Elawyers Elawyers
Ohio| Change
Find Similar Cases by Filters
You can browse Case Laws by Courts, or by your need.
Find 49 similar cases
DEPARTMENT OF HEALTH vs RICHARD A. SIMON, D/B/A ANYTIME SIMON`S SEPTIC SERVICE, 97-005979 (1997)
Division of Administrative Hearings, Florida Filed:Fort Myers, Florida Dec. 23, 1997 Number: 97-005979 Latest Update: Jan. 19, 1999

The Issue The issue is whether Respondent is guilty of discharging untreated septage at a site that Respondent was not permitted to use, in violation of Rule 10D-6.052(7)(b), Florida Administrative Code; and operating two septic pumping trucks, even though authorized to operate only one such vehicle, in violation of Rules 10D-6.052(2)(a) and 10D-6.052(1), Florida Administrative Code; and, if so, what penalty should be imposed.

Findings Of Fact Since 1989, Respondent has been a registered septic tank contractor. Petitioner annually issues Respondent a separate permit to pump, transport, and dispose of septage. Petitioner or its predecessor has disciplined Respondent on two occasions. On November 15, 1994, Respondent paid a $500 fine after the issuance of an administrative complaint for discharging improperly treated septage, and, on August 19, 1996, Petitioner issued a final order imposing a $500 fine and 90-day suspension against Respondent for repairing a septic tank system without a permit. Respondent’s attempts to explain away these violations were unpersuasive. At the time in question, Respondent’s permits allowed him to operate only one truck in transporting septage--a 1988 Ford--and to discharge septage only at one location--Hunter Land Application Site. Respondent’s permits also required him to stabilize septage only at one location--A-1 Septic Tank Service’s Lime Stabilization Facility. On August 15, 1997, Respondent operated or caused to be operated the permitted 1988 Ford truck and another unpermitted truck for the purpose of receiving and transporting septage that Respondent had pumped from septic tanks. Respondent and one of his employees drove the loaded trucks to J. R. Brooks & Sons Ranch, where they landspread the septage that they had been transporting. They dumped at this site about 8000 gallons of raw septage containing condoms, tampons, vegetable matter, and other items of the type normally found in unscreened septage pumped from septic tanks and grease traps. Petitioner had not approved the J. R. Brooks site for discharge of septage pumped from septic tanks. The Department of Environmental Protection (DEP) had designated the J. R. Brooks site for use by Resource Tech, which transported wastewater residuals from the Dade County Municipal Treatment Plant and discharged them at the J. R. Brooks site. The permit allowed Resource Tech to discharge wastewater residuals with only minimal levels of pathogens. DEP calculates the carrying capacity of sites such as the J. R. Brooks site based on the amount of material that they receive from permitted, disclosed discharges. After learning that the J. R. Brooks site had received unpermitted discharges, DEP determined that it must close the site and find a new one due to public-safety concerns. Respondent also failed to stabilize the septage with lime prior to discharging it on the J. R. Brooks site. The purpose of adding lime to septage is to kill pathogens. The J. R. Brooks site drains through ditches into nearby wetlands. From there, runoff drains into the Estero Bay. The untreated septage discharged by Respondent presents a greater threat to wildlife and public safety than do the wastewater residuals remaining after wastewater treatment that Residual Tech was authorized to discharge at the site. At the time of the hearing, Respondent was negotiating the sale of the business, but the buyers needed to operate under Respondent’s certificate until they could qualify to obtain one. However, Respondent admitted that he had someone else available to qualify the buyers’ operation for a certificate.

Recommendation It is RECOMMENDED that the Department of Health enter a final order revoking Respondent’s certificate as a septic tank contractor. DONE AND ENTERED this 9th day of September, 1998, in Tallahassee, Leon County, Florida. ROBERT E. MEALE Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 Filed with the Clerk of the Division of Administrative Hearings this 9th day of September, 1998. COPIES FURNISHED: Susan Mastin Scott Chief Legal Counsel Department of Health Post Office Box 9309 Fort Myers, Florida 33902-9309 John Charles Coleman Coleman & Coleman Post Office Box 2089 Fort Myers, Florida 33902 Angela T. Hall, Agency Clerk Department of Health Bin A02 2020 Capital Circle Southeast Tallahassee, Florida 32399-1703 Pete Peterson, General Counsel Department of Health Bin A02 2020 Capital Circle Southeast Tallahassee, Florida 32399-1703

Florida Laws (4) 120.57386.01386.041489.556
# 1
DEPARTMENT OF HEALTH AND REHABILITATIVE SERVICES vs. MARATHON TRAILERAMA, INC., D/B/A MARATHON TRAILERAMA, 84-004152 (1984)
Division of Administrative Hearings, Florida Number: 84-004152 Latest Update: Jul. 16, 1985

Findings Of Fact Mr. Dayton Andrews is the President and owner of half of the stock of Marathon Trailerama, Inc. d/b/a Marathon Trailerama, Respondent, located at 1571 Overseas Highway, Marathon, Florida. Mr. Andrews acquired his interest in Marathon Trailerama in 1972, and has maintained the sewage disposal system in place at the time he acquired Respondent. He states that he has received no complaints about the system from the residents of the trailer park, and the two residents who testified stated they had no complaints about the system. Respondent has a 99 year lease for the property on which the trailer park is located, and the term of the lease began in 1962. The property owner, Juanita Matheny, testified that under the terms of the lease she has no responsibility, in her opinion, for the operation or maintenance of a sewage disposal system in the trailer park. Respondent holds trailer park permit number 44-067-85 which was most recently issued by Petitioner on January 1, 1985. This permit authorizes 125 independent trailer spaces, and grants Respondent the authority to operate as long as health laws and rules are observed. The permit is revokable at any time for failure to properly operate the trailer park. The original permit to operate a trailer park where Respondent is now located was issued in 1985 to Seven Mile Bridge Trailer Park and was for 45 trailers. On the application for this original permit, the method of sewage disposal to be used was shown as "cesspools 15 ft. below sea level (vented)." State Board of Health records from 1956 show the sanitarian for the Monroe County Health Department described and complained to the State Board of Health about the method of sewage disposal being used at Seven Mile Bridge Trailer Park, and that in response to said complaint the Chief of the Environmental Sanitation Section of the State Board of Health advised that " . . . we have not been able to locate any reference in our records in regard to the approval by the State Board of Health for a connection of this type . . . It is our opinion that this sewage collection device is undesirable because it permits the possible harborage of vermin and result in the creation of a sanitary nuisance." Despite this expression of concern in 1956, no enforcement action has ever been taken against Respondent, or its predecessor Seven Mile Bridge Trailer Park, prior to this action. In connection with the issuance of an operational permit for Marathon Trailerama in 1971, Petitioner notified the Monroe County Health Department that sewage flows in excess of 1200 gallons per day (more than 5 trailers) are required to be centrally collected for approved disposal, and flows in excess of 2000 gallons per day (more than 13 trailers) require a licensed engineer to prepare plans and specifications for the treatment process and disposal works in compliance with state health rules. The former owner of Marathon Trailerama, B. S. Ford, from whom Mr. Dayton Andrews acquired his interest, was copied on this notice. Currently Respondent has 125 trailer spaces in the park. Many of the trailer owners reside at Marathon Trailerama for only part of the year although there are some permanent residents. Petitioner inspected Marathon Trailerama on May 3 and 7, 1984 and also February 26, 1985. During the course of those inspections, thirty-two cesspools were identified in the trailer park, and the evidence presented supports Petitioner's contention that these cesspools were, and continue to be, in use. A cesspool is basically a hole in the ground into which raw sewage is deposited. The sides of a cesspool are usually porous, and the tidewater and ground water can pass directly into the cesspool and carry raw, untreated sewage away. Based on the evidence presented, the Respondent's cesspools fit this general description. Although there is no evidence of their presence in this case, dangerous diseases can result from the seepage of raw sewage from cesspools since the effluent is not properly treated before discharge. Petitioner did not take any water samples from nearby canals, nor were any tests done on the sewage in the cesspools to determine if diseases were present. Based upon standards for sewage produced per trailer, Petitioner estimates that 200 gallons of raw sewage are produced each day by each trailer, and therefore up to 25,000 gallons of raw sewage per day may be deposited in Respondent's cesspools when all trailer spaces are occupied. However, there is evidence of one septic tank and a community toilet facility in the park which is not on a cesspool, and these factors would reduce the total amount of sewage disposal using cesspools. On July 27, 1984 Petitioner notified Respondent that the operation of cesspools was a violation of the law and had to be corrected within ten days. Respondent regularly pumps out the cesspools and immediately corrects any leaks. However, there is minimal benefit to health from pumping out a cesspool since the raw sewage immediately passes through the porous walls and does not remain in the cesspool for treatment. Unlike a septic tank in which the resulting effluent is treated, and solid materials deposited in the bottom of the tank over a long time can be pumped out, there is an almost immediate discharge of raw sewage from a cesspool. Therefore pumping would have to be almost constant in order to avoid the discharge of raw sewage and, thus, be beneficial. One of Respondent's cesspools is located seven feet from an adjacent canal which is used for boating and fishing. There was evidence of occasional, but not frequent, cesspool failure with resulting spillage of raw sewage on the grounds of the trailer park. Respondent promptly corrected such failures when they occurred. Petitioner's representatives saw German cockroaches and palmetto bugs in the cesspools, and testified that these insects can carry dangerous diseases under these conditions. However, no tests were done to determine if, in fact, disease was present in this case. Residents at Marathon Trailerama have no concerns or complaints about their sewage disposal. There have been no noxious odors in the park and no adverse effects on the health of the residents. The parties have submitted posthearing proposed findings of fact pursuant to Section 120.57(1)(b)4, F.S. A ruling on each proposed finding of fact has been made either directly or indirectly in this Recommended Order, except where such proposed findings of fact have been rejected as subordinate, cumulative immaterial, or unnecessary.

Recommendation Based upon the foregoing, it is recommended that Petitioner issue a Final Order imposing a $1500 fine against Respondent. DONE and ENTERED this 16th day of May, 1985 at Tallahassee, Florida. DONALD D. CONN, Hearing Officer Division of Administrative Hearings The Oakland Building 2009 Apalachee Parkway Tallahassee, Florida 32301 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 16th day of May, 1985. COPIES FURNISHED: Morton Laitner, Esquire 1350 N.W. 14th Street Miami, Florida 33125 Alfred K. Frigola Esquire Post Office Box 177 Marathon, Florida 33050 David Pingree, Secretary Department of Health and Rehabilitative Services 1323 Winewood Boulevard Tallahassee, Florida 32301 Steve Huss Esquire Department of Health and Rehabilitative Services 1323 Winewood Boulevard Tallahassee, Florida 32301

Florida Laws (4) 120.57386.01386.03386.041
# 2
GAIL BOBZEIN vs DEPARTMENT OF HEALTH AND REHABILITATIVE SERVICES, 92-006189 (1992)
Division of Administrative Hearings, Florida Filed:Orlando, Florida Oct. 13, 1992 Number: 92-006189 Latest Update: May 28, 1993

The Issue The issue in these consolidated cases is whether the agency should grant variances from Rule 10D-6, F.A.C. regarding construction of on-site sewage disposal systems on the lots in question.

Findings Of Fact Jerry Gagliardi is the developer and engineer for an 8-lot subdivision on Merritt Island, Brevard County, Florida. Mr. Gagliardi is a self-employed civil and mechanical engineer. The small subdivision has a long, narrow configuration, extending west to east. It is bounded on the north by an existing drainage ditch and a large tract of undisturbed wetlands. Its south boundary is a finger canal, and its east boundary is Pelican Creek. With the exception of the wetlands, most of the property in the area is already developed. There are no residences built yet on the eight lots. Hook-up to an existing sanitary sewer system is available within one- quarter mile of the subdivision. The entire area, with several finger canals, is served by the sanitary sewer system. Mr. Gagliardi planned to install on-site disposal systems (septic tanks) in the subdivision. When his plan was rejected he applied for variances for lots 1 and 2 in July 1992, stating economic hardship as the basis for the request. The applications were reviewed by Gregory D. Wright, Supervisor for Brevard County Consumer Health Services and his staff. Several site visits were made and a site evaluation was completed. Mr. Wright recommended denial of the variance because the sanitary sewer system is available; the soils (mostly sand and shell) are unsuitable for on- site disposal systems; and the area, virtually surrounded by water, is environmentally very sensitive. Mr. Wright is also concerned that a variance for the two lots will establish a precedent for variances on the remaining lots in the subdivision. Mr. Wright also observed that there is an existing irrigation well on a neighboring lot within thirty feet of the proposed septic tank on lot #1. This well does not appear on Mr. Gagliardi's plans. The Department of Health and Rehabilitative Services Review Group for Individual Sewage Disposal concurred with the local agency's recommendation after consideration of Mr. Gagliardi's hardship argument. The request was not considered to be a minor deviation from the minimum requirements of the law and regulations. For approximately three years Jerry Gagliardi has been providing information on his development plans to the local county staff. He has become extremely frustrated with the process. However, he has still failed to produce the evidence which he must have to justify the variances he is seeking. At the hearing, Mr. Gagliardi claimed that hook-up to the existing sanitary sewer system is impossible because there is insufficient elevation for gravity feed and there is not enough room on Banana River Drive for another sewer line easement. He did not submit evidence to support that claim and it is unclear whether he has made that claim to the local staff for their verification. He has consistently claimed that hook-up to the existing system is prohibitively expensive. He has estimated that the cost of installing hook-up to the existing system would be $52,642 for the entire subdivision, or $6580.25 per lot. He has estimated that installation of aerobic on-site septic systems would cost $28,000.00 or $3500 per lot. This estimate does not include the cost of culverting the ditch along the north boundary of the property. The culvert may be necessary to meet the water body set-back requirements and, assuming that a permit would be granted for its construction, the culvert would substantially increase the cost of the septic tank project. As recently as three weeks prior to hearing, Mr. Gagliardi provided information to the staff that the value of the lots in the subdivision is $60,000.00 each, for lots #1 through #6; and $115,000.00 and $120,000.00, for lots #7 and #8, respectively. At hearing he repudiated that information as being based on three year old appraisals. He now asserts that the value of the lots is closer to $40,000.00 each. Petitioner's exhibit #2 is a cover letter dated January 4, 1993, to Mr. Gagliardi from the Brevard County Property Appraiser. Attached to the letter are four property management print-outs reflecting the value of two lots as $35,000.00, and two others as $65,000.00. The record does not reflect which lots those are in the subdivision and there is no explanation for the inflated values provided to the staff after the printouts were received. It is impossible from the confused and conflicting evidence provided at hearing to determine that the petitioners are entitled to a variance.

Recommendation Based on the foregoing, it is hereby RECOMMENDED: that the agency enter its final orders denying Petitioners applications for variances. DONE AND RECOMMENDED this 11th day of May, 1993, in Tallahassee, Florida. MARY CLARK Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 11th day of May, 1993. COPIES FURNISHED: Sonia Nieves Burton, Esquire Department of Health and Rehabilitative Services District 7 Legal Office 400 West Robinson Street, Suite S-827 Orlando, Florida 32801 Jerry Gagliardi, Agent for Phil Sperli and Gail Bobzein Post Office Box 541061 Merritt Island, Florida 32954 Robert L. Powell, Agency Clerk Department of Health and Rehabilitative Services 1323 Winewood Boulevard Tallahassee, Florida 32399-0700 John Slye, General Counsel Department of Health and Rehabilitative Services 1323 Winewood Boulevard Tallahassee, Florida 32399-0700

Florida Laws (2) 120.57381.0065
# 3
KEARNEY DEVELOPMENT COMPANY, INC., AND CORRUGATED INDUSTRIES, INC. vs. DEPARTMENT OF HEALTH AND REHABILITATIVE SERVICES, 89-000263 (1989)
Division of Administrative Hearings, Florida Number: 89-000263 Latest Update: May 18, 1989

Findings Of Fact Kearney is engaged in the development of real property in and around Hillsborough County, Florida, and is located in Tampa, Florida. Corrugated is a Louisiana Corporation which maintains a local headquarters in Tampa, Florida, and is presently seeking a business outlet in Hillsborough County for the assembly and distribution of metal buildings. At all times material hereto, Kearney and Corrugated have been parties to a real estate transaction concerning certain real property located at 1920 U.S. Highway 301 in Tampa, Hillsborough County, Florida. The subject property consists of .82 acres of undeveloped land which is located in an area of rapid commercial and industrial growth. Under the Hillsborough County Zoning Code, the subject property is designated M-1, which authorizes commercial and industrial uses. Corrugated is the purchaser of the subject property, and proposes to establish an assembly and distribution center for pre-painted sheet metal buildings. Corrugated does not propose to engage in any activity which will generate industrial wastewaters of any kind, and in particular, will not generate wastes or wastewaters of a "hazardous" or "toxic" nature. No centralized public wastewater service has been available to this property, and septic tanks with drainfields are utilized by both adjacent properties for their domestic and other wastewater needs. Kearney and Corrugated have determined that the property in question is suitable for the intended uses in all other respects, including water, electricity, and transportation. In September, 1988, Kearney and corrugated sought approval from Respondent of a permit to install an onsite sewage disposal system (septic tank and drainfield) for the sole purpcse of providing toilet services to employees of the company. The site plan and preliminary construction drawings for the on- site system were reviewed by the Department of Environmental Regulation (DER) to determine whether the project posed unusual wastewater problems or relied upon inadequately designed facilities. The DER had no objection to the installation of the septic tank and drainfield to serve the proposed system because of the non-hazardous character of the business, and the absence of floor drains in the proposed work areas. The Hillsborough County Health Department, however, gave immediate verbal denial of a septic tank permit based solely upon the industrial zoning of the property, and set forth its denial, in writing, on October 14, 1988. Following the County Health Departnent's denial, Kearney and Corrugated, based upon consultation with Respondent's officials in Tallahassee, assembled additional information to provide further assurance that the site would not generate industrial or hazardous wastes which could be disposed of via the septic tank. They provided detailed descriptions of each process to be performed by Corrugated, in substantiation of its claim that no wastewaters would be generated at the site. They also obtained the agreement of the Hillsborough County Building Department to subject any future building permit applications at the site to particular wastewater scrutiny, in addition to formal deed restrictions which they proposed for the subject property. Notwithstanding these additional representations, the Environmental Health Director of the Hillsborough County Health Department continued to reject the application on the sole ground that the property was zoned for industrial uses. On October 14, 1988, Petitioners submitted an application for a variance to the Hillsborough County Health Department and the Respondent, accompanied by supporting material setting forth the regulatory history referred to above, as well as the written representations and assurances, including proposed deed restrictions, which they had previously tendered to the County Environmental Health Director. They appeared before the Variance Advisory Review Board on November 3, 1988, to substantiate the specific measures which they proposed in order to ensure that no toxic or hazardous substances would be introduced into the septic tank system. These proposals were received by the Advisory Board without objection, and members observed that Petitioners had done everything they could do to provide the comfort margin which the agency sought. However, denial of the variance was recommended based upon the failure of Hi1sborough County to adopt a local ordinance providing for future inspections or controls by local officials to prevent future toxic or hazardous wastes from being disposed into the on- site sewage disposal system. Without such a local ordinance, the Advisory Board members expressed the view that it did not matter what the applicant presented to the Board. On December 2, 1988, the Respondent formally informed the Petitioners, in writing, that their application for a variance had been disapproved. This denial had the effect of formally denying Petitioners' permit application. Thereupon, Petitioners timely sought review of this decision by filing a petition for formal administrative hearing.

Recommendation Based upon the foregoing, it is recommended that the Respondent issue a permit for an onsite sewage disposal system to the Petitioners. DONE AND ENTERED this 18th day of May, 1989 in Tallahassee, Florida. DONALD D. CONN Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 Filed with the Clerk of the Division of Administrative Hearings this 18th day of May, 1989. COPIES FURNISHED: Charles G. Stephens, Esquire Bayport Plaza - Suite 460 6200 Courtney Campbell Causeway Tampa, Florida 33607 Raymond Deckert, Esguire W. T. Edwards Facility 4000 W. Buffalo 5th Floor, Room 500 Tampa, Florida 33614 John Miller, General Counsel 1323 Winewood Blvd. Tallahassee, Florida 32399-0700 Gregory Coler, Secretary 1323 Winewood Blvd. Tallahassee, Florida 32399-0700 Sam Power, Clerk 1323 Winewood Blvd. Tallahassee, Florida 32399-0700 =================================================================

Florida Laws (1) 120.57
# 4
FREDERICK A. BRADY AND JANET B. BRADY vs KENNETH ACRE AND DEPARTMENT OF ENVIRONMENTAL REGULATION, 91-002608 (1991)
Division of Administrative Hearings, Florida Filed:Orlando, Florida Apr. 25, 1991 Number: 91-002608 Latest Update: Jul. 22, 1992

The Issue The issues are whether the Consent Order entered into between the Department of Environmental Regulation (DER) and Kenneth Acre (Acre) is an appropriate settlement of the violations addressed therein and whether Acre is entitled to construction permit number IC35-190005 for an Industrial Waste Disposal Facility. The Bradys assert that the Consent Order is not a reasonable exercise of DER's enforcement discretion and that the permit should be denied.

Findings Of Fact Background Acre owns and operates an animal research facility in Eustis, Florida. Acre performs research trials on dogs using a USDA approved heartworm medication sold under the brand name of Heartguard, the chemical name of which is ivermectin. Acre is not in the business of testing or manufacturing new drugs. The Consent Order To handle the waste generated by the animals at the facility, Acre initially constructed a conventional septic tank system. Prior to construction, Acre contacted the Lake County health department to inquire about permitting and was told that he did not need a permit for his facility. With that information, he continued with the project. Subsequently, DER became aware of the facility and notified Acre that a DER industrial waste permit was required and that he should cease the discharge into the septic tank until such a permit was obtained. Acre complied with DER's instructions and plugged the septic tanks. Since the time the septic tanks were plugged, the waste has been collected by Roto Rooter on a periodic basis and disposed of offsite. Acre entered into a Consent Order with DER to resolve the alleged past violation for not obtaining a permit and paid of penalty of $600 as required by DER. The Consent Order is a reasonable and appropriate settlement of the violations alleged therein. The Disposal System Acre has applied for a permit to construct and operate an evapotranspiration disposal system to dispose of the waste from his facility on site. The proposed system is essentially a modified septic tank system using a lined drainfield to capture and hold the liquid waste, allowing it to transpire from the grass or otherwise evaporate into the atmosphere and preventing any discharge to groundwater. The waste will be discharged to a series of modified septic tanks which will provide treatment beyond that of a traditional septic tank system and will reduce the amount of total suspended solids. The first septic tank accepts the waste and provides initial treatment through natural settling of solids. The waste then passes through a filter device and travels by gravity flow to the second septic tank. From the second tank it flows through a second filter device and into a dosing tank. The dosing tank is basically a small holding basin with a pump that disperses the waste to the drainfield in incremental amounts. The dosing tank contains several float mechanisms which monitor the level of liquid in the tank. When the water level in the dosing tank reaches a certain level, one such float mechanism turns on the pump to transport the liquid to the drainfield. The waste is then pumped from the dosing tank through a closed pipe to one of two evapotranspiration cells where it is distributed through a number of perforated pipes. The Evapotranspiration Cells The perforated pipes are situated in a gravel bed approximately 24 inches in depth. On top of the gravel bed is a clay soil mix approximately 15 inches deep. The clay soil mix absorbs the liquid waste in the gravel bed by drawing it up through the process of capillarity. Once the liquid is in the upper clay soil layer, it is evaporated. Grass is planted on top of the soil mix as an additional method for dissipation of the waste. The liquid waste is absorbed by the roots of the grass and transpired through the grass leaves. The clay soil mix in the top layer of the system is relatively impervious. The impervious nature of the soil mix along with a three percent surface slope will prevent rain water from entering the evapotranspiration cells and impacting the effective operation of the system. The entire drainfield has a double liner: one PVC plastic liner and a 6" clay layer. These two liners will ensure that no discharge to groundwater will occur from the system. System Capacity It is estimated that the Acre facility will produce approximately 520 gallons per day (GPD) of waste to be handled by the system. The drainfield is designed to handle twice the volume that will be discharged by the Acre facility and is therefore more than adequate to assimilate the waste received into the system. The drainfield is composed of two independent cells so that loading of each cell will be rotated. Once one cell receives its maximum capacity, the loading of that cell will cease in order to allow that cell to assimilate the waste through evapotranspiration. In this manner, the first cell is permitted to "rest" while the second cell receives further loading from the dosing tank. Safety Features Although the proposed disposal system is innovative in design, it incorporates several safety features which will ensure that no overflow of waste will occur. First, a float mechanism in the dosing tank is designed to trigger an alarm in the event the water level in the dosing tank gets too high. If that occurs, the alarm provides a flashing light as well as a horn which will notify the operator of a problem. Once the float reaches this warning level, the system will automatically shut down, thus preventing further waste from entering the system. Second, each evapotranspiration cell is equipped with a similar device which will automatically close off the dosing tanks and prevent further discharge into the cells in the unlikely event the system were to become too saturated to accept further loading. Finally, the double lined drainfield provides an additional safety measure which will prevent any discharge to groundwater. The numerous permit conditions requiring periodic monitoring of water quantity and quality in the system itself as well as the groundwater in the vicinity of the system provide ample assurance that the system will not pose a threat to the state's water resources. Ivermectin Although the proposed system will not discharge to groundwater, DER required the applicant to determine the amount of ivermectin in the wastestream. Ivermectin binds tightly to soil and does not dissolve in water. A sample of the wastestream from the Acre facility was collected by Bionomics Laboratory, Inc., and analyzed by Analytical Development Corporation using the analytical procedure designed by Merck scientists. The results of this analysis show that the concentration of ivermectin in the Acre wastestream ranges from .6 to 6.1 parts per trillion (ppt). The publication submitted to the Department by Acre entitled, Chapter 11, "Environmental Aspects of Ivermectin Usage in Livestock: General Considerations" by Halley, Nessel and Lu, from William C. Campbell, Ivermectin and Abamectin, documents the results of studies designed to determine whether using ivermectin in animals would result in any harmful or undesirable effects on the environment through excretion in the feces. This publication indicates that: Ivermectin is relatively immobile in soil and will not readily translocate into groundwater. Ivermectin is rapidly decomposed by sunlight and therefore will not accumulate in soil when administered to livestock. Ivermectin has no effect on earthworms at a concentration in soil of 12 parts per million (ppm). (This concentration is approximately two million times higher than that of the Acre waste stream.) Aquatic organisms such as water fleas and fish are highly sensitive to ivermectin toxicity. However, ivermectin is not toxic to the most sensitive species, the Daphnia magna, at a concentration of 0.01 parts per billion (ppb). Ivermectin concentrations in cattle feedlot runoff was less than the no-effect level of 0.01 ppb for Daphnia magna and therefore should cause no adverse environmental effects in surface or subsurface waters. The highest concentration of ivermectin found in the Acre waste stream is 6.1 ppt (or .006 ppb), which is less than the 0.01 ppb non-toxic level for the most sensitive aquatic species. Based on the concentration of ivermectin found in the Acre waste stream and the fact that ivermectin binds tightly to soil, the discharge from the Acre facility would not cause any adverse environmental impact, even if it were discharged to groundwater. Bradys' case Bradys submitted no evidence to show that the Consent Order is not an appropriate settlement of the violations alleged therein. They submitted no evidence that the septic tanks were improperly plugged. Brady offered no expert testimony in support of their claim that the facility had caused an adverse impact to groundwater or that the proposed system would cause any threat to groundwater quality. Bradys apparent concern about standing surface water on their property during heavy rainfalls is not relevant to this proceeding. Their concern that the lining of the drainfield could leak is unsupported by competent evidence. Bradys learned immediately prior to hearing that DER had changed its position and intended to issue the permit. Their failure to present any relevant evidence that the Consent Order was insufficient or that the proposed facility would violate any applicable DER rules or criteria and their ill- prepared participation in the hearing was in part the result of DER's late change in position. Bradys' participation in this proceeding was not shown to be frivolous.

Recommendation Based upon the foregoing Findings of Fact and Conclusions of Law, it is recommended that the Department of Environmental Regulation enter a Final Order and therein: Ratify the terms of the Consent Order as reasonable. Grant Acre construction permit number IC35-190005 for an Industrial Waste Disposal Facility, subject to the special conditions set forth in DER Exhibit 1. RECOMMENDED this 22nd day of July, 1992, in Tallahassee, Florida. DIANE K. KIESLING Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, FL 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 22nd day of July, 1992. APPENDIX TO RECOMMENDED ORDER CASE NOS. 91-2608, 92-0958 AND 92-0959 The following constitutes my specific rulings pursuant to Section 120.59(2), Florida Statutes, on the proposed findings of fact submitted by the parties in this case. Specific Rulings on Proposed Findings of Fact Submitted by Petitioners, Bradys 1. Each of the following proposed findings of fact is adopted in substance as modified in the Recommended Order. The number in parentheses is the Finding of Fact which so adopts the proposed finding of fact: 6 & 7(8) and 15(10). 2. Proposed findings of fact 1-5, 16, 27, 28, 31, 36-42, 44, 46-49, 51, 52, 54, 57-59, 61, and 62 are subordinate to the facts actually found in the Recommended Order. 3. Proposed findings of fact 8, 10-14, 17, 19-21, 26, 29, 30, 32, 33, 35, 43, 53, 55, and 56 are irrelevant. Proposed findings of fact 9, 18, 22-25, 45, and 50 are unnecessary. Proposed findings of fact 34 and 60 are unsupported by the competent and substantial evidence. Specific Rulings on Proposed Findings of Fact Submitted by Respondents, Acre and DER Each of the following proposed findings of fact is adopted in substance as modified in the Recommended Order. The number in parentheses is the Finding of Fact which so adopts the proposed finding of fact: 1-44(1-44). Proposed findings of fact 45 and 46 are unsupported by the competent and substantial evidence. COPIES FURNISHED: Carlyn H. Kowalsky, Attorney at Law Bogin, Munns & Munns 250 North Orange Avenue 11th Floor-P.O. Box 2807 Orlando, FL 32802 Douglas MacLaughlin, Attorney at Law Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, FL 32399-2400 Martha Hunter Formella Attorney at Law FOLEY & LARDNER Post Office Box 2193 Orlando, FL 32802-2193 Carol Browner, Secretary Department of Environmental Regulation Twin Towers Office Building 2600 Blair Stone Road Tallahassee, FL 32399-2400 Daniel H. Thompson, General Counsel Department of Environmental Regulation Twin Towers Office Building 2600 Blair Stone Road Tallahassee, FL 32399-2400

Florida Laws (3) 120.57403.087403.412
# 5
CITIZENS VOICE ASSOCIATION OF HOLMES COUNTY vs ENVIRONMENTAL PROTECTORS ASSOCIATION, INC., AND DEPARTMENT OF ENVIRONMENTAL REGULATION, 92-000179 (1992)
Division of Administrative Hearings, Florida Filed:Bonifay, Florida Jan. 10, 1992 Number: 92-000179 Latest Update: May 14, 1993

Findings Of Fact This proceeding concerns an application for authority to construct and operate a 20-acre Class I, Class III, and an asbestos municipal solid waste landfill, as well as to close an existing 25.5-acre Class I municipal solid waste landfill located in Holmes County, Florida. This facility would function as a new regional landfill, in part, to replace the existing landfill in Holmes County. The applicant, EPAI, is a Florida corporation formed for the purpose of constructing and operating the proposed facility. EPAI has an option to purchase the site involved from its present owner, which will be accomplished after the facility is permitted, if it is, and all necessary permits for construction and operation have been obtained, then the applicant will sell stock in its corporation to City Management Corporation (City) domiciled in Detroit, Michigan. EPAI will then continue to exist as a wholly-owned subsidiary of City and will proceed to construct and operate the new landfill and initiate and complete all closure operations for the existing landfill. The Department of Environmental Regulation is an agency of the State of Florida subject to the provisions of Chapter 120, Florida Statutes, and charged with enforcing the provisions of Chapter 403, Florida Statutes, and Chapter 17- 701, FAC, as pertinent to this proceeding. It is thus charged with regulating solid waste management facilities, including permitting their construction, operation, and closure. It is charged with reviewing applications for such projects and issuing permits therefor if the statutes and rules it is charged with enforcing are found to have been complied with by a permit applicant. It has performed that function in this case up until the point that jurisdiction of the permit application dispute engendered by the filing of the subject petition resulted in transfer of the matter to the Division of Administrative Hearings. The Petitioner, CVA, is a group of Holmes County citizens opposing issuance of the landfill permit at issue. Based upon rulings on the motions to dismiss and extant law, CVA was required to present proof of its standing at the final hearing held in this cause. CVA called two witnesses, neither of whom presented evidence relevant to the issue of standing. CVA did not present any evidence, either through testimony or exhibits, to identify its members, to establish that a substantial number of its members would be affected by the issuance of the permit and the construction and operation of the landfill nor evidence which would identify members whose substantial interests will be affected by the construction and operation in a way different from any effect on the interests of the public at large. Project Background Holmes County currently leases a site on which its existing landfill is located. The site consists of 84 acres owned by Stone Container Corporation, the successor in interest to International Paper Company. The existing landfill itself covers approximately 25.5 acres. The proposed facility to be located on the same tract would serve as a new regional landfill to meet the solid waste disposal needs of Holmes County, as well as surrounding counties. The proposed facility would consist of approximately 20 acres divided into Class I, Class III, and asbestos landfill facilities. The project will be located on To Shoo Fly Bridge Road, lying approximately 3.3 miles northwest of the City of Bonifay in Holmes County. The northern portion of the present landfill is an unlined cell operated by the county which began receiving waste in 1979 and ceased depositing waste sometime in 1987. The southside cell of the landfill is clay lined with a leachate collection system. That portion of the county facility ceased accepting waste sometime in 1990. Holmes County is unable to properly operate or to close the existing landfill. Consequently, in June of 1989, the county and the Department entered into a consent order whereby the county agreed to meet certain operational, groundwater monitoring, landfill cell design, administrative and other requirements within certain time periods. The county attempted to meet the terms of that consent order but was unable to do so, primarily for financial reasons. In 1990, the county applied to the Department for a permit to close the existing landfill in accordance with the pertinent provisions of Chapter 403, Florida Statutes, and Chapter 17-7, FAC. The closure permit application was denied by Department order of May 22, 1991. Waste disposal at the Holmes County landfill had ceased in 1990, but it has not been properly closed pursuant to law and Department rules. Currently, it only has a temporary cover of soil and seeded grass in order to stabilize its slopes on the portion of the landfill commonly known as the "highrise". The closure costs for the existing landfill were estimated at approximately $700,000.00, which is beyond the resources of the county. Residents of unincorporated Holmes County currently are disposing of their solid waste by hauling it to the regional landfill in Campbellton in Jackson County nearby or by dumping it in unauthorized disposal areas, such as streams or roadsides. The City of Bonifay disposes its solid waste in the Campbellton landfill, as well. The Campbellton landfill, however, does not accept several solid waste components, such as yard trash. Since the county was unable to obtain the necessary permits to either operate or to close the existing landfill and was unable to meet State-mandated solid waste disposal and recycling requirements, it entered into an agreement with EPAI in May of 1990, whereby that entity assumed financial and legal responsibility for closure of the existing landfill, including obtaining the necessary permits from DER to close it, upon issuance of DER permits necessary to construct and operate a new Class I, Class III, and asbestos landfill at the same general site. The May 21, 1990 agreement between EPAI and the county authorized EPAI to so proceed before DER. Once EPAI obtained the permits necessary, the agreement provided that the county would surrender all right, title and interest in the 84-acre site to EPAI, convey all structures, equipment and appurtenances theretofore used by the county for its landfill operation to the corporation and to assign EPAI any legally assignable benefits which the county would receive under the 1988 Solid Waste Management Act, including recycling grants, if applicable. EPAI, the applicant, has an option to purchase the 84-acre site from Stone Container Corporation. After the issuance of any permits for closure and for construction and operation of the new facilities, the option would be exercised and the property would be conveyed by Stone Container Corporation to EPAI. Once it has purchased that property and the county has abandoned its lease on the property, pursuant to the May 21, 1990 agreement, EPAI would then hold fee title ownership and possession rights to the site. Once it obtained the necessary permits for construction and operation of the new landfill, EPAI will sell its stock to City. EPAI would then continue to exist as a wholly- owned subsidiary of City and will construct and operate the new landfill and close the existing landfill. City is a wholly-integrated waste management corporation based in Detroit, Michigan. It has been operating in the solid waste management field since 1961 and has extensive experience in landfill construction, operation and closure. It operates seven regional landfills, approximately ten transfer stations, and 30-40 residential and commercial solid waste collection companies in Michigan. It also operates hazardous waste facilities in Michigan and in Tampa, Florida. Through construction and operation of its regional landfill and hazardous waste facilities, it is familiar with and accustomed to compliance with all pertinent state and federal regulations applicable to such facilities. City holds a DER permit for its hazardous waste facility in the Tampa, Florida, area and has had a history of no major violations of applicable laws and rules. The corporation was shown to be financially sound. EPAI will operate the proposed facility, should it be permitted, as a regional landfill serving neighboring counties between Okaloosa and Jackson Counties, south to the Gulf of Mexico, and north to the Alabama border. The economic feasibility, however, was not shown to depend on interstate transport or disposal of out-of-state wastes in the landfill. Section 17-701.030, FAC, sets forth the permit submittal requirements for solid waste management facilities. CVA stipulated that EPAI met all applicable permit application submittal requirements in this section, except those in Sections 17-701.030(5)(h) & (i) and 17-701.030(7), FAC. EPAI has an option to purchase the landfill site from Stone Container Corporation, the current owner. EPAI has met the ownership requirement in Section 17-701.030(5)(h), FAC. The applicant will establish an escrow account to insure financial responsibility for closing and long-term care and maintenance of the landfill. A specific condition has been agreed to be placed in the permit requiring the applicant to submit written proof of having established financial assurance for closure and long-term care of the entire site 60 days prior to the acceptance of any solid waste at the facility and within 30 days after permit issuance for operations at the existing landfill. City has the financial ability to establish the escrow account and to provide the necessary financial assurance within 30 days after permit issuance. The applicant has thus satisfied the requirements of 17-701.030(5)(i), FAC, with regard to financial responsibility. Section 17-701.030(7), FAC, requires DER to forward a copy of the permit application to the Water Management District within seven days of receipt of the application. The Water Management District would then prepare an advisory report for DER on the landfill's potential impact on water resources with recommendations regarding disposition of the application. The Department sent the application to the Northwest Florida Water Management District, but the District did not prepare an advisory report. The administrator for the waste management program for the Department's northwest district office, who oversees solid waste facility permitting, testified that, as a matter of course, the District does not prepare an advisory report. Moreover, because the reports are advisory only, DER is not required to respond to any comments or follow any recommendations which may be made by the District in such a report. The Department normally issues solid waste facility permits as a matter of policy without having received a water management district report. 1/ Location and Site Requirements An aerial photograph of this area was prepared, as required by Section 17-701.050(4)(a), FAC. It shows the land uses, zoning, dwellings, wells, roads, and other significant features within one mile of the proposed landfill. This map shows several dwellings located within a mile of the site. The closest dwelling, as determined by aerial photograph and performance of a "windshield" survey, is approximately 2,400 feet from the site. The closest potable water well is at the dwelling located approximately 2,400 feet from the site. There are no existing or approved shallow wells within 500 feet of the proposed waste disposal areas at the landfill. Accordingly, the proposed landfill satisfies the condition in Section 17-701.040(2)(c), FAC, that solid waste not be disposed of within 500 feet of an existing or approved shallow water well. The surficial aquifer is located approximately 30 feet from the ground surface at the landfill site. The sediments in the area in which waste is to be disposed of consists of layers of clay and sandy clay having a very low vertical conductivity. The waste disposal cells will not be excavated down to the surficial aquifer. Therefore, waste will not be disposed of in ground water. Waste will not be disposed of in a sinkhole or in a limestone or gravel pit, as prohibited by Sections 17-701.030(2)(a) and 17-701.040(2)(b), FAC. The 100-year flood zone is located at approximately 120 feet national geodetic vertical datum (NGVD). The proposed landfill will be located at approximately 125 feet NGVD elevation and within a perimeter berm system. Therefore, waste will not be disposed of in an area subject to periodic and frequent flooding, as prohibited by Section 17-701.040(2)(e), FAC. The waste disposal areas are over 200 feet from Long Round Bay, the closest water body. Therefore, the 200-foot setback requirement is met. See, Section 17-701.040(2)(g), FAC. To Shoo Fly Bridge Road, on which the landfill is located, is not a major thoroughfare. There are no other major thoroughfares in the vicinity from which the landfill is visible. Accordingly, waste will not be disposed of in an area open to public view from a major thoroughfare. See, Section 17- 701.040(2)(h), FAC. The landfill site is not located on the right-of-way of a public highway, road or alley, and is not located within the bounds of any airport property. The landfill will not be located within a prohibited distance from airports, as proscribed by Section 17-701.040(2)(k), FAC. See also, Sections 17-701.040(2)(j) and (2)(i), FAC. There are no Class I surface waters within 3,000 feet of the landfill site so the setback provisions in Section 17-701.040(7), FAC, are satisfied. No lead-acid batteries, used oil, yard trash, white goods, or whole waste tires will be accepted at the Class I landfill cell. Only trash and yard trash will be accepted at the Class III cell. Therefore, the prohibitions in Section 17- 701.040(8), FAC, are not violated. A ground water monitoring plan has been developed for the landfill site, pursuant to Section 17-28.700(6), FAC, as required by Section 17- 701.050(3)(a), FAC. The original ground water monitoring plan was prepared by Post, Buckley, Schuh, and Jernigan, Inc. and submitted as part of the initial permit application. This plan addresses monitoring well placement, monitoring, and monitoring plan requirements. It proposes corrective action, as required by Section 17-28.700(6), FAC. Subsequent modifications to that plan were developed by Dr. Thomas Herbert, an expert in geology, hydrogeology, well installation and water quality monitoring. These modifications particularly address monitoring well location and provide additional assurances that the ground water monitoring plan complies with Section 17-28.700(6), FAC. These proposed modifications were submitted to DER prior to hearing. A site foundation analysis using appropriate ASTM methods to determine stability for disposal of waste, cover material, and structures constructed on site was performed and the results were submitted to DER as part of the initial application. Additional foundation stability information and the results of another field investigation regarding sinkhole development potential at the site was submitted to the Department. The field investigations and reports in evidence provide assurance that the disposal site location will provide adequate support for the landfill, as required by Section 17-701.050(3)(b), FAC. The landfill site is easily accessible by collection vehicles and other types of vehicles required to use the site. The site design provides for all weather roadways to be located throughout the site for ready ingress, egress, and movement around the site. The proposed landfill is located to safeguard against water pollution originating from disposal of solid waste. See Section 17-701.050(3)(c)2., FAC. The bottom of the waste disposal cells will be located at least six feet above the top of the surficial aquifer. To ensure that ground water is not polluted by waste disposal, the Class I cell will be lined with a composite liner system comprised of a lower unit consisting of 24 inches of compacted clay having a maximum permeability of 1 X 10-7 centimeters per second, and an upper synthetic liner unit consisting of a high density polyethylene (HDPE) of 80 mil thickness. Leachate generated by the waste in the landfill will be collected by a leachate collection and removal system. The leachate control system consists of a two- foot thick layer of sand having a minimum permeability of 1 X 10-3 centimeters per second, with a permeable geotextile filter cloth layer and a highly permeable geonet layer to collect and direct the leachate into a drainage system consisting of a collection pipe system to transfer the leachate to a containment lagoon. Once in the leachate lagoon, the leachate will be evaporated, recirculated over the working face of the landfill, or transported off site for treatment at a waste water treatment plant. The waste disposal areas are located at approximately 125 foot NGVD elevation. This is well above the 100- year flood plain and they are not located in water bodies or wetlands. An adequate quantity of acceptable earth cover is available on site. See, Section 17-701.050(3)(c)3., FAC. The soil for cover will be obtained from the northeast portion of the site located across To Shoo Fly Bridge Road from the landfill site. The landfill site was shown to conform to proper zoning, as required by Section 17-701.050(3)(c)4., FAC. The 1991 Comprehensive Plan Future Land Use Element for Holmes County designates this site for "public/semi- public/educational" land uses. The "public facilities land uses" designation includes "utilities and other service facilities" of which municipal solid waste landfills are an example. No other land use designation in the Holmes County 1991 Comprehensive Plan expressly includes landfill uses. CVA adduced testimony from Hilton Meadows, its expert witness, as to plant species he observed in the vicinity of the site. He observed plants that he identified as being species that grow on the edge of or in wetlands, but none of these species were shown to exist on the landfill site itself. Mr. Meadows observed them in locations outside the perimeter berms of the landfill site but did not identify their specific locations other than a general direction from the perimeter berms outside of which he observed the plants. He did not quantify the wetland species he observed so as to establish their dominance and did not conduct a jurisdictional wetland survey, as envisioned by Chapter 17- 301, FAC. Landfill Design Requirements As required by Section 17-701.050(4)(a), FAC, an aerial photograph was submitted with the permit drawings. Plot plans were submitted with the permit application, in evidence as EPAI exhibit 1, showing dimensions of the site, location of soil borings, proposed trenching or disposal areas, original elevations, proposed final contours, and previously-filled waste disposal areas. Topographic maps were also submitted with the correct scale and contour intervals required by Section 17-701.050(4)(c), FAC, which show numerous details such as proposed fill areas, borrow areas, access roads, grading, and other details of the design and the site. The design plans also include a report on the current and projected population for the area, the geographic area to be served by the landfill, the anticipated type, quantity and source of the solid waste, the anticipated useful life of the site, and the source and characteristics of cover materials. The landfill will be a regional facility serving the residents of Holmes and surrounding counties. The current population of the area to be served is approximately 63,183 with the projected population for the year 2000 being 76,792. The landfill will receive municipal sanitary solid waste, asbestos, petroleum-contaminated soils, and yard trash. It will not receive used oil, lead-acid batteries, biomedical wastes, hazardous wastes, or septic sludge. The permit application was shown to satisfy all design requirements of Section 17-701.050(4), FAC. Geology, Hydrogeology, and Foundation Stability Dr. Thomas Herbert, a registered professional geologist and licensed well driller in Florida testified of geologic and hydrogeologic investigations and analyses he performed. Mr. Herbert has over 25 years experience in the fields of geology and hydrogeology and was tendered and accepted as an expert in those fields. Dr. Herbert drilled shallow and deep core borings, which were converted into monitor wells to monitor ground water in the surficial and deep aquifers under the landfill site. In addition, he drilled several medium-depth borings along the western boundary of the site to analyze geologic and hydrogeologic conditions in this area, which is the portion of the site closest to Long Round Bay. Dr. Herbert used a hollow stem auger to take the soil borings and install the monitoring wells. This is a device which allows sampling tools to be placed down a hollow drill barrel for more accurate sediment sampling. Dr. Herbert used a continuous sampling system wherein a five-foot core barrel sampled the soil conditions ahead of the turning drill auger. Continuous sampling is preferable to other types of soil sampling equipment because it provides a detailed representative sample of the soil on the site and enables the sampler to precisely determine whether soil materials occur in small thin layers or bands on the site or whether there is a massive deposit of relatively uniform soils. The continuous sampling method also minimizes mixing of soils and creates an undisturbed profile that can be examined once the core barrel is opened. This type of sampling yields a very accurate picture of soil conditions on the site. In addition to the borings taken on the site by Dr. Herbert, other core borings were taken on site by Ardaman & Associates, a geotechnical engineering firm, for the purpose of analyzing the site foundation to determine the site's stability and potential for developing sinkholes. These core boring profiles were analyzed, along with those performed by Dr. Herbert, in determining the site geologic and hydrogeologic conditions. In addition to the core borings, Dr. Herbert reviewed studies on the geology and hydrogeology of the area, as well as the field investigations reported by Post, Buckley, Schuh, and Jernigan, as part of the original permit application submittal. In order to gather additional information on the geology and hydrogeology of the site, gamma ray logging was performed on the wells installed by Dr. Herbert, as well as on the existing wells at the site. Gamma ray logging measures natural gamma radiation from the sediments and permits identification of soil type based on the amount of gamma radiation coming through the soils. Generally, the higher the clay content, the higher the gamma ray count. Gamma ray logging provides an accurate means for determining clay, sand, or sandy clay soils. By examining gamma ray logs of wells he installed and sampled, as well as for wells already existing on the site, Dr. Herbert was able to obtain extensive information about the subsurface soil conditions at the site. Based on these information sources, the geology of the site was determined. The sediments ranging from the surface of the site down to more than 100 feet below the surface are part of the citronelle formation, which consists of consolidated to partially cemented sand, silt, and clay sediments, called clastics, deposited in the Plio-Pleistocene age, between one and four million years ago. The citronelle formation at the site is predominantly clay, with some thin sand lenses running through the clays. The sand lenses or "stringers" grade laterally into the clays or silts. A surficial aquifer is located between 30 and 40 feet below the land surface at the site and is confined immediately above and below by dense, dry clay layers. The top confining unit is estimated to be approximately 10 feet thick. The lower clay confining unit, down to approximately 100 feet below the land surface, consists of dense, dry clays with thin units of sandy or silty clays or clayey sands. Below the citronelle foundation, at approximately 100 feet below land surface, there is a sequence of weathered carbonate rock or mud, termed "residuum". This material is too fine-grained to yield water in usable quantities. Competent limestone is first encountered below the carbonate "residuum" at approximately 262 feet below the surface. This limestone is likely part of the lisbon- tallahatta formation, which is part of the Claiborne Aquifer. In order to investigate an area in the western portion of the site depicted in the Post, Buckley report as being sandy, Dr. Herbert installed a deep core boring and analyzed the soils in that area. He thus determined that rather than being solid sand, as depicted in the Post, Buckley report, the sediments in this area are actually sands interbedded with clay and silt stringers, which decrease the sediments' horizontal and vertical conductivity. He determined that the area is a sandy channel bounded laterally and below by dense clays. As with the rest of the site, the surficial aquifer also is confined in this area. As part of his ground water monitoring plan recommendations, Dr. Herbert recommended installation of an additional monitor well in this area. The core borings and gamma ray logging allowed accurate determination of the site hydrogeology. Transient surface water, termed "vadose" water, percolates down from the land surface through layers of clay, sand, and silt. Within these sediment layers, there are lenses of clay ranging from a few inches to a foot thick. Vadose water is trapped on top of the clay layers, creating shallow saturated zones called "perched" zones, ranging from one to a few inches thick. The vadose water and perched zones are not connected to any ground water systems. Below these perched zones, dense, dry clay layers create a confining layer above the surficial aquifer. The surficial aquifer occurs in discontinuous sandy layers 30 to 40 feet below the land surface. Beneath the surficial aquifer, dense, dry clay layers form a lower confining unit. These confining clay layers overlying and underlying the surficial aquifer create pressure or hydraulic "head", on the water in the surficial aquifer. When a core boring or well penetrates through the upper clay confining layer, the water in the surficial aquifer rises up the well or core casing, due to the hydraulic head, to a level called the potentiometric surface, which is at a higher elevation than the elevation at which the surficial acquifer is actually located. Based on the confined nature of the surficial aquifer, it was determined that water table elevations reported in the hydrogeologic report initially submitted as part of the application are actually potentiometric surface elevations. This is consistent with the information provided in the additional information submittal as part of the permit application which indicates that the potentiometric surface at the landfill site may be five to seven feet below the bottom of the liner. This was confirmed at hearing by Mike Markey, a professional geologist with the Department, who reviewed the permit application and hydrogeologic report submitted by Dr. Herbert and prepared a memorandum dated September 2, 1992, stating that his "previous concern regarding separation of the 'water table' aquifer and HDPE liner is no longer an issue because the 'water table' aquifer was not found" by Dr. Herbert. The surficial aquifer on the landfill site cannot yield enough water to support long-term use as a potable water source. Due to the high clay content in the aquifer, the water has a high sediment content and low water quality, rendering it unusable for domestic purposes. The overall horizontal conductivity for the surficial aquifer on a site-wide basis is estimated to be low due to the discontinuous sand layers comprising the surficial aquifer on the site. While some zones within the aquifer may have high horizontal conductivity, these zones have limited lateral extent and change rapidly into zones of low horizontal conductivity. The steep hydraulic gradient from the highest to lowest areas of the site further indicates that the surficial aquifer has low horizontal conductivity. If water were rapidly moving through the surficial aquifer across the site, the hydraulic gradient would be much less steep. The presence of the hydraulic gradient across the site indicates that the clay in the surficial aquifer system is so pervasive that the water in that system essentially is stagnant. Based upon his extensive experience and familiarity with the clastic sediments like those found at the landfill site, Dr. Herbert estimated the vertical permeability of the sediments comprising the upper and lower confining layers of the surficial aquifer to be in the range of 1 X 10-6 to 1 X 10-8 centimeters per second. These projected permeability values are very low, thus, very little water is moving vertically through the surficial aquifer to deeper depths. The original hydrogeology report on the site submitted as part of the application indicated that the ground water flow is to the west, southwest, and northwest based upon monitoring well and piezometric data. Dr. Herbert's subsequent field investigations confirmed the ground water flow direction as reported in the permit application. Dr. Herbert estimated that the surficial aquifer will be located between 8 and 15 feet below the finished bottom elevation of the Class I waste disposal cell. The intermediate aquifer system is located beginning 80 or 90 feet below the landfill site and is defined as all strata that lie between and retard the exchange of water between the surficial aquifer and the underlying Floridan aquifer, including the lower clay confining unit directly underlying the surficial aquifer. In this part of west Florida, the intermediate system is estimated to be 50 to 60 feet thick and acts as an "aquatard", which means that it retards the passage of water from the surficial aquifer to lower levels. The standard penetration test (SPT), which is an engineering test of soil density, yielded values of 40 to 50 blows per inch for soils sampled in the top 20 feet of the intermediate system throughout the site. These SPT values indicate the soils in the intermediate system are extremely dense, over-compacted clay materials. Below the clays, the lower portion of the intermediate system consists of a weathered limestone residuum. Due to the extremely fine grain size of the residuum, it will not yield water in quantities sufficient to support a well. The deep core borings taken at the site indicate that the Floridan aquifer limestone underlying the landfill site has undergone paleokarst evolution. The underlying limestone has been dissolved away over a long period of time, creating the limestone residuum detected in the deep core borings. Based on the deep core borings taken at the site, Dr. Herbert concluded there is no competent Floridan aquifer limestone capable of supporting wells underlying the landfill site, and the Floridan aquifer either is not present under the site or exists only as a relict or remnant of the limestone formations that make up the Floridan aquifer system in other parts of Florida. The core borings taken on site indicate that the paleokarst terrain underlying the landfill contains no cavities, large openings, sinkholes or other features in the rock that could cause the landfill foundation to collapse. All karst features in this area are filled in and "healed" by the carbonate residuum overlying the limestone under the landfill. Dr. Herbert also investigated the geologic nature of Long Round Bay. In addition to reviewing literature regarding the geology of west Florida in the vicinity of Holmes County and topographic maps depicting the site, Dr. Herbert took at least one sediment core boring in Long Round Bay and also circumnavigated the perimeter of the Bay. Based on information from these sources, Dr. Herbert opined that Long Round Bay, like many other drainage basins in the area north of Bonifay, is a collapse feature of the paleokarst sequence in the vicinity, and is a topographic depression caused by weathering away of the limestone over time. The sediments underlying Long Round Bay consist of deep citronelle clays washed into the collapse feature. Long Round Bay is relatively flat with poorly defined outlets and receives surface drainage from the surrounding area. Because there are no defined channels connecting Long Round Bay to Wright's Creek, water movement from Long Round Bay into Wright's Creek is extremely slow. Long Round Bay is likely not an aquifer recharge area because there is no direct karst connection between Long Round Bay and any aquifer. Clays have run off the surrounding area and accumulated in Long Round Bay for thousands of years sealing off any connections between it and any underlying aquifer. In addition to Dr. Herbert's determination of the potential for active karst formation under the landfill site, Ardaman & Associates performed the foundation analysis of the site, as required by Section 17-701.050(3)(b), FAC. The foundation analysis was supervised by William Jordan, a registered professional engineer. He has an extensive education in geotechnical engineering, as well as 11 years of experience in that field. He was tendered and accepted as an expert in geotechnical engineering and materials testing. As part of the foundation analysis, Ardaman & Associates performed two deep core borings to determine the potential for development of sinkholes at the site. Both borings were taken on the western side of the landfill site, closest to Long Round Bay. One of the borings was performed in an area having a relatively high sand content in the soil, as identified in the hydrogeology report submitted in the permit application. The borings were drilled down to approximately 160 feet below the surface, to the top of the weathered limestone horizon. In Mr. Jordan's extensive experience in foundation testing and analysis, presence or potential for sinkhole development is usually evident at the horizon of the limestone or within the top 15 feet of the limestone. The core borings did not reveal any joints, open seams, cavities, or very loose or soft zones at the horizon or on top of the limestone. In addition, the sediments overlying the limestone horizon were determined to consist of medium dense to dense and medium stiff to stiff sediments, which indicate lack of sinkhole activity or potential. No indication of active or imminent sinkhole conditions were found on the site, either through the core borings or from surficial observation. In addition to the deep core borings, Ardaman & Associates, under Mr. Jordan's supervision, also performed four other core borings to a depth of 60 feet below the land surface. These borings indicated the sediments at the site are composed of clayey sands, very clayey sands, "lean" sandy clays, and sandy "fat" clays. The SPT tests performed on the soils indicate the site soils range from medium to high density and are stiff to very stiff and hard. Mr. Jordan performed a settlement analysis of the landfill based on the types of sediments present on site and assuming a compacted unit weight of 37 pounds per cubic foot for the landfill waste. This unit weight is a typical weight value for compacted municipal waste. For settlement analysis, Mr. Jordan used the SMRF elastic compression and consolidation methods, both of which are professionally accepted standard methods for determining settlement of large structures, including landfills. Using these methods, he determined that the total settlement for the landfill over its total life would be between three and five and one-half inches. Based on the uniformity of the subsurface conditions and density of the soils on the site, any settlement would be uniform and thus would not result in tearing or other failure of the landfill liner. Mr. Jordan performed a bearing capacity analysis of the site. Based on the sediments on site, he estimated the safety factor against bearing capacity to be in excess of 10. The minimum acceptable safety factor for large habitable structures, such as buildings, is in the neighborhood of two to three. Thus, the safety factor determined for the landfill site far exceeds the minimum standard for bearing capacity. Mr. Jordan performed an embankment slope stability analysis for the perimeter berm of the landfill. The inside slope of the perimeter berm has a 3:1 slope and the outside slope has a 4:1 slope. Mr. Jordan's stability analysis was performed on the inside slope of the berm which is steeper and, therefore, less stable. Due to the stability of the clay sediments composing the subgrade of the perimeter berm, and based on his extensive experience in slope stability analysis, Mr. Jordan determined there is no danger of deep circular arc failure of the landfill berm. He used a professionally accepted standard slope stability evaluation method called the "infinite slope" method, to analyze the probability for shallow circular arc failure of the berm. He determined a safety factor of 2.0 to 2.4 for the embankment slope, which is between 1.5 and 2.0 times greater than the minimum accepted safety factor of between 1.3 and 1.5 for embankment slopes. Mr. Jordan also performed an analysis of the site subgrade stability for compaction. Mr. Jordan's analysis showed that the stiff or medium dense silty to clayey sands and clays on the site provide a stable base against which compaction over the life of the landfill can safely occur. Based on the foundation analysis performed by Mr. Jordan on the landfill site, it is evident that the landfill will not be located in an open sinkhole or in an area where geologic foundations or subterranean features will not provide adequate support for the landfill. (See Section 17-701.040(2)(a), FAC). The foundation analysis indicates the landfill will be installed upon a base or in a hydrogeologic setting capable of providing support to the liner and resistance to pressure gradients above and below the liner to prevent failure of the liner due to settlement compression, as required by Section 17- 701.050(5)(b)2., FAC. The foundation analysis further indicates the site will provide support for the landfill, including the waste, cover and structures built on the site (See Section 17-701.050(3)(b), FAC). Section 17-701.050(5)(d)1.a, FAC, requires the lower component of the landfill liner to consist of a compacted soil layer having a maximum hydraulic conductivity of 1 X 10-7 centimeters per second. Mr. Jordan analyzed nine additional core borings to determine if the native soils on the site meet the conductivity standard in the rule or if off-site soils must be blended with on- site soils to achieve the standard. To test whether the on-site soil will meet the conductivity standard, soils were compacted to approximately 95% of the standard maximum for density, which is the industry standard compaction for soil permeability testing. The soils from eight of the nine borings taken at the site exhibited conductivity values of approximately 4.8 X 10-8 centimeters per second. This value is five times less conductive than the value required by the above-cited rule. Only one boring exhibited a conductivity value in excess of the maximum value established in the rule. Based on the conductivity values determined at the site, it is likely the native soils on the landfill site will meet or exceed the maximum conductivity value mandated in the above-cited rule. If the on-site soils do not meet this standard, then bentonite or another material from off site will be blended with the on-site soils to achieve the conductivity standard mandated by the rule. Ground Water Monitoring and Water Quality As required by Section 17-701.050(3)(a), FAC, a ground water monitoring plan for the landfill site was completed in accordance with Section 17-28.700(6), FAC. The original ground water monitoring plan was submitted as part of the application. This plan was incorporated into the notice of intent and the attached draft permit for the landfill, as part of specific condition The ground water monitoring plan subsequently was modified and supplemented by Dr. Herbert to include monitor wells required to be installed by Holmes County on the site, pursuant to the consent order entered into by the county and DER on June 26, 1989, as well as the wells installed by Dr. Herbert as part of his hydrogeologic investigation. DER established a zone of discharge for the landfill site, as required by Rule 17-28.700(4), FAC. The horizontal boundary of the zone of discharge extends to the ground water monitoring compliance wells located at the western, northern, and southern portions of the site and to a line coextensive with the eastern property line for the southeastern portion of the property. The horizontal zone of discharge boundary is located inside the western, northern, and southern property boundaries. The vertical zone of discharge extends from the land surface down to the top of the clay layer underlying the site at approximately +50 to +60 feet NGVD. These zones are established in compliance with Section 17-28.700(4), FAC. The groundwater monitoring plan provides for 15 monitor wells to be located in close proximity to the waste disposal areas and the site boundaries to monitor compliance with all applicable ground water quality standards in Sections 17-3.402, 17-3.404, and 17-550.310, FAC. Four of these wells will be located near the western property boundary to closely monitor water quality to insure contaminants do not seep into Long Round Bay. To detect contamination that may violate applicable surface water quality standards in Sections 17-302.500, 17-302.510, and 17-302.560, FAC, at the edge of and beyond the zone of discharge, the ground water monitoring plan provides for several surface water sampling points on the landfill site near the edge of the zone of discharge. If contaminants are detected in the surface water monitoring system, remediation activities can be implemented to insure the surface water quality standards set forth in the above-cited rules are not violated outside the zone of discharge. As required by Section 17-28.700(6)(g)1., FAC, the ground water monitoring plan provides for a well to be located to detect natural, unaffected background quality of the ground water. The monitoring plan also provides for a well to be installed at the edge of the zone of discharge downgradient from the discharge site, as required by Section 17-28.700(6)(g)2., FAC, and for installation of two intermediate wells downgradient from the site within the zone of discharge to detect chemical, physical, and microbial characteristics of the discharge plume, in excess of the requirement for one such well contained in Section 17-701.050(6)(g)3., FAC. The location of the other wells in the ground water monitoring plan was determined according to the hydrogeologic complexity of the site to insure adequate reliable monitoring data in generally accepted engineering or hydrogeologic practice, as required by Section 17-28.700(6)(g)4., FAC. Due to the essentially stagnant nature of the ground water in the surficial aquifer system, and given the location of the intermediate monitoring wells, any contamination detected at the site can be remediated through recovery wells before it reaches the edge of the zone of discharge. Moreover, due to the confined nature of the surficial aquifer system, there is very little free water in the aquifer. Accordingly, any contamination could be quickly removed by recovery of ground water and de-watering of the area in which the contamination is detected through remediation wells. Also, given the location of the monitoring wells on the site, the northerly direction of the surficial aquifer ground water flow on the northern portion of the site near the existing landfill, and the essentially stagnant nature of the ground water in the surficial aquifer, contamination emanating from the existing cell could be discerned from that emanating from the new cell and recovery and remediation operations directed accordingly. The DER intent to issue and draft permit specify an extensive list of parameters which must be sampled at the ground water monitoring wells and surface water sampling points on the landfill site, as required by Sections 17- 3.402, 17-302.510, 17-302.560, and 17-550.310, FAC. These parameters must be sampled and reported to DER on a quarterly basis. In addition, annual water quality reports must be submitted to DER for the site. Based on the large amounts of clay content and the low horizontal and vertical conductivity values of the on-site sediments, the stagnant nature of the surficial aquifer system, the virtual absence of the Floridan aquifer under the site, and the location of the monitoring wells, the ground and surface water monitoring program provides reasonable assurance that the applicable water quality standards in the rules cited above will not be violated within and outside the zone of discharge. Liner Design, Performance, Quality Control, and Installation Section 17-701.050(5)(d)1., FAC, requires that a composite liner and leachate collection and removal system be installed in a landfill such as that proposed. Mr. Leo Overmann, is a registered professional engineer specializing in landfill engineering. He has over 10 years experience in landfill engineering, design, and construction and has worked on the design and construction of over 50 landfill facilities and 250 landfill disposal cells. He was tendered and accepted as an expert in liner design, quality control plans, and leachate control systems design and performance. It is thus established that the composite liner will have an initial 24-inch layer of compacted clay having a maximum hydraulic conductivity of 1 X 10-7 cm/sec. The 24-inch clay layer proposed by the applicant exceeds the 18- inch minimum thickness provided in the above-cited rule and will be placed in the field in layers or lifts of six inches or less. Each lift will then be treated and compacted to proper specifications in accordance with sound engineering practice in order to insure a tight bond between the clay layers. In the process of placing the clay lifts on the site, any roots, holes, channels, lenses, cracks, pipes, or organic matter in the clay will be broken up and removed, as required by the above-cited rule. In order to insure conductivity of the clay liner component does not exceed the above figure, testing will be done at the site or off-site by constructing a "test pad". A test pad is a site at which the liner construction techniques are tested using the clay material that will comprise the lower liner unit. Once the pad is constructed, the hydraulic conductivity of the clay can be tested to determine the most suitable construction methods in order to meet the above-mentioned conductivity standard and the other design and performance standards in the rule section cited last above. The applicant's liner quality control plan provides for testing of the clay liner hydraulic conductivity and compliance with the other liner design and performance standards in the rule (See Section 17- 701.050(5)(c), FAC). A synthetic geomembrane liner consisting of high density polyethylene (HDPE) will be placed directly on top of and in contact with the clay liner. If the geomembrane should leak, the clay will then retard leachate migration. Although Rule 17-701.050(5)(d)1.a., FAC, only requires a 60-mil thickness liner, the applicant has proposed to use a 80-mil liner. The thicker HDPE liner is less susceptible to stress and wear and tear in the daily landfill operation than is the thinner 60-mil liner required by the rule. The water vapor transmission rate of the 80-mil liner will be approximately 1 X 10-12 cm/sec, which is 10 times less transmissive than the maximum water vapor transmission standard of 1 X 10-11 cm/sec established in Rule 17-701.050(5)(d)1.a., FAC. The design also provides for a drainage layer and primary leachate collection and removal system to be installed above the HDPE liner, as required by the above-cited rule. The drainage layer above the liner consists in ascending order, of a layer of geonet material having an equivalent permeability of approximately three cm/sec; a layer of non-woven, needle-punched geotextile cloth, and a two-foot thick layer of sand. The sand provides a permeable layer which allows liquid to pass through it while protecting the underlying synthetic components of the drainage system and liner. The geotextile cloth component of the drainage layer filters fine particles while allowing liquid to pass through it to the geonet layer. The geonet layer is approximately 3,000 times more conductive than required by Section 17-701.050(5)(f), FAC, so as to allow rapid drainage of leachate off of the HDPE liner. The drainage layer is designed to reduce the leachate head or hydraulic pressure on the liner to one inch within one week following a 25-year, 24-hour storm event. This was determined by use of the Hydrologic Evaluation of Landfill Performance (HELP) model. This model is the standard computer model used in the landfill design and construction industry to determine leachate depth over the synthetic liner in lined landfills. The HELP model calculations submitted in the permit application were prepared by Pearce Barrett, the EPAI landfill design engineer, an expert witness. The HELP model analyzes water and rainfall that falls on active waste disposal cells and percolates through the waste, and the model helps determine the amount of leachate that will accumulate on top of the liner. To determine this amount, the HELP model uses several parameters, including rainfall amount, landfill size, and the number of waste and protective cover layers. The HELP model in this instance involved employment of Tallahassee-collected rainfall data because long-term, site-specific data for the landfill site was not available. The Tallahassee rainfall average is greater than the rainfall average for Chipley, which is closer to the landfill site and, therefore, provides a more conservative, "worst-case" rainfall figure for employment in the HELP model calculations. The HELP is itself a very conservative model, generating a worst-case determination of the amount of leachate that will end up on top of the landfill liner. The model's analysis and calculations indicate that the leachate will be reduced to a one-inch depth on the liner within one week after a 25-year, 24-hour storm event. The landfill project design specifications, in the permit application, provide that all materials in direct contact with the liner shall be free of rocks, roots, sharps, or particles larger than 3/8 of an inch. The geonet and geotextile material are in direct contact with the top of the HDPE liner and the clay liner is located directly below the HDPE liner. The project design specifically provides that the clay material comprising the clay liner component will not contain roots, rocks, or other particles in excess of 3/8 of an inch. No waste materials thus will come into contact with the clay liner. The design specifications also provide additional protection for the liner by requiring that the initial waste placed in the landfill be select waste that is monitored and screened for such things as metal objects, wooden posts, automobile frames and parts, and other sharp, heavy objects which could tear the liner. The liner design contained in the application meets the design requirements of Rule 17-701.050(5)(d), FAC. Section 17-701.050(5)(b), FAC, requires that the liner be constructed of materials having appropriate chemical properties and sufficient strength and thickness to prevent failure due to pressure gradients, physical contact with the waste or leachate to which they are exposed, climatic conditions, stress of installation, and daily operations. The liner is constructed of HDPE, which is superior to other types of plastic for use as municipal and hazardous waste landfill liners due to its physical and chemical properties. It is a material composed of long polymeric chain molecules, which are highly resistant to physical failure and to chemical weakening or alteration. The liner is of sufficient strength and thickness to resist punctures, tearing, and bursting. The liner has a safety factor of over seven, which is three and one-half times greater than the minimum acceptable safety factor of two, required in the Department's rules for landfill liners. The liner proposed in this instance will not fail due to pressure gradients, including static head or external hydrogeologic forces. Mr. Overmann evaluated the effects of a hydrologic head of one foot over the HDPE liner and the clay liner component and determined that the protective sand layer will insure the HDPE liner does not fail. Mr. Overmann relied on the testimony of Dr. Herbert with respect to hydrogeologic site characteristics in concluding that hydrogeologic forces will not cause liner failure. The 80-mil liner proposed by EPAI will be more resistant to the stresses of installation and daily operation than will a 60-mil liner. The two-foot sand layer above the drainage layer and the HDPE liner will also help protect the liner from stresses of daily operation. Mr. Overmann analyzed the liner's potential for failure between the point at which it is anchored on the edge of the landfill and the base of the landfill where settlement is greatest due to waste deposition. He determined that the HDPE liner would elongate on the order of one percent of its length. This is far less than 700 to 800 percent elongation required to break the liner material. Based on the site foundation analysis and the proposed liner design for the landfill, the liner will not fail due to hydrogeologic or foundation conditions at the site. The liner meets the performance requirements set forth in Rule 17-701.050(5)(b)2., FAC. The liner meets requirements that it cover all of the earth likely to be in contact with waste or leachate. The liner extends beyond the limits of the waste disposal cells to an anchor trench where the HDPE liner is anchored by soils and other materials to hold it in place during installation and operation. The liner design provides reasonable assurance that the liner performance standards contained in the above rule will be satisfied. There are no site- specific conditions at the Holmes County landfill site that would require extraordinary design measures beyond those specified in the rule cited above. The permit application includes a quality control and assurance plan for the soil and HDPE liner components and for the sand, geotextile, and geonet components of the drainage layer. A quality control plan is one in which the manufacturer or contractor monitors the quality of the product or services; a quality assurance plan is one in which an independent third party monitors the construction methods, procedures, processes, and results to insure they meet project specifications. The quality control/quality assurance plan requires the subgrade below the clay liner to be prepared to insure that it provides a dry, level, firm base on which to place the clay liner. The plan provides that low- permeability clay comprising the liner will be placed in lifts of specified thickness and kneaded with a sheepsfoot roller or other equipment. Low- permeability soil panels will be placed adjacent to the clay liner and scarified and overlapped at the end to achieve a tight bond. Each clay lift will be compacted and tested to insure it meets the specified density requirements and moisture specifications before a subsequent lift is placed. Lined surfaces will be graded and rolled to provide a smooth surface. The surface of the final low- permeability soil layer will be free of rocks, stones, sticks, sharp objects, debris, and other harmful materials. If any cracks should develop in the clay liner, the contractor must re-homogenize, knead, and recompact the liner to the depth of the deepest crack. The liner will be protected from the elements by a temporary protective cover used over areas of the clay liner exposed for more than 24 hours. The plan also provides specifications for visual inspection of the liner, measurement of in-place dry density of the soil, and measurement of hydraulic conductivity on undisturbed samples of the completed liner. These tests will be performed under the supervision of the professional engineer in charge of liner installation to insure that performance standards are met. There will be a quality control plan for installation of the HDPE liner in accordance with the DER approved quality control plan that incorporates the manufacturer's specifications and recommendations. The quality assurance and quality control plan calls for the use of numbered or identified rolls of the HDPE liner. The numbering system allows for identification of the manufacturing date and machine location, so that the liner quality can be traced to insure that there are no manufacturing anomalies, such as improper manufactured thickness of the liner. The plan also addresses in detail the installation of the HDPE liner. The liner is installed by unrolling it off spools in sections over the clay liner. As it is unrolled, it is tested for thickness with a micrometer and is visually inspected for flaws or potential flaws along the length of the roll. Flaws detected are marked, coded, and repaired. Records are prepared documenting each flaw. If flaws appear frequently, the HDPE is rejected and removed from the site. As the sheets are installed, they are overlapped and bonded together by heat fusing to create a watertight seam. As the sheets are seamed, they are tested in place by nondestructive testing methods to insure seam continuity and detect any leaks or flaws. If flaws are detected, they are documented and the seam is repaired. The seams are also subject to destructive testing, in which a sample of the seam is removed in the field and tested in the laboratory for shearing or peeling apart of the sheets. If destructive testing reveals seam flaws, additional field and laboratory testing is performed and necessary repairs are made. All tests, repairs, and retests are carefully documented, and a map depicting the location of all repairs is prepared for quality control and performance monitoring. The plan for the installation of the geonet, geotextile, and sand layers provides specifications for storage, installation, inspection, testing, and repair of the geonet and geotextile layers. The liner construction and installation will be in conformance with the methods and procedures contained in EPA publication EPA/600/2-88/052, Lining of Waste Containment and Other Impoundment Facilities, as required by Section 17-701.050(5)(a), FAC. The quality assurance and quality control plan proposed exceeds the requirements contained in Section 17-701.050(5)(c), FAC. Leachate Collection and Removal System The landfill design includes a leachate collection and removal system. See Section 17-701.050(5)(e)&(f), FAC. The leachate collection and removal system meets the requirements in the above rule by providing that the design incorporate at least a 12-inch drainage layer above the liner with a hydraulic conductivity of not less than 1 X 10-3 cm/sec at a slope to promote drainage. The drainage layer consists of a geonet layer, a geotextile layer, and a two- foot sand layer. The geonet has a hydraulic conductivity of two to three cm/sec, many times more permeable than required by the rule; and the sand layer will have a hydraulic conductivity of approximately 1 X 10-3 cm/sec. The leachate collection and removal system meets regulatory requirements contained in the above-cited rule that the design include a drainage tile or pipe collection system of appropriate size and spacing, with sumps and pumps or other means to efficiently remove the leachate. The design provides that the Class I cell will be divided into operating disposal cells. The design includes a piping system consisting of a 6-inch diameter pipe to be placed down the center of each of the operating cells and encased in a granular river rock medium. The HELP model calculations included in the permit application and evidence indicate that the leachate will be removed efficiently and effectively and that the leachate head will be maintained in compliance with the performance standards in the rule. The piping system is on a slope that drains to a central location or sump. Based on a design preference of City, the piping design will be slightly modified in the construction drawings to provide that rather than going through the HDPE liner, the leachate piping will run up the side of the cell wall and leachate will be pumped out of the cell into the leachate lagoon. The leachate collection and removal system design provides for a granular material or synthetic fabric filter overlying or surrounding the leachate collection and removal system to prevent clogging of the system by infiltration of fine sediments from the waste or drainage layer. A layer of non-woven, needle-punched geotextile will be wrapped around the granular river rock material surrounding the piping system to filter out fine particles. The design also provides a method for testing whether the system is clogged and for cleaning the system if it becomes clogged. A clean-out tool can be run through the openings in the leachate collection piping system to monitor and pressure clean the pipes if they become clogged. Thus, the leachate collection and removal system will satisfy the leachate system design requirements of Section 17-701.050(5)(f), FAC. The leachate collection and removal system will meet the performance standards in paragraph (e) of that rule, as well. The leachate collection and removal system will be located immediately above the liner and will be designed, constructed, operated, and maintained to collect and remove leachate from the landfill. The HELP model analysis and calculations indicate that the leachate depth will not exceed one foot on top of the liner. The leachate collection and removal system will be constructed of materials which are chemically resistant to the waste disposed of in the landfill and leachate expected to be generated. The geonet will be comprised of HDPE, which is chemically resistant to waste and leachate due to its molecular structure. The collection piping system also will be composed of HDPE. The geotextile layer will be composed of a non-woven polyester or polypropylene fabric, which has been determined to be resistant to and compatible with municipal solid waste leachates. The sand layer will consist of non-carbonate materials that are chemically resistant to or compatible with leachate. The evidence shows that the system will be of sufficient strength and thickness to prevent collapse under the pressures exerted by overlying waste, cover materials, and equipment used at the landfill. Geonet drainage layers, HDPE piping, geotextile fabric, and sand layers such as those proposed are routinely and effectively used in landfills, including those that are deeper than the landfill proposed in the instant situation. The leachate collection and removal system meets requirements in paragraph (e) of the above rule, as well, that the system be designed and operated to function without clogging through the active life and closure period of the landfill. The geonet and geotextile layers will prevent the piping system from clogging. If clogging occurs, the system is designed to allow cleaning of the pipes. The collection and removal system will be designed and constructed to provide for removal of the leachate within the drainage system to a central collection point for treatment and disposal. The leachate will drain by gravity from the sump into the leachate lagoon, but will be altered during construction to provide for pumping of leachate out of the system into the lagoon in order to prevent having to penetrate the HDPE liner with piping. Once the leachate is pumped into the lagoon, it will be recirculated over the landfill face, evaporated from the lagoon, or removed off site for treatment and disposal at a waste disposal and treatment plant. Surface Water and Storm Water Management System The storm water management system for the landfill is designed and sized according to local drainage patterns, soil permeability, annual precipitation calculations, area land use, and other characteristics of the surrounding watershed. (See Rule 17-701.050(5)(h), FAC). The engineering expert for the applicant, Mr. Barrett, designed the storm water management system. He considered the presence of dense clay soils on the site which do not provide good percolation because of low permeability, with regard to storm water falling on the site. He also took into account existing drainage patterns, as well as the annual precipitation. The retention and detention ponds and drainage ways designed into the system consist of three detention basins located at the north, southeast, and southwest quadrants of the site and one retention basin located on the western portion of the site. The site is divided into watersheds and is drained by an on-site gravity system consisting of runoff collection pipes to intercept the overland flow and convey the runoff into the retention and detention facilities. Runoff from the northern watershed is treated in detention basin 1, that from the southeast watershed in basin 3, and runoff from the southwest watershed area in detention basin 4. Runoff from the western area or watershed is treated in retention basin 2. A computer model was used by Mr. Barrett in determining the appropriate design for the storm water management system. The model is called the hydrologic engineering center-1 model developed by the U.S. Army Corps of Engineers. It is a model routinely and widely accepted in the storm water engineering design profession and discipline for designing such systems. It has historically been accepted by the Florida Department of Transportation, DER, the Corps of Engineers, and a number of counties and municipalities. A number of parameters, such as total runoff area, watershed characteristics, rainfall amount, time of concentration, lag time, and route description, were put into the model to develop the storm water management system design. Because no actual runoff data was available to calibrate the model, the model was run using data for two hypothetical storm events, the 25-year, 24-hour storm and the 10- year, 24-hour storm. Total rainfall amounts for these events were obtained from rainfall intensity duration-frequency curves developed by the Florida Department of Transportation (FDOT) for this geographical area. The detention basins are wet treatment facilities having permanent pools of water. Wetlands vegetation grows on the littoral slopes of the detention basins and removes pollutants from the storm water by natural uptake of pollutants contained in the water through the roots, stems, and leaves of the plants. Based on the HEC-1 model, the detention basins are designed to store one inch of runoff over the permanent pool control elevation and to retain the first one-half inch of rainfall, as required by Section 17-25.040(5), FAC, for projects having drainage areas of less than 100 acres. Each basin has several pipes to allow outflow when the water level exceeds the one-half retention level. As water rises to the outflow pipe level, it flows out of the basin and eventually discharges off site. The outflow pipes are two to three inches in diameter, allowing discharge of a controlled volume of water at a controlled rate. The discharge structures will be constructed in accordance with construction drawings that will include erosion control devices, such as rip- rap. The basins also have vertical riser pipes that discharge if water reaches a higher set elevation, specified in the permit application. Only if the water level rises to an elevation exceeding the 25-year, 24-hour storm elevation would the water flow over the berm. As required by Section 17-25.025(8), FAC, the storm water management system design provides for skimmers to be installed on discharge structures to skim oil, grease, and debris off water discharged from the basins. No more than one-half of the volume will be discharged in the first 60 hours following a storm event. The detention basin slopes that exceed a four to one slope down to a depth of two feet below control elevation will be fenced for safety purposes. See Rule 17-25.025(6), FAC. The retention basin is designed to retain the first one-half inch of rainfall with filtration of the first one-half inch through a sand filter bed in the bottom of the basin within 72 hours following the storm event. The sand filter bed will consist of clean well-graded sand having a minimum horizontal and vertical conductivity or percolation rate of six inches per hour. The retention basin has vertical risers, as provided in the application. Erosion and sediment control "best management practices" will be used during construction to retain sediment on site, as referenced in Rule 17-25.025(7), FAC. Other best management practices, such as sodding embankments or stabilizing slopes with geomats or sand bags will be used. The system is designed to minimize mixing of the storm water with the leachate. (Rule 17-701.050(5)(h)3., FAC). As waste is placed in the landfill, berms are constructed laterally across the cell face to segregate the waste disposal areas from other areas in the cell not yet receiving waste. Storm water coming into contact with waste flows down through it and eventually is collected and removed from that cell by the leachate collection and removal system described above. Storm water falling in a portion of a cell in which waste has not been deposited is collected by piping and pumped to the storm water management system for treatment of storm water because it does not constitute leachate, not having traversed on or through waste. Storm water will not come into contact with the waste within the system as designed. There are not any pipes connecting the waste disposal cells to the storm water system or basins. The storm water system in the permit application was designed in accordance with the criteria enunciated in the above-cited rule. This fact was established by the unrefuted expert testimony of Mr. Barrett and was independently confirmed by three other engineers, including the storm water program engineer of DER, each of whom reviewed the storm water system design. The storm water program engineer inspected the site and determined that the proposed management system will not pose any risk to downstream property, as required by the statute and rules enforced by the Northwest Florida Water Management District (NWFWMD). CVA adduced the testimony of Mr. Hilton Meadows in an effort to demonstrate that the storm water management system design in EPAI's application, and case-in-chief, does not meet applicable criteria in Chapters 17-701 and 17- 25, FAC, referenced above. Mr. Meadows attempted to demonstrate, by calculations determined using the "rational formula", that storm water will be discharged off the landfill site at a rate of 16.11 acre feet per minute during a 25-year, 24-hour storm event. An acre foot of water is a depth of one foot of water covering a surface acre in area. According to Mr. Meadows, all storm water would be thus discharged off site at a single discharge point creating a "blowout" of the storm water management system structure at that point which would flood and erode Long Round Bay off the site. In rebuttal, however, Mr. Barrett explained that Mr. Meadows' calculations merely determined the total amount of water that would fall on the landfill site during a 25-year, 24-hour storm event and failed to consider the time-volume reduction of storm water off the site over a 24-hour time period. Mr. Barrett clearly established that 16.11 acre feet of water would not be discharged per minute off the site during the 25-year, 24-hour storm event. It was further demonstrated that Mr. Meadows did not perform any computer modeling in analyzing site-specific compliance of the proposed storm water management system design against the framework of the applicable design and performance standards in Chapters 17-25 and 17-701, FAC. CVA did not adduce any preponderant evidence which would demonstrate that the storm water management system proposed will not meet the design performance standards contained in the rules and rule chapters referenced above. In view of the more extensive background, education, knowledge, and training acquired both through education and experience; in view of the more extensive and detailed investigation and calculations underlying his design, including the computer modeling effort referenced above; and in view of his corroboration by three other witnesses within the storm water engineering discipline, the opinions of Mr. Barrett, and the witnesses corroborating his testimony, are accepted over that of Mr. Meadows. Gas Control System The gas control system for the landfill will meet the design requirements contained in Rule 17-701.050(5)(j), FAC. It will be a passive system, meaning that no mechanical methods are necessary to withdraw gas from the landfill. A ventilation system will be installed as the final cap is placed on the landfill and will consist of perforated PVC pipes placed vertically down through the soil cover layers, to reach the solid waste disposal areas. The pipes are wrapped in geotextile fabric in order to prevent them from being infiltrated by fine soil particles which could cause clogging of the system. The pipes will run laterally across the top of the waste disposal areas to transfer gas to the vertical vents which vent the gases to the atmosphere. If gas production should exceed the capacity of the passive ventilation system, vegetation will be damaged and odor will become objectionable. If that occurs, a pump can be connected to the system to extract gases mechanically and vent them into the atmosphere or flame them off as a more positive control method. The proposed gas system is typical for landfills of this size and has been well tested for efficiency at other such facilities. The gas control system will not interfere with or cause failure of the liner or the leachate control systems. The gas control system is designed to prevent explosion and fires due to methane accumulation, damage to vegetation on the final cover of the closed portions of the landfill or vegetation beyond the perimeter of the property. It will control any objectionable odors migrating off site. The system, as proposed and proven in this case, meets the design requirements contained in the above-cited rule. Landfill Operation Paul Sgriccia, vice president of City, is a registered professional engineer specializing in landfill design, operation, and management. He has extensive professional experience in (and supervises a 20-person staff) designing landfills, obtaining permitting, and overseeing daily operation, environmental regulation compliance, compliance monitoring, hydrogeology, and groundwater monitoring with regard to landfill projects proposed, being constructed, or operated by City. Additionally, he is trained as an engineer. He was tendered and accepted as an expert in the fields of landfill operations and landfill management. The above-cited rule chapter requires landfills to have a ground water monitoring system that complies with monitor well location, construction, and sampling requirements of Sections 17-3.401, 17-4.26, and 17-28.700, FAC, and ground water sampling and testing in accordance with those sections, as well as Section 17-22, Parts III and IV, FAC. Mr. Sgriccia's testimony shows that the ground water monitoring plan proposed and considered in conjunction with the hydrogeologic investigation and ground water monitoring recommendations made by Dr. Herbert will meet these regulatory requirements. The recommendations made by Dr. Herbert concerning ground water monitoring should be incorporated as conditions on issuance of the permit. The applicant has voluntarily agreed to notify DER one year in advance of its ground water monitoring schedule so that DER can be present to collect "split samples", as referenced in Rule 17- 701.050(6)(a)3., FAC. Any grant of a permit should also be conditioned on this policy being strictly followed. The application also contains an operation plan, as required by the above-cited rule at paragraph (6)(b). The operation plan provides that EPAI will be the entity responsible for the operation and maintenance of the landfill. The plan provides that in the event of a natural disaster or equipment failure that would prevent waste from being deposited at the landfill, the waste will be disposed of at the Springhill landfill in adjacent Jackson County, pursuant to an agreement between EPAI and Waste Management, Inc., the operator of that landfill. The operation plan contains detailed procedures to control the type of waste received at the facility. Hazardous waste, biomedical waste, lead-acid batteries, white goods, used oil, and waste tires will not be accepted for disposal at the proposed landfill. Asbestos will only be accepted if it is in the proper regulatory approved containers. The operation plan specifies inspection procedures and procedures to be followed if prohibited wastes are discovered. All vehicles hauling waste to the landfill will be weighed and inspected by the operator or appointed attendants at the entry to the landfill. A load inspection will be performed to determine if the waste conforms to the approved waste description before the waste can be disposed. Paperwork, checks, controls, and records maintenance will be performed, as well as random load inspections for municipal solid waste generated by households. Spotters will observe the actual unloading of each vehicle at the active cells. Unacceptable waste will be rejected and cannot be disposed of at the site. Unacceptable waste that is already unloaded inadvertently at the site will be required to be removed immediately. DER will be notified of attempts to dispose of unacceptable waste at the landfill site. The operation plan provides for weighing and measuring of incoming waste and vehicle traffic control and unloading control. All these vehicles will be weighed and inspected before proceeding to disposal cells. The operation plan provides a method and sequence for filling waste into the disposal cells. Waste disposal will begin in the southwest corner of cell one and waste will be disposed in that cell up to an established final grade and the final capping process will be commenced before beginning disposal in another cell. Waste will be compacted on a daily basis when a load is received. Compaction equipment operates continuously over disposed waste loads to obtain maximum compaction. A daily cover of six inches of clean soil will be applied at the end of the day unless more waste will be disposed on the working face within 18 hours. Daily cover helps reduce disease-vectors, such as flies and rodents, as well as to reduce windborne litter. The gas control system will be maintained to insure that riser pipe vents are not dislodged and will be monitored to insure that explosive limits of methane are not reached. When leachate levels in the lagoon reach a certain level, the leachate will be withdrawn and recirculated back over the working face of the disposal area or else hauled off site to a waste water treatment facility for treatment and disposal. Leachate recirculation is becoming an accepted treatment method by regulatory agencies and is considered an effective industry standard treatment method. Leachate is recirculated by application to the active working face of the disposal cell by a watering truck and is dropped on the cell through a distribution bar or open valve pipe at the back of the truck. Leachate will not be applied during rainfall nor will it be aerially sprayed on the cell. Municipal solid waste has significant absorption capacity, so that large quantities of recirculated leachate are absorbed by the waste. The leachate that does eventually run through the waste is collected in the leachate collection and removal system and does not mix with runoff going into the storm water management system. The leachate lagoon is surrounded by a containment dike area with a loading station inside the dike for removal of leachate by truck for off-site treatment at a waste water treatment plant. A hose is hooked to a tank truck and leachate is pumped into the truck. Any spills during the loading process will be contained by the dike and will flow back into the leachate lagoon. The storm water management system will be operated to insure that there is no mingling of leachate with storm water runoff. The design provides for three diversion berms running the length of the Class I disposal cell which divide the cell into four smaller working cells. Any rainwater falling in the clean, unused cells will be removed to the storm water management system. The rain coming into contact with the working face is leachate and is collected and removed from the cell by the leachate control system. The operation plan addresses and satisfies each requirement of Section 17-701.050(6)(b), FAC. Rule 17-701.050(6)(c), FAC, requires certain operational design features to be incorporated in the landfill. Thus, the entire site will be enclosed by a minimum four-foot high fence with a gate that will be locked during off hours. To Shoo Fly Bridge Road is a county-maintained, all-weather road that provides main access to the landfill site. In addition, the roads on the site will be stabilized, all-weather roads. The operation plan provides for signs indicating the name of the operating authority, traffic flow, hours of operation, and any disposal charges, as well as scales for weighing the waste loads received at the site. Dust will be controlled by water spraying to avoid contaminated runoff due to chemical sprays and oils. Dust will be further minimized by use of paved roads, minimizing the areas of disturbed soil, vegetating stockpiles as soon as possible, and vegetating final and intermediate cover areas. Daily cover, use of portable fences, and cleaning operations by operating personnel will provide litter control. Firefighting equipment and facilities adequate to insure the safety of employees will be located on site. Daily cover will be used to minimize the potential for fire and fire extinguishers and water will be used to fight fires. If a fire is too large to effectively fight with on-site equipment, the Holmes County Fire Department will be called to assist. The operation plan for the landfill meets the requirements depicted in the above-cited rule at paragraph (d) in terms of personnel and facilities requirements. A certified attendant will be on site during all hours of operation and a telephone will be located on site. Equipment requirements are contained in the above-cited rule at paragraph (e). The applicant will thus maintain and operate a large bulldozer, soil scraper, front-end loader, water truck, motor-grader for cleaning roads, and portable pumps for storm water management and leachate management. In the event of an equipment breakdown, the plan provides for an agreement between the operator and a local heavy-equipment company to provide a compactor and other essential equipment within 24 hours. The equipment will have protective roll bars or roll cages, fire extinguishers on board, and windshields. The operation plan otherwise provides for protective devices and gear for heavy equipment and for personnel themselves, such as dust masks and hearing protection devices, hygienic facilities in the maintenance building and office, potable water, electric power, emergency first aid facilities and the like. Employees will be hired locally and trained in appropriate safety procedures and practices. In accordance with the provisions of Section 17-701.050(6)(j), FAC, the operation plan calls for solid waste in the Class I cell to be spread in layers of approximately two-feet in thickness and compacted to approximately one-foot thickness before the next layer is applied. Weekly compaction of the waste will be accomplished by heavy equipment at the Class III cell. The compostible materials and the yard trash at the Class III cell will be removed and composted on site. Bulky materials that are not easily compacted will be worked into the other waste materials to the extent practicable. As required by paragraph (k) of the above-cited rule, the compacted solid waste material will be formed into cells with the working face and side grades above surface at a slope of no greater than 30 degrees. The cell depth will be determined by the area in operation, daily volume of waste, width of the working face, and good safety practices. Waste will be placed into the cell beginning at the southwest corner and spread northward, eventually reaching grade level. As elevation of the cell approaches final grade, intermediate and final cover is applied to the cell. The final slope grade will be approximately 4:1 and will be terraced. The operation plan meets the requirements contained in paragraph (6)(1) of the above-cited rule that the cell working face be only wide enough to accommodate vehicles discharging waste and to minimize the exposed area and use of unnecessary cover material. The waste will not be spread across the entire cell immediately but instead will be spread on a small working face. The typical working area may be 50 feet by 50 feet or slightly larger, and will become larger as more loads of waste are received. Waste is deposited on the working face and compacted until final grade is reached, working across the face of the active cell in a terraced effect. Intermediate and final cover are applied to the portions of the cell that have reached design dimensions. The working face is kept as small as possible to minimize leachate generation, disease-vector problems, and the need for daily cover. The landfill operation meets the requirements contained in paragraph (6)(m) of the above-cited rule to the effect that initial cover will be applied to enclose each working cell except the working face, which may be left uncovered if solid waste will be placed on the working face within 18 hours. If there are adverse environmental impacts or problems with disease-vectors, initial cover will be placed on the working face at the end of each day for the Class I landfill cell and once a week for the Class III cell. The operation plan provides that an intermediate cover of one foot of compacted soil will be applied in addition to the six-inch daily cover within seven days of completion of the cell if final cover or an additional lift is not to be applied within 180 days of cell completion, as required by paragraph (6)(n) of the above-cited rule. The landfill will be closed in accordance with Sections 17-701.050(4) and 17-701.070-.076, FAC. The operation plan further provides that daily cover will control disease-vectors, such as flies, rather than employing use of pesticides. Uncontrolled or unauthorized scavenging will not be permitted at the landfill and will be controlled by fences and on-site personnel. Class III Cell The proposed Class III cell will be located over the old Class I cell last used by Holmes County. This area has a recompacted clay liner and a leachate collection system in place. Only yard trash will be deposited in the Class III cell, however. Based upon the Class III cell design and operating plan that will permit only yard trash disposal in it, any leachate generated from the Class III cell will not pose any threat to or violate applicable water quality standards in or outside the zone of discharge. Asbestos disposal is proposed at the landfill site. A separate asbestos disposal cell is proposed. The operation plan will provide that the asbestos be covered daily with a proper dust suppressant or six inches of non- asbestos material or will be disposed of in an area where proper warning signs, fences and barriers are present. Asbestos accepted for disposal at the landfill will be bagged and accompanied by shipping documents as required by EPA rules appearing in Title 40, Code of Federal Regulation. Persons working around asbestos will be specifically trained in its handling and must use appropriate protective equipment, as required by the National Emission Standards for Hazardous Air Pollutants set forth at 40 CFR 61.25 and other applicable federal regulations. The applicant proposes to dispose of petroleum contaminated soils at the landfill, as well. These soils will be mixed in with the waste on the working face. The soils will not be used as an intermediate cover or come into contact with surface water that will be conveyed to and treated in the storm water management system. Landfill Closure The application includes general plans and schedules for closure of the new and existing landfills. Once final grade is reached, an intermediate cover is applied over the daily cover if the working face will not receive any more waste or will receive final cover within 180 days. The gas control system will then be installed and the final cover consisting of an impermeable synthetic cap will be applied. The final cover will be a plastic cap constructed of polyvinyl chloride (PVC), HDPE, or some other synthetic material and covered by one foot of protective soil, topped by six inches of topsoil to promote vegetation growth. Soils for the closure effort will be obtained on site and will not be obtained by dredging in any jurisdictional wetlands. The final design provides for a terraced landfill profile for the new Class I cell. The waste levels will not exceed 10 feet in height and will be terraced at a 4:1 slope. The terraces will slope back against the cell wall and will be underlain by a subdrain to collect runoff and convey it to the storm water management system. This will prevent erosion of the final cover, waste exposure, and thus, additional leachate generation. The application contains a closure plan containing a general landfill information report and various other plans, investigations, and reports addressing all criteria and factors required to be addressed by Section 17- 701.073(6)(a)-(i), FAC. All such plans, reports and investigations were certified by Pearce Barrett, a registered professional engineer, expert witness and landfill designer for the applicant. The application contains a detailed estimate of closure costs and a monitoring and long-term care plan for the landfill meeting the requirements of Sections 17-701.075 and 17-701.076, FAC. An interest-bearing escrow account will be established for the landfill within 30 days of permanent issuance to cover the closure costs. Funds for closure, monitoring and long-term care of the landfill will be set aside as tipping fees are paid. As portions of the landfill are closed, funds in the escrow account will be available to pay for closure. This type of landfill closure and closure funding is termed "close as you go". This insures that available funds to close the landfill will be present so that funding problems such as those associated with the existing landfill will not arise. The long-term care plan provided for in the permit application and in the applicant's evidence provides for monitoring and maintenance of the landfill for a 20-year period after closure is complete. The storm water management system will be maintained and ground water monitored as part of this long-term care plan.

Recommendation Having considered the foregoing Findings of Fact, Conclusions of Law, the evidence of record, the candor and demeanor of the witnesses, and the pleadings and arguments of the parties, it is RECOMMENDED that a Final Order be entered by the Department of Environmental Regulation dismissing the petition filed in opposition to the permit application and approving EPAI's application for the permit at issue, authorizing construction and operation of a 20-acre Class I, Class III, and asbestos landfill, as well as authority to close the existing 25.5-acre Class I landfill in Holmes County, Florida, in the manner and under the conditions delineated in the application, as amended, the Intent to Issue and draft permit and the above Findings of Fact and Conclusions of Law. It is further RECOMMENDED that the motion for attorney's fees and cost be denied. DONE AND ENTERED this 6th day of April, 1993, in Tallahassee, Florida. P. MICHAEL RUFF Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 6th day of April, 1993.

USC (1) 40 CFR 61.25 Florida Laws (1) 120.57
# 6
HUDSON HARGETT vs DEPARTMENT OF HEALTH AND REHABILITATIVE SERVICES, 90-002487 (1990)
Division of Administrative Hearings, Florida Filed:Cross City, Florida Apr. 25, 1990 Number: 90-002487 Latest Update: Dec. 21, 1990

The Issue The issues to be resolved in this proceeding concern whether the Petitioner is entitled to a permit permitting installation of an on-site sewage disposal system (OSDS) on his property located in Dixie County, Florida, in the vicinity of the Suwannee River and whether he is entitled to seek a variance from the statutes and rules concerning permitting of such systems.

Findings Of Fact The department hereby adopts and incorporates by reference the findings of fact set forth in the Recommended Order.

Recommendation Having considered the foregoing Findings of Fact and Conclusions of Law, the evidence of record, the candor and demeanor of the witnesses and the pleadings and arguments of the parties, it is therefore RECOMMENDED: That a Final Order be entered denying the Petitioner's application for an OSDS permit, without prejudice to the applicant applying for and seeking a variance from the statutory and rule requirements related to permitting for the reasons found and concluded above, and without prejudice to applying for and pursuing an OSDS permit application should the applicant, at a later time, be able to demonstrate that alternative methods of treatment and disposal of the sewage effluent at issue can feasibly be performed, within the bounds of the standards enunciated in the above-cited statutes and rules concerning on- site sewage disposal permitting. DONE and ENTERED this 21st of December, 1990 in Tallahassee, Leon County, Florida. P. MICHAEL RUFF Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 21st day of December, 1990. APPENDIX TO THE RECOMMENDED ORDER IN CASE NO. 90-2487 PETITIONER'S PROPOSED FINDINGS-OF FACT Accepted. Accepted. 5-14. Accepted. RESPONDENT'S PROPOSED FINDINGS OF FACT 1-7. Accepted. COPIES FURNISHED: Sam Power, Agency Clerk Department of HRS 1323 Winewood Boulevard Tallahassee, FL 32399-0700 Linda K. Harris, Esquire General Counsel Department of HRS 1323 Winewood Boulevard Tallahassee, FL 32399-0700 John K. McPherson, Esquire 22 South Main Street Gainesville, FL 32601 Frances S. Childers, Esquire Assistant District III Legal Counsel Department of HRS 1000 Northeast 16th Avenue Gainesville, FL 32609 =================================================================

Florida Laws (2) 120.5790.803
# 7
HENDRY CORPORATION vs DEPARTMENT OF ENVIRONMENTAL REGULATION, 92-002312 (1992)
Division of Administrative Hearings, Florida Filed:Tampa, Florida Apr. 14, 1992 Number: 92-002312 Latest Update: Aug. 10, 1993

Findings Of Fact The Department (DER) is the regulatory agency of Florida charged with the duty and authority to administer and enforce Chapter 403 and Sections 376.30-376.319, Florida Statutes, and rules and regulations promulgated thereunder. Hendry is a Florida corporation that has been conducting business in excess of 60 years. The two main aspects of its business are the dredging operation and the shipyard. Hendry's site can be loosely described as an industrial site. The shipyard division performs approximately one-half its work for governmental entities, particularly the U.S. Coast Guard, which operations are largely ship refurbishing. Hendry has a Coast Guard certificate enabling it to receive mixtures containing oil and oily water waste. A significant portion of Hendry's ship refurbishing work involves repairing/replacing steel on ships which has deteriorated due to salt water exposure. That work frequently requires cutting, welding and burning. Prior to commencing the refurbrushing work, the ships must be certified as safe. In certifying a ship as being safe, the bilge area is pumped of used oil or waste oil which collects in standing waste water and oil. Also, before that works commences, the ship is defueled. Currently, Hendry's practice is to subcontract the pumping of waste oil from the ships bilge, which waste oil is pumped directly into the tanker truck of the subcontractor. Hendry no longer pumps or stores waste oil on site. In the past, the waste oil and water from the ship's bilge was pumped from the ship through a pipeline from the dry dock across the property to a 10,000 gallon above-ground storage tank. During December 1987, the U.S. Coast Guard observed a fuel spill on the water at Petitioner's facility. Based on that observation, Respondent conducted site inspections of Petitioner's facility during March and April 1988. The fuel spill was occasioned by Petitioner's refurbishment of a tuna boat at its site. Petitioner subsequently received a warning notice regarding alleged violations in its petroleum storage tanks and contamination. The transfer pipeline is of steel construction. Between 1980 and 1984, the pipeline leaked. In 1984, the pipeline was rerun with PVC line and in 1986, it was refitted with 4 inch steel pipe. The 10,000 gallon above-ground tank is located in Area 1. The removal of waste oil occasionally resulted in accidental spills. After 1985, a smaller, above-ground tank was installed adjacent to the 10,000 gallon tank to provide a storage tank for draining off water from the 10,000 gallon tank. The small tank was used to receive only water drained from the 10,000 gallon tank. Prior to installation of the small tank, a retention pond was used to drain water from the 10,000 gallon tank. The retention pond had a 2 foot berm with a visqueen liner. In October 1988, Hendry submitted an EDI Program Notification Application, a prerequisite for EDI reimbursement eligibility, under the program for costs associated with cleanup of certain petroleum contamination. In May 1989, Hendry submitted a document entitled Preliminary Contamination Assessment III Specific Areas--Task IV Rattlesnake Terminal Facility--Westshore Boulevard, Hillsborough County prepared by Mortensen Engineering, Inc. That document included reports of analysis of oil and groundwater samples taken from the site in January, March and April 1989, demonstrating extensive contamination of soil and groundwater including "free product" in monitoring wells MW-2, MW-4 and MW-4A. By letter dated November 9, 1989, the Department informed Hendry of its determination that the facility had been denied EDI reimbursement based on specific enumerated findings. Hendry entered into a stipulation with the Department on October 16, 1990, "regarding the conduct of this case and the basis for denial. " Attached to the stipulation is a sketch of the facility grounds showing a rough division of the area into four separate areas. Area 1 has two waste tanks. One was a large 10,000 gallon closed tank approximately 20 feet high and 12 feet in diameter; the other contained a volume of approximately 1,500-2,000 gallons and was an open tank. Petitioner's practice was to pump bilge in the dry dock area, located west of "Area 2" and direct the waste through underground pipes to the 10,000 gallon tank. The smaller tank was used to "bleed" water from the larger tank. Bilge waste is approximately two-thirds water. Area 2 was the location of Hendry's diesel tank farm. In the stipulation, the Department agreed to withdraw two of the seven specific grounds for the denial, namely denial of site access and failure to report discharges. Likewise, Hendry agreed to withdraw "Area 4" from its application for EDI eligibility. In the stipulation, Hendry was informed of a then recent amendment to Section 376.3071(9), which offered certain applicants who had been earlier determined ineligible for participation in the EDI program, standards and procedures for obtaining reconsideration of eligibility. The amendment required the facility to come into compliance, certify that compliance and request reconsideration prior to March 31, 1991. Additionally, compliance was to be verified by a Department inspection. Pursuant to paragraph 5(b) of the stipulation, these standards and procedures were specifically to be applied to Areas 2 and 3 at the facility. Hendry did not make a written request for reconsideration of the denial of eligibility with respect to Areas 2 and 3 on or before March 31, 1991 or at anytime subsequently. Hendry also did not come into compliance with the underground or above-ground storage tanks system regulations on or before March 31, 1991 in that Hendry failed to register a 560-gallon above-ground diesel storage tank which was onsite on that date as required by Rule 17-762.400, Florida Administrative Code. Hendry also failed to notify the Department of the Hillsborough County Environmental Protection Commission (HCEPC), as the administrator of a designated local program at least thirty days prior to closure of the storage tank system, pursuant to Subsection 376.3073, Florida Statutes. These determinations were made on April 1, 1991 by Hector Diaz, inspector in the HCEPC tanks program. Hendry submitted a registration form for the 560-gallon tank on November 18, 1991, which was of course subsequent to the March 31, 1991 deadline. Hendry stored petroleum products and waste material including petroleum constituents in the above-ground tanks until approximately March 25, 1991 when it initiated tank removal. Hendry's above-ground storage tanks, which were in use at its facility for approximately three years after extensive soil contamination was documented, were without secondary containment. In November 1991, Hendry submitted a document entitled Supplemental Preliminary Contamination Assessment Report, prepared by Keifer-Block Environmental Services, Inc. (Supplemental PCAR). The stated purpose of the study was solely to determine whether hazardous constituents were present in groundwater in Areas 2 and 3. The report included laboratory analysis of groundwater samples taken from the site in August 1991 including monitoring wells located in Area 3. The results of these analysis reflect that Area 3 is contaminated solely with heavy metals, lead and chromium. No petroleum hydrocarbon contamination was detected in Area 3. In the area adjacent to Area 2, seven of eight monitoring wells show chromium or lead contamination. Hendry had, and continues to have, a practice of removing paint from vessels by blasting them with a gritty material known as "black beauty." This practice takes place in the dry dock area near Areas 2 and 3. The waste blast grit/paint chip mixture is vacuumed or shoveled into wheelbarrels or a frontend loader and dumped into an open pile. Occasionally, the waste blast grit/paint mixture is blown about or spilled. Waste "black beauty" has been observed scattered on the ground throughout the facility. Paints sometime contain heavy metals, specifically, lead and chromium. The concentrations and distribution of lead and chromium contamination at the site are consistent with Hendry's long-standing practice of grit-- blasting paint from ships and other vessels and allowing the metal-contaminated paint and waste mixture to fall to the ground. Areas 2 and 3 are contaminated with substances other than petroleum or petroleum products, namely heavy metals. Costs associated with cleanup of lead and chromium are not reimburseable under the EDI program. Paragraph 5(c) of the stipulation allowed Hendry an opportunity to establish eligibility for Area 1 by providing information regarding operating practices at two above-ground storage tanks and a retention pond in that area demonstrating that contamination in that area is predominantly from leaks or unintentional spills of petroleum products from the tanks in that area. Hendry did not provide the required information. On January 27, 1992, Hendry submitted to the Department an affidavit executed by its principal, Aaron Hendry, which Hendry contends fulfills the requirements of paragraph 5(c) of the stipulation. Hendry, the principal who executed the affidavit, is an affiant with a legal and financial interest in the outcome of the EDI eligibility determination. The executed affidavit did not contain specific information with respect to "operating practices at the tanks and retention ponds as required by the stipulation." Specifically, the affidavit is silent as to: What the tanks were made of; When, how and by whom they were installed; What piping, leak detection or overfill protection was associated with them; What repairs or alterations had been made to them; What inventory reconciliation methods were used; Where the materials came from which was put into the tanks; In what manner, how often, and by whom material was put into the tanks; In what manner, how often, and by whom material was removed from the tanks; Disposition of material removed from the tanks; When, how, by whom and why the retention pond was dug; How and for what period of time the retention pond was used; How, often and by whom inspections of the tanks were conducted; When and how leaks occurred and were discovered at the tanks; When and how spills occurred and were discovered at the tanks; What records, including reports to state or local agencies, insurance claims, newspaper accounts, and so forth were kept with respect to leaks or spills at the tanks; What cleanup efforts were made at the time of any leaks or spills; Documentation related to registration of the tanks with state or local agencies; and Documentation with respect to any removal of the tanks, including any description of the condition of the tanks when, or if, removed. For years, the facility's retention pit was used as a "waste pit" namely, a rectangular hole in the ground, approximately 30 feet by 120 feet by 3 feet, for direct discharge of bilge waste piped from vessels at the dry dock area to the waste pit, prior to installation of the storage tank systems. After installation of the large tank in Area 1, the retention pit was used to bleed water from the bilge tank. In the past, the Department has denied eligibility to facilities where a retention pond was used for disposal of petroleum related waste and cleanup of contamination resulting from use of a retention pond. Hendry's affidavit nor other documentation submitted to the Department prior to the EDI redetermination or at hearing establishes that the bilge waste taken from the storage tanks was "a liquid fuel commodity" or recycled into such a commodity. By letter dated June 9, 1992, the Department notified Hendry that reconsideration of its EDI eligibility request for Areas 2 and 3 was denied and that the affidavit of Aaron Hendry submitted with respect to Area 1 did not satisfy the requirements of the stipulation. Thereafter, Hendry challenged the Department's denial of reconsideration and EDI eligibility which joins the issue for this proceeding. The hazardous waste allegation discovered during an inspection of Hendry's facility on April 14, 1988, resulted in a consent order which was entered as a final order of the Department on November 21, 1990. The consent order allowed Hendry an opportunity to demonstrate that not all areas at the facility were hazardous waste disposal areas and, thus, not all areas would be subject to closure and cleanup under the permitting requirements of Subsection 403.722, Florida Statutes and the remediation standards set forth in Chapter 17-730, Florida Administrative Code. To establish appropriate remediation standards and procedures which would be applicable to various areas, Hendry was required to prepare a property diagram designating areas at the property exhibiting any of the following types of contamination: Areas contaminated solely by petroleum or petroleum products or used oil which is not hazardous waste; Areas contaminated by materials which are not hazardous waste; Areas contaminated by the past or present disposal of hazardous waste. The consent order allows contamination assessment and remediation pursuant to the standards and procedures set forth in Chapter 17-770, Florida Administrative Code, for areas contaminated solely by petroleum or petroleum products. (Petitioner's Exhibit 5, paragraph 11.) The consent order requires contamination assessment and remediation pursuant to the Department's corrective action and groundwater contamination cases for all areas at the facility contaminated by used oil which is not hazardous waste or by hazardous material. (Petitioner's Exhibit 5, paragraph 12.) The consent order requires contamination assessment and remediation pursuant to a closure permit with a contingent post-closure plan to close the areas at the facility contaminated by the disposal of hazardous waste. In response to the consent order to delineate areas on the property exhibiting various types of contamination, Hendry submitted the supplemental PCAR. By letter dated March 19, 1992, the Department responded to the supplemental PCAR with a determination that: Area 1 can be assessed and remediated through the standards set forth in Chapter 17-770, Florida Administrative Code. Contamination in Areas 2 and 3 includes heavy metals, which are hazardous materials. Thus, Areas 2 and 3 should be assessed and remediated through the corrective action process for groundwater contamination cases. A hazardous waste facility closure permit application should be submitted for assessment and remediation of Area 4, which, because of the presence of Dichloroethylene, a hazardous substance and chlorinated solvent, should be expanded to include the location of monitoring well MW KBMW-2. Hendry had a practice of cleaning electrical motors by placing such motors on the ground outside the electrical repair shop near Area 4. The motors were sprayed with Trichloroethylene, a waste solvent, which was allowed to runoff into the soil. At the time of this practice, the intention was to leave the solvent contamination unchecked. The Department, pursuant to directives from the United States Environmental Protection Agency (EPA), characterizes the disposition of hazardous waste to the environment as a result of intentional, ongoing industrial practices as "disposal of hazardous waste" within the meaning of Subsection 475.703(21), Florida Statutes and 40 CFR 260.10. The consent order allowed Hendry an opportunity to challenge the Department's determination with respect to delineation of the various areas by filing a petition per paragraph 21 of the order for formal administrative hearings. Hendry filed its petition with respect to the March 19, 1992 letter, which petition is the subject of DOAH Case No. 92-2312.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that: Respondent, Department of Environmental Regulation, issue a Final Order in these consolidated cases concluding that 1) the contamination areas at issue herein are not eligible for EDI reimbursement under Subsections 376.3071(9) and (12), Florida Statutes; 2) that Petitioner cleanup the contamination in Areas 1, 2 and 3 under the guidance document entitled "Corrective Actions for Groundwater Contamination Cases"; and 3) that Area 4 be expanded to include the location of monitoring well MW KBMW-2 and closed through a hazardous waste closure/post closure permit application process. DONE AND ENTERED this 26th day of April, 1993, in Tallahassee, Leon County, Florida. JAMES E. BRADWELL Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 26th day of April, 1993. APPENDIX Rulings on Petitioner's proposed findings of fact: Paragraph 14, partially adopted in Paragraph 13, Recommended Order. Paragraph 19, rejected, contrary to the greater weight of evidence and speculative. Paragraph 20, rejected, unnecessary. Paragraph 21, rejected, contrary to the greater weight of evidence, Paragraphs 24-28, Recommended Order. Paragraph 22, partially adopted, Paragraphs 13 and 14, Recommended Order. Paragraph 23, partially adopted, Paragraph 15, Recommended Order. Paragraph 29, partially adopted, Paragraph 18, Recommended Order. Paragraphs 31, 32, 35, 48, 49, 51, 52, 60, 62 and 73 rejected, unnecessary. Paragraph 33, adopted in part, Paragraph 23, Recommended Order. Paragraph 38, adopted in part, Paragraph 23, Recommended Order. Paragraph 41, rejected, contrary to the greater weight of evidence and the two cases cited at hearing where Respondent exercises his discretion are distinguishable from Petitioner's failure to timely apply. Paragraph 43, rejected, unnecessary and/or argument. Paragraph 45, rejected, contrary to the greater weight of evidence. Paragraph 50, rejected, contrary to the greater weight of evidence, Paragraphs 37-39, Recommended Order. Paragraph 54, rejected, not probative. Paragraph 55, rejected, not probative. Paragraphs 56 and 57, rejected, contrary to the greater weight of evidence, Paragraphs 30 and 31, Recommended Order. Paragraphs 58 and 59, rejected, contrary to the greater weight of evidence, Paragraphs 23 and 24, Recommended Order. Paragraph 61, rejected, speculative and unnecessary. Paragraph 63, rejected, speculative. Paragraph 67, rejected, not probative. Paragraph 68, rejected, contrary to the greater weight of evidence, Paragraphs 30 and 31, Recommended Order. Paragraph 69, rejected, not probative. Paragraph 70, adopted in part, Paragraph 23, Recommended Order. Paragraph 72, rejected, irrelevant and not necessary to the issues posed. Paragraph 74, rejected, contrary to the greater weight of evidence and unnecessary. Paragraph 75, rejected, contrary to the greater weight of evidence, Paragraph 53, Recommended Order. Paragraph 76, rejected, contrary to the greater weight of evidence, Paragraph 53, Recommended Order. Paragraph 77, rejected, contrary to the greater weight of evidence, Paragraph 53, Recommended Order. Paragraphs 78 and 79, rejected, irrelevant and unnecessary. Paragraph 80, rejected, not probative. Rulings in Respondent's proposed findings of fact: Paragraphs 2 and 3, adopted in part, Paragraph 9, Recommended Order. Paragraph 12, adopted in part, Paragraph 23, Recommended Order. Paragraph 23, adopted in part, Paragraph 32, Recommended Order. Paragraph 27, adopted in part, Paragraphs 38 and 39, Recommended Order. Paragraph 30, rejected, unnecessary. COPIES FURNISHED: Thomas J. Patka, Esquire Rory C. Ryan, Esquire HOLLAND & KNIGHT 200 South Orange Ave - Suite 2600 Post Office Box 1526 Orlando, Florida 32802 Agusta P. Posner, Esquire Lisa Duchene, Esquire Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32399 2400 Virginia B. Wetherell Secretary Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32399 2400 Daniel H. Thompson, Esquire Acting General Counsel Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32399 2400

USC (3) 40 CFR 260.1040 CFR 26140 CFR 261.31 Florida Laws (8) 120.57376.301376.3071376.3073403.703403.721403.722475.703
# 8
JAMES R. REGAN vs. DEPARTMENT OF ENVIRONMENTAL REGULATION, 89-001844 (1989)
Division of Administrative Hearings, Florida Number: 89-001844 Latest Update: Jan. 31, 1990

The Issue Whether the August 30, 1988 application of Petitioner James R. Regan for a permit to operate a wastewater (sewage) treatment facility should be granted in that Petitioner has provided reasonable assurances that the operation of the facility will not discharge, emit, or cause pollution in contravention of Department of Environmental Regulation standards or rules.

Findings Of Fact The sewage treatment plant that is the focus of this proceeding is "Weakley Bayou, Inc.," a corporation. The real property upon which it is located is owned by the wife of James R. Regan. Despite corporate status, Weakley Bayou, Inc. has been operated at the option and control of James R. Regan since its inception in the early 1970's. The permit application here at issue was made in Mr. Regan's name, and he has been treated as if he were the corporation throughout all stages of the permit process. Mr. Regan brought the Petition for Formal Hearing in his own name. He was also accepted as the qualified representative for himself and the corporation. "Weakley Bayou, Inc." is an aerobic gravity flow wastewater treatment plant located in Escambia County. In 1988 James R. Regan applied for a renewal of the operating permit for the facility. The Department of Environmental Regulation (DER) issued an Intent to Deny on December 16, 1988, based on agency perceptions derived from observations, monitoring of Petitioner- generated reports, and grab samples, that the facility did not meet the requirements set down in Rule 17-6 F.A.C. Specifically, the Intent to Deny focused on the following problems: A reclaimed water sample taken on December 6, 1988 revealed the facility was exceeding BOD5 (Biological Oxygen Demand) and TSS (Total Suspended Solids) limits in violation of specific condition number 17 of Permit Number D017-71682. The BOD5 was 232.8 mg/l and TSS was 1,430 mg/l. The same sampling showed the facility was exceeding 200/100 ml for fecal coliform in violation of specific condition number 17 of permit number D017-71682 and Rule 17- 6.180(1)(b)4.d., Florida Administrative Code. The fecal coliform was 79,000/100 ml. Ground water monitoring samples show the levels of nitrates in excess of 10 mg/l in well #l on two out of last four quarterly samples, which is in violation of Rule 17- 6.040(4)(q) paragraph 4.2, Florida Administrative Code. During the inspection on December 6, 1988, the sludge blanket in the clarifier was overflowing the weirs, solids had accumulated in the chlorine contact chamber and percolation ponds in violation of Rule 17- 6.110(3) and 17-6.180(2) (e) , Florida Administrative Code. Auxiliary electrical power is not provided as required by Rule 17-6.040(4) (c) and 17-6.110(3), Florida Administrative Code. The applicant was notified March 14, 1988, that emergency power would be required. During the period (1984-1988) that Petitioner's sewage treatment plant has been permitted by DER, it has been periodically inspected and the Petitioner's self-generated reports have been monitored. From time to time after inspections, Petitioner has been notified of pollution and contaminant hazards or violations pursuant to agency standards, which hazards or violations required corrections in order to retain his permit. Among these hazards and violations have been noted large sewage spills, overflows, poor equipment condition, and substandard plant operation. In most instances, Petitioner cooperated with DER and at least attempted to adjust the plant's operation to conform to the notifications. However, as of December 15, 1988, DER notified Petitioner of the following problems with the plant: sludge blanket in the clarifier overflowing the weir, solids accumulation in the chlorine contact chamber, solids accumulation in both percolation ponds, no auxiliary power on the site, and high levels of nitrates (6.9 ppm) in Monitoring well -1. DER's test of an effluent grab sample tested BOD at 232.8 mg/L and Total Suspended Solids (TSS) at 1430 mg/L. That is, samples taken by DER during an inspection indicated excessive levels of TSS, BOD, and fecal coliform, in violation of Chapter 403 F.S. and Chapter 17-6 F.A.C. Mr. Regan admitted that for approximately four years, broken and unrepaired pipes and fittings at his plant had caused sewage spills or overflows of approximately eight thousand gallons of sewage sludge. He contended that the surface enrichment around Monitoring Well #1 was caused by a separation of a two-inch PVC skimmer line which was corrected in March 1988. Although Mr. Regan established that the leak in the pipe had been repaired, the evidence does not permit a finding that this enrichment was solely from that source, that it will dissipate over a reasonable time, or that it has not polluted the ground water. 1/ Thus, there is no reasonable assurance that fixing the leak, by itself, protects the environment. Over a period of time, Petitioner's own groundwater monitoring reports showed excessive nitrate levels and these have worsened since late 1988, according to witness Ray Bradburn. Petitioner contended that a grab sample is not as accurate as a composite sampling. Although DER witnesses concur in this contention of Petitioner with regard to grab samples generally, and although one DER witness suggested that part of the December 1988 grab sample reading by itself would not cause him to deny the permit, no credible evidence disputes the accuracy of the December 6, 1988 grab sample as a grab sample.2/ Petitioner admitted that it was and continues to be his conscious management decision to keep the plant's auxiliary gasoline powered engine locked away from the plant site so as to discourage theft and vandalism, and so as to discourage childish curiosity which might expose Petitioner to liability. He was reluctant to secure the engine on the premises as a hedge against emergency shutdowns of the plant. Mr. Regan, upon advice of outside engineers, has attempted to correct many of the cited errors and omissions. However, notwithstanding the DER's express disapproval of such a method, Mr. Regan has instructed his plant operators to curtail the input of air from the plant's blower to the sewage at night so as to create a "belching" effect designed to clear out certain wastes and thereby attempt denitrification in the clarifier. DER witnesses did not explain in any detail why Regan's belching procedure was unacceptable except that addition of an expensive denitrification unit was preferable and constituted a "reasonable assurance," whereas Mr. Regan's method had not been demonstrated to be successful in the past. Mr. Regan, who bears the burden of proof in these proceedings, did not demonstrate that his "belching" system was a reasonable assurance of denitrification or offer expert witnesses to support such a theory. This sewage treatment plant is subject to a Notice of Violation which became final on September 21, 1989. 3/

Recommendation Upon the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the Department of Environmental Regulation enter a Final Order denying the pending permit application. DONE and ENTERED this 31st day of January, 1990, at Tallahassee, Florida. ELLA JANE P. DAVIS, Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 31st day of January, 1990.

Florida Laws (1) 120.57
# 9
ORCHARD VIEW DEVELOPMENT, LIMITED vs DEPARTMENT OF ENVIRONMENTAL PROTECTION, 97-005894 (1997)
Division of Administrative Hearings, Florida Filed:West Palm Beach, Florida Dec. 15, 1997 Number: 97-005894 Latest Update: Dec. 14, 1998

The Issue Whether the costs incurred by the Department of Environmental Protection, Bureau of Emergency Response (Department) in connection with its response to Incident Number 97-02-0234 may be recovered from Petitioner pursuant to Chapters 376 and 403, Florida Statutes.

Findings Of Fact The Department is a state regulatory agency charged with the responsibility of administering and enforcing the provisions of Chapters 376 and 403, Florida Statutes. Orchard View Development, Limited (Orchard View) is an Ontario, Canada corporation. Its president is William T. Lamsom. Orchard View is now, and has been since approximately two to six months prior to the incident which is the subject of this proceeding, the owner of a triangular, three-quarter acre parcel of undeveloped land (Orchard View's Parcel or the Parcel) located on the fringe of a Boca Raton, Florida residential neighborhood. There are children in the neighborhood who pass by the Parcel on their way to and from school. City streets border Orchard View's Parcel on all sides. Across one of these streets is a creek. Orchard View owns an additional 78 acres of undeveloped land (Orchard View's Acreage or the Acreage) to the north of its Parcel. Only a street separates the Acreage from the Parcel. Orchard View first acquired the Acreage in approximately 1975 and sold it about 14 or 15 years later. During this 14 or 15-year period, the Acreage was used by others, without Orchard View's approval or authorization, as a dumping ground. Numerous items, including boats, automobiles, tires, baby carriages, mattresses and landscaping material, were left abandoned on the property. Steps taken by Orchard View (which was well aware of the problem) to deter such dumping, including posting "no trespassing" signs on the property and erecting a 10-foot dirt barrier on one side of the property, were ineffective. Orchard View also complained to the police about the problem, but the making of these complaints did not result in an amelioration of the situation. Orchard View reacquired the Acreage at approximately the same time it acquired the Parcel. Since Orchard View's reacquisition of the Acreage, unauthorized persons have driven their all-terrain vehicles on the property without the approval or authorization of Orchard View, notwithstanding the "no trespassing" signs on the property. Although aware of the dumping problems in the area, Orchard View has not, at any time after its acquisition of the Parcel, posted "no trespassing" signs on the Parcel or erected a fence or other barrier around the Parcel, nor has it taken any other measure designed to discourage or prevent dumping on the Parcel. On June 9, 1997, at 11:10 a.m., the Department was notified by Lieutenant John Johnson of the Boca Raton Fire Department that four drums, which were labelled “poison and toxic,” had been discovered on the Parcel. The drums did not belong to Orchard View. They had been dumped on the Parcel by some person or persons not associated with Orchard View without Orchard View's knowledge, approval or authorization. Catherine Porthouse, an Environmental Specialist II with the Department, promptly responded to the scene (where she met Lieutenant Johnson) and served as the Department's on-scene coordinator. Because the drums were labelled “poison and toxic” and their contents were unknown, Lieutenant Johnson would not allow anyone, including Porthouse, to approach the drums without "Level B" protective clothing and equipment. Porthouse therefore initially viewed the drums from a distance using binoculars. She noted that three of the drums were leaking and that there was stained soil in the area of the drums. She also saw other solid waste materials nearby. Porthouse learned that Orchard View was the owner of the property on which the drums were located. At 12:49 p.m. on June 9, 1997, Porthouse telephoned Lamson and advised him that the drums were on the Parcel and that they needed to be removed by an "emergency response contractor." When informed about the presence of the drums on the Parcel, Lamson was not surprised. He realized (as he testified at hearing) that the area was "a good dumping ground." Lamson told Porthouse that he would ask his son, a general contractor who lived and worked near the Parcel, to remove the drums. Porthouse, however, explained to Lamson that the removal of the drums needed to be done by someone qualified, under state and federal law, to handle and transport hazardous substances. Lamson thereupon asked Porthouse to provide him with a list of "emergency response contractors" qualified to remove the drums. Porthouse gave Lamson her office and cellular phone numbers and asked him to call her back within no more than three hours to update her on his efforts to hire an "emergency response contractor" to remove the drums. Following Porthouse's telephone conversation with Lamson, the Department faxed to Lamson the list of qualified contractors Lamson had requested during the telephone conversation. After speaking with Porthouse, Lamson attempted to telephone his son. Lamson's son was not in, so Lamson left a message on his son's answering machine telling his son about his telephone conversation with Porthouse concerning the abandoned drums on the Parcel. In his message, Lamson asked that his son look into the matter. Neither Lamson, nor his son, made any arrangements for a qualified "emergency response contractor" to remove the drums from the Parcel; nor did either of them contact Porthouse and advise her that such arrangements had been made or would soon be made. Accordingly, at approximately 4:00 p.m. on June 9, 1997, after having waited over three hours for Lamson to provide her with such information, Porthouse hired Magnum Environmental Services (Magnum), a qualified "emergency response contractor" with whom the Department had a contract, to properly dispose of the four abandoned drums (and their contents), as well as the stained soil, on the Parcel. Magnum personnel (with "Level B" protective clothing and equipment) responded to the scene shortly thereafter. By approximately 6:30 or 7:00 p.m. that day (June 9, 1997), Magnum personnel had overpacked, removed from the Parcel and taken to an off-site hazardous waste storage facility the four abandoned drums (and their contents), as well as a fifth drum which contained the stained soil from the site (which Magnum had excavated). Before it had overpacked the drums and removed them from the Parcel, Magnum had examined and sampled the contents of each drum. The samples that Magnum had collected from the drums were sent to the laboratory for analysis. The analysis revealed the following: drum number 11 contained oil, barium, lead and toluene and had a flashpoint of less than 100 degrees Fahrenheit; drum number 2 contained oil mixed with water, as well as barium, lead and chromium, and had of flashpoint of between 101 and 139 degrees Fahrenheit; drum number 3 contained oil mixed with water, as well as barium and lead, and had of flashpoint of between 101 and 139 degrees Fahrenheit; drum number 4 contained oil mixed with water, as well as barium, lead and chromium, and had of flashpoint of over 200 degrees Fahrenheit; drum number 5 contained the soil that had been contaminated by spillage from drum numbers 2, 3 and 4 and had of flashpoint of between 101 and 139 degrees Fahrenheit. Magnum properly disposed of the drums based upon the results of its analysis. The Department paid Magnum $6,135.00 from the Water Quality Assurance Trust Fund for the services Magnum performed. In requesting Magnum to perform these services and in paying Magnum $6,135.00 for having done so, the Department acted reasonably and prudently. The amount it paid Magnum was not excessive.2 The Department reasonably incurred other expenses (also paid from the Water Quality Assurance Trust Fund) totaling $390.13 in connection with its response to the report it had received concerning the abandonment of the four drums on the Parcel. The total amount the Department paid from the Water Quality Assurance Trust Fund to have these abandoned drums properly removed from the Parcel and disposed of was $6,525.13. The Department is requesting that Orchard View reimburse the Department for these costs.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that a Final Order be entered by the Department finding that it is entitled to recover from Orchard View, pursuant to Chapters 376 and 403, Florida Statutes, the $6,525.13 in costs it reasonably incurred in connection with its response to Incident Number 97-02-0234. DONE AND ENTERED this 15th day of June, 1998, in Tallahassee, Leon County, Florida. STUART M. LERNER Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 Filed with the Clerk of the Division of Administrative Hearings this 15th day of June, 1998.

USC (1) 42 U.S.C 6921 CFR (3) 40 CFR 26140 CFR 261.2140 CFR 261.24 Florida Laws (16) 120.57373.308376.21376.30376.301376.307376.308377.19403.703403.727588.01588.011588.09588.10588.1195.11
# 10

Can't find what you're looking for?

Post a free question on our public forum.
Ask a Question
Search for lawyers by practice areas.
Find a Lawyer