Point and the Shands Bridge. As the tide was slowing before the change of tide, the dye drifted for approximately two hours in the immediate vicinity of the point of discharge. The DER dye study was a fairly gross measurement of the direction of water movement within the river beyond the point of discharge. It tended to confirm that the water flow was basically up and down river, depending on whether the tide is incoming or outgoing. The studies were not sufficiently refined to speak with any certainty on the possibility that some part of the flow regime would move toward the east or west bank of the river. Nonetheless, in examining the nature of the shallow embayment areas along the banks of the St. Johns River, they are not seen to be subject to the basic flow regime that is occurring in the main channel during tide events. The bathymetry in this area is such that if the main flow regime was having some influence on the embayment areas, the depths within those embayments would be more similar to the depths found in the main channel of the river. Petitioners have employed a number of dye and drogue measurements to try to give a more accurate depiction of the influence of flow within the main channel upon the dispersion of effluent upon discharge and the possibility of those pollutants reaching the embayment areas. While there is no dispute over the fact that Trout Creek is a tributary to the St. Johns River with some tidal influences being shown in that Creek and there is no dispute that water from the St. Johns River flows in and out of Palmo Cove and Trout Creek, there does not appear to be a significant flow of water from the St. John River into the cove and creek from the main channel, in particular from the area of the point of discharge. One of the witnesses of the Petitioners, Sandy Young, did a dye procedure in which a plume was allowed to develop over a distance of approximately 1,000 feet. Although some slight lateral variation was shown in the dye plume, it did not identify a basic flow pattern toward the embayment areas on the east side of the river. The DER dye study was over a distance of some eight thousand feet and also showed some minor lateral variation. Both of these dye studies tend to show a basic flow pattern within the main channel. The dye study run by the Petitioners' witness White gave the same basic depiction as seen in the studies by DER and Young and did not identify a flow pattern out of the main channel toward the embayment areas. In the drogue studies run by Young three Chlorox bottles were filled to 95 percent of volume with water and released at the point of discharge. They were followed for a period of five hours. They moved initially with the outgoing tide toward Jack Wright Island and then when the tide slowed, the drogues slowed. When the tide changed with the incoming tide, the drogues moved toward the center of Palmo Cove. The drogue studies by Young do tend to indicate that some water was exchanged from the main channel at the point of discharge and the embayment areas. It is not a very exact measurement as it only deals with the surface area of the water column, given the wind and wave conditions existing on that occasion. It is in no way representative of the flow direction of the rest of the water column. Therefore, although it may tend to identify that some of the pollutants leaving the point of discharge may find their way to Palmo Cove, it does not establish that quantity of that pollution dispersion and the significance of that dispersion. Based upon this evidence it cannot be seen to be so revealing that the assumptions made by the applicant in trying to identify the dispersion characteristics of the effluent at point of discharge are negated based upon the results of the drogue study. The drogue study which Young did and the observation of the movement from Smith's Point to Little Florence Cove are no more compelling than the dye studies done at the point of discharge. When the Petitioners suggest that there is some influence by centrifugal force pushing the water to the outside of the curve toward the eastern bank, they are correct. However, the contention by the Petitioners that the incoming and outgoing tides sweep to the eastern shoreline of the St. Johns River moving toward Pacetti Point, Palmo Cove, Florence Cove and Smith Point is not accepted. Again, the general flow regime is up and down the main channel of the river and not primarily to the eastern bank. Finally, the fact that the Tetratech data produced for the benefit of the Applicant showing the flow pattern within the overall water column, which indicated that the general direction is the same at the top or bottom of the water column, did not tend to identify the fact that pollutants throughout the water column will be dispersed into the embayment areas from the point of discharge. The data collected in the main channel seem to establish that the water was flowing up and down the channel at depths below the surface. The question becomes whether the amount of pollutants that are being brought into the embayment areas is in such concentrations that they tend to cause problems along the shoreline, especially as it pertains to dissolved oxygen levels. From the facts presented, this outcome is not expected. Levels of dissolved oxygen in the St. Johns River can vary in the natural condition as much as 2 to 3 mg daily. These variations are influenced by algal activity and are not uncommon in Florida waters. Dissolved oxygen is essential to aquatic life. Optimum levels of dissolved oxygen for the fish population of the river are in the neighborhood of 6 to 8 mg/L. DER has established a minimum DO standard of 5 mg/L for Class III waters such as Trout Creek, Palmo Cove and the St. Johns River. This standard is designed to achieve uniform compliance throughout water column at whatever time the measurement may be made. DER, by the employment of this rule, is attempting to deal with those instances in which, in view of the dissolved oxygen level, aquatic organisms are placed under greater stress. The lowest DO concentration expected is normally seen in the summer in July, August and September. DO concentrations in the water column are expected to be highest at the surface area and lowest near the bottom. Measurements near the bottom are significant in this instance because the discharge will occur approximately one foot off the bottom of the river. The Applicant took DO measurements of the area in question during the spring of 1984 over a period of three days. These measurements were taken at a time when a better quality of dissolved oxygen might be expected as contrasted with circumstances in the summer. With the amount of wind involved impressive levels of reaeration were also occurring. These measurements showed that in all stations DO levels were at least 5.0 mg/L at all depths. A study by Applicant's consultant Environmental Science Engineering related to a diurnal event for dissolved oxygen was taken approximately one kilometer downstream from the point of discharge in August 1985 and did not reveal any measurements below 5.0 mg/L. The river was choppy on that day and this would improve the quality of dissolved oxygen. Historical data by DER related to water quality at Picolata, which is south of the POD in the St. Johns River, reveals average DO levels of approximately 6 mg/L. Historical water quality data collected by the Florida Game and Freshwater Fish Commission near Green Cove Springs, which is several kilometers north of the point of discharge, indicated average DO levels in compliance with water quality standards. Diurnal data from near Green Cove Springs did not show any history of DO values below the state standards. There is other historical data, however, which indicates that DO concentrations in the general vicinity of the point of discharge do go below 5.0 mg/L. Game and Freshwater Fish Commission data indicate that the readings below 5.0 mg/L could occur as much as 10 percent of the time. This relates to the study done at Green Cove Springs. There does not appear to be any particular pattern to these events of low DO violations other than the expectation of their occurring in the summer months, occurring more frequently in the lower depths of the water column and in areas which are shallow with limited flow. The summer circumstance is one in which there is a possibility of very heavy rainfall followed by hot weather with overcast skies and no wind, and the DO values go down in that set of conditions. The DO values are, in addition to being lower near the bottom of the water column, likely to be lowest in the evening or early morning hours and persist in length of time from eight to ten hours. Some of the Florida Game and Freshwater Fish Commission data from Green Cove Springs depicted some DO concentrations as low as 1.8 mg/L at the bottom and 2.1 mg/L at the surface. The low readings that were taken at Green Cove Springs occurred in September 1979 after Hurricane David had created unusual conditions in the upper St. Johns River as to effects on DO. The same report indicated DO concentrations at eleven stations in the lower St. Johns River in July and September 1982 were in the range to 4.0 to 4.5 mg/L respectively. This particular data is not particularly valuable in view of the location of those stations. There are occasions when the DO concentration at the point of discharge could go below 5 mg/L and could be as low as 2 mg/L on the bottom, but this is not a routine occurrence and would not persist. The Petitioners' consultant Young had taken certain dissolved oxygen readings at the point of discharge in April 1985 and found compliance with the 5 mg/L standard. At other times he and the consultant white measured substandard dissolved oxygen concentrations at the point of discharge. On July 20, 1985, white collected water samples at the surface and at two feet above the bottom and determined that the readings were 4 mg at the surface and 3 mg near the bottom. On August 10, 1985, Young measured DO concentrations of 4 mg/L near the bottom. On August 30, 1985, Young measured DO values of 4 mg/L at the point of discharge. Young had also measured DO concentrations at Green Cove Springs on August 10, 1985, and discovered readings as low as .5 mg/L and ranging up to 3.8 mg/L. A downstream measurement away from the point of discharge in the main channel made on August 10, 1985, by Young showed a dissolved oxygen reading of 4 mg/L. In these August measurements Young had discovered a number of readings that were in compliance with the 5 mg/L requirement. Again on September 5, 1985, Young made a measurement of dissolved oxygen near the bottom of the water column at the point of discharge which was 5.3 mg/L. Young's measurements of dissolved oxygen at the surface and in the intermediate depth, typically were above 5 mg/L. Bottom readings taken by Young in the main channel of the river and to some extent in the embayment areas were extracted from the soft detrital materials, the place of intersection of the river bottom and the water column. DO levels in these anoxic materials would tend to give lower dissolved oxygen readings and, to the extent that this anoxic material remains in the test probe while taking measurements toward the surface, would have an influence on the readings, making them appear lower than would be the case if the anoxic sediments were not present in the test device. These effects were not so dramatic as to cause the rejection of the data collected by this witness. Some explanation for lower DO readings at the point of discharge can be attributable to the fact that the anoxic material associated with high benthic oxygen demand on the bottom reduces the dissolved oxygen in the water column. Although Rangia clams were present at the point of discharge and they are capable of living in an environment of low salinity and low DO, they are likewise able to live in higher ranges of DO and their presence cannot be regarded as meaning that the dissolved oxygen levels are consistently below 5 mg/L. Petitioners' consultant White opined that there would be a very frequent violation of DO standards at the point of discharge, approaching 25 percent of the time. Considering the facts on the subject of dissolved oxygen in that area, this opinion is rejected, as is the opinion that DO concentrations will go below DER standards most of the time in July, August, and September. Young believes that a more involved study of worst case conditions would reveal DO violations throughout the column in the center of the river. The data that was presented was ample to demonstrate that violations would not be that widespread. Nor is the opinion of the consultant Parks on the subject of DO violations, to the effect that they will occur on many occasions accepted. In the Palmo Cove area it is not unusual to see some DO readings below the 5 mg/L standards. The E.S.E. group found substandard DO conditions in Palmo Cove at sampling Station 1 in September and October 1984 and some instances in April and May 1985. DO concentrations were found in the range of .4 and .6 mg/L in August 15 and 30, 1984, respectively, with DO concentrations of 1.8 and 2.1 mg/L reported on October 4 and October 29, 1984, respectively. DO violations in four out of eight checking periods between April 25 and May 24, 1985, were shown in the Palmo Cove area. Measurements taken by the consultant white showed 3 mg/L at the surface and 2 mg/L at the bottom on July 28, 1985. The consultant Young also made a measurement of 3.2 mg/L of dissolved oxygen on August 10, 1985, in a mid-depth reading in the Palmo Cove area. On September 5, 1985, he found a DO reading of 4.0 mg/L. At those places along the eastern shoreline of the St. Johns River and the relative vicinity of Florence Cove, Jack Wright Island, Little Florence Cove and Colee Cove, low dissolved oxygen readings were found, that is below 5 mg/L. These coves can be expected to have substandard readings frequently during the summer period, based upon measurements taken by the consultant Young. In the conduct of the drogue study related to the Chlorox bottle, the consultant Young in tracking the path of those bottles, found a couple of locations in the path of the drogue which were in the range 2.8 to 4.2 mg/L and 2.0 to 4.6 mg/L. The influences of the discharge will not reduce DO in the embayments. The ambient conditions for BOD in the area where the discharge is contemplated is relatively low and there is no thermal or saline stratification even in the summer months. Nutrient concentrations in this part of the St. Johns River are as indicated within the Applicants Exhibit A-4(B)(3) and at present are at such levels as to promote a healthy fish community. There is algae production that can be sufficient in some areas within this section to cause algae blooms. Algae blooms are not found to be a routine occurrence. Algae blooms reflect higher levels of nitrogen and phosphorus. The consultants Young and White have seen algae blooms in the St. Johns River away from the general area of concern, both upstream and downstream. Should those algae blooms occur, they would promote significant rises and falls in DO concentrations. In Palmo Cove and the St. Johns River, supersaturated DO concentrations have been detected and they are indications of high rates of primary algal productivity. The circumstance of supersaturated conditions, related to dissolved oxygen, can be the by-product of an algal bloom. The concentrations of nitrogen range from an average of 1.42 to a maximum of 2.54 mg/L. Nitrogen concentrations of 1.4 mg to 1.5 mg/L are optimally advantageous for fish production. Significant increases above those levels would cause the decline of the fish population. Total phosphorus concentrations in the ambient waters are high. Concentrations in excess of 0.1 mg/L of total phosphorus are regarded as a indication of eutrophication and the average concentration here is measured as 0.3 mg/L with a maximum ambient concentration found at 0.52 milligrams per liter. There is significant algal growth in the inshore areas and an indication of some eutrophication in the grass beds. The dominant species of algae found in that vicinity are blue-green, which are seen as being nuisance species. The grass beds along the shoreline are basically healthy. On the other hand, some of the public witnesses identified the fact that grass beds and other vegetation have died with the advent of discharge from the Applicant's plant into Trout Creek. This was under a system in which little or no treatment was afforded the effluent. One other public witness indicated that his dock in the Florence Cove area had been covered with a slimy material and algae during the past two years. Significant grass beds are found along Jack Wright Island and in other areas along the eastern shoreline of the river. These grass beds are important as fish habitat to include nursery areas, areas for various juvenile species of fish and other organisms. Some of these grass beds are showing signs of environmental stress, and nutrient loading can contribute to that stress. Some of the grass beds are covered with higher amounts of algae, duckweed and periphyton than are desirable. The duckweed had floated into these areas from other locations and can be expected to move away. The presence of algae is an indication of nutrient loading. The presence of duckweed is not a product of nutrient loading in the sense of the production of the duckweed at the site where they were found along the shoreline. The area in question between Pacetti Point and Shands Bridge serves as a nursery in a sense of providing habitat for juvenile species of fish and other organisms. The grass beds along the shoreline provide habitat for feeding and breeding related to juvenile organisms, to include such species as bass and shrimp. Juvenile catfish are found within the deeper portions of the river as well as croaker and other marine species. There is a high number of juvenile blue crabs in this area of the river and this is a commercial resource. Shrimp are taken by recreational fisherman in the area of the North Shore Pacetti Point. Clam beds are also present near the point of discharge. Juvenile and adult manatee have been seen in the St. Johns River and in the area near Jack Wright Island. Manatee have also been observed in Trout Creek at a time before the operation of the Applicant's plant and at times following the cessation of operations in June 1985. During the course of the operation of the Applicant's plant, when raw effluent was discharged into Trout Creek, fish kills were observed. Those events had not been seen prior to the operation of the plant. Indications are that fish were killed in the creek due to the use by the Applicant of fly bait, which made its way into the water. Dispersion Modeling of Water Quality Impact In order to gain some impression of the influences caused by the dispersion of the pollutants within the effluent, the Applicant through its expert employed several modeling techniques. DER was made aware of this modeling as it developed. A far-field model was used to calculate what the long-term or steady state impacts of the treated effluent would be on the ambient water quality. In trying to identify the influence of the discharge, measurement of metals were taken based upon an assessment of long term increases. BOD, which breaks down and consumes oxygen over time, was examined in the sense of the long term effects as to DO deficits. In essence these projections were superimposed over the ambient condition to gain an impression of the adjusted ambient values, taking into account the influence of the discharge. The Applicant also ran a plume model which was designed to calculate spreading and dispersion of the treated effluent within the zone of initial dilution or mixing zone at the point of discharge. This model responds to the discharge configuration. Through the use of computer calculations, it was established that a five-point diffuser with port openings of 0.75 inches in diameter angled upward at ten degrees would result in an effluent dilution ratio of 28.5:1 within two meters of the point of discharge. The calculated impacts of the plume model were superimposed upon the adjusted ambient water quality conditions set forth in the far-field model in order to determine net impact upon the receiving waters within the mixing zone. A third model was used, referred to as the lateral diffusivity model. This model is designed to calculate the six-hour or short term water quality impacts of the treated effluent when it moves from the zone of initial dilution during flood and ebb tide conditions. By estimating dispersion rate, this model predicts what dilution would occur in the path of the effluent plume. These impacts were then superimposed upon the adjusted ambient water quality conditions to determine the total impact in the path of the plume. The modeling work by the Applicant's consultant is a reasonable depiction of the predicted impacts of the pollution on the ambient conditions. The calculations used in the far-field model assumed a freshwater flow of 2,000 CFS. This assumption in the far-field model satisfactorily addresses worst case flow conditions related to seven-day, 10-year low flow. The temperature utilized in depicting ambient water was 30 degrees centigrade when employed in the far-field and lateral diffusivity models. This corresponds to warm weather conditions, which are more profound in describing effects on water quality. The far-field and lateral diffusivity models assumed that the treated effluent discharged from the pipeline would have a BOD concentration of 665 mg/L. This is contrasted with the maximum concentration allowed by the draft permit, which is 510 mg/L, which is the expected amount of BOD. This tends to depict the impacts of the discharge more conservatively. The model assumes the BOD loading of 2,720 kg per week, equating to an average discharge concentration of 665 mg/L if the plant operates five days a week on an eighteen-hour day. The reaeration rate and NBOD and CBOD decay rates used in the far field and lateral diffusivity models are acceptable. Likewise, the longitudinal dispersion coefficient that was used in the far-field model is acceptable. The standard modeling methodology in this process calls for an assumption of a 1.33 growth rate of the plume in the lateral diffusivity model. The Applicant's consultant decided to use a lower constant diffusivity growth rate. As a consequence, less lateral spreading is depicted. With less lateral spreading, less dilution is shown, and the impacts predicted by the model are exaggerated. One of the parameters of the plume model has to do with river flow which causes some turbulence and also brings about dilution. In this instance the plume model calculations assume stagnant conditions which is a more conservative assessment. As the Petitioners have suggested, the modeling to explain the impacts of dispersion of the pollutants is not designed to give precise calculations of the DO deficit at each point in the river along the eastern shoreline. It is indeed an estimate. The estimate on this occasion is reasonable. Although DER performs mathematical analysis of dispersion of proposed discharge in some cases, it did not do so on this occasion. Nonetheless DER was satisfied with the present choice for modeling the dispersion characteristics of the discharge. Although the models utilized were not subject to exact calibration by measurement of the dispersion at the site, the information gained by the Applicant prior to the imposition of the modeling techniques was sufficient to develop the models and to give a theoretical verification of the expected impacts from the discharge. The Applicant's belief that the maximum DO deficit caused by the discharge will not exceed 0.1 mg/L is accepted. The dissolved oxygen level in the effluent at the point of discharge will be above 5 mg/L. The Applicant's choice of reaeration rates, CBOD decay rates, NBOD decay rates, discharge rate from the pipeline, hours of operation, average reversing current speed, net non- tidal flow, non-tidal velocity, time lag before NBOD decay, maximum tidal velocity, and other variables and assumptions within the models were acceptable choices. Although the possibility exists of an occasional 5 1/2 day operation in which 10 additional hours of operation are added, this would not be so significant as to set aside the predictions as to the pollutant dispersion. The Applicant's consultant who modeled the dispersion rates did not conduct dye studies to verify or calibrate the actual dispersion in the river. One of the dye studies indicated a lateral spreading rate which was less than that predicted by the model. Notwithstanding this revelation, the overall techniques used by the Applicant in predicting lateral spreading rate are sound and do not present a risk of a greater DO deficit than was predicted based upon incorrect assumptions as to lateral spreading rates. The Applicant's consultant's use of 2,000 CFS as the net non-tidal low flow was a more convincing estimate than the field data collected by the United States Geological Service, given the paucity of information about the flow conditions within the St. Johns River. The Applicant's choices in describing maximum tidal velocities and average velocity are accepted. The critique of the modeling efforts done by the Applicant that was made by Petitioners' consultant, Dr. Parks, in which he concludes that the DO deficit is considerably greater than 0.1 mg/L is not accepted. Comparison of Predicted Impacts of Discharge with Statutory and Regulatory Criteria Inside the Mixing Zone Applicant's assumptions about the increase in nutrient concentrations in the St. Johns caused by the discharge are accepted. This is based on the assumption of a nitrogen value of 52 mg/L which was achieved in bench scale testing of the effluent and which can be achieved in the full scale operation. As the effluent is discharged from the diffuser within the mixing zone, there will be some turbidity problems in that the bottom near the point of discharge. The soft silt there is easily resuspended. When the discharge is concluded, the material will settle back to the bottom. There will be further resuspension when the operation commences again and there is a discharge. The transport of these suspended materials is limited in that the water velocity associated with the discharge is quickly dissipated. This phenomenon will not cause adverse environmental impacts. The mixing zone does not include an area approved by the State of Florida, Department of Natural Resources for shellfish harvesting; it does not exceed the presumptive maximum size set forth in Rule 17-4.244, Florida Administrative Code. Nor does it include an existing drinking water supply intake or any other existing supply intake that would be significantly impaired by the proposed mixing zone. The water in this area is of sufficient depth that it will not support grass beds that are associated with a principal nursery area, such as pond weed, midgeon grass, manatee grass, turtle grass or eel grass which are used to support nursery activities. These grasses are normally found inshore. Although juvenile fish are found throughout this reach of the St. Johns River, and for that matter in the entire lower eighty miles of the St. Johns River, the mixing zone is not of such dimensions that it will preempt the health of juvenile fish. Most of the freshwater fish in this system use the littoral areas for reproduction. Marine and estuarine species do not reproduce in the St. Johns River. There is some reproduction that is occurring with some species, such as catfish. Given the size of the mixing zone, no significant adverse effects will occur with the established community of organisms in this portion of the river. The mixing zone will not otherwise impair designated uses of the St. Johns River. The treated effluent will not create a nuisance condition or violate any other DER standards that apply within the mixing zone. With the advent of the full scale facility, maximum, average and chronic toxicity criteria can be reasonably expected to be met at the point of discharge, within the mixing zone and at the boundary of the mixing zone. As described before, the effects of sediment transport upon discharge are localized. The proposal for a mixing zone takes into account Rule 17-4.244, Florida Administrative Code, in the sense of addressing present and future sources of pollutants and the combined effects with other pollutants or substances which may be present in the ambient waters. One of the concerns which DER has about wastewater is the effect which that pollutant has on organisms within the environment. To gain an impression of that influence, testing is required to establish whether the wastewater is acutely toxic. The testing is known as bioassay assessment. While this assessment is normally done after the grant of a construction permit, when confronted with uncertainty about the quality of the effluent, some testing is beneficial prior to the grant of a construction permit. This is especially true given DER's experiences in dealing with raw effluent of several of the scallop processors, to include Homer Smith, which showed that the raw effluent was acutely toxic. This acute toxicity testing is done by placing test organisms into aquaria containing the effluent and measuring survival of those species over time. Results are described in terms of a measurement of the concentration of the effluent at which 50 percent of the organisms are killed during a prescribed test period. In static testing the organisms are simply exposed to the effluent for the requisite period of time. By contrast, a static renewal test calls for the effluent to be replaced with another sample of the effluent at various intervals within the test period. Finally, a flow through bioassay test calls for a continuous stream of fresh effluent to be introduced in prescribed concentrations over the duration of the test. A bioassay assessment in the static condition was performed related to DAF pilot scale effluent that was collected on April 19, 1985. In this instance Daphnia magna were used as test organisms and demonstrated a survival rate of greater than 50 percent in a 100 percent concentration of effluent over a period of 96 hours in the setting of static and static renewal tests. That survival rate was also shown in lesser concentrations of effluent as well. The April 19, 1985, sample was also used in testing the response of Pimephales promelas. These test organisms did not survive either in the static or static renewal tests. While an hypothesis has been made that acute toxicity was experienced in this test organism attributable to build-ups of ammonia, which is greater with this type of organism than with the Daphnia, due to larger biomass which allows for a greater number of ammonia generating bacteria to be presented in the test aquaria and the fact that the Pimethales excrete more ammonia, these differences do not definitely explain why the Daphnia survived and the Pimephales did not. In the series of static renewal bioassays performed on the wastewater that was collected at the plant on April 29, 1985, and shipped to Lenox, Massachusetts, for bench scale treatment, the test organisms of both types failed to survive for 96 hours. It was discovered that during the course of the test period, levels of ammonia rose rapidly. Trace metals in the treated effluent are principally in the form of stable species, as opposed to free ions. These constituents standing alone are not likely to have caused the mortality in the test organisms. The effect of decomposition of the organic constituents in the waste stream is the most likely explanation of why the bioassays of pilot and bench scale treated effluent did not lead to a satisfactory result. Unionized ammonia, a by-product of organic decomposition, is found to be a principle player in the explanation of why the treated effluent was acutely toxic to the test organisms. The exact cause of toxicity has not been precisely identified. Given the complex nature of the effluent, other potentially toxic substances such as sulfides, amines, and other organic compounds could have contributed to the demise of the test organisms. Moreover, toxicity can increase with combinations of chemicals acting in a synergistic fashion, making their combined effects more devastating than the effect of any single substance. Having in mind the fact that ammonia is a major problem in the survival of test organisms subjected to a bioassay, the question becomes one of what may be done to remove ammonia. The production of ammonia in wastewater would depend upon the presence of bacteria. The proposed DAF system removes substantial numbers of bacteria, thereby limiting the possibility of ammonia build-up, if bacteria are not allowed to recolonize in some part of the system prior to discharge. As discussed before, reduction of bacterial activity can be achieved within the proposed treatment system. This is unlike the experience with the bench scale and pilot scale testing that was done on the effluent in which a substantial amount of time transpired before subjecting the test organisms to the effluent and in which a substantial amount of time transpired while the test organisms were being subjected to static and static renewal procedures with the same effluent. The time intervals contributed to the build- up of toxic levels of ammonia in the effluent. The system which is proposed in this instance can avoid the problem of time as it relates to the build-up of levels of ammonia. To further reduce the influence of retention of the waste product, flow through bioassay testing would be the most appropriate measurement of the survivability of the test organism in that it would be responding to real case conditions pertaining to the quality of effluent and its potential toxicity. Under these circumstances, it is reasonable to believe that in a flow through bioassay test of the full scale treatment system, the test organisms could survive. This determination is reached given the reduction in retention time compared to the bench and pilot scale testing, which reduces ammonia, with further ability to reduce ammonia by frequent removal of residual materials from the sludge drying bed and sump pit and taking into account basic improvements in treatment efficiency associated with the full scale system. In addition, the pH of the effluent can be regulated to avoid toxicity in the ammonia which is associated with inappropriate balance within the pH. While a 96-hour LC-50 cannot be calculated with the results of bench scale and pilot scale testing, a reasonable possibility exists for the establishment of that measurement with the advent of a flow through bioassay. There is sufficient similarity between the effluent in the pilot and bench scale testing and the expected effluent in the full-size system for the bioassay testing that was done in those limited systems to give a meaningful indication of the probability that the Applicant can pass a flow through bioassay. Applicant can be reasonably expected to produce an effluent in the mixing zone which will not exceed the 96 hour LC-50 for acute toxicity. As with the circumstance of ammonia, pH can be controlled within the system to address the implications of changes in pH as it pertains to other pollutants in the wastewater. Ammonia production can be influenced by the amount of alkalinity in the effluent and the receiving waters. Alkalinity has not been measured thus far. Alkalinity could be established for the effluent and receiving waters and dealt with if it was suspected as being an explanation of problems with the build up of ammonia which might exceed DER standards. The discharge from the Applicant's plant will not cause long-term problems with low DO, high nutrients, algal imbalances, and chronic toxicity. Outside the Mixing Zone Those constituents within the waste stream, to include those for which a mixing zone was sought, will comply with applicable water quality standards at the boundary of the mixing zone. The dissolved oxygen deficit at its maximum can be expected to be in the neighborhood of 0.1 mg/L and will be exerted somewhere in the range between 1 and 2.5 km downstream of the point of discharge across the width of the plume in worst case conditions. This deficit is not of a dimension which is easily detectable. The implications of that deficit are difficult to perceive in terms of tangible environmental consequences. While a deficit in the range of 0.1 mg/L has some relevance in the DER permitting decision, that deficit as it is dispersed is not expected to cause or contribute to violations of water quality standards in the main channel of the river or in the inshore and embayment areas. While it is true that there are periodic fluctuations of dissolved oxygen below 5 mg/L, DER, as a matter of present policy and professional judgment believes that in this system which evidences characteristics of a clean well-flushed, unstratified water body occasional readings of low DO are not regarded as an indication of violation of water quality standards. This speaks to the main channel area of the river where the only quantifiable influence is expected. The facts presented in this case support the soundness of this policy choice. Petitioners presented the testimony of former officials within DER, namely Parks and Young, who stated that dissolved oxygen standards of 5 mg/L are applied at all times and at all places. They felt that the DER policy was to the effect that permits would not be granted for discharge in any circumstance where the DO concentrations are substandard in the ambient waters, regardless of the amount of decrease or deficit that would be promoted. Parks spoke of the availability of site specific alternative criteria, variances, exceptions or exemptions from the terms of the water quality rule. Having considered these remarks, the present DER policy of allowing the permit to be granted in the instance where occasional violations of ambient water quality standards related to 5 mg/L occur, in the face of the small deficit which is involved in this case, is the better choice. Further, it is a choice that is not so inconsistent with prior practices as to be arbitrary in nature. Finally, DER's position that it would be unadvisable to require a request for site specific alternative criteria, variances, exceptions or exemptions in circumstances such as this case is accepted, when taking into account the problems which would be presented to the agency in administering the permit program, should each Applicant who is confronted with occasional violations below standards for dissolved oxygen have to seek extraordinary relief. While the facts do identify that some pollutants can reach the embayment areas on the eastern shore, the facts do not depict a circumstance in which the amount and quality of that effluent will be such that it will cause or contribute to dissolved oxygen violations in those areas. The water quality in the embayment areas is lower than that in the main area of the river due to inadequate flushing. The areas inshore do not interact with the main channel in a way that would take advantage of the faster moving currents found in the main channel as this interaction might promote a better quality of water. In view of the situation in the embayment areas, the Applicant, on advice of his consultants, moved the proposed location of the discharge into the main channel away from the areas which were under greater stress in terms of dissolved oxygen values and in doing so avoided damage to these areas. The current velocities in the area east of the main channel are weak. There is a substantial distance from the point of discharge to the inshore areas. As the effluent moves toward the inshore or nearshore areas it will become so diluted it will not have an adverse influence on dissolved oxygen. Not only the distances involved, but also the fact that water flowing near the surface is well aerated contributes to the dilution of the effluent as it approaches the shore. Although it has been shown that some stress in the grasses along the eastern shoreline has occurred and the existence of blue-green algae has been shown, together with indications of undesirable algal production, the nutrients which are part of the effluent at the point of discharge are not expected to cause an imbalance in the natural populations of flora and fauna or create nuisance conditions or violations of transparency standards. The nitrogen increase could cause an increase in algal production in the order of one percent, which is inconsequential. The treated effluent will not adversely effect biological integrity of the St. Johns River. The benthic microinvertebrate community in this part of the river is fairly low density due to the fluctuations in salinity levels and predation by fish and blue crabs and given the nature of this substrate which is unstable with low levels of dissolved oxygen. The organisms that are predominant have a tolerance to siltation and fluctuations in dissolved oxygen. The treated effluent will not adversely effect the microinvertebrate community. Petitioners point out the fact that when DO concentrations decrease below optimum levels, fish and other organisms suffer. The fish reduce their movement, feeding and reproduction and they are less disease resistant. They are placed in a position of having to leave the area or risk death if the impacts of the decrease in dissolved oxygen are severe. The influence of the effluent at the point of discharge in this project is not expected to have significant impact on fish and other organisms within these topics of concern expressed in the paragraph. Even though the dissolved oxygen deficit extends in amounts below 0.1 mg/L as far as 2.1 km upstream and 4.5 km downstream and within a wide breadth of the center portion of the river, those deficits will not be significant to the water quality. The BOD associated with the discharge, allowing for mixing will not depress dissolved oxygen levels below DER standards of 5 mg/L. The combination of BOD and nutrient discharge will not cause an imbalance of algal production in the river, nor will it contribute to the dominance of nuisance algal species. The BOD nutrient loading associated with the discharge into the St. Johns will not promote significant ecological impacts on the St. Johns River, to include the possibility of more frequent and severe algae blooms, increase in benthic oxygen demand, risk of increase eutrophication, destruction of grass beds or decline in the fishery. With the advent of discharge in the St. Johns DO fluctuations in the river will not be greater nor will there be an occurrence of a swing from substandard dissolved oxygen levels to supersaturated dissolved oxygen. While the discharge from the Applicant's plant contains pollutants such as cadmium, zinc, arsenic, copper and organic decomposition products, the treatment provided the wastewater is expected to overcome any acute toxicity associated with these materials individually or in combination. Chronic toxicity is not expected related to these materials. The effects of these materials are not expected to cause physiological and behavioral responses which are abnormal in organisms such as reduced locomotion and reproduction or increase susceptibility to diseases to include ulceration and increased mortality. Treatment contemplated and provision of a mixing zone will allow compliance with the standards related to cadmium. Reference has been made to a development known as St. Johns Harbor which is in the vicinity of the proposed discharge and can be expected to promote some pollution in Palmo Cove and the St. Johns River. Although St. Johns Harbor development is proceeding through stages of permit review, it does not appear that it has reached a place in which exact information about its implications as a pollution source can be set out. In discussing the St. Johns Harbor Development, Petitioners emphasized that this eventuality and other matters which deal with cumulative impact have not been satisfactorily addressed. There is no indication than any other substantial development or activity other that St. Johns Harbor is contemplated in this area associated with the permit review at hand. St. Johns Harbor eventually hopes to develop 3000 residential units. It has received the approval of the Northeast Florida Regional Planning Council for the initial phase of development. It has been reviewed by the Florida Fresh Water Game and Fish Commission. The developers are proceeding with the project to include the sale of lots. Nonetheless, that development has not reached the phase where its implications would form the basis of a denial of this project based upon the theory of cumulative impact. While Petitioners contend that stormwater runoff from the St. Johns Harbor project will be a problem, assuming an inadequacy in the design which that developer employs to deal with that matter, this eventuality is not expected based on a review on the facts presented. Reference is made to the Ulcer Disease Syndrome which fish in the St. Johns have suffered from. The principal area in which this event has occurred is north of the area expected to be influenced by this discharge. Nonetheless, diseased fish have been found in Palmo Cove. This Ulcer Disease Syndrome is caused by heavy metals and hydrocarbons, and these materials act in league. The advent of additional heavy metals and other pollutants, such as those being discharged from the Applicant's plant could cause further deterioration in the condition of fish suffering from Ulcer Disease Syndrome. Having considered the facts, this outcome is not expected. Ambient levels of 18 other pertinent pollution constituents in the vicinity of the point of discharge were ascertained by the Applicant's consultants on the basis of field observations and historical United States Geological Survey and Florida Game and Fresh Water Fish Commission data. This formed a basis of an assessment of average and worst case values. This information indicates compliance with those parameters for purposes of water quality standards at the point of discharge. Implementation of Construction Permit Permit Conditions Applicant's Exhibit A-10 is a copy of the DER intent to issue the construction permit. It sets forth seventeen specific permit conditions, and these conditions should be imposed in the permit. The following are additional conditions that should be set forth in the construction permit: The operation and maintenance manual required by original Condition 10 shall provide that the DAF treatment system be cleaned regularly with a mild chlorine solution and that the wastewater from this maintenance be placed in a vehicle and carried off the premises for disposal at an appropriate location. This wastewater from the cleanup shall not be discharged from the plant into state waters. The operation and maintenance manual shall provide that a dosage level of chlorine to clean the pipeline that will result in comp- liance with all water quality standards at the end of the pipeline be added to a fraction of fresh water used to flush the system at the cessation of discharges each day. DER must approve this dosage amount before it becomes part of the operation and maintenance manual. The operation and maintenance manual shall set forth a regular schedule for pumping the accumulated sludge or solid materials from the sump pit. The operation and maintenance manual shall provide that as much as 50 gallons per minute of fresh tapwater may be added to recycled wastewater for pressurization. Any discharge created with this addition may not exceed 250 gallons per minute. Any discharge created above 200 gallons per minute shall be consti- tuted only of tap water. Two machine scallop processing operations at the plant will be limited to an average of 18 hours per day and no more than 90 hours in a week. Monitoring in Trout Creek shall continue as specified in paragraph 17(E) of the Consent Order as long as discharges into Trout Creek continue. On each occasion when the DAF treatment system is in operation, the Applicant shall have a fully trained operator on site. The terms of the construction permit shall expire on December 31, 1986. The constructed pipeline shall be leak tested once a month from June to September and every other month during other months of the year. If a leak in the pipeline is detected it shall be repaired within 20 days and retested for leaks within 15 days thereafter. The carrying out of any leak testing and repairs shall hereunder shall be certified by a professional engineer. Pre-pipeline Operations Petitioners have pointed out the fact that when two or more pollutants are present, as in the instance of the effluent discharged by the Applicant's plant, those pollutants tend to act in a synergistio manner. That can exacerbate the circumstance where you find low dissolved oxygen. This is particularly a matter of concern when discussing Trout Creek. This is unlike the impacts of the discharge into the St. Johns River which are not expected to exceed standards or promote adverse effects. The implications of operation within Trout Creek to allow necessary permit review by DER and the State of Florida, Department of Natural Resources can be overcome once the discharge is withdrawn from Trout Creek and may be addressed by DER more immediately if the dissolved air flotation unit, after a reasonable period of adjustment, does not perform in the fashion that it appears to be capable of. In the instance of discharge into Trout Creek, the material discharged tends to remain in that area for a relatively long period in that the creek is small and has very little flow and poor flushing characteristics. DO levels will be depressed, the presence of a deficit in dissolved oxygen caused by the discharge from the DAF unit would increase the probability of fish kills when contrasted with a circumstance where there is no further deficit of dissolved oxygen. Given the explanation of why a fish kill occurred based upon the past use of fly bait by the Applicant and the fact that there is no indication of fly bait in the present plans, a fish kill in Trout Creek in the time of interim discharged does not seem probable. With the advent of discharge into Trout Creek, the possibility is enhanced for algae blooms and increased eutrophication. There would also be some accumulation of toxic substances. Additionally, there would be some influence on juvenile fish which are more sensitive to pollutants and the possibility exists that it could reach levels that are lethal to bass larvae and juvenile sports fish. The creek would lose some of its viability as a nursery and some fish would leave the creek. These events are not irreversible and can be reasonably remedied with the cessation of discharge into the creek. Moreover, as in the instance with the problem with fish kills, if some set of circumstances attributable to the discharge were to occur in such dimensions as to cause long term impacts in Trout Creek, DER could take action against the construction permit. Dissolved oxygen in Trout Creek can be below the 5 mg/L standard. Data of the E.S.E. group showed that at Highway 13 bridge, approximately fifty yards from the plant in December 1984 and January 1985, values were as low as 0.1 and 0.2 mg/L, and readings could be frequently below 2 mg/L at Highway 13. In April through June 1985, periodic surface dissolved oxygen concentrations were in the range of 3 mg/L and as low as 2.4 mg/L. DO concentrations generally found at the bottom of Trout Creek could be as little or lower than 1 mg/L at times. In July 24, 1985, at the time when the plant had not been operating for approximately a month, the DO concentrations were 2.9 mg/L at mid-depth and 0.8 mg at the bottom. Within Trout Creek in the area of the Pacetti marina, Consultant White measured DO concentrations in the range 1-3 mg/L. On August 10, 1985, six weeks after operations had stopped at the Smith facility, DO concentrations were found to be 3 mg at the surface, less at mid-depth and 0 near the bottom. Computer modeling was not done to ascertain the impacts of a discharge directly into Trout Creek from the DAF unit. The modeling done by the Petitioner's consultant, Parks, using some of the concepts considered in the Applicant's modeling for the St. Johns River is inapplicable to the circumstances in Trout Creek. Trout Creek has also served as a nursing ground for reproduction and habitat for young fish. During the course of the operations by the Applicant in the discharge of essentially untreated effluent, the beds of bass and sun fish have not been seen within the creek. Water quality improves with the DAF unit and sediment loading by heavy metals decreases. Trout Creek is a stressed system at present. It has low levels of dissolved oxygen, high nutrient concentrations and the presence of heavy metals in undesirable amounts. The low numbers of pytoplankton species give some indication of a highly stressed ecosystem. The present officials of DER, Palmer, Owen and Fox, expressed their concerns about dissolved oxygen in those instances where there would be a decrease in ambient DO concentrations. This has particular importance in discussing the problems associated with the discharge into Trout Creek, as opposed to the point of discharge contemplated in the St. Johns River, which risk is minimized given the characteristics of that area and the higher readings of ambient dissolved oxygen in that water, as contrasted with low readings within Trout Creek. A literal interpretation of the position of the agency officials would lead to the conclusion suggested by the Petitioners that no discharge should be allowed into Trout Creek, even on an interim basis. However, such a position would be inherently unfair considering the fact that some discharge would occur into the creek before the installation of the pipeline, whether based upon simultaneous permit review by DER and the State of Florida, Department of Natural Resources in the easement case or sequential review as is contemplated in this instance. Admittedly, the amount of time involved in the discharge into Trout Creek increases in view of the severance of the easement case from the present proceedings. This circumstance occurred in view of the desire on the part of the DNR to see the actual treatment efficiencies involved with the dissolved air flotation unit as opposed to the theoretical possibilities of that equipment. In the present situation, it would be a reasonable policy choice for DER to allow an interim discharge into Trout Creek pending the opportunity for DNR to monitor the quality of the effluent produced by the DAF unit and make a decision about the easement, thus allowing installation of the pipeline if the easement is granted. This arrangement contemplates that DER should closely monitor the quality of the effluent produced by the DAF unit, to make certain, after the Applicant has been given the opportunity to make necessary adjustments to that unit, that the Applicant is not allowed to continue to discharge into Trout Creek following this period of adjustment, when it is shown that the Applicant's equipment is not performing as expected. In any event, the discharge of effluent into Trout Creek will continue over a limited period of time and the system can be expected to quickly return to its healthier state after the removal of the discharge from Trout Creek. This has occurred in the past when the operations of the plant ceased and occurred at a time when the wastewater was of a more damaging quality than contemplated by that associated with the DAF unit. In summary, it would be a reasonable policy choice to allow the interim discharge into Trout Creek on this occasion. Dredge and Fill Permit Characteristics of Pipeline Corridor The pipeline corridor encompasses portions of Trout Creek, Palmo Cove and the St. Johns River. The bottom sediments where the pipeline is to be installed are constituted of soft, and sometimes extremely soft, flocculent silt. Although these sediments are easily resuspended, dispersement of these sediments will only occur while the pipeline is being installed. In placing the pipeline, it is the intention of the Applicant to simply allow the pipe to sink into the sediment. The soft substrate is several feet deep in some places within the proposed corridor. Nonetheless, the pipe is expected to stabilize as it sinks into the material. There are places within the corridor where a crusty material may be found on the surface of or just beneath the substrate. These are locations where jetting or mechanical excavation may be necessary. Jetting may also be necessary along the approximately 155 foot stretch of the corridor that crosses the State of Florida, Department of Transportation right-of-way. This requirement would occur in view of the fact that the Department of Transportation mandates that the pipeline be at a minimum of 30 inches below the creek bottom. In those instances where jetting or other mechanical excavation might be utilized, silt screens would be used to control the short term turbidity. In the areas within the pipeline corridor where tree trunks and branches have been found, these obstructions can be removed without incident. Taking into account the nature of the substrate, at the location where the diffuser will be placed at the end of the pipeline, special attention will be given to that installation to avoid having the diffuser settle into the soft silty material. Given the fact that the silty material is several feet deep and the related fact that the Applicant has not done specific testing of the depth, density and compressibility of this silty material, careful attention should be given to anchoring the diffuser and making certain that the exhaust ports within that device are correctly positioned. The need for this close attention is borne out by the fact that a test pipe which was placed in the silty material settled approximately two and a half feet within several weeks. The matter of the security of the diffuser is also critical, given the fact that the diffuser will be located within one foot of the bottom. Through proper installation, the Applicant can avoid having the diffuser settle into the silty material over time. The installation techniques satisfactorily address the potential problems. Projected Impacts (1) Environmental The icthyological and macroinvertebrate communities within the pipeline corridor have been examined by the Applicant in the person of his consultants. It was found that there are a variety of freshwater fishes within Trout Creek, such as large-mouth bass and sun fish, and a moderate density of macroinvertebrates. The St. Johns River proper is dominated by estuarine and marine aquatic organisms. Infaunal macroinvertebrate densities in the area of the pipeline corridor in the St. Johns River are not high. In placing the pipeline, the effects on aquatic and benthic communities within the corridor or upon water quality do not pose a threat to those communities or to water quality. During the installation of the pipeline, some disturbance of the benthic organisms can be expected; however, those organisms will be able to recolonize quickly. The mere presence of the pipeline is not expected to cause long-term impacts on biological resources or water quality. (b) Navigation In the area of the intended placement of the pipeline related to Trout Creek, boating clubs utilize that vicinity for purposes of anchorage. Those clubs have as many as twenty to thirty boats whose size varies from twenty to fifty-five feet in length. Some of those boats carry anchors which can weigh forty-five pounds or more. Typically, in anchoring one of these craft, the anchor rope is tied down and the engines reversed to set the anchor. Although testimony was given to the effect that the anchors being set might puncture the pipeline, given the explanation about the placement of the pipeline and the nature of the pipe itself, problems with puncturing the pipeline as it might interfere with navigation or environmental concerns such as turbidity plumes due to a puncture of the pipeline are not expected. Nor are the activities associated with retrieval of the anchors via the use of electric winches or hoists seen to be a problem in the sense of snagging the pipeline and rupturing the pipeline when the anchors are brought aboard the vessels. In summary, the pipeline will not be an interference to navigation in the sense of boat anchorage or other aspects of navigation associated with boating. Moreover, the Applicant is willing to indicate the location of the pipeline on navigational charts to assist boaters in avoiding potential problems with anchorage. This is a desirable arrangement and should be done. Comparison of Projected Impacts with Statutory and Regulatory Criteria The dredge and fill activities associated with the pipeline are not expected to cause long-term or short-term adverse impact on biological resources or water quality, or are they expected to interfere with the conservation of natural resources or marine productivity or interfere with navigation to such an extent to be contrary to public interest. The placement of the pipeline will not promote unacceptable interference with fish and other natural resources or destroy clam beds or grass flats, such as would be contrary to the public interest. Permit Conditions Appropriate permit conditions are as follows: Installation of the pipeline shall be conducted within Trout Creek only during weekdays. Pipeline installation activities within Trout Creek shall not block navigation. The pipeline shall be constructed within 60 days following the receipt of all necessary approval, to include the grant of an easement by the State of Florida, Department of Natural Resources for the placement of the pipeline over submerged sovereignty lands. All conditions set forth in the DER draft permit. See Applicant's Exhibit A-57.

Florida Laws (5) 120.57403.061403.085403.087403.088
# 9
DEPARTMENT OF ENVIRONMENTAL REGULATION vs. VIRGINIA W. DEY AND KEYSTONE WATER COMPANY, 84-002954 (1984)
Division of Administrative Hearings, Florida Number: 84-002954 Latest Update: Nov. 01, 1991

Findings Of Fact The parties stipulated, and it is so found, that Petitioner, DER, has jurisdiction over both the issues and the Respondents Dey and KWC. KWC owns and operates a water system which supplies water to both residential and commercial customers in the City of Keystone Heights, Florida. Virginia Key is the President of KWC, a member of the Board of Directors of the corporation, and one of the five stockholders. The other stockholders are her sisters. The five sisters are the daughters of the late G. E Wiggins, and inherited the company from him at his death in 1969. Mr. Wiggins developed the water company in the 1920's and operated it until his death. KWC came under the jurisdiction of the Florida Public Service Commission (PSC) just prior to Mr. Wiggins' death. At that time, pursuant to a PSC requirement, it was assessed and valued at a sum in excess of $250,000.00 by a consultant firm hired for the purpose. As of late November, 1984, KWC served approximately 752 residential customers which, when multiplied by an average 2.5 persons per family factor, results in a total of approximately 1,880 residential inhabitants served by the water system. In addition, the system serves 105 commercial customers. It is impossible to estimate with any reasonable degree of accuracy the number of individuals involved in the commercial service. The system consists of three wells drilled in 1940, 1946, and 1960 to a depth of 350, 450, and 492 feet respectively. Total yield from the three wells is normally 1,350 gallons per minute. The wells are generally well protected against surface water infusion, are normally not subject to inundation, and have had no salt water infiltration problems in the past. At the present time, well number 2, drilled in 1946, with a 350 gpm yield is out of service. The water, when pumped from the ground, is stored in two tanks-one with a 60,000 gallon capacity and the other with a capacity of 800 gallons. Both tanks are steel. Chlorine is added to the water in each storage situation by a hyper-chlori- nation system before the water is sent to the storage tank. The distribution system is made up of 6" and 2" diameter pipe. In March, 1984, two different inspections of the water system, done by, in one case, an environmental specialist and in the other, an Engineer I with DER, revealed several deficiencies in the maintenance and operation of the system all of which constitute violations of DER rules. Specifically, these include (1) failure to provide an auxiliary power source in the event the main pumping capability of the system is lost, (Rule 17-22.106 (3)(a); (2) failure to utilize for the system an operator certi- fied by the state with a Class C license, (Rule 17-22.107(3)(b); (3) failure to maintain a free chlorine residual in the water of at least 0.2 ppm in the system, (Rule 17-22.106(3)(c); (4) failure to maintain a minimum pressure of 20 ppi in the distribution system, (Rule 17-22.106(3)(f); (5) failure to have a gas chlorination facility, (Rule 17-22.106(3)(d); and (6) failure to obtain proper permits to expand the distribution system, (Rule 17-22.108 (1)(b) Rule 17-22, F.A.C., sets up requirements for safe drinking water and was designed to establish guidelines and standards for facilities and water and to bring water into compliance with the Federal Act. Twenty ppi of pressure in the system was adopted as a standard minimum for residual pressure to protect against outside contaminants getting into the water system. Such contaminants could come from ground water, leaks, and water in storage tanks attached to the system such as toilet tanks, being aspirated into the system. Also a certain amount of pressure is required to operate appliances. Normally minimum pressure is found in areas at the edge of the system and in those areas where inadequate chlorination is located. They interact and both pressure and chlorinization are required. Chlorine can be injected into the system generally in two ways: the first is through gas chlori- nation and the second, through hyper-chlorinization as is used in the instant system. The effectiveness of hyper-chlorinization is limited, however, by the size of the system. Basically, hyper- chlorinization is effective when the demand in the system for pressure is no more than 10 ppi. Above this, gas chlorinization is necessary. As late as January 4, 1985, Mr. Dykes went to Keystone Heights to test the system. His tests showed that 11.9 ppi is the average daily flow per 24 hours for the last 12 months. Since this figure is above 10 ppi, in his opinion, a gas chlorinization system would be needed. Chlorine is used to purify water because it has been shown, through long use, to prevent disease. The requirement for a residual chlorine level in water, therefore, is consistent with that concept to insure chlorine is always in the water in sufficient quantity to prevent disease. Respondent's plant has less than the 0.2 residual that is required under the rule. This insufficiency is caused by the inadequate chlorinization system which has insufficient capacity to provide the appropriate amount of chlorine. At the current level, it is providing only approximately 60 percent of the needed chlorine. To correct this deficiency Mr. Dykes recommends installation of a gas chlorinization system. In addition, the pneumatic tank storing the water from the number 3 well does not give sufficient detention time to allow for appropriate reaction of the chlorine contained in the water before the water is released into the distribution system. Another factor relating to the lack of adequate pressure in the system is the fact that, in Mr. Dykes' opinion, too much of the system is made up of 2" diameter water line. A line of this small diameter prevents the maintenance of adequate pressure especially in light of the fact that there are numerous old lines in the system some with corrosion and scale in them which tends to reduce pressure. This latter factor would be prevalent even in the 6" lines. The current plant manager, Mr. Cross, who has been with Respondent for approximately 4 years is, with the exception of one part time employee, the only operations individual associated with the plant. As such, he repairs the meters and the lines, checks the pumps, the chlorinator, and checks and refills the chlorine reservoir on a seven day a week basis. Be learned the operation of the plant from his precedessor, Mr. Johnson, an unlicensed operator who was with the company for 10 years. Mr. Cross has a "D" license which he secured last year after being notified by DER that a license was required. It was necessary for him to get the "D" license before getting the required "C" license. At the present time, he is enrolled to take courses leading toward the "C" license. At the present time, however, he is not, nor is anyone else associated with KWC, holding a license as required. The rule regarding auxiliary power provides that all community systems serving 350 or more persons shall have standby pumping capability or auxiliary power to allow operation of the water treatment unit and pumping capability of approximately one-half the maximum daily system demand. Respondent has admitted that the system is not equipped with an auxiliary power source and it has already been established that more than 350 persons are served by the system. Respondent also admits that subsequent to November 9, 1977, it constructed main water lines for the system which required the obtaining of a permit from either the Petitioner or the county health unit. Respondent admits that it did not obtain or possess a permit to do the additional construction referenced above from either DER or the Clay County Health Department prior to the construction of the water lines referenced. The inspections referenced above, which identified the problems discussed herein, were accomplished by employees of Petitioner, DER, at a stipulated cost of $898.10. Respondent contends, and there is no evidence to the contrary, that there have been no complaints of contaminated water and that the monthly water samples which Mr. Cross forwards to the Clay County Health Department have been satisfactory. Mr. Cross also indicates that a September, 1983 DER analysis of water samples taken from the system was satisfactory. However, bacteriological analysis reports on water collected from Respondent's system on July 11 and 27, 1983, reflect unsatisfactory levels of either coliform or non-coliform bacteria in the water requiring resubmission of test samples. Respondent also contends that no one has ever gotten sick or died from the water furnished by the system and there is, in fact, no evidence to show this is not true. Even though so far as is known, no one has ever been made sick from the water in the system, in Mr. Dykes' opinion, the risk is there. As a result of the defects identified in this system, insufficient chlorine is going into the system to meet reasonable health standards. Though this does not mean that the water is now bad, it does mean that at any time, given a leak or the infusion of some contaminant, the water could become bad quickly, and the standard established by rule is preventive, designed to insure that even in the case of contamination, the water will remain safe and potable. Respondent does not deny that it is and has been in violation of the rules as set out by the Petitioner. It claims, however, that it does not have sufficient funds available to comply with the rules as promulgated by DER. Respondent has recently filed a request for variance under Section 403.854, Florida Statutes, setting forth as the basis for its request that it does not have the present financial ability to comply with any of the suggested or recommended corrective actions to bring its operation into compliance with the rules. Mr. Protheroe, the consulting engineer who testified for Respondent has not evaluated the system personally. His familiarity with it is a result of his perusal of the records of the company and the Petitioner. Based on his limited familiarity with the system, he cannot say with any certainty if it can be brought into compliance with, for example, the 20 ppi requirement. There are too many unknowns. If, however, the central system was found to be in, reasonably good shape, in his opinion, it would take in excess of $100,000.00 to bring it within pressure standards. To do so would require replacement of the 2" lines, looping the lines, and cleaning and replacing some central system lines as well. In his opinion, it would take three months to do a complete and competent analysis of the system's repair needs. Once that was done, he feels it would take an additional three months to bring the plant into compliance with DER requirements. Other repairs, such as those to the lines outside the plant, would take longer because some are located in the downtown area and have interfaced with other utilities. This could take from three to four months if the money were available to start immediately. Here, however, it has been shown that it is not. Consequently, to do the study and then, if possible, procure the funds required, could take well in excess of six months or so. Mr. Protheroe contends, and there is little if any evidence to indicate to the contrary, that to replace the current system with a new one entirely as it is currently constituted would cost at least $250,000.00. However, in his opinion, no one would ever put in a new system similar to the one currently there. He cannot say how much it would cost to buy the system and make the necessary corrections to it to rectify the deficiencies. His familiarity with the system is not sufficiently complete to do this. He cannot say exactly how much the system is worth in its current state, but he is satisfied that it is worth more than $65,000.00. In that regard, Mrs. Dey indicated that in her opinion, the fair market value of the system is currently at $250,000.00. At the present time, there are current outstanding loans in excess of $9,000.00 at 16 percent interest. This current loan basis has been reduced from a higher figure. In 1977, the company borrowed $15,000.00 at 9 percent. In 1981, it borrowed $5,000.00 more at 18 percent. In 1982, the loans were consolidated at an increased rate of 16 percent and the officers have been advised by their current creditors that they cannot borrow any more money for the system in its current state. They would sell the system if a reasonable price could be realized. However, any inquiries on prospective purchases have been chilled by a low rate base assigned by the PSC. In that regard, the City of Keystone Heights offered to purchase the system for $59,000.00. This offer was declined as being unreasonable. Nonetheless, in light of the low rate base assigned by the PSC in its order issued on December 21, 1981 of slightly over $53,000.00 the offer by the city of $59,000.00 is not completely out of line. A certified public accountant, in KWC's December 31, 1983 financial report assigned a valuation of approximately $62,000.00, again a figure only slightly higher than that offered by the city, but substantially less than the $175,000.00 price asked of the city by Respondent Dey and her sisters. Mrs. Dey indicated that to the best of her knowledge the PSC denied rate increases for the purposes of improvements. In the presentation before the commission, respondents relied exclusively on the services of their attorney and accountant. Evidence from Mr. Lowe, of the PSC, however, indicates that KWC has never requested a rate increase to finance any of the improvements called for here. In the PSC order referred to above, Respondent was awarded a 12.25 percent rate of return on its rate base. This figure was an amalgam of a more than 13 percent rate on equity and a lesser figure for cost of doing business, including debt. At the time of that hearing, however, the debt cost was based on a 9 percent interest figure. The 16 percent interest figure came afterwards and no hearing has been requested based on the higher interest rate and it is so found.

Recommendation Based on the foregoing findings of fact and conclusion of law, it is, therefore: RECOMMENDED that Respondents Virginia W. Day and the Keystone Water Company be ordered to comply with the Orders for Corrective Action previously filed herein to bring the water system in question in compliance with the Florida Safe Water Drinking Act without delay or suffer the penalties for non- compliance called for by statute and, in addition, pay costs of investigation in the amount of $898.16. RECOMMENDED in Tallahassee, Florida this 19th day of February, 1985. ARNOLD H. POLLOCK Hearing Officer Division of Administrative Hearings The Oakland Building 2009 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 19th day of February, 1987. COPIES FURNISHED: Debra A. Swim, Esquire Assistant General Counsel Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32301 John E Norris, Esquire 10 North Columbia Street Lake City, Florida 32055 Victoria Tschinkel, Secretary Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32301

Florida Laws (1) 403.854
# 10

Can't find what you're looking for?

Post a free question on our public forum.
Ask a Question
Search for lawyers by practice areas.
Find a Lawyer