Elawyers Elawyers
Washington| Change
Find Similar Cases by Filters
You can browse Case Laws by Courts, or by your need.
Find 49 similar cases
NESTLE WATERS NORTH AMERICA, INC. vs ANGELO`S AGGREGATE MATERIALS, LTD., D/B/A ANGELO`S RECYCLED MATERIALS AND DEPARTMENT OF ENVIRONMENTAL PROTECTION, 09-001546 (2009)
Division of Administrative Hearings, Florida Filed:Temple Terrace, Florida Mar. 23, 2009 Number: 09-001546 Latest Update: Sep. 16, 2013

The Issue The issue to be determined in this proceeding is whether Angelo's Aggregate Materials, LTD ("Angelo's") is entitled to permits from the Department of Environmental Protection ("Department") to construct and operate a Class I landfill in Pasco County.

Findings Of Fact The Parties The Department is the state agency with the power and duty under chapter 403, Florida Statutes, to review and take action on applications for permits to construct and operate solid waste management facilities, including landfills. Angelo's is a Florida limited partnership authorized to conduct business under the name Angelo's Recycled Materials. Angelo's filed the permit applications which are the subject of this proceeding. Angelo's owns the property on which the proposed landfill would be constructed and operated. Crystal Springs Preserve is a Florida corporation that owns approximately 525 acres in Pasco County, Florida on which is located Crystal Springs, a second magnitude spring that flows into the Hillsborough River. The property is about 10 miles south of Angelo's proposed landfill site. Crystal Springs Preserve's primary business activities are selling spring water for bottling for human consumption and operating an environmental education center that focuses on Crystal Springs and the Hillsborough River. Crystal Springs Preserve hosts approximately 50,000 visitors annually at the environmental education center. Crystal Springs Preserve holds a water use permit which authorizes it to withdraw up to 756,893 gallons of water per day (annual average) from Crystal Springs for production of bottled water. The water is transported about three miles to a water bottling facility operated by Nestlé. Nestlé is a private corporation engaged in the business of bottling and selling spring water. Nestlé purchases spring water from Crystal Springs Preserve. Nestlé's "Zephyrhills Spring Water" brand is composed of approximately 90 percent Crystal Springs water and 10 percent Madison Blue Spring water. The only water treatment applied by Nestlé is filtering the water to remove gross contaminants and passing the water through ultraviolet light or ozone to kill any potential bacteria before bottling. Nestlé has established "norms" for its spring water and would not be able to use the water from Crystal Springs if its chemical composition varied significantly from the norms. WRB is a Florida corporation that owns 1,866 acres in Pasco County known as Boarshead Ranch. Boarshead Ranch is adjacent to the east and south of Angelo’s property and is approximately 3,000 feet from the proposed landfill at its closest point. Boarshead Ranch is currently being used for agricultural, recreational, residential, and conservation purposes, including wildlife management. Nearly all of Boarshead Ranch is subject to a conservation easement held by the Southwest Florida Water Management District (SWFWMD). The conservation easement allows WRB to continue agricultural operations. Numerous agricultural water wells are located on Boarshead Ranch. WRB holds a water use permit which authorizes the withdrawal of 820,000 gallons per day (gpd) (annual average) for a number of uses, including production of agricultural products, animal drinking water, and personal use. The City of Zephyrhills is located in Pasco County and is a municipal corporation. Zephyrhills' water service area encompasses Zephyrhills and portions of Pasco County. Zephyrhills owns, operates, and maintains a water distribution and transmission system of pipes, pump stations, and storage tanks within the City and its service area. Zephyrhills holds a water use permit which authorizes nine potable water supply wells with a combined withdrawal of 2.9 million gallons per day ("mgd") (annual average). Zephyrhills has two new production wells located about two miles southeast of the proposed landfill. The City of Tampa owns and operates the David L. Tippin Water Treatment Plant, the Hillsborough River dam, and the City of Tampa reservoir on the Hillsborough River. Flows from Crystal Springs make up a substantial amount of the water in the Hillsborough River, especially during drought conditions when the spring flow accounts for about 50 percent of the flow. The City of Tampa holds a water use permit which authorizes the withdrawal 82 mgd (annual average). The City of Tampa owns, operates, and maintains a water distribution and transmission system of pipes, pump stations, and storage tanks within the City and its service area. Carl Roth, Marvin Hall, and Louis Potenziano own property in Pasco County near the proposed landfill site. Roth's property is 3.5 miles west of the proposed landfill site; Hall's property is located approximately one mile southwest of the site; and Potenziano's property is 1.6 miles to the south/southeast of the site. Roth, Hall, and Potenziano have water wells on their properties. The record does not establish that John Floyd owns property in the area. Floyd and Associates, Inc., owns about 55 acres in the area and holds a water use permit authorizing the withdrawal of water for agricultural uses. The Stipulated Agreement On March 1, 2010, Angelo's filed with DOAH a "Stipulated Agreement" signed by all parties. The Stipulated Agreement states in relevant part: Angelo's shall provide a final design, revised complete permit application and site investigation (referred to jointly as "Revised Submittal") to DEP with copies to all Parties and DEP shall make a completeness determination prior to this proceeding being set for a new final hearing date. * * * Angelo's shall not revise its permit application or supporting information beyond the Revised Submittal prior to or during the final hearing except in response to issues raised by DEP. It appears that the Aligned Parties did not remember the Stipulated Agreement until the commencement of the final hearing. They did not object before then to any of the evidence which Angelo's had prepared or intended to prepare for hearing on the basis that it violated the terms of the Stipulated Agreement. At the commencement of the hearing, Nestlé argued that the Stipulated Agreement barred Angelo's from revising its application or presenting new support for its project at the final hearing. The Stipulated Agreement is unusual and the necessity for Angelo's to make any concessions to the Aligned Parties in order to obtain their agreement to an abeyance was not explained. Allowing an applicant time to amend a permit application is usually good cause for an abeyance. The Stipulated Agreement allowed Angelo's to continue to respond to issues raised by the Department. Angelo's contends that all of the evidence it presented at the final hearing qualifies as a response to issues raised by the Department. The Proposed Landfill Angelo's applied to construct and operate a Class I landfill with associated buildings and leachate holding tanks. Application No. 22913-001-SC/01 corresponds to the construction permit application and Application No. 22913-001-SO/01 corresponds to the operation permit application. A Class I landfill is a landfill authorized to receive Class I waste, which is solid waste from households and businesses. Class I waste does not include hazardous waste, yard waste, or construction and demolition debris. See Fla. Admin. Code R. 62-701.200(13) and (14). The proposed landfill would be approximately 30 acres in size. It is part of a 1,020-acre parcel owned by Angelo's that is west of County Road 35 and south of Enterprise Road in Pasco County. The site is currently leased for cattle grazing and hay and sod production. There are also spray fields, orange groves, and a pond on the 1,020-acre parcel. Angelo's would construct the landfill by first clearing the 30-acre site. It would then excavate and fill to create the design subgrade or floor of the landfill with slopes required for the liner system. The subgrade would be compacted with a vibratory roller. After the subgrade compaction, the grouting plan would be implemented. The grouting plan calls for grouting 39 subsurface locations on the site that have voids, loose soils, or other unstable characteristics. A liner system would be installed after the grouting is completed and the subgrade is finished. From the bottom upward, the liner system would begin with a 12-inch layer of clay, over which a reinforcement geotextile would be installed, followed by another 12-inch layer of clay. This reinforcement geotextile is in addition to the double liner system required by Department rule. Its purpose is to maintain the integrity of the liner system in the event that a sinkhole occurs beneath the landfill. Installed above the reinforcement geotextile and clay layer would be a 60-millimeter high-density polyethylene ("HDPE") geomembrane, followed by a HDPE drainage net. These last two components comprise the secondary leachate collection system. Above the HDPE drainage net would be the primary leachate collection system, consisting of another 60-millimeter HDPE geomembrane and HDPE drainage net, followed by a geotextile, then a 12-inch sand layer for drainage, and an additional 12-inch sand layer for protection against puncture of the HDPE liner. A 48-inch layer of selected waste, free of items that could puncture the liner, would be the first waste placed over the primary leachate collection system. "Leachate" is "liquid that has passed through or merged from solid waste and may contain soluble, suspended, or miscible materials." See Fla. Admin. Code R. 62-701.200(66). Leachate would be collected through a system of perforated pipes that empty into a sloping trench with a leachate collection pipe. The leachate collection pipe would run down the center of the landfill to the lowest point where a pump would send the collected leachate through a force main 0.25 miles to storage tanks. Five above-ground storage tanks would be installed on a concrete pad with capacity to store 90,000 gallons of leachate. The stored leachate would be periodically transported to an offsite location, such as a wastewater treatment facility, for disposal. Sinkholes and Karst The terms "sinkhole" and "sinkhole activity" are not defined by Department rule, but the statutory definitions in chapter 627, a chapter dealing with insurance coverage for homes and other buildings, are generally consistent with the scientific meanings of these terms. The term "sinkhole" is defined in section 627.706(2)(h) as: a landform created by subsidence of soil, sediment, or rock as underlying strata are dissolved by groundwater. A sinkhole forms by collapse into subterranean voids created by dissolution of limestone or dolostone or by subsidence as these strata are dissolved. The term "sinkhole activity" is defined in section 627.706(2)(i) as: settlement or systematic weakening of the earth supporting the covered building only if the settlement or systematic weakening results from contemporaneous movement or raveling of soils, sediments, or rock materials into subterranean voids created by the effect of water on a limestone or similar rock formation. Sinkholes occur throughout Florida. There have been many reported and confirmed sinkholes in Pasco County. The more common type of sinkhole that has occurred on the Brooksville Ridge is a "cover subsidence" sinkhole, which is caused by voids in the limestone and the downward movement--"raveling"--of overlying soils into the cavity. Eventually, the loss of soils in the raveling zone will propagate upward until the soils at the ground surface also move downward and a depression is formed at the surface. Cover subsidence sinkholes develop slowly and are usually small, less than ten feet in diameter. Less common are "cover collapse" sinkholes, which can form in a matter of days or hours as the result of the collapse of the "roof" of a dissolved cavity in the limestone. These sinkholes are usually large and deep. The occurrence of a sinkhole does not always mean that areas near the sinkhole are unstable. However, the occurrence of a sinkhole is reasonable cause for concern about the stability of nearby areas and a reasonable basis for the Department to require thorough geologic investigations. "Karst" refers to limestone that is undergoing dissolution and it is common in Florida. A sinkhole forms in karst. "Epikarst" is limestone that was weathered while exposed above sea level millions of years ago before being submerged again. It is generally softer and more permeable than unweathered limestone. "Paleokarst" refers to karst that is very old in geologic time. Paleosinks are old sinkhole features in the paleokarst. A paleosink may no longer be unstable because it has been filled in for thousands or millions of years. A "lineament," or a "photolineament," is a relatively straight line seen in the topography or aerial photographs of the ground surface in an area. It might be defined by soil color, sloughs, ponds, wetlands, or other land features that follow a linear path. Lineaments are sometimes, but not always, associated with subsurface fractures in the bedrock where one would expect to also find active karst, sinkholes, and relatively rapid groundwater flow. Even where there is no lineament, there can be fractures in limestone that, when extensive enough, will allow for "fractured," "preferential," or "conduit flow" of groundwater. Fractured flow can occur in a small area or may go on for miles. Springs in Florida are usually associated with fractured flow or conduit flow that allows groundwater to move through the aquifer a long distance relatively rapidly, in weeks rather than decades. Geotechnical Investigation The Department's rules require subsurface conditions to be explored and described, including soil stratigraphy, soft ground, lineaments, and unstable areas, but the rules do not require the application of any particular geologic testing technique. An applicant's testing program is primarily a function of the professional judgment of the applicant’s geologist in cooperation with Department staff. The amount of geological testing done by Angelo's during its initial testing was similar to what was done for recent landfill applications. Angelo's conducted additional testing to respond to Department concerns and to prepare for the final hearing in this case, making the total amount of testing at Angelo's proposed site more extensive than is usual for a proposed landfill. The geologic investigation conducted by Angelo's experts to determine subsurface features, including any sinkholes, employed several technologies. Split Spoon Penetrometer Test (SPT) or SPT borings were drilled with a drill rig that advances a split spoon sampler into the ground with a 140 pound hammer. The hammer is dropped 30 inches and the number of blows required to drive the sampler each successive 12 inches is referred to as the "N" value and indicates soil strength and density. The higher the N value, the denser the soil. When the material is so dense the drill rod cannot (essentially) be hammered deeper, the N value is shown as "R," which stands for "refusal." SPT Bore logs also note any observed "weight of hammer," "weight of rod," or "loss of circulation." These terms describe areas where the drilling encounters very soft material or voids. Weight of rod, for example, means the weight of the drilling rod, by itself, with no hammer blow, was enough to cause the rod to fall deeper through the soil or rock. Cone Penetrometer Test ("CPT") borings were also conducted. CPT borings are relatively shallow, performed with a hand-held rod and special tip that the operator pushes into the ground. The CPT equipment continuously measures and records tip resistance and sleeve resistance as the rod moves downward through soils. It is helpful in some applications, but is less precise in determining soil type, strength, and compressibility than SPT borings and cannot be used to explore deep zones. Ground penetrating radar ("GPR") studies were used. GPR equipment transmits pulses of radio frequency waves into the ground. The manner in which the radio waves are reflected indicates the types of soil and rock encountered. It can also detect cavities and other features that would suggest karst activity. When the GPR identifies geologic features of interest, they can be further investigated with SPT borings. Another investigative tool used by Angelo's was Multiple Electrode Resistivity ("MER"). MER uses a grid of wires and electrodes and the equipment interprets the resistivity of electrical signals transmitted through the subsurface. MER data can be displayed in a two dimensional or three dimensional format, depending on the software program that is used to process the data. Like GPR, MER is useful for indentifying geologic features of interest that can be further explored with SPT borings. However, GPR generally has good resolution only near the ground surface, while MER has good resolution to a depth of 100 feet. The Regional Geology The proposed site is in a geologic transition zone on the eastern flank of a regional, geological feature known as the Brooksville Ridge. It is a transition zone for both the Suwannee Limestone and Hawthorn Group. The Brooksville Ridge was formed when it was part of the coastline. In its geologic past, the Brooksville Ridge experienced sea level changes, weathering, erosion of sediments, and beach reworking. The general layering of geologic features on the Brooksville Ridge, from the top down, begins with topsoil and a layer of sand. Under the sand layer is the Hawthorn Group, an older geologic layer consisting of a heterogeneous mix of limestone, clays, and sands which generally range in depth from slightly under 60 feet to 80 feet or more. It was formed by river and wind erosion, flushing, and re-deposition in a beach dune environment. Below the Hawthorn Group is the Suwannee Limestone Formation, which is present throughout eastern Pasco County. The upper surface of the Suwannee Limestone Formation is undulating, due to a gradual chemical weathering of its upper surface, representing a "paleokarst environment." Underlying the Suwannee Limestone Formation is the Ocala Limestone Formation. It extends throughout most of Florida. It is composed of nearly pure limestone and is considered the Floridan Aquifer. It extends across the site’s subsurface. Angelo's used the Florida Geologic Survey's data base to determine there are six sinkholes within five miles of the proposed landfill. A seventh sinkhole, not in the data base, is the 15- foot sinkhole at the Angelo's Enterprise Road Facility landfill, a Class III landfill (yard waste and construction and demolition debris) about a mile northwest of the proposed site. Angelo's contends that the sinkhole at its Class III landfill was "induced" during construction of the facility by the diversion of stormwater runoff to an area where overburden had been removed. The average diameter of the seven sinkholes is 11.9 feet. The Geology of the Proposed Site Rule 62-701.410(2)(c) requires a geotechnical site investigation and report, which shall: Explore and describe subsurface conditions including soil stratigraphy and ground water table conditions; Explore and address the presence of muck, previously filled areas, soft ground, lineaments, and sinkholes; Evaluate and address fault areas, seismic impact zones, and unstable areas as described in 40 C.F.R. 258.13, 258.14 and 258.15; Include estimates of the average and maximum high ground water table across the site; and Include a foundation analysis to determine the ability of the foundation to support the loads and stresses imposed by the landfill. It may include geotechnical measures necessary to modify the foundation to accommodate the imposed loads and stresses. The foundation shall be analyzed for short-term, end of construction, and long-term stability and settlement conditions. Considering the existing or proposed subgrade conditions and the landfill geometry, analysis shall include: Foundation bearing capacity; Subgrade settlements, both total and differential; and Subgrade slope stability. Angelo's conducted a geotechnical site investigation, but it was not adequate, as discussed below and in sections I. and J. The proposed landfill site is geologically complex, having features that are discontinuous horizontally and vertically. The site has karst features or areas where the limestone has dissolved. There is a clay layer in some areas, but it is not continuous and its depth and thickness vary. There are deposits of hard and soft sands at various depths. There are pinnacles of limestone surrounded by softer materials. Photographs from a quarry called the Vulcan Mine, located on the western flank of the Brooksville Ridge, show exposed features in the top 20 to 30 feet of the Suwannee Limestone in the region. The features at the Vulcan Mine are roughly similar to features at the Angelo's site. There are a number of shallow depressions on the surface of the ground on the Angelo's site. The origin and significance of these depressions was a matter of dispute. The Aligned Parties believe they represent sinkhole activity, but the evidence presented did not rise to the level of proof. However, Angelo's did not prove they were unassociated with geotechnical issues that could affect the proposed landfill. Angelo's offered no reasonable explanation for the depressions. Determining the exact cause of the depressions may not be possible even with more extensive investigation, but it was Angelo's responsibility as the permit applicant, pursuant to rule 62-701.410(2)(c), to make a greater effort to account for them. Angelo's initial permit application identified two intersecting lineaments on Angelo's property, based on aligned lowlands, enclosed valleys, and ponds. Angelo's contends the lineaments do not reflect an unstable subsurface or fractured limestone. The Aligned Parties contend that the lineaments are regional features and reflect fractures in the bedrock. They also contend that the onsite pond, which is located along the lineament, is an old sinkhole. The Aligned Parties did not prove the proposed landfill site is above an area of fractured bedrock, but the evidence presented by Angelo's was incomplete and insufficient to show there are no fractures. The limestone on the site was not adequately investigated for voids and fractures. Angelo's did not refute the possibility that the lineaments reflect a significant subsurface feature that could affect both site stability and groundwater movement. The Regional and Local Hydrogeology Rule 62-701.410(1) requires a hydrogeological investigation and site report, which shall: Define the landfill site geology and hydrology and its relationship to the local and regional hydrogeologic patterns including: Direction and rate of ground water and surface water flow, including seasonal variations; Background quality of ground water and surface water; Any on site hydraulic connections between aquifers; For all confining layers, semi-confining layers, and all aquifers below the landfill site that may be affected by the landfill, the porosity or effective porosity, horizontal and vertical permeabilities, and the depth to and lithology of the layers and aquifers; and Topography, soil types and characteristics, and surface water drainage systems of the site and surrounding the site. Include an inventory of all the public and private water wells within a one-mile radius of the proposed landfill site. The inventory shall include, where available: The approximate elevation of the top of the well casing and the depth of each well; The name of the owner, the age and usage of each well, and the estimated daily pumpage; and The stratigraphic unit screened, well construction technique, and static water levels of each well. Identify and locate any existing contaminated areas on the landfill site. Include a map showing the locations of all potable wells within 500 feet of the waste storage and disposal areas to demonstrate compliance with paragraph 62- 701.300(2)(b), F.A.C. Angelo's conducted a hydrogeological investigation, but it was not adequate, as discussed below. Angelo's and the Aligned Parties disputed the hydrogeological characteristics of the proposed landfill site and region. The principal disputes related to the direction and velocity of groundwater flow. Angelo's contends that groundwater flows from the landfill site to the west, making the proposed landfill site part of the Withlacoochee River groundwater basin. The Aligned Parties contend that groundwater flows south toward Crystal Springs and, therefore, the site is within the "springshed" of Crystal Springs. A United States Geological Survey map of the Crystal Springs springshed shows Angelo's proposed landfill site within the springshed. A springshed study done for SWFWMD also indicates the site is within the Crystal Springs springshed, but the District has not always been consistent in its statements about the groundwater basin boundaries in this area. A water chemistry analysis of the groundwater in the area of Angelo's proposed landfill indicates that the site is an area of higher recharge and within the Crystal Springs springshed. The springshed boundary can shift, depending on rainfall. Angelo's hydrogeological evidence was not sufficient to refute the reasonable possibility that the proposed landfill site is within the Crystal Springs springshed. Therefore, the Department's determination whether Angelo's has provided reasonable assurances must account for the threat of contamination to Crystal Springs and the other public and private water supply sources to the south. There are no creeks or streams and only a few lakes in the area between Crystal Springs and the Angelo's site. The absence of surface runoff features indicates it is an area of high recharge to the groundwater. Crystal Springs is in an area of conduit flow. The hydrologic investigation conducted by Angelo's was not thorough enough to characterize surficial aquifer flow and flow between aquifers. The preponderance of the evidence shows more groundwater recharge to the Floridan Aquifer in the area than estimated by Angelo's. Angelo's hydrogeological investigation was inadequate to refute the possibility of fractured flow or rapid groundwater movement at the proposed landfill site. Angelo's contends there is a continuous clay confining layer that would prevent contamination from moving into deep zones, but the preponderance of the evidence shows discontinuity in the clay and large variations in thickness and depth. The landfill's impermeable liner will impede water movement downward from the landfill, but groundwater will still recharge from outside the landfill to carry any contaminants deeper. If fractured flow or conduit flow extends south from the proposed landfill site, any leachate released into the groundwater beneath the landfill could travel rapidly toward the water supply sources of the City of Zephyrhills, Crystal Springs, Nestlé, and the City of Tampa. Whether the Proposed Landfill is in an Unstable Area Rule 62-701.200(2)(a) prohibits the storage or disposal of solid waste "[i]n an area where geological formations or other subsurface features will not provide support for the solid waste." However, the Department has adopted by reference a federal regulation, 40 C.F.R. 258.15, which allows a landfill to be constructed in a geologically unstable area if the permit applicant can demonstrate that engineering measures are incorporated into the design to ensure that the integrity of the landfill’s structural components "will not be disrupted." The parties presented evidence on many disputed issues of fact at the final hearing, but most of the case involved two ultimate questions: whether the proposed landfill site is unstable and, if so, whether Angelo's has proposed measures that would eliminate the unstable conditions and make the site suitable for a landfill. as: An "unstable area" is defined in 40 C.F.R. § 258.15 A location that is susceptible to natural or human-induced events or forces capable of impairing the integrity of some or all of the landfill structural components responsible for preventing releases from a landfill. Unstable areas can include poor foundation conditions, areas susceptible to mass movements, and Karst terrains. There is overwhelming evidence that the proposed landfill site is an unstable area. A considerable amount of evidence presented by Angelo's supports this finding. For example, Angelo's experts agreed there are loose soils, evidence of raveling, and sinkhole activity. These conditions make the site susceptible to natural or human-induced events or forces capable of impairing the integrity of some or all of the landfill structural components responsible for preventing releases from the proposed landfill. The Department's landfill permitting staff requested a sinkhole risk assessment from the Florida Geologic Survey ("FGS"). The State Geologist and Director of the FGS, Dr. Jonathan Arthur, believes the potential for sinkhole formation at the proposed site is moderately high to high. That potential is consistent with the characterization of the area as unstable. Whether the Proposed Engineering Measures Are Adequate Because the site is unstable, Angelo’s must demonstrate that engineering measures have been incorporated into the landfill's design to ensure that the integrity of its structural components will not be disrupted. See 40 C.F.R. § 258.15(a). The engineering measures proposed by Angelo's are discussed below. Because it was found that Angelo's hydrogeological and geotechnical investigations were not sufficient to characterize all potentially unstable features of the subsurface, it was not demonstrated that the proposed engineering measures would overcome the instability and make the site suitable for a landfill. Roller Compaction Angelo's would use roller compaction on the graded floor of the landfill to compact the soils to a depth of about five feet and eliminate any voids within that depth. The Aligned Parties did not contradict Angelo's evidence that its proposed roller compaction will be done in a manner exceeding what the Department usually requires as far as roller force and the number of roller "passes." However, roller compaction will not affect deep voids. Liner System In order to ensure that the landfill’s liner system components will not be disrupted in the event of a sinkhole, Angelo’s proposes to include the reinforcement geotextile discussed above. The Department previously approved the use of geotextile reinforcement, combined with grouting, to demonstrate site stability for the Hernando County Northwest Landfill, which had a comparable risk of sinkhole formation according to the Department. The reinforcement geotextile can span a 15-foot diameter sinkhole without failure. As found above, the average diameter of the seven sinkholes within five miles of the proposed landfill is 11.9 feet. Angelo's proved that the proposed liner system meets all applicable criteria, except the requirement of rule 62- 701.400(3)(a) that the liner be installed upon a geologically stable base. Grouting Plan Angelo's grouting plan would be implemented to fill voids and stabilize areas of loose or weak material. The grouting plan was first designed to grout all locations where there was a Weight of Hammer, Weight of Rod, Loss of Circulation, or loose sands, as indicated by a low blow count. Angelo's revised the grout plan to include several more areas of concern identified later, for a total of 39 locations. Each grout location would have seven grout points, one in the center and six others equally-spaced on a ten-foot radius from the center. If more than ten cubic yards of grout is needed, additional grout points further outward would be injected until the void or loose soils are filled or stabilized. Although Angelo's proposes to grout every boring of concern, that still ties the integrity of the grouting plan to the thoroughness of the borings. The geologic evidence indicates that there are unstable areas which the grouting plan does not address. The Aligned Parties' MER analysis was persuasive in identifying potential areas of instability that were omitted from Angelo's investigation and from its grouting plan. There are other unstable areas existing on the site that should be grouted or otherwise engineered to provide support for the landfill. The grouting plan does not provide reasonable assurance that the integrity of the structural components of the landfill will not be disturbed. Other Issues Raised by the Aligned Parties The Aligned Parties raise a number of other issues, some of which begin with the assumption that the site is unstable and a large sinkhole would form at the landfill. This sometimes mixes issues inappropriately. It has been found that Angelo's did not provide reasonable assurance that the site will support the proposed landfill, but other project elements must be reviewed on their own merits where possible, assuming the site was engineered for stability. Leachate Collection System There is a single leachate collection trench in the center of the two landfill cells, which makes the landfill operate much like a single cell. The two halves of the cell slope toward the center, so that leachate will drain to the leachate collection trench, and the entire landfill slopes to the west, so that the trench will drain to a sump from which the leachate is pumped to storage tanks. At full capacity, the landfill will generate about 40,000 gallons of leachate per day. Careful cutting and grading of the earth is necessary to create the slopes that are essential to the proper functioning of the project’s leachate collection system. Settlement analyses are necessary to assure that the slopes are maintained. Rule 62-701.410(2)(e) requires a foundation analysis which must include a study of "subgrade settlements, both total and differential." "Total settlement" refers to the overall settlement of a landfill after construction and the loading of solid waste. "Differential settlement" compares settlement at two different points. Angelo's did not meet its burden to provide reasonable assurance on this point. The settlement analysis conducted by Angelo's was amended two or three times during the course of the final hearing to account for computational errors and other issues raised by the Aligned Parties. The analysis never came completely into focus. The final analysis was not signed and sealed by a professional engineer. The settlement analysis is dependent on the geologic analysis, which is inadequate. Without adequate settlement and geologic analyses, it cannot be determined that leachate collection would meet applicable criteria. Storage Tanks The Aligned Parties contend that the leachate storage tanks cannot be supported by the site. Because it was found that Angelo's geologic investigation was not adequate to identify all unstable areas, it is also found that Angelo's failed to provide reasonable assurance that the site would support the leachate storage tanks. In all other respects, the Aligned Parties failed to refute Angelo's demonstration that the storage tanks would meet applicable criteria. Groundwater Monitoring Plan The Aligned Parties contend that there is an insufficient number of monitor wells proposed by Angelo's to detect a leak from the landfill and the wells are too shallow. Because it was found that Angelo's did not adequately characterize the geology and hydrology of the proposed landfill site, the monitoring plan does not provide reasonable assurance of compliance with applicable criteria. Cell Design The Aligned Parties contend that the "mega-cell" design proposed by Angelo's provides less flexibility to respond to and isolate landfill problems than other landfill designs with smaller cells, and the mega-cell design could generate more leakage. No evidence was presented to show whether Angelo's design was one that had been approved or rejected in the past by the Department. Although it is not the best landfill design, the Aligned Parties did not show that the proposed design violates any permitting criteria. Operation and Closure The evidence presented by the Aligned Parties in support of their issues regarding the operation of the proposed landfill, such as noise, odor, and traffic, was not sufficient to refute Angelo's evidence of compliance with applicable criteria, with one exception: Angelo's has not provided an adequate contingency plan to show how it would respond to a sinkhole or other incident that required the landfill to be shut down and repaired. Assuming the site was engineered to support the landfill, there is nothing about the Closure Plan that the Aligned Parties showed does not meet applicable criteria.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the Department of Environmental Protection deny Angelo's Permit Application Nos. 22913-001-SC/01 and 22913- 002-SO/01. DONE AND ENTERED this 28th day of June, 2013, in Tallahassee, Leon County, Florida. S BRAM D. E. CANTER Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 28th day of June, 2013. COPIES FURNISHED: Carl Roth, Qualified Representative 8031 Island Drive Port Richey, Florida 34668-6220 Christopher M. Kise, Esquire Foley and Lardner, LLP 106 East College Avenue, Suite 900 Tallahassee, Florida 32301-7732 Wayne E. Flowers, Esquire Lewis, Longman and Walker, P.A. Suite 150 245 Riverside Avenue Jacksonville, Florida 32202-4931 Janice M. McLean, Esquire City of Tampa 7th Floor 315 East Kennedy Boulevard Tampa, Florida 33602-5211 Joseph A. Poblick, Esquire City of Zephyrhills 5335 8th Street Zephyrhills, Florida 33542-4312 Doug Manson, Esquire William Bilenky, Esquire Brian A. Bolves, Esquire Manson Bolves, P.A. 1101 West Swann Avenue Tampa, Florida 33606-2637 Jacob D. Varn, Esquire Linda Loomis Shelley, Esquire Karen A. Brodeen, Esquire Fowler, White, Boggs, P.A. 101 North Monroe Street, Suite 1090 Tallahassee, Florida 32302-1547 David Smolker, Esquire Smolker, Bartlett, Schlosser, Loeb and Hinds, P.A. Suite 200 500 East Kennedy Boulevard Tampa, Florida 33602-4936 Stanley Warden, Esquire Christopher Dale McGuire, Esquire Department of Environmental Protection Mail Station 35 3900 Commonwealth Boulevard Tallahassee, Florida 32399-3000 William D. Preston, Esquire William D. Preston, P.A. 4832-A Kerry Forest Parkway Tallahassee, Florida 32309-2272 Herschel T. Vinyard, Jr., Secretary Department of Environmental Protection Mail Station 35 3900 Commonwealth Boulevard Tallahassee, Florida 32399-3000 Matthew Z. Leopold, General Counsel Department of Environmental Protection Mail Station 35 3900 Commonwealth Boulevard Tallahassee, Florida 32399-3000 Lea Crandall, Agency Clerk Department of Environmental Protection Mail Station 35 3900 Commonwealth Boulevard Tallahassee, Florida 32399-3000

# 1
HERBERT H. AND ANNA M. HUELSMAN vs. WASTE ASSOCIATES COMPANY AND DEPARTMENT OF ENVIRONMENTAL REGULATION, 88-002531 (1988)
Division of Administrative Hearings, Florida Number: 88-002531 Latest Update: Apr. 14, 1989

The Issue Whether WACOC has given reasonable assurance that the landfill it proposes to build would comply with applicable requirements of Chapter 403, Florida Statutes (1987), and rules promulgated thereunder?

Findings Of Fact A mile east of the intersection of U.S. Highway 90 and State Road 393, south of Dorcas in eastern Okaloosa County, WACOC has assembled some 1,760 acres on U.S. Highway 90 --- only 160 acres shy of three square miles. WACOC proposes to use as much of the land as possible for the disposal of solid waste, and "would like to use the proposed landfill as a regional landfill." Prehearing Stipulation, p.8. (T.68) The company does not own all the land outright but, with the conveyance of a parcel on the morning the final hearing began (T.77), WACOC had obtained (an encumbered) fee interest in the 55 acres on which it proposes to put Phase I, "a hole-in-the-ground landfill which can come into contact with the groundwater table," (T.737) and the subject of the pending application. WACOC has a "whole lot of option money out there," (T.86) although none of WACOC's stockholders has previous experience in the landfill business. Private Enterprise Chris Cadenhead owns stock individually and "is 100 percent owner of SRD, Incorporated" (T.93), itself an owner of WACOC stock. Serving with Chris Cadenhead and Larry Anchors on WACOC's board of directors, at the time of the hearing, was James Ward, formerly a legislator and chairman of the House Natural Resources Committee. (T.48) Like Mr. Anchors, Mr. Ward originally owned 24% of WACOC's stock. The only shareholder who testified at the hearing was Arthur Frederick Schneider. Before he succeeded Mr. Cadenhead as president of WACOC, Mr. Schneider had had a distinguished career as a naval officer, and later tried his hand at farming, but this venture ended in bankruptcy. "SRD has been funding this thing." (T.86) Where SRD, Inc. obtained more than three-quarters of a million dollars is not clear from the record. As far as the evidence showed, Chris Cadenhead's father, Rhett, had no interest in WACOC, although he did appear on behalf of the company at a county commission meeting in June of 1987. Larry Anchors, a WACOC shareholder and formerly an Okaloosa County Commissioner, contributed $35,000 a few days after the Okaloosa County Commission awarded the waste disposal contract. (T.87) Nothing has been paid the company under the agreement WACOC entered into with Okaloosa County on June 18, 1987, Citizens' Exhibit No. 1, which was reduced to writing on or before July 10, 1987. WACOC's Exhibit No. 1, App. 1. Under the contract, WACOC undertakes to move solid waste from transfer points in the southern part of the county and deposit them in the landfill it proposes for a per ton "tip fee of $17.70 (Present value as of 6/16/87)," WACOC's Exhibit No. 1, App. 1, p. 13 (emphasis in original), which is to be "adjusted automatically upward or downward to reflect the change in Consumer Price Index." Id. The County guarantees WACOC 275 tons per day and pledges to "exercise its best efforts to insure that all the Solid Waste generated within the County will be delivered to one of the designated transfer stations or the landfill," WACOC's Exhibit No. 1, App. 1, p. 8, for the next thirty years. At present, the County generates "including the municipality . . . about 525-550 tons a day." (T. 61) The County agrees to cooperate "to obtain financing of the real property and equipment necessary [for WACOC] to perform . . . by a proposed bond issue." WACOC's Exhibit No. 1, App. 1, p. 14. To this end, the county commission adopted a resolution authorizing issuance of industrial revenue bonds in accordance with Chapter 159, Florida Statutes, in an amount not to exceed $8,000,000. Alternatively, and perhaps more in keeping with current tax law, "it's going to one of the larger financial institutions like Merrill Lynch Pierce Fenner & Smith or someone like that and actually a bond issue through them, non-industrial," (T.74) or so WACOC intends. Phase I Designed to receive Okaloosa County's solid waste for five years, Phase I is to occupy a site on the eastern slope of a small hill between the east and west branches of Mare Creek, which converge in Fawn Lake, north of the property on which WACOC has options. Water flows out of Fawn Lake into a no longer bifurcated Mare Creek (which was dammed to create the lake), and ultimately into the Shoal River, more than 3,000 feet from the site. By rule, DER has designated Shoal River outstanding Florida waters. Fawn Lake and Mare Creek are Class III surface waters. The Phase I site is "zoned for agricultural uses, which was determined by the Okaloosa County attorney to be appropriate for a landfill." Prehearing Stipulation, p. 7, No. 5. "The county attorney's determination has not been ratified by the County Commissioners." Id. Site Geology "Subsurface conditions have obviously a tremendous effect on the design of the landfill." (T.592) "[A] site's geological and hydrological characteristics are relevant to its potential for contamination." Prehearing Stipulation, p.7, No.4. Throughout the 1760-acre site, beneath a thin topsoil and root mat layer, the site soils consist of clean loose sands to an average depth of about 8 feet below ground surface. . . . From a depth of about 8 feet to 18 feet, a layer of dense orange clayey medium to fine sand (with some coarse sand and fine gravel) covers most of the proposed landfill site. . . . Beneath the clayey sand unit are loose and dense . . . sands . . . . WACOC's Exhibit No. 1, Appendix B. The clayey sand unit occurring underneath the loose, Pliocene sands on the surface is part of the Citronelle formation, which "characteristically changes abruptly over very short distances." (TB. 29) The Citronelle consists "principally of quartz sand, with numerous beds, stringers and lenses of clay and gravel." CCE's Exhibit No. 21, p. 33. "The soils on the site standing alo[ne] would not be sufficient for a liner." I.T. 559 WACOC's expert reported an "average vertical hydraulic conductivity for [the upper Citronelle of] . . . 6.2 x 10-7 cm/sec (1.7 x 10-3 feet/day)." Laboratory tests on soil samples, taken more than eight and less than 18 feet below the surface of the site proposed for Phase I, demonstrated the variability of the sands making up the upper portion of the Citronelle formation on site. The percent finer than the U.S. No. 200 mesh sieve (silt and clay size fraction) . . . ranges between 17.5% to 41.7% . . . . "Vertical hydraulic conductivities for . . . [deeper] sands [on which waste disposal cell liners are to be laid] range from approximately 2.7 x 10-5 cm/sec to 5.8 x 10-4 cm/sec (0.08 to 1.62 feet/day)." Id. The variability of fines contents among samples reflects variability in hydraulic conductivity in the upper Citronelle, as well. This variability explains why an average permeability or vertical conductivity figure for the clayey sands in the upper Citronelle is of limited use in predicting how quickly rainwater will move through it, if these sands are used to cap the landfill after its completion, as proposed. Samples taken from eleven borings made throughout the entire 1,760-acre site were the basis for the applicant's average vertical hydraulic conductivity number. Only one of the borings was done on the Phase I site itself. If a ten-foot thick, continuous layer of clayey sands with a vertical conductivity of 6.2 x 10-7 centimeters per second occurred eight feet beneath the surface, the overlying Pliocene sands would hold a water table year round, given the high rainfall in the area. In fact, the applicants' consultants reported a water table on the Phase I site 21 to 30 feet down, beneath or within, but not above, the clayey sands in the upper Citronelle, in February of 1988. (T.595) The higher water tables observed in October of 1988 were also below the loose surficial sands. This demonstrates a vertical hydraulic conductivity for the upper Citronelle beneath the site proposed for Phase I well above the reported average. A borrow pit, off site but nearby, illustrates the fallacy of relying on average conductivity values to predict the movement of water. At the upper end of the excavation, a seep emerges from the sand to form a stream that flows 40 or 50 feet across red clayey materials resembling those on site, then sinks, disappearing into the earth. Even the value assigned to a particular split spoon sample may be a misleading average. B.T.126-7. Preliminary Plans Drawn In Phase I, WACOC proposes to excavate three different areas or cells for solid waste disposal "to approximately 20 feet below natural grade." (T.116) Accepting information they were furnished, the design engineers made the important (T.172) but erroneous assumption that the water table on site fluctuates only within a range "from five to fifteen feet" (T.132) below that. The plan is to fill each cell with solid waste and covering layers of various soils to a height 90 feet above existing grade. Trees growing within the 300- foot green belt planned for the perimeter of the 1,760-acre site would shield the landfill from the view of motorists on U.S. Highway 90. Separated from each other by berms, cells 1 (520' x 520') and 2 (520' x 650') would abut each other south of cell 3 (480' x 1170'), with another set of berms circumscribing all three cells. The bottom of each cell is to have a gradual V-shape, sloping "approximately one percent in the longitudinal direction and two percent in the traverse direction[s]," (T.116) toward the centerline. The plans call for compaction of the soils, once excavation has been accomplished, and for "root pickers" to remove rocks, roots and any other sharp objects. The plans do not contemplate the use of sieves. WACOC proposes to line these pits by covering the naturally occurring, compacted soils with a 1.5 millimeter (60 mil) layer of high density polyethylene, a plastic which has been manufactured for use in land fill liners at least since 1982. (T.401) The purpose of lining landfills is to contain contaminated water that would otherwise escape into the environment. Rain percolating through solid waste, together with moisture already in the solid waste at the time it is deposited in the landfill, leaches chemicals from the waste, producing a toxic solution called leachate. Products of industry make their way into household garbage and the municipal waste stream. About two percent of waste that reaches municipal sanitary landfills consists of materials which, if generated industrially in quantity could not lawfully be disposed of, except as hazardous waste. Scientists have "found municipal waste landfill leachates that were as toxic as those from Love Canal." (IT.696) Gundle Liner WACOC has decided to obtain a liner which meets minimum requirements of the National Sanitation Foundation Standard Number 54, Flexible Membrane Liners, November, 1983, from Gundle Lining Systems, Inc. (Gundle). "All Gundle materials are available in 22 1/2' widths with no factory seams " WACOC's Exhibit No. 7. Gundle's own employees would unroll the plastic, position it using "tack welding" to form a continuous sheet, join the strips with extrusion welds, inspect the seams visually, perform destructive "shear and peel tests . . . by random selection no less than the [to be] agreed [but unspecified at hearing] frequency . . . . [and conduct v]acuum testing [which] follows no specific standard." WACOC's Exhibit No. 7, Enclosure 6. (T.403, 411- 2) As a condition of the permit (No. 26), DER would require that an independent third party, a registered professional engineer, participate in quality assurance. High density polyethylene's "chemical resistance and durability. . . . enable[ Gundle] . . . to offer a 20-year warranty . . . for both the product and installation." (T.404) Gundle's liability under the warranty depends on how many years remain under warranty and "shall in no event exceed the amount of the sale price." (IT.434) The warranty excludes "any liability for consequential damages arising from the loss of . . . product owing to the failure of the material or installation," id.; CCE's Exhibit No. 3, and any liability whatsoever in the event of acts of God, including floods, and "excessive pressure or stress from any source." CCE's Exhibit No. 3; (IT.432). While the material may well outlast the warranty, perhaps by decades, in "geological time," it will inevitably fail. In the short term, too, the integrity of liners like that proposed is highly problematic. Past problems have included "mechanical damage . . . of one form or another such as with the bulldozer, or if somebody drops something." (IT.429) Here, before the first lift of solid waste (which would not include construction or demolition debris) is placed, four feet of sand (stockpiled during excavation) would be piled on top of the disposal cell liner. A bulldozer's gash might not go unnoticed, but small holes along seams can be missed, despite rigorous quality control measures. At the Ocean County landfill in New Jersey, "there was more liquid . . . than would have been true from the calculated moisture vapor transmission data," (IT.427) but Gundle's chemist testified this might have been "condensation on the soils on the back side of the liner." Id. Leachate Collection Embedded within the sand layer, in the crotch of the V, six-inch, perforated, schedule 80 PVC pipe, wrapped in filter cloth, is designed to collect leachate. The top of the pipe is to be eight inches above the liner, according to the leachate underdrain detail on sheet 15 of WACOC's Exhibit No. One pipe running the length of cell 3 and another running through cells 1 and 2 would move leachate to the leachate trunk line, another (intact) PVC pipe which would, in turn, empty into a paved flume in the leachate collection pond. The pond has been sized to contain the amount of leachate WACOC's consultants originally predicted a 25 year return 24-hour storm would generate, together with the rainfall such an event would deposit in the leachate collection pond, and still leave a foot of freeboard. "You have room below that major storm elevation that holds 60 to 70,000 cubic feet of leachate." I.T. 127. Except for the flume, the leachate pond is to be lined, like the disposal cells, with high density polyethylene. In the leachate collection pond, only 18 inches of sand would overlie the synthetic liner. From time to time, leachate would be pumped from the pond into tank trucks for removal to the Garnier wastewater treatment plant, which has a capacity of 6,500,000 gallons per day. Garnier is specifically permitted to receive only domestic wastewater, but the permit does not forbid industrial wastewater, and the plant now accepts leachate from the Wright landfill. DER has not classified landfill leachate either as domestic or as industrial wastewater. Before accepting it for treatment, the plant might require pretreatment of the leachate, whether on account of its anticipated acidity or for other reasons. If leachate causes sludge from Garnier to exceed standards for heavy metals, the sludge can be deposited in a Class 1 landfill like the one proposed here. WACOC has not yet entered into a contract with Garnier's operator for treatment of leachate. Not until leachate is removed from the leachate collection pond are pumps to be employed. Leachate would have to accumulate on the waste disposal cell liners and enter a pipe, in order to leave the cells. The design specifies perforations along the whole length of leachate collection pipe, around the bottom of the pipe. If the pipes clogged west of the cell walls, leachate could flow through sand and reenter the pipe further downslope. Outside the waste disposal cells, manholes have been planned, to afford access for cleaning the pipes out. The applicant did not demonstrate with calculations that gravity would induce flow through the pipes at a rate sufficient to remove leachate deeper than 12 inches. In the leachate collection pond, which is to be roughly 200 by 500 feet, leachate might attain a depth of several feet, before being pumped into a tank truck. The pond sides are to be lined with high density polyethylene to a height nine feet above the pond bottom. As far as the evidence showed, the depth of leachate in the pond would never fall below 18 inches anywhere on the pond bottom, once leachate began filling the leachate collection pond. Only if leachate were extracted from the sand covering the liner could the leachate head in the pond fall below one foot. The plan is for tank truck operators to place their hoses on "a concrete flume on top of that sand." I.T. 127. Stormwater Management Berms encircling the solid waste disposal cells, together with a series of ditches and culverts, are intended to direct stormwater away from the solid waste to a retention pond for temporary storage and treatment, before discharge offsite. To the extent stormwater which would otherwise flow into solid waste disposal cells can be diverted elsewhere, the volume of leachate can be diminished. The berms also serve to prevent rain falling on solid waste from reaching the stormwater retention pond, or polluting stormwater that does. Lined with relatively impermeable soils, the stormwater retention pond, "a football field wide and two and a half football fields long," (T.201) is designed to be big enough to hold the runoff from a 100 year return storm, leaving two feet of freeboard. In practice, some stormwater would percolate into the ground through unlined ditch bottoms, never reaching the pond. Stormwater that did reach the pond would either evaporate or drain through sidedrains, which are to consist of perforated six-inch PVC pipe, encased in gravel and covered with permeable sand excavated on site. Lining most of the pond's perimeter, this sand would filter water seeping through it from the pond into the side drains. After collecting in an outfall pipe, water draining from the pond would travel 300 or 400 feet, before discharging above grade, near the east branch of Mare Creek. If, as would be likely, sea gull droppings regularly end up in the stormwater retention pond, phosphorous and nitrogen levels in the east branch of Mare Creek and downstream would increase in time. Other Measures Decomposing solid waste produces methane gas. When cell I is completed, vents are to be installed to direct methane gas into the atmosphere above the center of the cell. I.T.140; WACOC's Exhibit No. 1, p.23 and No.9, p.15. "[T]he wind will disperse any gas within the site." I.T.191,221. If sufficient quantities were generated, a gas collection system would be installed. I.T.140. 31 Spotters will try to divert hazardous or infectious waste, and should succeed in the event a hauler tries to dispose of an accurately labelled 55- gallon drum of a hazardous liquid or red-bagged waste from a hospital, but small quantities of gasoline, paint, paint thinners, cleaning fluids and other hazardous materials cannot practically be diverted. At the end of every working day, solid waste is to be covered with a six inch layer of soils from the site. Fences are planned downwind from the working face to collect windblown debris. Closure A landfill is a long-term proposition. Pollutants still leak from Roman landfills dating to 400 A.D. Contemporary landfills and their regulators recognize the importance of capping landfills to minimize infiltration by rainwater (and so production of leachate.) Even though the plans may be revised later, DER requires applicants for landfill construction permits to make plans for closure, before a construction permit is issued. Landfill operators must also make annual contributions to a trust fund to be used to close the landfill and to bear post-closure expenses, which include trucking leachate and monitoring groundwater. WACOC has already established the trust fund and deposited $100. As a condition of operating the landfill over the five years it proposes, WACOC must deposit one fifth of estimated closure and post-closure costs in the trust fund 60 days before beginning to fill, and another fifth annually (30 days after the anniversary date of the initial payment). The cost estimates are subject to revision annually. (I.T. 384, 843-4) Before closing a landfill, the operator must obtain a closure permit. The trust fund is not expected to absorb the costs of cleaning up polluted groundwater, if that should prove necessary. Local governments, which operate many landfills themselves, sometimes step in when problems with privately run landfills develop. ...A leak develops or something that would cost millions of dollars to address it and you don't have the insurance, you're out of business instantly. ...[WACOC's ability] to address a catastrophic situation that could develop with this is limited to how much capital they have. * * * ...[I]f you don't have some insurance, even if its $500,000 deductible,...if the problem occurs, you're gone. And if you don't have the capital to handle it, it will fall back in the taxpayer's lap which is typically what happens... . (II.T. 70-71) As WACOC's proposed finding of fact No. 12 concedes, WACOC's "liabilities are considerably in excess of its assets." Landfill operators are under no obligation to contract for environmental liability insurance, which is not readily available, in any event. WACOC proposes to cap Phase I with clayey sands excavated on site. The clay required to cap Phase I amounts to "ten acres of the surface by four feet deep, or one acre 41 feet deep." (II.T. 36) WACOC proposes to spread this quantity over all three cells, covering them with an 18-inch clayey sand blanket. On top of that, WACOC would place 18 inches of surficial sand and, finally, six inches of topsoil. The sands are readily available on site, but there is no topsoil to speak of. The clayey sand WACOC proposes to use as a foundation for the cap is too permeable to constitute an effective barrier. (B.T. 149,158), but WACOC could mix it with clay from off site or some other agent to render it less conductive of rainwater. The present plans do not call for mixing, however. High Density Polyethylene WACOC is proposing the synthetic liner underneath waste disposal cells and the leachate collection pond not as one component of a composite liner, (T.158) but as "the state of the art," (T.153) in and of itself. But "flaws in liners are a common occurrence." (IT. 698) After a liner has been laid down and covered with sand, "inadvertent cuts and nicks of unexplained origin" (IT.699) can and do occur. However conscientious, laborers hired as "root pickers" may miss an occasional rock. The plans only call for removal of objects larger than a quarter inch. High density polyethylene is a plastic. If laid over stone or other protuberances, "the plastic will flow away from that pressure point and eventually you will have a hole in the plastic." Id. An investigator examining 60 mil high density polyethylene used as landfill liner "found six pin-holes per acre, mostly associated with the seams, [an] average of 9.4 cuts [per acre] of unexplained origin, [and] 110 [perforations attributable to] rock protu[bera]nces per acre." (IT.705) In an EPA sponsored study, a liner manufacturer installed and third parties "did a careful job of inspecting," id., twelve "rather small" (IT.706) waste disposal cells. Eight of the twelve leaked. Even if holes did not let leachate escape, several carcinogenic, teratogenic, and mutagenic organic constituents of municipal waste leachate dissolve in liners like the one WACOC proposes, "diffuse through and are released on the other side." (IT.699) High density polyethylene is practically impervious to water: water vapor can move through it only at a rate of 1 x 10- 13 centimeters per second. But certain hydrophobic substances, including chlorinated hydrocarbons such as trichloroethylene and vinyl chloride, move readily through high density polyethylene, itself a "very hydrophobic material." (T.807) William T. Cooper, a chemistry professor who participated in developing DER's drinking water standards, appearing in this case as a witness for the objectors, testified: [O]ne of the major problems in doing this work [concerning organic pollutants in groundwater] is establishing . . . standards. In other words, we had to pollute water in a well defined way so that our machines would tell us there was a certain amount of pollution in the water. . . . . . . [W]e started using [p]olyethylene tubes into which we would put several different organic molecules for the very reason that these molecules diffuse so readily through the [p]olyethylene tubes that we could control the rate in which we were contaminating water for laboratory purposes. (IT.806) In order to calibrate their instruments, the scientists who developed drinking water standards for Florida relied on polyethylene containers' ability to transmit organic pollutants in solution inside a container to the water outside at a steady, predictable rate. Chemists think of polyethylene "as a condensed liquid . . . . [because] it has the ability to absorb molecules." (T.807) Water and polyethylene do not mix, however, just as oil and water do not; they are said to be immiscible and to form separate phases. When a third substance is dissolved in either of two immiscibles occurring together, the additive's molecules move between the two phases until equilibrium is reached. The concentration in one phase will differ from the concentration in the other, and both concentrations will depend on the amount of the additive introduced (until saturation), but the ratio of the two concentrations (the "distribution ratio" or "partition coefficient") will always be the same, at equilibrium. A chemist in Gundle's employ testified that any "organic solvents in the leachate . . . would tend to float on the aqueous phase." (T.406) But some hydrophobic organics, including trichloroethylene, are denser than water and would not float. (IT.831) Mr. Cadwallader, Gundle's chemist, conceded that organic materials are soluble in water "to a point of saturation, which typically is not very high . . . ." (T.425) The leachate's nonaqueous phase would occur to some extent, perhaps entirely, within the polyethylene liner. In this connection, the objectors' chemists' opinion, which Dr. Brown also shared, has been credited. For the same reasons Mr. Cadwallader "agree[d] that a liner would gain weight when it is immersed in a pure organic solution," (T423) the liner would swell, as a variety of organic pollutants diffused into it from the leachate. Such swelling has been reported in low density polyethylene. WACOC's Exhibit No. 18. With groundwater in contact with the outside of the liner, the organic pollutants with which the liner was swollen would diffuse into the groundwater, until groundwater touching the liner acquired organic pollutants in the same concentrations in which they occurred in the aqueous phase of the leachate standing on the liner. It is even possible that concentrations of certain hydrophobic organics would be higher outside the liner than inside. (IT.818) If indeed a nonaqueous phase floated on top of the leachate, it would serve to replenish the aqueous phase, as hydrophobic organics diffused into the liner to replace those diffusing out of the liner into the groundwater or soils on the other side. (IT.831) Site Hydrogeology Groundwater flow "mirrors the topography of the site." WACOC's Exhibit No. 1, Appendix B, p.6. On the Phase I site, it flows to the north and the northeast, toward the east branch of Mare Creek. At monitoring well 1, the flow is "about a 45-degree angle down and to the east northeast." B.T.119. Lining the disposal cells and the leachate collection pond with high density polyethylene would curtail recharge (and evapotranspiration) under the cells and the pond. The plan is to line the stormwater retention pond with the same clayey sands that fail to hold a water table. B.T.175 Percolation from stormwater ditches or, despite its lining, even from the retention pond might cause slight mounding of the groundwater under those structures. But construction of Phase I would not appreciably alter the general direction of the groundwater flow. To the extent mounding occurs beneath the stormwater retention pond, groundwater table elevations under proposed cell 3 would be higher than they otherwise would have been. Elsewhere, the cell liners should have the effect of lowering groundwater elevations below what they would otherwise have been, ignoring infiltration from stormwater ditches. Any changes may be very slight, since groundwater from recharge areas upslope apparently flows under the site. In February of 1988, piezometers were used to measure water table elevations on the Phase I site. Distance between elevations proposed for liners and the February 1988 water table varied, but were no less than nine feet at any point measured. Based on the February 1988 measurements, the design engineers assumed an unsaturated zone 25 to 30 feet thick. But, on October 11, 1988, the second day of hearing, the same piezometers (B.T. 19) disclosed much higher water table elevations. Near the creek, the water table had risen only 4.92 feet higher than it had been in February, but in the wells closest to cell 1, the October water table exceeded the February elevations by 11.33 and 11.41 feet. (B.T. 40) On October 11, 1988, the water table was "above the bottom of the liner of the proposed landfill in cell two, portions of cell two, a lot of it, portions of cell one and a corner of cell three," (B.T. 44) with "about two feet of water above the proposed liner in the corner of cell two." Id. The levels may have been considerably higher in September. Since periodic measurements have not been taken over the requisite year or two, the seasonal high water table on the Phase I site has not been determined. The height of the groundwater table depends on how quickly rainwater percolates down to the water table to replace groundwater lost to evapotranspirtation or subterranean flow offsite. Groundwater under the Phase I site discharges into the east branch of Mare Creek. The timing as well as the amount of rainfall figure in, because once the soils are saturated, rain runs off instead of infiltrating. Still monthly rainfall is a good indicator of how much water has percolated down to recharge an aquifer. No records of rainfall on the site itself exist, but statistics from sites not far away show that extraordinarily high rainfall in September of 1988 contributed to the groundwater elevations measured on October 11, 1988. At one or more wells on site, the water table dropped another foot between October 18 and October 26, 1988. CCE's Exhibit No. 36. Rainfall data suggest that in most years, "the actual peak high for a water table probably would be towards the end of August." (B.T. 95) At present, the surficial aquifer beneath the proposed landfill site contains potable water. People living in the area draw water from the surficial aquifer for drinking water purposes, in one case from a well only some 30 feet deep. The nearest well to Phase I is 3,000 feet away, on the other side of the east branch of Mare Creek. The surficial aquifer goes all the way down to the Alum Bluff group, 75 feet below ground. Saltwater intrusion threatens in southern Okaloosa County. By 1995, if its growth continues at the present rate, the City of Destin will require another, supplementary water supply. Plans to tap the Floridan in northern Okaloosa County include well fields in the Eglin Air Force Base area and north of Freeport. But the Floridan "won't supply all the future projected needs." (II.T. 16) Desalinization is expensive. Eventually Okaloosa County is "going to have to look further toward the use of surficial water," (II.T. 13) as a public water supply. Leachate Characteristics Leachate from municipal landfills has high biological oxygen demand, high salt content, and significant concentrations of metals and organics. (I.T. 699) Cleaning solvents, oil-based paint, furniture polish, spot removers, xylene, toluene and benzene are among common constituents of municipal waste. Lisa Stewart, who picks up garbage in northern Okaloosa County four days a week, has noticed "containers containing a substance" (II.T.137) bearing such labels as naphtha, methylene chloride, toluol, burnt motor oil, insecticides, fungicides, trichloroethane, oxalic acid, xylol, petroleum distillates, polyglycol ether, plasticizers, sulfuric acid, methanol, ethanol and sodium hydroxide. Scientists have found every chemical DER lists on its "primary or secondary water quality standard numeric list" (I.T. 697) in municipal leachate, as well as "about 20 chemicals that are known to [b]e carcinogenic, mutagenic or teratogenic which are not on that list." Id. At least some of this latter group can be anticipated at the proposed landfill, if it is built. The organic materials degrade only slowly; they have half-lives ranging from 20 to 50 years. (I.T. 698) Biochemical oxygen demand accounts for most of the stench to be expected from leachate standing in the leachate collection pond. The "combination . . . of hazardous waste from small quantity generators and from households we would expect to be somewhere in the range of five to 10,000 tons per year." (T.T.148) In order to predict the amount of leachate to expect, experts on both sides resorted to a mathematical model, known acronymically as HELP, for "Hydrological Evaluation Landfill Program." (T.689) These experts made assumptions about annual rainfall, the permeability of the cap materials which, after their initial excavation and stockpiling are destined to do double duty as a final cover for the landfill, and other factors, in order to calculate the amount of leachate likely to accumulate above the liner. WACOC's consultants calculated a head of 2.4 inches, assuming annual rainfall of 68 inches, and an unrealistically low permeability for the clayey sands under the Phase I site which are to be used for capping the Phase I cells as they attain their design heights of 90 feet above grade. Using WACOC's average vertical conductivity figure for the clayey sands of 6.2 X 10-7, without changing any other assumptions WACOC made in running the HELP model, yields a leachate head of 8.5 inches. Even if it were appropriate to use an average, this figure is low, because the permeability of materials recompacted in a laboratory is ordinarily ten times less than when the same material is compacted in the field. Here compaction "in the field" would occur on top of a mound of garbage. "[T]he system will be spongy." (I.T. 752) The HELP model makes no allowance for cracks in the cap, which are bound to occur, if WACOC closes the landfill as it proposes. As garbage degrades, it settles and sinks. This would cause shear planes or faults in the clayey sand cap, which cannot readily be detected, buried beneath sand, topsoil and vegetation. Estimating conservatively, "we could be dealing with twice as much water as we're calculating from the HELP model due simply to cracks in the facility." (I.T. 692) During those periods when the groundwater table is above the bottom of the disposal cell liners, groundwater infiltration through such imperfections as exist in submerged portions of the liners will increase leachate volume. Ignoring groundwater intrusion, cell 1 alone should produce 5,000 gallons a day of leachate the first year after closure. (I.T. 510-1). The applicant's own revised HELP model calculations put the leachate head at more than eight inches in a year in which rainfall on the site exceeded the annual average at Crestview by only eight percent (68 inches vs. 63 inches). A foot or more of head annually can be expected, taking into account cracks in the clay cap. Water Quality Monitoring WACOC's groundwater monitoring plan calls for a single well south and upgradient of the Phase I site to monitor "background" groundwater conditions, and a series of monitoring wells east and north of the site designed to detect any groundwater contamination the landfill may cause. WACOC's Exhibit No. 9, Sheet 11. Four of these downgradient wells would be placed by the eastern perimeter of the zone of discharge to measure compliance with DER's numeric water quality standards at that edge of the zone. Four other wells are planned within the zone of discharge. In addition, surface waters are to be monitored at seven points, five on the east branch of Mare Creek and two on the west branch, but none further south than the berm separating cell three from cells one and two. WACOC's own employees would take samples, arrange for their analysis and report the results to DER. Among the specified parameters are iron and chloride. As far as the record reveals, testing for sodium in addition would not make for earlier or more reliable leak detection. CCE's Exhibit No. 20. The suggestion that groundwater be tested for calcium assumed montmorillonite in the clayey sands, which the evidence did not show to be present. I.T. 988. According to a DER chemist, however, groundwater samples near landfills should be tested for volatile organic compounds (VOCs) by EPA method 601/602. Since VOCs always appear to be present in landfill leachate and they can be detected in the subparts per billion (ppb) range, the test is a particularly sensitive indicator for the presence of organics in landfill leachate. (CCE's Exhibit No. 20, p.2.) Also among the specified parameters is fecal coliform, which makes any other routine testing for bacteria superfluous. Given the economic consequences for WACOC if a leak is discovered, it might be well to require WACOC to contract with an independent third party to monitor, in the event the landfill is built. Since groundwater flow on site has a vertical as well as a horizontal component, monitoring requires appropriate placement not only of wells, but also of screens. One approach is to cluster wells so that a succession of screens covers the entire thickness of the aquifer. Monitoring well screens should not exceed 15 feet in length, in order to avoid dilution that might render contaminants indetectable. CCE's Exhibit No. 2. But a hydrogeologist with sufficient information could place screens within transmissive zones through which groundwater flowing underneath the disposal cells or the leachate pond is likely to move. B.T. 136 With respect at least to leachate constituents that do not diffuse through liners, monitoring groundwater to detect pollution is more difficult if a landfill is lined than if it is not, because contaminant plumes are larger if they emanate from larger sources. CCE's Exhibit No. 19. Unless monitoring wells were sunk at ten-foot intervals east and north of where leachate is to collect, it would be easy to miss the plume from a small leak, which might be destined to become a large leak. But even the objectors' experts do not "consider that very practical financially." (B.T. 135) Groundwater Pollution Both through imperfections in the synthetic liner and, as regards hydrophobic organic pollutants with low molecular weights, by diffusion directly through even flawless portions of the liner, pollutants in the leachate will escape into the environment, if WACOC builds the landfill it has proposed for Phase I. As far as can be told from the evidence, the groundwater table would never reach the bottom of the leachate collection pond, so that adsorption and diffusion in soils underneath the pond would attenuate the effect of any leakage there, before it could enter the groundwater. But the soils on site have very low adsorption capacity and very low biological activity. I.T.719 Leachate leaving unlined, northwest Florida landfills five feet above the water table have caused serious pollution problems. The evidence showed that the groundwater table would rise above portions of the lined bottoms of all three waste disposal cells, on which leachate will also be standing. This may occur infrequently, would not necessarily happen every year, and would last for only a few weeks and days at a time, but it was the condition that obtained at the time of the hearing, two months later than seasonal high groundwater should normally occur. When it does happen, "it's entirely possible the leachate will be the same concentration as the groundwater in contact with the bottom of the liner." I.T. 701. In any case, carcinogenic, mutagenic or teratogenic agents (I.T. 697), including up to 20 for which DER has not established numeric limits, would occur in the leachate, and some would enter the groundwater, violating the DER "free from" requirement. I.T. 777. Precise concentrations have not been forecast but, at least at times, over the course of the landfill's existence, the leachate would contain certain mutagenic substances for which no safe lower limit has been established. Nor did the evidence give reasonable assurance that violations of DER's numeric standards pertaining to the trichloroethylenes, the tetrachloroethylenes and vinyl chloride would be unlikely outside the zone of discharge. I.T. 771,781-2. It depends in part on the volume or rate at which leachate or these constituents leak. B.T. 94. The evidence showed they will leak at some rate, even where there are no flaws in the liner. In a test involving higher concentrations of trichlorethylene and other organics than are anticipated here, experimenters observed a "flow rate . . . on the order of 125 gallons per acre per day from concentrated organics." I.T. 702. In 27 acres of plastic, flaws are to be expected. Good intentions notwithstanding, the evidence showed holes in the synthetic liner should be anticipated, and taken into account in designing a landfill. The rate at which leachate will leak through these imperfections depends on their number, shape and size; and, as to each, the depth of the leachate above it and the permeability of the medium below it. A circular hole with a diameter of one- sixteenth of an inch will discharge liquid, standing on top of it a foot deep, at the rate of 70 gallons a day, into air, gravel or porous sand. The rate for a similar hole with a diameter of one-eighth of an inch is 192 gallons per day. In the event of a leak above or near an area like the one into which the seep sank in the borrow pit, the soil would not slow the rate of leakage. (I.T. 718) Otherwise, for a given leachate head, the conductivity of the soil (if unsaturated) would determine the leakage rate. "[T]here will be less depth higher up the liner." I.T.760. But where the liner is lowest and the leachate deepest, the liner will lie over the loose sands that occur beneath the clayey sands. Rating tests demonstrated considerable variability in the hydraulic conductivity of all of the sands tested. Piezometer readings on October 18 and 26, 1988, showed how they transmit water as a unit. In eight days the water table (which is only at atmospheric pressure) fell a foot. The clayey sands would not prevent leachate's leaving the waste disposal cells and entering the groundwater, although in some places (where the leachate has less depth), they would slow the rate of leakage. "We could get tens of thousands of gallons [annually] leaking out of a 27-acre site which this is through holes." (I.T. 707) With groundwater in contact with portions of the liners, the leakage rate there would depend on the relative elevations of the groundwater table and the leachate standing on the liners. If the groundwater table were higher, upward pressure might push groundwater into the disposal cells, disminishing or even preventing leachate leakage until the water table fell below the height of the surface of the leachate. But, when that happened, direct discharge of undiluted leachate can be expected, directly to the groundwater, as long as groundwater abutted a flaw in the liner. DER's rules do not apply the numeric standards underneath or within 100 feet of waste disposal cells, which the rules denominate a "zone of discharge." Whether numeric standards are violated at the edge of the zone of discharge depends not only on the leakage rate, but also on where the leak occurs, on the velocity of the groundwater, and on pollutant concentrations in the leachate. Calculations taking all these factors into account have not been done for WACOC's Phase I. But credible expert testimony predicted such violations would eventually occur outside the zone of discharge. I.T.771. Synthetic liners like the one WACOC proposes are usually placed on top of three feet of highly impermeable, mineralogically suitable clay. "A clay liner...will retain organics to a greater extent than a synthetic liner." I.T. 823. Using it as proposed here, where it would come into direct contact with groundwater, does not give reasonable assurance that groundwater pollution will not occur.

Recommendation It is, accordingly, RECOMMENDED: That DER deny WACOC's application for a permit to construct a class I landfill in Okaloosa County. DONE AND ENTERED this 14th day of April, 1989, in Tallahassee, Florida. ROBERT T. BENTON, II Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904)488-9675 Filed with the Clerk of the Division of Administrative Hearings this 14th day of April, 1989. APPENDIX DER's proposed findings of fact Nos. 1, 7, 11, 12, 14, 15, 17, 18, 21, 22 except for the last sentence, which is rejected, 23, 24, 25, 32 except for the last sentence, which is rejected, 38, 45, 46, 48, 49 except for the last sentence, which is rejected, 50, 52, 54, 56 except for the last sentence, which is rejected, 57, 58, 59, 60, 62 except for the sentence "DER has no rule prohibiting contact of the liner with ground water," 63, 65, 66 except for the second clause which is rejected, 67, 69, 72, 73, 78, 79, 80, 81, 83 and 85 have been adopted, in substance, insofar as material. With respect to DER's proposed finding of fact No. 2, the intent to issue is dated April 1, 1988. With respect to DER's proposed finding of fact No. 3, financial feasibility was not demonstrated but is not material under the rules. With respect to DER's proposed findings of fact Nos. 4, 5 and 6, closure cost estimates assume the suitability of the clayey sands on site as a cap, which the weight of the evidence did not establish to be the case. With respect to DER's proposed finding of fact No. 8, the use of a high density polyethylene membrane, without more, to keep hydrophobic organic materials out of abutting groundwater is not proven technology, as far as the evidence showed. With respect to DER's proposed finding of fact No. 9, the rules do not require environmental liability insurance. DER's proposed findings of fact Nos. 10, 19, 20, 26, 35, 37, 44, 55, 61, 71, 74, 75, 77, 82, 86 and 87 are rejected as unsupported by the weight of the evidence, without comment. With respect to DER's proposed finding of fact No. 13, the fact that a synthetic liner separates solid waste from the groundwater does not make it permissible to deposit solid waste in groundwater. While the October readings did not prove that groundwater would rise above the sand in which the leachate will collect to touch the solid waste itself, September's rainfall, the rate at which the water table dropped between October 18 and 26, 1988, and the probability of defects in the liner showed that this was a realistic possibility. With respect to DER's proposed finding of fact No. 16, two percent of the materials disposed of in municipal sanitary landfills are hazardous in a chemical, if not legal, sense. With respect to DER's proposed finding of fact No. 27, the "state of the art" use of high density polyethylene liners is as one component of a composite liner, or even as part of a double liner system, at a hydrogeologically suitable location. This material works well for some purposes and not at all for others. With respect to DER's proposed finding of fact No. 28, there was no showing that any other Florida landfill has been placed so as to come into contact with the groundwater table, or that a synthetic liner has ever been used for a landfill without clay; synthetically lined landfills have only recently been installed in Florida, and detection of leaks from lined landfills is difficult. With respect to DER's proposed finding of fact No. 29, since uncontaminated water is not a pollutant, it is not a permeant of concern. With respect to DER's proposed finding of fact No. 30, the evidence showed that under ideal, test conditions, 8 of 12 liners leaked. Under actual field conditions leaks exceeded 100 per acre. The weight of the evidence makes it unreasonable to conclude that 27 acres of plastic can be laid down in Okaloosa County without any flaws. With respect to DER's proposed finding of fact No. 31, the rate of 192 gallons per day assumed gravel or porous sand which offers essentially the same resistance as air; there is no sandy clay anywhere on site, as far as the evidence showed; more than 18 feet below the surface, where most of the liner is to be laid, there are not even clayey sands, according to WACOC's own expert; the sands that do occur there include loose sands with a permeability greater than 4.9 X 10-4; and include numerous gravel beds; the .00022 gallons per day calculation assumes a hole a quarter as large (half the radius of Dr. Brown's) and ignores horizontal hydraulic conductivity. The fact that the water table dropped a foot in about a week demonstrates that the soils cannot be counted on to contain the leachate underneath flaws in the liner. With respect to DER's proposed findings of fact Nos. 33 and 34, Haxo's results were consistent with their conclusions but explicitly not the only basis for them. Gundle's chemist conceded that hydrophobic organic materials diffuse through high density polyethylene. His opinion that an accumulation in the soils on the other side would equalize concentrations and stop further diffusion did not take into account groundwater abutting the liner, and flushing the soils. The liner absorbs materials; but adsorption does not take place there. Transportation and dispersion need not be known as to "free froms." On page I.T. 777, Dr. Brown testified that diffusion would cause violations of DER's regulations, and this testimony has been credited. With respect to DER's proposed finding of fact No. 36, the swelling of the liner with organic materials is evidence of the diffusion which would result in organic materials' entering the groundwater. With respect to DER's proposed findings of fact Nos. 39 and 41, one inch of leachate in all three cells amounts to 2.25 acre feet, which is more than a "little." Calculations have not been done. With respect to DER's proposed findings of fact Nos. 40 and 42, no allowance was made for cracks in the cap material (which cannot be seen under the vegetation, topsoil and drainage sand layer.) With respect to DER's proposed finding of fact No. 43, a much greater leachate head than within the waste disposal cells may occur depending on where the marker is placed, but hydrophobic organics diffusing through the liner and absorbing in the soils would not be flushed out by groundwater. Except for the last sentence, this proposed finding of fact reflects the weight of the evidence. With respect to DER's proposed finding of fact No. 47, some water will evaporate. With respect to DER's proposed finding of fact No. 51, monitoring wells 8 and 9 are both more than 100 feet from waste disposal areas. The evidence did not show that the monitoring wells "can be expected to detect any contamination." With respect to DER's proposed finding of fact No. 53, DER's experience also suggested testing for volatile organic chemicals. With respect to DER's proposed finding of fact No. 64, the rate of decline also suggests that the water table was as higher elevations than those measured. An applicant must give reasonable assurance that pollution in violation of DER rules will not occur under foreseeable, recurring conditions, including during those times the liner is submerged. With respect to DER's proposed finding of fact No. 65, the proposed finding is adopted, as regards physical tears. With respect to DER's proposed finding of fact No. 68, the proposed finding is adopted, except for leakage through the liner, sometimes directly to groundwater. With respect to DER's proposed finding of fact No. 76, clayey sands were not reported below 18 feet. The difficulty with the groundwater monitoring plan is not the soil characterization, but the number of wells. Because synthetic liners leak, clay mineralogy is important to know. No clay is proposed here, however. With respect to DER's proposed finding of fact No. 84, effective odor control would also entail emptying the leachate pond regularly. WACOC's proposed findings of fact Nos. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 17, 19, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 37, 38, 42, 43, 45 50, 58, 61, 64, 66, 70, 71, 72, 75, the first sentence of No. 76, Nos. 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94, 96, 97, 99, 100, 101, 102, 103, 104, 105, and the first sentence of 113 have been adopted in substance, insofar as material. With respect to WACOC's proposed finding of fact No. 11, the current tonnage figures appear in the application but their accuracy has not been established by competent evidence. With respect to WACOC's proposed finding of fact No. 12, projected profits depend on various problematic assumptions. With respect to WACOC's proposed finding of fact No. 16, the initial payment was $100. With respect to WACOC's proposed finding of fact No. 18, the cost estimate's reasonableness depends largely on what it would cost to obtain suitable material for a cap, which is not clear. With respect to WACOC's proposed finding of fact No. 20, Scott had independent knowledge of the availability and cost of clay. With respect to WACOC's proposed finding of fact No. 21, the proposed finding accurately reflects the evidence, with the qualification that the layer of dense orange clayey medium to fine sand also contains some coarse sand and fine gravel. With respect to WACOC's proposed finding of fact No. 22, the water table will be below the liner most, but not all, of the time. With respect to WACOC's proposed finding of fact No. 28, see the discussion of DER's proposed finding of fact No. 13. WACOC's proposed findings of fact Nos. 29, 59, 63 and 78 are rejected as contrary to the weight of the evidence, without comment. With respect to WACOC's proposed finding of fact No. 30, hazardous materials will end up in the landfill. With respect to WACOC's proposed finding of fact No. 39, the liner's permeability depends on the permeant. Although it is almost impervious to water, hydrophobic organics move readily through. Clay is a much better liner for those materials. With respect to WACOC's proposed finding of fact No. 40, the Gundle liner by itself is not the state of the art in Florida or anywhere else for municipal sanitary landfills. Proposed conclusions of law are addressed elsewhere. With respect to WACOC's proposed finding of fact No. 41, in the puncture test, the liner withstood a probe exerting 270 ponds of pressure. With respect to WACOC's proposed finding of fact No. 44, there are no clayey sands at the depth proposed for the deeper portions of the waste disposal cell liners, as WACOC's proposed findings of fact Nos. 21 and 27, taken together reflect. With respect to WACOC's proposed finding of fact No. 46, as the manufacturer's representative said, "these liners are a part of the quote unquote state of the art requirement for lined hazardous waste facilities." I.T. 404 (emphasis supplied). The other part is three feet of clay, not sand, underneath. With respect to WACOC's proposed finding of fact No. 47, it depends on the hazardous waste facility. A DER chemist, Mr. Watts, recommended monitoring groundwater near a municipal landfill for volatile organic chemicals. While most municipal garbage is not toxic, leachate from municipal waste is toxic. With respect to WACOC's proposed finding of fact No. 48, the testimony was that the groundwater pollution at Wright landfill was "most likely" from unlined cells. No lined landfill in DER's Northwest District has been built below the groundwater table as far as the evidence showed. With respect to WACOC's proposed finding of fact No. 49, While municipal leachate constituents should not corrode the liner, many can diffuse through it. With respect to WACOC's proposed finding of fact No. 50, some two percent of the waste stream will still be hazardous materials. With respect to WACOC's proposed finding of fact No. 51, some organic materials will sink, rather than float. The sand within which the leachate will accumulate will not extract or absorb organic constituents of the leachate, as far as the evidence showed. With respect to WACOC's proposed finding of fact No. 52, removal is first to the leachate collection pond, also lined with high density polytheylene. With respect to WACOC's proposed finding of fact No. 53, it is wholly improbable that 27 acres of plastic will be installed "without physical flaws." Leakage could exceed 10,000 gallons a year. With respect to WACOC's proposed finding of fact No. 54, not all organic materials diffuse though high density polyethylene. Dr. Haxo's views on WACOC's proposal are not a matter of record. The 448-page EPA Study discusses containment techniques. With respect to WACOC's proposed finding of fact No. 55, the Haxo studies are pertinent although they do not purport to replicate a landfill precisely. In some studies he used concentrations of a single organic that were comparable to the concentrations of organics as a whole in municipal leachate. With respect to WACOC's proposed finding of fact No. 56, direct discharge of leachate into the groundwater, even in small quantities could violate the "free from" standards as could diffusion into the groundwater of carcinogenic, teratogenic or mutagenic, hydrophobic organic materials. With respect to WACOC's proposed finding of fact No. 57, CCE's experts' views about synthetic liners coincided in important respects with those of Gundle's chemist. There is no clayey layer where much of the waste disposal cells' liners are supposed to go. Given the certainty of leakage directly to the groundwater, it is the applicant's burden to do quantative analysis. With respect to WACOC's proposed finding of fact No. 60, there are no data for the site itself. The available data are incomplete. With respect to WACOC's proposed finding of fact No. 62, the February water level is likely to be more common than the October water level. The weight of the evidence did not establish that "under normal conditions the water level should fluctuate no more than five feet." With respect to WACOC's proposed finding of fact No. 64, the proposed finding reflects the evidence except for the final sentence. *** With respect to WACOC's proposed findings of fact Nos. 67, 68 and 69, it is inappropriate to schedule pumpout times at this stage. But it is appropriate to consider above average annual rainfall. Annual leachate production differs from the amount of head at any one time. With respect to WACOC's proposed finding of fact No. 73, the design engineer suggested Roto-Rooter. With respect to WACOC's proposed finding of fact No. 74, intersection should not occur. With respect to WACOC's proposed finding of fact No. 77, municipal landfills are not viewed as hazardous waste generators under federal law. With respect to WACOC's proposed finding of fact No. 82, the second sentence was not proven. With respect to WACOC's proposed finding of fact No. 84, there may be some infiltration. With respect to WACOC's proposed finding of fact No. 89, it would be very expensive to place enough monitoring wells to assure detection of any leaks. Placement of screens should be less of a problem than sinking enough wells. With respect to WACOC's proposed finding of fact No. 91, the Watts memo's suggestion of testing for volatile organic chemicals should give additional assurance. With respect to WACOC's proposed finding of fact No. 95, two percent of the waste stream can be anticipated to consist of hazardous materials. With respect to WACOC's proposed findings of fact Nos. 106, 107, 108 and 109, the proposed clayey sand materials used in the thickness proposed would not create the barrier claimed. Modifications not proposed in the application are possible. With respect to WACOC's proposed findings of fact Nos. 110, 111 and 112, WACOC has not given reasonable assurance that pollution of the groundwater in violation of DER water quality standards would not occur; or that no more than a foot of leachate would stand on the liner. COPIES FURNISHED: Herbert H. Huelsman Anna M. Huelsman 608 Ironwood Drive Fort Walton, FL 32548 Debra Swim, Esquire 1323 Diamond Street Tallahassee, Florida 32301 Bruce A. McDonald, Esquire Post Office Box 887 Mary Esther, Florida 32569 William L. Hyde, Esquire Roberts, Baggett, Laface & Richard Post Office Drawer 1838 Tallahassee, Florida 32302 Chris McGuire, Esquire Department of Environmental Regulation Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32399-2400 Dale H. Twachtmann, Secretary Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, FL 32399-2400 =================================================================

Florida Laws (5) 120.52120.57120.68403.41290.704
# 2
G. J. APPLE vs. DEPARTMENT OF ENVIRONMENTAL REGULATION, 76-002203 (1976)
Division of Administrative Hearings, Florida Number: 76-002203 Latest Update: Jun. 23, 1977

Findings Of Fact Three Palms Point is a residential subdivision located within the city limits of St. Petersburg Beach, Florida. Three Palms Point is situated on a landfill which extends into Boca Ciega Bay. The site of the subdivision was originally purchased as submerged land from the Board of Trustees of the Internal Improvement Trust Fund. The purchaser filled the submerged land to coincide precisely with his purchase. The original Three Palms Point landfill is depicted on an aerial photograph that was received in evidence as Petitioner's Exhibit 3. This photograph was taken in 1957, and the landfill is circled with yellow ink on the photograph. Petitioner's Exhibit 2 is an engineer's drawing which depicts the original landfill. In August, 1970 the Petitioner purchased a portion of Three Palms Point. The Petitioner has constructed homes on a portion of the Three Palms Point landfill including the end, or easternmost finger. The present dimensions of the easternmost finger are depicted in an aerial photograph that was received in evidence as Petitioner's Exhibit 1. This photograph was taken in February, 1977. Several lines have been drawn on the photograph. The outermost line shows the limits of the original landfill. Considerable erosion has taken place, and the present high water mark is clearly evident in the photograph. Through the instant application the Petitioner is seeking to fill the land within the second line shown on Petitioner's Exhibit 1. Petitioner intends to construct four new homes on the filled area. The easternmost finger of the Three Palms Point landfill has only been partially bulkheaded. In the approximately twenty years that the landfill has been in existence, approximately 200 feet of the fill has eroded away. The amount of erosion is clearly evident in the photograph that was received in evidence as Petitioner's Exhibit 1. Erosion is continuing at the present time. The uplands of the landfill meet the water at a steep embankment which is very unstable. Three of the homes that have been constructed on the easternmost finger are presently and immediately jeopardized by the continuing erosion. When the Petitioner acquired this property he immediately sought approval to dredge a channel around the original limits of the easternmost landfill, and to fill the entire area. Petitioner did not succeed in obtaining local government approval for this proposal. Petitioner was advised to eliminate his proposed dredging, and to limit the landfill as in his present application. The entire area that the Petitioner wishes to fill constitutes .55 acre. Petitioner proposes to use uplands landfill, and to place a bulkhead around the fill to prevent further erosion. The landfill proposed by the Petitioner is the least amount of fill that would permit the Petitioner to construct houses on the finger within local zoning ordinances. Approximately 4,000 cubic yards of material would be required to complete the landfill. At low tide nearly all of the proposed fill area, and a broader area extending to the east and the south of the proposed landfill site is out of water. At high tide nearly all of the site is submerged. This type of environment is known as a littoral, or transitional zone between the uplands and submerged lands. This particular littoral zone is not a natural transitional area as would occur along the unbulkheaded and undeveloped shorelines of Boca Ciega Bay. The zone has resulted from the erosion of a landfill. There is considerable debris, including deteriorated riprap, junk that has been dumped in the area, and spilled cement. Various types of algae exist within the area proposed to be filled. The only grass that grows in the area is Cuban Shoalweed. Cuban Shoalweed is the only vegetation other than algae which has been found to any degree at the site. Cuban Shoalweed dies back and disappears during winter months, and reestablishes itself during summer months. Nearly all of the Cuban Shoalweed visible at the time of the hearing was outside of the proposed fill area. During summer months it is probable that some Cuban Shoalweed would be present within the fill area. The Cuban Shoalweed exists in patches, and does not cover the area. A variety of marine animals have been identified at the proposed fill site. Many mollusks, including oysters, a variety of clams, and mussels are present at the site. Several varieties of crabs were identified. At high tide fish swim into the area. Shore and wading birds have been observed in the area. The most prevalent animal life in the area is clams. Several heavily populated clam beds are located within, and just outside of the proposed landfill site. None of the organisms observed at the site are endangered organisms. It is apparent that the site is not a particularly suitable natural habitat, except apparently for clams. Continuing erosion of the easternmost point of the Three Palms Point subdivision presents an immediate danger to homeowners. Erosion which has averaged approximately ten feet per year during the past twenty years, is continuing to occur at a rate of from two to three feet per year. A large storm is likely to prove disastrous. In order to protect present homeowners, it is essential that some sort of seawall be constructed at the point. The seawall proposed by Petitioner provides the most protection. A rounded seawall will disperse wave action along the seawall. A seawall constructed along the present high water line would provide considerably less protection. High winds coming from the prevailing wind direction during the stormiest seasons would hit the present shoreline at a severe angle. When a wave hits a shoreline at an angle part of the energy is dispersed. This is called long shore energy flux, and results in littoral drift. High winds would cause an extreme littoral drift along the present shoreline. Bottom sand would be loosened, and the seawall would be undermined. The waves would strike the seawall proposed by the Petitioner at a significantly lesser angle, and long shore energy flux would be approximately one-fourth as much as with a seawall constructed along the present shoreline. Littoral or transitional zones provide a significant function for maintaining the water quality of a water body. Runoff from the uplands is filtered through the vegetation of the littoral zone. The vegetation serves to filter the uplands runoff by assimilating nutrients in the runoff. Without such a filtering mechanism, the quality of a water body would rapidly deteriorate, especially in a heavily populated area. The littoral zone involved in this case provides an insignificant filtration system. The only vegetation is Cuban Shoalweed, which is sparce and totally non-existent during winter months. Construction of the proposed landfill could cause considerable turbidity if proper steps are not taken to prevent it. Turbidity would be very detrimental, at least on a temporary basis, to the waters of Boca Ciega Bay. Turbidity can be adequately controlled through the use of screening devices. If the Petitioner's permit application is approved, a .55 acre habitat for a variety of marine organisms would be lost. Crabs and clams would likely reestablish themselves in the areas just outside of the proposed landfill. Many of the creatures could be relocated to other more natural littoral zones in the area. Most of the residents of Three Palms Point appear to favor the proposed landfill. This opinion is not, however, unanimous. Residents who support the proposal testified of their concern with the continuing erosion in the area. Some witnesses were concerned that the area has become a dumping ground, and attracts recreational users for whom there are not adequate facilities. Persons who testified in opposition to the project expressed environmental concerns, and concerns with the disruption that construction in the area would inevitably cause. The testimony was not clear as to the present status of local government authorization of the project. It appears that the Petitioner has received local approval, but that during the two years that his application has been pending before the Respondent, the approval has lapsed.

Florida Laws (1) 120.57
# 3
CITY OF NEWBERRY vs WATSON CONSTRUCTION COMPANY, INC., 95-000752 (1995)
Division of Administrative Hearings, Florida Filed:Gainesville, Florida Feb. 21, 1995 Number: 95-000752 Latest Update: Apr. 19, 1999

The Issue Is Respondent, Watson Construction Company, Inc. (Watson), entitled to a general permit allowing it to operate a construction and demolition debris facility in Newberry, Alachua County, Florida?

Findings Of Fact DEP, in accordance with Chapter 403, Florida Statutes, is responsible for enhancing the beauty and quality of the environment; conservation and recycling of natural resources; prevention of the spread of disease and creation of nuisances; protection of the public health, safety and welfare; and provision for a coordinated statewide solid waste management program. It accomplishes these tasks, in part, by regulatory oversight directed to entities who operate solid waste facilities in Florida. That oversight includes permitting the activities by the facilities subject to compliance with statutory and rule requirements. Watson wishes to operate a solid waste facility in Newberry, Florida. In particular, Watson seeks to operate a C&D facility for off-site disposal of C&D debris to be placed where sand has been mined. Watson would pursue this enterprise by using a general permit, as allowed by DEP. Petitioner, City of Newberry (the City), is a political subdivision of the State of Florida. It opposes Watson's use of a general permit to conduct business as a C&D facility, based upon the belief that Watson has not demonstrated compliance with regulatory provisions that would allow Watson to use a general permit. Petitioner, Citizens for Watermelon Pond, Inc. (Citizens), is a corporation constituted of persons who oppose the use of the general permit for the same reasons expressed by the City. On July 21, 1994, Watson noticed DEP that it intended to use a general permit to operate a C&D facility. On July 29, 1994, a notice was published in the Gainesville Sun, a local newspaper, concerning the pendency of the use of a general permit to operate the C&D facility in Newberry, Florida. On August 12 and 16, 1994, the Petitioners filed petitions seeking an administrative hearing on the use of a general permit by Watson to operate the C & D facility. On August 19, 1994, DEP issued a Notice of Denial of the permission to use a general permit to operate the C&D facility. This permit request was under an arrangement between Watson and a co-applicant, Whitehurst. Following the Notice of Denial, no further action being requested by the applicants, DEP issued an order closing its file. In December 1994, in its name only, Watson resubmitted an application to use a general permit to operate the C&D facility in question. The level of consideration at that time was as a pre-application review. This was followed by a formal notice by Watson and application to use a general permit to operate the C&D facility. The formal application was filed on January 17, 1995. On January 24, 1995, notice was published in the Gainesville Sun concerning the more recent intention to use a general permit to operate the C&D facility. On February 6, 1995, Citizens filed a verified petition opposing the use of the general permit contemplated by the January 17, 1995 application. Two days later, the City filed a verified petition in opposition to the most recent request to use a general permit to operate the C&D facility. On February 15, 1995, DEP gave notice that it did not object to Watson's use of a general permit to operate the C&D facility. Watson's most recent request to use a general permit to operate a C&D facility was made on a form provided by DEP in accordance with Rule 62- 701.900(3), Florida Administrative Code. The application to use a general permit was sealed by a professional engineer. The legal description of the property in question is described in the application. It is located in Newberry, Alachua County, Florida. The site location for the proposed C&D facility is one and one-eighth mile south of Southwest 46th Avenue on the east side of County Road 337 in Newberry, Florida. Documentation has been provided which identifies the legal authorization to use the property as a C&D facility. The C&D facility has a planned active life of 50 years. It is intended that the sand that is excavated will be replaced by C&D debris at a similar grade. The mailing address and telephone number of the C&D owner and operator is identified. Watson is the owner/operator. There are 158 acres within the proposed site. Approximately 143 acres would be used in the C&D operation by mining sand as a prelude to recontouring the site by placing the C&D debris. It is intended to excavate tan sand and silty sand to a depth of 20-30 feet. Although Watson anticipates excavating sand to a depth of 30 feet, bore hole data reveals the existence of sand below that depth. Watson does not intend to excavate below 62 feet mean sea level (MSL). In any event, it is not the intention to excavate below the interface of the sand and underlying sandy clays. Once the sand has been excavated, it is anticipated that the bottom of the C&D disposal area will be approximately 15 feet above the piezometric water table associated with the Floridan Aquifer, according to the applicant. The proposed site is located in rolling terrain, whose elevations range from approximately 80 feet MSL to 100 feet MSL. To support the use of a general permit, Watson has provided a site plan with a scale not greater than 200 feet to the inch, which identifies the project location, with proposed disposal areas, total acreage of the site and of the proposed disposal area, and other relevant features that exist on or within 500 feet of the site. The property boundaries are identified. The site would be fenced. Access to the facility would be controlled by a locked gate on County Road 337. The gate would be open during daily operations. The site does not contain surface water. There being no surface water, the C&D facility does not require a surface water management permit from the Suwannee River Water Management District. The site does not present a problem with stormwater runoff. A potable well is located within 500 feet of the property boundary. However, placement of C&D debris would be offset by a 500-foot buffer from the well. Wetlands are located 2,100 feet from the southern edge of the proposed site in the eastern part of the adjacent Whitehurst parcel. Within 3,000 feet of the proposed site is an old phosphate mining pit on the Whitehurst parcel, and 6,200 feet from the proposed site is the northern-most unnamed pond associated with Watermelon Pond. The site is not susceptible to flooding at present. The sand mined at the proposed site would be used to build roads and for foundations for houses and other buildings. Clay removed from the building sites to make room for the sand would be placed in the C&D facility. The material that is removed from building sites and substituted by sand fill is clay with a high shrink and swell factor. That material, together with flint rocks, tree limbs and stumps, would be transported to the C&D facility by Watson's dump trucks. At present, Watson has 20 dump trucks. The dump trucks hold 20 yards each. In addition to those materials removed from Watson job sites by dump trucks, Watson has approximately 36 roll-off dumpsters which hold 20 yards each. Two Watson trucks are available to transport the roll-off dumpsters to the C&D facility. The roll-off dumpsters are placed on construction sites, not exclusively Watson's, and construction materials not used in the building process would be placed in the roll-off dumpsters for disposal at the C&D facility. Approximately 70 percent of the fill material to be placed in the C&D facility would be unsuitable soils, trees, limbs and stumps. The remaining material would be the C&D debris from construction at sites where the dumpsters have been placed. The dump trucks that hold the clay, limbs and stumps would be loaded by Watson employees, who can control what is placed in the trucks. Watson would not control what is placed in the roll-off dumpsters at other construction sites. The Watson dump trucks from job sites directly related to its activities would arrive at the C&D facility and dump their loads for compaction. Those loads would not be spotted for unsuitable fill materials. By contrast, the roll-off dumpsters would be examined at the construction site by the Watson driver. If the driver discovers excessive amounts of material not classified for C&D fill, contact would be made with the Watson office and the material taken to the Alachua County landfill for disposal. If the driver picks up the dumpster at the construction site and there are limited amounts of material not suitable for disposition at the C&D facility, the dumpster would be taken to the C&D facility. The material would be spread out, and a spotter would segregate materials that are not suitable for C&D fill. The unsuitable material would be placed in temporary containers at the disposal site and transported off-site to a permitted landfill or other appropriate facility. Some material brought to the landfill would be recycled. Woods, such as pine or hardwood would be recycled. The limbs and stumps would be placed in the pit as fill. Copper, aluminum, steel, iron, and any other metal would be recycled. The metals would be sold to a scrap-iron facility. An employee at the landfill would keep the money earned from recycling. Metal embedded in broken concrete would be used as fill. The C&D facility would be operated by two persons: one, a loader/operator who loads the dump trucks with the sand that is being excavated; the second individual, a bulldozer operator who pushes the dump truck loads of clay, limbs, and stumps into the fill area and spreads them. He would also spot the roll-off dumpsters and segregate the fill material from unsuitable material. The sorted construction material to be used as fill would be pushed into the working face of the pit, where the tree limbs, stumps and clay would have also been placed. It is anticipated that six to ten roll-off dumpsters with C&D material would be brought to the C&D facility on a daily basis. The amount of unsuitable material that must be sorted from the dumpsters would vary with the individual loads. Watson operates an existing C&D facility in Alachua County, Florida. The proposed C&D facility would be similar in its operation. Based upon the experience in the existing facility, there is no indication that the proposed C&D facility could not be adequately operated by two employees, taking into account the need to segregate unsuitable material before filling. The spotter would receive verbal training concerning his duties. The training provided the spotter is on-site training. He would be reminded once a week of the need to do an adequate job of looking for unsuitable materials. At present, Alachua County inspects the existing C&D facility on a weekly basis and reminds the spotter at that facility what is appropriate for placement and what is not. The expectation is that the same function would be performed at the proposed facility. If sinkholes are encountered in excavating the sand, the equipment operator would contact the Watson office. In turn, Watson would contact its consulting engineer to address the problem, to include placing a plug or cap to repair the breach caused by the sinkhole. In the event that limerock is encountered in the excavation, a clay cap will be placed to prohibit leachate from flowing into the ground water. Areas where limerock is located at higher elevations and not covered by clay present the greatest risk for sinkhole formation. The period between excavation and fill will be approximately two years, leaving the site exposed at the level of excavation before fill is replaced. When the site is closed, the front-end loader operator and bulldozer operator will spread 24 inches of soil as a cap and grade the site in preparation for planting of pine trees. The soil material would be constituted as six inches of top soil suitable for planting pine trees. The remaining 18 inches would contain clay with high shrink/swell properties. The planting of pine trees would be done through a contract forester. The equipment operated at the facility would employ approved muffler systems. Odor generated by the facility is not anticipated to be a problem, in that household garbage, if found, would only be temporarily maintained, pending placement in an appropriate landfill. The site will be examined on a weekly basis to remove blown "litter". Proper provision is made for maintenance of slopes and compaction of fill material as it is placed. Through the application process noticing DEP that Watson intends to use a general permit to operate its C&D facility, DEP has been informed of the location of the proposed site. DEP would have permission to inspect the site during normal business hours. In response to Rule 62-701.420, Florida Administrative Code, Watson conducted a geotechnical investigation and prepared a report to support the application for a general permit. In support of the application Kenneth J. Hill, P.E. investigated the subsurface conditions at the proposed site through drilling activities. The drilling was done at the site and adjacent to the site. In May, 1995, Douglas L. Smith, Ph.D., P.G., conducted an electrical resistivity study (ER) at the site to investigate the subsurface conditions. Thomas H. Patton, Ph.D., P.G. and Charles Swallows, P.E. assisted in the investigation of the subsurface conditions at the site. Ralph E. Eng, P.E., signed and sealed the application for general permit for the proposed C&D facility. In rendering a report following his investigation of the subsurface conditions, Mr. Hill signed and sealed the report and supporting documentation. Likewise, Dr. Smith signed and sealed the report and supporting documentation associated with the ER study, together with Anthony F. Randazzo, Ph.D., P.G. The contribution by Dr. Patton and Mr. Swallows to the geotechnical investigation did not include signing and sealing a report and documentation. Nonetheless, Dr. Patton and Mr. Swallows, when testifying concerning the permit request, as with other professional witnesses, were found qualified to offer testimony consistent with their professional credentials and factual knowledge. 1/ A foundation analysis to determine the ability of the foundation to support the loads and stresses imposed by the fill material revealed that the weight of the construction debris was approximately 70 pounds per cubic foot, whereas the weight of the existing sand to be excavated is approximately 100 pounds per cubic foot. Thus, the placement of fill material following excavation would impose less stress on the subsurface than before. No significant settlement of the fill materials is expected to occur, resulting from its weight. The nature and fate of leachate promoted by the placement of fill at the site, in an environmental susceptible to bio-chemical and physical influences in transport through the subsurface, has the potential to adversely impact ground water. Those impacts could possibly cause violations of water- quality standards, ground-water standards, and drinking-water standards. These issues are considered based upon facts associated with the imperatives which must be properly addressed through the geotechnical investigation. That process anticipates gaining an understanding of subsurface conditions, to include the soil stratigraphy and ground-water table conditions. The ground-water table conditions involves estimations of the average and maximum high ground-water table. The geotechnical investigation should also explore the possibility of and address the existence of any sinkholes on the site. No specific testimony was given concerning the degree to which leachate, when present in the ground water at the Floridan Aquifer, might promote water-quality violations. Leachate properties and constituents were described in general terms of water-quality considerations, for example, hardness, nitrates, nitrites, alkalinity, presence of ammonia, chlorides, iron manganese, phenols, barium, arsenic, cadmium, lead, mercury, zinc, TDS and sulfates, urea formaldehyde, plaster, creosote, glues, and mastic hardeners. The evidence presented concerning the parameters for water quality did include a reference to barium, ranging from .5UG/L to 8UG/L in basically similar circumstances. The fill material can influence the natural PH by creating acidic conditions causing the PH to fall from a neutral 7.0 to 5.5 to 6.5. The process that takes place over time with the fill material also releases gases, such as methane, hydrogensulphide, and carbon dioxide. Rainwater falling on the ground's surface forms the basis for transporting the leachate through the subsurface. Only the Floridan Aquifer is potentially at risk, there being no surface water bodies or surficial aquifer at the site. Taking into account rainfall disposition by evapotranspiration, storm- water runoff, and subsurface infiltration, without certainty as to the amounts in those processes, it can be said that a significant amount of rainfall is available through infiltration to recharge the Floridan Aquifer and to transport leachate promoted by the fill. This is borne out by the absence of surface water bodies and a surficial aquifer on the site. To gain basic information concerning the subsurface conditions, Watson had 14 standard penetration test borings conducted by Mr. Hill and his firm. Those borings were advanced to depths of 35-72 feet. Additionally, three auger borings were performed to a depth of 40-50 feet. The auger borings were at sites A-1, A-2, and A-3, performed on April 17, 1993. In July of 1993, standard penetration test borings were performed at sites B-1, B-2, B-3, and B-4. In April of 1994, standard penetration test borings were performed at sites B-5, B-6, B-7, and B-8. In September of 1994, standard penetration test borings were performed at sites B-9, B-10, B-11, B-12, B-13, and B-14. The borings that were performed at the proposed site were at B-2, B-5, B-6, B-9, B-10, and B-14, for a total of six borings. The other borings were performed on the adjacent parcel. The borings at the proposed site were widely dispersed over the 143 acres contemplated for excavation and fill. The borings on the adjacent parcel, referred to as the Whitehurst parcel, were widely dispersed over 475 acres. Logs of the soil borings were prepared depicting the findings in the subsurface. The soil stratigraphy found in the borings was varied with sand, clayey sand, sandy clay and limerock present in some but not all borings. The sands that have been described are Aeolian. The sands are remnants of an ancient coastal dune system. Soil permeability tests were conducted on a limited basis at boring B- 9 at a 25-foot sample depth. The tan and orange clayey sand described had a co- efficient for permeability of 1x10-6. That sample and others described were obtained through a split-spoon. At B-12, at 35 feet, tan and orange clayey sand was found with a co-efficient for permeability of 2.6x10-8. At B-13, at 30 feet, tan and orange clayey sand was found and tested as 2.0x10-8 for the co- efficient for permeability. At B-14, at 30 feet, tan and orange sandy clay was found with a co-efficient for permeability of 9.6x10-9. In describing the soils, sieve analysis was not performed to more precisely classify the sediments encountered. This description of the strata is by appearance and texture. The clayey sand and sandy clay found in the borings retard discharge of the leachate to the ground water in the Floridan Aquifer based upon the permeability in those soils. Generally stated, the tan sands described have a co-efficient for permeability of 10-1 to 10-4. These sands are highly permeable, presenting an easy opportunity to convey the leachate contained in the infiltrating rainwater. Anomalous findings concerning soil permeability are shown at B-4, an off-site location, which portrays only sand in the boring. Also, B-9, which was drilled four to five feet east of a known sinkhole at the site is noteworthy in that the boring log describes tan and orange sandy clay, with trace limerock below 30 feet. This is in contrast to the field notation by the driller of the "p" for push and drilling rod "free fall" from 38 feet BLS to 42.5 feet BLS before encountering limerock, connoting a possible cavity in the 38-foot BLS to 42.5-foot BLS region. The karst feature that is located in the area where boring B-9 was conducted will be surveyed and marked with fence posts prior to excavation. No excavation will be conducted within 200 feet of that site. In addition to the phenomenon at the B-9 boring area, sinkholes at the surface were observed one-half to three-quarters of a mile northeast of the site. Sinkholes can occur when the placement of fill changes the hydraulics and loading in a karst environment. Finally, at B-6, limerock was encountered above the 46.9 feet MSL regional piezometric surface of the Floridan Aquifer. That limerock is considered part of the aquifer system. The head pressure at that location was not sufficient to force the ground water from the Floridan Aquifer. The more typical experience was as shown in B-5, where the surface of the limerock was lower than the regional piezometric surface. In B-5, ground water was not encountered until the clayey layer was breached and water rose in the drill hole. On occasions, such as the experience in B-5, there was an indication that Artesian conditions existed at those places. At the locations where the Artesian conditions were experienced, the Floridan Aquifer is confined. At B-6, where the limestone rises higher than the regional piezometric surface, the Floridan Aquifer is not confined. The bore hole at B-2 was terminated before breaching the clayey layer, and ground water was not encountered. Watson's consultant Hill considered that the ground-water table was found within the Floridan Aquifer at the site whose regional potentiometric surface was 46.9 MSL. He perceived that the findings showed ground water at 45 feet MSL constituting the average for the site. Watson estimated that the "seasonal high" ground-water table at the site was 48 feet MSL. The term "seasonal high" is equated to maximum high. Watson claims that the fluctuation in the ground-water table would be only a few feet. This would mean that the 45 feet MSL from bore hole data would represent not only the average across the site but the average value at the site at any point in time during the year. Watson makes this assertion notwithstanding that the borings were made over two years during different seasons. The basis for the estimate of maximum high ground-water table is not evident. In Dr. Patton's remarks in the application, there is a reference to the fact that the lowest encountered elevation for the Floridan Aquifer was 45 feet MSL and the highest was 55 feet MSL, making the average 50 feet MSL. This runs contrary to the remarks by Hill in which Hill said the elevation in the region was 46.9, the elevation detected was 45, and that the seasonal high would be 48. The only borings that were made in which the log reflects the MSL elevation and the boring depth are borings that were conducted in April 1994. On that date, the boring depth at which ground water was encountered varied from 37-43 feet and the MSL depth varied from 39-47 feet. If only the information for B-5 and B-6 on the site proper is used, those two data points associated with the borings on April 1994 reveal ground water at an excavation depth of 37 feet and between 45-47 feet MSL, respectively. Overall, without reference to MSL, the depths at which the ground water was encountered in the borings varied from 19-44 feet, if encountered. Although it is not shown in the boring log what the relationship is to MSL, at B-9, water was found at a drilling depth of 38 feet; at B-10, at a depth of 36 and one-half feet; at B-2, no water had been encountered at a drilling depth of 50 feet; at B-14, no water had been encountered at a drilling depth of 35 feet; at B-1, water was encountered at a level of 44 feet; at B-3, water had not been encountered at the concluding depth of 50 feet; at B-4, water had not been encountered at the concluding depth of 50 feet; at B-11, water was encountered at a drilling depth of 31 and one-half feet; at B-12, water was encountered at a drilling depth of 19 feet; at B-13, water was encountered at a drilling depth of 21 and one-half feet. Where elevations were measured for the water table in the bore holes, the holes were left open until the drillings had been concluded. Then the measurements were made. In this project, the consultant did not equilibrate the ground-water table by the traditional method of leaving a piezometer in the bore hole to maintain its integrity for a day before making the measurement. Watson has not provided sufficient information and explanation to determine a proper estimate of the average and maximum high ground-water table across the site. Returning to the ER investigation, it involved 39 soundings, which is roughly equivalent to drilling bore holes. The sounding profiles were determined through Wenner-Array Sounding and Lee-Directional Equipment. This technique involves the passing of an electrical current underground and measuring its resistance to flow. The expectation is that earth materials, for example, clay, sand, limestone, and cavities will resist the flow of electrical current differently. Substantially greater contrast in the degree of resistance, anomalies, is used to identify and locate earth materials, as well as the presence and shape of cavities. The sounding measurements reveal two- dimensional detail below the surface at progressively-greater depths. Lee- Directional measurements determine the direction of higher or lower resistivity along the survey line. While in the field, electrodes are placed in the ground at equal distances from one another. After a measurement, this distance is increased in an orderly fashion. The greater distance between the electrodes, the greater the depth of penetration. The ER equipment's electrical current has the capacity to penetrate through clay and into lower features in the subsurface. Subsurface from depths five to 100 feet were examined in this study. Within the 39 groundings surveyed, various soils were encountered. Generally, a thick cover of unconsolidated sand was found overlying clayey sand, with a clay layer varying in thickness and limestone found in some soundings, but not others. Where limestone was detected, it was at deeper levels in the southwestern part of the site. Because ER cannot distinguish between clayey sand and sandy clay, the area where those soils are found is referred to in the report as a thinner clayey sand layer. Also, in some places the upper surface of limestone has suffered weathering or deterioration and may appear as the lower part of the clay unit in terms of its electrical properties. The general portrayal in the ER study concerning the soil stratigraphy, wherein reference is made to dry sand up to 30 feet in thickness overlying a thinner clayey sand layer, approximately 10 feet in thickness, overlying a relatively thick clay layer from 10-60 feet and then limestone, does not coincide with the complexity in the stratigraphy found in the soil borings. In the ER study, at stations 8 and 10, voids were encountered. The nature of those voids is unexplained by this investigative process. At station 8, the void was found at approximately 100 feet deep. At station 10, the voids were at 50 feet and 100 feet deep. At station 14, anomalous findings were explained as the placement of fill and organic material during land-clearing operations. The suggestion in the written report, which summarizes the findings in the ER investigation, that a water table was encountered at approximately 40 feet deep, coinciding with the top of the clay layer, is contrary to the findings in the soil borings. To the extent that finding is intended to suggest that there is a perched water table or surficial aquifer above the clay layer, that view is contrary to other evidence adduced at hearing and is rejected. Like the soil borings, the ER soundings examined very discreet areas, but revealed less discreet information. This investigative process is not designed by itself to resolve disputes concerning the character of the subsurface, taking into account statutory and rule requirements for issuing a general permit. To portray the subsurface conditions, in June 1995, Petitioners undertook another basic study by employing ground-penetrating radar (GPR) to reveal the subsurface conditions. Again, GPR, like ER, affords limited insight into the conditions in the subsurface. More precise information than is revealed in the results from the GPR study would be needed to understand the subsurface conditions. GPR is comprised of several pieces of equipment that are connected with cables and a power source. This equipment is mobile. It uses a transmitter and receiver antenna that essentially glides along the ground surface. A signal is emitted through the transmitter. It perpetrates into the ground. It is reflected off materials of different electrical properties back to the receiving antenna and charted. The record that is made is continuous. Unlike ER, GPR is capable of detecting small anomalies in the subsurface. In employing the equipment in this investigation, Petitioners' consultant was looking for either stratigraphic or water-table reflectors and anomalous conditions. The experience at this site was comparable to the experience at other sites in gaining an understanding of how geologic materials are deposited. The GPR investigation covered approximately 10 percent of the site. Four lines were traversed east to west. Two lines were traversed north to south, and two other lines were traversed on a diagonal. GPR will not significantly penetrate clay. Its ability to penetrate is dependent in some measure upon the nature of the clay unit encountered. However, GPR reveals contrasts in the conductivity of clay, when compared to the overlying sand. The greater the contrast, the greater the reflection event. In this connection, the presence of moisture can slow or prohibit the electromagnetic energy generated by GPR. The GPR study revealed a substantial number of subsurface anomalies that might be indicative of possible access for leachate generated by the placement of fill to enter the Floridan Aquifer. These anomalies might represent sand columns and cover subsidence sinkholes. Any sinkholes on the site would be expected to be "cover subsidence"- type sinkholes. Those sinkholes occur through a process in which overlying strata slowly subsides into the sub-adjacent karst feature, rather than suddenly collapsing. Sinkholes develop rarely, but pose more risk of development in areas where sinkholes have occurred previously. Sinkholes are not always seen at the land surface. Sinkholes can present a risk to ground water in the aquifer in view of solution cavities found in the limestone which is part of the aquifer, thus allowing leachate to flow through the cavities into the ground water. Some anomalies found in the GPR study were more significant. One that was observed in the third traverse was 100 feet wide by 80-90 feet deep. There is an indication that this area might be filled with sands, creating a more ready access to the lower subsurface than would be expected with other soils. Another anomaly discovered was 200-300 feet long and 400-500 feet wide, approximately 50 feet below the surface. Overall subsurface conditions are not readily understood. Watson, through its consultant, suggests that the site is part of the Newberry Sand Hills region of the Brooksville Ridge system. As such, karst activity has proceeded in a slower manner than other places in Alachua County, with no presently active karst conditions. In opposition, Petitioners assert that the site is part of the Brooksville Ridge System, which is an internally-drained area of karst-dominated highly fractured terrain, according to its consultants. If Petitioners are correct, those circumstances lead to solutioning of the limestone and are not indicative of area of continuous impermeable clay layers found at the site as part of the Hawthorne formation that Watson's consultant surmises. The exact nature of the site concerning factors that must be considered in this permit application have not been adequately resolved in this record. While it is sufficiently evident that the Floridan Aquifer is not confined, it is unclear whether the circumstances at the site present unacceptable risks to the ground water, in view of existing subsurface conditions. From the record, the proper manner to resolve the issue would be to perform more soil borings on the site proper to identify the subsurface conditions concerning soil stratigraphy and ground-water location.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that a Final Order be entered which denies Watson the use of a general permit to operate the proposed C&D facility. DONE AND ENTERED this 7th day of August, 1996, in Tallahassee, Florida. CHARLES C. ADAMS, Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 7th day of August, 1996.

# 4
KENNETH C. WILLIAMS, JOSEPH KAISER, ET AL. vs. DEPARTMENT OF ENVIRONMENTAL REGULATION, 76-001250 (1976)
Division of Administrative Hearings, Florida Number: 76-001250 Latest Update: Jun. 08, 1977

Findings Of Fact Respondent, Textron Petroleum Products Company, Inc., has applied for a construction permit to construct a sanitary landfill in Sections 3 and 10, Township 1 North, Range 2 East, Leon County, Florida. The proposed site consists of ninety (90) acres and is approximately 2,000 feet from U.S Highway 90 at Its closest point to that highway. The application is in proper form and contains all information required by the Department of Environmental Regulation. towns and areas to be served by the application are the City," of Tallahassee and Leon County. The facility is designed to serve a population of 135,000 people. Although evidence was presented for the purpose of showing that the City of Tallahassee and Leon County, as governmental entities, do not intend to use the proposed sanitary landfill as an "official" landfill site for those governmental bodies, this evidence did not establish that the area to be served and the population to be served by the proposed sanitary landfill is other than that stated above. The applicant, Textron Petroleum Products Company, Inc. does not have a franchise from any county, municipality or other governmental agency with regard to solid waste resource recovery and management responsibilities. The applicant, Textron Petroleum Products Company, Inc., had not, at the time of hearing, posted a performance bond or other approved security with the agency within whose jurisdiction the proposed site is located. The "owner" as that term is used in Section 17-4.21(1)(d), F.A.C., is the applicant, Textron Petroleum Products Company, Inc. The unrebutted evidence presented,at hearing established that the applicant has a net worth of $1 million and is financially responsible. The evidence presented did not establish any violation of the State Resource Recovery And Management Program set out in Part II, Chatper 17-7, F.A.C. There is a public supply well located in the Homestead Ridge area. This system serves 38 or more customers at an averave rate of about 200,000 gallons per month. The well is located more than 2,700 feet from the site boundary of the proposed sanitary landfill. As found by the Northwest Florida Water Management District, even if the consumption of that well system were increased to 2.16 million gallons of water per month, the drawdown at a radius of 2,000 feet would be 0.13 feet. Therefore, it was concluded that the cone of influence of the public water supply does not extend under the proposed sanitary landfill site. As a condition for issuance of a construction permit the Department of Environmental Regulation proposes the requirement of a monitoring system of wells which would include a deep well located between the proposed site and the Homestead Ridge public supply, the purpose of which would be to detect the potential intrusion of leachate or other contaminants into the public water supply from the sanitary landfill. It is improbable that the proposed sanitary landfill will produce any significant quantity of leachate. However, the application proposes that if monitoring indicates that lechate control is needed, a well point system will be installed in the completed cells and underground pipe drains installed in the new cells. It further provides that, dependent upon the quantities involved, the leachate.will be transported to the City of Tallahassee Sewage Treatment Facilities for disposal or it will be treated on-site by transporting the leachate to the settling pond which will at that time be equipped with suitable aeration and chlorination equipment for treatment of the leachate. The proposed design of the sanitary landfill provides that all final discharge from the sedimentatlon pond will conform to the water quality standards set out in Chapter 17-3, F.A.C, even though this may require the constrjction of treatment equipment by the applicant. The application, at pages 12 and 14,.provides for the equipment to be used on-site in the operation of the proposed sanitary landfill as well as for the method of providing adequate site supervision. No evidence was presented showing these provisions to be other than adequate. The evidence presented did not establish that the utilization of U.S. Highway 90 by vehicles transporting waste to the proposed sanitary landfill would create any unusual 0rincreased traffic and safety hazard. The application, at page 3, proposed the installation of electronic signalization equipment to alleviate any hazard which might be created by traffic using the proposed site. No evidence was presented showing this proposal to be inadequate. According to a letter to Mr. James Barrineau, Leon County Department of Pollution Control, from Mr. Mark Stamps, Assistant Zoning Director, Tallahassee Leon County Planning Department, the proposed site is currently zoned Agricultural 2. The letter further states that an Agricultural 2 zoning allows a sanitary landfill as a permitted use. A small portion of the proposed sanitary landfill site is open to public view from,U.S. Highway 90 which is a major thoroughfare. It was estimated by a witness that the distance to the proposed site from that section of U.s. Highway 90 from which the site was open to public view was one (1) mile. An examination of the plot plan of.the proposed site contained in the application shows that at the closest point, the site boundary is approximately 2,000 feet from U.5 Highway 90. The site is screened from public view from most places on Highway 90 by the existing topography and ground cover.

Florida Laws (4) 403.702403.706403.7147.04
# 5
KATIE HALL, HENRY C. TUCKER, POLLY TUCKER, ET AL. vs. JACKSON COUNTY BOARD OF COUNTY COMMISSIONERS, 83-000824 (1983)
Division of Administrative Hearings, Florida Number: 83-000824 Latest Update: Nov. 01, 1991

Findings Of Fact Respondent Jackson County proposes to build a Class I landfill in western Jackson County, about 1.5 miles south of Campbellton on the west side of State Road 273. The named petitioners live near the proposed site, and all parties stipulated to petitioners' standing or party status on account of the proximity of their homes. The forecast is that the proposed landfill would be in service for 15 years, during the last of which it would receive wastes generated by 16,000 persons. Contingent on issuance of the construction permit it seeks in these proceedings, Jackson County has agreed to purchase 85 to 89 acres in section 15, township 6N, range 12W, of which 55 acres would be devoted to the proposed landfill. About ten of the remaining acres are covered by the southern reaches of Grant Pond. Grant Pond may be a sinkhole, but there is no connection between its waters and the Florida aquifer. There is no evidence of sinkhole activity on the site at the present time. One hundred ten feet from the southwest boundary of the proposed site long-time residents have shallow wells from which they once drew water with buckets. There are mostly small farms in the area. A trailer and 6 to 8 homes are located within 1,000 yards of the proposed site. LEACHATE NOT ANTICIPATED Jackson County contemplates eventually dumping 215 cubic yards daily of residential, commercial and agricultural wastes including sewage sludge, in a series of "cells" to H developed seriatim on the site. Developing a cell would entail digging a pit 15 feet deep, 200 feet wide and 650 feet long, lining it with some of the clay removed in excavating, and compacting the two-foot-thick clay bottom liner to 90 percent Proctor. The uncontroverted testimony was that such a liner would be impermeable. A cell is expected to accommodate about a year's worth of refuse. The plan is to have one cell in operation and another in reserve at all times. Waste would be compacted and then covered over with clay soils daily to minimize the possibility of leachate formation. In addition, a six-inch layer of clay would be put down at the end of each "lift," more or less weekly. Once the cell was completely filled, it would be covered with an even thicker layer of clay and/or other materials specified by applicable regulations. Against the possibility of leachate formation before the cell is finally sealed off, the bottom of the cell would be sloped (4:1) so that any leachate generated would accumulate at one point in the cell, from which it could be pumped to a leachate holding pond. The leachate holding pond is also to be lined with impermeable clays. The engineer who designed the project predicts that no leachate whatsoever will be generated and the project plans do not identify the specific method for disposing of leachate, once it reaches the holding pond. Depending on the quality and consistency of any leachate, it could be left in the holding pond to evaporate, or be removed by truck for disposal off site; or be treated biologically and/or chemically before being spread on site. STORMWATER The stormwater management system consists of a series of elongated detention ponds and two ditches, or swales, that drain into Grant Pond. The detention ponds are to be 1.2 feet deep, have varying widths (26.5 to 64 feet), with sides sloping at a 4:1 ratio, and vary in length from 1,000 to 1,600 feet. Water that would accumulate in them as a result of 3.2 inches of rainfall (the amount a 25-year one-hour storm would bring) would fill the ponds. The ponds are designed to overflow through baffled culverts along the swales into Grant Pond. The soils are such that 3.2 inches of rainfall could percolate into the unsaturated soil from the holding ponds in 72 hours. The closest baffle to Grant Pond would be some 200 feet distant; significant sheet flows would also enter Grant Pond. The landfill is designed to insulate stormwater runoff from contamination by waste or leachate. Only when wastes in an almost filled cell had not yet been covered would there be danger that stormwater falling on wastes would end up in the flow of stormwater draining across the surface of the proposed site and ultimately into Grant Pond. This danger could be all but eliminated by placing the last layer of wastes deeply enough in the cell. The plan is to ring the cells with excavated material, as well. If leachate is generated and pumped to the leachate holding pond and if there is enough of it to fill the pond or nearly to fill it, a storm might result in an overflow from the leachate holding pond that would drain eventually into Grant Pond. This danger, too, could be all but eliminated by operating the landfill so that the level of leachate in the holding pond always remained low enough, and by disposing of all leachate, if the facility generates any, off site, rather than "by landspreading on site." Jackson County's Exhibit No. 6. The same people who manage the landfill in eastern Jackson County would manage the landfill here proposed. No leachate has been generated at Jackson County's eastern landfill, but litter that can blow out of the cells at the eastern landfill does. If the same practices obtain at the new site, airborne litter that does not reach Grant Pond on the wing, may later be washed into the Pond by stormwater, even though the baffles would eliminate floatables in the water flowing out of the detention ponds. TWO AQUIFERS The parties are in agreement "that the leachate and or other pollutants will probably never reach the Floridan Aquifer." Petitioners' Closing Argument, p. 4. The Floridan aquifer is a limestone rock formation underlying the proposed site at depths varying between 30 and 130 feet, and separated by a layer of stiff clay from the overlying silts and sands. The stringers of saturated sands lying near the surface comprise a distinct, surficial aquifer that lies between five and twenty feet below ground over most of the site but crops out as Grant Pond on the northern edge of the property. No cell would be built within 200 feet of the highwater line of Grant Pond. The water table in the surficial aquifer, which yields potable water, is a subdued replica of the ground topography. Surface water from the southwest part of the proposed landfill site, where wells are closest, flows into Grant Pond. Water sometimes stands on the southeast part of the site, an area one witness described as boggy. A trailer stands on a parcel adjoining the property to the southeast with its near boundary 300 or 400 feet from the site proposed for the first working cell. No cell is to be dug within 500 feet of any existing or proved potable water well. The application contemplates monitoring wells. Groundwater in the Floridan aquifer flows south. Three wells to a depth of about 45 feet each are planned for south of the cells so that, in the unlikely event that pollution reached the Floridan aquifer, it could be promptly determined. There will also be a monitoring station in Grant Pond so the effect of stormwater runoff on water quality in the pond can be gauged. One well, 250 feet east of the west property boundary and 250 feet south of the north boundary, is planned for monitoring the surficial aquifer. TOXIC WASTES Toxic wastes are generated in Jackson County. Hundreds of drums with a little something still left in them are brought to the County's eastern landfill. No toxic wastes can lawfully be dumped at landfills like the one Jackson County proposes to build near Campbellton, but containers which once held toxic substances can lawfully be disposed of at such landfills, provided they have been rinsed out with water three times. Signs to this effect are to be posted. The landfill would have a single entrance. An attendant would be on duty during the landfill's hours of operation (8 to 5, five days a week), but would not be expected to have sampling equipment or to enforce the triple rinsing requirement, if past practice at the eastern landfill is any indication. When the landfill is not open, according to the applicant's engineer, green boxes will nevertheless be available for dumping. SCREENING Litter fences are planned only "if needed." A green belt 100 feet wide is proposed along the southern and the eastern perimeter of the property. "Appropriate trees and shrubs" are to be planted there, perhaps bamboo or oleander. SEPTAGE DISPOSAL PITS In a letter dated December 1, 1982, under the heading "septage disposal pits", C. G. Mauriello, the engineer who designed the proposed landfill, wrote DER's Wayne Hosid: This item was not shown on the original application but should be included. It has been recognized by the County that disposal of this type waste material should be handled at the new west site and therefore, provisions will be made for the disposal. Basically, a trench type operation similar to the East Site will be provided. The location of the disposal area will be to the south of the Future Holding Pond and north of the Salvage Area. Jackson County's Exhibit No. 6. A drawing prepared by the same person in July of 1982 shows a "septic tank/drainfield" southeast of the location described for the "septage disposal pits." DER's Exhibit No. 1. The permit DER proposes to issue contains numerous conditions, including the following: Construction of septage drying beds will be identical to those permitted under Permit No. 5032-22067 for Jackson East Sanitary Landfill as modified on July 20, 1981. Jackson County's Exhibit No. 9. Permit No. 5032-22067 was not made a part of the record in these proceedings. Incidentally, the word "septage" does not appear in Webster's Third New International Dictionary (1971). A septic tank or any similar system would differ significantly from the systems described by the witnesses who testified at hearing. Septic tanks eventually discharge their contents into surrounding soils, after treatment by anaerobic bacteria. Septic tanks cannot be sealed off by clay or anything else from the earth around them, if they are to function properly. Sooner or later discharge from any septic tank on site could be expected to enter the surficial aquifer and, ultimately, through the groundwater, Grant's Pond. Nothing in the evidence indicates how long it might take for any such effluent to reach the groundwater or leach into Grant Pond; or what its chemical composition might be. MORAL OBJECTION STATED Petitioners' witness Frederick L. Broxton, Sr. testified that, even conceding the absence of a scientific or legal basis for objection to the proposed project, it was immoral for the County Commission to choose a site so close to people's homes, when there was so much land available in that part of the county, where nobody lived. PROPOSED FINDINGS CONSIDERED All parties filed posthearing submissions which have been considered in preparation of the foregoing findings of fact. Respondent Department of Environmental Regulation filed proposed findings which have been adopted, in substance, for the most part. Where proposed findings have not been adopted, it is because they have been deemed immaterial, unsupported-by the weight of the evidence, subsidiary or cummulative.

Recommendation Upon consideration of the foregoing, it is RECOMMENDED: That the Department of Environmental Regulation issue Jackson County a permit for construction of a landfill at the site proposed subject to the conditions (except condition No. 24) stated in the proposed permit, Jackson County's Exhibit No. 9, and subject to the following additional conditions: (a) any leachate generated shall be disposed of off site (b) the whole landfill shall be fenced, and the view from State Road 273 shall be obstructed (c) portable fences shall be placed around any cell in use (d) an additional monitoring well shall be placed between the well southeast of the site and the nearest cell and (e) no septic tank or "septage" disposal pits shall be built on site. DONE and ENTERED this 17th day of August, 1983, in Tallahassee, Florida. ROBERT T. BENTON, II Hearing Officer Division of Administrative Hearings The Oakland Building 2009 Apalachee Parkway Tallahassee, Florida 32301 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 17th day of August, 1983. COPIES FURNISHED: Robert L. Travis, Jr., Esquire 229 East Washington Street Quincy, Florida 32351 J. Paul Griffith, Esquire P. O. Box 207 Marianna, Florida 32446 E. Gary Early, Esquire Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32301 Victoria Tschinkel, Secretary Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32301

Florida Laws (1) 7.05
# 6
WCI COMMUNITIES LIMITED PARTNERSHIP AND GEORGE SANDERS vs WASTE MANAGEMENT, INC., OF FLORIDA, AND DEPARTMENT OF ENVIRONMENTAL PROTECTION, 96-004995 (1996)
Division of Administrative Hearings, Florida Filed:Fort Myers, Florida Oct. 22, 1996 Number: 96-004995 Latest Update: Nov. 04, 1997

The Issue The issue in this case is whether the Florida Department of Environmental Protection (agency or DEP) should issue renewal permit No. SO36-26769E to Waste Management, Inc., of Florida (WMI) for the operation of an existing Class I landfill, the Gulf Coast Sanitary Landfill (GCSL) in Lee County, Florida. In the prehearing stipulation, Petitioners specifically dispute whether WMI has provided reasonable assurances: (1) regarding control of off-site odors emanating from the landfill, (2) that it has an approved closure plan, and (3) that leachate from the landfill will not pollute the air and water.

Findings Of Fact The Parties The applicant, WMI, provides waste management services in the state of Florida. These activities include the hauling, transfer, and recycling of solid waste, as well as the construction and operation of landfills. WMI operates GCSL, the facility that is the subject of the permit application, in Lee County, Florida. WCI is a Delaware limited partnership engaged in the business of developing multiple use communities in Southwest Florida. It owns or holds options to purchase lands adjacent to or near GCSL. WCI is also the developer of a planned unit development known as Gateway, which includes residential and commercial properties in close proximity to the landfill. George Sanders owns, personally or as trustee, lands adjacent to or near GCSL. Lee County is a political subdivision of the state with statutory responsibility to plan for and provide efficient, environmentally acceptable solid waste management. Lee County has contracted with WMI to provide solid waste disposal services to citizens of Lee County at GCSL. DEP is the agency of the state with statutory responsibility to regulate and permit landfills such as GCSL. As stipulated, the Petitioners and Intervenor have standing in this proceeding. The Landfill Facility The GCSL is a Class I landfill located at 11990 State Road 82, East, in Lee County, Florida, east of Interstate I-75. The landfill is in a remote, undeveloped area and has been in operation for over 20 years. The Gateway development is south of the landfill. The GCSL includes three parcels of land that have been used for the disposal of solid waste. Parcel 1 and Parcel 2, each about 40 acres, are unlined Class I landfills that have been closed and no longer receive any solid waste. Neither liners nor leachate collection were required when these parcels were constructed and operated. Parcel 3 is a lined Class I landfill that is approximately 80 acres in size. Approximately 50 acres of Parcel 3 are closed and have received final cover. Approximately 30 acres still are used for the disposal of solid waste. Parcel 3 was constructed in phases. In 1984, the Department issued a permit authorizing the construction of the "east hill" and "west hill"--i.e., two separate disposal areas in Parcel 3 where solid waste was placed above grade. In 1989, the Department issued a permit authorizing the construction of the "valley fill"--i.e., a disposal area where solid waste was used to fill in the valley between the east hill and the west hill. Parcel 3 now consists of a single mound of solid waste. As each phase of Parcel 3 was developed, liners and leachate collection systems were installed in Parcel 3 before the commencement of solid waste disposal operations. The liners and leachate collection systems met or exceeded all of the applicable regulatory requirements that were in effect at the time when the waste disposal areas were permitted. Parcel 3 is a well-designed, well-constructed, and well-operated landfill. William Krumbholz is in charge of landfill compliance and enforcement at DEP's district in Ft. Myers. He reports that the GCSL has an "exceptional operation record," and the GCSL is the "best operated Class I landfill" in the district. The GCSL currently is subject to a DEP operation permit (DEP file number S036-180572), as modified. On March 21, 1995, WMI filed an application for a renewal of its operation permit. On or about September 25, 1996, DEP issued its notice of intent to issue the permit to WMI. If issued, the permit would allow WMI to operate the GCSL for an additional five years. See Rule 62-701.330(2), Florida Administrative Code. The landfill is not yet at design capacity and is not expected to reach that capacity during the next five years. WMI desires to renew the operation permit for the GCSL because WMI wishes to continue to provide solid waste management services to Lee County, consistent with WMI's contractual agreement to do so. WMI also wishes to continue operating the GCSL in order to construct Parcel 3 to its final design grades for closure. The design grades will maximize the site's ability to shed stormwater and thus minimize the production of leachate. Continuing to build Parcel 3 to its design grades is environmentally preferable to closing Parcel 3 at this time in its present configuration. Prior to 1994, the GCSL received approximately 1000 tons of municipal solid waste each day. Approximately 90 per cent of the solid waste was household garbage and about 10 per cent was construction and demolition (C&D) debris. The GCSL did not receive industrial waste. The composition of the waste stream changed in August 1994, when Lee County began to operate a waste-to-energy facility. All of the household garbage generated in the incorporated and unincorporated areas of Lee County is taken to the Lee County waste-to-energy facility, where it is burned, and the ash residue is taken to the GCSL. Currently, the GCSL receives only about 450 tons per day of solid waste, which consists of 65-70 per cent ash residue from the waste-to-energy facility, 30-35 per cent C&D debris, and approximately 2-5 per cent municipal solid waste. DEP would allow WMI to accept more solid waste at the GCSL. However, Lee County has the contractual right with WMI to dictate the types of materials deposited in the GCSL, and it is the county's intent to use the waste-to-energy facility, not the GCSL, for the disposal of putrescible wastes. Lee County is contractually obligated to send all of the county's municipal solid waste to the county's waste-to-energy facility, and the county has a financial incentive to do so. Lee County will send municipal solid waste to the GCSL only if an emergency occurs, but even then the county will try to limit the duration and extent of the County's use of the GCSL. Objectionable Odors Objectionable odors at a landfill typically are related to the facility's operating practices (e.g., the size of the working face) and the presence of putrescible, organic materials that degrade and produce gases when they come in contact with water. In this case, the GCSL's operating practices minimize odors. The majority of the waste now received at the GCSL is ash residue, which contains little or no organic material and thus produces little or no odor. In addition, because the GCSL is a "particularly dry landfill," any putrescible waste is not likely to degrade and cause odors. There have been no violations of the DEP odor rules at the GCSL since 1991 and only two instances, in 1987 and 1991, when off-site odors were verified by DEP's inspector. WCI filed odor complaints in 1995, but the complaints were investigated by DEP and the county and found to be invalid. Petitioners presented no evidence of present or anticipated future odor problems at the GCSL. To the contrary, the DEP inspectors and other witnesses established that there are no objectionable odors at the property boundary of the GCSL. WMI's Approved Closure Plan WMI has a closure plan for the GCSL that was approved by DEP when DEP issued the existing operation permit. In the current application WMI asked DEP for authorization to close the remaining portions of Parcel 3 in the same manner that WMI used when closing the other areas at the GCSL. If WMI's request is not granted, WMI may be required to close Parcel 3 with a geomembrane cover or "cap," in accordance with DEP's new requirements for final closure plans. Although DEP's landfill engineer recommends approval of WMI's request for authorization to use an alternate cover material, no proposed agency action has been taken on that request, and DEP will provide notice and a new point of entry for affected persons when the agency decides whether to grant WMI's request. It is, therefore, inappropriate to address the merits of WMI's "alternate procedure" request in this hearing. As provided in Rule 62-701.310(3), Florida Administrative Code, the agency's decision is action subject to a separate Section 120.57, Florida Statutes, proceeding. WMI's closure plan for the GCSL has little significance in this proceeding. The closure plan is used to calculate the cost of closure, which in turn is used to determine whether WMI has the financial resources to pay the cost of closing the landfill. As part of its approved closure plan, WMI previously demonstrated that it has the financial ability to pay the cost of closing the landfill. WMI could be required to spend an additional $1,000,000 to close the GCSL if WMI's request for approval of the alternate procedure is denied by DEP, but it is undisputed that WMI has the ability to pay this additional cost for closure. WMI must submit a revised closure plan at the time when WMI is prepared to close Parcel 3. DEP then will determine again whether the closure plan for Parcel 3 is adequate and in compliance with the DEP standards in effect at the time. (See paragraphs 38-42, "Specific Conditions," appended to the Intent to Issue, WMI Exhibit 4) Leachate Generation Rate at the GCSL While evaluating WMI's request for approval of an alternate closure plan, DEP noted that the amount of leachate collected in Parcel 3 (i.e., approximately 900,000 gallons per year) is relatively low when compared to the amount of leachate generated at other landfills. DEP was concerned that the low leachate collection rate may indicate a problem in the leachate collection system, so DEP requested WMI to evaluate the leachate generation rate at the GCSL in more detail. WMI subsequently presented additional information to DEP. Leachate is defined by DEP as the liquid that has passed through or emerged from solid waste. Rule 62-701.200(50), Florida Administrative Code. Leachate is generated when rainwater falls on the landfill, sinks in, and percolates through the garbage. One of the primary factors reducing leachate at the GCSL is the use of ash as cover material. The ash, which contains lime, undergoes a reaction and "sets up like mortar." It is extremely hard, cannot be penetrated easily, and has a very low permeability. The permeability of the ash is in the same range as the permeability of the barrier layer that is used in a final cover material. The ash "sets up so well" that the surface water runoff is much greater than with a normal cover material. There is an additional, significant reason why Parcel 3 of the GCSL has a low leachate generation rate. Approximately 50 acres of Parcel 3 already have been closed with a final cover which is designed to shed rainwater and thus minimize the production of leachate. Since most or all of the remaining 30 acres of Parcel 3 have been covered with ash, virtually all of Parcel 3 is covered with low permeability materials that minimize leachate generation. Leachate in Parcel 3 also is minimized because WMI employs good operational practices to limit its generation. WMI uses a small working face and stormwater berms to reduce the size of the area where rainwater may infiltrate. WMI maintains aggressively graded slopes that quickly direct stormwater away from the working face and off of the landfill. WMI's "close-as- you-go" strategy means that the waste at the GCSL is covered before it becomes saturated with rainwater. Specific conditions in the Intent to Issue require that these practices continue. After DEP requested WMI to evaluate the leachate generation rate in Parcel 3, WMI hired a firm to clean the inside of all of the pipes in the leachate collection system in Parcel A television video camera was used to visually inspect the inside of all of the pipes. This work confirmed that "at least 99.9 per cent" of the leachate collection pipes are clean and functional. WMI promptly repaired the leachate collection pipes in two small areas where there was blockage due to a crushed riser and a valve that was left closed. It is highly unlikely that leachate is mounding up inside the landfill or overtopping the perimeter berm that surrounds Parcel 3. The leachate levels inside Parcel 3 generally are and historically have been less than two feet. The leachate levels at the GCSL do not threaten the liner's integrity. The pipes are working, and no seepage has been observed through the side slopes. WMI verified that the liner and leachate collection systems in Parcel 3 were constructed properly and in accordance with the DEP-approved design. Construction Quality Assurance reports were prepared by professional engineers when the liner systems were installed in Parcel 3. In these reports, the engineers certified that each section of the liner was installed, inspected, and tested appropriately to ensure that there are no holes in the liner. Where necessary due to failed tests, the reports reflect that repairs were made before any waste was deposited. The HELP Model In response to DEP's questions about the leachate generation rate at the GCSL, WMI's staff attempted to calculate the rate by using a computer program referred to as the HELP model. WMI initially ran the model with default input values which produced a predicted rate of 7.5 million gallons per year (MGY). WMI questioned the validity of the model results, but submitted the results to DEP because it was the best data then available. Given the discrepancy between the model results and the actual field data, WMI hired a nationally recognized consulting firm, Post, Buckley, Shuh, and Jernigan (Post Buckley), to perform a more refined analysis using the HELP model. The HELP model is used to calculate water balances at landfills. The model calculates the amount of water that will move across, into, and through landfills under different conditions. The model is a useful tool for comparing the performance of two alternate landfill designs, but it has limited value when used to predict the actual performance of an operating landfill. The model can be run with default values or with site- specific information. However, the model is designed to be conservative and overpredict the actual leachate generated. In its application of the model, Post Buckley adjusted several input parameters to reflect the actual conditions at the GCSL. Most significantly, Post Buckley adjusted the input parameters for the moisture content of the waste in the GCSL and for the U.S. Soil Conservation Service's (SCS) Curve Number. These adjustments were "reasonable and well-considered." The HELP model assumes that the solid waste in the landfill is at field capacity--i.e., saturated with rainwater. However, it is well established that the solid waste in landfills is not saturated. At the GCSL, the ash cover material and WMI's "close-as-you-go" practices would reduce the likelihood that the waste would be saturated. Indeed, Post Buckley's on-site inspections revealed that the GCSL is a "particularly dry landfill." The users' manual for the HELP model indicates that the Curve Number should be adjusted in certain cases to account for increased stormwater runoff that will occur during short duration, high intensity storms. The default value is used in areas where the rainfall occurs over a 24-hour period. In this case, Post Buckley concluded that the SCS Curve Number should be adjusted because the GCSL receives about 54 inches of rainfall annually during approximately 90 short duration, high intensity storms. Accordingly, Post Buckley adjusted the model's input parameters to increase runoff by 23 per cent of precipitation. Post Buckley's adjustment to the Curve Number and runoff value is consistent with the findings contained in a report by Benson and Pliska, which in the opinion of WMI's expert is the best study performed to-date on the calibration of the HELP model and which is similar or equivalent to the Peyton and Shroeder calibration relied on by Petitioner's expert. Post Buckley ran the HELP model with three different sets of conditions. In one run, Post Buckley adjusted the input parameter for the moisture content of the waste and calculated an leachate generation rate of 100,000 gallons per year. In the second run, Post Buckley adjusted the Curve Number and calculated a rate of 1.3 MGY. In the third run, Post Buckley adjusted both the Curve Number and the moisture content and calculated a rate of zero gallons per year. Given Post Buckley's landfill experience and its knowledge about the operational practices at the GCSL, the ash used as cover material, the climatological conditions in southwest Florida, and the limitations of the HELP model, Post Buckley concluded that 1.3 MGY is a reasonable estimate or approximation of the actual leachate generation rule for Parcel 3 of the GCSL. The leachate generation rate for the GCSL also has been evaluated by other witnesses. Mr. Joe Fluet calculated that approximately 960,000 gallons to 1,030,000 gallons of leachate are generated annually in Parcel 3. Mr. Fluet is a nationally recognized landfill expert who was selected by DEP to serve as the chairman of a technical advisory group that helped DEP develop the current DEP landfill rules. Mr. Fluet's conclusion is consistent with the leachate collection data for the GCSL, the Post Buckley analysis, the measurements of leachate in the sumps at the landfill, and his own personal observations of the landfill and WMI's operational practices. It is unlikely that leachate generation in Parcel 3 is as high as 2.0 MGY. This rate would produce about three feet of leachate on the liner. WMI's field data show that the "head" (depth) of leachate over the liner in Parcel 3 generally is less than two feet. By comparison, Post Buckley's estimated rate of 1.3 MGY would produce about 1.8 to 2.5 feet of leachate over the liner, which is more consistent with WMI's field data. Petitioners also attempted to calculate leachate generation for Parcel 3 by running the HELP model. Using default values, Petitioners calculated a rate of approximately 7 MGY. Petitioners also ran the model after adjusting several input parameters. Among other things, Petitioners decreased the slope from 20 per cent to 4 per cent, and Petitioners increased runoff by 30 per cent, as compared to the default value. With these adjustments, Petitioners calculated a rate of 4.2 MGY. The various experts' calculations with the HELP model produced leachate generation rates of 0 to 7.5 MGY. The magnitude of the range reflects the limitations of the model and underscores the need for sound professional judgment when adjusting the input parameters. In this case, the most persuasive and credible testimony was presented by Mr. Bonaparte, a recognized landfill expert who is assisting EPA with its efforts to calibrate the HELP model, and Mr. Fluet. Consistent with their testimony, the greater weight of the evidence indicates that the leachate generation rate for Parcel 3 of the GCSL is most likely to range between 960,000 gallons and 1.3 MGY. The Petitioners' calculated range of 4.2 to 7.0 MGY is not credible. Even the low end of Petitioners' range is more than twice as much (2.0 MGY) estimated by any other witness. In addition, Petitioners' entire range of calculated leachate generation rates is inconsistent with the other evidence of record, as described below. Petitioners' leachate generation calculations were prepared by Marcus Pugh, who has not visited the GCSL nor performed any site specific field work concerning the GCSL. Mr. Pugh had never used the HELP model before to predict the generation rate of an operating landfill, but rather has used it as others commonly do, to size and design facilities. Although Mr. Pugh initially criticized Post Buckley's calculation of the slopes at the GCSL, he subsequently conceded that the HELP model results obtained by Post Buckley are independent of slopes. Missing Leachate? Based on their HELP model calculations that Parcel 3 actually is generating 4.2 to 7.0 MGY of leachate and since WMI is collecting 900,000 gallons per year, Petitioners speculate that there is "unaccounted for" or "missing" leachate (i.e., 3.3 to 6.1 MGY), which must be leaking through the GCSL's liner or seeping out of the sides of the GCSL, or both. Petitioners' allegations, however, are not supported by the evidence of record, which favors a finding that the facility is simply not generating the vast amounts of leachate predicted by Petitioners. The liner and leachate collection systems under Parcel 3 were "state-of-the-art" and in full compliance with all of the applicable DEP rules at the time of their installation. These systems were installed properly, in accordance with standard quality assurance procedures, as certified by a professional engineer. Mr. Bill Krumbholz, the DEP inspector, personally witnessed the installation of portions of the liner. Mr. Fluet also was personally involved with the certification for the landfill. Even the Petitioners' witness, Mr. Pugh, conceded that he had no concerns about or disagreements with the certifications for Parcel 3. Thus, there is no reason to believe that the liner or leachate collection systems were damaged at the time when they were installed. Petitioners theorize that the liner in the GCSL may have been damaged after it was installed, but Mr. Pugh readily admits that this contention is based on "pure speculation" based on the notion that a minimum wage laborer on heavy equipment might damage the liner. Petitioners presented no direct or credible evidence to support their contention. After the completion of construction and the commencement of operations large scale breaches of a landfill liner are not a common or even occasional occurrence. As part of its standard management practices, WMI places a four-to six-foot thick "fluff" layer of select household garbage over any new landfill liner system. The fluff layer is used to protect the liner and ensure that the liner is not accidentally damaged. This WMI policy was followed when the liners were installed in Parcel 3 of the GCSL. As a result, there is no reason to believe that the liner in Parcel 3 was damaged after installation. There is no circumstantial evidence to support Petitioners' claims. Since 1976, WMI has monitored the water quality at the GCSL in accordance with a DEP-approved ground water monitoring plan, which is designed to detect any significant leakage from the landfill. No groundwater quality violations have been recorded at the GCSL. However, if one were to assume that Petitioners' theory is correct, then one also would have to assume that over the last five years approximately 16.5 to 30.5 million gallons of leachate have leaked through the liner in Parcel 3 and entered the adjacent groundwater, but somehow have evaded detection in the monitoring wells. Respondents' witness Mr. Fluet calculated that a maximum of 56,000 gallons per year of leachate might possibly leak through the liner system in Parcel 3. His calculation conservatively assumed that there may be as many as ten 0.1 cm2 holes in each acre of the liner in Parcel 3. Petitioners have offered no credible theory that would produce a leakage rate of several million gallons per year. To create a leakage rate of even one million gallons per year, there would have to be at least ten and perhaps dozens of large holes in the liner. Each of the holes would need to be 10-feet long and several inches wide. However, large holes or breaches in a liner system normally are identified and repaired during the installation and quality assurance process. There is no evidence of poor quality assurance or poor operational practices at the GCSL to support Petitioners' speculation. WMI witness, Rudolph Bonaparte, has never encountered a situation where there was evidence of the kinds of "major flaws" that would be necessary to generate the leakage rates hypothesized by Petitioners. Mr. Fluet also was unable to identify any plausible scenario that would support Petitioners' theory. Petitioners' witness, Mr. Pugh, conceded that he has never worked on a lined landfill where 4-to 7-MGY of leachate leaked through the liner. Petitioners questioned whether settlement would affect the liner or leachate collection systems in Parcel 3. Since ash is denser than MSW, the disposal of ash in the GCSL may affect the settlement of the subsurface soils to some extent, but there will be no shearing or failure of the liner due to any differential settlement. The amount of differential settlement that may occur would be extremely small. Settlement could create a 1000 gallon "puddle" of leachate in the valley fill portion of Parcel 3, or the slope in some portions of the leachate collection system may flatten, but these are relatively minor impacts. Conversely, increased settlement in the base of Parcel 3 would help improve the overall drainage of the east hill and the west hill areas. Petitioners contend that the "unaccounted for" leachate may be escaping from the GCSL through side slope seepage, but this theory is not supported by any direct or credible evidence. It was undisputed that any significant amount of side slope seepage from a landfill is readily apparent. Leachate seeps typically "look ugly and smell bad." When seeps occur, the soil is discolored, the vegetation is killed, and there is sheering, gullying, rilling, and other signs of erosion. There has been no side slope seepage from Parcel 3, as established by numerous site visits and personal observations of the DEP staff, county representatives, and other witnesses. Petitioners' witnesses have not observed any side slope seepage at the GCSL. Although Petitioners noted that there are discolored areas on Parcel 3, those are the areas where WMI recently excavated into the sides of the GCSL to complete the repairs to the leachate collection system. The leachate would have to mound up inside the landfill before there would be the amount of seepage predicted by Petitioners. This mounding would create tremendous head pressure in the cleanout pipes. However, no such pressure has been found in the cleanout pipes at the GCSL. Petitioners suggest that leachate may be seeping from the toe of Parcel 3 into the drainage ditch that leads to the stormwater retention pond. Again, the evidence does not support this hypothesis. The liner in Parcel 3 goes over the top of a berm which is built completely around the perimeter of Parcel 3. The berm and the liner rise 3 feet above the base of the leachate collection system. Leachate could not seep from the toe of Parcel 3 unless the leachate level rose above the functioning leachate collection pipes, avoided being drained away by the leachate collection system, and then flowed uphill over the berm. Even if the leachate went up and over the berm, the leachate would enter the ditch from the top of the berm, where it would be readily visible to site inspectors as side slope seepage. No such seepage has been observed at the GCSL, even when people were looking for it. Ground Water Monitoring at GCSL There are three aquifers underlying the GCSL: (a) the surficial water table aquifer; (b) a sandstone aquifer; and (c) the Hawthorne formation. Each of the aquifers is separated by a low-permeability, confining layer of varying thickness. The confining layer below the surficial water table aquifer is between 40 and 80 feet in thickness. Based on field data and reports of other scientists, including Petitioner's expert, Thomas Missimer, hydrogeologist Martin Sara derived a vertical flow rate of approximately 0.1 feet per year. At this rate, ground water would take approximately 40 to 50 years to move vertically downward through the confining layer. Petitioners contend that the GCSL is affecting the surficial water table aquifer. The surficial water table aquifer contains fresh water and is used extensively as a source of potable water in Lee County, but not in the area of the GCSL. Ground water samples collected from the surficial water table aquifer on Petitioners' property had average total dissolved solids (TDS) concentrations of approximately 500 mg/l. Similar TDS values have been reported for the surficial water table aquifer in the area surrounding the GCSL. In general, the regional groundwater flow in the vicinity of the GCSL is to the northwest. There is a northwesterly flow from WCI's property onto the GCSL that is consistent year after year and during all seasons. Extensive historical monitoring data for the site confirm that the ground- water flow under the GCSL also primarily is to the northwest, but with some likely localized flow to the west, at least during special events such as landfill dewatering in 1982. The only significant exception to this trend occurs in the area of the stormwater retention pond, where the groundwater usually flows radially outward in all directions. Groundwater monitoring began at the GCSL in 1976, when the facility opened. The groundwater monitoring system at the GCSL has complied with or exceeded the DEP requirements at all times since 1976. Currently there are seven groundwater monitoring wells, each approximately 30-feet deep, in the surficial water table aquifer at the GCSL. These wells surround the perimeter of the GCSL. At the final hearing, Lee County attempted to address concerns about the groundwater monitoring program for the GCSL by agreeing to pay for the redevelopment and installation of additional groundwater monitoring wells. Lee County and WMI stipulated that two existing groundwater monitoring wells (wells 14-S and 18-S) will be redeveloped and a new ground water monitoring well will be installed in the surficial aquifer between existing wells 20-S and 21-S. The two redeveloped wells and the new well will be sampled on a semiannual basis for chloride and the field parameters of pH, specific conductivity, field turbidity, and temperature for the life of the permit. The monitoring may be discontinued if the GCSL closes. The monitoring well network at the GCSL is adequate to monitor the type of area-wide plume that might originate from the GCSL. The evidence demonstrates that any holes in the liner in Parcel 3 are likely to be small and spread widely across the entire site. Although the plume from a single hole may be narrow and elongated, the plume from the entire landfill would be approximately 2400-feet wide. Under most if not all plausible scenarios, leachate leaking out of the liner beneath Parcel 3 will move with the regional groundwater flow toward the monitoring wells located along the western and northern perimeters of Parcel 3. Potential leakage from Parcel 3 will be pushed toward these monitoring wells by the regional groundwater flow and the radial flow from the retention pond. DEP has concluded and the evidence confirms that WMI's groundwater monitoring plan, as modified by Lee County's stipulation, is protective of the environment and satisfies all applicable DEP requirements. Under the facts of this case, it is not necessary to add any additional monitoring wells or otherwise modify the groundwater monitoring plan, except as stipulated by Lee County. It was undisputed that the leachate generated at the GCSL is and always has been "very weak" in comparison to the leachate from other landfills. The leachate contains relatively few contaminants and has low contaminant concentrations. The GCSL's leachate has few volatile or hazardous constituents. It also was undisputed that there have been no violations of DEP groundwater standards detected in any of the groundwater monitoring wells at the GCSL. There have been one- time exceedances or anomalies, but such events do not constitute a violation of the DEP standards. Chloride In the Ground Water Chloride is present in the GCSL's leachate. Over the last ten years, the average chloride concentration in the leachate has been 1021 parts per million (ppm), and the highest concentration has been 2070 ppm. The Department has no primary (i.e., health-based) groundwater quality standard for chloride. The only groundwater quality standard for chloride is a secondary standard of 250 ppm. Secondary standards are intended to address concerns about odor, taste, and aesthetics. If chloride concentrations become too high in drinking water, people simply stop drinking the water before there are any health implications, because the water is too salty. WMI evaluated Petitioners' claim that chloride leaking from Parcel 3 may affect the water quality on Petitioners' property. First, WMI performed a mass balance calculation and concluded that the maximum rate of leakage from Parcel 3 would increase the chloride concentrations beneath the landfill by only 7 to 14 ppm. WMI then used a dispersion model and determined that the maximum leakage rate would increase the chloride concentrations in the groundwater only 3.5 ppm at a distance of 100 feet from the landfill. This increase in chloride could not be distinguished from the existing background concentrations in the groundwater. WMI also analyzed the groundwater data to determine whether the GCSL is causing an increase in the chloride concentration measured in monitoring well 21-S. WMI plotted the data on trilinear diagrams, consistent with techniques that have been commonly used by hydrogeologists for many years. The trilinear diagrams clearly show that the increased levels of chloride in monitoring well 21-S are not caused by the leachate from the GCSL. The trilinear diagrams do not identify the source of the chloride found in monitoring well 21-S. However, it appears that the chloride originated from a source of "brackish" water. There are several potential sources of the chloride in well 21-S. In the past, there was an irrigation well on WCI's property that pumped water with high chloride concentrations and created a large plume of chloride-enriched groundwater on WCI's property. Historic groundwater monitoring data indicate that the chloride plume was approximately 6000-feet wide and flowing towards the GCSL. This large plume may have reached the GCSL and affected the water quality in well 21-S. There also were irrigation wells located on the site of the GCSL that may have contributed to the chloride concentrations in well 21-S. Historic water quality data indicate that these irrigation wells produced elevated chloride concentrations in the groundwater at the GCSL. Petitioners' Stormwater Data On May 12, 1997, Petitioners collected samples of the water in the stormwater retention pond at the GCSL. Petitioners also collected a sample of the water in a concrete culvert that carries stormwater runoff from Parcel 3 to the retention pond. The samples were collected during a severe rainstorm when it was "raining cats and dogs." Based on these samples, Petitioners speculate that the "unaccounted for" leachate is entering the stormwater retention pond via a perimeter drainage ditch and the concrete culvert. This speculation is not supported by the evidence. Leachate generated in the GCSL has an ammonia-nitrogen concentration in the range of 700 to 800 ppm. The stormwater collected from the culvert pipe had an ammonia-nitrogen concentration of 1.7 ppm. The disparity between these two values belies the possibility that the stormwater in the ditch contains leachate from the GCSL. Although Petitioners contend that ammonia-nitrogen in the leachate could be oxidized while flowing in the ditch, it would be virtually impossible for the oxidation of stormwater in the ditch to reduce ammonia-nitrogen levels from 700 or 800 to 1.7 ppm. WMI's extensive experience with leachate has demonstrated that it is "very difficult" to treat and reduce the ammonia-nitrogen levels in the leachate through volatization and aeration. The water collected by Petitioners in the culvert had a chloride concentration of 2900 ppm, which significantly exceeds the highest chloride level ever found in the GCSL's leachate (2070 ppm). The pH in Petitioners' sample (8.87) also was notably higher than the pH found in the landfill's leachate (e.g., 7.20 in WCI Exhibit 14). The disparity between the values found in Petitioners' sample and the values found in the landfill's leachate suggests that the Petitioners' sample is not representative of leachate from Parcel 3. Stormwater flowing over the ash residue on the top of Parcel 3 is the most probable source of the elevated chloride and high pH found in Petitioners' sample. The ash at the GCSL has elevated chloride concentrations. It also has high pH, due to the addition of lime at the waste-to-energy facility. Both WMI's witness, Mr. DeBattista, and Petitioner's witness, Dr. Missimer, saw stormwater washing over the ash and entering the stormwater conveyance system that led to the culvert where Petitioners' sample was collected while Petitioners were at the GCSL collecting samples. Petitioners noted that the water in the stormwater ditch was discolored. However, Petitioners' photograph of the site (WCI Ex. 10) reveals that the water in the ditch is the same color as the mulch (compost) that is stockpiled on Parcel 3 and used for intermediate cover. During Petitioners' site visit, stormwater was flowing over the mulch on Parcel 3 before entering the stormwater ditch. Dr. Missimer conceded that the color of the water in the ditch could be caused in part by the mulch and stormwater runoff. Dr. Missimer raised a number of other issues about the GCSL. He claimed that the sediments in the stormwater retention pond have elevated metals concentrations, but he does not contend that the metals concentrations in the sediments violate any applicable DEP standard. He also does not contend that the metals are leaving the site. Dr. Missimer noted that there was "foam" in a stormwater ditch. However, Petitioners presented no competent evidence about the source of the foam or its chemical composition. Finally, Dr. Missimer heard gas escaping from a cleanout pipe at a different location on the landfill, but there were no odors associated with it. There is no evidence to demonstrate that gas in the riser pipes is a cause for concern. In response to Petitioners' chloride data, WMI is taking steps to manage its stormwater better. WMI has placed intermediate cover over 10 acres of exposed ash, thus reducing the potential for the rainwater to come in contact with the ash and convey chloride into the stormwater management system. WMI also is determining whether it should remove a culvert that served as a conduit for the runoff from Parcel 3 to the retention pond. It was undisputed that the GCSL is an "existing installation," as that term is defined by DEP. Parcels 1 and 2 of the GCSL were unlined and were reasonably expected to release contaminants into the ground water on or before July 1, 1982. The GCSL has operated consistently with the applicable DEP statutes and rules relating to groundwater discharges in effect during the time of its operation. Since the GCSL is an existing installation, WMI is entitled to a zone of discharge that extends to WMI's property boundary. The groundwater within the zone of discharge is not required to meet the DEP water quality standards. Modifications to Conditions of Draft Permit and Summary of Findings In addition to the modification to the ground water monitoring plan described in paragraph 59 above, WMI has requested and DEP has agreed to make minor changes to the language in Specific Conditions 10, 19, 32, 38, and 45(e) of the draft permit. These changes relate respectively to gas monitoring, daily cover, acceptance of C & D debris, data to support the alternate procedure request for final cover, and the zone of discharge. These modifications are reasonable, supported by the evidence, and consistent with DEP rules. Moreover, WMI has provided reasonable assurance of compliance with all applicable DEP rules for continued operation of the GCSL. As amply demonstrated in this proceeding, highly competent professionals can disagree. Petitioners' witness Dr. Missimer, has had years of experience in studying the hydrogeology of Lee County and the area of the landfill and Gateway. His data collected during the development of Regional Impact Studies for Gateway have been relied on by DEP and others. His conclusions, however, regarding enormous amounts of leachate escaping the landfill are simply not supported by the results of years of monitoring the landfill's operations. With continued monitoring, the applicant should be permitted to continue to operate.

Recommendation Based on the foregoing, it is hereby RECOMMENDED: That the Department of Environmental Protection enter a Final Order approving Waste Management, Inc., of Florida's application for a permit renewal to continue to operate the Gulf Coast Sanitary Landfill, subject to the parties' stipulation regarding additional groundwater monitoring wells and subject to the revisions to the draft permit that are described herein. DONE AND ENTERED this 17th day of September, 1997, in Tallahassee, Leon County, Florida. MARY CLARK Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (904) 488-9675 SUNCOM 278-9675 Fax Filing (904) 921-6847 Filed with the Clerk of the Division of Administrative Hearings this 17th day of September, 1997. COPIES FURNISHED: W. Douglas Beason, Esquire Department of Environmental Protection Mail Station 35 3900 Commonwealth Boulevard Tallahassee, Florida 32399-3000 William D. Preston, Esquire Michael P. Petrovich, Esquire Post Office Box 6526 Tallahassee, Florida 32314-6526 Neale Montgomery, Esquire Pavese Garner Haverfield Dalton Harrison & Jensen Post Office Box 1507 Fort Myers, Florida 33902-1507 David S. Dee, Esquire John T. LaVia, III, Esquire Landers & Parsons, P.A. 310 West College Avenue Tallahassee, Florida 32301 David M. Owen, Esquire Lee County Assistant Attorney Post Office Box 398 Fort Myers, Florida 33902 Kathy Carter, Agency Clerk Department of Environmental Protection Mail Station 35 3900 Commonwealth Boulevard Tallahassee, Florida 32399-3000 Perry Odom, General Counsel Department of Environmental Protection Mail Station 35 3900 Commonwealth Boulevard Tallahassee, Florida 32399-3000

Florida Laws (3) 120.569120.577.20 Florida Administrative Code (9) 62-4.07062-522.20062-522.30062-550.32062-701.20062-701.22062-701.31062-701.33062-701.400
# 7
H. A. BRAY AND BRAY LANDFILL vs. DEPARTMENT OF ENVIRONMENTAL REGULATION, 77-001225 (1977)
Division of Administrative Hearings, Florida Number: 77-001225 Latest Update: Jun. 12, 1978

Findings Of Fact Bray is the owner of and lives on property located at 5550 Pine Hills Road, Orlando, Florida. He operates a solid waste disposal site on this property. By application dated June 6, 1977, and revised June 13, 1977, Bray applied to DER for an Operation Permit for a Solid Waste Resource Recovery and Management Facility pursuant to Chapter 17-7, Florida Administrative Code. At that time, Bray held a Temporary Operating Permit which had been issued on February 4, 1976. In Bray's application materials, which included the application dated June 6, 1977 and revised June 13, 1977, and letters from Bray to DER dated June 8, 1977, and June 30, 1977, Bray proposed an alternate procedure pursuant to Rule 17-7.05(3) (q) for operation of his landfill which procedure would permit Bray to cover, spread and compact the fill material in a manner different from that specifically set forth in Rule 17-7.05, Florida Administrative Code. DER did not consider Bray's request for an alternate procedure, but responded by letter stating that Bray must apply for a variance pursuant to Rule 17-1.25, Florida Administrative Code, and recommended denial of Bray's application for a permit for the following reasons: No provisions were made for daily cover. Refuse was not spread in two (2) foot layers. No intermediate cover was applied within one week of cell completion. No cover materials were stockpiled. During the testimony presented, DER acknowledged that the fourth reason given for denial of the permits-no cover materials were stockpiled-is not a requirement of the Rules and is not a valid reason for denial of a Permit Application. This Hearing Examiner agrees and finds that Chapter 17-7, Florida Administrative Code only requires that the site have an adequate quantity of acceptable earth cover available. See Rule 17-7.05(1) (c)3, Florida Administrative Code. Bray presented adequate testimony demonstrating that sufficient acceptable cover material was available at his site. Bray conceded at the hearing that it was still his intention to operate the landfill site without daily cover, intermediate cover and compaction as required by DER. Bray's principal contention is that compaction and daily cover are not necessary for a landfill which accepts only non-putrescible waste. Bray urges that the attenuation of leachate, prevention of fires, prevention of settling and ponding of water which provide breeding grounds for mosquitoes and other vectors and reducing the area of land needed to dispose of solid waste are justifications for the requirements of compaction and daily cover of solid waste which may not be present at non-putrescible landfills. Bray concludes that the absence of these problems at his landfill obviates the necessity for the application of the provisions of the rule requiring daily and intermediate cover and compaction. However, Bray has not met his burden of establishing that non- putrescible waste does not require compaction and daily cover. There are multiple reasons for the requirement of compaction and daily cover of solid waste. When solid-waste is spread to approximately a 2-foot thickness and then compacted to a 1-foot thickness, followed by the daily application of a cover of 6 inches of compacted earth, a layering effect is created which helps attenuate, if not prevent, the formation of leachate from both putrescibles and non-putrescibles which may be contained in the waste. Leachate is a liquid that has percolated through solid waste, usually originating as rain, which contains dissolved or suspended material that may contaminate ground water supply. Leachate occurs in landfills that accept putrescible material as well as landfills that accept only non-putrescibles. Compaction and daily cover consequently slow, if not prevent, the contamination of ground water supplies. The formation of leachate containing various chemicals which would have adverse affects on the human body is expected when water percolates through strictly non-putrescible waste Commonly discarded non-putrescibles such as metals, plastics, ashes, rocks and dirt from an industrial site, miscellaneous organics, heavy metal solutions and sludges, organic solvents and oils, caustic and acid solutions, inorganic chemical solutions and sludges, pesticides and fungicide wastes, paint and ink wastes, asphalt roofing and paving material, explosive waste and radioactive waste are probable sources of leachate contamination. The process of leachate formation from non-putrescibles involve the physical and chemical reaction of compounds in the non-putrescibles with the water percolating through them. The contamination of ground water supplies by leachate from either a putrescible or non-putrescible site constitutes a threat to the health, safety and welfare of the public as many of the contaminates are toxic and have adverse affects on the human body. In particular, leachate from non-putrescibles may contain toxic metal solutions, carcinogenic pesticides and other organic compounds as well as toxic inorganic compounds. Another reason for compacting and daily cover is the prevention of fires. Exposed, non-putrescible wastes can ignite and result in serious dump fires. Daily cover, if applied, serves as a fire break and eliminates the fire hazard created by exposed combustible non-putrescible wastes. Furthermore, compaction and daily cover prevent settling and ponding which would contribute to both downward flow' of water through the solid waste and the creation of breeding grounds for mosquitoes and other vectors. Compaction and daily cover contribute to the general aesthetics of the site and reduce the area of land needed to dispose of solid waste Bray has attempted to show that his method of operation effectively screens putrescible wastes from the site and otherwise adequately protects the public health, safety and welfare. However, the evidence which belies the assertion, shows that putrescibles have, in fact, been dumped at Bray Landfill. Coliform readings obtained in samples from monitoring wells at the Bray property can reasonably be attributed to putrescible matter on site. Birds have been observed feeding on site and these would not be feeding on non-putrescible wastes. The policing techniques are largely ineffectual. The site contains unopened trash bags with undisclosed contents as well as observed putrescible garbage. Trucks enter the site and dump their loads without inspection. Two major dump fires have occurred at the Bray Landfill during the past four years.

# 8
ANGELO'S AGGREGATE MATERIALS, LTD., D/B/A ANGELO'S RECYCLED MATERIALS vs DEPARTMENT OF ENVIRONMENTAL PROTECTION, 09-001543 (2009)
Division of Administrative Hearings, Florida Filed:Temple Terrace, Florida Mar. 23, 2009 Number: 09-001543 Latest Update: Sep. 16, 2013

The Issue The issue to be determined in this proceeding is whether Angelo's Aggregate Materials, LTD ("Angelo's") is entitled to permits from the Department of Environmental Protection ("Department") to construct and operate a Class I landfill in Pasco County.

Findings Of Fact The Parties The Department is the state agency with the power and duty under chapter 403, Florida Statutes, to review and take action on applications for permits to construct and operate solid waste management facilities, including landfills. Angelo's is a Florida limited partnership authorized to conduct business under the name Angelo's Recycled Materials. Angelo's filed the permit applications which are the subject of this proceeding. Angelo's owns the property on which the proposed landfill would be constructed and operated. Crystal Springs Preserve is a Florida corporation that owns approximately 525 acres in Pasco County, Florida on which is located Crystal Springs, a second magnitude spring that flows into the Hillsborough River. The property is about 10 miles south of Angelo's proposed landfill site. Crystal Springs Preserve's primary business activities are selling spring water for bottling for human consumption and operating an environmental education center that focuses on Crystal Springs and the Hillsborough River. Crystal Springs Preserve hosts approximately 50,000 visitors annually at the environmental education center. Crystal Springs Preserve holds a water use permit which authorizes it to withdraw up to 756,893 gallons of water per day (annual average) from Crystal Springs for production of bottled water. The water is transported about three miles to a water bottling facility operated by Nestlé. Nestlé is a private corporation engaged in the business of bottling and selling spring water. Nestlé purchases spring water from Crystal Springs Preserve. Nestlé's "Zephyrhills Spring Water" brand is composed of approximately 90 percent Crystal Springs water and 10 percent Madison Blue Spring water. The only water treatment applied by Nestlé is filtering the water to remove gross contaminants and passing the water through ultraviolet light or ozone to kill any potential bacteria before bottling. Nestlé has established "norms" for its spring water and would not be able to use the water from Crystal Springs if its chemical composition varied significantly from the norms. WRB is a Florida corporation that owns 1,866 acres in Pasco County known as Boarshead Ranch. Boarshead Ranch is adjacent to the east and south of Angelo’s property and is approximately 3,000 feet from the proposed landfill at its closest point. Boarshead Ranch is currently being used for agricultural, recreational, residential, and conservation purposes, including wildlife management. Nearly all of Boarshead Ranch is subject to a conservation easement held by the Southwest Florida Water Management District (SWFWMD). The conservation easement allows WRB to continue agricultural operations. Numerous agricultural water wells are located on Boarshead Ranch. WRB holds a water use permit which authorizes the withdrawal of 820,000 gallons per day (gpd) (annual average) for a number of uses, including production of agricultural products, animal drinking water, and personal use. The City of Zephyrhills is located in Pasco County and is a municipal corporation. Zephyrhills' water service area encompasses Zephyrhills and portions of Pasco County. Zephyrhills owns, operates, and maintains a water distribution and transmission system of pipes, pump stations, and storage tanks within the City and its service area. Zephyrhills holds a water use permit which authorizes nine potable water supply wells with a combined withdrawal of 2.9 million gallons per day ("mgd") (annual average). Zephyrhills has two new production wells located about two miles southeast of the proposed landfill. The City of Tampa owns and operates the David L. Tippin Water Treatment Plant, the Hillsborough River dam, and the City of Tampa reservoir on the Hillsborough River. Flows from Crystal Springs make up a substantial amount of the water in the Hillsborough River, especially during drought conditions when the spring flow accounts for about 50 percent of the flow. The City of Tampa holds a water use permit which authorizes the withdrawal 82 mgd (annual average). The City of Tampa owns, operates, and maintains a water distribution and transmission system of pipes, pump stations, and storage tanks within the City and its service area. Carl Roth, Marvin Hall, and Louis Potenziano own property in Pasco County near the proposed landfill site. Roth's property is 3.5 miles west of the proposed landfill site; Hall's property is located approximately one mile southwest of the site; and Potenziano's property is 1.6 miles to the south/southeast of the site. Roth, Hall, and Potenziano have water wells on their properties. The record does not establish that John Floyd owns property in the area. Floyd and Associates, Inc., owns about 55 acres in the area and holds a water use permit authorizing the withdrawal of water for agricultural uses. The Stipulated Agreement On March 1, 2010, Angelo's filed with DOAH a "Stipulated Agreement" signed by all parties. The Stipulated Agreement states in relevant part: Angelo's shall provide a final design, revised complete permit application and site investigation (referred to jointly as "Revised Submittal") to DEP with copies to all Parties and DEP shall make a completeness determination prior to this proceeding being set for a new final hearing date. * * * Angelo's shall not revise its permit application or supporting information beyond the Revised Submittal prior to or during the final hearing except in response to issues raised by DEP. It appears that the Aligned Parties did not remember the Stipulated Agreement until the commencement of the final hearing. They did not object before then to any of the evidence which Angelo's had prepared or intended to prepare for hearing on the basis that it violated the terms of the Stipulated Agreement. At the commencement of the hearing, Nestlé argued that the Stipulated Agreement barred Angelo's from revising its application or presenting new support for its project at the final hearing. The Stipulated Agreement is unusual and the necessity for Angelo's to make any concessions to the Aligned Parties in order to obtain their agreement to an abeyance was not explained. Allowing an applicant time to amend a permit application is usually good cause for an abeyance. The Stipulated Agreement allowed Angelo's to continue to respond to issues raised by the Department. Angelo's contends that all of the evidence it presented at the final hearing qualifies as a response to issues raised by the Department. The Proposed Landfill Angelo's applied to construct and operate a Class I landfill with associated buildings and leachate holding tanks. Application No. 22913-001-SC/01 corresponds to the construction permit application and Application No. 22913-001-SO/01 corresponds to the operation permit application. A Class I landfill is a landfill authorized to receive Class I waste, which is solid waste from households and businesses. Class I waste does not include hazardous waste, yard waste, or construction and demolition debris. See Fla. Admin. Code R. 62-701.200(13) and (14). The proposed landfill would be approximately 30 acres in size. It is part of a 1,020-acre parcel owned by Angelo's that is west of County Road 35 and south of Enterprise Road in Pasco County. The site is currently leased for cattle grazing and hay and sod production. There are also spray fields, orange groves, and a pond on the 1,020-acre parcel. Angelo's would construct the landfill by first clearing the 30-acre site. It would then excavate and fill to create the design subgrade or floor of the landfill with slopes required for the liner system. The subgrade would be compacted with a vibratory roller. After the subgrade compaction, the grouting plan would be implemented. The grouting plan calls for grouting 39 subsurface locations on the site that have voids, loose soils, or other unstable characteristics. A liner system would be installed after the grouting is completed and the subgrade is finished. From the bottom upward, the liner system would begin with a 12-inch layer of clay, over which a reinforcement geotextile would be installed, followed by another 12-inch layer of clay. This reinforcement geotextile is in addition to the double liner system required by Department rule. Its purpose is to maintain the integrity of the liner system in the event that a sinkhole occurs beneath the landfill. Installed above the reinforcement geotextile and clay layer would be a 60-millimeter high-density polyethylene ("HDPE") geomembrane, followed by a HDPE drainage net. These last two components comprise the secondary leachate collection system. Above the HDPE drainage net would be the primary leachate collection system, consisting of another 60-millimeter HDPE geomembrane and HDPE drainage net, followed by a geotextile, then a 12-inch sand layer for drainage, and an additional 12-inch sand layer for protection against puncture of the HDPE liner. A 48-inch layer of selected waste, free of items that could puncture the liner, would be the first waste placed over the primary leachate collection system. "Leachate" is "liquid that has passed through or merged from solid waste and may contain soluble, suspended, or miscible materials." See Fla. Admin. Code R. 62-701.200(66). Leachate would be collected through a system of perforated pipes that empty into a sloping trench with a leachate collection pipe. The leachate collection pipe would run down the center of the landfill to the lowest point where a pump would send the collected leachate through a force main 0.25 miles to storage tanks. Five above-ground storage tanks would be installed on a concrete pad with capacity to store 90,000 gallons of leachate. The stored leachate would be periodically transported to an offsite location, such as a wastewater treatment facility, for disposal. Sinkholes and Karst The terms "sinkhole" and "sinkhole activity" are not defined by Department rule, but the statutory definitions in chapter 627, a chapter dealing with insurance coverage for homes and other buildings, are generally consistent with the scientific meanings of these terms. The term "sinkhole" is defined in section 627.706(2)(h) as: a landform created by subsidence of soil, sediment, or rock as underlying strata are dissolved by groundwater. A sinkhole forms by collapse into subterranean voids created by dissolution of limestone or dolostone or by subsidence as these strata are dissolved. The term "sinkhole activity" is defined in section 627.706(2)(i) as: settlement or systematic weakening of the earth supporting the covered building only if the settlement or systematic weakening results from contemporaneous movement or raveling of soils, sediments, or rock materials into subterranean voids created by the effect of water on a limestone or similar rock formation. Sinkholes occur throughout Florida. There have been many reported and confirmed sinkholes in Pasco County. The more common type of sinkhole that has occurred on the Brooksville Ridge is a "cover subsidence" sinkhole, which is caused by voids in the limestone and the downward movement--"raveling"--of overlying soils into the cavity. Eventually, the loss of soils in the raveling zone will propagate upward until the soils at the ground surface also move downward and a depression is formed at the surface. Cover subsidence sinkholes develop slowly and are usually small, less than ten feet in diameter. Less common are "cover collapse" sinkholes, which can form in a matter of days or hours as the result of the collapse of the "roof" of a dissolved cavity in the limestone. These sinkholes are usually large and deep. The occurrence of a sinkhole does not always mean that areas near the sinkhole are unstable. However, the occurrence of a sinkhole is reasonable cause for concern about the stability of nearby areas and a reasonable basis for the Department to require thorough geologic investigations. "Karst" refers to limestone that is undergoing dissolution and it is common in Florida. A sinkhole forms in karst. "Epikarst" is limestone that was weathered while exposed above sea level millions of years ago before being submerged again. It is generally softer and more permeable than unweathered limestone. "Paleokarst" refers to karst that is very old in geologic time. Paleosinks are old sinkhole features in the paleokarst. A paleosink may no longer be unstable because it has been filled in for thousands or millions of years. A "lineament," or a "photolineament," is a relatively straight line seen in the topography or aerial photographs of the ground surface in an area. It might be defined by soil color, sloughs, ponds, wetlands, or other land features that follow a linear path. Lineaments are sometimes, but not always, associated with subsurface fractures in the bedrock where one would expect to also find active karst, sinkholes, and relatively rapid groundwater flow. Even where there is no lineament, there can be fractures in limestone that, when extensive enough, will allow for "fractured," "preferential," or "conduit flow" of groundwater. Fractured flow can occur in a small area or may go on for miles. Springs in Florida are usually associated with fractured flow or conduit flow that allows groundwater to move through the aquifer a long distance relatively rapidly, in weeks rather than decades. Geotechnical Investigation The Department's rules require subsurface conditions to be explored and described, including soil stratigraphy, soft ground, lineaments, and unstable areas, but the rules do not require the application of any particular geologic testing technique. An applicant's testing program is primarily a function of the professional judgment of the applicant’s geologist in cooperation with Department staff. The amount of geological testing done by Angelo's during its initial testing was similar to what was done for recent landfill applications. Angelo's conducted additional testing to respond to Department concerns and to prepare for the final hearing in this case, making the total amount of testing at Angelo's proposed site more extensive than is usual for a proposed landfill. The geologic investigation conducted by Angelo's experts to determine subsurface features, including any sinkholes, employed several technologies. Split Spoon Penetrometer Test (SPT) or SPT borings were drilled with a drill rig that advances a split spoon sampler into the ground with a 140 pound hammer. The hammer is dropped 30 inches and the number of blows required to drive the sampler each successive 12 inches is referred to as the "N" value and indicates soil strength and density. The higher the N value, the denser the soil. When the material is so dense the drill rod cannot (essentially) be hammered deeper, the N value is shown as "R," which stands for "refusal." SPT Bore logs also note any observed "weight of hammer," "weight of rod," or "loss of circulation." These terms describe areas where the drilling encounters very soft material or voids. Weight of rod, for example, means the weight of the drilling rod, by itself, with no hammer blow, was enough to cause the rod to fall deeper through the soil or rock. Cone Penetrometer Test ("CPT") borings were also conducted. CPT borings are relatively shallow, performed with a hand-held rod and special tip that the operator pushes into the ground. The CPT equipment continuously measures and records tip resistance and sleeve resistance as the rod moves downward through soils. It is helpful in some applications, but is less precise in determining soil type, strength, and compressibility than SPT borings and cannot be used to explore deep zones. Ground penetrating radar ("GPR") studies were used. GPR equipment transmits pulses of radio frequency waves into the ground. The manner in which the radio waves are reflected indicates the types of soil and rock encountered. It can also detect cavities and other features that would suggest karst activity. When the GPR identifies geologic features of interest, they can be further investigated with SPT borings. Another investigative tool used by Angelo's was Multiple Electrode Resistivity ("MER"). MER uses a grid of wires and electrodes and the equipment interprets the resistivity of electrical signals transmitted through the subsurface. MER data can be displayed in a two dimensional or three dimensional format, depending on the software program that is used to process the data. Like GPR, MER is useful for indentifying geologic features of interest that can be further explored with SPT borings. However, GPR generally has good resolution only near the ground surface, while MER has good resolution to a depth of 100 feet. The Regional Geology The proposed site is in a geologic transition zone on the eastern flank of a regional, geological feature known as the Brooksville Ridge. It is a transition zone for both the Suwannee Limestone and Hawthorn Group. The Brooksville Ridge was formed when it was part of the coastline. In its geologic past, the Brooksville Ridge experienced sea level changes, weathering, erosion of sediments, and beach reworking. The general layering of geologic features on the Brooksville Ridge, from the top down, begins with topsoil and a layer of sand. Under the sand layer is the Hawthorn Group, an older geologic layer consisting of a heterogeneous mix of limestone, clays, and sands which generally range in depth from slightly under 60 feet to 80 feet or more. It was formed by river and wind erosion, flushing, and re-deposition in a beach dune environment. Below the Hawthorn Group is the Suwannee Limestone Formation, which is present throughout eastern Pasco County. The upper surface of the Suwannee Limestone Formation is undulating, due to a gradual chemical weathering of its upper surface, representing a "paleokarst environment." Underlying the Suwannee Limestone Formation is the Ocala Limestone Formation. It extends throughout most of Florida. It is composed of nearly pure limestone and is considered the Floridan Aquifer. It extends across the site’s subsurface. Angelo's used the Florida Geologic Survey's data base to determine there are six sinkholes within five miles of the proposed landfill. A seventh sinkhole, not in the data base, is the 15- foot sinkhole at the Angelo's Enterprise Road Facility landfill, a Class III landfill (yard waste and construction and demolition debris) about a mile northwest of the proposed site. Angelo's contends that the sinkhole at its Class III landfill was "induced" during construction of the facility by the diversion of stormwater runoff to an area where overburden had been removed. The average diameter of the seven sinkholes is 11.9 feet. The Geology of the Proposed Site Rule 62-701.410(2)(c) requires a geotechnical site investigation and report, which shall: Explore and describe subsurface conditions including soil stratigraphy and ground water table conditions; Explore and address the presence of muck, previously filled areas, soft ground, lineaments, and sinkholes; Evaluate and address fault areas, seismic impact zones, and unstable areas as described in 40 C.F.R. 258.13, 258.14 and 258.15; Include estimates of the average and maximum high ground water table across the site; and Include a foundation analysis to determine the ability of the foundation to support the loads and stresses imposed by the landfill. It may include geotechnical measures necessary to modify the foundation to accommodate the imposed loads and stresses. The foundation shall be analyzed for short-term, end of construction, and long-term stability and settlement conditions. Considering the existing or proposed subgrade conditions and the landfill geometry, analysis shall include: Foundation bearing capacity; Subgrade settlements, both total and differential; and Subgrade slope stability. Angelo's conducted a geotechnical site investigation, but it was not adequate, as discussed below and in sections I. and J. The proposed landfill site is geologically complex, having features that are discontinuous horizontally and vertically. The site has karst features or areas where the limestone has dissolved. There is a clay layer in some areas, but it is not continuous and its depth and thickness vary. There are deposits of hard and soft sands at various depths. There are pinnacles of limestone surrounded by softer materials. Photographs from a quarry called the Vulcan Mine, located on the western flank of the Brooksville Ridge, show exposed features in the top 20 to 30 feet of the Suwannee Limestone in the region. The features at the Vulcan Mine are roughly similar to features at the Angelo's site. There are a number of shallow depressions on the surface of the ground on the Angelo's site. The origin and significance of these depressions was a matter of dispute. The Aligned Parties believe they represent sinkhole activity, but the evidence presented did not rise to the level of proof. However, Angelo's did not prove they were unassociated with geotechnical issues that could affect the proposed landfill. Angelo's offered no reasonable explanation for the depressions. Determining the exact cause of the depressions may not be possible even with more extensive investigation, but it was Angelo's responsibility as the permit applicant, pursuant to rule 62-701.410(2)(c), to make a greater effort to account for them. Angelo's initial permit application identified two intersecting lineaments on Angelo's property, based on aligned lowlands, enclosed valleys, and ponds. Angelo's contends the lineaments do not reflect an unstable subsurface or fractured limestone. The Aligned Parties contend that the lineaments are regional features and reflect fractures in the bedrock. They also contend that the onsite pond, which is located along the lineament, is an old sinkhole. The Aligned Parties did not prove the proposed landfill site is above an area of fractured bedrock, but the evidence presented by Angelo's was incomplete and insufficient to show there are no fractures. The limestone on the site was not adequately investigated for voids and fractures. Angelo's did not refute the possibility that the lineaments reflect a significant subsurface feature that could affect both site stability and groundwater movement. The Regional and Local Hydrogeology Rule 62-701.410(1) requires a hydrogeological investigation and site report, which shall: Define the landfill site geology and hydrology and its relationship to the local and regional hydrogeologic patterns including: Direction and rate of ground water and surface water flow, including seasonal variations; Background quality of ground water and surface water; Any on site hydraulic connections between aquifers; For all confining layers, semi-confining layers, and all aquifers below the landfill site that may be affected by the landfill, the porosity or effective porosity, horizontal and vertical permeabilities, and the depth to and lithology of the layers and aquifers; and Topography, soil types and characteristics, and surface water drainage systems of the site and surrounding the site. Include an inventory of all the public and private water wells within a one-mile radius of the proposed landfill site. The inventory shall include, where available: The approximate elevation of the top of the well casing and the depth of each well; The name of the owner, the age and usage of each well, and the estimated daily pumpage; and The stratigraphic unit screened, well construction technique, and static water levels of each well. Identify and locate any existing contaminated areas on the landfill site. Include a map showing the locations of all potable wells within 500 feet of the waste storage and disposal areas to demonstrate compliance with paragraph 62- 701.300(2)(b), F.A.C. Angelo's conducted a hydrogeological investigation, but it was not adequate, as discussed below. Angelo's and the Aligned Parties disputed the hydrogeological characteristics of the proposed landfill site and region. The principal disputes related to the direction and velocity of groundwater flow. Angelo's contends that groundwater flows from the landfill site to the west, making the proposed landfill site part of the Withlacoochee River groundwater basin. The Aligned Parties contend that groundwater flows south toward Crystal Springs and, therefore, the site is within the "springshed" of Crystal Springs. A United States Geological Survey map of the Crystal Springs springshed shows Angelo's proposed landfill site within the springshed. A springshed study done for SWFWMD also indicates the site is within the Crystal Springs springshed, but the District has not always been consistent in its statements about the groundwater basin boundaries in this area. A water chemistry analysis of the groundwater in the area of Angelo's proposed landfill indicates that the site is an area of higher recharge and within the Crystal Springs springshed. The springshed boundary can shift, depending on rainfall. Angelo's hydrogeological evidence was not sufficient to refute the reasonable possibility that the proposed landfill site is within the Crystal Springs springshed. Therefore, the Department's determination whether Angelo's has provided reasonable assurances must account for the threat of contamination to Crystal Springs and the other public and private water supply sources to the south. There are no creeks or streams and only a few lakes in the area between Crystal Springs and the Angelo's site. The absence of surface runoff features indicates it is an area of high recharge to the groundwater. Crystal Springs is in an area of conduit flow. The hydrologic investigation conducted by Angelo's was not thorough enough to characterize surficial aquifer flow and flow between aquifers. The preponderance of the evidence shows more groundwater recharge to the Floridan Aquifer in the area than estimated by Angelo's. Angelo's hydrogeological investigation was inadequate to refute the possibility of fractured flow or rapid groundwater movement at the proposed landfill site. Angelo's contends there is a continuous clay confining layer that would prevent contamination from moving into deep zones, but the preponderance of the evidence shows discontinuity in the clay and large variations in thickness and depth. The landfill's impermeable liner will impede water movement downward from the landfill, but groundwater will still recharge from outside the landfill to carry any contaminants deeper. If fractured flow or conduit flow extends south from the proposed landfill site, any leachate released into the groundwater beneath the landfill could travel rapidly toward the water supply sources of the City of Zephyrhills, Crystal Springs, Nestlé, and the City of Tampa. Whether the Proposed Landfill is in an Unstable Area Rule 62-701.200(2)(a) prohibits the storage or disposal of solid waste "[i]n an area where geological formations or other subsurface features will not provide support for the solid waste." However, the Department has adopted by reference a federal regulation, 40 C.F.R. 258.15, which allows a landfill to be constructed in a geologically unstable area if the permit applicant can demonstrate that engineering measures are incorporated into the design to ensure that the integrity of the landfill’s structural components "will not be disrupted." The parties presented evidence on many disputed issues of fact at the final hearing, but most of the case involved two ultimate questions: whether the proposed landfill site is unstable and, if so, whether Angelo's has proposed measures that would eliminate the unstable conditions and make the site suitable for a landfill. as: An "unstable area" is defined in 40 C.F.R. § 258.15 A location that is susceptible to natural or human-induced events or forces capable of impairing the integrity of some or all of the landfill structural components responsible for preventing releases from a landfill. Unstable areas can include poor foundation conditions, areas susceptible to mass movements, and Karst terrains. There is overwhelming evidence that the proposed landfill site is an unstable area. A considerable amount of evidence presented by Angelo's supports this finding. For example, Angelo's experts agreed there are loose soils, evidence of raveling, and sinkhole activity. These conditions make the site susceptible to natural or human-induced events or forces capable of impairing the integrity of some or all of the landfill structural components responsible for preventing releases from the proposed landfill. The Department's landfill permitting staff requested a sinkhole risk assessment from the Florida Geologic Survey ("FGS"). The State Geologist and Director of the FGS, Dr. Jonathan Arthur, believes the potential for sinkhole formation at the proposed site is moderately high to high. That potential is consistent with the characterization of the area as unstable. Whether the Proposed Engineering Measures Are Adequate Because the site is unstable, Angelo’s must demonstrate that engineering measures have been incorporated into the landfill's design to ensure that the integrity of its structural components will not be disrupted. See 40 C.F.R. § 258.15(a). The engineering measures proposed by Angelo's are discussed below. Because it was found that Angelo's hydrogeological and geotechnical investigations were not sufficient to characterize all potentially unstable features of the subsurface, it was not demonstrated that the proposed engineering measures would overcome the instability and make the site suitable for a landfill. Roller Compaction Angelo's would use roller compaction on the graded floor of the landfill to compact the soils to a depth of about five feet and eliminate any voids within that depth. The Aligned Parties did not contradict Angelo's evidence that its proposed roller compaction will be done in a manner exceeding what the Department usually requires as far as roller force and the number of roller "passes." However, roller compaction will not affect deep voids. Liner System In order to ensure that the landfill’s liner system components will not be disrupted in the event of a sinkhole, Angelo’s proposes to include the reinforcement geotextile discussed above. The Department previously approved the use of geotextile reinforcement, combined with grouting, to demonstrate site stability for the Hernando County Northwest Landfill, which had a comparable risk of sinkhole formation according to the Department. The reinforcement geotextile can span a 15-foot diameter sinkhole without failure. As found above, the average diameter of the seven sinkholes within five miles of the proposed landfill is 11.9 feet. Angelo's proved that the proposed liner system meets all applicable criteria, except the requirement of rule 62- 701.400(3)(a) that the liner be installed upon a geologically stable base. Grouting Plan Angelo's grouting plan would be implemented to fill voids and stabilize areas of loose or weak material. The grouting plan was first designed to grout all locations where there was a Weight of Hammer, Weight of Rod, Loss of Circulation, or loose sands, as indicated by a low blow count. Angelo's revised the grout plan to include several more areas of concern identified later, for a total of 39 locations. Each grout location would have seven grout points, one in the center and six others equally-spaced on a ten-foot radius from the center. If more than ten cubic yards of grout is needed, additional grout points further outward would be injected until the void or loose soils are filled or stabilized. Although Angelo's proposes to grout every boring of concern, that still ties the integrity of the grouting plan to the thoroughness of the borings. The geologic evidence indicates that there are unstable areas which the grouting plan does not address. The Aligned Parties' MER analysis was persuasive in identifying potential areas of instability that were omitted from Angelo's investigation and from its grouting plan. There are other unstable areas existing on the site that should be grouted or otherwise engineered to provide support for the landfill. The grouting plan does not provide reasonable assurance that the integrity of the structural components of the landfill will not be disturbed. Other Issues Raised by the Aligned Parties The Aligned Parties raise a number of other issues, some of which begin with the assumption that the site is unstable and a large sinkhole would form at the landfill. This sometimes mixes issues inappropriately. It has been found that Angelo's did not provide reasonable assurance that the site will support the proposed landfill, but other project elements must be reviewed on their own merits where possible, assuming the site was engineered for stability. Leachate Collection System There is a single leachate collection trench in the center of the two landfill cells, which makes the landfill operate much like a single cell. The two halves of the cell slope toward the center, so that leachate will drain to the leachate collection trench, and the entire landfill slopes to the west, so that the trench will drain to a sump from which the leachate is pumped to storage tanks. At full capacity, the landfill will generate about 40,000 gallons of leachate per day. Careful cutting and grading of the earth is necessary to create the slopes that are essential to the proper functioning of the project’s leachate collection system. Settlement analyses are necessary to assure that the slopes are maintained. Rule 62-701.410(2)(e) requires a foundation analysis which must include a study of "subgrade settlements, both total and differential." "Total settlement" refers to the overall settlement of a landfill after construction and the loading of solid waste. "Differential settlement" compares settlement at two different points. Angelo's did not meet its burden to provide reasonable assurance on this point. The settlement analysis conducted by Angelo's was amended two or three times during the course of the final hearing to account for computational errors and other issues raised by the Aligned Parties. The analysis never came completely into focus. The final analysis was not signed and sealed by a professional engineer. The settlement analysis is dependent on the geologic analysis, which is inadequate. Without adequate settlement and geologic analyses, it cannot be determined that leachate collection would meet applicable criteria. Storage Tanks The Aligned Parties contend that the leachate storage tanks cannot be supported by the site. Because it was found that Angelo's geologic investigation was not adequate to identify all unstable areas, it is also found that Angelo's failed to provide reasonable assurance that the site would support the leachate storage tanks. In all other respects, the Aligned Parties failed to refute Angelo's demonstration that the storage tanks would meet applicable criteria. Groundwater Monitoring Plan The Aligned Parties contend that there is an insufficient number of monitor wells proposed by Angelo's to detect a leak from the landfill and the wells are too shallow. Because it was found that Angelo's did not adequately characterize the geology and hydrology of the proposed landfill site, the monitoring plan does not provide reasonable assurance of compliance with applicable criteria. Cell Design The Aligned Parties contend that the "mega-cell" design proposed by Angelo's provides less flexibility to respond to and isolate landfill problems than other landfill designs with smaller cells, and the mega-cell design could generate more leakage. No evidence was presented to show whether Angelo's design was one that had been approved or rejected in the past by the Department. Although it is not the best landfill design, the Aligned Parties did not show that the proposed design violates any permitting criteria. Operation and Closure The evidence presented by the Aligned Parties in support of their issues regarding the operation of the proposed landfill, such as noise, odor, and traffic, was not sufficient to refute Angelo's evidence of compliance with applicable criteria, with one exception: Angelo's has not provided an adequate contingency plan to show how it would respond to a sinkhole or other incident that required the landfill to be shut down and repaired. Assuming the site was engineered to support the landfill, there is nothing about the Closure Plan that the Aligned Parties showed does not meet applicable criteria.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the Department of Environmental Protection deny Angelo's Permit Application Nos. 22913-001-SC/01 and 22913- 002-SO/01. DONE AND ENTERED this 28th day of June, 2013, in Tallahassee, Leon County, Florida. S BRAM D. E. CANTER Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 28th day of June, 2013. COPIES FURNISHED: Carl Roth, Qualified Representative 8031 Island Drive Port Richey, Florida 34668-6220 Christopher M. Kise, Esquire Foley and Lardner, LLP 106 East College Avenue, Suite 900 Tallahassee, Florida 32301-7732 Wayne E. Flowers, Esquire Lewis, Longman and Walker, P.A. Suite 150 245 Riverside Avenue Jacksonville, Florida 32202-4931 Janice M. McLean, Esquire City of Tampa 7th Floor 315 East Kennedy Boulevard Tampa, Florida 33602-5211 Joseph A. Poblick, Esquire City of Zephyrhills 5335 8th Street Zephyrhills, Florida 33542-4312 Doug Manson, Esquire William Bilenky, Esquire Brian A. Bolves, Esquire Manson Bolves, P.A. 1101 West Swann Avenue Tampa, Florida 33606-2637 Jacob D. Varn, Esquire Linda Loomis Shelley, Esquire Karen A. Brodeen, Esquire Fowler, White, Boggs, P.A. 101 North Monroe Street, Suite 1090 Tallahassee, Florida 32302-1547 David Smolker, Esquire Smolker, Bartlett, Schlosser, Loeb and Hinds, P.A. Suite 200 500 East Kennedy Boulevard Tampa, Florida 33602-4936 Stanley Warden, Esquire Christopher Dale McGuire, Esquire Department of Environmental Protection Mail Station 35 3900 Commonwealth Boulevard Tallahassee, Florida 32399-3000 William D. Preston, Esquire William D. Preston, P.A. 4832-A Kerry Forest Parkway Tallahassee, Florida 32309-2272 Herschel T. Vinyard, Jr., Secretary Department of Environmental Protection Mail Station 35 3900 Commonwealth Boulevard Tallahassee, Florida 32399-3000 Matthew Z. Leopold, General Counsel Department of Environmental Protection Mail Station 35 3900 Commonwealth Boulevard Tallahassee, Florida 32399-3000 Lea Crandall, Agency Clerk Department of Environmental Protection Mail Station 35 3900 Commonwealth Boulevard Tallahassee, Florida 32399-3000

CFR (6) 0 CFR 25840 CFR 25840 CFR 258.1340 CFR 258.1440 CFR 258.1540 CFR 258.15(a) Florida Laws (6) 120.52120.57120.68258.15403.707627.706 Florida Administrative Code (6) 62-701.20062-701.22062-701.32062-701.34062-701.40062-701.410
# 9
S. A. ALFORD, III, ET AL. vs. BAY COUNTY BOARD OF COUNTY COMMISSIONERS AND DEPARTMENT OF ENVIRONMENTAL REGULATION, 80-001123 (1980)
Division of Administrative Hearings, Florida Number: 80-001123 Latest Update: Dec. 24, 1980

Findings Of Fact Bay County's application to construct a sanitary landfill comprising nearly 80 acres located at the north end of Bay County abutting Washington County near the intersection of S.R. 20 and S.R. 77 was initially submitted to the Department of Environmental Regulation (DER) in November, 1979 (Exhibit 1). The site is surrounded by 400 feet of pine woods which buffer the site from all roads and residences . There are no residences within several hundred yards of the proposed site and the nearest natural body of water is over one-fourth mile from the site. The noise generated by the operation of the landfill will be similar to the noise generated on S.R. 20 and S.R. 77 by passing vehicles. Following conferences between representatives of Bay County and DER and several revisions of the application of May 16, 1980 DER issued its notice of intent to grant the applied-for permit (Exhibit 10) and this proceeding was initiated by Petitioners. The site is located in an area of predominately "Lakeland series" sands which provides little barrier to the percolation of surface or ground waters into the Floridan Aquifer. The site is one of the highest in Bay County and the ground water table is located about 45 feet below the surface in this area. The Floridan aquifer lies some 100 feet below the proposed site and is in direct contract with the ground water table. Accordingly, contamination of the ground water by the proposed landfill would enter into the Floridan Aquifer and degrade the water quality of this aquifer. Additionally escaping leachate could contaminate and degrade the waters of the lakes in the general vicinity of the proposed site. As initially presented the application was denied by DER and recommended for denial by the other state agencies involved, viz. Florida Game and Freshwater Fish Commission and the Northwest Florida Water Management District. The reason for disapproval was that, absent some impervious surface between the aquifer and lakes in the vicinity could occur and was likely. Not only is the site located in a recharge area to the Floridan Aquifer but also in a karst area, in which the topography is marked by sinkholes resulting from the collapse of cavernous limestone under the ground. While the possibility exists that a sinkhole could develop under the proposed landfill this is no more likely than that a sinkhole will develop anywhere else in the northern half of Bay County. As finally proposed the site will be developed into cells some 400' x 500' x 28' deep which are expected to be filled in about six months, covered with a a clayey soil and vegetation replanted over the cell. To keep leachate from escaping to the lakes or aquifer the cells will be lined with a polyvinyl chloride (PVC) liner is 20 mils thick manufactured by B. F. Goodrich. If the liner functions as proposed there will be no escape of leachate and hence no degradation of the waters. Petitioners contend that reasonable assurances have not been given that the PVC liner will adequately perform this function and this was the only real issue presented at the hearing. PVC liners for landfills have been in use for only bout 10 years. However, numerous tests have been conducted and, projecting the deterioration of the PVC observed during the test period to the estimated life of the landfill, leads to an expected liner life well beyond the life of leachate production in the landfill. To give PVC the flexibility and elasticity necessary to lay it over uneven surfaces in sheets, plasticizers are added to the PVC during the manufacturing process. These plasticizers will be released from the PVC if exposed to sunlight for an extended period. However, as proposed for use here, even if the liner was exposed to sunlight for the entire six months the cell will be open, or even for one year, no significant loss of plasticizer will result. Once the cell has been closed, no further dynamic stresses will be placed on the liner. Accordingly, even if the liner lost all of its plasticizer and thereby lost its elasticity and flexibility, it would remain impervious and prevent the pasage of leachate through the liner. To protect the liner from solid waste, trash, and equipment used in the cell to compress the solid waste, the liner will be covered with two feet of sand before any solid waste is placed in the cell. Each night the solid waste dumped that day will be covered with six inches of on-site earth material to deter flies, odors, etc. The two feet of sand cover will protect the liner from puncture by solid waste or equipment. The liner will be placed on a tight slope with a sump provided near the low end of each cell from whence leachate will be pumped from the cell and treated, if necessary. Additionally, vents will be installed to exhaust gases from the cell once it is closed. Monitoring wells will be placed around the land fill to detect if leachate is escaping from the site. These wells would allow detection of escaping leachate before it could progress to the natural water bodies in the general vicinity. The three to one slope proposed for the sides of the landfill will result in some movement of free sand resting on the liner along the sides and could bare the liner. To insure there will be a minimum of two feet of soil between the fill material and the liner the cell will not be filled completely to the side of the liner to fill in the space left between the garbage and the side wall each day when the material dumped that day is covered. Hazardous wastes will not be allowed at the site. The site will be enclosed and have an attendant on duty at all times it is opened to receive solid waste. Public access will be restricted and the attendant on duty will monitor the waste dumped in the cell. Household wastes will be accepted and these may include small quantities of paints, insecticides and other material that in large quantities would be considered hazardous. The sand over the liner, the pumping out of the leachate and overall operation of the landfill are adequate to protect against these small amounts of hazardous materials. Bay County proposes to use an existing disposal site to dump tree and hedge trimmings and may provide a place to dump this woody trash at the proposed site other than in the cells. This will increase the capacity of the cells for solid waste and diminish the possibility of damage to the liner by woody products. The only credible evidence submitted regarding the availability of alternate sited for the proposed landfill was that other areas further south were investigated and were unacceptable because the groundwater table was above the bottom of the proposed cells. This would result in dumping solid waster directly into the water table, and is unaceptable. Petitioner's principal contention is that there has been insufficient experience with PVC liners and the tests that have been conducted were not sufficiently rigorous or extensive to provide assurances that leachate would no escape from the site and contaminate the waters of the State. Petitioners also contend that joining of sections of PVC in field, which will be necessary to cover that bottom of the cells (because a liner large enough to cover the bottom of one cell would be too large and heavy to handle), would also create unacceptable risks in the making of these "field seams". Bay County has arranged for the manufacturer of the PVC to provide personnel to supervise the "field seaming" of the sections of the PVC. These seams do not need to be wrinkle-free and no particular problem with respect to joining sections of PVC liner so as to make it watertight was shown. The tests conducted by the Environmental Protection Agency on PVC liners have been ongoing for nearly ten years. None of these tests to date show any reason to question the effectiveness of a PVC liner properly installed to provide an impermeable barrier to leachate in a sanitary landfill. Petitioners also object to the use of cover material proposed by Bay County when a cell is closed. The soil analysis submitted with the application for the cover proposed does not have a high clay content and is more permeable than would be desired. At the hearing, Bay County officials testified they would use a more impermeable soil to cover the cells. Failure to do so would increase the amount of water from rainfall that would penetrate the cell, thereby increasing the quantity of leachate to be pumped from the sump. This would increase the maintenance cost of the landfill to the point it would be uneconomical not to put a water-repellant cover on the cell when it is closed. No evidence was presented that the formation of additional leachate would increase the risk of leachate escaping from the cell.

Conclusions Having considered the Recommended Order, including the Findings of Fact and Conclusions of Law, Petitioners' Exceptions, and Respondent's Response to Petitioners' Exceptions, it is, therefore: ORDERED that the Hearing Officer's Findings of Fact are adopted; his Conclusions of Law and Recommended Order, to the extent that they are consistent with this Final Order, are adopted; and ORDERED that the permit reflected in the Notice of Intent issued by the Department on May 16, 1980, be issued with the following additional conditions: The applicant shall notify the Department at least on week in advance of when the P.V.C. is to be installed and allow for on-site inspection of its installation by Department personnel. No operation permit will be issued unless the applicant has shown reasonable assurances that the P.V.C. has been properly installed and all other applicable rules of the Department and the applicable Florida Statutes have been complied with. Any operation permit issued shall be for only one cell and no permit for subsequent cells shall be approved in accordance with 2. above without a showing of proper operation for the previous cells. The final cover material for each cell shall be clay, substantially clay or other impermeable material. Any DER permits for this site shall only be valid until 24 months from the date of this order. ORDERED that the country shall submit within thirty days a plan with schedule by which this landfill site will be phased out in 24 months, which shall include selection of alternate acceptable sites or the implementation of a resource recovery program in accordance with 17-7, Part II, Florida Administrative Code. DONE AND ORDERED in Tallahassee, Leon County, Florida, this 22nd day of December, 1980. JACOB D. VARN, Secretary Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32301 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 22nd day of December, 1980. CERTIFICATE OF SERVICE I HEREBY CERTIFY that a true copy of the foregoing "Final Order" has been furnished by United States Mail to Kenneth F. Hoffman, Esquire, Oertel and Laramore, P.A., 646 Lewis State Bank Building, Tallahassee, Florida 32302, Les W. Burke, Esquire, County Attorney, Bay County, Post Office Box 1818, Panama City, Florida 32401, and K.N. Ayers, Hearing Officer, Division of Administrative Hearings, Collins Building, Room 101, Tallahassee, Florida 32301, this 22nd day of December, 1980. DOUGLAS H. MacLAUGHLIN Assistant General Counsel State of Florida Department of Environmental Regulation Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32301 (904) 488-9730

Florida Laws (3) 120.57403.7077.05
# 10

Can't find what you're looking for?

Post a free question on our public forum.
Ask a Question
Search for lawyers by practice areas.
Find a Lawyer