Elawyers Elawyers
Ohio| Change
Find Similar Cases by Filters
You can browse Case Laws by Courts, or by your need.
Find 49 similar cases
VINCENT J. WOEPPEL vs DEPARTMENT OF ENVIRONMENTAL REGULATION, 92-004063 (1992)
Division of Administrative Hearings, Florida Filed:Lake Wales, Florida Jul. 06, 1992 Number: 92-004063 Latest Update: Apr. 16, 1993

Findings Of Fact On December 12, 1991, Petitioner applied to the Respondent for a permit/water quality certification to grade and level, in stages, approximately 20,000 square feet or 0.45 acres of lake front to remove and prevent the formation of berms and depressions in the exposed lake bottom adjacent to his property. The project site is located at 3955 Placid View Drive which lies along the shoreline of Lake Placid, a natural waterbody in Highlands County, Section 24, Township 37 South, Range 29 East. Lake Placid is not an aquatic preserve, and is not an outstanding Florida water. It has been designated as a Class III waterbody. Petitioner's unsubdivided lot lies at the western end of Lake Placid. The shoreline measures approximately 203 feet. The western lot line also measures 203 feet, and fronts on Placid View Drive. The water level of Lake Placid has receded in recent years which allows large expanses of what was historically lake bottom to become beaches, lawns, and areas of habaceous marsh. The specific project which the Petitioner proposes calls for the leveling of the berms and depressions which form on the exposed lake bottom from collected water, which stagnates and permits various noxious creatures, including mosquitoes, to breed in them. The berms and depressions are approximately six inches high or deep and between one and three feet wide, and generally extend the length of the shoreline. The proposed area affected is approximately 20,000 square feet or 0.45 acres of lake front, although Petitioner proposes to actually level a much smaller area in stages of approximately 2,000 square feet on an "as needed" basis. No material other than sod in the beach area is proposed to be brought from or removed to off-site locations. Petitioner is highly sensitive to mosquito bites. The area proposed for leveling was previously cleared of vegetation without authorization. Very little revegetation of the shoreline has occurred since the area was cleared. Vegetation colonizing the beach, at present, includes pennyworts (Centella asiatica and Hydrocotyle umbellata) and water- hyssops (Bacopa sp.) Blue green algae was observed in the depressions which have formed along the shore since the clearing. Fauna observed on-site included gulls (Larus sp.), small fish in the adjacent lake shallows, and water-boatmen (Order Hemiptera) in the depressions. An area landward of the wetlands considered here was also cleared previously and is proposed to be seeded. An adjacent, uncleared shoreline was vegetated with primrose willow (Ludwigia sp.), cattail (Typha sp.), flat sedge (Cyperus odorata), and other wetland species for an almost 100% plant coverage. The Petitioner proposes to use a small tractor in leveling of the shore which will cause turbidity in the lake water. No turbidity controls were proposed by the Petitioner. Petitioner failed to provide reasonable assurances that the turbidity caused by the earthmoving equipment in areas presently above water would not cause degradation of water quality in Lake Placid; would not contribute to the long-term degradation of water quality in the lake caused by upland runoff that would flow into the lake without benefit of retention or filtration by shoreland vegetation (freshwater herbaceous habitat) which would be permanently removed under Petitioner's proposal. Nutrients such a nitrogen and phosphorus and pollutants such as pesticides, herbicides and other chemicals commonly used in lawn and garden care would be included in the runoff, and would have an adverse impact on fishing and marine productivity in the lake. The project would have a minor adverse impact on erosion and soil stabilization in the area surrounding the lake. Petitioner has failed to provide reasonable assurance that the proposed project is not contrary to the public interest. Petitioner can mitigate the project by eliminating the use of heavy equipment and substitute hand equipment to smooth out ruts, berms and depressions in jurisdictional areas.

Recommendation Based on the foregoing findings of fact and conclusions of law, it is RECOMMENDED that the Petitioner's application for Wetland Resource Regulation permit be DENIED. DONE and ENTERED this 8th day of March, 1993, in Tallahassee, Florida. DANIEL M. KILBRIDE Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings ths 8th day of March, 1993. COPIES FURNISHED: Francine M. Ffolkes, Esquire Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32399-2400 Mr. Vincent J. Woeppel 3955 Placid View Drive Lake Placid, Florida 33852 Daniel H. Thompson Department of Environmental Regulation Acting General Counsel Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32399-2400 Virginia B. Wetherell Secretary Department of Environmental Regulation Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32399-2400

Florida Laws (3) 120.57211.32267.061
# 1
SIERRA CLUB, INC., AND ST. JOHNS RIVERKEEPER, INC. vs SLEEPY CREEK LANDS, LLC AND ST. JOHNS RIVER WATER MANAGEMENT DISTRICT, 14-002608 (2014)
Division of Administrative Hearings, Florida Filed:Palatka, Florida Jun. 03, 2014 Number: 14-002608 Latest Update: Oct. 24, 2016

The Issue The issue to be determined is whether Consumptive Use Permit No. 2-083-91926-3, and Environmental Resource Permit No. IND-083-130588-4 should be issued as proposed in the respective proposed agency actions issued by the St. Johns River Water Management District.

Findings Of Fact The Parties Sierra Club, Inc., is a national organization, the mission of which is to explore, enjoy, and advocate for the environment. A substantial number of Sierra Club’s 28,000 Florida members utilize the Silver River, Silver Springs, the Ocklawaha River, and the St. Johns River for water-based recreational activities, which uses include kayaking, swimming, fishing, boating, canoeing, nature photography, and bird watching. St. Johns Riverkeeper, Inc., is one of 280 members of the worldwide Waterkeepers Alliance. Its mission is to protect, restore, and promote healthy waters of the St. Johns River, its tributaries, springs, and wetlands -- including Silver Springs, the Silver River, and the Ocklawaha River -- through citizen- based advocacy. A substantial number of St. Johns Riverkeeper’s more than 1,000 members use and enjoy the St. Johns River, the Silver River, Silver Springs, and the Ocklawaha River for boating, fishing, wildlife observation, and other water-based recreational activities. Karen Ahlers is a native of Putnam County, Florida, and lives approximately 15 miles from the Applicant’s property on which the permitted uses will be conducted. Ms. Ahlers currently uses the Ocklawaha River for canoeing, kayaking, and swimming, and enjoys birding and nature photography on and around the Silver River. Over the years, Ms. Ahlers has advocated for the restoration and protection of the Ocklawaha River, as an individual and as a past-president of the Putnam County Environmental Council. Jeri Baldwin lives on a parcel of property in the northeast corner of Marion County, approximately one mile from the Applicant’s property on which the permitted uses will be conducted. Ms. Baldwin, who was raised in the area, and whose family and she used the resources extensively in earlier years, currently uses the Ocklawaha River for boating. Florida Defenders of the Environment (FDE) is a Florida corporation, the mission of which is to conserve and protect and restore Florida's natural resources and to conduct environmental education projects. A substantial number of FDE’s 186 members, of which 29 reside in Marion County, Florida, use and enjoy Silver Springs, the Silver River, and the Ocklawaha Aquatic Preserve, and their associated watersheds in their educational and outreach activities, as well as for various recreational activities including boating, fishing, wildlife observation, and other water-based recreational activities. Sleepy Creek Lands, LLC (Sleepy Creek or Applicant), is an entity registered with the Florida Department of State to do business in the state of Florida. Sleepy Creek owns approximately 21,000 acres of land in Marion County, Florida, which includes the East Tract and the North Tract on which the activities authorized by the permits are proposed. St. Johns River Water Management District (SJRWMD or District) is a water-management district created by section 373.069(1). It has the responsibility to conserve, protect, manage, and control the water resources within its geographic boundaries. See § 373.069(2)(a), Fla. Stat. The Consumptive Use Permit The CUP is a modification and consolidation of two existing CUP permits, CUP No. 2-083-3011-7 and CUP No. 2-083- 91926-2, which authorize the withdrawal of 1.46 mgd from wells located on the East Tract. Although the existing CUP permits authorize an allocation of 1.46 mgd, actual use has historically been far less, and rarely exceeded 0.3 mgd. The proposed CUP modification will convert the authorized use of water from irrigation of 1,010 acres of sod grass on the East Tract, to supplemental irrigation of improved pasture for grass and other forage crops (approximately 97 percent of the proposed withdrawals) and cattle watering (approximately three percent of the proposed withdrawals) on the North Tract and the East Tract. An additional very small amount will be used in conjunction with the application of agricultural chemicals. CUP No. 2-083-3011-7 is due to expire in 2021. CUP No. 2-083-91926-2 is due to expire in 2024. In addition to the consolidation of the withdrawals into a single permit, the proposed agency action would extend the term of the consolidated permit to 20 years from issuance, with the submission of a compliance report due 10 years from issuance. Sleepy Creek calculated a water demand of 2.569 mgd for the production of grasses and forage crops necessary to meet the needs for grass-fed beef production, based on the expected demand in a 2-in-10 drought year. That calculation is consistent with that established in CUP Applicant’s Handbook (CUP A.H.) section 12.5.1. The calculated amount exceeds the authorized average allocation of 1.46 mgd. Mr. Jenkins testified as to the District’s understanding that the requested amount would be sufficient, since the proposed use was a “scaleable-type project,” with adjustments to cattle numbers made as necessary to meet the availability of feed. Regardless of demand, the proposed permit establishes the enforceable withdrawal limits applicable to the property. With regard to the East Tract, the proposed agency action reduces the existing 1.46 mgd allocation for that tract to a maximum allocation of 0.464 mgd, and authorizes the irrigation of 611 acres of pasture grass using existing extraction wells and six existing pivots. With regard to the North Tract, the proposed agency action authorizes the irrigation of 1,620 acres of pasture and forage grain crops using 15 center pivot systems. Extraction wells to serve the North Tract pivots will be constructed on the North Tract. The proposed North Tract withdrawal wells are further from Silver Springs than the current withdrawal locations. The proposed CUP allows Sleepy Creek to apply the allocated water as it believes to be appropriate to the management of the cattle operation. Although the East Tract is limited to a maximum of 0.464 mgd, there is no limitation on the North Tract. Thus, Sleepy Creek could choose to apply all of the 1.46 mgd on the North Tract. For that reason, the analysis of impacts from the irrigation of the North Tract has generally been based on the full 1.46 mgd allocation being drawn from and applied to the North Tract. The Environmental Resource Permit As initially proposed, the CUP had no elements that would require issuance of an ERP. However, in order to control the potential for increased runoff and nutrient loading resulting from the irrigation of the pastures, Sleepy Creek proposes to construct a stormwater management system to capture runoff from the irrigated pastures, consisting of a series of vegetated upland buffers, retention berms and redistribution swales between the pastures and downgradient wetland features. Because the retention berm and swale system triggered the permitting thresholds in rule 62-330.020(2)(d) (“a total project area of more than one acre”) and rule 62-330.020(2)(e) (“a capability of impounding more than 40 acre-feet of water”), Sleepy Creek was required to obtain an Environmental Resource Permit for its construction. Regional Geologic Features To the west of the North Tract is a geologic feature known as the Ocala Uplift or Ocala Platform, in which the limestone that comprises the Floridan aquifer system exists at or very near the land surface. Karst features, including subterranean conduits and voids that can manifest at the land surface as sinkholes, are common in the Ocala Uplift due in large part to the lack of consolidated or confining material overlaying the limestone. Water falling on the surface of such areas tends to infiltrate rapidly through the soil into the Floridan aquifer, occasionally through direct connections such as sinkholes. The lack of confinement in the Ocala Uplift results in few if any surface-water features such as wetlands, creeks, and streams. As one moves east from the Ocala Uplift, a geologic feature known as the Cody Escarpment becomes more prominent. In the Cody Escarpment, the limestone becomes increasingly overlain by sands, shell, silt, clays, and other less permeable sediments of the Hawthorn Group. The North Tract and the East Tract lie to the east of the point at which the Cody Escarpment becomes apparent. As a result, water tends to flow overland to wetlands and other surface water features. The Property The North and East Tracts are located in northern Marion County near the community of Fort McCoy. East Tract Topography and Historic Use The East Tract is located in the Daisy Creek Basin, and includes the headwaters of a small creek that drains directly to the Ocklawaha River. The historic use of the East Tract has been as a cleared 1,010-acre sod farm. The production of sod included irrigation, fertilization, and pest control. Little change in the topography, use, and appearance of the property will be apparent as a result of the permits at issue, but for the addition of grazing cattle. The current CUPs that are subject to modification in this proceeding authorize groundwater withdrawals for irrigation of the East Tract at the rate of 1.46 mgd. Since the proposed agency action has the result of reducing the maximum withdrawal from wells on the East Tract to 0.464 mgd, thus proportionately reducing the proposed impacts, there was little evidence offered to counter Sleepy Creek’s prima facie case that reasonable assurance was provided that the proposed East Tract groundwater withdrawal allocation will meet applicable CUP standards. There are no stormwater management structures to be constructed on the East Tract. Therefore, the ERP permit discussed herein is not applicable to the East Tract. North Tract Topography and Historic Use The North Tract has a generally flat topography, with elevations ranging from 45 feet to 75 feet above sea level. The land elevation is highest at the center of the North Tract, with the land sloping towards the Ocklawaha River to the east, and to several large wet prairie systems to the west. Surface water features on the North Tract include isolated, prairie, and slough-type wetlands on approximately 28 percent of the North Tract, and a network of creeks, streams, and ditches, including the headwaters of Mill Creek, a contributing tributary of the Ocklawaha River. A seasonal high groundwater elevation on the North Tract is estimated at 6 to 14 inches below ground surface. The existence of defined creeks and surface water features supports a finding that the North Tract is underlain by a relatively impermeable confining layer that impedes the flow of water from the surface and the shallow surficial aquifer to the upper Floridan and lower Floridan aquifers. If there was no confining unit, water going onto the surface of the property, either in the form of rain or irrigation water, would percolate unimpeded to the lower aquifers. Areas in the Ocala Uplift to the west of the North Tract, where the confining layer is thinner and discontiguous, contain few streams or runoff features. Historically, the North Tract was used for timber production, with limited pasture and crop lands. At the time the 7,207-acre North Tract was purchased by Sleepy Creek, land use consisted of 4,061 acres of planted pine, 1,998 acres of wetlands, 750 acres of improved pasture, 286 acres of crops, 78 acres of non-forested uplands, 20 acres of native forest, 10 acres of open water, and 4 acres of roads and facilities. Prior to the submission of the CUP and ERP applications, much of the planted pine was harvested, and the land converted to improved pasture. Areas converted to improved pasture include those proposed for irrigation, which have been developed in the circular configuration necessary for future use with center irrigation pivots. As a result of the harvesting of planted pine, and the conversion of about 345 acres of cropland and non-forested uplands to pasture and incidental uses, total acreage in pasture on the North Tract increased from 750 acres to 3,938 acres. Other improvements were constructed on the North Tract, including the cattle processing facility. Aerial photographs suggest that the conversion of the North Tract to improved pasture and infrastructure to support a cattle ranch is substantially complete. The act of converting the North Tract from a property dominated by planted pine to one dominated by improved pasture, and the change in use of the East Tract from sod farm to pasture, were agricultural activities that did not require a permit from the District. As such, there is no impropriety in considering the actual, legal use of the property in its current configuration as the existing use for which baseline conditions are to be measured. Petitioners argue that the baseline conditions should be measured against the use of the property as planted pine plantation, and that Sleepy Creek should not be allowed to “cattle-up” before submitting its permit applications, thereby allowing the baseline to be established as a higher impact use. However, the applicable rules and statutes provide no retrospective time-period for establishing the nature of a parcel of property other than that lawfully existing when the application is made. See West Coast Reg’l Water Supply Auth. v. SW Fla. Water Mgmt. Dist., Case No. 95-1520 et seq., ¶ 301 (Fla. DOAH May 29, 1997; SFWMD ) (“The baseline against which projected impacts conditions [sic] are those conditions, including previously permitted adverse impacts, which existed at the time of the filing of the renewal applications.”). The evidence and testimony in this case focused on the effects of the water allocation on the Floridan aquifer, Silver Springs, and the Silver River, and on the effects of the irrigation on water and nutrient transport from the properties. It was not directed at establishing a violation of chapter 373, the rules of the SJRWMD, or the CUP Applicant’s Handbook with regard to the use and management of the agriculturally-exempt unirrigated pastures, nor did it do so. Soil Types Soils are subject to classifications developed by the Soil Conservation Service based on their hydrologic characteristics, and are grouped into Group A, Group B, Group C, or Group D. Factors applied to determine the appropriate hydrologic soil group on a site-specific basis include depth to seasonal high saturation, the permeability rate of the most restrictive layer within a certain depth, and the depth to any impermeable layers. Group A includes the most well-drained soils, and Group D includes the most poorly-drained soils. Group D soils are those with seasonal high saturation within 24 inches of the soil surface and a higher runoff potential. The primary information used to determine the hydrologic soil groups on the North Tract was the depth to seasonal-high saturation, defined as the highest expected annual elevation of saturation in the soil. Depth to seasonal-high saturation was measured through a series of seven hand-dug and augered soil borings completed at various locations proposed for irrigation across the North Tract. In determining depth to seasonal-high saturation, the extracted soils were examined based on depth, color, texture, and other relevant characteristics. In six of the seven locations at which soil borings were conducted, a restrictive layer was identified within 36 inches of the soil surface. At one location at the northeastern corner of the North Tract, the auger hole ended at a depth of 48 inches -- the length of the auger -- at which depth there was an observable increase in clay content but not a full restrictive layer. However, while the soil assessment was ongoing, a back-hoe was in operation approximately one hundred yards north of the boring location. Observations of that excavation revealed a heavy clay layer at a depth of approximately 5 feet. In each of the locations, the depth to seasonal-high saturation was within 14 inches of the soil surface. Based on the consistent observation of seasonal-high saturation at each of the sampled locations, as well as the flat topography of the property with surface water features, the soils throughout the property, with the exception of a small area in the vicinity of Pivot 6, were determined to be in hydrologic soil Group D. Hydrogeologic Features There are generally five hydrogeologic units underlying the North Tract, those units being the surficial aquifer system, the intermediate confining unit, the upper Floridan aquifer, the middle confining unit, and the lower Floridan aquifer. In areas in which a confining layer is present, water falling on the surface of the land flows over the surface of the land or across the top of the confining layer. A surficial aquifer, with a relatively high perched water table, is created by the confinement and separation of surface waters from the upper strata of the Floridan aquifer. Surface waters are also collected in or conveyed by various surface water features, including perched wetlands, creeks, and streams. The preponderance of the evidence adduced at the final hearing demonstrates that the surficial aquifer exists on the property to a depth of up to 20 feet below the land surface (bls). Beneath the surficial aquifer is an intermediate confining unit of dense clay interspersed with beds of sand and calcareous clays that exists to a depth of up to 100 feet bls. The clay material observed on the North Tract is known as massive or structureless. Such clays are restrictive with very low levels of hydraulic conductivity, and are not conducive to development of preferential flow paths to the surficial or lower aquifers. The intermediate confining unit beneath the North Tract restricts the exchange of groundwater from the surficial aquifer to the upper Floridan aquifer. The upper Floridan aquifer begins at a depth of approximately 100 feet bls, and extends to a depth of approximately 340 feet bls. At about 340 feet bls, the upper Floridan aquifer transitions to the middle confining unit, which consists of finely grained, denser material that separates the interchange of water between the upper Floridan aquifer and the lower Floridan aquifer. Karst Features Karst features form as a result of water moving through rock that comprises the aquifer, primarily limestone, dissolving and forming conduits in the rock. Karst areas present a challenging environment to simulate through modeling. Models assume the subsurface to be a relatively uniform “sand box” through which it is easier to simulate groundwater flow. However, if the subsurface contains conduits, it becomes more difficult to simulate the preferential flows and their effect on groundwater flow paths and travel times. The District has designated parts of western Alachua County and western Marion County as a Sensitive Karst Area Basin. A Sensitive Karst Area is a location in which the porous limestone of the Floridan aquifer occurs within 20 feet of the land surface, and in which there is 10 to 20 inches of annual recharge to the Floridan aquifer. The designation of an area as being within the Sensitive Karst Area Basin does not demonstrate that it does, or does not, have subsurface features that are karstic in nature, or that would provide a connection between the surficial aquifer and the Floridan aquifer. The western portion of the North Tract is within the Sensitive Karst Area Basin. The two intensive-use areas on the North Tract that have associated stormwater facilities -- the cattle unloading area and the processing facility -- are outside of the Sensitive Karst Area Basin. The evidence was persuasive that karst features are more prominent to the west of the North Tract. In order to evaluate the presence of karst features on the North Tract, Mr. Andreyev performed a “desktop-type evaluation,” with a minimal field survey. The desktop review included a review of aerial photographs and an investigation of available data, including the Florida Geological Survey database of sinkhole occurrence in the area. The aerial photographs showed circular depressions suggestive of karst activity west and southwest of the North Tract, but no such depressions on the North Tract. Soil borings taken on the North Tract indicated the presence of layers of clayey sand, clays, and silts at a depth of 70 to 80 feet. Well-drilling logs taken during the development of the wells used for an aquifer performance test on the North Tract showed the limestone of the Floridan aquifer starting at a depth below ground surface of 70 to 80 feet. Other boring data generated on the North Tract suggests that there is greater than 100 feet of clay and sandy clay overburden above the Floridan aquifer on and in the vicinity of the North Tract. Regardless of site-specific differences, the observed confining layer separating the surficial aquifer from the Floridan aquifer is substantial, and not indicative of a karst environment. Aquifer performance tests performed on the North Tract were consistent in showing that drawdown in the surficial aquifer from the tests was minimal to non-detectable, which is strong evidence of an intact and low-permeability confining layer. The presence of well-developed drainage features on the North Tract is further evidence of a unit of confinement that is restricting water from going deeper into the subsurface, and forcing it to runoff to low-lying surface water features. Petitioners’ witnesses did not perform any site- specific analysis of karst features on or around the Sleepy Creek property. Their understanding of the nature of the karst systems in the region was described as “hypothetical or [] conceptual.” Dr. Kincaid admitted that he knew of no conduits on or adjacent to the North Tract. As a result of the data collected from the North Tract, Mr. Hearn opined that the potential for karst features on the property that provide an opening to the upper Floridan aquifer “is extremely remote.” Mr. Hearn’s opinion is consistent with the preponderance of the evidence in this case, and is accepted. In the event a surface karst feature were to manifest itself, Sleepy Creek has proposed that the surface feature be filled and plugged to reestablish the integrity of the confining layer. More to the point, the development of a surficial karst feature in an area influenced by irrigation would be sufficient grounds for the SJRWMD to reevaluate and modify the CUP to account for any changed conditions affecting the assumptions and bases for issuance of the CUP. Silver Springs, the Silver River, and the Ocklawaha River The primary, almost exclusive concern of Petitioners was the effect of the modified CUP and the nutrients from the proposed cattle ranch on Silver Springs, the Silver River, and the Ocklawaha River. Silver Springs Silver Springs has long been a well-known attraction in Florida. It is located just to the east of Ocala, Florida. Many of the speakers at the public comment period of this proceeding spoke fondly of having frequented Silver Springs over the years, enjoying its crystal clear waters through famous glass-bottomed boats. For most of its recorded history, Silver Springs was the largest spring by volume in Florida. Beginning in the 1970s, it began to lose its advantage, and by the year 2000, Rainbow Springs, located in southwestern Marion County, surpassed Silver Springs as the state’s largest spring. Silver Springs exists at the top of the potentiometric surface of the Floridan aquifer. Being at the “top of the mountain,” when water levels in the Floridan aquifer decline, groundwater flow favors the lower elevation springs. Thus, surrounding springshed boundaries expand to take more water to maintain their baseflows, at the expense of the Silver Springs springshed, which contracts. Rainbow Springs shares an overlapping springshed with Silver Springs. The analogy used by Dr. Knight was of the aquifer as a bucket with holes at different levels, and with the Silver Springs “hole” near the top of the bucket. When the water level in the bucket is high, water will flow from the top hole. As the water level drops below that hole, it will preferentially flow from the lower holes. Rainbow Springs has a vent or outlet from the aquifer, that is 10 feet lower in elevation than that of Silver Springs. Coastal springs are lower still. Thus, as groundwater levels decline, the lower springs “pirate flow” from the upper springs. Since the first major studies of Silver Springs were conducted in the 1950s, the ecosystem of Silver Springs has undergone changes. The water clarity, though still high as compared to other springs, has been reduced by 10 to 15 percent. Since the 1950s, macrophytic plants, i.e., rooted plants with seeds and flowers, have declined in population, while epiphytic and benthic algae have increased. Those plants are sensitive to increases in nitrogen in the water. Thus, Dr. Knight’s opinion that increases in nitrogen emerging from Silver Springs, calculated to have risen from just over 0.4 mg/l in the 1950s, to 1.1 mg/l in 2004, and to up to 1.5 mg/l at present,1/ have caused the observed vegetative changes is accepted. Silver River Silver Springs forms the headwaters for the Silver River, a spring run 5 1/2 miles in length, at which point it becomes a primary input to the Ocklawaha River. Issues of water clarity and alteration of the vegetative regime that exist at Silver Springs are also evident in the Silver River. In addition, the reduction in flow allows for more tannic water to enter the river, further reducing clarity. Dr. Dunn recognized the vegetative changes in the river, and opined that the “hydraulic roughness” caused by the increase in vegetation is likely creating a spring pool backwater at Silver Springs, thereby suppressing some of the flow from the spring. The Silver River has been designated as an Outstanding Florida Water. There are currently no Minimum Flows and Levels established by the District for the Silver River. Ocklawaha River The Ocklawaha River originates near Leesburg, Florida, at the Harris Chain of Lakes, and runs northward past Silver Springs. The Silver River is a major contributor to the flow of the Ocklawaha River. Due to the contribution of the Silver River and other spring-fed tributaries, the Ocklawaha River can take on the appearance of a spring run during periods of low rainfall. Historically, the Ocklawaha River flowed unimpeded to its confluence with the St. Johns River in the vicinity of Palatka, Florida. In the 1960s, as part of the Cross-Florida Barge Canal project, the Rodman Dam was constructed across the Ocklawaha River north of the Sleepy Creek property, creating a large reservoir known as the Rodman Pool. Dr. Knight testified convincingly that the Rodman Dam and Pool have altered the Ocklawaha River ecosystem, precipitating a decline in migratory fish populations and an increase in filamentous algae. At the point at which the Ocklawaha River flows past the Sleepy Creek property, it retains its free-flowing characteristics. Mill Creek, which has its headwaters on the North Tract, is a tributary of the Ocklawaha River. The Ocklawaha River, from the Eureka Dam south, has been designated as an Outstanding Florida Water. However, the Ocklawaha River at the point at which Mill Creek or other potential surface water discharges from the Sleepy Creek property might enter the river are not included in the Outstanding Florida Water designation. There are currently no Minimum Flows and Levels established by the District for the Ocklawaha River. The Silver Springs Springshed A springshed is that area from which a spring draws water. Unlike a surface watershed boundary, which is fixed based on land features, contours, and elevations, a springshed boundary is flexible, and changes depending on a number of factors, including rainfall. As to Silver Springs, its springshed is largest during periods of more abundant rainfall when the aquifer is replenished, and smaller during drier periods when groundwater levels are down, and water moves preferentially to springs and discharge points that are lower in elevation. The evidence in this case was conflicting as to whether the North Tract is in or out of the Silver Springs springshed boundary. Dr. Kincaid indicated that under some of the springshed delineations, part of the North Tract was out of the springshed, but over the total period of record, it is within the springshed. Thus, it was Dr. Kincaid’s opinion that withdrawals anywhere within the region will preferentially impact Silver Springs, though he admitted that he did not have the ability to quantify his opinion. Dr. Knight testified that the North Tract is within the Silver Springs “maximum extent” springshed at least part of the time, if not all the time. He did not opine as to the period of time in which the Silver Springs springshed was at its maximum extent. Dr. Bottcher testified that the North Tract is not within the Silver Springs springshed because there is a piezometric rise between North Tract and Silver Springs. Thus, in his opinion, withdrawals at the North Tract would not be withdrawing water going to Silver Springs. Dr. Dunn agreed that the North Tract is on the groundwater divide for Silver Springs. In his view, the North Tract is sometimes in, and sometimes out of the springshed depending on the potentiometric surface. In his opinion, the greater probability is that the North Tract is more often outside of the Silver Springs springshed, with seasonal and year—to—year variation. Dr. Dunn’s opinion provides the most credible explanation of the extent to which the North Tract sits atop that portion of the lower Floridan aquifer that feeds to Silver Springs. Thus, it is found that the groundwater divide exists to the south of the North Tract for a majority of the time, and water entering the Floridan aquifer from the North Tract will, more often than not, flow away from Silver Springs. Silver Springs Flow Volume The Silver Springs daily water discharge has been monitored and recorded since 1932. Over the longest part of the period of record, up to the 1960s, flows at Silver Springs averaged about 800 cubic feet per second (cfs). Through 1989, there was a reasonable regression between rainfall and springflow, based on average rainfalls. The long-term average rainfall in Ocala was around 50 inches per year, and long-term springflow was about 800 cfs, with deviations from average generally consistent with one another. Between 1990 and 1999, the relationship between rainfall and springflow declined by about 80 cubic feet per second. Thus, with average rainfall of 50 inches per year, the average springflow was reduced to about 720 cfs. From 2000 to 2009, there was an additional decline, such that the total cumulative decline for the 20-year period through 2009 was 250 cfs. Dr. Dunn agreed with Dr. Knight that after 2000, there was an abrupt and persistent reduction in flow of about 165 cfs. However, Dr. Dunn did not believe the post-2000 flow reduction could be explained by rainfall directly, although average rainfall was less than normal. Likewise, groundwater withdrawals did not offer an adequate explanation. Dr. Dunn described a natural 30-year cycle of wetter and drier periods known as the Atlantic Multidecadal Oscillation (AMO) that has manifested itself over the area for the period of record. From the 1940s up through 1970, the area experienced an AMO wet cycle with generally higher than normal rainfall at the Ocala rain station. For the next 30-year period, from 1970 up to 2000, the Ocala area ranged from a little bit drier to some years in which it was very, very dry. Dr. Dunn attributed the 80 cfs decline in Silver Springs flow recorded in the 1990s to that lower rainfall cycle. After 2000, when the next AMO cycle would be expected to build up, as it did post—1940, it did not happen. Rather, there was a particularly dry period around 2000 that Dr. Dunn believes to have had a dramatic effect on the lack of recovery in the post-2000 flows in the Silver River. According to Mr. Jenkins, that period of deficient rainfall extended through 2010. Around the year 2001, the relationship between rainfall and flow changed such that for a given amount of rainfall, there was less flow in the Silver River, with flow dropping to as low as 535 cfs after 2001. It is that reduction in flow that Dr. Knight has attributed to groundwater withdrawals. It should be noted that the observed flow of Silver Springs that formed the 1995 baseline conditions for the North Central Florida groundwater model that will be discussed herein was approximately 706 cfs. At the time of the final hearing in August 2014, flow at Silver Springs was 675 cfs. The reason offered for the apparent partial recovery was higher levels of rainfall, though the issue was not explored in depth. For the ten-year period centered on the year 2000, local water use within Marion and Alachua County, closer to Silver Springs, changed little -- around one percent per year. From a regional perspective, groundwater use declined at about one percent per year for the period from 1990 to 2010. The figures prepared by Dr. Knight demonstrate that the Sleepy Creek project area is in an area that has a very low density of consumptive use permits as compared to areas adjacent to Silver Springs and more clearly in the Silver Springs springshed. In Dr. Dunn’s opinion, there were no significant changes in groundwater use either locally or regionally that would account for the flow reduction in Silver Springs from 1990 to 2010. In that regard, the environmental report prepared by Dr. Dunn and submitted with the CUP modification application estimated that groundwater withdrawals accounted for a reduction in flow at Silver Springs of approximately 20 cfs as measured against the period of record up to the year 2000, with most of that reduction attributable to population growth in Marion County. In the March 2014, environmental impacts report, Dr. Dunn described reductions in the stream flow of not only the Silver River, but of other tributaries of the lower Ocklawaha River, including the upper Ocklawaha River at Moss Bluff and Orange Creek. However, an evaluation of the Ocklawaha River water balance revealed there to be additional flow of approximately 50 cfs coming into the Ocklawaha River at other stations. Dr. Dunn suggested that changes to the vent characteristics of Silver Springs, and the backwater effects of increased vegetation in the Silver River, have resulted in a redistribution of pressure to other smaller springs that discharge to the Ocklawaha River, accounting for a portion of the diminished flow at Silver Springs. The Proposed Cattle Operation Virtually all beef cattle raised in Florida, upon reaching a weight of approximately 875 pounds, are shipped to Texas or Kansas to be fattened on grain to the final body weight of approximately 1,150 pounds, whereupon they are slaughtered and processed. The United States Department of Agriculture has a certification for grass—fed beef which requires that, after an animal is weaned, it can only be fed on green forage crops, including grasses, and on corn and grains that are cut green and before they set seed. The forage crops may be grazed or put into hay or silage and fed when grass and forage is dormant. The benefit of grass feeding is that a higher quality meat is produced, with a corresponding higher market value. Sleepy Creek plans to develop the property as a grass- fed beef production ranch, with pastures and related loading/unloading and slaughter/processing facilities where calves can be fattened on grass and green grain crops to a standard slaughter weight, and then slaughtered and processed locally. By so doing, Sleepy Creek expects to save the transportation and energy costs of shipping calves to the Midwest, and to generate jobs and revenues by employing local people to manage, finish, and process the cattle. As they currently exist, pastures proposed for irrigation have been cleared and seeded, and have “fairly good grass production.” The purpose of the irrigation is to enhance the production and quality of the grass in order to maintain the quality and reliability of feed necessary for the production of grass-fed beef. East Tract Cattle Operation The East Tract is 1,242 acres in size, substantially all of which was previously cleared, irrigated, and used for sod production. The proposed CUP permit authorizes the irrigation of 611 acres of pasture under six existing center pivots. The remaining 631 acres will be used as improved, but unirrigated, pasture. Under the proposed permit, a maximum of 1,207 cattle would be managed on the East Tract. Of that number, 707 cattle would be grazed on the irrigated paddocks, and 500 cattle would be grazed on the unirrigated improved pastures. If the decision is made to forego irrigation on the East Tract, with the water allocation being used on the North Tract or not at all, the number of cattle grazed on the six center pivot pastures would be decreased from 707 cattle to 484 cattle. The historic use of the East Tract as a sod farm resulted in high phosphorus levels in the soil from fertilization, which has made its way to Daisy Creek. Sleepy Creek has proposed a cattle density substantially below that allowed by application of the formulae in the Nutrient Management Plan in order to “mine” the phosphorus levels in the soil over time. North Tract Cattle Operation The larger North Tract includes most of the “new” ranch activities, having no previous irrigation, and having been put to primarily silvicultural use with limited pasture prior to its acquisition by Sleepy Creek. The ranch’s more intensive uses, i.e., the unloading corrals and the slaughter house, are located on the North Tract. The North Tract is 7,207 acres in size. Of that, 1,656 acres are proposed for irrigation by means of 15 center- pivot irrigation systems. In addition to the proposed irrigated pastures, the North Tract includes 2,382 acres of unirrigated improved pasture, of which approximately 10 percent is wooded. Under the proposed permit, a maximum of 6,371 cattle would be managed on the North Tract. Of that number, 3,497 cattle would be grazed on the irrigated paddocks (roughly 2.2 head of cattle per acre), and 2,374 cattle would graze on the improved pastures (up to 1.1 head of cattle per acre). The higher cattle density in the irrigated pastures can be maintained due to the higher quality grass produced as a result of irrigation. The remaining 500 cattle would be held temporarily in high-concentration corrals, either after offloading or while awaiting slaughter. On average, there will be fewer than 250 head of cattle staged in those high-concentration corrals at any one time. In the absence of irrigation, the improved pasture on the North Tract could sustain about 4,585 cattle. Nutrient Management Plan, Water Conservation Plan, and BMPs The CUP and ERP applications find much of their support in the implementation of the Nutrient Management Plan (NMP), the Water Conservation Plan, and Best Management Practices (BMPs). The NMP sets forth information designed to govern the day to day operations of the ranch. Those elements of the NMP that were the subject of substantive testimony and evidence at the hearing are discussed herein. Those elements not discussed herein are found to have been supported by Sleepy Creek’s prima facie case, without a preponderance of competent and substantial evidence to the contrary. The NMP includes a herd management plan, which describes rotational grazing and the movement of cattle from paddock to paddock, and establishes animal densities designed to maintain a balance of nutrients on the paddocks, and to prevent overgrazing. The NMP establishes fertilization practices, with the application of fertilizer based on crop tissue analysis to determine need and amount. Thus, the application of nitrogen- based fertilizer is restricted to that capable of ready uptake by the grasses and forage crops, limiting the amount of excess nitrogen that might run off of the pastures or infiltrate past the root zone. The NMP establishes operation and maintenance plans that incorporate maintenance and calibration of equipment, and management of high-use areas. The NMP requires that records be kept of, among other things, soil testing, nutrient application, herd rotation, application of irrigation water, and laboratory testing. The irrigation plan describes the manner and schedule for the application of water during each irrigation cycle. Irrigation schedules for grazed and cropped scenarios vary from pivot to pivot based primarily on soil type. The center pivots proposed for use employ high-efficiency drop irrigation heads, resulting in an 85 percent system efficiency factor, meaning that there is an expected evaporative loss of 15 percent of the water before it becomes available as water in the soil. That level of efficiency is greater than the system efficiency factor of 80 percent established in CUP A.H. section 12.5.2. Other features of the irrigation plan include the employment of an irrigation manager, installation of an on-site weather station, and cumulative tracking of rain and evapotranspiration with periodic verification of soil moisture conditions. The purpose of the water conservation practices is to avoid over application of water, limiting over-saturation and runoff from the irrigated pastures. Sleepy Creek has entered into a Notice of Intent to Implement Water Quality BMPs with the Florida Department of Agriculture and Consumer Services which is incorporated in the NMP and which requires the implementation of Best Management Practices.2/ Dr. Bottcher testified that implementation and compliance with the Water Quality Best Management Practices manual creates a presumption of compliance with water quality standards. His testimony in that regard is consistent with Department of Agriculture and Consumer Services rule 5M-11.003 (“implementation, in accordance with adopted rules, of BMPs that have been verified by the Florida Department of Environmental Protection as effective in reducing target pollutants provides a presumption of compliance with state water quality standards.”). Rotational Grazing Rotational grazing is a practice by which cattle are allowed to graze a pasture for a limited period of time, after which they are “rotated” to a different pasture. The 1,656 acres proposed for irrigation on the North Tract are to be divided into 15 center-pivot pastures. Each individual pasture will have 10 fenced paddocks. The 611 acres of irrigated pasture on the East Tract are divided into 6 center-pivot pastures. The outer fence for each irrigated pasture is to be a permanent “hard” fence. Separating the internal paddocks will be electric fences that can be lowered to allow cattle to move from paddock to paddock, and then raised after they have moved to the new paddock. The NMP for the North Tract provides that cattle are to be brought into individual irrigated pastures as a single herd of approximately 190 cattle and placed into one of the ten paddocks. They will be moved every one to three days to a new paddock, based upon growing conditions and the reduction in grass height resulting from grazing. In this way, the cattle are rotated within the irrigated pasture, with each paddock being used for one to three days, and then rested until each of the other paddocks have been used, whereupon it will again be used in the rotation. The East Tract NMP generally provides for rotation based on the height of the pasture grasses, but is designed to provide a uniform average of cattle per acre per year. Due to the desire to “mine” phosphorus deposited during the years of operation of the East Tract as a sod farm, the density of cattle on the irrigated East Tract pastures is about 30 percent less than that proposed for the North Tract. The East Tract NMP calls for a routine pasture rest period of 15 to 30 days. Unlike dairy farm pastures, where dairy cows traverse a fixed path to the milking barn several times a day, there will be minimal “travel lanes” within the pastures or between paddocks. There will be no travel lanes through wetlands. If nitrogen-based fertilizer is needed, based upon tissue analysis of the grass, fertilizer is proposed for application immediately after a paddock is vacated by the herd. By so doing, the grass within each paddock will have a sufficient period to grow and “flush up” without grazing or traffic, which results in a high—quality grass when the cattle come back around to feed. Sleepy Creek proposes that rotational grazing is to be practiced on improved pastures and irrigated pastures alike. The rotational practices on the improved East Tract and North Tract pastures are generally similar to those practiced on the irrigated pastures. The paddocks will have permanent watering troughs, with one trough serving two adjacent paddocks. The troughs will be raised to prevent “boggy areas” from forming around the trough. Since the area around the troughs will be of a higher use, Sleepy Creek proposes to periodically remove accumulated manure, and re-grade if necessary. Other cattle support items, including feed bunkers and shade structures are portable and can be moved as conditions demand. Forage Crop Production The primary forage crop on the irrigated pastures is to be Bermuda grass. Bermuda grass or other grass types tolerant of drier conditions will be used in unirrigated pastures. During the winter, when Bermuda grass stops growing, Sleepy Creek will overseed the North Tract pastures with ryegrass or other winter crops. Due to the limitation on irrigation water, the East Tract NMP calls for no over-seeding for production of winter crops. Crops do not grow uniformly during the course of a year. Rather, there are periods during which there are excess crops, and periods during which the crops are not growing enough to keep up with the needs of the cattle. During periods of excess, Sleepy Creek will cut those crops and store them as haylage to be fed to the cattle during lower growth periods. The North Tract management plan allows Sleepy Creek to dedicate one or more irrigated pastures for the exclusive production of haylage. If that option is used, cattle numbers will be reduced in proportion to the number of pastures dedicated to haylage production. As a result of the limit on irrigation, the East Tract NMP does not recommend growing supplemental feed on dedicated irrigation pivot pastures. Direct Wetland Impacts Approximately 100 acres proposed for irrigation are wetlands or wetland buffer. Those areas are predominantly isolated wetlands, though some have surface water connections to Mill Creek, a water of the state. Trees will be cut in the wetlands to allow the pivot to pass overhead. Tree cutting is an exempt agricultural activity that does not require a permit. There was no persuasive evidence that cutting trees will alter the fundamental benefit of the wetlands or damage water resources of the District. The wetlands and wetland buffer will be subject to the same watering and fertigation regimen as the irrigated pastures. The application of water to wetlands, done concurrently with the application of water to the pastures, will occur during periods in which the pasture soils are dry. The incidental application of water to the wetlands during dry periods will serve to maintain hydration of the wetlands, which is considered to be a benefit. Fertilizers will be applied through the irrigation arms, a process known as fertigation. Petitioners asserted that the application of fertilizer onto the wetlands beneath the pivot arms could result in some adverse effects to the wetlands. However, Petitioners did not quantify to what extent the wetlands might be affected, or otherwise describe the potential effects. Fertigation of the wetlands will promote the growth of wetland plants. Nitrogen applied through fertigation will be taken up by plants, or will be subject to denitrification -- a process discussed in greater detail herein -- in the anaerobic wetland soils. The preponderance of the evidence indicated that enhanced wetland plant growth would not rise to a level of concern. Since most of the affected wetlands are isolated wetlands, there is expected to be little or no discharge of nutrients from the wetlands. Even as to those wetlands that have a surface water connection, most, if not all of the additional nitrogen applied through fertigation will be accounted for by the combined effect of plant uptake and denitrification. Larger wetland areas within an irrigated pasture will be fenced at the buffer line to prevent cattle from entering. The NMP provided a blow-up of the proposed fencing related to a larger wetland on Pivot 8. Although other figures are not to the same scale, it appears that larger wetlands associated with Pivots 1, 2, 3, and 12 will be similarly fenced. Cattle would be allowed to go into the smaller, isolated wetlands. Cattle going into wetlands do not necessarily damage the wetlands. Any damage that may occur is a function of density, duration, and the number of cattle. The only direct evidence of potential damage to wetlands was the statement that “[i]f you have 6,371 [cattle] go into a wetland, there may be impacts.” The NMP provides that pasture use will be limited to herds of approximately 190 cattle, which will be rotated from paddock to paddock every two to three days, and which will allow for “rest” periods of approximately 20 days. There will be no travel lanes through any wetland. Thus, there is no evidence to support a finding that the cattle at the density, duration, and number proposed will cause direct adverse effects to wetlands on the property. High Concentration Areas Cattle brought to the facility are to be unloaded from trucks and temporarily corralled for inspection. For that period, the cattle will be tightly confined. Cattle that have reached their slaughter weight will be temporarily held in corrals associated with the processing plant. The stormwater retention ponds used to capture and store runoff from the offloading corral and the processing plant holding corral are part of a normal and customary agricultural activity, and are not part of the applications and approvals that are at issue in this proceeding. The retention ponds associated with the high-intensity areas do not require permits because they do not exceed one acre in size or impound more than 40 acre-feet of water. Nonetheless, issues related to the retention ponds were addressed by Petitioners and Sleepy Creek, and warrant discussion here. The retention ponds are designed to capture 100 percent of the runoff and entrained nutrients from the high concentration areas for a minimum of a 24—hour/25—year storm event. If rainfall occurs in excess of the designed storm, the design is such that upon reaching capacity, only new surface water coming to the retention pond will be discharged, and not that containing high concentrations of nutrients from the initial flush of stormwater runoff. Unlike the stormwater retention berms for the pastures, which are to be constructed from the first nine inches of permeable topsoil on the property, the corral retention ponds are to be excavated to a depth of six feet which, based on soil borings in the vicinity, will leave a minimum of two to four feet of clay beneath the retention ponds. In short, the excavation will penetrate into the clay layer underlying the pond sites, but will not penetrate through that layer. The excavated clay will be used to form the side slopes of the ponds, lining the permeable surficial layer and generally making the ponds impermeable. Organic materials entering the retention ponds will form an additional seal. An organic seal is important in areas in which retention ponds are constructed in sandy soil conditions. Organic sealing is less important in this case, where clay forms the barrier preventing nutrients from entering the surficial aquifer. Although the organic material is subject to periodic removal, the clay layer will remain to provide the impermeable barrier necessary to prevent leakage from the ponds. Dr. Bottcher testified that if, during excavation of the ponds, it was found that the remaining in-situ clay layer was too thin, Sleepy Creek would implement the standard practice of bringing additional clay to the site to ensure adequate thickness of the liner. Nutrient Balance The goal of the NMP is to create a balance of nutrients being applied to and taken up from the property. Nitrogen and phosphorus are the nutrients of primary concern, and are those for which specific management standards are proposed. Nutrient inputs to the NMP consist generally of deposition of cattle manure (which includes solid manure and urine), recycling of plant material and roots from the previous growing season, and application of supplemental fertilizer. Nutrient outputs to the NMP consist generally of volatization of ammonia to the atmosphere, uptake and utilization of the nutrients by the grass and crops, weight gain of the cattle, and absorption and denitrification of the nutrients in the soil. The NMP, and the various models discussed herein, average the grass and forage crop uptake and the manure deposition to match that of a 1,013 pound animal. That average weight takes into account the fact that cattle on the property will range from calf weight of approximately 850 pounds, to slaughter weight of 1150 pounds. Nutrients that are not accounted for in the balance, e.g., those that become entrained in stormwater or that pass through the plant root zone without being taken up, are subject to runoff to surface waters or discharge to groundwater. Generally, phosphorus not taken up by crops remains immobile in the soil. Unless there is a potential for runoff to surface waters, the nutrient balance is limited by the amount of nitrogen that can be taken up by the crops. Due to the composition of the soils on the property, the high water table, and the relatively shallow confining layer, there is a potential for surface runoff. Thus, the NMP was developed using phosphorus as the limiting nutrient, which results in nutrient application being limited by the “P-index.” A total of 108 pounds of phosphorus per acre/per year can be taken up and used by the irrigated pasture grasses and forage crops. Therefore, the total number of cattle that can be supported on the irrigated pastures is that which, as a herd, will deposit an average of 108 pounds of phosphorus per year over the irrigated acreage. Therefore, Sleepy Creek has proposed a herd size and density based on calculations demonstrating that the total phosphorus contained in the waste excreted by the cattle equals the amount taken up by the crops. A herd producing 108 pounds per acre per year of phosphorus is calculated to produce 147 pounds of nitrogen per acre per year. The Bermuda grass and forage crops proposed for the irrigated fields require 420 pounds of nitrogen per acre per year. As a result of the nitrogen deficiency, additional nitrogen-based fertilizer to make up the shortfall is required to maintain the crops. Since phosphorus needs are accounted for by animal deposition, the fertilizer will have no phosphorus. The NMP requires routine soil and plant tissue tests to determine the amount of nitrogen fertilizer needed. By basing the application of nitrogen on measured rather than calculated needs, variations in inputs, including plant decomposition and atmospheric deposition, and outputs, including those affected by weather, can be accounted for, bringing the full nutrient balance into consideration. The numeric values for crop uptakes, manure deposition, and other estimates upon which the NMP was developed were based upon literature, values, and research performed and published by the University of Florida and the Natural Resource Conservation Service. Dr. Bottcher testified convincingly that the use of such values is a proven and reliable method of developing a balance for the operation of similar agricultural operations. A primary criticism of the NMP was its expressed intent to “reduce” or “minimize” the transport of nutrients to surface waters and groundwater, rather than to “negate” or “prevent” such transport. Petitioners argue that complete prevention of the transport of nutrients from the property is necessary to meet the standards necessary for issuance of the CUP and ERP. Mr. Drummond went into some detail regarding the total mass of nutrients expected to be deposited onto the ground from the cattle, exclusive of fertilizer application. In the course of his testimony, he suggested that the majority of the nutrients deposited on the land surface “are going to make it to the surficial aquifer and then be carried either to the Floridan or laterally with the groundwater flow.” However, Mr. Drummond performed no analysis on the fate of nitrogen through uptake by crops, volatization, or soil treatment, and did not quantify the infiltration of nitrogen to groundwater. Furthermore, he was not able to provide any quantifiable estimate on any effect of nutrients on Mill Creek, the Ocklawaha River, or Silver Springs. In light of the effectiveness of the nutrient balance and other elements of the NMP, along with the retention berm system that will be discussed herein, Mr. Drummond’s assessment of the nutrients that might be expected to impact water resources of the District is contrary to the greater weight of the evidence. Mr. Drummond’s testimony also runs counter to that of Dr. Kincaid, who performed a particle track analysis of the fate of water recharge from the North Tract. In short, Dr. Kincaid calculated that of the water that makes it as recharge from the North Tract to the surficial aquifer, less than one percent is expected to make its way to the upper Floridan aquifer, with that portion originating from the vicinity of Pivot 6. Recharge from the other 14 irrigated pastures was ultimately accounted for by evapotranspiration or emerged at the surface and found its way to Mill Creek. The preponderance of the competent, substantial evidence adduced at the final hearing supports the effectiveness of the NMPs for the North Tract and East Tract at managing the application and use of nutrients on the property, and minimizing the transport of nutrients to surface water and groundwater resources of the District. North Central Florida Model All of the experts involved in this proceeding agreed that the use of groundwater models is necessary to simulate what might occur below the surface of the ground. Models represent complex systems by applying data from known conditions and impacts measured over a period of years to simulate the effects of new conditions. Models are imperfect, but are the best means of predicting the effects of stresses on complex and unseen subsurface systems. The North Central Florida (NCF) model is used to simulate impacts of water withdrawals on local and regional groundwater levels and flows. The NCF model simulates the surficial aquifer, the upper Floridan aquifer, and the lower Floridan aquifer. Those aquifers are separated from one another by relatively impervious confining units. The intermediate confining unit separates the surficial aquifer from the upper Floridan aquifer. The intermediate confining unit is not present in all locations simulated by the NCF model. However, the evidence is persuasive that the intermediate confining unit is continuous at the North Tract, and serves to effectively isolate the surficial aquifer from the upper Floridan aquifer. The NCF model is not a perfect depiction of what exists under the land surface of the North Tract or elsewhere. It was, however, acknowledged by the testifying experts in this case, despite disagreements as to the extent of error inherent in the model, to be the best available tool for calculating the effects of withdrawals of water within the boundary of the model. The NCF model was developed and calibrated over a period of years, is updated routinely as data becomes available, and has undergone peer review. Aquifer Performance Tests In order to gather site-specific data regarding the characteristics of the aquifer beneath the Sleepy Creek property, a series of three aquifer performance tests (APTs) was conducted on the North Tract. The first two tests were performed by Sleepy Creek, and the third by the District. An APT serves to induce stress on the aquifer by pumping from a well at a high rate. By observing changes in groundwater levels in observation wells, which can be at varying distances from the extraction well, one can extrapolate the nature of the subsurface. In addition, well-completion reports for the various withdrawal and observation wells provide actual data regarding the composition of subsurface soils, clays, and features of the property. The APT is particularly useful in evaluating the ability of the aquifer to produce water, and in calculating the transmissivity of the aquifer. Transmissivity is a measure of the rate at which a substance passes through a medium and, as relevant to this case, measures how groundwater flows through an aquifer. The APTs demonstrated that the Floridan aquifer is capable of producing water at the rate requested. The APT drawdown contour measured in the upper Floridan aquifer was greater than that predicted from a simple run of the NCF model, but the lateral extent of the drawdown was less than predicted. The most reasonable conclusion to be drawn from the combination of greater than expected drawdown in the upper Floridan aquifer with less than expected extent is that the transmissivity of the aquifer beneath the North Tract is lower than the NCF model assumptions. The conclusion that the transmissivity of the aquifer at the North Tract is lower than previously estimated means that impacts from groundwater extraction would tend to be more vertical than horizontal, i.e., the drawdown would be greater, but would be more localized. As such, for areas of lower than estimated transmissivity, modeling would over-estimate off-site impacts from the extraction. NCF Modeling Scenarios The initial NCF modeling runs were based on an assumed withdrawal of 2.39 mgd, an earlier -- though withdrawn - - proposal. The evidence suggests that the simulated well placement for the 2.39 mgd model run was entirely on the North Tract. Thus, the results of the model based on that withdrawal have some limited relevance, especially given that the proposed CUP allows for all of the requested 1.46 mgd of water to be withdrawn from North Tract wells at the option of Sleepy Creek, but will over-predict impacts from the permitted rate of withdrawal. A factor that was suggested as causing a further over-prediction of drawdown in the 2.39 mgd model run was the decision, made at the request of the District, to exclude the input of data of additional recharge to the surficial aquifer, wetlands and surface waters from the irrigation, and the resulting diminution in soil storage capacity. Although there is some merit to the suggestion that omitting recharge made the model results “excessively conservative,” the addition of recharge to the model would not substantially alter the predicted impacts. A model run was subsequently performed based on a presumed withdrawal of 1.54 mgd, a rate that remains slightly more than, but still representative of, the requested amount of 1.46 mgd. The 1.54 mgd model run included an input for irrigation recharge. The simulated extraction points were placed on the East Tract and North Tract in the general configuration as requested in the CUP application. The NCF is designed to model the impacts of a withdrawal based upon various scenarios, identified at the hearing as Scenarios A, B, C, and D. Scenario A is the baseline condition for the NCF model, and represents the impacts of all legal users of water at their estimated actual flow rates as they existed in 1995. Scenario B is all existing users, not including the applicant, at end-of-permit allocations. Scenario C is all existing users, including the applicant, at current end-of-permit allocations. Scenario D is all permittees at full allocation, except the applicant which is modeled at the requested (i.e., new or modified) end-of-permit allocation. To simulate the effects of the CUP modification, simulations were performed on scenarios A, C, and D. In order to measure the specific impact of the modification of the CUP, the Scenario C impacts to the surficial, upper Floridan, and lower Floridan aquifers were compared with the Scenario D impacts to those aquifers. In order to measure the cumulative impact of the CUP, the Scenario A actual-use baseline condition was compared to the Scenario D condition which predicts the impacts of all permitted users, including the applicant, pumping at full end-of-permit allocations. The results of the NCF modeling indicate the following: 2.39 mgd - Specific Impact The surficial aquifer drawdown from the simulated 2.39 mgd withdrawal was less than 0.05 feet on-site and off- site, except to the west of the North Tract, at which a drawdown of 0.07 feet was predicted. The upper Floridan aquifer drawdown from the 2.39 mgd withdrawal was predicted at between 0.30 and 0.12 feet on-site, and between 0.30 and 0.01 feet off-site. The higher off-site figures are immediately proximate to the property. The lower Floridan aquifer drawdown from the 2.39 mgd withdrawal was predicted at less than 0.05 feet at all locations, and at or less than 0.02 feet within six miles of the North Tract. 2.39 mgd - Cumulative Impact The cumulative impact to the surficial aquifer from all permitted users, including a 2.39 mgd Sleepy Creek withdrawal, was less than 0.05 feet on-site, and off-site to the north and east, except to the west of the North Tract, at which a drawdown of 0.07 feet was predicted. The cumulative impact to the upper Floridan aquifer from all permitted users, including a 2.39 mgd Sleepy Creek withdrawal, ranged from 0.4 feet to 0.8 feet over all pertinent locations. The cumulative impact to the lower Floridan aquifer from all permitted users, including a 2.39 mgd Sleepy Creek withdrawal, ranged from 1.0 to 1.9 feet over all pertinent locations. The conclusion drawn by Mr. Andreyev that the predicted impacts to the lower Floridan are almost entirely from other end-of-permit user withdrawals is supported by the evidence and accepted. 1.54 mgd - Specific Impact The NCF model runs based on the more representative 1.54 mgd withdrawal predicted a surficial aquifer drawdown of less than 0.01 feet (i.e., no drawdown contour shown) on the North Tract, and a 0.01 to 0.02 foot drawdown at the location of the East Tract. The drawdown of the upper Floridan aquifer from the CUP modification was predicted at up to 0.07 feet on the property, and generally less than 0.05 feet off-site. There were no drawdown contours at the minimum 0.01 foot level that came within 9 miles of Silver Springs. The lower Floridan aquifer drawdown from the CUP modification was predicted at less than 0.01 feet (i.e., no drawdown contour shown) at all locations. 1.54 mgd - Cumulative Impact A comparison of the cumulative drawdown contours for the 2.36 mgd model and 1.54 mgd model show there to be a significant decrease in predicted drawdowns to the surficial and upper Floridan aquifers, with the decrease in the upper Floridan aquifer drawdown being relatively substantial, i.e., from 0.5 to 0.8 feet on-site predicted for the 2.36 mgd withdrawal, to 0.4 to 0.5 feet on-site for the 1.54 mgd model. Given the small predicted individual impact of the CUP on the upper Floridan aquifer, the evidence is persuasive that the cumulative impacts are the result of other end-of-permit user withdrawals. The drawdown contour for the lower Floridan aquifer predicted by the 1.54 mgd model is almost identical to that of the 2.36 mgd model, thus supporting the conclusion that predicted impacts to the lower Floridan are almost entirely from other end-of-permit user withdrawals. Modeled Effect on Silver Springs As a result of the relocation of the extraction wells from the East Tract to the North Tract, the NCF model run at the 1.54 mgd withdrawal rate predicted springflow at Silver Springs to increase by 0.15 cfs. The net cumulative impact in spring flow as measured from 1995 conditions to the scenario in which all legal users, including Sleepy Creek, are pumping at full capacity at their end-of-permit rates for one year3/ is roughly 35.4 cfs, which is approximately 5 percent of Silver Springs’ current flow. However, as a result of the redistribution of the Sleepy Creek withdrawal, which is, in its current iteration, a legal and permitted use, the cumulative effect of the CUP modification at issue is an increase in flow of 0.l5 cfs. Dr. Kincaid agreed that there is more of an impact to Silver Springs when the pumping allowed by the CUP is located on the East Tract than there is on the North Tract, but that the degree of difference is very small. Dr. Knight testified that effect on the flow of Silver Springs from relocating the 1.46 mgd withdrawal from the East Tract to the North Tract would be “zero.” The predicted increase of 0.15 cfs is admittedly miniscule when compared to the current Silver Springs springflow of approximately 675 cfs. However, as small as the modeled increase may be -- perhaps smaller than its “level of certainty” -- it remains the best evidence that the impact of the CUP modification to the flow of Silver Springs will be insignificant at worst, and beneficial at best. Opposition to the NCF Model Petitioners submitted considerable evidence designed to call the results generated by the District’s and Sleepy Creek’s NCF modeling into question. Karst Features A primary criticism of the validity of the NCF model was its purported inability to account for the presence of karst features, including conduits, and their effect on the results. It was Dr. Kincaid’s opinion that the NCF model assigned transmissivity values that were too high, which he attributed to the presence of karst features that are collecting flow and delivering it to springs. He asserted that, instead of assuming the presence of karst features, the model was adjusted to raise the overall capacity of the porous medium to transmit water, and thereby match the observed flows. In his opinion, the transmissivity values of the equivalent porous media were raised so much that the model can no longer be used to predict drawdowns. That alleged deficiency in the model is insufficient for two reasons. First, as previously discussed in greater detail, the preponderance of the evidence in this case supports a finding that there are no karst features in the vicinity of the North Tract that would provide preferential pathways for water flow so as to skew the results of the NCF model. Second, Dr. Kincaid, while acknowledging that the NCF model is the best available tool for predicting impacts from groundwater extraction on the aquifer, suggested that a hybrid porous media and conduit model would be a better means of predicting impacts, the development of which would take two years or more. There is no basis for the establishment of a de facto moratorium on CUP permitting while waiting for the development of a different and, in this case, unnecessary model. For the reasons set forth herein, it is found that the NCF model is sufficient to accurately and adequately predict the effects of the Sleepy Creek groundwater withdrawals on the aquifers underlying the property, and to provide reasonable assurance that the standards for such withdrawals have been met. Recharge to the Aquifer Petitioners argued that the modeling results showing little significant drawdown were dependent on the application of unrealistic values for recharge or return flow from irrigation. In a groundwater model, as in the physical world, some portion of the water extracted from the aquifer is predicted to be returned to the aquifer as recharge. If more water is applied to the land surface than is being accounted for by evaporation, plant uptake and evapotranspiration, surface runoff, and other processes, that excess water may seep down into the aquifer as recharge. Recharge serves to replenish the aquifer and offset the effects of the groundwater withdrawal. Dr. Kincaid opined that the NCF modeling performed for the CUP application assigned too much water from recharge, offsetting the model's prediction of impacts to other features. It is reasonable to assume that there is some recharge associated with both agricultural and public supply uses. However, the evidence suggests that the impact of recharge on the overall NCF model results is insignificant on the predicted impacts to Silver Springs, the issue of primary concern. Mr. Hearn ran a simulation using the NCF model in which all variables were held constant, except for recharge. The difference between the “with recharge” and “without recharge" simulations at Silver Springs was 0.002 cfs. That difference is not significant, and is not suggestive of adverse impacts on Silver Springs from the CUP modification. Dr. Kincaid testified that “the recharge offset on the property is mostly impacting the surficial aquifer,” and that “the addition of recharge in this case didn't have much of an impact on the upper Floridan aquifer system.” As such, the effect of adding recharge to the model would be as to the effect of groundwater withdrawal on wetlands or surface water bodies, and not on springs. As previously detailed, the drawdown of the surficial aquifer simulated for the 2.39 mgd “no recharge” scenario were less than 0.05 feet on-site and off-site, except for a predicted 0.07 foot drawdown to the west of the North Tract. The predicted drawdown of the surficial aquifer for the 1.54 mgd “with recharge” scenario was 0.02 feet or less. The preponderance of the evidence supports a finding that drawdowns of either degree are less than that at which adverse impacts to wetlands or surface waters would occur. Thus, issues related to the recharge or return flows from irrigation are insufficient to support a finding or conclusion that the NCF model failed to provide reasonable assurance that the standards for issuance of the CUP modification were met. External Boundaries The boundaries of the NCF model are not isolated from the rest of the physical world. Rather, groundwater flows into the modeled area from multiple directions, and out of the modeled area in multiple directions. Inflows to the model area are comprised of recharge, which is an assigned value, and includes water infiltrating and recharging the aquifer from surface waters; injection wells; upward and downward leakage from lower aquifers; and flow across the external horizontal boundaries. Outflows from the model area include evapotranspiration; discharge to surface waters, including springs and rivers; extraction from wells; upward and downward leakage from lower aquifers; and flow against the external model boundaries. Dr. Kincaid testified that flow across the external model boundary is an unknown and unverifiable quantity which increases the uncertainty in the model. He asserted that in the calibrated version of the model, there is no way to check those flows against data. His conclusion was that the inability of the NCF model to accurately account for external boundary flow made the margin of error so great as to make the model an unreliable tool with which to assess whether the withdrawal approved by the proposed CUP modification will increase or decrease drawdown at Silver Springs. The District correlates the NCF model boundaries with a much larger model developed by the United States Geological Survey, the Peninsula of Florida Model, more commonly referred to as the Mega Model, which encompasses most of the State of Florida and part of Southeast Georgia. The Mega Model provides a means to acknowledge that there are stresses outside the NCF model, and to adjust boundary conditions to account for those stresses. The NCF is one of several models that are subsets of the Mega Model, with the grids of the two models being “nested” together. The 1995 base year of the NCF model is sufficiently similar to the 1993-1994 base year of the Mega Model as to allow for a comparison of simulated drawdowns calculated by each of the models. By running a Mega Model simulation of future water use, and applying the change in that use from 1993 base year conditions, the District was able to come to a representative prediction of specific boundary conditions for the 1995 NCF base year, which were then used as the baseline for simulations of subsequent conditions. In its review of the CUP modification, the District conducted a model validation simulation to measure the accuracy of the NCF model against observed conditions, with the conditions of interest being the water flow at Silver Springs. The District ran a simulation using the best information available as to water use in the year 2010, the calculated boundary conditions, irrigation, pumping, recharge, climatic conditions, and generally “everything that we think constitutes that year.” The discharge of water at Silver Springs in 2010 was measured at 580 cfs. The discharge simulated by the NCF model was 545 cfs. Thus, the discharge predicted by the NCF model simulation was within six percent of the observed discharge. Such a result is generally considered in the modeling community to be “a home run.” Petitioners’ objections to the calculation of boundary conditions for the NCF model are insufficient to support a finding that the NCF model is not an appropriate and accurate tool for determining that reasonable assurance has been provided that the standards for issuance of the CUP modification were met. Cumulative Impact Error As part of the District’s efforts to continually refine the NCF, and in conjunction with a draft minimum flows and levels report for Silver Springs and the Silver River, the cumulative NCF model results for the period of baseline to 2010 were compared with the simulated results from the Northern District Model (NDF), a larger model that overlapped the NCF. As a result of the comparison, which yielded different results, it was discovered that the modeler had “turned off” not only the withdrawal pumps, but inputs to the aquifer from drainage wells and sinkholes as well. When those inputs were put back into the model run, and effects calculated only from withdrawals between the “pumps-off” condition and 2010 pumping conditions, the cumulative effect of the withdrawals was adjusted from a reduction in the flow at Silver Springs of 29 cfs to a reduction of between 45 and 50 cfs, an effect described as “counterintuitive.” Although that result has not undergone peer review, and remains subject to further review and comparison with the Mega Model, it was accepted by the District representative, Mr. Bartol. Petitioners seized upon the results of the comparison model run as evidence of the inaccuracy and unreliability of the NCF model. However, the error in the NCF model run was not the result of deficiencies in the model, but was a data input error. Despite the error in the estimate of the cumulative effect of all users at 2010 levels, the evidence in this case does not support a finding that the more recent estimates of specific impact from the CUP at issue were in error. NCF Model Conclusion As has been discussed herein, a model is generally the best means by which to calculate conditions and effects that cannot be directly observed. The NCF model is recognized as being the best tool available for determining the subsurface conditions of the model domain, having been calibrated over a period of years and subject to peer review. It should be recognized that the simulations run using the NCF model represent the worst—case scenario, with all permittees simultaneously drawing at their full end-of-permit allocations. There is merit to the description of that occurrence as being “very remote.” Thus, the results of the modeling represent a conservative estimate of potential drawdown and impacts. While the NCF model is subject to uncertainty, as is any method of predicting the effects of conditions that cannot be seen, the model provides reasonable assurance that the conditions simulated are representative of the conditions that will occur as a result of the withdrawals authorized by the CUP modification. Environmental Resource Permit The irrigation proposed by the CUP will result in runoff from the North Tract irrigated pastures in excess of that expected from the improved pastures, due in large measure to the diminished storage capacity of the soil. Irrigation water will be applied when the soils are dry, and capable of absorbing water not subject to evaporation or plant uptake. The irrigation water will fill the storage space that would exist without irrigation. With irrigation water taking up the capacity of the soil to hold water, soils beneath the irrigation pivots will be less capable of retaining additional moisture during storm events. Thus, there is an increased likelihood of runoff from the irrigated pastures over that expected with dry soils. The increase in runoff is expected to be relatively small, since there should be little or no irrigation needed during the normal summer wet season. The additional runoff may have increased nutrient levels due to the increased cattle density made possible by the irrigation of the pastures. The CUP has a no—impact requirement for water quality resulting from the irrigation of the improved pasture. Thus, nutrients leaving the irrigated pastures may not exceed those calculated to be leaving the existing pre-development use as improved pastures. Retention Berms The additional runoff and nutrient load is proposed to be addressed by constructing a system of retention berms, approximately 50,0004/ feet in length, which is intended to intercept, retain, and provide treatment for runoff from the irrigated pasture. The goal of the system is to ensure that post—development nutrient loading from the proposed irrigated pastures will not exceed the pre—development nutrient loading from the existing improved pastures. An ERP permit is required for the construction of the berm system, since the area needed for the construction of the berms is greater than the one acre in size, and since the berms have the capability of impounding more than 40 acre-feet of water. The berms are to be constructed by excavating the top nine inches of sandy, permeable topsoil and using that permeable soil to create the berms, which will be 1 to 2 feet in height. The water storage areas created by the excavation will have flat or horizontal bottoms, and will be very shallow with the capacity to retain approximately a foot of water. The berms will be planted with pasture grasses after construction to provide vegetative cover. The retention berm system is proposed to be built in segments, with the segment designed to capture runoff from a particular center pivot pasture to be constructed prior to the commencement of irrigation from that center pivot. A continuous clay layer underlies the areas in which the berms are to be constructed. The clay layer varies from 18 to 36 inches below the ground surface, with at least one location being as much as five feet below the ground surface. As such, after nine inches of soil is scraped away to create the water retention area and construct the berm, there will remain a layer of permeable sandy material above the clay. The berms are to be constructed at least 25 feet landward of any jurisdictional wetland, creating a “safe upland line.” Thus, the construction, operation, and maintenance of the retention berms and redistribution swales will result in no direct impacts to jurisdictional wetlands or other surface waters. There will be no agricultural activities, e.g., tilling, planting, or mowing, within the 25-foot buffers, and the buffers will be allowed to establish with native vegetation to provide additional protection for downgradient wetlands. As stormwater runoff flows from the irrigated pastures, it may, in places, create concentrated flow ways. Redistribution swales will be built in those areas to spread any remaining overland flow of water and reestablish sheet flow to the retention berm system. At any point at which water may overtop a berm, the berm will be hardened with rip—rap to insure its integrity. The berms are designed to intercept and collect overland flow from the pastures and temporarily store it behind the berms, regaining the soil storage volume lost through irrigation. A portion of the runoff intercepted by the berm system will evaporate. The majority will infiltrate either through the berm, or vertically into the subsurface soils beneath it. When the surficial soils become saturated, further vertical movement will be stopped by the impermeable clay layer underlying the site. The runoff water will then move horizontally until it reemerges into downstream wetland systems. Thus, the berm system is not expected to have a measurable impact on the hydroperiod of the wetlands on the North Tract. Phosphorus Removal Phosphorus tends to get “tied up” in soil as it moves through it. Phosphorus reduction occurs easily in permeable soil systems because it is removed from the water through a chemical absorption process that is not dependent on the environment of the soil. As the soils in the retention areas and berms go through drying cycles, the absorption capacity is regenerated. Thus, the retention system will effectively account for any increase in phosphorus resulting from the increased cattle density allowed by the irrigation such that there is expected to be no increase in phosphorus levels beyond the berm. Nitrogen Removal When manure is deposited on the ground, primarily as high pH urine, the urea is quickly converted to ammonia, which experiences a loss of 40 to 50 percent of the nitrogen to volatization. Soil conditions during dry weather conditions are generally aerobic. Remaining ammonia in the manure is converted by aerobic bacteria in the soil to nitrates and nitrites. Converted nitrates and nitrites from manure, along with nitrogen from fertilizer, is readily available for uptake as food by plants, including grasses and forage crops. Nitrates and nitrites are mobile in water. Therefore, during rain events of sufficient intensity to create runoff, the nitrogen can be transported downstream towards wetlands and other receiving waters, or percolate downward through the soil until blocked by an impervious barrier. During storm events, the soils above the clay confining layer and the lower parts of the pervious berms become saturated. Those saturated soils are drained of oxygen and become anaerobic. When nitrates and nitrites encounter saturated conditions, they provide food for anaerobic bacteria that exist in those conditions. The bacteria convert nitrates and nitrites to elemental nitrogen, which has no adverse impact on surface waters or groundwater. That process, known as denitrification, is enhanced in the presence of organic material. The soils from which the berms are constructed have a considerable organic component. In addition to the denitrification that occurs in the saturated conditions in and underlying the berms, remaining nitrogen compounds that reemerge into the downstream wetlands are likely to encounter organic wetland-type soil conditions. Organic wetland soils are anaerobic in nature, and will result in further, almost immediate denitrification of the nitrates and nitrites in the emerging water. Calculation of Volume - BMPTRAINS Model The calculation of the volume necessary to capture and store excess runoff from the irrigated pastures was performed by Dr. Wanielista using the BMPTRAINS model. BMPTRAINS is a simple, easy to use spreadsheet model. Its ease of use does not suggest that it is less than reliable. The model has been used as a method of calculating storage volumes in many conditions over a period of more than 40 years. The model was used to calculate the storage volumes necessary to provide storage and treatment of runoff from fifteen “basins” that had a control or a Best Management Practice associated with them. All of the basins were calculated as being underlain by soils in poorly-drained hydrologic soil Group D, except for the basin in the vicinity of Pivot 6, which is underlain by the more well-drained soil Group A. The model assumed about percent of the property to have soil Group A soils, an assumption that is supported by the evidence. Soil moisture conditions on the property were calculated by application of data regarding rainfall events and times, the irrigation schedule, and the amount of irrigation water projected for use over a year. The soil moisture condition was used to determine the amount of water that could be stored in the on-site soils, known as the storage coefficient. Once the storage coefficient was determined, that data was used to calculate the amount of water that would be expected to run off of the North Tract, known as the curve number. The curve number is adjusted by the extent to which the storage within a soil column is filled by the application of irrigation water, making it unable to store additional rainfall. As soil storage goes down, the curve number goes up. Thus, a curve number that approaches 100 means that more water is predicted to run off. Conversely, a lower curve number means that less water is predicted to run off. The pre-development curve number for the North Tract was based on the property being an unirrigated, poor grass area. A post-development curve number was assigned to the property that reflected a wet condition representative of the irrigated soils beneath the pivots. In calculating the storage volume necessary to handle runoff from the basins, the wet condition curve number was adjusted based on the fact that there is a mixture of irrigated and unirrigated general pasture within each basin to be served by a segment of the retention berm system, and by the estimated 15 percent of the time that the irrigation areas would be in a drier condition. In addition, the number was adjusted to reflect the 8 to 10 inches of additional evapotranspiration that occurs as a result of irrigation. The BMPTRAINS model was based on average annual nutrient-loading conditions, with water quality data collected at a suitable point within Reach 22, the receiving waterbody. The effects of nutrients from the irrigated pastures on receiving waterbodies is, in terms of the model, best represented by average annual conditions, rather than a single highest-observed nutrient value. Pre-development loading figures were based on the existing use of the property as unirrigated general pasture. The pre-development phosphorus loading figure was calculated at an average event mean concentration (EMC) of 0.421 milligrams per liter (mg/l). The post—condition phosphorus loading figure was calculated at an EMC of 0.621 mg/l. Therefore, in order to achieve pre-development levels of phosphorus, treatment to achieve a reduction in phosphorus of approximately 36 percent was determined to be necessary. The pre-development nitrogen loading figure was calculated at an EMC of 2.6 mg/l. The post—condition nitrogen loading figure was calculated at an EMC of 3.3 mg/l. Therefore, in order to achieve pre-development levels of nitrogen, treatment to achieve a reduction in nitrogen of approximately 25 percent was determined to be necessary. The limiting value for the design of the retention berms is phosphorus. To achieve post-development concentrations that are equal to or less than pre-development concentrations, the treatment volume of the berm system must be sufficient to allow for the removal of 36 percent of the nutrients in water being retained and treated behind the berms, which represents the necessary percentage of phosphorus. In order to achieve the 36 percent reduction required for phosphorus, the retention berm system must be capable of retaining approximately 38 acre—feet of water from the 15 basins. In order to achieve that retention volume, a berm length of approximately 50,000 linear feet was determined to be necessary, with an average depth of retention behind the berms of one foot. The proposed length of the berms is sufficient to retain the requisite volume of water to achieve a reduction in phosphorus of 36 percent. Thus, the post-development/irrigation levels of phosphorus from runoff are expected to be no greater than pre-development/general pasture levels of phosphorus from runoff. By basing the berm length and volume on that necessary for the treatment of phosphorus, there will be storage volume that is greater than required for a 25 percent reduction in nitrogen. Thus, the post-development/irrigation levels of nitrogen from runoff are expected to be less than pre- development/general pasture levels of nitrogen from runoff. Mr. Drummond admitted that the design of the retention berms “shows there is some reduction, potentially, but it's not going to totally clean up the nutrients.” Such a total clean-up is not required. Rather, it is sufficient that there is nutrient removal to pre-development levels, so that there is no additional pollutant loading from the permitted activities. Reasonable assurance that such additional loading is not expected to occur was provided. Despite Mr. Drummond’s criticism of the BMPTRAINS model, he did not quantify nutrient loading on the North Tract, and was unable to determine whether post-development concentrations of nutrients would increase over pre-development levels. As such, there was insufficient evidence to counter the results of the BMPTRAINS modeling. Watershed Assessment Model In order to further assess potential water quantity and water quality impacts to surface water bodies, and to confirm stormwater retention area and volume necessary to meet pre-development conditions, Sleepy Creek utilized the Watershed Assessment Model (WAM). The WAM is a peer-reviewed model that is widely accepted by national, state, and local regulatory entities. The WAM was designed to simulate water balance and nutrient impacts of varying land uses. It was used in this case to simulate and provide a quantitative measure of the anticipated impacts of irrigation on receiving water bodies, including Mill Creek, Daisy Creek, the Ocklawaha River, and Silver Springs. Inputs to the model include land conditions, soil conditions, rain and climate conditions, and water conveyance systems found on the property. In order to calculate the extent to which nutrients applied to the land surface might affect receiving waters, a time series of surface water and groundwater flow is “routed” through the modeled watershed and to the various outlets from the system, all of which have assimilation algorithms that represent the types of nutrient uptakes expected to occur as water goes through the system. Simulations were performed on the North Tract in its condition prior to acquisition by Sleepy Creek, in its current “exempted improved pasture condition,” and in its proposed “post—development” pivot-irrigation condition. The simulations assessed impacts of the site conditions on surface waters at the point at which they leave the property and discharge to Mill Creek, and at the point where Mill Creek merges into the Ocklawaha River. The baseline condition for measuring changes in nutrient concentrations was determined to be that lawfully existing at the time the application was made. Had there been any suggestion of illegality or impropriety in Sleepy Creek’s actions in clearing the timber and creating improved pasture, a different baseline might be warranted. However, no such illegality or impropriety was shown, and the SJRWMD rules create no procedure for “looking back” to previous land uses and conditions that were legally changed. Thus, the “exempted improved pasture condition” nutrient levels are appropriate for comparison with irrigated pasture nutrient levels. The WAM simulations indicated that nitrogen resulting from the irrigation of the North Tract pastures would be reduced at the outflow to Mill Creek at the Reach 22 stream segment from improved pasture levels by 1.7 percent in pounds per year, and by 0.6 percent in milligrams per liter of water. The model simulations predicted a corresponding reduction at the Mill Creek outflow to the Ocklawaha River of 1.3 percent in pounds per year, and 0.5 percent in milligrams per liter of water. These levels are small, but nonetheless support a finding that the berm system is effective in reducing nitrogen from the North Tract. Furthermore, the WAM simulations showed levels of nitrogen from the irrigated pasture after the construction of the retention berms to be reduced from that present in the pre- development condition, a conclusion consistent with that derived from the BMPTRAINS model. The WAM simulations indicated that phosphorus from the irrigated North Tract pastures, measured at the outflow to Mill Creek at the Reach 22 stream segment, would be reduced from improved pasture levels by 3.7 percent in pounds per year, and by 2.6 percent in milligrams per liter of water. The model simulations predicted a corresponding reduction at the Mill Creek outflow to the Ocklawaha River of 2.5 percent in pounds per year, and 1.6 percent in milligrams per liter of water. Those levels are, again, small, but supportive of a finding of no impact from the permitted activities. The WAM simulations showed phosphorus in the Ocklawaha River at the Eureka Station after the construction of the retention berms to be slightly greater than those simulated for the pre-development condition (0.00008 mg/l) -- the only calculated increase. That level is beyond miniscule, with impacts properly characterized as “non- measurable” and “non-detectable.” In any event, total phosphorus remains well below Florida’s nutrient standards. The WAM simulations were conducted based on all of the 15 pivots operating simultaneously at full capacity. That amount is greater than what is allowed under the permit. Thus, according to Dr. Bottcher, the predicted loads are higher than those that would be generated by the permitted allocation, making his estimates “very conservative.” Dr. Bottcher’s testimony is credited. During the course of the final hearing, the accuracy of the model results was questioned based on inaccuracies in rainfall inputs due to the five-mile distance of the property from the nearest rain station. Dr. Bottcher admitted that given the dynamics of summer convection storms, confidence that the rain station rainfall measurements represent specific conditions on the North Tract is limited. However, it remains the best data available. Furthermore, Dr. Bottcher testified that even if specific data points simulated by the model differ from that recorded at the rain station, that same error carries through each of the various scenarios. Thus, for the comparative purpose of the model, the errors get “washed out.” Other testimony regarding purported inaccuracies in the WAM simulations and report were explained as being the result of errors in the parameters used to run alternative simulations or analyze Sleepy Creek’s simulations, including use of soil types that are not representative of the North Tract, and a misunderstanding of dry weight/wet weight loading rates. There was agreement among witnesses that the WAM is regarded, among individuals with expertise in modeling, as an effective tool, and was the appropriate model for use in the ERP application that is the subject of this proceeding. As a result, the undersigned accepts the WAM simulations as being representative of comparative nutrient impacts on receiving surface water bodies resulting from irrigation of the North Tract. The WAM confirmed that the proposed retention berm system will be sufficient to treat additional nutrients that may result from irrigation of the pastures, and supports a finding of reasonable assurance that water quality criteria will be met. With regard to the East Tract, the WAM simulations showed that there would be reductions in nitrogen and phosphorus loading to Daisy Creek from the conversion of the property to irrigated pasture. Those simulations were also conservative because they assumed the maximum number of cattle allowed by the nutrient balance, and did not assume the 30 percent reduction in the number of cattle under the NMP so as to allow existing elevated levels of phosphorus in the soil from the sod farm to be “mined” by vegetation. Pivot 6 The evidence in this case suggests that, unlike the majority of the North Tract, a small area on the western side of the North Tract drains to the west and north. Irrigation Pivot is within that area. Dr. Harper noted that there are some soils in hydrologic soil Group A in the vicinity of Pivot 6 that reflect soils with a deeper water table where rainfall would be expected to infiltrate into the ground. Dr. Kincaid’s particle track analysis suggested that recharge to the surficial aquifer ultimately discharges to Mill Creek, except for recharge at Pivot 11, which is accounted for by evapotranspiration, and recharge at Pivot 6. Dr. Kincaid concluded that approximately 1 percent of the recharge to the surficial aquifer beneath the North Tract found its way into the upper Floridan aquifer. Those particle tracks originated only on the far western side of the property, and implicated only Pivot 6, which is indicative of the flow divide in the Floridan aquifer. Of the 1 percent of particle tracks entering the Floridan aquifer, some ultimately discharged at the St. John’s River, the Ocklawaha River, or Mill Creek. Dr. Kincaid opined, however, that most ultimately found their way to Silver Springs. Given the previous finding that the Floridan aquifer beneath the property is within the Silver Springs springshed for less than a majority of the time, it is found that a correspondingly small fraction of the less than 1 percent of the particle tracks originating on the North Tract, perhaps a few tenths of one percent, can reach Silver Springs. Dr. Bottcher generally agreed that some small percentage of the water from the North Tract may make it to the upper Floridan aquifer, but that amount will be very small. Furthermore, that water reaching the upper Floridan aquifer would have been subject to the protection and treatment afforded by the NMP and the ERP berms. The evidence regarding the somewhat less restrictive confinement of the aquifer around Pivot 6 is not sufficient to rebut the prima facie case that the CUP modification, coupled with the ERP, will meet the District’s permitting standards. Public Interest The primary basis upon which Sleepy Creek relies to demonstrate that the CUP is “consistent with the public interest” is that Florida's economy is highly dependent upon agricultural operations in terms of jobs and economic development, and that there is a necessity of food production. Sleepy Creek could raise cattle on the property using the agriculturally-exempt improved pastures, but the economic return on the investment would be questionable without the increased quality, quantity, and reliability of grass and forage crop production resulting from the proposed irrigation. Sleepy Creek will continue to engage in agricultural activities on its properties if the CUP modification is denied. Although a typical Florida beef operation could be maintained on the property, the investment was based upon having the revenue generation allowed by grass-fed beef production in order to realize a return on its capital investment and to optimize the economic return. If the CUP modification is denied, the existing CUP will continue to allow the extraction of 1.46 mgd for use on the East Tract. The preponderance of the evidence suggests that such a use would have greater impacts on the water levels at Silver Springs, and that the continued use of the East Tract as a less stringently-controlled sod farm would have a greater likelihood of higher nutrient levels, particularly phosphorus levels which are already elevated.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law set forth herein it is RECOMMENDED that the St. Johns River Water Management District enter a final order: approving the issuance of Consumptive Use Permit No. 2-083-91926-3 to Sleepy Creek Lands, LLC on the terms and conditions set forth in the complete Permit Application for Consumptive Uses of Water and the Consumptive Use Technical Staff Report; and approving the issuance of Environmental Resource Permit No. IND-083-130588-4 to Sleepy Creek Lands, LLC on the terms and conditions set forth in the complete Joint Application for Individual and Conceptual Environmental Resource Permit and the Individual Environmental Resource Permit Technical Staff Report. DONE AND ENTERED this 29th day of April, 2015, in Tallahassee, Leon County, Florida. S E. GARY EARLY Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 29th day of April, 2015.

Florida Laws (27) 120.54120.569120.57120.60120.68373.016373.019373.036373.042373.0421373.069373.079373.175373.223373.227373.229373.236373.239373.246373.406373.413373.4131373.414403.067403.087403.9278.031 Florida Administrative Code (12) 28-106.10828-106.21740C-2.30140C-2.33140C-44.06540C-44.06662-302.30062-330.05062-330.30162-4.24062-4.24262-40.473
# 2
BOCILLA WATERWAYS, INC. vs. DEPARTMENT OF ENVIRONMENTAL REGULATION, 82-003485 (1982)
Division of Administrative Hearings, Florida Number: 82-003485 Latest Update: Mar. 12, 1985

Findings Of Fact The Petitioner, Bocilla Waterways, Inc., is a corporate entity formed for the purpose of pursuing the subject project and installing the proposed channel. Randall Craig Noden, secretary- treasurer of that corporation, and a director of it, is a realtor who sells and develops property on Don Pedro Island, in the vicinity of the proposed project. He and other officers and directors of the Petitioner corporation have an interest in property on some, but not all, upland areas adjacent to Bocilla Lagoon, Old Bocilla Pass and Kettle Harbor, the water bodies germane to this proceeding. The Respondent, State of Florida, Department of Environmental Regulation, is a state agency charged with regulating dredge and fill projects in state waters and navigable waters pursuant to Chapters 253 and 403, Florida Statutes, and Rule Chapters 17-3 and 17-4, Florida Administrative Code. The Intervenor, Environmental Confederation of Southwest Florida (ECOSWF), is an incorporated, not-for-profit organization whose membership includes numerous environmentally concerned public interest organizations or associations located throughout southwest Florida. Members of the Intervenor use Old Bocilla Pass, Kettle Harbor, Bocilla Lagoon and Lemon Bay, an adjacent contiguous water body, for boating, swimming, fishing (both recreational and commercial), and collecting shellfish. Some of the membership of the Intervenor live in the immediate area of the proposed project. Project Description The Petitioner submitted a dredge and fill permit application to the Respondent, DER, proposing excavation of an access channel through the uplands of Don Pedro Island and adjacent transitional and submerged lands. The channel would be 100 feet wide, 450 feet long and dredged to a depth of -5.0 feet mean low water, with 2:1 side slopes grading to 3:1 at approximately +0.5 feet NGVD. The channel below mean high water would be 70 feet wide' and 670 feet long to a depth of -5.0 feet mean low water, with 2:1 side slopes. A rip-rap strip five feet wide would be placed in the littoral zone on either side of the channel. As originally proposed, the channel excavation would be performed by dragline and clamshell with spoil placed upon uplands for disposal. The excavation would progress from the west side of the project to the east, with plugs remaining at the eastern terminus of the channel until it stabilizes and the rip- rap is placed along the excavated channel. A turbidity curtain is proposed to be used to maintain water quality above state standards regarding turbidity. The applicant originally proposed to transplant seagrasses, displaced in the excavation process, back into the bottom of the excavated channel. Earthen slopes above mean high water would be vegetated in order to achieve stabilization. Some of these proposals were modified after negotiations with DER staff, such that the seagrass transplanting portion of the project would be accomplished in surrounding areas of the water bottom of Bocilla Lagoon and Kettle Harbor, specifically, bare areas and otherwise degrassed, vegetated flats. The applicant also proposes to install navigation aides in Bocilla Lagoon and Kettle Harbor in order to help maintain boat traffic in the channel, and to facilitate ingress and egress through the proposed channel. Don Pedro Island is a barrier island lying off the coast of Charlotte County, Florida. The only access to the island is by boat or helicopter. Bocilla proposes to excavate the proposed channel in order to, in part, provide better navigational access to Bocilla Lagoon which lies within Don Pedro Island. There is presently a navigational channel in the Bocilla Lagoon through what is called "Old Bocilla Pass," located at the north end of Bocilla Lagoon and communicating with Lemon Bay. Bocilla contends that the channel is somewhat tortuous and subject to shoaling, with concomitant grassbed damage by boat propellers, and that thus, a better navigational access in the form of a shorter, deeper, more direct channel from the southern end of Bocilla Lagoon to Kettle Harbor is required. The project would involve the removal of approximately .18 acres of mangroves (red and black mangroves) and .187 acres of seagrasses. Bocilla has proposed to mitigate the damage involved in the mangrove and seagrass removal by replanting mangroves, on three foot centers, along both sides of the proposed channel, and replanting or transplanting seagrasses in bare areas of Kettle Harbor, near the proposed project. Description of Pertinent State Waters Bocilla Lagoon, Kettle Harbor and Old Bocilla Pass are designated as Class II, navigable waters of the state and are designated for shellfish propagation or harvesting. Shellfish, including clams and oysters, occur in Bocilla Lagoon, Kettle Harbor and Old Bocilla Pass. As demonstrated by Intervenor's witnesses Wade, Cole and Wysocki, shellfish are harvestable and harvested in Bocilla Lagoon and Kettle Harbor at the present time. Bocilla Lagoon, Kettle Harbor and Old Bocilla Pass have also been conditionally approved by DNR for shellfish harvesting. DNR approves or prohibits waters for shellfish harvesting, and as a matter of policy generally prohibits shellfish harvesting in manmade "dead-end" canals. A "conditionally approved" water body, such as those involved herein, is an area approved for shellfish harvesting, but one which is more likely to be affected by pollution events. Thus, they are monitored more closely by DNR. Such events as additional residential development in an area, resulting in more septic tank sewage discharge, on-board toilet discharges from boats or the installation of a water and sewer treatment plant, can result in DNR temporarily or permanently closing a conditionally approved area to shellfish harvesting. Natural phenomenon such as the influx of red tide is also a factor which is considered by DNR in electing to classify a shellfish harvesting area as conditionally approved, and in electing to prohibit shellfish harvesting in an area. It was established through testimony of witnesses Feinstein and Setchfield of DER that long-standing DER policy provides that when DNR conditionally approves waters as being shellfish harvestable, that means they are "approved" for all shellfish harvesting purposes, but simply subjected to closer monitoring and with an increased likelihood of closure due to immediate pollution events. Therefore, the prohibition in Rule 17- 4.28(8)(a), Florida Administrative Code, prohibits issuance of dredge and fill permits in areas approved for shellfish harvesting or "conditionally" approved, since there is no difference in the "shellfish harvestable" nature of the waters until a closure occurs, which may simply occur sooner in conditionally approved waters. Bocilla Lagoon and Kettle Harbor are both naturally- formed water bodies, although some dredging has been allowed to occur in them in the past. They are not manmade, "dead-end" canals. Neither water body has the physical or biological characteristics of a "typical dead-end canal". Both are quite high quality habitats for the natural flora and fauna occurring in the marine environment in that area, and thus the general policy of DNR established by witnesses Cantrell, Fry, Feinstein and Sperling which prohibits shellfish harvesting in manmade, dead-end canals, does not apply to Bocilla Lagoon and Kettle Harbor. The water quality in both bodies of water is good and within DER standards generally. At times however, the water quality in Kettle Harbor suffers from a failure to meet DER dissolved oxygen standards contained in Chapter 17-3, Florida Administrative Code. Indeed, the water quality in Bocilla Lagoon is generally somewhat better than the water quality in Kettle Harbor. Environmental Impacts The project as currently proposed would result in the removal of approximately .18 acres of mangroves and .18 acres of seagrasses. Seagrasses and mangroves are important in providing areas of cover, food, and habitat for various estuarine species. Seagrasses serve to stabilize marine soils resulting in a decrease of suspended solids in contiguous waters with resulting decrease in turbidity in those waters. The loss of seagrasses can result in de- stabilization of the bottom sediment, such that suspended solids or turbidity increases in involved waters, which can result in decreased light penetration to the vegetated bottoms. Decreased light penetration, if of a sufficient degree, can result in the further loss of seagrasses and other bottom flora, causing in turn, increased turbidity and further decreased light penetration, with progressively destructive results to seagrass beds and other marine flora and fauna, with a substantial detrimental effect on the marine biological community in general. Mangroves serve as biological filters, trapping sediments, heavy metals, nutrients and other pollutants, uptaking them through their roots and converting them to usable plant food and thus filtering such harmful elements from state waters and rendering them into environmentally harmless substances. The removal of the mangroves at the proposed channel site will result in a loss of their beneficial effects. These beneficial effects will be absent for a greater period of time than it takes to merely plant replacement mangrove plants, since mature trees will be removed and mangrove seedlings will be replanted in their stead. Maturation of mangroves at this location would take in excess of three years, thus replacement of the beneficial filtering effects of the removed mangroves will take in excess of three years, to which time must be added the time which lapses between the original mangrove removal and the replanting of the seedlings, which would start the maturation period. Bocilla proposes to mitigate the removal of the mangroves by that replanting, as well as to transplant seagrasses removed from the channel site to other nearby areas currently bare of seagrass. Seagrass replanting is not a well-established practice. Compared to mangrove replanting, there is less experience, less information and a lower success ratio historically. Of the hundreds of dredge and fill projects occurring and approved throughout Florida, only three have involved replanting of removed seagrasses. Two of the projects involved the Port of Miami in Dade County and the "New Pass site" in Sarasota County. In both of these cases, seagrass replanting cannot be termed successful. The Port of Miami project resulted in a final survival rate of only twelve per cent of ,the grasses replanted. The New Pass project thus far has resulted in a survival rate of only 39 per cent of the seagrasses replanted, after only nine months. The Petitioner proposes that the replanting be accomplished by Mangrove Systems, Inc. That firm is headed by Robin Lewis, who oversaw the seagrass replanting project at the New Pass area in Sarasota. The location and method of replanting seagrasses at New Pass, as to water depth, type of bottom, type of grass and planting method, was generally similar to that proposed for the Bocilla project. That is, it would be accomplished by "plug planting," of "bald" spots at generally the same latitude and similar water depth. The survival rate at the end of six months at the New Pass project was 73 per cent. The survival rate at the end of nine months was 39 per cent. Mangrove Systems, Inc. and Mr. Lewis acknowledges that it is difficult to attribute the decrease in survival rates and grass shoot densities to any one cause, but that predation and a shift in sediments due to the vagaries of water currents, were probably the chief causes for the decrease in seagrass survival. Mangrove Systems, Inc. and the Petitioner propose a guarantee whereby Mangrove Systems, Inc. would replant more seagrasses, if needed, if a low survival rate occurs, which it defines to mean less than a 70 to 80 per cent survival rate after one or two years. There is no guarantee concerning the survival rate after a second planting, however. It was not established when the survival rate will be measured, in determining whether a 70 to 80 per cent survival is being achieved. In this connection, the central Florida coast where the Bocilla project is proposed, is not as conducive to seagrass growth as other more tropical marine areas, such as in the Florida Keys. In the area of the proposed project, seagrasses do not generally produce a great deal of seed and tend not to grow back very readily, once they are destroyed. Seagrasses in the Florida Keys tend to have, in comparison, much greater seed production and for this and other reasons, tend to reproduce themselves more readily once destroyed. They tend to be more amenable to transplanting in the Florida Keys marine environment. Mangrove Systems, Inc. has conducted a seagrass replanting project in the Florida Keys, however. One-third of the seagrasses planted in that project have not survived after two years. In short, the likelihood of seagrass survival has been insufficiently tested in the geographical area and latitude and in similar soils, water depths and temperatures as those involved in the instant case, such that reasonable assurance of adequate seagrass survival with the replanting project proposed will occur. Hydrographics and Maintenance Dredging The evidence is uncontradicted that the opening of the proposed channel would increase circulation in the southern end of Bocilla Lagoon. Increased circulation tends to have good effects in that it reduces stratification in water bodies. Stratification is a condition which occurs when the deeper waters of a given water body do not interchange with surface waters, but rather stratify or become characterized by layers of differing levels of dissolved oxygen, temperature, pH, etc. Typically, lower levels of a stratified body of water are characterized by low levels of dissolved oxygen. The present water quality of Bocilla Lagoon however, is not characterized by statification in any significant degree. It is very similar in water quality, in terms of dissolved oxygen, temperature, pH and other Chapter 17-3 water criteria, to that water quality of the nearby intra-coastal waterway into which the channel into and through Kettle Harbor would open. The intra-coastal waterway is agreed to be a well- circulated body of water, meeting all current State water quality standards. Accordingly, the opening of the channel and the increased circulation it may cause in the southern end of Bocilla Lagoon would have minimal, positive benefits. The change in circulation and in water current patterns and velocities caused by the opening of the direct, shorter channel from lower Bocilla Lagoon and Kettle Harbor may, negatively affect the present seagrass growth in seagrass beds in Kettle Harbor and Bocilla Lagoon in the vicinity of each end of the proposed channel, due in part to increased current velocities that would result from tidal exchange through the shorter, straight channel which would be opened. The expert witnesses in the area of hydrographics disagreed on the effect of the proposed channel on water circulation in the northern end of Bocilla Lagoon and Old Bocilla Pass, which is the north channel opening into northern Bocilla Lagoon. Witness Sperling for the Department opined that a major reduction in flows through Old Bocilla Pass channel would occur. Witness Tackney for the Petitioner acknowledged there would be some reduction in flow, and witness Olsen opined that a reduction in flow would occur, but there could also be an increase in circulation. Both witnesses Tackney and Olsen, in opining that a flow-through, enhanced circulation and flushing system may result from installing the channel, based that opinion to a significant degree, on their belief on the effects of wind on forcing water through the Pass and Bocilla Lagoon. No wind data or records were adduced however, to show the likely effects of wind on creating the Petitioner's desired "flow-through" system. Witness Sperling disagreed as to the significance of this flow-through effect, but there was no disagreement among the hydrographic experts that reduced flows through Old Bocilla Pass, which all acknowledged can occur to one degree or another, can result in increased sedimentation in Old Bocilla Pass, which can result in turn, in the need for increased maintenance dredging in Bocilla Lagoon and Old Bocilla Pass in the future. Maintenance dredging in Old Bocilla Pass may have to be increased if the proposed channel is constructed. The proposed channel itself will likely have to be periodically maintenance dredged as well. Maintenance dredging can cause environmental problems. Dredging activities result in the loss of marine habitat and the destabilization of marine sediments, with resulting increased turbidity and reduced photic effects, with concomitant detrimental effects on seagrasses and other bottom flora and fauna. Increased turbidity resulting from dredging and destabilization of sediments can directly adversely affect shellfish, including clams and oysters. Dredging impacts and siltation can negatively affect seagrass growth and water quality by increasing turbidity resulting in reduced photosynthesis in seagrass, by smothering the seagrass directly and by silting fauna and vegetation in adjacent productive grassbeds. Persons other than the officers and directors of Bocilla Waterways, Inc. own property and have riparian rights on the Old Bocilla Pass channel. These persons have in the past, and have the right in the future, to use Old Bocilla Pass for navigational purposes and could elect to maintenance dredge Old Bocilla Pass as they have in the past. If the proposed channel is constructed, there is obviously a more direct access and shorter water route between the waters of Bocilla Lagoon and Kettle Harbor. Water quality at times in Kettle Harbor has been worse than that in Bocilla Lagoon, especially in terms of low dissolved oxygen. If poorer water quality exists in Kettle Harbor due to low dissolved oxygen, an influx of red tide or some other cause, the construction of the proposed channel would increase the chance, by the more direct connection and increased flow in the southern end of Bocilla Lagoon, to contaminate the water of Bocilla Lagoon. The Public Interest Public opposition was expressed at the hearing, including that of ECOSWF, the Intervenor, some of whose members include people who live in the area of the proposed channel and use the involved waters. Local fishermen who harvest shellfish and finfish in Bocilla-Lagoon and Kettle Harbor, and use Old Bocilla Pass for navigation between Lemon Bay and Bocilla Lagoon, oppose the project, some of whom are members of the organized Fishermen of Florida, an association of approximately 25,000 members. Residents of Bocilla Lagoon and the immediate area, who habitually navigate Old Bocilla Pass, including local fishermen, have had little trouble navigating Old Bocilla Pass because they are familiar with the channel. Although the Petitioner alleges that the new channel is needed in part for the safety of people living on Bocilla Lagoon to assure quick access to the mainland in case of medical emergencies, the members of the public living on Bocilla Lagoon, (with one exception) and on surrounding areas of the island, do not wish such increased access for medical purposes. The island is presently reached from the mainland by either watercraft or helicopter. Formerly, there was a bridge connecting the island with the mainland which has since been destroyed, and not rebuilt. The residents living on Bocilla Lagoon, either full- time or part-time, buy their homes and choose to live there with knowledge of the present mode of access through Old Bocilla Pass, which is also the means they would achieve access to the mainland in case of medical emergencies or, alternatively, by helicopter transport or by transport over island roads to the ferry landing, with access to the mainland by ferry. The residents, in general, desire to maintain the isolation of life on the island as it presently exists and do not desire enhanced access between the island and the mainland, since part of the charm of having homes and living on the island is its isolation from the more populous mainland. Other than the testimony of Petitioner's witnesses, there was no testimony presented expressing any public need for the proposed channel, as for instance from public officials having knowledge of any medical or public health need for enhanced access to Bocilla Lagoon and the island. The proposed project is contrary to the public interest due to its adverse effects on seagrasses, shellfish, and water quality as delineated above. The adverse effects on seagrasses would result from the dredging itself and the destruction of a portion of the extant seagrass beds, and the resultant likelihood of poor survival rates in the attempted transplanting of seagrass as a replacement for that destroyed by the channel dredging. The proposed project is not in the public interest of those people with riparian rights on Old Bocilla Lagoon and northern Bocilla Lagoon, as there is substantial likelihood the proposed project will reduce flows through Old Bocilla Pass' channel with the resultant increased settling out of sediment and thus increased shoaling of that channel, which would concomitantly increase the need for maintenance dredging in Old Bocilla Lagoon and channel. Additional maintenance dredging and the possible negative effects of such additional dredging on marine, flora and fauna in Bocilla Lagoon and Old Bocilla Pass constitute an additional burden on these riparian owners, the bearing of which is not in their interest. The proposed project is also contrary to the public interest in that the proposed channel is deeper, wider and more direct as an entry into Bocilla Lagoon from Kettle Harbor and Lemon Bay, and would thus allow larger, deeper draft boats to enter Bocilla Lagoon with concomitant increased pollution from oils, greases and possible discharge of onboard sewage, which could have adverse environmental impacts on water quality in Bocilla Lagoon, as well as Kettle Harbor. The use of deeper draft, larger boats with larger propellers and more powerful engines could also result in damage to adjacent grassbeds in the vicinity of either ends of the proposed channel, either through direct propeller contact or through prop wash, when such boats are navigated in areas minimally deep enough to accommodate their draft. Since the installation of the proposed channel would result in a deeper, more readily used access to Bocilla Lagoon by larger boats with the remaining original channel usable also, at least for a time, there is a-substantial likelihood of increased residential development on riparian property around Bocilla Lagoon. This could have the result of reducing water quality in the lagoon, or potentially so, through septic tank leachate, stormwater runoff and other adverse environmental effects, such that the water in the lagoon traditionally approved for shellfish harvesting may be prohibited in the future.

Recommendation Having considered the foregoing Findings of Fact, Conclusions of Law, the evidence of record, the candor and demeanor of the witnesses and the pleadings and arguments of the parties, it is, therefore RECOMMENDED: That a Final Order be entered by the Department of Environmental Regulation denying both the variance application and the permit application sought by Bocilla Waterways, Inc. DONE and ENTERED this 24th day of January, 1985 in Tallahassee, Florida. P. MICHAEL RUFF Hearing Officer Division of Administrative Hearings The Oakland Building 2009 Apalachee Parkway Tallahassee, Florida 32301 (904)488-9675 FILED with the Clerk of the Division of Administrative Hearings this 24th day of January, 1985. COPIES FURNISHED: Kenneth O. Oertel, Esquire Segundo J. Fernandez, Esquire 646 Lewis State Bank Building Tallahassee, Florida 32301 Douglas H. MacLaughlin, Esquire Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32301 Thomas W. Reese, Esquire Environmental Confederation of Southwest Florida 123 Eighth Street, North St. Petersburg, Florida 33701 Victoria Tschinkel, Secretary Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32301

Florida Laws (5) 120.56120.57403.088403.201403.813
# 3
KAREN AHLERS AND JERI BALDWIN vs SLEEPY CREEK LANDS, LLC AND ST. JOHNS RIVER WATER MANAGEMENT DISTRICT, 14-002609 (2014)
Division of Administrative Hearings, Florida Filed:Palatka, Florida Jun. 03, 2014 Number: 14-002609 Latest Update: Oct. 24, 2016

The Issue The issue to be determined is whether Consumptive Use Permit No. 2-083-91926-3, and Environmental Resource Permit No. IND-083-130588-4 should be issued as proposed in the respective proposed agency actions issued by the St. Johns River Water Management District.

Findings Of Fact The Parties Sierra Club, Inc., is a national organization, the mission of which is to explore, enjoy, and advocate for the environment. A substantial number of Sierra Club’s 28,000 Florida members utilize the Silver River, Silver Springs, the Ocklawaha River, and the St. Johns River for water-based recreational activities, which uses include kayaking, swimming, fishing, boating, canoeing, nature photography, and bird watching. St. Johns Riverkeeper, Inc., is one of 280 members of the worldwide Waterkeepers Alliance. Its mission is to protect, restore, and promote healthy waters of the St. Johns River, its tributaries, springs, and wetlands -- including Silver Springs, the Silver River, and the Ocklawaha River -- through citizen- based advocacy. A substantial number of St. Johns Riverkeeper’s more than 1,000 members use and enjoy the St. Johns River, the Silver River, Silver Springs, and the Ocklawaha River for boating, fishing, wildlife observation, and other water-based recreational activities. Karen Ahlers is a native of Putnam County, Florida, and lives approximately 15 miles from the Applicant’s property on which the permitted uses will be conducted. Ms. Ahlers currently uses the Ocklawaha River for canoeing, kayaking, and swimming, and enjoys birding and nature photography on and around the Silver River. Over the years, Ms. Ahlers has advocated for the restoration and protection of the Ocklawaha River, as an individual and as a past-president of the Putnam County Environmental Council. Jeri Baldwin lives on a parcel of property in the northeast corner of Marion County, approximately one mile from the Applicant’s property on which the permitted uses will be conducted. Ms. Baldwin, who was raised in the area, and whose family and she used the resources extensively in earlier years, currently uses the Ocklawaha River for boating. Florida Defenders of the Environment (FDE) is a Florida corporation, the mission of which is to conserve and protect and restore Florida's natural resources and to conduct environmental education projects. A substantial number of FDE’s 186 members, of which 29 reside in Marion County, Florida, use and enjoy Silver Springs, the Silver River, and the Ocklawaha Aquatic Preserve, and their associated watersheds in their educational and outreach activities, as well as for various recreational activities including boating, fishing, wildlife observation, and other water-based recreational activities. Sleepy Creek Lands, LLC (Sleepy Creek or Applicant), is an entity registered with the Florida Department of State to do business in the state of Florida. Sleepy Creek owns approximately 21,000 acres of land in Marion County, Florida, which includes the East Tract and the North Tract on which the activities authorized by the permits are proposed. St. Johns River Water Management District (SJRWMD or District) is a water-management district created by section 373.069(1). It has the responsibility to conserve, protect, manage, and control the water resources within its geographic boundaries. See § 373.069(2)(a), Fla. Stat. The Consumptive Use Permit The CUP is a modification and consolidation of two existing CUP permits, CUP No. 2-083-3011-7 and CUP No. 2-083- 91926-2, which authorize the withdrawal of 1.46 mgd from wells located on the East Tract. Although the existing CUP permits authorize an allocation of 1.46 mgd, actual use has historically been far less, and rarely exceeded 0.3 mgd. The proposed CUP modification will convert the authorized use of water from irrigation of 1,010 acres of sod grass on the East Tract, to supplemental irrigation of improved pasture for grass and other forage crops (approximately 97 percent of the proposed withdrawals) and cattle watering (approximately three percent of the proposed withdrawals) on the North Tract and the East Tract. An additional very small amount will be used in conjunction with the application of agricultural chemicals. CUP No. 2-083-3011-7 is due to expire in 2021. CUP No. 2-083-91926-2 is due to expire in 2024. In addition to the consolidation of the withdrawals into a single permit, the proposed agency action would extend the term of the consolidated permit to 20 years from issuance, with the submission of a compliance report due 10 years from issuance. Sleepy Creek calculated a water demand of 2.569 mgd for the production of grasses and forage crops necessary to meet the needs for grass-fed beef production, based on the expected demand in a 2-in-10 drought year. That calculation is consistent with that established in CUP Applicant’s Handbook (CUP A.H.) section 12.5.1. The calculated amount exceeds the authorized average allocation of 1.46 mgd. Mr. Jenkins testified as to the District’s understanding that the requested amount would be sufficient, since the proposed use was a “scaleable-type project,” with adjustments to cattle numbers made as necessary to meet the availability of feed. Regardless of demand, the proposed permit establishes the enforceable withdrawal limits applicable to the property. With regard to the East Tract, the proposed agency action reduces the existing 1.46 mgd allocation for that tract to a maximum allocation of 0.464 mgd, and authorizes the irrigation of 611 acres of pasture grass using existing extraction wells and six existing pivots. With regard to the North Tract, the proposed agency action authorizes the irrigation of 1,620 acres of pasture and forage grain crops using 15 center pivot systems. Extraction wells to serve the North Tract pivots will be constructed on the North Tract. The proposed North Tract withdrawal wells are further from Silver Springs than the current withdrawal locations. The proposed CUP allows Sleepy Creek to apply the allocated water as it believes to be appropriate to the management of the cattle operation. Although the East Tract is limited to a maximum of 0.464 mgd, there is no limitation on the North Tract. Thus, Sleepy Creek could choose to apply all of the 1.46 mgd on the North Tract. For that reason, the analysis of impacts from the irrigation of the North Tract has generally been based on the full 1.46 mgd allocation being drawn from and applied to the North Tract. The Environmental Resource Permit As initially proposed, the CUP had no elements that would require issuance of an ERP. However, in order to control the potential for increased runoff and nutrient loading resulting from the irrigation of the pastures, Sleepy Creek proposes to construct a stormwater management system to capture runoff from the irrigated pastures, consisting of a series of vegetated upland buffers, retention berms and redistribution swales between the pastures and downgradient wetland features. Because the retention berm and swale system triggered the permitting thresholds in rule 62-330.020(2)(d) (“a total project area of more than one acre”) and rule 62-330.020(2)(e) (“a capability of impounding more than 40 acre-feet of water”), Sleepy Creek was required to obtain an Environmental Resource Permit for its construction. Regional Geologic Features To the west of the North Tract is a geologic feature known as the Ocala Uplift or Ocala Platform, in which the limestone that comprises the Floridan aquifer system exists at or very near the land surface. Karst features, including subterranean conduits and voids that can manifest at the land surface as sinkholes, are common in the Ocala Uplift due in large part to the lack of consolidated or confining material overlaying the limestone. Water falling on the surface of such areas tends to infiltrate rapidly through the soil into the Floridan aquifer, occasionally through direct connections such as sinkholes. The lack of confinement in the Ocala Uplift results in few if any surface-water features such as wetlands, creeks, and streams. As one moves east from the Ocala Uplift, a geologic feature known as the Cody Escarpment becomes more prominent. In the Cody Escarpment, the limestone becomes increasingly overlain by sands, shell, silt, clays, and other less permeable sediments of the Hawthorn Group. The North Tract and the East Tract lie to the east of the point at which the Cody Escarpment becomes apparent. As a result, water tends to flow overland to wetlands and other surface water features. The Property The North and East Tracts are located in northern Marion County near the community of Fort McCoy. East Tract Topography and Historic Use The East Tract is located in the Daisy Creek Basin, and includes the headwaters of a small creek that drains directly to the Ocklawaha River. The historic use of the East Tract has been as a cleared 1,010-acre sod farm. The production of sod included irrigation, fertilization, and pest control. Little change in the topography, use, and appearance of the property will be apparent as a result of the permits at issue, but for the addition of grazing cattle. The current CUPs that are subject to modification in this proceeding authorize groundwater withdrawals for irrigation of the East Tract at the rate of 1.46 mgd. Since the proposed agency action has the result of reducing the maximum withdrawal from wells on the East Tract to 0.464 mgd, thus proportionately reducing the proposed impacts, there was little evidence offered to counter Sleepy Creek’s prima facie case that reasonable assurance was provided that the proposed East Tract groundwater withdrawal allocation will meet applicable CUP standards. There are no stormwater management structures to be constructed on the East Tract. Therefore, the ERP permit discussed herein is not applicable to the East Tract. North Tract Topography and Historic Use The North Tract has a generally flat topography, with elevations ranging from 45 feet to 75 feet above sea level. The land elevation is highest at the center of the North Tract, with the land sloping towards the Ocklawaha River to the east, and to several large wet prairie systems to the west. Surface water features on the North Tract include isolated, prairie, and slough-type wetlands on approximately 28 percent of the North Tract, and a network of creeks, streams, and ditches, including the headwaters of Mill Creek, a contributing tributary of the Ocklawaha River. A seasonal high groundwater elevation on the North Tract is estimated at 6 to 14 inches below ground surface. The existence of defined creeks and surface water features supports a finding that the North Tract is underlain by a relatively impermeable confining layer that impedes the flow of water from the surface and the shallow surficial aquifer to the upper Floridan and lower Floridan aquifers. If there was no confining unit, water going onto the surface of the property, either in the form of rain or irrigation water, would percolate unimpeded to the lower aquifers. Areas in the Ocala Uplift to the west of the North Tract, where the confining layer is thinner and discontiguous, contain few streams or runoff features. Historically, the North Tract was used for timber production, with limited pasture and crop lands. At the time the 7,207-acre North Tract was purchased by Sleepy Creek, land use consisted of 4,061 acres of planted pine, 1,998 acres of wetlands, 750 acres of improved pasture, 286 acres of crops, 78 acres of non-forested uplands, 20 acres of native forest, 10 acres of open water, and 4 acres of roads and facilities. Prior to the submission of the CUP and ERP applications, much of the planted pine was harvested, and the land converted to improved pasture. Areas converted to improved pasture include those proposed for irrigation, which have been developed in the circular configuration necessary for future use with center irrigation pivots. As a result of the harvesting of planted pine, and the conversion of about 345 acres of cropland and non-forested uplands to pasture and incidental uses, total acreage in pasture on the North Tract increased from 750 acres to 3,938 acres. Other improvements were constructed on the North Tract, including the cattle processing facility. Aerial photographs suggest that the conversion of the North Tract to improved pasture and infrastructure to support a cattle ranch is substantially complete. The act of converting the North Tract from a property dominated by planted pine to one dominated by improved pasture, and the change in use of the East Tract from sod farm to pasture, were agricultural activities that did not require a permit from the District. As such, there is no impropriety in considering the actual, legal use of the property in its current configuration as the existing use for which baseline conditions are to be measured. Petitioners argue that the baseline conditions should be measured against the use of the property as planted pine plantation, and that Sleepy Creek should not be allowed to “cattle-up” before submitting its permit applications, thereby allowing the baseline to be established as a higher impact use. However, the applicable rules and statutes provide no retrospective time-period for establishing the nature of a parcel of property other than that lawfully existing when the application is made. See West Coast Reg’l Water Supply Auth. v. SW Fla. Water Mgmt. Dist., Case No. 95-1520 et seq., ¶ 301 (Fla. DOAH May 29, 1997; SFWMD ) (“The baseline against which projected impacts conditions [sic] are those conditions, including previously permitted adverse impacts, which existed at the time of the filing of the renewal applications.”). The evidence and testimony in this case focused on the effects of the water allocation on the Floridan aquifer, Silver Springs, and the Silver River, and on the effects of the irrigation on water and nutrient transport from the properties. It was not directed at establishing a violation of chapter 373, the rules of the SJRWMD, or the CUP Applicant’s Handbook with regard to the use and management of the agriculturally-exempt unirrigated pastures, nor did it do so. Soil Types Soils are subject to classifications developed by the Soil Conservation Service based on their hydrologic characteristics, and are grouped into Group A, Group B, Group C, or Group D. Factors applied to determine the appropriate hydrologic soil group on a site-specific basis include depth to seasonal high saturation, the permeability rate of the most restrictive layer within a certain depth, and the depth to any impermeable layers. Group A includes the most well-drained soils, and Group D includes the most poorly-drained soils. Group D soils are those with seasonal high saturation within 24 inches of the soil surface and a higher runoff potential. The primary information used to determine the hydrologic soil groups on the North Tract was the depth to seasonal-high saturation, defined as the highest expected annual elevation of saturation in the soil. Depth to seasonal-high saturation was measured through a series of seven hand-dug and augered soil borings completed at various locations proposed for irrigation across the North Tract. In determining depth to seasonal-high saturation, the extracted soils were examined based on depth, color, texture, and other relevant characteristics. In six of the seven locations at which soil borings were conducted, a restrictive layer was identified within 36 inches of the soil surface. At one location at the northeastern corner of the North Tract, the auger hole ended at a depth of 48 inches -- the length of the auger -- at which depth there was an observable increase in clay content but not a full restrictive layer. However, while the soil assessment was ongoing, a back-hoe was in operation approximately one hundred yards north of the boring location. Observations of that excavation revealed a heavy clay layer at a depth of approximately 5 feet. In each of the locations, the depth to seasonal-high saturation was within 14 inches of the soil surface. Based on the consistent observation of seasonal-high saturation at each of the sampled locations, as well as the flat topography of the property with surface water features, the soils throughout the property, with the exception of a small area in the vicinity of Pivot 6, were determined to be in hydrologic soil Group D. Hydrogeologic Features There are generally five hydrogeologic units underlying the North Tract, those units being the surficial aquifer system, the intermediate confining unit, the upper Floridan aquifer, the middle confining unit, and the lower Floridan aquifer. In areas in which a confining layer is present, water falling on the surface of the land flows over the surface of the land or across the top of the confining layer. A surficial aquifer, with a relatively high perched water table, is created by the confinement and separation of surface waters from the upper strata of the Floridan aquifer. Surface waters are also collected in or conveyed by various surface water features, including perched wetlands, creeks, and streams. The preponderance of the evidence adduced at the final hearing demonstrates that the surficial aquifer exists on the property to a depth of up to 20 feet below the land surface (bls). Beneath the surficial aquifer is an intermediate confining unit of dense clay interspersed with beds of sand and calcareous clays that exists to a depth of up to 100 feet bls. The clay material observed on the North Tract is known as massive or structureless. Such clays are restrictive with very low levels of hydraulic conductivity, and are not conducive to development of preferential flow paths to the surficial or lower aquifers. The intermediate confining unit beneath the North Tract restricts the exchange of groundwater from the surficial aquifer to the upper Floridan aquifer. The upper Floridan aquifer begins at a depth of approximately 100 feet bls, and extends to a depth of approximately 340 feet bls. At about 340 feet bls, the upper Floridan aquifer transitions to the middle confining unit, which consists of finely grained, denser material that separates the interchange of water between the upper Floridan aquifer and the lower Floridan aquifer. Karst Features Karst features form as a result of water moving through rock that comprises the aquifer, primarily limestone, dissolving and forming conduits in the rock. Karst areas present a challenging environment to simulate through modeling. Models assume the subsurface to be a relatively uniform “sand box” through which it is easier to simulate groundwater flow. However, if the subsurface contains conduits, it becomes more difficult to simulate the preferential flows and their effect on groundwater flow paths and travel times. The District has designated parts of western Alachua County and western Marion County as a Sensitive Karst Area Basin. A Sensitive Karst Area is a location in which the porous limestone of the Floridan aquifer occurs within 20 feet of the land surface, and in which there is 10 to 20 inches of annual recharge to the Floridan aquifer. The designation of an area as being within the Sensitive Karst Area Basin does not demonstrate that it does, or does not, have subsurface features that are karstic in nature, or that would provide a connection between the surficial aquifer and the Floridan aquifer. The western portion of the North Tract is within the Sensitive Karst Area Basin. The two intensive-use areas on the North Tract that have associated stormwater facilities -- the cattle unloading area and the processing facility -- are outside of the Sensitive Karst Area Basin. The evidence was persuasive that karst features are more prominent to the west of the North Tract. In order to evaluate the presence of karst features on the North Tract, Mr. Andreyev performed a “desktop-type evaluation,” with a minimal field survey. The desktop review included a review of aerial photographs and an investigation of available data, including the Florida Geological Survey database of sinkhole occurrence in the area. The aerial photographs showed circular depressions suggestive of karst activity west and southwest of the North Tract, but no such depressions on the North Tract. Soil borings taken on the North Tract indicated the presence of layers of clayey sand, clays, and silts at a depth of 70 to 80 feet. Well-drilling logs taken during the development of the wells used for an aquifer performance test on the North Tract showed the limestone of the Floridan aquifer starting at a depth below ground surface of 70 to 80 feet. Other boring data generated on the North Tract suggests that there is greater than 100 feet of clay and sandy clay overburden above the Floridan aquifer on and in the vicinity of the North Tract. Regardless of site-specific differences, the observed confining layer separating the surficial aquifer from the Floridan aquifer is substantial, and not indicative of a karst environment. Aquifer performance tests performed on the North Tract were consistent in showing that drawdown in the surficial aquifer from the tests was minimal to non-detectable, which is strong evidence of an intact and low-permeability confining layer. The presence of well-developed drainage features on the North Tract is further evidence of a unit of confinement that is restricting water from going deeper into the subsurface, and forcing it to runoff to low-lying surface water features. Petitioners’ witnesses did not perform any site- specific analysis of karst features on or around the Sleepy Creek property. Their understanding of the nature of the karst systems in the region was described as “hypothetical or [] conceptual.” Dr. Kincaid admitted that he knew of no conduits on or adjacent to the North Tract. As a result of the data collected from the North Tract, Mr. Hearn opined that the potential for karst features on the property that provide an opening to the upper Floridan aquifer “is extremely remote.” Mr. Hearn’s opinion is consistent with the preponderance of the evidence in this case, and is accepted. In the event a surface karst feature were to manifest itself, Sleepy Creek has proposed that the surface feature be filled and plugged to reestablish the integrity of the confining layer. More to the point, the development of a surficial karst feature in an area influenced by irrigation would be sufficient grounds for the SJRWMD to reevaluate and modify the CUP to account for any changed conditions affecting the assumptions and bases for issuance of the CUP. Silver Springs, the Silver River, and the Ocklawaha River The primary, almost exclusive concern of Petitioners was the effect of the modified CUP and the nutrients from the proposed cattle ranch on Silver Springs, the Silver River, and the Ocklawaha River. Silver Springs Silver Springs has long been a well-known attraction in Florida. It is located just to the east of Ocala, Florida. Many of the speakers at the public comment period of this proceeding spoke fondly of having frequented Silver Springs over the years, enjoying its crystal clear waters through famous glass-bottomed boats. For most of its recorded history, Silver Springs was the largest spring by volume in Florida. Beginning in the 1970s, it began to lose its advantage, and by the year 2000, Rainbow Springs, located in southwestern Marion County, surpassed Silver Springs as the state’s largest spring. Silver Springs exists at the top of the potentiometric surface of the Floridan aquifer. Being at the “top of the mountain,” when water levels in the Floridan aquifer decline, groundwater flow favors the lower elevation springs. Thus, surrounding springshed boundaries expand to take more water to maintain their baseflows, at the expense of the Silver Springs springshed, which contracts. Rainbow Springs shares an overlapping springshed with Silver Springs. The analogy used by Dr. Knight was of the aquifer as a bucket with holes at different levels, and with the Silver Springs “hole” near the top of the bucket. When the water level in the bucket is high, water will flow from the top hole. As the water level drops below that hole, it will preferentially flow from the lower holes. Rainbow Springs has a vent or outlet from the aquifer, that is 10 feet lower in elevation than that of Silver Springs. Coastal springs are lower still. Thus, as groundwater levels decline, the lower springs “pirate flow” from the upper springs. Since the first major studies of Silver Springs were conducted in the 1950s, the ecosystem of Silver Springs has undergone changes. The water clarity, though still high as compared to other springs, has been reduced by 10 to 15 percent. Since the 1950s, macrophytic plants, i.e., rooted plants with seeds and flowers, have declined in population, while epiphytic and benthic algae have increased. Those plants are sensitive to increases in nitrogen in the water. Thus, Dr. Knight’s opinion that increases in nitrogen emerging from Silver Springs, calculated to have risen from just over 0.4 mg/l in the 1950s, to 1.1 mg/l in 2004, and to up to 1.5 mg/l at present,1/ have caused the observed vegetative changes is accepted. Silver River Silver Springs forms the headwaters for the Silver River, a spring run 5 1/2 miles in length, at which point it becomes a primary input to the Ocklawaha River. Issues of water clarity and alteration of the vegetative regime that exist at Silver Springs are also evident in the Silver River. In addition, the reduction in flow allows for more tannic water to enter the river, further reducing clarity. Dr. Dunn recognized the vegetative changes in the river, and opined that the “hydraulic roughness” caused by the increase in vegetation is likely creating a spring pool backwater at Silver Springs, thereby suppressing some of the flow from the spring. The Silver River has been designated as an Outstanding Florida Water. There are currently no Minimum Flows and Levels established by the District for the Silver River. Ocklawaha River The Ocklawaha River originates near Leesburg, Florida, at the Harris Chain of Lakes, and runs northward past Silver Springs. The Silver River is a major contributor to the flow of the Ocklawaha River. Due to the contribution of the Silver River and other spring-fed tributaries, the Ocklawaha River can take on the appearance of a spring run during periods of low rainfall. Historically, the Ocklawaha River flowed unimpeded to its confluence with the St. Johns River in the vicinity of Palatka, Florida. In the 1960s, as part of the Cross-Florida Barge Canal project, the Rodman Dam was constructed across the Ocklawaha River north of the Sleepy Creek property, creating a large reservoir known as the Rodman Pool. Dr. Knight testified convincingly that the Rodman Dam and Pool have altered the Ocklawaha River ecosystem, precipitating a decline in migratory fish populations and an increase in filamentous algae. At the point at which the Ocklawaha River flows past the Sleepy Creek property, it retains its free-flowing characteristics. Mill Creek, which has its headwaters on the North Tract, is a tributary of the Ocklawaha River. The Ocklawaha River, from the Eureka Dam south, has been designated as an Outstanding Florida Water. However, the Ocklawaha River at the point at which Mill Creek or other potential surface water discharges from the Sleepy Creek property might enter the river are not included in the Outstanding Florida Water designation. There are currently no Minimum Flows and Levels established by the District for the Ocklawaha River. The Silver Springs Springshed A springshed is that area from which a spring draws water. Unlike a surface watershed boundary, which is fixed based on land features, contours, and elevations, a springshed boundary is flexible, and changes depending on a number of factors, including rainfall. As to Silver Springs, its springshed is largest during periods of more abundant rainfall when the aquifer is replenished, and smaller during drier periods when groundwater levels are down, and water moves preferentially to springs and discharge points that are lower in elevation. The evidence in this case was conflicting as to whether the North Tract is in or out of the Silver Springs springshed boundary. Dr. Kincaid indicated that under some of the springshed delineations, part of the North Tract was out of the springshed, but over the total period of record, it is within the springshed. Thus, it was Dr. Kincaid’s opinion that withdrawals anywhere within the region will preferentially impact Silver Springs, though he admitted that he did not have the ability to quantify his opinion. Dr. Knight testified that the North Tract is within the Silver Springs “maximum extent” springshed at least part of the time, if not all the time. He did not opine as to the period of time in which the Silver Springs springshed was at its maximum extent. Dr. Bottcher testified that the North Tract is not within the Silver Springs springshed because there is a piezometric rise between North Tract and Silver Springs. Thus, in his opinion, withdrawals at the North Tract would not be withdrawing water going to Silver Springs. Dr. Dunn agreed that the North Tract is on the groundwater divide for Silver Springs. In his view, the North Tract is sometimes in, and sometimes out of the springshed depending on the potentiometric surface. In his opinion, the greater probability is that the North Tract is more often outside of the Silver Springs springshed, with seasonal and year—to—year variation. Dr. Dunn’s opinion provides the most credible explanation of the extent to which the North Tract sits atop that portion of the lower Floridan aquifer that feeds to Silver Springs. Thus, it is found that the groundwater divide exists to the south of the North Tract for a majority of the time, and water entering the Floridan aquifer from the North Tract will, more often than not, flow away from Silver Springs. Silver Springs Flow Volume The Silver Springs daily water discharge has been monitored and recorded since 1932. Over the longest part of the period of record, up to the 1960s, flows at Silver Springs averaged about 800 cubic feet per second (cfs). Through 1989, there was a reasonable regression between rainfall and springflow, based on average rainfalls. The long-term average rainfall in Ocala was around 50 inches per year, and long-term springflow was about 800 cfs, with deviations from average generally consistent with one another. Between 1990 and 1999, the relationship between rainfall and springflow declined by about 80 cubic feet per second. Thus, with average rainfall of 50 inches per year, the average springflow was reduced to about 720 cfs. From 2000 to 2009, there was an additional decline, such that the total cumulative decline for the 20-year period through 2009 was 250 cfs. Dr. Dunn agreed with Dr. Knight that after 2000, there was an abrupt and persistent reduction in flow of about 165 cfs. However, Dr. Dunn did not believe the post-2000 flow reduction could be explained by rainfall directly, although average rainfall was less than normal. Likewise, groundwater withdrawals did not offer an adequate explanation. Dr. Dunn described a natural 30-year cycle of wetter and drier periods known as the Atlantic Multidecadal Oscillation (AMO) that has manifested itself over the area for the period of record. From the 1940s up through 1970, the area experienced an AMO wet cycle with generally higher than normal rainfall at the Ocala rain station. For the next 30-year period, from 1970 up to 2000, the Ocala area ranged from a little bit drier to some years in which it was very, very dry. Dr. Dunn attributed the 80 cfs decline in Silver Springs flow recorded in the 1990s to that lower rainfall cycle. After 2000, when the next AMO cycle would be expected to build up, as it did post—1940, it did not happen. Rather, there was a particularly dry period around 2000 that Dr. Dunn believes to have had a dramatic effect on the lack of recovery in the post-2000 flows in the Silver River. According to Mr. Jenkins, that period of deficient rainfall extended through 2010. Around the year 2001, the relationship between rainfall and flow changed such that for a given amount of rainfall, there was less flow in the Silver River, with flow dropping to as low as 535 cfs after 2001. It is that reduction in flow that Dr. Knight has attributed to groundwater withdrawals. It should be noted that the observed flow of Silver Springs that formed the 1995 baseline conditions for the North Central Florida groundwater model that will be discussed herein was approximately 706 cfs. At the time of the final hearing in August 2014, flow at Silver Springs was 675 cfs. The reason offered for the apparent partial recovery was higher levels of rainfall, though the issue was not explored in depth. For the ten-year period centered on the year 2000, local water use within Marion and Alachua County, closer to Silver Springs, changed little -- around one percent per year. From a regional perspective, groundwater use declined at about one percent per year for the period from 1990 to 2010. The figures prepared by Dr. Knight demonstrate that the Sleepy Creek project area is in an area that has a very low density of consumptive use permits as compared to areas adjacent to Silver Springs and more clearly in the Silver Springs springshed. In Dr. Dunn’s opinion, there were no significant changes in groundwater use either locally or regionally that would account for the flow reduction in Silver Springs from 1990 to 2010. In that regard, the environmental report prepared by Dr. Dunn and submitted with the CUP modification application estimated that groundwater withdrawals accounted for a reduction in flow at Silver Springs of approximately 20 cfs as measured against the period of record up to the year 2000, with most of that reduction attributable to population growth in Marion County. In the March 2014, environmental impacts report, Dr. Dunn described reductions in the stream flow of not only the Silver River, but of other tributaries of the lower Ocklawaha River, including the upper Ocklawaha River at Moss Bluff and Orange Creek. However, an evaluation of the Ocklawaha River water balance revealed there to be additional flow of approximately 50 cfs coming into the Ocklawaha River at other stations. Dr. Dunn suggested that changes to the vent characteristics of Silver Springs, and the backwater effects of increased vegetation in the Silver River, have resulted in a redistribution of pressure to other smaller springs that discharge to the Ocklawaha River, accounting for a portion of the diminished flow at Silver Springs. The Proposed Cattle Operation Virtually all beef cattle raised in Florida, upon reaching a weight of approximately 875 pounds, are shipped to Texas or Kansas to be fattened on grain to the final body weight of approximately 1,150 pounds, whereupon they are slaughtered and processed. The United States Department of Agriculture has a certification for grass—fed beef which requires that, after an animal is weaned, it can only be fed on green forage crops, including grasses, and on corn and grains that are cut green and before they set seed. The forage crops may be grazed or put into hay or silage and fed when grass and forage is dormant. The benefit of grass feeding is that a higher quality meat is produced, with a corresponding higher market value. Sleepy Creek plans to develop the property as a grass- fed beef production ranch, with pastures and related loading/unloading and slaughter/processing facilities where calves can be fattened on grass and green grain crops to a standard slaughter weight, and then slaughtered and processed locally. By so doing, Sleepy Creek expects to save the transportation and energy costs of shipping calves to the Midwest, and to generate jobs and revenues by employing local people to manage, finish, and process the cattle. As they currently exist, pastures proposed for irrigation have been cleared and seeded, and have “fairly good grass production.” The purpose of the irrigation is to enhance the production and quality of the grass in order to maintain the quality and reliability of feed necessary for the production of grass-fed beef. East Tract Cattle Operation The East Tract is 1,242 acres in size, substantially all of which was previously cleared, irrigated, and used for sod production. The proposed CUP permit authorizes the irrigation of 611 acres of pasture under six existing center pivots. The remaining 631 acres will be used as improved, but unirrigated, pasture. Under the proposed permit, a maximum of 1,207 cattle would be managed on the East Tract. Of that number, 707 cattle would be grazed on the irrigated paddocks, and 500 cattle would be grazed on the unirrigated improved pastures. If the decision is made to forego irrigation on the East Tract, with the water allocation being used on the North Tract or not at all, the number of cattle grazed on the six center pivot pastures would be decreased from 707 cattle to 484 cattle. The historic use of the East Tract as a sod farm resulted in high phosphorus levels in the soil from fertilization, which has made its way to Daisy Creek. Sleepy Creek has proposed a cattle density substantially below that allowed by application of the formulae in the Nutrient Management Plan in order to “mine” the phosphorus levels in the soil over time. North Tract Cattle Operation The larger North Tract includes most of the “new” ranch activities, having no previous irrigation, and having been put to primarily silvicultural use with limited pasture prior to its acquisition by Sleepy Creek. The ranch’s more intensive uses, i.e., the unloading corrals and the slaughter house, are located on the North Tract. The North Tract is 7,207 acres in size. Of that, 1,656 acres are proposed for irrigation by means of 15 center- pivot irrigation systems. In addition to the proposed irrigated pastures, the North Tract includes 2,382 acres of unirrigated improved pasture, of which approximately 10 percent is wooded. Under the proposed permit, a maximum of 6,371 cattle would be managed on the North Tract. Of that number, 3,497 cattle would be grazed on the irrigated paddocks (roughly 2.2 head of cattle per acre), and 2,374 cattle would graze on the improved pastures (up to 1.1 head of cattle per acre). The higher cattle density in the irrigated pastures can be maintained due to the higher quality grass produced as a result of irrigation. The remaining 500 cattle would be held temporarily in high-concentration corrals, either after offloading or while awaiting slaughter. On average, there will be fewer than 250 head of cattle staged in those high-concentration corrals at any one time. In the absence of irrigation, the improved pasture on the North Tract could sustain about 4,585 cattle. Nutrient Management Plan, Water Conservation Plan, and BMPs The CUP and ERP applications find much of their support in the implementation of the Nutrient Management Plan (NMP), the Water Conservation Plan, and Best Management Practices (BMPs). The NMP sets forth information designed to govern the day to day operations of the ranch. Those elements of the NMP that were the subject of substantive testimony and evidence at the hearing are discussed herein. Those elements not discussed herein are found to have been supported by Sleepy Creek’s prima facie case, without a preponderance of competent and substantial evidence to the contrary. The NMP includes a herd management plan, which describes rotational grazing and the movement of cattle from paddock to paddock, and establishes animal densities designed to maintain a balance of nutrients on the paddocks, and to prevent overgrazing. The NMP establishes fertilization practices, with the application of fertilizer based on crop tissue analysis to determine need and amount. Thus, the application of nitrogen- based fertilizer is restricted to that capable of ready uptake by the grasses and forage crops, limiting the amount of excess nitrogen that might run off of the pastures or infiltrate past the root zone. The NMP establishes operation and maintenance plans that incorporate maintenance and calibration of equipment, and management of high-use areas. The NMP requires that records be kept of, among other things, soil testing, nutrient application, herd rotation, application of irrigation water, and laboratory testing. The irrigation plan describes the manner and schedule for the application of water during each irrigation cycle. Irrigation schedules for grazed and cropped scenarios vary from pivot to pivot based primarily on soil type. The center pivots proposed for use employ high-efficiency drop irrigation heads, resulting in an 85 percent system efficiency factor, meaning that there is an expected evaporative loss of 15 percent of the water before it becomes available as water in the soil. That level of efficiency is greater than the system efficiency factor of 80 percent established in CUP A.H. section 12.5.2. Other features of the irrigation plan include the employment of an irrigation manager, installation of an on-site weather station, and cumulative tracking of rain and evapotranspiration with periodic verification of soil moisture conditions. The purpose of the water conservation practices is to avoid over application of water, limiting over-saturation and runoff from the irrigated pastures. Sleepy Creek has entered into a Notice of Intent to Implement Water Quality BMPs with the Florida Department of Agriculture and Consumer Services which is incorporated in the NMP and which requires the implementation of Best Management Practices.2/ Dr. Bottcher testified that implementation and compliance with the Water Quality Best Management Practices manual creates a presumption of compliance with water quality standards. His testimony in that regard is consistent with Department of Agriculture and Consumer Services rule 5M-11.003 (“implementation, in accordance with adopted rules, of BMPs that have been verified by the Florida Department of Environmental Protection as effective in reducing target pollutants provides a presumption of compliance with state water quality standards.”). Rotational Grazing Rotational grazing is a practice by which cattle are allowed to graze a pasture for a limited period of time, after which they are “rotated” to a different pasture. The 1,656 acres proposed for irrigation on the North Tract are to be divided into 15 center-pivot pastures. Each individual pasture will have 10 fenced paddocks. The 611 acres of irrigated pasture on the East Tract are divided into 6 center-pivot pastures. The outer fence for each irrigated pasture is to be a permanent “hard” fence. Separating the internal paddocks will be electric fences that can be lowered to allow cattle to move from paddock to paddock, and then raised after they have moved to the new paddock. The NMP for the North Tract provides that cattle are to be brought into individual irrigated pastures as a single herd of approximately 190 cattle and placed into one of the ten paddocks. They will be moved every one to three days to a new paddock, based upon growing conditions and the reduction in grass height resulting from grazing. In this way, the cattle are rotated within the irrigated pasture, with each paddock being used for one to three days, and then rested until each of the other paddocks have been used, whereupon it will again be used in the rotation. The East Tract NMP generally provides for rotation based on the height of the pasture grasses, but is designed to provide a uniform average of cattle per acre per year. Due to the desire to “mine” phosphorus deposited during the years of operation of the East Tract as a sod farm, the density of cattle on the irrigated East Tract pastures is about 30 percent less than that proposed for the North Tract. The East Tract NMP calls for a routine pasture rest period of 15 to 30 days. Unlike dairy farm pastures, where dairy cows traverse a fixed path to the milking barn several times a day, there will be minimal “travel lanes” within the pastures or between paddocks. There will be no travel lanes through wetlands. If nitrogen-based fertilizer is needed, based upon tissue analysis of the grass, fertilizer is proposed for application immediately after a paddock is vacated by the herd. By so doing, the grass within each paddock will have a sufficient period to grow and “flush up” without grazing or traffic, which results in a high—quality grass when the cattle come back around to feed. Sleepy Creek proposes that rotational grazing is to be practiced on improved pastures and irrigated pastures alike. The rotational practices on the improved East Tract and North Tract pastures are generally similar to those practiced on the irrigated pastures. The paddocks will have permanent watering troughs, with one trough serving two adjacent paddocks. The troughs will be raised to prevent “boggy areas” from forming around the trough. Since the area around the troughs will be of a higher use, Sleepy Creek proposes to periodically remove accumulated manure, and re-grade if necessary. Other cattle support items, including feed bunkers and shade structures are portable and can be moved as conditions demand. Forage Crop Production The primary forage crop on the irrigated pastures is to be Bermuda grass. Bermuda grass or other grass types tolerant of drier conditions will be used in unirrigated pastures. During the winter, when Bermuda grass stops growing, Sleepy Creek will overseed the North Tract pastures with ryegrass or other winter crops. Due to the limitation on irrigation water, the East Tract NMP calls for no over-seeding for production of winter crops. Crops do not grow uniformly during the course of a year. Rather, there are periods during which there are excess crops, and periods during which the crops are not growing enough to keep up with the needs of the cattle. During periods of excess, Sleepy Creek will cut those crops and store them as haylage to be fed to the cattle during lower growth periods. The North Tract management plan allows Sleepy Creek to dedicate one or more irrigated pastures for the exclusive production of haylage. If that option is used, cattle numbers will be reduced in proportion to the number of pastures dedicated to haylage production. As a result of the limit on irrigation, the East Tract NMP does not recommend growing supplemental feed on dedicated irrigation pivot pastures. Direct Wetland Impacts Approximately 100 acres proposed for irrigation are wetlands or wetland buffer. Those areas are predominantly isolated wetlands, though some have surface water connections to Mill Creek, a water of the state. Trees will be cut in the wetlands to allow the pivot to pass overhead. Tree cutting is an exempt agricultural activity that does not require a permit. There was no persuasive evidence that cutting trees will alter the fundamental benefit of the wetlands or damage water resources of the District. The wetlands and wetland buffer will be subject to the same watering and fertigation regimen as the irrigated pastures. The application of water to wetlands, done concurrently with the application of water to the pastures, will occur during periods in which the pasture soils are dry. The incidental application of water to the wetlands during dry periods will serve to maintain hydration of the wetlands, which is considered to be a benefit. Fertilizers will be applied through the irrigation arms, a process known as fertigation. Petitioners asserted that the application of fertilizer onto the wetlands beneath the pivot arms could result in some adverse effects to the wetlands. However, Petitioners did not quantify to what extent the wetlands might be affected, or otherwise describe the potential effects. Fertigation of the wetlands will promote the growth of wetland plants. Nitrogen applied through fertigation will be taken up by plants, or will be subject to denitrification -- a process discussed in greater detail herein -- in the anaerobic wetland soils. The preponderance of the evidence indicated that enhanced wetland plant growth would not rise to a level of concern. Since most of the affected wetlands are isolated wetlands, there is expected to be little or no discharge of nutrients from the wetlands. Even as to those wetlands that have a surface water connection, most, if not all of the additional nitrogen applied through fertigation will be accounted for by the combined effect of plant uptake and denitrification. Larger wetland areas within an irrigated pasture will be fenced at the buffer line to prevent cattle from entering. The NMP provided a blow-up of the proposed fencing related to a larger wetland on Pivot 8. Although other figures are not to the same scale, it appears that larger wetlands associated with Pivots 1, 2, 3, and 12 will be similarly fenced. Cattle would be allowed to go into the smaller, isolated wetlands. Cattle going into wetlands do not necessarily damage the wetlands. Any damage that may occur is a function of density, duration, and the number of cattle. The only direct evidence of potential damage to wetlands was the statement that “[i]f you have 6,371 [cattle] go into a wetland, there may be impacts.” The NMP provides that pasture use will be limited to herds of approximately 190 cattle, which will be rotated from paddock to paddock every two to three days, and which will allow for “rest” periods of approximately 20 days. There will be no travel lanes through any wetland. Thus, there is no evidence to support a finding that the cattle at the density, duration, and number proposed will cause direct adverse effects to wetlands on the property. High Concentration Areas Cattle brought to the facility are to be unloaded from trucks and temporarily corralled for inspection. For that period, the cattle will be tightly confined. Cattle that have reached their slaughter weight will be temporarily held in corrals associated with the processing plant. The stormwater retention ponds used to capture and store runoff from the offloading corral and the processing plant holding corral are part of a normal and customary agricultural activity, and are not part of the applications and approvals that are at issue in this proceeding. The retention ponds associated with the high-intensity areas do not require permits because they do not exceed one acre in size or impound more than 40 acre-feet of water. Nonetheless, issues related to the retention ponds were addressed by Petitioners and Sleepy Creek, and warrant discussion here. The retention ponds are designed to capture 100 percent of the runoff and entrained nutrients from the high concentration areas for a minimum of a 24—hour/25—year storm event. If rainfall occurs in excess of the designed storm, the design is such that upon reaching capacity, only new surface water coming to the retention pond will be discharged, and not that containing high concentrations of nutrients from the initial flush of stormwater runoff. Unlike the stormwater retention berms for the pastures, which are to be constructed from the first nine inches of permeable topsoil on the property, the corral retention ponds are to be excavated to a depth of six feet which, based on soil borings in the vicinity, will leave a minimum of two to four feet of clay beneath the retention ponds. In short, the excavation will penetrate into the clay layer underlying the pond sites, but will not penetrate through that layer. The excavated clay will be used to form the side slopes of the ponds, lining the permeable surficial layer and generally making the ponds impermeable. Organic materials entering the retention ponds will form an additional seal. An organic seal is important in areas in which retention ponds are constructed in sandy soil conditions. Organic sealing is less important in this case, where clay forms the barrier preventing nutrients from entering the surficial aquifer. Although the organic material is subject to periodic removal, the clay layer will remain to provide the impermeable barrier necessary to prevent leakage from the ponds. Dr. Bottcher testified that if, during excavation of the ponds, it was found that the remaining in-situ clay layer was too thin, Sleepy Creek would implement the standard practice of bringing additional clay to the site to ensure adequate thickness of the liner. Nutrient Balance The goal of the NMP is to create a balance of nutrients being applied to and taken up from the property. Nitrogen and phosphorus are the nutrients of primary concern, and are those for which specific management standards are proposed. Nutrient inputs to the NMP consist generally of deposition of cattle manure (which includes solid manure and urine), recycling of plant material and roots from the previous growing season, and application of supplemental fertilizer. Nutrient outputs to the NMP consist generally of volatization of ammonia to the atmosphere, uptake and utilization of the nutrients by the grass and crops, weight gain of the cattle, and absorption and denitrification of the nutrients in the soil. The NMP, and the various models discussed herein, average the grass and forage crop uptake and the manure deposition to match that of a 1,013 pound animal. That average weight takes into account the fact that cattle on the property will range from calf weight of approximately 850 pounds, to slaughter weight of 1150 pounds. Nutrients that are not accounted for in the balance, e.g., those that become entrained in stormwater or that pass through the plant root zone without being taken up, are subject to runoff to surface waters or discharge to groundwater. Generally, phosphorus not taken up by crops remains immobile in the soil. Unless there is a potential for runoff to surface waters, the nutrient balance is limited by the amount of nitrogen that can be taken up by the crops. Due to the composition of the soils on the property, the high water table, and the relatively shallow confining layer, there is a potential for surface runoff. Thus, the NMP was developed using phosphorus as the limiting nutrient, which results in nutrient application being limited by the “P-index.” A total of 108 pounds of phosphorus per acre/per year can be taken up and used by the irrigated pasture grasses and forage crops. Therefore, the total number of cattle that can be supported on the irrigated pastures is that which, as a herd, will deposit an average of 108 pounds of phosphorus per year over the irrigated acreage. Therefore, Sleepy Creek has proposed a herd size and density based on calculations demonstrating that the total phosphorus contained in the waste excreted by the cattle equals the amount taken up by the crops. A herd producing 108 pounds per acre per year of phosphorus is calculated to produce 147 pounds of nitrogen per acre per year. The Bermuda grass and forage crops proposed for the irrigated fields require 420 pounds of nitrogen per acre per year. As a result of the nitrogen deficiency, additional nitrogen-based fertilizer to make up the shortfall is required to maintain the crops. Since phosphorus needs are accounted for by animal deposition, the fertilizer will have no phosphorus. The NMP requires routine soil and plant tissue tests to determine the amount of nitrogen fertilizer needed. By basing the application of nitrogen on measured rather than calculated needs, variations in inputs, including plant decomposition and atmospheric deposition, and outputs, including those affected by weather, can be accounted for, bringing the full nutrient balance into consideration. The numeric values for crop uptakes, manure deposition, and other estimates upon which the NMP was developed were based upon literature, values, and research performed and published by the University of Florida and the Natural Resource Conservation Service. Dr. Bottcher testified convincingly that the use of such values is a proven and reliable method of developing a balance for the operation of similar agricultural operations. A primary criticism of the NMP was its expressed intent to “reduce” or “minimize” the transport of nutrients to surface waters and groundwater, rather than to “negate” or “prevent” such transport. Petitioners argue that complete prevention of the transport of nutrients from the property is necessary to meet the standards necessary for issuance of the CUP and ERP. Mr. Drummond went into some detail regarding the total mass of nutrients expected to be deposited onto the ground from the cattle, exclusive of fertilizer application. In the course of his testimony, he suggested that the majority of the nutrients deposited on the land surface “are going to make it to the surficial aquifer and then be carried either to the Floridan or laterally with the groundwater flow.” However, Mr. Drummond performed no analysis on the fate of nitrogen through uptake by crops, volatization, or soil treatment, and did not quantify the infiltration of nitrogen to groundwater. Furthermore, he was not able to provide any quantifiable estimate on any effect of nutrients on Mill Creek, the Ocklawaha River, or Silver Springs. In light of the effectiveness of the nutrient balance and other elements of the NMP, along with the retention berm system that will be discussed herein, Mr. Drummond’s assessment of the nutrients that might be expected to impact water resources of the District is contrary to the greater weight of the evidence. Mr. Drummond’s testimony also runs counter to that of Dr. Kincaid, who performed a particle track analysis of the fate of water recharge from the North Tract. In short, Dr. Kincaid calculated that of the water that makes it as recharge from the North Tract to the surficial aquifer, less than one percent is expected to make its way to the upper Floridan aquifer, with that portion originating from the vicinity of Pivot 6. Recharge from the other 14 irrigated pastures was ultimately accounted for by evapotranspiration or emerged at the surface and found its way to Mill Creek. The preponderance of the competent, substantial evidence adduced at the final hearing supports the effectiveness of the NMPs for the North Tract and East Tract at managing the application and use of nutrients on the property, and minimizing the transport of nutrients to surface water and groundwater resources of the District. North Central Florida Model All of the experts involved in this proceeding agreed that the use of groundwater models is necessary to simulate what might occur below the surface of the ground. Models represent complex systems by applying data from known conditions and impacts measured over a period of years to simulate the effects of new conditions. Models are imperfect, but are the best means of predicting the effects of stresses on complex and unseen subsurface systems. The North Central Florida (NCF) model is used to simulate impacts of water withdrawals on local and regional groundwater levels and flows. The NCF model simulates the surficial aquifer, the upper Floridan aquifer, and the lower Floridan aquifer. Those aquifers are separated from one another by relatively impervious confining units. The intermediate confining unit separates the surficial aquifer from the upper Floridan aquifer. The intermediate confining unit is not present in all locations simulated by the NCF model. However, the evidence is persuasive that the intermediate confining unit is continuous at the North Tract, and serves to effectively isolate the surficial aquifer from the upper Floridan aquifer. The NCF model is not a perfect depiction of what exists under the land surface of the North Tract or elsewhere. It was, however, acknowledged by the testifying experts in this case, despite disagreements as to the extent of error inherent in the model, to be the best available tool for calculating the effects of withdrawals of water within the boundary of the model. The NCF model was developed and calibrated over a period of years, is updated routinely as data becomes available, and has undergone peer review. Aquifer Performance Tests In order to gather site-specific data regarding the characteristics of the aquifer beneath the Sleepy Creek property, a series of three aquifer performance tests (APTs) was conducted on the North Tract. The first two tests were performed by Sleepy Creek, and the third by the District. An APT serves to induce stress on the aquifer by pumping from a well at a high rate. By observing changes in groundwater levels in observation wells, which can be at varying distances from the extraction well, one can extrapolate the nature of the subsurface. In addition, well-completion reports for the various withdrawal and observation wells provide actual data regarding the composition of subsurface soils, clays, and features of the property. The APT is particularly useful in evaluating the ability of the aquifer to produce water, and in calculating the transmissivity of the aquifer. Transmissivity is a measure of the rate at which a substance passes through a medium and, as relevant to this case, measures how groundwater flows through an aquifer. The APTs demonstrated that the Floridan aquifer is capable of producing water at the rate requested. The APT drawdown contour measured in the upper Floridan aquifer was greater than that predicted from a simple run of the NCF model, but the lateral extent of the drawdown was less than predicted. The most reasonable conclusion to be drawn from the combination of greater than expected drawdown in the upper Floridan aquifer with less than expected extent is that the transmissivity of the aquifer beneath the North Tract is lower than the NCF model assumptions. The conclusion that the transmissivity of the aquifer at the North Tract is lower than previously estimated means that impacts from groundwater extraction would tend to be more vertical than horizontal, i.e., the drawdown would be greater, but would be more localized. As such, for areas of lower than estimated transmissivity, modeling would over-estimate off-site impacts from the extraction. NCF Modeling Scenarios The initial NCF modeling runs were based on an assumed withdrawal of 2.39 mgd, an earlier -- though withdrawn - - proposal. The evidence suggests that the simulated well placement for the 2.39 mgd model run was entirely on the North Tract. Thus, the results of the model based on that withdrawal have some limited relevance, especially given that the proposed CUP allows for all of the requested 1.46 mgd of water to be withdrawn from North Tract wells at the option of Sleepy Creek, but will over-predict impacts from the permitted rate of withdrawal. A factor that was suggested as causing a further over-prediction of drawdown in the 2.39 mgd model run was the decision, made at the request of the District, to exclude the input of data of additional recharge to the surficial aquifer, wetlands and surface waters from the irrigation, and the resulting diminution in soil storage capacity. Although there is some merit to the suggestion that omitting recharge made the model results “excessively conservative,” the addition of recharge to the model would not substantially alter the predicted impacts. A model run was subsequently performed based on a presumed withdrawal of 1.54 mgd, a rate that remains slightly more than, but still representative of, the requested amount of 1.46 mgd. The 1.54 mgd model run included an input for irrigation recharge. The simulated extraction points were placed on the East Tract and North Tract in the general configuration as requested in the CUP application. The NCF is designed to model the impacts of a withdrawal based upon various scenarios, identified at the hearing as Scenarios A, B, C, and D. Scenario A is the baseline condition for the NCF model, and represents the impacts of all legal users of water at their estimated actual flow rates as they existed in 1995. Scenario B is all existing users, not including the applicant, at end-of-permit allocations. Scenario C is all existing users, including the applicant, at current end-of-permit allocations. Scenario D is all permittees at full allocation, except the applicant which is modeled at the requested (i.e., new or modified) end-of-permit allocation. To simulate the effects of the CUP modification, simulations were performed on scenarios A, C, and D. In order to measure the specific impact of the modification of the CUP, the Scenario C impacts to the surficial, upper Floridan, and lower Floridan aquifers were compared with the Scenario D impacts to those aquifers. In order to measure the cumulative impact of the CUP, the Scenario A actual-use baseline condition was compared to the Scenario D condition which predicts the impacts of all permitted users, including the applicant, pumping at full end-of-permit allocations. The results of the NCF modeling indicate the following: 2.39 mgd - Specific Impact The surficial aquifer drawdown from the simulated 2.39 mgd withdrawal was less than 0.05 feet on-site and off- site, except to the west of the North Tract, at which a drawdown of 0.07 feet was predicted. The upper Floridan aquifer drawdown from the 2.39 mgd withdrawal was predicted at between 0.30 and 0.12 feet on-site, and between 0.30 and 0.01 feet off-site. The higher off-site figures are immediately proximate to the property. The lower Floridan aquifer drawdown from the 2.39 mgd withdrawal was predicted at less than 0.05 feet at all locations, and at or less than 0.02 feet within six miles of the North Tract. 2.39 mgd - Cumulative Impact The cumulative impact to the surficial aquifer from all permitted users, including a 2.39 mgd Sleepy Creek withdrawal, was less than 0.05 feet on-site, and off-site to the north and east, except to the west of the North Tract, at which a drawdown of 0.07 feet was predicted. The cumulative impact to the upper Floridan aquifer from all permitted users, including a 2.39 mgd Sleepy Creek withdrawal, ranged from 0.4 feet to 0.8 feet over all pertinent locations. The cumulative impact to the lower Floridan aquifer from all permitted users, including a 2.39 mgd Sleepy Creek withdrawal, ranged from 1.0 to 1.9 feet over all pertinent locations. The conclusion drawn by Mr. Andreyev that the predicted impacts to the lower Floridan are almost entirely from other end-of-permit user withdrawals is supported by the evidence and accepted. 1.54 mgd - Specific Impact The NCF model runs based on the more representative 1.54 mgd withdrawal predicted a surficial aquifer drawdown of less than 0.01 feet (i.e., no drawdown contour shown) on the North Tract, and a 0.01 to 0.02 foot drawdown at the location of the East Tract. The drawdown of the upper Floridan aquifer from the CUP modification was predicted at up to 0.07 feet on the property, and generally less than 0.05 feet off-site. There were no drawdown contours at the minimum 0.01 foot level that came within 9 miles of Silver Springs. The lower Floridan aquifer drawdown from the CUP modification was predicted at less than 0.01 feet (i.e., no drawdown contour shown) at all locations. 1.54 mgd - Cumulative Impact A comparison of the cumulative drawdown contours for the 2.36 mgd model and 1.54 mgd model show there to be a significant decrease in predicted drawdowns to the surficial and upper Floridan aquifers, with the decrease in the upper Floridan aquifer drawdown being relatively substantial, i.e., from 0.5 to 0.8 feet on-site predicted for the 2.36 mgd withdrawal, to 0.4 to 0.5 feet on-site for the 1.54 mgd model. Given the small predicted individual impact of the CUP on the upper Floridan aquifer, the evidence is persuasive that the cumulative impacts are the result of other end-of-permit user withdrawals. The drawdown contour for the lower Floridan aquifer predicted by the 1.54 mgd model is almost identical to that of the 2.36 mgd model, thus supporting the conclusion that predicted impacts to the lower Floridan are almost entirely from other end-of-permit user withdrawals. Modeled Effect on Silver Springs As a result of the relocation of the extraction wells from the East Tract to the North Tract, the NCF model run at the 1.54 mgd withdrawal rate predicted springflow at Silver Springs to increase by 0.15 cfs. The net cumulative impact in spring flow as measured from 1995 conditions to the scenario in which all legal users, including Sleepy Creek, are pumping at full capacity at their end-of-permit rates for one year3/ is roughly 35.4 cfs, which is approximately 5 percent of Silver Springs’ current flow. However, as a result of the redistribution of the Sleepy Creek withdrawal, which is, in its current iteration, a legal and permitted use, the cumulative effect of the CUP modification at issue is an increase in flow of 0.l5 cfs. Dr. Kincaid agreed that there is more of an impact to Silver Springs when the pumping allowed by the CUP is located on the East Tract than there is on the North Tract, but that the degree of difference is very small. Dr. Knight testified that effect on the flow of Silver Springs from relocating the 1.46 mgd withdrawal from the East Tract to the North Tract would be “zero.” The predicted increase of 0.15 cfs is admittedly miniscule when compared to the current Silver Springs springflow of approximately 675 cfs. However, as small as the modeled increase may be -- perhaps smaller than its “level of certainty” -- it remains the best evidence that the impact of the CUP modification to the flow of Silver Springs will be insignificant at worst, and beneficial at best. Opposition to the NCF Model Petitioners submitted considerable evidence designed to call the results generated by the District’s and Sleepy Creek’s NCF modeling into question. Karst Features A primary criticism of the validity of the NCF model was its purported inability to account for the presence of karst features, including conduits, and their effect on the results. It was Dr. Kincaid’s opinion that the NCF model assigned transmissivity values that were too high, which he attributed to the presence of karst features that are collecting flow and delivering it to springs. He asserted that, instead of assuming the presence of karst features, the model was adjusted to raise the overall capacity of the porous medium to transmit water, and thereby match the observed flows. In his opinion, the transmissivity values of the equivalent porous media were raised so much that the model can no longer be used to predict drawdowns. That alleged deficiency in the model is insufficient for two reasons. First, as previously discussed in greater detail, the preponderance of the evidence in this case supports a finding that there are no karst features in the vicinity of the North Tract that would provide preferential pathways for water flow so as to skew the results of the NCF model. Second, Dr. Kincaid, while acknowledging that the NCF model is the best available tool for predicting impacts from groundwater extraction on the aquifer, suggested that a hybrid porous media and conduit model would be a better means of predicting impacts, the development of which would take two years or more. There is no basis for the establishment of a de facto moratorium on CUP permitting while waiting for the development of a different and, in this case, unnecessary model. For the reasons set forth herein, it is found that the NCF model is sufficient to accurately and adequately predict the effects of the Sleepy Creek groundwater withdrawals on the aquifers underlying the property, and to provide reasonable assurance that the standards for such withdrawals have been met. Recharge to the Aquifer Petitioners argued that the modeling results showing little significant drawdown were dependent on the application of unrealistic values for recharge or return flow from irrigation. In a groundwater model, as in the physical world, some portion of the water extracted from the aquifer is predicted to be returned to the aquifer as recharge. If more water is applied to the land surface than is being accounted for by evaporation, plant uptake and evapotranspiration, surface runoff, and other processes, that excess water may seep down into the aquifer as recharge. Recharge serves to replenish the aquifer and offset the effects of the groundwater withdrawal. Dr. Kincaid opined that the NCF modeling performed for the CUP application assigned too much water from recharge, offsetting the model's prediction of impacts to other features. It is reasonable to assume that there is some recharge associated with both agricultural and public supply uses. However, the evidence suggests that the impact of recharge on the overall NCF model results is insignificant on the predicted impacts to Silver Springs, the issue of primary concern. Mr. Hearn ran a simulation using the NCF model in which all variables were held constant, except for recharge. The difference between the “with recharge” and “without recharge" simulations at Silver Springs was 0.002 cfs. That difference is not significant, and is not suggestive of adverse impacts on Silver Springs from the CUP modification. Dr. Kincaid testified that “the recharge offset on the property is mostly impacting the surficial aquifer,” and that “the addition of recharge in this case didn't have much of an impact on the upper Floridan aquifer system.” As such, the effect of adding recharge to the model would be as to the effect of groundwater withdrawal on wetlands or surface water bodies, and not on springs. As previously detailed, the drawdown of the surficial aquifer simulated for the 2.39 mgd “no recharge” scenario were less than 0.05 feet on-site and off-site, except for a predicted 0.07 foot drawdown to the west of the North Tract. The predicted drawdown of the surficial aquifer for the 1.54 mgd “with recharge” scenario was 0.02 feet or less. The preponderance of the evidence supports a finding that drawdowns of either degree are less than that at which adverse impacts to wetlands or surface waters would occur. Thus, issues related to the recharge or return flows from irrigation are insufficient to support a finding or conclusion that the NCF model failed to provide reasonable assurance that the standards for issuance of the CUP modification were met. External Boundaries The boundaries of the NCF model are not isolated from the rest of the physical world. Rather, groundwater flows into the modeled area from multiple directions, and out of the modeled area in multiple directions. Inflows to the model area are comprised of recharge, which is an assigned value, and includes water infiltrating and recharging the aquifer from surface waters; injection wells; upward and downward leakage from lower aquifers; and flow across the external horizontal boundaries. Outflows from the model area include evapotranspiration; discharge to surface waters, including springs and rivers; extraction from wells; upward and downward leakage from lower aquifers; and flow against the external model boundaries. Dr. Kincaid testified that flow across the external model boundary is an unknown and unverifiable quantity which increases the uncertainty in the model. He asserted that in the calibrated version of the model, there is no way to check those flows against data. His conclusion was that the inability of the NCF model to accurately account for external boundary flow made the margin of error so great as to make the model an unreliable tool with which to assess whether the withdrawal approved by the proposed CUP modification will increase or decrease drawdown at Silver Springs. The District correlates the NCF model boundaries with a much larger model developed by the United States Geological Survey, the Peninsula of Florida Model, more commonly referred to as the Mega Model, which encompasses most of the State of Florida and part of Southeast Georgia. The Mega Model provides a means to acknowledge that there are stresses outside the NCF model, and to adjust boundary conditions to account for those stresses. The NCF is one of several models that are subsets of the Mega Model, with the grids of the two models being “nested” together. The 1995 base year of the NCF model is sufficiently similar to the 1993-1994 base year of the Mega Model as to allow for a comparison of simulated drawdowns calculated by each of the models. By running a Mega Model simulation of future water use, and applying the change in that use from 1993 base year conditions, the District was able to come to a representative prediction of specific boundary conditions for the 1995 NCF base year, which were then used as the baseline for simulations of subsequent conditions. In its review of the CUP modification, the District conducted a model validation simulation to measure the accuracy of the NCF model against observed conditions, with the conditions of interest being the water flow at Silver Springs. The District ran a simulation using the best information available as to water use in the year 2010, the calculated boundary conditions, irrigation, pumping, recharge, climatic conditions, and generally “everything that we think constitutes that year.” The discharge of water at Silver Springs in 2010 was measured at 580 cfs. The discharge simulated by the NCF model was 545 cfs. Thus, the discharge predicted by the NCF model simulation was within six percent of the observed discharge. Such a result is generally considered in the modeling community to be “a home run.” Petitioners’ objections to the calculation of boundary conditions for the NCF model are insufficient to support a finding that the NCF model is not an appropriate and accurate tool for determining that reasonable assurance has been provided that the standards for issuance of the CUP modification were met. Cumulative Impact Error As part of the District’s efforts to continually refine the NCF, and in conjunction with a draft minimum flows and levels report for Silver Springs and the Silver River, the cumulative NCF model results for the period of baseline to 2010 were compared with the simulated results from the Northern District Model (NDF), a larger model that overlapped the NCF. As a result of the comparison, which yielded different results, it was discovered that the modeler had “turned off” not only the withdrawal pumps, but inputs to the aquifer from drainage wells and sinkholes as well. When those inputs were put back into the model run, and effects calculated only from withdrawals between the “pumps-off” condition and 2010 pumping conditions, the cumulative effect of the withdrawals was adjusted from a reduction in the flow at Silver Springs of 29 cfs to a reduction of between 45 and 50 cfs, an effect described as “counterintuitive.” Although that result has not undergone peer review, and remains subject to further review and comparison with the Mega Model, it was accepted by the District representative, Mr. Bartol. Petitioners seized upon the results of the comparison model run as evidence of the inaccuracy and unreliability of the NCF model. However, the error in the NCF model run was not the result of deficiencies in the model, but was a data input error. Despite the error in the estimate of the cumulative effect of all users at 2010 levels, the evidence in this case does not support a finding that the more recent estimates of specific impact from the CUP at issue were in error. NCF Model Conclusion As has been discussed herein, a model is generally the best means by which to calculate conditions and effects that cannot be directly observed. The NCF model is recognized as being the best tool available for determining the subsurface conditions of the model domain, having been calibrated over a period of years and subject to peer review. It should be recognized that the simulations run using the NCF model represent the worst—case scenario, with all permittees simultaneously drawing at their full end-of-permit allocations. There is merit to the description of that occurrence as being “very remote.” Thus, the results of the modeling represent a conservative estimate of potential drawdown and impacts. While the NCF model is subject to uncertainty, as is any method of predicting the effects of conditions that cannot be seen, the model provides reasonable assurance that the conditions simulated are representative of the conditions that will occur as a result of the withdrawals authorized by the CUP modification. Environmental Resource Permit The irrigation proposed by the CUP will result in runoff from the North Tract irrigated pastures in excess of that expected from the improved pastures, due in large measure to the diminished storage capacity of the soil. Irrigation water will be applied when the soils are dry, and capable of absorbing water not subject to evaporation or plant uptake. The irrigation water will fill the storage space that would exist without irrigation. With irrigation water taking up the capacity of the soil to hold water, soils beneath the irrigation pivots will be less capable of retaining additional moisture during storm events. Thus, there is an increased likelihood of runoff from the irrigated pastures over that expected with dry soils. The increase in runoff is expected to be relatively small, since there should be little or no irrigation needed during the normal summer wet season. The additional runoff may have increased nutrient levels due to the increased cattle density made possible by the irrigation of the pastures. The CUP has a no—impact requirement for water quality resulting from the irrigation of the improved pasture. Thus, nutrients leaving the irrigated pastures may not exceed those calculated to be leaving the existing pre-development use as improved pastures. Retention Berms The additional runoff and nutrient load is proposed to be addressed by constructing a system of retention berms, approximately 50,0004/ feet in length, which is intended to intercept, retain, and provide treatment for runoff from the irrigated pasture. The goal of the system is to ensure that post—development nutrient loading from the proposed irrigated pastures will not exceed the pre—development nutrient loading from the existing improved pastures. An ERP permit is required for the construction of the berm system, since the area needed for the construction of the berms is greater than the one acre in size, and since the berms have the capability of impounding more than 40 acre-feet of water. The berms are to be constructed by excavating the top nine inches of sandy, permeable topsoil and using that permeable soil to create the berms, which will be 1 to 2 feet in height. The water storage areas created by the excavation will have flat or horizontal bottoms, and will be very shallow with the capacity to retain approximately a foot of water. The berms will be planted with pasture grasses after construction to provide vegetative cover. The retention berm system is proposed to be built in segments, with the segment designed to capture runoff from a particular center pivot pasture to be constructed prior to the commencement of irrigation from that center pivot. A continuous clay layer underlies the areas in which the berms are to be constructed. The clay layer varies from 18 to 36 inches below the ground surface, with at least one location being as much as five feet below the ground surface. As such, after nine inches of soil is scraped away to create the water retention area and construct the berm, there will remain a layer of permeable sandy material above the clay. The berms are to be constructed at least 25 feet landward of any jurisdictional wetland, creating a “safe upland line.” Thus, the construction, operation, and maintenance of the retention berms and redistribution swales will result in no direct impacts to jurisdictional wetlands or other surface waters. There will be no agricultural activities, e.g., tilling, planting, or mowing, within the 25-foot buffers, and the buffers will be allowed to establish with native vegetation to provide additional protection for downgradient wetlands. As stormwater runoff flows from the irrigated pastures, it may, in places, create concentrated flow ways. Redistribution swales will be built in those areas to spread any remaining overland flow of water and reestablish sheet flow to the retention berm system. At any point at which water may overtop a berm, the berm will be hardened with rip—rap to insure its integrity. The berms are designed to intercept and collect overland flow from the pastures and temporarily store it behind the berms, regaining the soil storage volume lost through irrigation. A portion of the runoff intercepted by the berm system will evaporate. The majority will infiltrate either through the berm, or vertically into the subsurface soils beneath it. When the surficial soils become saturated, further vertical movement will be stopped by the impermeable clay layer underlying the site. The runoff water will then move horizontally until it reemerges into downstream wetland systems. Thus, the berm system is not expected to have a measurable impact on the hydroperiod of the wetlands on the North Tract. Phosphorus Removal Phosphorus tends to get “tied up” in soil as it moves through it. Phosphorus reduction occurs easily in permeable soil systems because it is removed from the water through a chemical absorption process that is not dependent on the environment of the soil. As the soils in the retention areas and berms go through drying cycles, the absorption capacity is regenerated. Thus, the retention system will effectively account for any increase in phosphorus resulting from the increased cattle density allowed by the irrigation such that there is expected to be no increase in phosphorus levels beyond the berm. Nitrogen Removal When manure is deposited on the ground, primarily as high pH urine, the urea is quickly converted to ammonia, which experiences a loss of 40 to 50 percent of the nitrogen to volatization. Soil conditions during dry weather conditions are generally aerobic. Remaining ammonia in the manure is converted by aerobic bacteria in the soil to nitrates and nitrites. Converted nitrates and nitrites from manure, along with nitrogen from fertilizer, is readily available for uptake as food by plants, including grasses and forage crops. Nitrates and nitrites are mobile in water. Therefore, during rain events of sufficient intensity to create runoff, the nitrogen can be transported downstream towards wetlands and other receiving waters, or percolate downward through the soil until blocked by an impervious barrier. During storm events, the soils above the clay confining layer and the lower parts of the pervious berms become saturated. Those saturated soils are drained of oxygen and become anaerobic. When nitrates and nitrites encounter saturated conditions, they provide food for anaerobic bacteria that exist in those conditions. The bacteria convert nitrates and nitrites to elemental nitrogen, which has no adverse impact on surface waters or groundwater. That process, known as denitrification, is enhanced in the presence of organic material. The soils from which the berms are constructed have a considerable organic component. In addition to the denitrification that occurs in the saturated conditions in and underlying the berms, remaining nitrogen compounds that reemerge into the downstream wetlands are likely to encounter organic wetland-type soil conditions. Organic wetland soils are anaerobic in nature, and will result in further, almost immediate denitrification of the nitrates and nitrites in the emerging water. Calculation of Volume - BMPTRAINS Model The calculation of the volume necessary to capture and store excess runoff from the irrigated pastures was performed by Dr. Wanielista using the BMPTRAINS model. BMPTRAINS is a simple, easy to use spreadsheet model. Its ease of use does not suggest that it is less than reliable. The model has been used as a method of calculating storage volumes in many conditions over a period of more than 40 years. The model was used to calculate the storage volumes necessary to provide storage and treatment of runoff from fifteen “basins” that had a control or a Best Management Practice associated with them. All of the basins were calculated as being underlain by soils in poorly-drained hydrologic soil Group D, except for the basin in the vicinity of Pivot 6, which is underlain by the more well-drained soil Group A. The model assumed about percent of the property to have soil Group A soils, an assumption that is supported by the evidence. Soil moisture conditions on the property were calculated by application of data regarding rainfall events and times, the irrigation schedule, and the amount of irrigation water projected for use over a year. The soil moisture condition was used to determine the amount of water that could be stored in the on-site soils, known as the storage coefficient. Once the storage coefficient was determined, that data was used to calculate the amount of water that would be expected to run off of the North Tract, known as the curve number. The curve number is adjusted by the extent to which the storage within a soil column is filled by the application of irrigation water, making it unable to store additional rainfall. As soil storage goes down, the curve number goes up. Thus, a curve number that approaches 100 means that more water is predicted to run off. Conversely, a lower curve number means that less water is predicted to run off. The pre-development curve number for the North Tract was based on the property being an unirrigated, poor grass area. A post-development curve number was assigned to the property that reflected a wet condition representative of the irrigated soils beneath the pivots. In calculating the storage volume necessary to handle runoff from the basins, the wet condition curve number was adjusted based on the fact that there is a mixture of irrigated and unirrigated general pasture within each basin to be served by a segment of the retention berm system, and by the estimated 15 percent of the time that the irrigation areas would be in a drier condition. In addition, the number was adjusted to reflect the 8 to 10 inches of additional evapotranspiration that occurs as a result of irrigation. The BMPTRAINS model was based on average annual nutrient-loading conditions, with water quality data collected at a suitable point within Reach 22, the receiving waterbody. The effects of nutrients from the irrigated pastures on receiving waterbodies is, in terms of the model, best represented by average annual conditions, rather than a single highest-observed nutrient value. Pre-development loading figures were based on the existing use of the property as unirrigated general pasture. The pre-development phosphorus loading figure was calculated at an average event mean concentration (EMC) of 0.421 milligrams per liter (mg/l). The post—condition phosphorus loading figure was calculated at an EMC of 0.621 mg/l. Therefore, in order to achieve pre-development levels of phosphorus, treatment to achieve a reduction in phosphorus of approximately 36 percent was determined to be necessary. The pre-development nitrogen loading figure was calculated at an EMC of 2.6 mg/l. The post—condition nitrogen loading figure was calculated at an EMC of 3.3 mg/l. Therefore, in order to achieve pre-development levels of nitrogen, treatment to achieve a reduction in nitrogen of approximately 25 percent was determined to be necessary. The limiting value for the design of the retention berms is phosphorus. To achieve post-development concentrations that are equal to or less than pre-development concentrations, the treatment volume of the berm system must be sufficient to allow for the removal of 36 percent of the nutrients in water being retained and treated behind the berms, which represents the necessary percentage of phosphorus. In order to achieve the 36 percent reduction required for phosphorus, the retention berm system must be capable of retaining approximately 38 acre—feet of water from the 15 basins. In order to achieve that retention volume, a berm length of approximately 50,000 linear feet was determined to be necessary, with an average depth of retention behind the berms of one foot. The proposed length of the berms is sufficient to retain the requisite volume of water to achieve a reduction in phosphorus of 36 percent. Thus, the post-development/irrigation levels of phosphorus from runoff are expected to be no greater than pre-development/general pasture levels of phosphorus from runoff. By basing the berm length and volume on that necessary for the treatment of phosphorus, there will be storage volume that is greater than required for a 25 percent reduction in nitrogen. Thus, the post-development/irrigation levels of nitrogen from runoff are expected to be less than pre- development/general pasture levels of nitrogen from runoff. Mr. Drummond admitted that the design of the retention berms “shows there is some reduction, potentially, but it's not going to totally clean up the nutrients.” Such a total clean-up is not required. Rather, it is sufficient that there is nutrient removal to pre-development levels, so that there is no additional pollutant loading from the permitted activities. Reasonable assurance that such additional loading is not expected to occur was provided. Despite Mr. Drummond’s criticism of the BMPTRAINS model, he did not quantify nutrient loading on the North Tract, and was unable to determine whether post-development concentrations of nutrients would increase over pre-development levels. As such, there was insufficient evidence to counter the results of the BMPTRAINS modeling. Watershed Assessment Model In order to further assess potential water quantity and water quality impacts to surface water bodies, and to confirm stormwater retention area and volume necessary to meet pre-development conditions, Sleepy Creek utilized the Watershed Assessment Model (WAM). The WAM is a peer-reviewed model that is widely accepted by national, state, and local regulatory entities. The WAM was designed to simulate water balance and nutrient impacts of varying land uses. It was used in this case to simulate and provide a quantitative measure of the anticipated impacts of irrigation on receiving water bodies, including Mill Creek, Daisy Creek, the Ocklawaha River, and Silver Springs. Inputs to the model include land conditions, soil conditions, rain and climate conditions, and water conveyance systems found on the property. In order to calculate the extent to which nutrients applied to the land surface might affect receiving waters, a time series of surface water and groundwater flow is “routed” through the modeled watershed and to the various outlets from the system, all of which have assimilation algorithms that represent the types of nutrient uptakes expected to occur as water goes through the system. Simulations were performed on the North Tract in its condition prior to acquisition by Sleepy Creek, in its current “exempted improved pasture condition,” and in its proposed “post—development” pivot-irrigation condition. The simulations assessed impacts of the site conditions on surface waters at the point at which they leave the property and discharge to Mill Creek, and at the point where Mill Creek merges into the Ocklawaha River. The baseline condition for measuring changes in nutrient concentrations was determined to be that lawfully existing at the time the application was made. Had there been any suggestion of illegality or impropriety in Sleepy Creek’s actions in clearing the timber and creating improved pasture, a different baseline might be warranted. However, no such illegality or impropriety was shown, and the SJRWMD rules create no procedure for “looking back” to previous land uses and conditions that were legally changed. Thus, the “exempted improved pasture condition” nutrient levels are appropriate for comparison with irrigated pasture nutrient levels. The WAM simulations indicated that nitrogen resulting from the irrigation of the North Tract pastures would be reduced at the outflow to Mill Creek at the Reach 22 stream segment from improved pasture levels by 1.7 percent in pounds per year, and by 0.6 percent in milligrams per liter of water. The model simulations predicted a corresponding reduction at the Mill Creek outflow to the Ocklawaha River of 1.3 percent in pounds per year, and 0.5 percent in milligrams per liter of water. These levels are small, but nonetheless support a finding that the berm system is effective in reducing nitrogen from the North Tract. Furthermore, the WAM simulations showed levels of nitrogen from the irrigated pasture after the construction of the retention berms to be reduced from that present in the pre- development condition, a conclusion consistent with that derived from the BMPTRAINS model. The WAM simulations indicated that phosphorus from the irrigated North Tract pastures, measured at the outflow to Mill Creek at the Reach 22 stream segment, would be reduced from improved pasture levels by 3.7 percent in pounds per year, and by 2.6 percent in milligrams per liter of water. The model simulations predicted a corresponding reduction at the Mill Creek outflow to the Ocklawaha River of 2.5 percent in pounds per year, and 1.6 percent in milligrams per liter of water. Those levels are, again, small, but supportive of a finding of no impact from the permitted activities. The WAM simulations showed phosphorus in the Ocklawaha River at the Eureka Station after the construction of the retention berms to be slightly greater than those simulated for the pre-development condition (0.00008 mg/l) -- the only calculated increase. That level is beyond miniscule, with impacts properly characterized as “non- measurable” and “non-detectable.” In any event, total phosphorus remains well below Florida’s nutrient standards. The WAM simulations were conducted based on all of the 15 pivots operating simultaneously at full capacity. That amount is greater than what is allowed under the permit. Thus, according to Dr. Bottcher, the predicted loads are higher than those that would be generated by the permitted allocation, making his estimates “very conservative.” Dr. Bottcher’s testimony is credited. During the course of the final hearing, the accuracy of the model results was questioned based on inaccuracies in rainfall inputs due to the five-mile distance of the property from the nearest rain station. Dr. Bottcher admitted that given the dynamics of summer convection storms, confidence that the rain station rainfall measurements represent specific conditions on the North Tract is limited. However, it remains the best data available. Furthermore, Dr. Bottcher testified that even if specific data points simulated by the model differ from that recorded at the rain station, that same error carries through each of the various scenarios. Thus, for the comparative purpose of the model, the errors get “washed out.” Other testimony regarding purported inaccuracies in the WAM simulations and report were explained as being the result of errors in the parameters used to run alternative simulations or analyze Sleepy Creek’s simulations, including use of soil types that are not representative of the North Tract, and a misunderstanding of dry weight/wet weight loading rates. There was agreement among witnesses that the WAM is regarded, among individuals with expertise in modeling, as an effective tool, and was the appropriate model for use in the ERP application that is the subject of this proceeding. As a result, the undersigned accepts the WAM simulations as being representative of comparative nutrient impacts on receiving surface water bodies resulting from irrigation of the North Tract. The WAM confirmed that the proposed retention berm system will be sufficient to treat additional nutrients that may result from irrigation of the pastures, and supports a finding of reasonable assurance that water quality criteria will be met. With regard to the East Tract, the WAM simulations showed that there would be reductions in nitrogen and phosphorus loading to Daisy Creek from the conversion of the property to irrigated pasture. Those simulations were also conservative because they assumed the maximum number of cattle allowed by the nutrient balance, and did not assume the 30 percent reduction in the number of cattle under the NMP so as to allow existing elevated levels of phosphorus in the soil from the sod farm to be “mined” by vegetation. Pivot 6 The evidence in this case suggests that, unlike the majority of the North Tract, a small area on the western side of the North Tract drains to the west and north. Irrigation Pivot is within that area. Dr. Harper noted that there are some soils in hydrologic soil Group A in the vicinity of Pivot 6 that reflect soils with a deeper water table where rainfall would be expected to infiltrate into the ground. Dr. Kincaid’s particle track analysis suggested that recharge to the surficial aquifer ultimately discharges to Mill Creek, except for recharge at Pivot 11, which is accounted for by evapotranspiration, and recharge at Pivot 6. Dr. Kincaid concluded that approximately 1 percent of the recharge to the surficial aquifer beneath the North Tract found its way into the upper Floridan aquifer. Those particle tracks originated only on the far western side of the property, and implicated only Pivot 6, which is indicative of the flow divide in the Floridan aquifer. Of the 1 percent of particle tracks entering the Floridan aquifer, some ultimately discharged at the St. John’s River, the Ocklawaha River, or Mill Creek. Dr. Kincaid opined, however, that most ultimately found their way to Silver Springs. Given the previous finding that the Floridan aquifer beneath the property is within the Silver Springs springshed for less than a majority of the time, it is found that a correspondingly small fraction of the less than 1 percent of the particle tracks originating on the North Tract, perhaps a few tenths of one percent, can reach Silver Springs. Dr. Bottcher generally agreed that some small percentage of the water from the North Tract may make it to the upper Floridan aquifer, but that amount will be very small. Furthermore, that water reaching the upper Floridan aquifer would have been subject to the protection and treatment afforded by the NMP and the ERP berms. The evidence regarding the somewhat less restrictive confinement of the aquifer around Pivot 6 is not sufficient to rebut the prima facie case that the CUP modification, coupled with the ERP, will meet the District’s permitting standards. Public Interest The primary basis upon which Sleepy Creek relies to demonstrate that the CUP is “consistent with the public interest” is that Florida's economy is highly dependent upon agricultural operations in terms of jobs and economic development, and that there is a necessity of food production. Sleepy Creek could raise cattle on the property using the agriculturally-exempt improved pastures, but the economic return on the investment would be questionable without the increased quality, quantity, and reliability of grass and forage crop production resulting from the proposed irrigation. Sleepy Creek will continue to engage in agricultural activities on its properties if the CUP modification is denied. Although a typical Florida beef operation could be maintained on the property, the investment was based upon having the revenue generation allowed by grass-fed beef production in order to realize a return on its capital investment and to optimize the economic return. If the CUP modification is denied, the existing CUP will continue to allow the extraction of 1.46 mgd for use on the East Tract. The preponderance of the evidence suggests that such a use would have greater impacts on the water levels at Silver Springs, and that the continued use of the East Tract as a less stringently-controlled sod farm would have a greater likelihood of higher nutrient levels, particularly phosphorus levels which are already elevated.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law set forth herein it is RECOMMENDED that the St. Johns River Water Management District enter a final order: approving the issuance of Consumptive Use Permit No. 2-083-91926-3 to Sleepy Creek Lands, LLC on the terms and conditions set forth in the complete Permit Application for Consumptive Uses of Water and the Consumptive Use Technical Staff Report; and approving the issuance of Environmental Resource Permit No. IND-083-130588-4 to Sleepy Creek Lands, LLC on the terms and conditions set forth in the complete Joint Application for Individual and Conceptual Environmental Resource Permit and the Individual Environmental Resource Permit Technical Staff Report. DONE AND ENTERED this 29th day of April, 2015, in Tallahassee, Leon County, Florida. S E. GARY EARLY Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 29th day of April, 2015.

Florida Laws (27) 120.54120.569120.57120.60120.68373.016373.019373.036373.042373.0421373.069373.079373.175373.223373.227373.229373.236373.239373.246373.406373.413373.4131373.414403.067403.087403.9278.031 Florida Administrative Code (12) 28-106.10828-106.21740C-2.30140C-2.33140C-44.06540C-44.06662-302.30062-330.05062-330.30162-4.24062-4.24262-40.473
# 4
BERNARD J. PATTERSON AND VIRGINIA T. PATTERSON vs CITY OF DELTONA AND ST. JOHNS RIVER WATER MANAGEMENT DISTRICT, 04-002408 (2004)
Division of Administrative Hearings, Florida Filed:Deltona, Florida Jul. 12, 2004 Number: 04-002408 Latest Update: Jul. 25, 2005

The Issue The issue is whether the applicant for an Environmental Resource Permit ("ERP"), the City of Deltona ("City" or "Applicant"), has provided reasonable assurance that the system proposed complies with the water quantity, environmental, and water quality criteria of the St. Johns River Water Management District's ("District") ERP regulations set forth in Florida Administrative Code Chapter 40C-4, and the Applicant's Handbook: Management and Storage of Surface Waters (2005).

Findings Of Fact The District is a special taxing district created by Chapter 373, Florida Statutes, charged with the duty to prevent harm to the water resources of the District, and to administer and enforce Chapter 373, Florida Statutes, and the rules promulgated thereunder. The City of Deltona is a municipal government established under the provisions of Chapter 165, Florida Statutes. The Lake Theresa Basin is comprised primarily of a system of interconnected lakes extending from Lake Macy in the City of Lake Helen to the Butler Chain of Lakes (Lake Butler and Lake Doyle). The Lake Theresa Basin is land-locked and does not have a natural outfall to Lake Monroe and the St. Johns River. In 2003, after an extended period of above-normal rainfall in the Deltona area, the lakes within the land-locked Lake Theresa Basin staged to extremely high elevations that resulted in standing water in residential yards, and rendered some septic systems inoperable. Lake levels within the Lake Theresa Basin continued to rise and were in danger of rising above the finished floor elevations of some residences within the basin. On March 25, 2003, the District issued an Emergency Order (F.O.R. No. 2003-38) authorizing the construction and short-term operation of the Lake Doyle and Lake Bethel Emergency Overflow Interconnection. Since wetland and surface water impacts would occur, the Emergency Order required the City of Deltona to obtain an ERP for the system. The project area is 4.1 acres, and the system consists of a variable water structure on the west shore of Lake Doyle connected to a series of pipes, swales, water control structures, and wetland systems which outfall to a finger canal of Lake Bethel, with ultimate discharge to Lake Monroe and the St. Johns River. The first segment of the system extends downstream from the weir structure on the west shore of Lake Doyle via a pipe entrenched in the upland berm of the Sheryl Drive right-of-way. The pipe passes under Doyle Road and through xeric pine-oak uplands to the northeast shore of a large (approximately 15 acres) deepwater marsh. Water flows south through the deepwater marsh where it outfalls through four pipes at Ledford Drive. Two of the four pipes are overflow structures, controlled by canal gates. The pipes at Ledford Drive discharge into a ditch and into a large (greater than 20 acres) shallow bay swamp. The south end of the bay swamp is defined (and somewhat impounded) by a 19th Century railroad grade. Water flows through the bay swamp where it outfalls through five pipes at the railroad grade. Three of the five pipes are overflow structures, controlled by channel boards. The pipes at the railroad grade discharge to a 1500-foot long finger canal that was dug some time during the period 1940-1972 from the north central shore of Lake Bethel. The overflow interconnection system has three locations whereby the system can be shut down: 1) Lake Doyle--a control weir, controlled by three sluice gates; 2) Ledford Drive--two thirty-inch reinforced concrete pipes, controlled by canal gates; and 3) railroad grade--three thirty-inch reinforced concrete pipes, controlled by channel boards (collectively referred to as "Overflow Structures"). The Overflow Structures are designed to carry the discharge of water from Lake Doyle to Lake Bethel. With the Overflow Structures closed the system returns to pre-construction characteristics, meaning there will be no increase or decrease in the quantity or quality of water throughout the path of the system as a result of the project. An unequivocal condition of the permit is that the system would operate with all of the Overflow Structures closed. As an added assurance, the City proposes to place a brick and mortar plug in the Lake Doyle weir structure outfall pipe to prevent any discharge from the weir. The City has submitted to the District preliminary plans for a future phase in which the system would be modified for the purpose of alleviating high water levels within the Lake Theresa Basin when the water level in Lake Doyle rises above an elevation of 24.5 feet. The District shall require a separate permit application to be submitted for such future plans. Petitioner, Barbara Ash, has lived on Lake Theresa for 19 years. Ms. Ash lives upstream from the area of the weir that will be plugged in accordance with the ERP. She does not trust either the City of Deltona to comply with or the District to enforce the conditions of the ERP applied for by the City. Petitioner, Barbara Ash, also served as the qualified representative for Petitioners, Francell Frei, Bernard J. and Virginia Patterson, and Ted and Carol Sullivan. Ms. Ash represented that Ms. Frei has lived on Lake Theresa for 12 years, and both the Pattersons and the Sullivans live on Lake Louise, which is within the area of concern in this proceeding. Petitioner, Diana Bauer, has lived on Lake Theresa since February 2004. She fears that the lake will become too dry if the system is allowed to flow. She also believes the wildlife will be adversely affected if the water levels are too low since many species need a swampy or wet environment to thrive. She fears her property value will decrease as a result of the approval of the ERP. She also does not trust either the City to comply with or the District to enforce the conditions of the ERP. Petitioner, Howard Ehmer, lives two to three hundred yards down Lake Theresa from Ms. Bauer. He is concerned about the lake bed being too dry and attracting people on all terrain vehicles who enjoy driving around the lake bottom. He is concerned about his property value decreasing if the lake bed is dry. Further, when the lake level is too low, people cannot enjoy water skiing, boating, and fishing on Lake Theresa. Petitioner, Phillip Lott, a Florida native, has also owned and lived on property abutting Lake Theresa since 1995. Mr. Lott has a Ph.D. in plant ecology, and M.P.A. in coastal zone studies, an M.B.A. in international business, and a B.S. in environmental resource management and planning. Mr. Lott has been well acquainted with the water levels on Lake Theresa for many years. Based upon his personal observations of the lake systems in the Deltona area over the years, Mr. Lott has seen levels fluctuate greatly based upon periods of heavy and light rainfall. Mr. Lott is concerned that the District will permit the City to open the weir to let water flow through the system and cause flooding in some areas and low water levels in other areas. He fears that the District will allow the water to flow and upset the environmental balance, but he admits that this ERP application is for a closed system that will not allow the water to flow as he fears. Mr. Lott similarly does not trust the City to comply with and the District to enforce the conditions of the ERP. Petitioners, James E. and Alicia M. Peake, who were represented by Steven L. Spratt at hearing as their qualified representative, live on Lake Louise, which is interconnected with the Lake Theresa basin. The Peakes are concerned that if the level of Lake Louise drops below 21 feet, nine inches, they will not be able to use the boat launch ramps on the lake. Petitioner, Steven L. Spratt, also lives on Lake Louise, and is concerned about the water levels becoming so low that he cannot use the boat launch on the lake. He has lived on the lake since 2000, and remembers when the water level was extremely low. He fears that approval of the ERP in this case will result in low levels of water once again. Petitioner, Gloria Benoit, has live on Lake Theresa for two years. She also enjoys watching recreational activities on the lake, and feels that approval of the ERP will devalue her lakefront property. Ms. Benoit appeared at the first day of the hearing, but offered no testimony on her behalf. J. Christy Wilson, Esquire, appeared prior to the final hearing as counsel of record for Petitioners, Steven E. Larimer, Kathleen Larimer, and Helen Rose Farrow. Neither Ms. Wilson nor any of the three Petitioners she represented appeared at any time during the hearing, filed any pleadings seeking to excuse themselves from appearing at the final hearing, or offered any evidence, testimony, pre- or post- hearing submittals. Petitioner, Gary Jensen, did not appear at hearing, did not file any pleadings or papers seeking to be excused from appearing at the final hearing, and did not offer any evidence, testimony, pre- or post-hearing submittals. Both the City and the District recognize that areas downstream from the project site, such as Stone Island and Sanford, have experienced flooding in the past in time of high amounts of rainfall. The system proposed by the City for this ERP will operate with the overflow structures closed and a brick and mortar plug in the outfall pipe to prevent water flow from Lake Doyle to Lake Bethel. So long as the overflow structures are closed, the system will mimic pre-construction flow patterns, with no increase in volume flowing downstream. The District has considered the environment in its proposed approval of the ERP. The area abutting the project is little urbanized and provides good aquatic and emergent marsh habitat. With the exception of the western shore area of the deepwater marsh ("west marsh area"), the bay swamp and remaining deepwater marsh area have good ecological value. In the 1940's, the west marsh area was incorporated into the drainage system of a poultry farm that occupied the site. This area apparently suffered increased nutrient influxes and sedimentation that contributed to a proliferation of floating mats of aquatic plants and organic debris. These tussocks reduced the deepwater marsh's open water and diminished the historical marsh habitat. Water under the tussocks is typically anoxic owing to total shading by tussocks and reduced water circulation. Thick, soft, anaerobic muck has accumulated under the matted vegetation. Exotic shrubs (primrose willow Ludwigia peruvania) and other plants (cattails Typha spp.) dominate the tussocks. The construction of the project, from the 2003 Emergency Order, resulted in adverse impacts to 1.3 acres of wetlands having moderately high- to high ecological value and 0.2 acres of other surface waters. The 0.2 acre impact to other surface waters was to the lake bottom and the shoreline of Lake Doyle where the weir structure was installed. The 0.3 acres of wetland impacts occurred at the upper end of the deepwater marsh where the pipe was installed. The largest wetland impact (1.0 acre) was to the bay swamp. The bay swamp is a shallow body dominated by low hummocks and pools connected inefficiently by shallow braided channels and one acre is filled with a 1-2 foot layer of sediment following swamp channelization. Disturbance plants (e.g., primrose willow, Ludwigia peruvania, and elderberry Sambucus Canadensis) now colonize the sediment plume. Pursuant to the District's elimination and reduction criteria, the applicant must implement practicable design modifications, which would reduce or eliminate adverse impacts to wetlands and other surface waters. A proposed modification, which is not technically capable of being done, is not economically viable, or which adversely affects public safety through endangerment of lives or property is not considered "practicable." The City reduced and/or eliminated the impacts to the lake bottom and shoreline of Lake Doyle and deepwater marsh, to the extent practicable. The impacts were the minimum necessary to install the weir structure and pipe for the system; the weir structure and pipe were carefully installed on the edges of the wetland and surface water systems, resulting in a minimum amount of grading and disturbance. To compensate for the loss of 1.3 acres of wetlands and 0.2 acres of other surface waters, the City proposes to preserve a total of 27.5 acres of wetlands, bay swamp, marsh, and contiguous uplands. Included in this 27.5 acres are 6.4 acres of the west marsh, which are to be restored. The parties stipulated that the mitigation plan would adequately compensate for losses of ecological function (e.g. wildlife habitat and biodiversity, etc.) resulting from the project. Water quality is a concern for the District. Lake Monroe is included on the Florida Department of Environmental Protection's verified list of impaired water bodies for nitrogen, phosphorous, and dissolved oxygen. Water quality data for Lake Monroe indicate the lake has experienced high levels of nitrogen and phosphorous and low levels of dissolved oxygen. Prior to construction of the project, there was no natural outfall from the Lake Theresa Basin to Lake Monroe and therefore no contribution from this basin to nitrogen and phosphorous loadings to Lake Monroe. Lake Colby, Three Island Lakes (a/k/a Lake Sixma), and the Savannah are surface waters within the Lake Theresa Basin for which minimum levels have been adopted pursuant to Florida Administrative Code Chapter 40C-8. The system will operate with the overflow structures closed and a brick and mortar plug in the outfall pipe to prevent water flow from Lake Doyle to Lake Bethel, resulting in no outfall from the Theresa Basin to Lake Monroe. Minimum flows established for surface waters within the Lake Theresa Basin will not be adversely impacted. Under the first part of the secondary impact test, the City must provide reasonable assurance that the secondary impacts from construction, alteration, and intended or reasonable expected use of the project will not adversely affect the functions of adjacent wetlands or surface waters. The system is designed as a low intensity project. As proposed, little activity and maintenance are expected in the project site area. The reasonably expected use of the system will not cause adverse impacts to the functions of the wetlands and other surface waters. None of the wetland areas adjacent to uplands are used by listed species for nesting or denning. In its pre-construction state, the project area did not cause or contribute to state water quality violations. Under the second part of the secondary impact test, the City must provide reasonable assurance that the construction, alteration, and intended or reasonably expected uses of the system will not adversely affect the ecological value of the uplands to aquatic or wetland dependent species for enabling existing nesting or denning by these species. There are no listed threatened or endangered species within the project site area. Under the third part of the secondary impact test, and as part of the public interest test, the District must consider any other relevant activities that are closely linked and causally related to any proposed dredging or filling which will cause impacts to significant historical and archaeological resources. When making this determination, the District is required, by rule, to consult with the Division of Historical Resources. The Division of Historical Resources indicated that no historical or archaeological resources are likely present on the site. No impacts to significant historical and archaeological resources are expected. Under the fourth part of the secondary impact test, the City must demonstrate that certain additional activities and future phases of a project will not result in adverse impacts to the functions of wetlands or water quality violations. The City has submitted to the District preliminary plans for a future phase in which the system would be modified for the purpose of alleviating high water levels within the Lake Theresa Basin when the level in Lake Doyle rises above an elevation of 24.5 feet. Based upon the plans and calculations submitted, the proposed future phase, without additional measures, could result in minor increases in the loadings of nitrogen and phosphorous to Lake Monroe. Lake Monroe is included on the Florida Department of Environmental Protection's verified list of impaired water bodies due to water quality data indicating the lake has experienced high levels of nitrogen and phosphorous, and low levels of dissolved oxygen. Under this potential future phase, there would be an outfall from the Lake Theresa Basin to Lake Monroe. To address the impact on water quality of this potential future phase, the City has submitted a loading reduction plan for nitrogen, phosphorous, and dissolved oxygen. The plan includes compensating treatment to fully offset the potential increased nutrient loadings to Lake Monroe. Specifically, the loading reduction plan includes: Construction and operation of compensating treatment systems to fully offset anticipated increased nutrient loadings to Lake Monroe. Weekly water quality monitoring of the discharge from Lake Doyle for total phosphorous and total nitrogen. A requirement that the overflow structure be closed if the total phosphorous level reaches 0.18 mg/l or higher or the total nitrogen level reaches 1.2 mg/l or higher in any given week and will remain closed until levels fall below those limits. The implementation of these water quality mitigation measures will result in a net improvement of the water quality in Lake Monroe for nitrogen, phosphorous, or dissolved oxygen. The future phase was conceptually evaluated by the District for impacts to wetland functions. The future phase as proposed could result in adverse impacts to wetland functions. Operation of the system with the overflow structures open could impact the bay swamp and deepwater marsh. The City has demonstrated that any adverse impacts could be offset through mitigation. Based upon the information provided by the City and general engineering principles, the system is capable of functioning as proposed. The City of Deltona will be responsible for the operation, maintenance, and repair of the surface waster management system. A local government is an acceptable operation and maintenance entity under District rules. The public interest test has seven criteria. The public interest test requires the District to evaluate only those parts of the project actually located in, on, or over surface waters or wetlands, to determine whether a factor is positive, neutral, or negative, and then to balance these factors against each other. The seven factors are as follows: the public health, safety, or welfare of others; conservation of fish and wildlife and their habitats; fishing, recreational value, and marine productivity; temporary or permanent nature; 5) navigation, water flow, erosion, and shoaling; 6) the current condition and relative value of functions; and 7) historical and archaeological resources. There are no identified environmental hazards or improvements to public health and safety. The District does not consider impacts to property values. To offset any adverse impacts to fish and wildlife and their habitats, the City has proposed mitigation. The areas of the project in, on, or over wetlands do not provide recreational opportunities. Construction and operation of the project located in, on, or over wetlands will be permanent in nature. Construction and operation of the project located in, on, or over wetlands will not cause shoaling, and does not provide navigational opportunities. The mitigation will offset the relative value of functions performed by areas affected by the proposed project. No historical or archaeological resources are likely on the site of the project. The mitigation of the project is located within the same drainage basin as the project and offsets the adverse impacts. The project is not expected to cause unacceptable cumulative impacts.

Recommendation Based upon the Findings of Fact and Conclusions of Law, it is RECOMMENDED that a Final Order be entered granting the City of Deltona's application for an environmental resource permit with the conditions set forth in the Technical Staff Report, and dismissing the Petitions for Formal Administrative Hearing filed by Gary Jensen in Case No. 04-2405, and by Steven E. Larimer, Kathleen Larimer, and Helen Rose Farrow in Case No. 04-3048. DONE AND ENTERED this 27th day of May, 2005, in Tallahassee, Leon County, Florida. S ROBERT S. COHEN Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 27th day of May, 2005. COPIES FURNISHED: George Trovato, Esquire City of Deltona 2345 Providence Boulevard Deltona, Florida 32725 Diana E. Bauer 1324 Tartan Avenue Deltona, Florida 32738 Barbara Ash, Qualified Representative 943 South Dean Circle Deltona, Florida 32738-6801 Phillip Lott 948 North Watt Circle Deltona, Florida Howard Ehmer Nina Ehmer 32738-7919 1081 Anza Court Deltona, Florida 32738 Francell Frei 1080 Peak Circle Deltona, Florida 32738 Bernard T. Patterson Virginia T. Patterson 2518 Sheffield Drive Deltona, Florida 32738 Kealey A. West, Esquire St. Johns River Water Management District 4049 Reid Street Palatka, Florida 32177 J. Christy Wilson, Esquire Wilson, Garber & Small, P.A. 437 North Magnolia Avenue Orlando, Florida 32801 Gloria Benoit 1300 Tartan Avenue Deltona, Florida 32738 Gary Jensen 1298 Tartan Avenue Deltona, Florida 32738 James E. Peake Alicia M. Peake 2442 Weatherford Drive Deltona, Florida 32738 Steven L. Spratt 2492 Weatherford Drive Deltona, Florida 32738 Ted Sullivan 1489 Timbercrest Drive Deltona, Florida 32738 Kirby Green, Executive Director St. Johns River Water Management District 4049 Reid Street Palatka, Florida 32177

Florida Laws (3) 120.569120.57373.086 Florida Administrative Code (6) 40C-4.30140C-4.30240C-4.33140C-4.75162-302.30062-4.242
# 5
NANCY CONDRON vs ST. JOHNS RIVER WATER MANAGEMENT DISTRICT AND 1044PVB, LLC, 16-000806 (2016)
Division of Administrative Hearings, Florida Filed:Jacksonville, Florida Feb. 12, 2016 Number: 16-000806 Latest Update: Aug. 01, 2016

The Issue The issue to be determined in this case is whether 1044PVB, LLC (“Applicant”), is entitled to Environmental Resource Permit (“ERP”) No. IND-109-143282-1 from the St. Johns River Water Management District (“District”), authorizing the construction of a surface water management system to serve a proposed residential development in St. Johns County, Florida.

Findings Of Fact The Parties Petitioner Nancy Condron is a resident and landowner in St. Johns County. Her residence is located across Ponte Vedra Boulevard from the Project. Petitioner uses the nearby Guana River Wildlife Management Area for nature-based recreation, including hiking and bird-watching. Applicant is a foreign limited liability company and the applicant for the ERP at issue in this case. The District is an independent special district granted powers and assigned duties under chapter 373, Florida Statutes, including powers and duties related to the regulation of construction activities in wetlands. The Project is within the boundaries of the District. The Project Site The Project site is 17.13 acres located at 1044 Ponte Vedra Boulevard in St. Johns County, Florida. The site currently consists of forested lands on the east and west and pasture areas in the middle. There is an existing trail road that runs the length of the property and a small residence. The site has four small ponds excavated as watering holes, ranging in size from 0.04 to 0.24 acres. There are 4.41 acres of wetlands and other surface waters on the site. There is a 3.49-acre area of mixed forested wetland on the site that continues offsite to the south and west. There are also three isolated wetlands on the site, each less than a half-acre in size. The wetland system adjacent to the Project site flows to the Guana River. The Guana River is a freshwater, Class III waterbody. It is an Outstanding Florida Water, but has been designated by the Department of Environmental Protection as impaired for nutrients. The site is not used by threatened or endangered species for feeding, nesting, or breeding. The Project The proposed Project is a 22-lot, single-family subdivision. The proposed surface water management system for the Project includes curb and gutter paved roadways, storm inlets, concrete pipes, vegetated natural buffers, treatment swales, and a wet detention stormwater pond. The wet detention stormwater pond would discharge into adjacent wetlands that flow to the Guana River. Wetlands The point of discharge from the Project’s stormwater management system is not in the designated Outstanding Florida Water. Applicant proposes to fill the four ponds and the three isolated wetlands. Applicant also proposes to fill 0.28 acres of the larger wetland. The Project includes a number of upland buffers that are a minimum of 15 feet in width and average of 25 feet in width. These buffers are intended to prevent potential adverse secondary impacts to adjacent wetlands. All wetland impacts and mitigation were assessed using the Uniform Mitigation Assessment Method (UMAM) in Florida Administrative Code Rule 62-345. The UMAM assessment takes into consideration the location and landscape support, water environment, and community structure of the wetlands to be impacted. The District also considers the condition, hydrologic connection, uniqueness, location, and the fish and wildlife utilization of the wetlands and other surface waters. The District did not require mitigation for filling the artificial ponds. The District also did not require mitigation for filling the isolated wetlands because each is less than a half-acre in size. As mitigation for filling 0.28 acres of the larger wetland, Applicant would purchase 0.25 mitigation bank credits from the St. Marks Pond Mitigation Bank. The St. Marks Pond Mitigation Bank is located in the same drainage basin as the wetland area that would be filled. The District determined that purchasing the mitigation bank credits would offset the functional loss associated with filling part of the wetland. Two areas on the site where no upland buffers are proposed were assessed for secondary impacts to wetlands in the UMAM evaluation. The mitigation bank credits proposed for the Project would offset all of the adverse, direct, and secondary impacts to wetlands or surface waters associated with this Project. Because direct and secondary impacts would be fully mitigated, the Project would not cause cumulative impacts. Water Quantity A majority of the Project’s stormwater runoff would be conveyed to the wet detention pond. The wet detention pond provides water quantity protection by attenuating the post- development peak rate of discharge. Applicant modeled the pre-development peak rate of discharge and the post-development peak rate of discharge. The modeling indicated that the post-development peak rate of discharge will not exceed the pre-development peak rate of discharge for the 25-year, 24-hour storm event. Section 3.3 of the Applicant's Handbook, Volume II, prohibits a reduction in the 10-year or 100-year floodplain for projects with an upstream drainage basin of five square miles or greater. The proposed Project has an upstream drainage basin of 4.6 square miles, so this criterion is not applicable. Applicant showed the Project would increase offsite flood elevations by only 0.01 feet, which is negligible. The Project would not cause adverse water quantity impacts to receiving waters or adjacent lands. Water Quality Water quality would be managed in the Project through a combination of wet detention pond, swales, and vegetative natural buffers (“VNBs”). The wet detention pond would treat a majority of the runoff from the Project. Section 8 of the Applicant’s Handbook, Volume II, contains presumptive criteria for the design of a wet detention pond. The proposed wet detention pond meets the presumptive criteria. Therefore, the detention pond is presumed to provide reasonable assurance that the water quality of receiving waters will be protected. Applicant is proposing to construct swales at the back of Lots 20, 21, and 22 to treat runoff by infiltration. Section 9 of the Applicant’s Handbook, Volume II, contains presumptive criteria for swale system design and performance. The Project meets the presumptive criteria for swales. Applicant is proposing VNBs on Lots 1 through 14. The use of VNBs is a commonly-used best management practice accepted by the District for treating stormwater runoff. Like swales, VNBs treat runoff by infiltration. Stormwater runoff from the backyards of Lots 1 through 14 would drain to the VNBs. On some of these lots, stormwater runoff from the front yards, side yards, and rooftops would also drain to the VNBs. The lots would be graded so that runoff would sheet flow to the VNBs to maximize their treatment function. The VNBs would have native soils and plants. The VNBs would have Type A soils, which are well-drained soils that provide the highest rate of infiltration and the most permeability. Petitioner contends that, because soil borings were not taken at the location of the VNBs, reasonable assurance was not provided that the VNBs would function as proposed. However, Petitioner did not show that the soils at the VNB locations were unsuitable soils. In addition, Applicant agreed to use Type A soils in the VNBs. Therefore, reasonable assurance that the VNBs would have suitable soils was provided by Applicant. Petitioner referred to a draft rule to support her contention that the proposed VNBs are not properly designed, but the draft rule has no controlling effect and is hearsay. The Applicant’s Handbook does not contain presumptive criteria for VNBs. Applicant demonstrated that the VNBs would infiltrate 80 percent of the runoff from a three-year, one-hour storm event, which is the same treatment efficiency the District requires when swales are used. Reasonable assurance was provided that the VNBs would function as proposed. Because the Project would discharge to wetlands that flow to the Guana River, a waterbody impaired by nutrients, section 2.2 of the Applicant’s Handbook, Volume II, requires Applicant to demonstrate there would be a net improvement in water quality with respect to nutrients. Applicant performed a pollutant loading analysis using the BMPTRAINS model. The BMPTRAINS model is a generally-accepted tool used by stormwater engineers for this purpose. The BMPTRAINS model incorporates the information about the pre- and post-development conditions associated with land use and impervious area. The model accounts for site-specific conditions, including the elevation of the groundwater table and storage capacity of the soil. The design of the surface water management system is then incorporated into the model to estimate the pollutant removal efficiency and estimate the average annual pollutant load that will leave the site. Applicant’s BMPTRAINS modeling indicated that the average annual post-development loading for total nitrogen and total phosphorus would be substantially less than the pre- development loading for those nutrients. Therefore, Applicant demonstrated the Project would result in a net improvement. Operation & Maintenance The Ponte Vedra Beach Preserve Homeowners Association would be the entity responsible for operation and maintenance of the stormwater management system. The wet detention pond, swales, and VNBs would be located within an easement and maintained by the homeowner’s association. Applicant and the Ponte Vedra Beach Preserve Homeowners Association have the ability to accept responsibility for the operation and maintenance of the Project. Public Interest An applicant for an ERP must demonstrate that a proposed project affecting wetlands and other surface waters would not be contrary to the public interest. This determination is made by balancing seven factors found in section 10.2.3(a) through (g) of the Applicant’s Handbook, Volume I. Public interest factor (a) is whether the regulated activity will adversely affect public health, safety, or welfare, or the property of others. There is no aspect of the Project that would affect public health, safety, or welfare, except the potential for flooding. Reasonable assurance was provided by Applicant that the Project would not cause flooding. Factor (b) is whether the regulated activity will adversely affect the conservation of fish and wildlife, including endangered or threatened species or their habitats. The mitigation bank credits offset all of the potential adverse impacts that the proposed project would have on the conservation of fish and wildlife. Factor (c) is whether the regulated activity will adversely affect navigation or the flow of water or cause harmful erosion or shoaling. The parties stipulated that the Project will not adversely affect navigation or cause harmful erosion or shoaling. The record evidence shows the Project will not adversely affect the flow of water. Factor (d) is whether the regulated activity will adversely affect the fishing or recreational values or marine productivity in the vicinity of the activity. The Project would not affect fishing or recreational values in the vicinity. The mitigation bank credits offset all of the potential adverse impacts the proposed project would have on marine productivity in the vicinity. Factor (e) is whether the regulated activity will be of a temporary or permanent nature. The activities are of a permanent nature. The mitigation is also permanent. Factor (f) is whether the regulated activity will adversely affect or will enhance significant historical and archaeological resources. The Project will have no effect on historical and archaeological resources. Factor (g) is the current condition and relative value of functions being performed by areas affected by the proposed regulated activity. The relatively small loss of functional value would be offset by the proposed mitigation. Considering and balancing these seven factors, the Project would not be contrary to the public interest.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the St. Johns River Water Management District enter a final order approving the issuance of Environmental Resource Permit No. IND-109-143282-1 to 1044PVB, LLC, with the conditions set forth in the Technical Staff Report dated April 11, 2016. DONE AND ENTERED this 16th day of June, 2016, in Tallahassee, Leon County, Florida. S BRAM D. E. CANTER Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 16th day of June, 2016. COPIES FURNISHED: Karen C. Ferguson, Esquire St. Johns River Water Management District 4049 Reid Street Palatka, Florida 32177 (eServed) Jane West, Esquire Josh Smith, Esquire Jane West Law, P.L. 6277 A1A South, Suite 101 St. Augustine, Florida 32080 (eServed) Eric Olsen, Esquire Amelia A. Savage, Esquire Hopping, Green and Sams, P.A. Post Office Box 6526 Tallahassee, Florida 32314 (eServed) Ann B. Shortelle, Ph.D., Executive Director St. Johns River Water Management District 4049 Reid Street Palatka, Florida 32177 (eServed)

Florida Laws (3) 120.52120.56917.13
# 6
GLORIA BENOIT vs CITY OF DELTONA AND ST. JOHNS RIVER WATER MANAGEMENT DISTRICT, 04-002401 (2004)
Division of Administrative Hearings, Florida Filed:Deltona, Florida Jul. 12, 2004 Number: 04-002401 Latest Update: Jul. 25, 2005

The Issue The issue is whether the applicant for an Environmental Resource Permit ("ERP"), the City of Deltona ("City" or "Applicant"), has provided reasonable assurance that the system proposed complies with the water quantity, environmental, and water quality criteria of the St. Johns River Water Management District's ("District") ERP regulations set forth in Florida Administrative Code Chapter 40C-4, and the Applicant's Handbook: Management and Storage of Surface Waters (2005).

Findings Of Fact The District is a special taxing district created by Chapter 373, Florida Statutes, charged with the duty to prevent harm to the water resources of the District, and to administer and enforce Chapter 373, Florida Statutes, and the rules promulgated thereunder. The City of Deltona is a municipal government established under the provisions of Chapter 165, Florida Statutes. The Lake Theresa Basin is comprised primarily of a system of interconnected lakes extending from Lake Macy in the City of Lake Helen to the Butler Chain of Lakes (Lake Butler and Lake Doyle). The Lake Theresa Basin is land-locked and does not have a natural outfall to Lake Monroe and the St. Johns River. In 2003, after an extended period of above-normal rainfall in the Deltona area, the lakes within the land-locked Lake Theresa Basin staged to extremely high elevations that resulted in standing water in residential yards, and rendered some septic systems inoperable. Lake levels within the Lake Theresa Basin continued to rise and were in danger of rising above the finished floor elevations of some residences within the basin. On March 25, 2003, the District issued an Emergency Order (F.O.R. No. 2003-38) authorizing the construction and short-term operation of the Lake Doyle and Lake Bethel Emergency Overflow Interconnection. Since wetland and surface water impacts would occur, the Emergency Order required the City of Deltona to obtain an ERP for the system. The project area is 4.1 acres, and the system consists of a variable water structure on the west shore of Lake Doyle connected to a series of pipes, swales, water control structures, and wetland systems which outfall to a finger canal of Lake Bethel, with ultimate discharge to Lake Monroe and the St. Johns River. The first segment of the system extends downstream from the weir structure on the west shore of Lake Doyle via a pipe entrenched in the upland berm of the Sheryl Drive right-of-way. The pipe passes under Doyle Road and through xeric pine-oak uplands to the northeast shore of a large (approximately 15 acres) deepwater marsh. Water flows south through the deepwater marsh where it outfalls through four pipes at Ledford Drive. Two of the four pipes are overflow structures, controlled by canal gates. The pipes at Ledford Drive discharge into a ditch and into a large (greater than 20 acres) shallow bay swamp. The south end of the bay swamp is defined (and somewhat impounded) by a 19th Century railroad grade. Water flows through the bay swamp where it outfalls through five pipes at the railroad grade. Three of the five pipes are overflow structures, controlled by channel boards. The pipes at the railroad grade discharge to a 1500-foot long finger canal that was dug some time during the period 1940-1972 from the north central shore of Lake Bethel. The overflow interconnection system has three locations whereby the system can be shut down: 1) Lake Doyle--a control weir, controlled by three sluice gates; 2) Ledford Drive--two thirty-inch reinforced concrete pipes, controlled by canal gates; and 3) railroad grade--three thirty-inch reinforced concrete pipes, controlled by channel boards (collectively referred to as "Overflow Structures"). The Overflow Structures are designed to carry the discharge of water from Lake Doyle to Lake Bethel. With the Overflow Structures closed the system returns to pre-construction characteristics, meaning there will be no increase or decrease in the quantity or quality of water throughout the path of the system as a result of the project. An unequivocal condition of the permit is that the system would operate with all of the Overflow Structures closed. As an added assurance, the City proposes to place a brick and mortar plug in the Lake Doyle weir structure outfall pipe to prevent any discharge from the weir. The City has submitted to the District preliminary plans for a future phase in which the system would be modified for the purpose of alleviating high water levels within the Lake Theresa Basin when the water level in Lake Doyle rises above an elevation of 24.5 feet. The District shall require a separate permit application to be submitted for such future plans. Petitioner, Barbara Ash, has lived on Lake Theresa for 19 years. Ms. Ash lives upstream from the area of the weir that will be plugged in accordance with the ERP. She does not trust either the City of Deltona to comply with or the District to enforce the conditions of the ERP applied for by the City. Petitioner, Barbara Ash, also served as the qualified representative for Petitioners, Francell Frei, Bernard J. and Virginia Patterson, and Ted and Carol Sullivan. Ms. Ash represented that Ms. Frei has lived on Lake Theresa for 12 years, and both the Pattersons and the Sullivans live on Lake Louise, which is within the area of concern in this proceeding. Petitioner, Diana Bauer, has lived on Lake Theresa since February 2004. She fears that the lake will become too dry if the system is allowed to flow. She also believes the wildlife will be adversely affected if the water levels are too low since many species need a swampy or wet environment to thrive. She fears her property value will decrease as a result of the approval of the ERP. She also does not trust either the City to comply with or the District to enforce the conditions of the ERP. Petitioner, Howard Ehmer, lives two to three hundred yards down Lake Theresa from Ms. Bauer. He is concerned about the lake bed being too dry and attracting people on all terrain vehicles who enjoy driving around the lake bottom. He is concerned about his property value decreasing if the lake bed is dry. Further, when the lake level is too low, people cannot enjoy water skiing, boating, and fishing on Lake Theresa. Petitioner, Phillip Lott, a Florida native, has also owned and lived on property abutting Lake Theresa since 1995. Mr. Lott has a Ph.D. in plant ecology, and M.P.A. in coastal zone studies, an M.B.A. in international business, and a B.S. in environmental resource management and planning. Mr. Lott has been well acquainted with the water levels on Lake Theresa for many years. Based upon his personal observations of the lake systems in the Deltona area over the years, Mr. Lott has seen levels fluctuate greatly based upon periods of heavy and light rainfall. Mr. Lott is concerned that the District will permit the City to open the weir to let water flow through the system and cause flooding in some areas and low water levels in other areas. He fears that the District will allow the water to flow and upset the environmental balance, but he admits that this ERP application is for a closed system that will not allow the water to flow as he fears. Mr. Lott similarly does not trust the City to comply with and the District to enforce the conditions of the ERP. Petitioners, James E. and Alicia M. Peake, who were represented by Steven L. Spratt at hearing as their qualified representative, live on Lake Louise, which is interconnected with the Lake Theresa basin. The Peakes are concerned that if the level of Lake Louise drops below 21 feet, nine inches, they will not be able to use the boat launch ramps on the lake. Petitioner, Steven L. Spratt, also lives on Lake Louise, and is concerned about the water levels becoming so low that he cannot use the boat launch on the lake. He has lived on the lake since 2000, and remembers when the water level was extremely low. He fears that approval of the ERP in this case will result in low levels of water once again. Petitioner, Gloria Benoit, has live on Lake Theresa for two years. She also enjoys watching recreational activities on the lake, and feels that approval of the ERP will devalue her lakefront property. Ms. Benoit appeared at the first day of the hearing, but offered no testimony on her behalf. J. Christy Wilson, Esquire, appeared prior to the final hearing as counsel of record for Petitioners, Steven E. Larimer, Kathleen Larimer, and Helen Rose Farrow. Neither Ms. Wilson nor any of the three Petitioners she represented appeared at any time during the hearing, filed any pleadings seeking to excuse themselves from appearing at the final hearing, or offered any evidence, testimony, pre- or post- hearing submittals. Petitioner, Gary Jensen, did not appear at hearing, did not file any pleadings or papers seeking to be excused from appearing at the final hearing, and did not offer any evidence, testimony, pre- or post-hearing submittals. Both the City and the District recognize that areas downstream from the project site, such as Stone Island and Sanford, have experienced flooding in the past in time of high amounts of rainfall. The system proposed by the City for this ERP will operate with the overflow structures closed and a brick and mortar plug in the outfall pipe to prevent water flow from Lake Doyle to Lake Bethel. So long as the overflow structures are closed, the system will mimic pre-construction flow patterns, with no increase in volume flowing downstream. The District has considered the environment in its proposed approval of the ERP. The area abutting the project is little urbanized and provides good aquatic and emergent marsh habitat. With the exception of the western shore area of the deepwater marsh ("west marsh area"), the bay swamp and remaining deepwater marsh area have good ecological value. In the 1940's, the west marsh area was incorporated into the drainage system of a poultry farm that occupied the site. This area apparently suffered increased nutrient influxes and sedimentation that contributed to a proliferation of floating mats of aquatic plants and organic debris. These tussocks reduced the deepwater marsh's open water and diminished the historical marsh habitat. Water under the tussocks is typically anoxic owing to total shading by tussocks and reduced water circulation. Thick, soft, anaerobic muck has accumulated under the matted vegetation. Exotic shrubs (primrose willow Ludwigia peruvania) and other plants (cattails Typha spp.) dominate the tussocks. The construction of the project, from the 2003 Emergency Order, resulted in adverse impacts to 1.3 acres of wetlands having moderately high- to high ecological value and 0.2 acres of other surface waters. The 0.2 acre impact to other surface waters was to the lake bottom and the shoreline of Lake Doyle where the weir structure was installed. The 0.3 acres of wetland impacts occurred at the upper end of the deepwater marsh where the pipe was installed. The largest wetland impact (1.0 acre) was to the bay swamp. The bay swamp is a shallow body dominated by low hummocks and pools connected inefficiently by shallow braided channels and one acre is filled with a 1-2 foot layer of sediment following swamp channelization. Disturbance plants (e.g., primrose willow, Ludwigia peruvania, and elderberry Sambucus Canadensis) now colonize the sediment plume. Pursuant to the District's elimination and reduction criteria, the applicant must implement practicable design modifications, which would reduce or eliminate adverse impacts to wetlands and other surface waters. A proposed modification, which is not technically capable of being done, is not economically viable, or which adversely affects public safety through endangerment of lives or property is not considered "practicable." The City reduced and/or eliminated the impacts to the lake bottom and shoreline of Lake Doyle and deepwater marsh, to the extent practicable. The impacts were the minimum necessary to install the weir structure and pipe for the system; the weir structure and pipe were carefully installed on the edges of the wetland and surface water systems, resulting in a minimum amount of grading and disturbance. To compensate for the loss of 1.3 acres of wetlands and 0.2 acres of other surface waters, the City proposes to preserve a total of 27.5 acres of wetlands, bay swamp, marsh, and contiguous uplands. Included in this 27.5 acres are 6.4 acres of the west marsh, which are to be restored. The parties stipulated that the mitigation plan would adequately compensate for losses of ecological function (e.g. wildlife habitat and biodiversity, etc.) resulting from the project. Water quality is a concern for the District. Lake Monroe is included on the Florida Department of Environmental Protection's verified list of impaired water bodies for nitrogen, phosphorous, and dissolved oxygen. Water quality data for Lake Monroe indicate the lake has experienced high levels of nitrogen and phosphorous and low levels of dissolved oxygen. Prior to construction of the project, there was no natural outfall from the Lake Theresa Basin to Lake Monroe and therefore no contribution from this basin to nitrogen and phosphorous loadings to Lake Monroe. Lake Colby, Three Island Lakes (a/k/a Lake Sixma), and the Savannah are surface waters within the Lake Theresa Basin for which minimum levels have been adopted pursuant to Florida Administrative Code Chapter 40C-8. The system will operate with the overflow structures closed and a brick and mortar plug in the outfall pipe to prevent water flow from Lake Doyle to Lake Bethel, resulting in no outfall from the Theresa Basin to Lake Monroe. Minimum flows established for surface waters within the Lake Theresa Basin will not be adversely impacted. Under the first part of the secondary impact test, the City must provide reasonable assurance that the secondary impacts from construction, alteration, and intended or reasonable expected use of the project will not adversely affect the functions of adjacent wetlands or surface waters. The system is designed as a low intensity project. As proposed, little activity and maintenance are expected in the project site area. The reasonably expected use of the system will not cause adverse impacts to the functions of the wetlands and other surface waters. None of the wetland areas adjacent to uplands are used by listed species for nesting or denning. In its pre-construction state, the project area did not cause or contribute to state water quality violations. Under the second part of the secondary impact test, the City must provide reasonable assurance that the construction, alteration, and intended or reasonably expected uses of the system will not adversely affect the ecological value of the uplands to aquatic or wetland dependent species for enabling existing nesting or denning by these species. There are no listed threatened or endangered species within the project site area. Under the third part of the secondary impact test, and as part of the public interest test, the District must consider any other relevant activities that are closely linked and causally related to any proposed dredging or filling which will cause impacts to significant historical and archaeological resources. When making this determination, the District is required, by rule, to consult with the Division of Historical Resources. The Division of Historical Resources indicated that no historical or archaeological resources are likely present on the site. No impacts to significant historical and archaeological resources are expected. Under the fourth part of the secondary impact test, the City must demonstrate that certain additional activities and future phases of a project will not result in adverse impacts to the functions of wetlands or water quality violations. The City has submitted to the District preliminary plans for a future phase in which the system would be modified for the purpose of alleviating high water levels within the Lake Theresa Basin when the level in Lake Doyle rises above an elevation of 24.5 feet. Based upon the plans and calculations submitted, the proposed future phase, without additional measures, could result in minor increases in the loadings of nitrogen and phosphorous to Lake Monroe. Lake Monroe is included on the Florida Department of Environmental Protection's verified list of impaired water bodies due to water quality data indicating the lake has experienced high levels of nitrogen and phosphorous, and low levels of dissolved oxygen. Under this potential future phase, there would be an outfall from the Lake Theresa Basin to Lake Monroe. To address the impact on water quality of this potential future phase, the City has submitted a loading reduction plan for nitrogen, phosphorous, and dissolved oxygen. The plan includes compensating treatment to fully offset the potential increased nutrient loadings to Lake Monroe. Specifically, the loading reduction plan includes: Construction and operation of compensating treatment systems to fully offset anticipated increased nutrient loadings to Lake Monroe. Weekly water quality monitoring of the discharge from Lake Doyle for total phosphorous and total nitrogen. A requirement that the overflow structure be closed if the total phosphorous level reaches 0.18 mg/l or higher or the total nitrogen level reaches 1.2 mg/l or higher in any given week and will remain closed until levels fall below those limits. The implementation of these water quality mitigation measures will result in a net improvement of the water quality in Lake Monroe for nitrogen, phosphorous, or dissolved oxygen. The future phase was conceptually evaluated by the District for impacts to wetland functions. The future phase as proposed could result in adverse impacts to wetland functions. Operation of the system with the overflow structures open could impact the bay swamp and deepwater marsh. The City has demonstrated that any adverse impacts could be offset through mitigation. Based upon the information provided by the City and general engineering principles, the system is capable of functioning as proposed. The City of Deltona will be responsible for the operation, maintenance, and repair of the surface waster management system. A local government is an acceptable operation and maintenance entity under District rules. The public interest test has seven criteria. The public interest test requires the District to evaluate only those parts of the project actually located in, on, or over surface waters or wetlands, to determine whether a factor is positive, neutral, or negative, and then to balance these factors against each other. The seven factors are as follows: the public health, safety, or welfare of others; conservation of fish and wildlife and their habitats; fishing, recreational value, and marine productivity; temporary or permanent nature; 5) navigation, water flow, erosion, and shoaling; 6) the current condition and relative value of functions; and 7) historical and archaeological resources. There are no identified environmental hazards or improvements to public health and safety. The District does not consider impacts to property values. To offset any adverse impacts to fish and wildlife and their habitats, the City has proposed mitigation. The areas of the project in, on, or over wetlands do not provide recreational opportunities. Construction and operation of the project located in, on, or over wetlands will be permanent in nature. Construction and operation of the project located in, on, or over wetlands will not cause shoaling, and does not provide navigational opportunities. The mitigation will offset the relative value of functions performed by areas affected by the proposed project. No historical or archaeological resources are likely on the site of the project. The mitigation of the project is located within the same drainage basin as the project and offsets the adverse impacts. The project is not expected to cause unacceptable cumulative impacts.

Recommendation Based upon the Findings of Fact and Conclusions of Law, it is RECOMMENDED that a Final Order be entered granting the City of Deltona's application for an environmental resource permit with the conditions set forth in the Technical Staff Report, and dismissing the Petitions for Formal Administrative Hearing filed by Gary Jensen in Case No. 04-2405, and by Steven E. Larimer, Kathleen Larimer, and Helen Rose Farrow in Case No. 04-3048. DONE AND ENTERED this 27th day of May, 2005, in Tallahassee, Leon County, Florida. S ROBERT S. COHEN Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 27th day of May, 2005. COPIES FURNISHED: George Trovato, Esquire City of Deltona 2345 Providence Boulevard Deltona, Florida 32725 Diana E. Bauer 1324 Tartan Avenue Deltona, Florida 32738 Barbara Ash, Qualified Representative 943 South Dean Circle Deltona, Florida 32738-6801 Phillip Lott 948 North Watt Circle Deltona, Florida Howard Ehmer Nina Ehmer 32738-7919 1081 Anza Court Deltona, Florida 32738 Francell Frei 1080 Peak Circle Deltona, Florida 32738 Bernard T. Patterson Virginia T. Patterson 2518 Sheffield Drive Deltona, Florida 32738 Kealey A. West, Esquire St. Johns River Water Management District 4049 Reid Street Palatka, Florida 32177 J. Christy Wilson, Esquire Wilson, Garber & Small, P.A. 437 North Magnolia Avenue Orlando, Florida 32801 Gloria Benoit 1300 Tartan Avenue Deltona, Florida 32738 Gary Jensen 1298 Tartan Avenue Deltona, Florida 32738 James E. Peake Alicia M. Peake 2442 Weatherford Drive Deltona, Florida 32738 Steven L. Spratt 2492 Weatherford Drive Deltona, Florida 32738 Ted Sullivan 1489 Timbercrest Drive Deltona, Florida 32738 Kirby Green, Executive Director St. Johns River Water Management District 4049 Reid Street Palatka, Florida 32177

Florida Laws (3) 120.569120.57373.086 Florida Administrative Code (6) 40C-4.30140C-4.30240C-4.33140C-4.75162-302.30062-4.242
# 7
THE SIERRA CLUB vs ST. JOHNS RIVER WATER MANAGEMENT DISTRICT AND HINES INTERESTS LIMITED PARTNERSHIP, 00-002231 (2000)
Division of Administrative Hearings, Florida Filed:St. Augustine, Florida May 26, 2000 Number: 00-002231 Latest Update: Jul. 12, 2004

The Issue The issues to be resolved in this proceedings concern whether Environmental Resource Permit (ERP) No. 4-109-0216-ERP, should be modified to allow construction and operation of a surface water management system (project) related to the construction and operation of single-family homes on "Marshall Creek" (Parcel D) in a manner consistent with the standards for issuance of an ERP in accordance with Rules 40C-4.301 and 40C-4.302, Florida Administrative Code.

Findings Of Fact The Project The project is a 29.9-acre residential development and associated stormwater system in a wetland mitigation area known as "Parcel D." It lies within the much larger Marshall Creek DRI in St. Johns County, Florida, bounded on the northeast by Marshall Creek, on the south and southeast by a previously permitted golf course holes sixteen and seventeen, and on the north by the "Loop Road." The project consists of thirty residential lots of approximately one-half acre in size; a short segment of Loop Road to access Parcel D; an internal road system; expansion of previously permitted Pond N, a wet detention stormwater management pond lying north of the Loop Road and wetland mitigation areas. Approximately 1.15 acres of wetlands are located on the Parcel D site. The project plan calls for filling 0.63 acres of the wetlands for purposes of constructing a road and residential lots for Parcel D. Part of that 0.63-acre impact area, 0.11 acres, is comprised of a 760-foot-long, narrow drainageway, with 0.52 acres of adjacent wetland. Downstream of the fill area, 0.52 acres of higher quality wetland is to be preserved. Hines proposes to preserve 4.5 acres of existing wetland and 2.49 acres of upland, as well as to create .82 acres of forested wetland as mitigation for the proposed impact of the project. Additionally, as part of the project, Hines will implement a nutrient and pesticide management plan. The only pesticides to be used at the project will be approved by the Department of Agriculture for use with soil types prevailing at the site and only pesticides approved by the Environmental Protection Agency may be used on the site. All pesticides to be used on the project site must be selected to minimize impacts to ground and surface water, including having a maximum 70-day half-life. Stormwater Management System The majority of surface runoff from Parcel D will be diverted to a stormwater collection system and thence through drainage pipes and a swale into Phase I of Pond N. After treatment in Pond N, the water will discharge to an upland area adjacent to wetlands associated with Marshall Creek and then flow into Marshall Creek. The system will discharge to Marshall Creek. In addition to the area served by Pond N, a portion of lots fourteen though twenty drain through a vegetated, natural buffer zone and ultimately through the soil into Marshall Creek. Water quality treatment for that stormwater runoff will be achieved by percolating water into the ground and allowing natural soil treatment. The fifty-foot, vegetated, natural buffer is adequate to treat the stormwater runoff to water quality standards for Lots 14, 15 and 20. Lots 16, 17, 18 and 19, will have only a twenty-five foot buffer, so additional measures must be adopted for those lots to require either that the owners of them direct all runoff from the roofs and driveways of houses to be constructed on those lots to the collection system for Pond N or placement of an additional twenty-five foot barrier of xeriscape plants, with all non- vegetated areas being mulched, with no pesticide or fertilizer use. An additional mandatory permit condition, specifying that either of these measures must be employed for Lots 16, 17, 18 and 19, is necessary to ensure that water quality standards will be met. Pond N is a wet detention-type stormwater pond. Wet detention systems function similarly to natural lakes and are permanently wet, with a depth of six to twelve feet. When stormwater enters a wet detention pond it mixes with existing water and physical, chemical and biological processes work to remove the pollutants from the stormwater. Pond N is designed for a twenty-five year, twenty-four- hour storm event (design storm). The pre-development peak rate of discharge from the Pond N drainage area for the design storm event is forty cubic feet per second. The post-development peak rate of discharge for the design storm event will be approximately twenty-eight cubic feet per second. The discharge rate for the less severe, "mean annual storm" would be approximately eleven cubic feet per second, pre-development peak rate and the post-development peak rate of discharge would be approximately five cubic feet per second. Consequently, the post-development peak rate of discharge does not exceed the pre- development peak rate of discharge. Pond N is designed to meet the engineering requirements of Rule 40C-42.026(4), Florida Administrative Code. Because the pond is not designed with a littoral zone, the permanent pool volume has been increased by fifty-percent. Additionally, because Pond N discharges to the Class II waters of Marshall Creek, an additional fifty-percent of treatment volume is included in the pond design. The system design addresses surface water velocity and erosion issues through incorporation of best management practices promulgated by the District to prevent erosion and sedimentation, including; designing side slopes of 4:1; siding and seeding disturbed areas to stabilize soil; and the use of riprap at the outfall from Pond N. During construction, short- term water quality impacts will be addressed through installation of silt fences and hay bales. The majority of the eighteen-acre drainage basin which flows into the Parcel D wetland lies to the south and southwest of Parcel D. In accordance with the prior permit, water from those off-site acres will be intercepted and routed to stormwater ponds serving golf course holes sixteen and seventeen. The system design will prevent adverse impacts to the hydroperiod of remaining on-site and off-site wetlands. The remaining wetlands will be hydrated through groundwater flow. Surface waters will continue to flow to the wetlands adjacent to lots fourteen through twenty because drainage from those lots will be directed across a vegetated, natural buffer to those wetlands. There is no diversion of water from the natural drainage basin, because Pond N discharges to a wetland adjacent to Marshall Creek, slightly upstream from the current discharge point for the wetland which is to be impacted. This ensures that Marshall Creek will continue to receive that fresh-water source. An underground "PVC cut-off wall" will be installed around Pond N to ensure that the pond will not draw down the water table below the wetlands near the pond. Pond N has been designed to treat stormwater prior to discharge, in part to remove turbidity and sedimentation. This means that discharge from the pond will not carry sediment and that the system will not result in shoaling. There will be no septic tanks in the project. The system is a gravity flow system with no mechanical or moving parts. It will be constructed in accordance with standard industry materials readily available and there will be nothing extraordinary about its design or operation. The system is capable of being effectively operated and maintained and the owner of the system will be the Marshall Creek Community Development District (CDD). Water Quality Water entering Pond N will have a residence time of approximately 200 days or about fifteen times higher than the design criteria listed in the below-cited rule. During that time, the treatment and removal process described herein will occur, removing most of the pollutants. Discharge from the pond will enter Marshall Creek, a Class II water body. The discharges must therefore meet Class II water quality numerical and anti-degradation standards. The design for the pond complies with the design criteria for wet detention systems listed in Rule 40C-42.026(4), Florida Administrative Code. In addition to meeting applicable design criteria, the potential discharge will meet water quality standards. The pond will have low levels of nitrogen and phosphorous resulting in low algae production in the pond. The long residence time of the water in the pond will provide an adequate amount of time for pesticides to volatilize or degrade, minimizing the potential for pesticide discharge. Due to the clear characteristics of the water column, neither thermal stratification nor chemical stratification are expected. Periodically, fecal coliform and total coliform levels are exceeded under current, pre-development conditions. These are common natural background conditions. Because the detention time in the pond will be an average of 200 days, and because the life span of fecal coliform bacteria is approximately seven to fourteen days the levels for coliforms in the pond will be very low. Discharges from the pond will enhance water quality of the Class II receiving waters because the levels of fecal coliform and total coliform will be reduced. The discharge will be characterized by approximately 100 micrograms per liter total nitrogen, compared with a background of 250 micrograms per liter presently existing in the receiving waters of Marshall Creek. The discharge will contain approximately three micrograms per liter of phosphorous, compared with sixty-three micrograms per liter presently existing in Marshall Creek. Total suspended solids in the discharge will be less than one-milligram per liter compared with seventy-two milligrams per liter in the present waters of Marshall Creek. Biochemical oxygen demand will be approximately a 0.3 level in the discharge, compared with a level of 2.4 in Marshall Creek. Consequently, the water quality discharging from the pond will be of better quality than the water in Marshall Creek or the water discharging from the wetland today. The pollutant loading in the discharge from the stormwater management system will have water quality values several times lower than pre-development discharges from the same site. Comparison of pre-development and post-development mass loadings of pollutants demonstrates that post-development discharges will be substantially lower than pre-development discharges. Currently, Marshall Creek periodically does not meet Class II water quality standards for dissolved oxygen. Construction and operation of the project will improve water quality in the creek concerning dissolved oxygen values because discharges from Pond N will be subjected to additional aeration. This results from design features such as discharge from the surface of the system, where the highest level of dissolved oxygen exists, and the discharge water draining through an orifice and then free falling to a stormwater structure, providing additional aeration. Discharges from the system will maintain existing uses of the Class II waters of Marshall Creek because there will be no degradation of water quality. Discharges will not cause new violations or contribute to existing violations because the discharge from the system will contain less pollutant loading for coliform and will be at a higher quality or value for dissolved oxygen. Discharges from the system as to water quality will not adversely affect marine fisheries or marine productivity because the water will be clear so there will be no potential for thermal stratification; the post-development discharges will remain freshwater so there will be no change to the salinity regime; and the gradual pre-development discharges will be replicated in post-development discharges. Several factors minimize potential for discharge of pesticide related pollutants: (1) only EPA-approved pesticides can be used; (2) only pesticides approved for site-specific soils can be used; (3) pesticides must be selected so as to minimize impacts on surface and groundwater; (4) pesticides must have a maximum half-life of 70 days; and (5) the system design will maximize such pollutant removal. Archaeological Resources The applicant conducted an archaeological resource assessment of the project and area. This was intended to locate and define the boundaries of any historical or archaeological sites and to assess any site, if such exists, as to its potential eligibility for listing in the National Register of Historic Places (National Register). Only a portion of one archaeological site was located on the project tract. Site 8SJ3473, according to witness Anne Stokes, an expert in the field of archaeological assessment, contains trace artifacts dating to the so-called "Orange Period," a time horizon for human archaeological pre-history in Florida dating to approximately 2,300 B.C. The site may have been only a small campsite, however, since only five pottery fragments and two chert flakes, residuals from tool-making were found. Moreover, there is little possibility that the site would add to knowledge concerning the Orange Period or pre-history because it is a very common type of site for northeast Florida and is not an extensive village site. There are likely other campsites around and very few artifacts were found. No artifacts were found which would associate the site with historic events or persons. The applicant provided the findings of its cultural resource assessment, made by Dr. Stokes, to the Florida Division of Historical Resources. That agency is charged with the responsibility of reviewing cultural resource assessments to determine if significant historic or archaeological resources will be impacted. The division reviewed the survey techniques used by Dr. Stokes, including shovel testing, sub-surface testing and pedestrian walk-over and investigation. The division determined that the site in question is not of a significant historical or archaeological nature as a resource because it does not meet any of the four criteria for inclusion in the National Register.1 Thus the referenced agency determined that the site in question is not a significant historical or archaeological resource and that construction may proceed in that area without further investigation, insofar as its regulatory jurisdiction is concerned. Wetlands The wetlands to be impacted by the project consist of a 1,000 foot drainage-way made up of a 0.11 acre open-water channel, approximately four feet wide, and an adjacent vegetated wetland area of approximately 0.52 acres containing fewer than 30 trees. The open-water channel is intermittent in that it flows during periods of heavy rainfall and recedes to a series of small, standing pools of water during drier periods. The Parcel D wetland is hydrologically connected to Marshall Creek, although its ephemeral nature means that the connection does not always flow. The wetland at times consists only of isolated pools that do not connect it to Marshall Creek. Although it provides detrital material export, that function is negligible because the productivity of the adjacent marsh is so much greater than that of the wetland with its very small drainage area. Because of the intermittent flow in the wetland, base flow maintenance and nursery habitat functions are not attributed to the wetland. The Parcel D wetland is not unique. The predominant tree species and the small amount of vegetated wetland are water oak and swamp bay. Faunal utilization of the wetland is negligible. The wetland drainage-way functions like a ditch because it lacks the typical characteristics of a creek, such as a swampy, hardwood floodplain headwater system that channelizes and contains adjacent hardwood floodplains. The location of the wetland is an area designated by the St. Johns County comprehensive plan as a development parcel. The Florida Natural Areas Inventories maps indicate that the wetland is not within any unique wildlife or vegetative habitats. The wetland is to be impacted as a freshwater system and is not located in a lagoon or estuary. It contains no vegetation that is consistent with a saltwater wetland. The retaining wall at the end of the impact area is located 1.7 feet above the mean high water line. Wetland Impacts The proposed 0.63 acre wetland impact area will run approximately 760 linear feet from the existing trail road to the proposed retaining wall. If the wetland were preserved, development would surround the wetland, adversely affecting its long-term functions. Mitigation of the wetland functions is proposed, which will provide greater long-term ecological value than the wetland to be adversely affected. The wetland to be impacted does not provide a unique or special wetland function or good habitat source for fish or wildlife. The wetland does not provide the thick cover that would make it valuable as Black Bear habitat and is so narrow and ephemeral that it would not provide good habitat for aquatic-dependent and wetland-dependent species. Its does not, for instance, provide good habitat for woodstorks due to the lack of a fish population and its closed- in tree canopy. Minnow sized fish (Gambusia) and crabs were seen in portions of the wetland, but those areas are downstream of the proposed area of impact. Mitigation Mitigation is offered as compensation for any wetland impacts as part of an overall mitigation plan for the Marshall Creek DRI. The overall mitigation plan is described in the development order, the mitigation offered for the subject permit and mitigation required by prior permits. A total of 27 acres of the more than 287 acres of wetlands in the total 1,300-acre DRI tract are anticipated to be impacted by the DRI. Approximately 14.5 acres of impacted area out of that 27 acres has already been previously authorized by prior permits. The overall mitigation plan for the DRI as a whole will preserve all of the remaining wetlands in the DRI after development occurs. Approximately one-half of that preserved area already has been committed to preservation as a condition of prior permits not at issue in this case. Also, as part of prior permitting, wetland creation areas have been required, as well as preserved upland buffers which further protect the preserved wetlands. The mitigation area for the project lies within the Tolomato River Basin. The development order governing the total DRI requires that 66 acres of uplands must also be preserved adjacent to preserved wetlands. The overall mitigation plan for the DRI preserves or enhances approximately 260 acres of wetlands; preserves a minimum of 66 acres of uplands and creates enhancement or restores additional wetlands to offset wetland impacts. The preserved wetlands and uplands constitute the majority of Marshall Creek, and Stokes Creek which are tributaries of the Tolomato River Basin, a designated Outstanding Florida Water (OFW). Preservation of these areas prevents them from being timbered and ensures that they will not be developed in the future. The overall DRI mitigation plan provides regional ecological value because it encompasses wetlands and uplands they are adjacent to and in close proximity to the following regionally significant resources: (1) the 55,000 acre Guana- Tolomato-Matanzas National Estuarine Research Reserve; (2) the Guana River State Park; (3) the Guana Wildlife Management Area; (4) an aquatic preserve; (5) an OFW; and (6) the 22,000 acre Cummer Tract Preserve. The mitigation plan will provide for a wildlife corridor between these resources, preserve their habitat and insure protection of the water quality for these regionally significant resources. The mitigation offered to offset wetland impacts associated with Parcel D includes: (1) wetland preservation of 0.52 acres of bottom land forest along the northeast property boundary (wetland EP); (2) wetland preservation of 3.98 acres of bottom land forest on a tributary of Marshall Creek contained in the DRI boundaries (Wetlands EEE and HHH); (3) upland preservation of 2.49 acres, including a 25-foot buffer along the preserved Wetlands EEE and HHH and a 50-foot buffer adjacent to Marshall Creek and preserved Wetland EP; (4) a wetland creation area of 0.82 acres, contiguous with the wetland preservation area; and (5) an upland buffer located adjacent to the wetland creation area. The wetland creation area will be graded to match the grades of the adjacent bottomland swamp and planted with wetland tree species. Small ponds of varying depths will be constructed in the wetland creation area to provide varying hydrologic conditions similar to those of the wetland to be impacted. The wetland creation area is designed so as to not de-water the adjacent wetlands. All of the mitigation lands will be encumbered with a conservation easement consistent with the requirements of Section 704.06, Florida Statutes. The proposed mitigation will offset the wetland functions and values lost through the wetland impact on Parcel D. The wetland creation is designed to mimic the functions of the impact area, but is located within a larger ecological system that includes hardwood wetland headwaters. The long-term ecological value of the mitigation area will be greater than the long-term value of the wetland to be impacted because; (1) the mitigation area is part of a larger ecological system; (2) the mitigation area is part of an intact wetland system; (3) the wetland to be impacted will be unlikely to maintain its functions in the long-term; and (4) the mitigation area provides additional habitat for animal species not present in the wetland to be impacted. Certain features will prevent adverse secondary impacts in the vicinity of the roadway such as: (1) a retaining wall which would prevent migration of wetland animals onto the road; (2) a guard rail to prevent people from moving from the uplands into wetlands; and (3) a vegetated hedge to prevent intrusion of light and noise caused by automotive use of the roadway.

Recommendation Having considered the foregoing Findings of Fact and Conclusions of Law, the evidence of record, the candor and demeanor of the witnesses and the pleadings and arguments of the parties, it is RECOMMENDED: That a final order be entered granting the subject application for modification of Permit 4-109-0216A-ERP so as to allow construction and operation of the Parcel D project at issue, with the addition of the inclusion of a supplemental permit condition regarding the vegetated natural buffers for Lots 16 through 19 described and determined above. DONE AND ENTERED this 9th day of April, 2001, in Tallahassee, Leon County, Florida. P. MICHAEL RUFF Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 9th day of April, 2001.

Florida Laws (5) 120.57267.061373.086373.414704.06 Florida Administrative Code (5) 40C-4.09140C-4.30140C-4.30240C-42.02340C-42.026
# 8
FRIENDS OF FORT GEORGE, INC., ET AL. vs. FAIRFIELD COMMUNITIES, INC., AND ST. JOHNS RIVER WATER MANAGEMENT DISTRICT, 85-003537 (1985)
Division of Administrative Hearings, Florida Number: 85-003537 Latest Update: Oct. 06, 1986

Findings Of Fact The following findings of fact are based on the evidence presented and relate both to Fairfield's MSSW and CUP applications: Fort George Island is an approximately 900 acre island located northeast of the City of Jacksonville in Duval County, Florida. It is bounded to the north and east by the Fort George River, to the west by an extensive salt marsh, and to the south by Batten Island and the St. Johns River. The island is separated from the Atlantic Ocean by Little Talbot Island. There are presently approximately 16 homes on Fort George Island, an existing 18-hole golf course with clubhouse, the Kingsley Plantation State Park in the north and the Rollins site surface waters on the northern two-thirds of the island are Class II waters, while the waters to the south are Class III. The following factors concerning Fort George Island are of ecological significance: Existence of a large area of coastal hammock; Value of the coastal hammock for scientific research and as a food source for migrating song birds; Fact that the Island is located in an aquatic preserve; Salt marshes on the western side of the Island which are a food source for wading birds; State lands on the Island which are utilized as wildlife and plant preserve, as well as for historical purposes; Estuaries on the western side of the Island which function as primary nursery areas for commercial and sport fishery species, as well as for shrimp, oysters and crabs; Existence of commercial oyster leases on the western side of the Island; and Public use of the Island's shoreline for oystering and clamming. Fairfield owns approximately 757.5 acres on Fort George Island which it proposes to develop into a "planned unit development" of 1,343 dwelling units, a 27 hole golf course, and approximately 80,000 square feet of commercial development. The approximate density of the development will be 1.8 units per acre. Approximately 80% of Fairfield's property is currently forested, and after development approximately 35% will remain undisturbed habitat. The City of Jacksonville approved the "planned unit development" on January 10, 1983. Because the Department of Community Affairs had determined on August 11, 1982, that this development was a "development of regional impact," Fairfield submitted an Application for Development Approval to the Department, the Northeast Florida Regional Planning Council, and the City of Jacksonville, which subsequently approved the proposed development in an Amended Development Order. On January 25, 1984, the Florida Land and Water Adjudicatory Commission approved the Amended Development Order (ADO). In addition to approving the development of maximum of 1,343 units, 80,000 square feet of commercial area, two 18 hole golf courses (one already in existence), and a marina with not more than 50 slips, the ADO required Fairfield to conduct a 12 month study and prepare a Master Resource Management Plan prior to development. Specifically, Fairfield was required to demonstrate that there is a sufficient supply of potable ground water to serve the entire development without adverse effects on the Floridan Aquifer and other existing legal users; establish the ambient conditions of the water surrounding Fort George Island and the ambient climatic conditions of the Island and Rollins Sanctuary through a 12 month monitoring program; identify all endangered, threatened, unique, rare, notable and "species of special concern" and determine their habitat requirements; address surface water quality and quantity, terrestrial and wetlands biology, and ground water quality and quantity for the entire project; and submit a revised Master Land Use Plan, consistent with the Master Resource Management Plan, to the City of Jacksonville's Planning Commission for its approval. Further, the ADO required Fairfield to demonstrate that it could retain the 100 year, 24-hour storm (calculated to be 11.04 inches of rain in 24 hours), and prevent degradation of the established ambient conditions of the waters surrounding Fort George. Finally, the ADO required Fairfield to submit its Master Resource Management Plan to the City, Regional Planning Council, Department of Community Affairs, Department of Environmental Regulation, Department of Natural Resources, Game and Fresh Water Fish Commission, and the District, for their, review, comment, and in some cases approval. After review and comment by these agencies, the City of Jacksonville Planning Commission approved the Master Resource Management Plan on January 29, 1986, from which no appeal was taken. Case Number 85-3537 (MSSW) The following findings of fact are based upon the stipulation of the parties and relate to Fairfield's MSSW application: The District, a special taxing district and agency, created by Chapter 373, is charged with the statutory responsibility of the administration and enforcement of permitting programs pursuant to Sections 373.413 and 373.416, Florida Statutes, and Chapter 40C-4, Florida Administrative Code. The District is the agency involved in this proceeding. The District has assigned Fairfield's conceptual MSSW permit application the permit number 4-031-002AC. Fairfield is a Delaware corporation authorized to do business in Florida. Its address is 3520 Piedmont Road, N.E., Atlanta, Georgia 30305. The proposed MSSW will serve Fairfield's development on Fort George Island, located in Duval County at Section 34, Township 15, Range 29 East. Petitioner Friends of Fort George, Inc., is a not-for- profit Florida Corporation, whose principal office for the transaction of business is located at 11251 Fort George Road, East, Jacksonville, Florida 32226. Petitioner in Intervention Southeastern Fisheries Association is a Florida not-for profit corporation whose address is 312 East Georgia Street, Tallahassee, Florida 32301. Petitioner in Intervention Logan Diving, Inc., is a Florida corporation whose address is 5731 St. Augustine Road, Jacksonville, Florida 32207. Petitioners in Intervention Florida Audubon Society and Duval Audubon Society are not-for-profit Florida corporations whose principal offices for the transaction of business are located at 1101 Audubon Way, Maitland, Florida 32751 and 2°65 Forest Circle, Jacksonville, Florida 32217. Individual Petitioners William E. Arnold, Jr., William M. Bliss, Doris B. Chappelle, Leo E. Chappelle, Mr. & Mrs. Rhodes Gay, Dr. & Mrs. William J. Knauer, Jr., Camillus S. Lengle, Jr., and Mr. & Mrs. J. W. Lucas are natural persons and citizens of the State of Florida who are owners of real property on Fort George Island. On August 27, 1985, the District gave Notice of its intent to deny MSSW application No. 4-031-002AC. On September 23, 1985, the District determined to recommend issuance of MSSW Application No. 4-031-002AC, as then modified, with conditions. Fairfield had originally contemplated in both its original Master Resource Management Plan (MRMP) and the referenced MSSW application that its proposed development for Fort George Island would have a 36-hole golf course facility. Fairfield subsequently reduced its proposed golf course facility from 36 holes to 27 holes. The City of Jacksonville's Planning Commission approved the MRMP with conditions, including the condition that the golf course be reduced, on January 29, 1986. Because of the reduction in size of Fairfield's proposed golf course facility from 36 to 27 holes Fairfield's total requirements for water for irrigation were reduced. By pleading dated April 7, 1986, Fairfield moved to amend its conceptual MSSW approval application. On April 10, 1986, the motion was granted pursuant to Stipulation of all the parties. The motion was granted by written Order of the Hearing Officer on April 17, 1986. The Petitioners' original Petition for Formal Administrative Proceedings was timely filed within fourteen (14) days of receipt of the District's proposed agency action of September 23, 1985. A number of the members of Friends of Fort George, Inc. own real property on Fort George Island, reside on the Island, and engage in recreational activities on the Island and its adjacent waters and environs. The subject matter of the proposed agency action challenged by Petitioners and Intervenors concerns the natural resources on Fort George Island. Protection of this resource falls within-the general purpose and objectives of Friends of Fort George, Inc., namely, the preservation, conservation, and restoration of Fort George Island and surrounding environs. The relief requested in this proceeding by Petitioners and Intervenors is denial of the conceptual management and storage of surface waters permit. The water storage ponds proposed in the project will intersect with the surficial aquifer on Fort George Island. Petitioners, Friends of Fort George, Inc. and Intervenors, Florida Audubon Society and Duval Audubon Society have standing pursuant to Section 403.412(5), Florida Statutes, to bring this action. During the hearing, the parties stipulated that Logan Diving, Inc., has standing in this proceeding since it is the holder of oyster and clam harvesting leases from the Department of Natural Resources for beds located in Class II waters adjacent to Fort George Island and it derives substantial income from harvesting of these beds. Closure or reclassification of these waters to limit or preclude shellfish harvesting would impair the value of Logan Diving's shellfish leases, or render them worthless. The following findings of fact relating to Fairfield's MSSW application are based upon the evidence presented, including the demeanor and credibility of witnesses who testified: Southeastern Fisheries Association, Inc., established at the hearing that it is a not-for-profit incorporated association of seafood producers, packers, canners, processors, wholesalers, retailers and others substantially involved in the seafood and fishing industries. Based upon the testimony of Robert P. Jones, 200 to 250 of the Association's 350 members shrimp in waters in the vicinity of Fort George Island, 26 of its members are residents of Duval or Massau Counties and 6 are residents of Fort George Island. Thus, a significant number of the Association's members harvest and transport seafood from the waters in the area of Fort George Island, and others also pack and process seafood from these waters. They would be substantially affected if the quality of these waters was degraded, or if the waters were closed to shellfish harvesting as a result of destruction to the nursery areas or reduction in quality or quantity of fish or shellfish which are harvested in these waters, or which utilize these waters as nursery areas. The objectives and purposes of the Association include promoting the general welfare of the fisheries industry and enhancing its economic progress. In contrast, the Florida Wildlife Federation was allowed to participate in this hearing but failed to offer any evidence in support of its verified Petition at the hearing. Fairfield's MSSW application is for conceptual approval, pursuant to District rule, and if conceptual approval is obtained Fairfield will then have to re-apply for construction, operation and maintenance MSSW permits. Although this is an application for conceptual approval, the documentation and information submitted by Fairfield to the District in support of its application is more thorough and complete than almost any other application for conceptual approval received by the District, and is actually superior to the documentation and information received from most applicants for construction permits. According to District staff, more sampling and testing results are presented in this conceptual application than they ever get. After initial review of its MSSW application by District staff following submission on January 5, 1984, Fairfield received a request for additional information. In responding to this request, Fairfield developed a plan of study which was approved by District staff and which focused on the water supply potential of the surficial aquifer, and the ability of a stormwater management and control system to retain stormwater on-site in compliance with the ADO and the District's permitting rules. Fairfield's study was comprehensive, and was completed in a very competent, professional manner. It included the collection of data through soil borings, installation of monitoring wells, conducting permeability and percolation tests, collecting rainfall data' and sampling of water quality. A water budget model was developed, and approved by the District, to compare existing conditions to proposed developed conditions and to specifically determine the water supply potential of the surficial aquifer, assess the availability of water for irrigation after development, assess changes in recharge to the surficial aquifer after development, and generally to determine how the development would impact the existing hyrologic cycle on the Island. Considering all of the evidence presented, it is specifically found that Fairfield utilized correct and appropriate input parameters in its water budget model to determine that currently 17.5 inches per year of freshwater is flowing from the Island to the surrounding estuary under average annual rainfall conditions, and after development approximately 16 inches per year of freshwater will flow from the Island to the estuary--less than a 10% change in ground- water flowing to the estuary. Therefore, the subject development will not adversely impact the overall water balance on Fort George Island. Utilizing the water budget model, under developed conditions it is shown that in a one-in-ten dry year there will be slightly more fresh water flow from the Island, and in a one-in-ten wet year there will be slightly less freshwater flow to the estuary than currently exists. This further demonstrates that overall water balance will be maintained. Total recharge will be greater post-development in average, wet and dry years. Fairfield's stormwater management system consists of a series of golf course fairway retention areas, and also includes four ponds in the north of the island which are interconnected, and one in the south, into which storm water will flow. The retention ponds comprise an area of approximately 32 acres. The fairway retention areas maximize percolation or infiltration, and water that remains to enter these ponds will be used for golf course irrigation through pumping. Generally, 95% of golf course need will be met by such pumping from the ponds, with the remaining need being met by withdrawals from the Floridan Aquifer. Under dry conditions, the need to withdraw from the Floridan Aquifer will be greater and could approach 49% of golf course irrigation requirements. The fairway retention areas and the five storage ponds comprise an on-line treatment system which will retain the first one-half inch of runoff, as well as additional runoff. Fairfield's on-line system is equivalent to an off-line system required by Rule Chapter 40C-42, Florida Administrative Code, for discharges to Outstanding Florida Waters (OFW) such as those that surround Fort George Island. Thus, the "first flush" containing a higher level of pollutants will be received by the retention areas and ponds in this on-line system and will primarily be removed through percolation in the retention areas. Pollutants should not be discharged into the estuaries, even in emergencies or when conditions exceed design capacity. Pond retention time will be approximately two months and surficial runoff will account for 5%-10% of the water in the ponds, with the rest coming from ground-water in-flow. Fairfield's storm water management system is operational and maintainable. It will be able to retain the 100 year, 24 hour storm event and otherwise meet the District's requirement that post-development discharge not exceed pre- development peak discharge. Surface discharges from the system will occur infrequently, perhaps every 80 years. Currently there is about one-half inch of direct surface runoff annually. Since surface runoff is a primary source of pollutant transport, the elimination of this runoff will have a beneficial effect on the estuary. The system will not degrade the quality of surrounding estuaries or the OFW since discharges to the estuaries will not occur from the ponds except under extreme conditions, and also because of the high level of treatment which will be provided by the ponds. Reasonable assurance has been given that water in the ponds will meet Class III standards, as well as the "free from" standards in Chapter 17-3, Florida Administrative Code, in the immediate future. The proposed ponds will be an improvement over existing borrow pits and bogs on the Island which have drastic side slopes and very long residence times, such as the Osmunda Bog, and will be a better habitat for fish and drinking water source for wildlife than the existing pits. It will also result in an improvement to Blue Pond, with better vegetation and habitat than currently exists, and with wildlife access being insured through preservation areas. A recognized and accepted ground-water flow model was used by Fairfield, and was approved by the District for use in this situation. The surficial aquifer system was correctly modeled as a single layer unit. Clay which underlies the Island is not a significant feature since, at minus 18 feet mean sea level, it is well into the saturated zone of the surficial aquifer and well below the surface water table, and since water levels actually observed in test wells could not be predicted when the top of the clay layer was used in the model as the bottom of the surficial aquifer. When the depth of the surficial aquifer was set at the top of the Hawthorne layer, the model accurately predicted water levels, as correlated against actual measured levels. Surface waters around Fort George Island have been classified as OFW since 1979. No significant development has taken place on the Island since 1979, and therefore ambient water conditions in 1978 and 1979 could reasonably be expected to have been what they are today. The stormwater management system will create a ground- water divide around the retention ponds. Any water falling inside the divide will flow toward the ponds; water falling outside the divide will percolate to the water table and then flow to the estuary. While under existing conditions nutrient pollutants that reach the water table simply flow to the estuary, after development half of the water falling on the golf course will be inside the divide and will therefore flow to the ponds. Therefore, after development there will be less nutrients and other pollutants reaching the estuary than under current conditions. Fairfield's stormwater management system is designed in a manner to ensure that the first 1 1/2 inches of rainfall will be retained or detained from an OFW. In fact, it appears that the system will actually retain runoff from the first 11 inches of rainfall. After analyzing data for metals, nutrients and coliform bacteria, it is found that the ambient water quality of the estuary will not be degraded by Fairfield's proposed development, and in fact there will actually be a net improvement in the quality of water reaching it from the Island. As a result of pollutant removal through filtration, sedimentation, absorption, precipitation, biological activity and dilution, it can reasonably be expected that ground-water seepage from the fairways and ponds to the OFW will meet primary and secondary drinking water standards, as well as Class II standards, and will not degrade the ambient water quality of the estuary. Infrequent surface discharges to the estuary also will not violate Class III standards. Total loading of nutrients to the OFW under developed conditions will be less than under existing conditions, and coliforms reaching the OFW via ground- water will be eliminated. Freshwater surface flow from the developed areas of the Island to the sloughs on the western side of the Island will be virtually eliminated. This elimination will not be detrimental to either salinities or particulate flows to these sloughs. Since there is an average of 50 inches of rainfall on the estuary per year, as opposed to less than 1/2 inch of freshwater runoff, and since the tidal flow is the forcing function in the estuary and not fresh surface water runoff, the salinity levels in the estuary will be largely unchanged. Particulate material will continue to be readily available to the sloughs from the marshlands, and from perimeter buffers which will be preserved by Fairfield around the Island. An undeveloped, preserved buffer zone is retained between the project and the surrounding waters as well as Rollins Sanctuary. This buffer zone is not intruded upon by the retention ponds contouring or berms associated with the development. In addition to the buffer zone, an undisturbed area will also be retained in the development, and the total acreage of the buffer and undisturbed areas will be 226 acres. The buffer and undisturbed areas will be more than adequate to protect the rare, notable, endangered or threatened plant and wildlife species identified on the Island when these areas are considered in relation to Rollins Sanctuary and other properties on the Island in state ownership. There will also be no construction activity in the saltmarsh off the western side of the Island. Extensive surveys conducted by Fairfield identified 26 species of plants and 16 species of wildlife on the Island. The habitat for all but one wildlife species, the gopher tortoise, is the saltmarsh to the west of the Island which will be undisturbed. Two national champion trees were identified and will be preserved. There will be no adverse impacts on notable plants in Rollins Sanctuary or other preservation areas since a 30 meter buffer is provided on the northern boundary of the Sanctuary and no development at all will take place to the west! of the Sanctuary. Woodstorks, the only endangered species identified in the survey, have been observed resting in trees at the western side of the Island in the saltmarsh. They are not nesting on Fort George Island, but return to the D-Dot Ranch south of Jacksonville every night to nest. The western area of the Island will remain undisturbed habitat in a buffer area from 250 to 450 feet wide, as will the southwestern portion of the Island. Woodstorks appear to be using the tidal sloughs for feeding, and development should have no adverse impact on these sloughs. A heron and egret rookery exists on the northern side of the Island, primarily off of Fairfield's property. Approximately 20 nesting pairs of great blue herons and great egrets use this rookery, which appears to be a satellite of regional rookeries. These are not notable species, but Fairfield will provide up to a 600 foot buffer. The gopher tortoise is the only notable terrestrial species on the Island and is a "species of special concern." The undisturbed natural habitat of a major concentration of gopher tortoise on Fairfield's property will be preserved. While the habitat for non-notable species such as bobcat, grey fox, owls and songbirds will be reduced, they will not be extirpated. Significant archaeological sites on Fairfield's property will be preserved and protected, including Mission San Juan del Puerto, the Grave Robbers Mound, the Sugar Mill site, and the Crypt site. If additional sites are found during development, a mitigation plan will be developed for approval by the State Division of Archives, with an evaluation by a professional archaeologist. Indian middens, or trash piles, have been deemed insignificant and will not be preserved. Surface water table draw-downs which will result from Fairfield's system due to pumping from the surficial aquifer will have no adverse impact on either wildlife or plant life on the Island. Such draw-downs will be limited and localized primarily around the ponds. In fact, the water table on the western side of the Island may increase slightly. The draw-down within Rollins Sanctuary or at Rollins Creek will be less than one foot and therefore should not have any adverse impact. Rollins Creek is approximately five feet wide. A fifty foot buffer around the Creek is provided. Only EPA approved chemicals will be used for weed control associated with the ponds, and aeration will be used to assist the production of oxygen in the ponds. Nutrients, nitrates and phosphorous, will be continually analyzed so that immediate corrective action in fertilizer application can be taken if necessary. Fairfield will utilize an integrated pest management program under a plan which must be approved by the District and which will actually reduce the need for chemical pesticides. Only EPA approved pesticides will be used. As for fertilizers, Fairfield will apply fertilizers more frequently, but in lesser amounts, than on the existing golf course. This ensures a better uptake of nitrates and phosphates, thereby reducing unabsorbed nutrients that might flow to the ponds or estuary. A full-time resource manager will be employed to ensure proper operation of the entire stormwater management system. Once the system is in place, Fairfield will conduct a long-term monitoring program of the water quality in the MWBZ, surficial aquifer, the ponds, and any surface water discharges to ensure permit compliance and also to provide a data base for further activities. Such a data base will represent a positive public benefit. Additional beneficial results of the project, after construction permits are obtained, include stabilization of the northern shoreline of the Island which has had notable marshland erosion, and re-aligning a road on the western side of in the Island to eliminate a point where it crosses Big Slough and thereby open the Slough up to additional sheetflow. Middle and Northern Sloughs will be preserved. Mitigation will be required for any disturbance of a small wetland area on the west side of the Island which is approximately 3/4 of an acre in size. Eliminating marsh erosion, and removing vehicle traffic and flow restrictions in the area of Big Slough are clearly in the public interest, as is the preservation of other wetland areas. The District staff originally recommended that Fairfield's MSSW application be denied but after modifications to the application were made, the District staff has recommended approval with conditions to ensure generally that Fairfield: Monitors water quality in the five ponds in accordance with a plan approved by the District, as well as the quantity and quality of all surface water discharges. Monitors water levels in surficial aquifer wells and reports such data to the District Recalibrates its surficial aquifer and water budget models every five years using the actual monitoring data it has collected and reported to the District in the preceding years, and if such recalibration indicates more than a 50% increase in the volume or frequency of surface water discharges, the stormwater management system must be altered, with District approval, to prevent such increases Submits a pesticide management plan for District approval. Submits a mitigation plan for District approval, at the time of application for construction permits, that will mitigate for any loss to off-site aquatic and wetland dependent species associated with project development in the area of the tidal sloughs on the west coast of the Island. A total of fourteen specific conditions which the District staff recommends be placed on the conceptual approval of the MSSW permit are contained in the Management and Storage of Surface Waters Summary Sheet, dated May 1986, which is hereby incorporated by reference and found to be reasonable in its entirety. Case Number 85-3596 (CUP) The following findings of fact are based upon the stipulation of the parties and relate to Fairfield's CUP application: The District, a special taxing district and agency, created by Chapter 373, is charged with the statutory responsibility for the administration and enforcement of permitting programs pursuant to Sections 373.219 and 373.223, Florida Statutes, and Chapter 40C-2, Florida Administrative Code. The District is the agency involved in this proceeding. The District has assigned Fairfield's CUP application the permit number 2-031-0021AN. Findings of Fact 10, 11, 14 and 15 which are set forth above are hereby readopted and incorporated herein. On December 1, 1983, Fairfield, through its then-agent George Register, III, submitted to the District the subject CUP application. The application was assigned No. 2-031-0021AN. On August 23, 1985, the District gave notice of its intent to deny CUP application No. 2-031-0021AN. On September 23, 1985, the District determined to recommend issuance of CUP application No. 2-031-0021AN, as then modified, with conditions. Fairfield had originally contemplated in both its original Master Resource Management Plan (MRMP) and the referenced CUP application that its proposed development for Fort George Island would have a 36-hole golf course facility. Fairfield subsequently reduced its proposed golf course facility from 36 holes to 27 holes. The City of Jacksonville's Planning Commission approved the MRMP with conditions, including the condition that the golf course be reduced, on January 29, 1986. Because of the reduction in size of Fairfield's proposed golf course facility form 36 to 27 holes, Fairfield's total requirements for irrigation water were reduced. By pleading dated February 28, 1986, Fairfield moved to amend its application. The motion was granted by the Hearing Officer on March 11, 1986. In light of this amended application, the District issued a revised "Consumptive Uses of Water Summary Sheet," dated March-24, 1986, to reflect this amended request and to recommend issuance of the CUP. The Petitioners' original Petition For Formal Administrative Proceedings was timely filed within fourteen (14) days of receipt of the District's proposed agency action of September 23, 1985. A number of the members of Friends of Fort George, Inc. own real property on Fort George Island, reside on the Island, and possess drinking water wells on the Island and engage in recreational activities on the Island and its adjacent waters and environs. The subject matter of the proposed agency action challenged by Petitioners and Intervenors concerns the water resources on Fort George Island, including its drinking water supply. Protection of this resource falls within the general purpose and objectives of Friends of Fort George, Inc., namely, the preservation, conservation and restoration of Fort George Island and surrounding environs. The relief requested in this proceeding by Petitioner and Intervenor is denial of the proposed consumptive use permit. The water storage ponds proposed in the project will intersect with the surficial aquifer on Fort George Island. The residential value of Petitioners' property on Fort George Island would decrease if the property had absolutely no access to potable water. Petitioners and Intervenors have standing pursuant to Section 403.412(5), Florida Statutes, to bring this action. The following findings of fact relating to Fairfield's CUP application are based upon the evidence presented, including the demeanor and credibility of witnesses who testified: Following review of Fairfield's CUP application, District staff requested additional information on January 11, 1984; Fairfield developed a plan of study to supply the requested additional information, and the plan of study was approved by District staff. The plan of study sought to find out the nature and characteristics of an anomaly in the northeastern part of the Island, and also to determine if Fairfield's proposed usage would have any affect on existing legal users. As part of the study, Fairfield conducted a well inventory and survey, water quality survey, water level measurements, and vertical investigations. The study also examined three alternatives to obtaining water from the various water bearing zones under Fort George Island, including drilling a test well (TP-2) into the Middle Water Bearing Zone after obtaining appropriate permits. The Floridan Aquifer below Fort George Island consists of three zones--The Upper Water Bearing Zone (UWBZ), Middle Water Bearing Zone (MWBZ) and Lower Water Bearing Zone (LWBZ). The bottom of the Hawthorne formation separating the surficial and Floridan aquifers occurs at about 400 feet below mean sea level. The UWBZ exists from of depth of approximately 520 feet to 1000 feet. Below the UWBZ is an upper semiconfining zone from a depth of approximately 1000 to 1200 feet. The MWBZ is generally 100 feet thick and exists from a depth of approximately 1200 to 1700 feet, below which is a lower semiconfining zone from a depth of approximately 1700 to 2000 feet. The MWBZ is a single water producing zone with interconnected channels or flow zones. The LWBZ exists from a depth of approximately 2000 to 2100 feet, below which is a lower confining unit. The confining zones are saturated with water but are less permeable than any of the water bearing zones. Regional ground-water flow in the Floridan Aquifer at Fort George Island is from the west to the east, northeast and southeast. Water quality to a depth of approximately 1900 feet is generally good, with chloride concentrations of less than 50 milligrams per liter (mgl). In the UWBZ chloride concentrations are generally 10-15 mgl. However, in the north eastern part of the Island chloride concentrations are approximately ten times higher, although still considered potable, due to an anomaly which exists in this area with a radius of approximately 1000 feet, and which allows the flow of water directly from the LWBZ to theMWBZ and LWBZ. While the potentiometric surface or pressure for most of the Island is 39 feet, at the anomaly it is 43 feet above mean sea level. The anomaly was caused either by a sinkhole or fault and acts as a localized conduit or coins source of lower quality water from the LWBZ to the UWBZ. No other point sources of lower quality water exist on the island. The Hawthorne formation was found to exist approximately fifty feet deeper in the area of the anomaly than on the rest of the Island. Existing users on Fort George Island draw water from the UWBZ. Fairfield proposes to draw its water from the MWBZ at a rate of 101.11 million gallons per year in an average year, and 181.04 million gallons per year in a 1 in 10 dry year, and will be the only user of water from the MWBZ on the Island. Household use consumption is projected to be 129.3 gallons per capita which is below the District average of 150 gallons per capita. Based upon pump tests already conducted by Fairfield, the MWBZ will produce more than enough water to meet Fairfield's needs for its project and such pumping will have no adverse impact on the UWBZ or existing users. Pumping from the MWBZ will also have no adverse impact on the MWBZ. Specifically, salt water intrusion from the surrounding estuary or from the tWBZ to the MWBZ will not significantly increase, chloride levels will not increase and potentiometric levels will not decrease in the MWBZ due to this pumping. The MWBZ will produce an adequate Supply of potable water for 15 to 30 years. Fairfield does propose to use well P-1 in the UWBZ in emergency situations but such usage will have no adverse impact on the quality of the UWBZ or its existing users. Use of the MWBZ will be minimized by maximum utilization of the surface water management system ponds for irrigation needs. Well TP-2 is approximately a mile from the anomaly in a south-southwesterly direction. It was constructed by Fairfield, after obtaining necessary permits, with casing to a depth of 771 feet all the way through the UWBZ and into the underlying confining bed. Pump tests were conducted on the MWBZ using TP-2, which is the only well on the Island in the MWBZ. No separate monitoring well in the MWBZ was required by the District, and none was utilized by Fairfield because the flow off 2,000 gallons per minute from TP-2 was so strong that a separate monitoring well was not necessary. When TP-2 was pumped, there was no measurable change in nearby UWBZ wells. This confirms that the MWBZ is hydrologically separate from the UWBZ, other than at the anomaly, and pumping from one will not affect wells in the other. In response to a request from the District, Fairfield utilized conservative factors in applying a mathematical model to determine the effects of its proposed pumping on the Floridan Aquifer. Using the USGS contaminant transport model, which is professionally accepted and appropriate for use in this case, and after proper calibration to reproduced observed conditions, it was determined that chloride concentrations in the MWBZ will not be adversely affected, nor will potentiometric surfaces of the UWBZ or MWBZ when pumping is conducted from TP-2 in the MWBZ over a thirty year period. At most, pumping from TP-2 could result in a slight increase of flow from the anomaly into the MWBZ, with a minimal increase in chloride concentrations. Fairfield has agreed to install a monitoring well in the MWBZ and to monitor several wells in the UWBZ in order to constantly test and monitor chloride levels. Currently chloride levels in the MWBZ are 25 mgl and the limit for potable water is 250 mgl. The monitoring well will be approximately 550 feet northeast of well TP-2, and will detect any changes in chloride levels with sufficient lead time for Fairfield to initiate action to drill another well into the MWBZ further from the chloride source. It is estimated that such lead time could reasonably be as much as ten years. Even without Fairfield's pumping from the MWBZ, water quality in the UWBZ would be expected to degrade, as it has historically, as a result of regional pumping which has caused a regional decline in water quality and 37 SO as a result of flow from the anomaly. Existing users may actually benefit from Fairfield's pumping from the MWBZ and the decline in the quality of the UWBZ may be slowed due to Fairfield's elimination of golf course irrigation which currently comes from the UMBZ at a rate of approximately 175,000 gallons per day, accounting for approximately 90% of all current water usage on the Island. Pumping from the Floridan Aquifer will be conducted to supplement irrigation from the stormwater management system. Fairfield will use up to 580,000 gallons per day for golf course irrigation in dry years. However, even in a dry year the primary source for golf course irrigation will still be from the stormwater management system. In an average year, approximately 95% of irrigation needs will be met by the surface water management system ponds. In a wet year there should be no need to pump from the Aquifer. The District staff originally recommended denial of Fairfield's CUP application when it was for a 36 hole golf course, anad for withdrawal of potable water from the UWBZ with only golf course irrigation being from the MWBZ. Fairfield has modified its application and now proposes a 27 golf course with all water needs coming from the MWBZ, except in an emergency when well P-1 in the UWBZ may be used. The District staff has now recommended approval, with a total of twenty conditions contained in the "Consumptive Uses of Water Summary Sheet," which are hereby incorporated by reference and which ensure generally that Fairfield: Mitigates any adverse impact caused by withdrawals permitted herein on existing legal uses of water; the District may curtail any withdrawal if there are adverse impacts on existing legal users. Mitigates any adverse impacts caused by withdrawals permitted herein on existing adjacent land uses; the District may curtail any withdrawal if there are adverse impacts on existing adjacent land uses. Must reapply for another CUP after seven years from issuance. Begins irrigating the existing 18 hole golf course from the MWBZ by March 1, 1987, with existing UWBZ irrigation wells only to be used thereafter for fire protection. Institutes a sampling program for existing wells in the UWBZ and MWBZ. Supplies all potable and supplemental irrigation requirements from the MWBZ, and keeps monthly records of such withdrawals. Drills and maintains a monitoring well in the MWBZ approximately 550 feet northeast of its MWBZ potable and supplemental irrigation well, and provides long term water quality samples to the District from the monitoring well. The District staff's recommended conditions are found to be reasonable in their entirety.

Recommendation Based on the foregoing, it is recommended that the St. John's River Water Management District issue to Fairfield Communities, Inc., conceptual approval of MSSW permit number 4- 031-002AC with conditions set forth in the District's Management and Storage of Surface Waters Summary Sheet, dated May 1986, and also issue to Fairfield Communities, Inc., CUP number 2-031- 3021AN with conditions set forth in the District's Consumptive Uses of Water Summary Sheet. Further, it is recommended that the Florida Wildlife Federation be dismissed as a party in this proceeding. DONE and ENTERED this 6th day of October, 1986, at Tallahassee, Florida. DONALD D. CONN, Hearing Officer Division of Administrative Hearings The Oakland Building 2009 Apalachee Parkway Tallahassee, Florida 32399 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 6th day of October, 1986. COPIES FURNISHED: Henry Dean, Executive Director St. Johns River Water Management Post Office Box 1429 Palatka, FL 32078-1429 Segundo J. Fernandez, Esquire Post Office Box 6507 Tallahassee, FL 32314 Thomas G. Pelham, Esquire Post Office Drawer 11300 Tallahassee, FL 32302-3300 Kathryn L. Mennella, Esquire Post Office Box 1429 Palatka, FL 32087-1429 Charles Lee Senior Vice President Florida Audubon Society 1101 Audubon Way Maitland, FL 32751 Jeffrey R. Lugwig, Esquire One Independent Square Jacksonville, FL 32276 Stephen O'Hara, Jr., Esquire 1500 American Heritage Life Building Jacksonville, FL 32202 APPENDIX Rulings on Petitioners' and Intervenors' Proposed Findings of Fact: 1. Adopted in Findings of Fact 9-27, 58-73. 2-7. Rejected as irrelevant and unnecessary 8. Adopted in Findings of Fact 36, 42. 9-10. Rejected as irrelevant and unnecessary 11. Adopted in part in Findings of Fact 4, 77, but otherwise rejected as irrelevant and unnecessary 12-24. Adopted in Finding of Fact 15, but otherwise rejected as unnecessary or not based on competent substantial evidence. 25-27. Rejected as irrelevant and unnecessary 28-39. Adopted and rejected in Finding of Fact 76, but otherwise rejected as irrelevant and unnecessary 40-45. Rejected in Findings of Fact 25, 77, 78 and otherwise not based on competent substantial evidence. Rejected in Finding of Fact 76. Rejected as irrelevant. 48-50. Rejected in Findings of Fact 77, 78 and otherwise not based on competent substantial evidence. 51-52. Rejected as unnecessary. 53. Rejected as not based on competent substantial evidence. 54-55. Rejected in Findings of Fact 77, 78. 56. Adopted in Finding of Fact 56. 57-63. Rejected in Finding of Fact 79 and otherwise not based on competent substantial evidence. 64-66. Rejected as irrelevant and unnecessary. 67-75. Rejected as irrelevant, unnecessary and otherwise not based on competent substantial evidence. 76-79. Rejected in Finding of Fact 79, and otherwise not based on competent substantial evidence. 80-83 Rejected in Finding of Fact 75, and otherwise irrelevant and not based on competent substantial evidence. Rejected in Finding of Fact 78 Rejected as irrelevant and unnecessary. 86-87. Rejected in Finding of Fact 75. 88-107. Adopted and rejected in part in Findings of Fact 75, 78, and otherwise irrelevant and not based on competent substantial evidence. 108. Rejected in Finding of Fact 79. 109-111. Rejected in Findings of Fact 76, 80. Adopted in Finding of Fact 80. Rejected as irrelevant and unnecessary. 114-116. Adopted in Finding of Fact 80. 117-120. Rejected as irrelevant and not based on competent substantial evidence. 121-136. Rejected in Finding of Fact 37 and otherwise unnecessary and not based on competent substantial evidence. Rejected as not based on competent substantial evidence. Rejected as unnecessary and cumulative. 139-141. Rejected as not based on competent substantial evidence. 142-144. Rejected as unnecessary and cumulative. 145-147. Rejected as not based on competent substantial evidence. Rejected in Findings of Fact 36, 37. Rejected as unnecessary and cumulative. Rejected as not based on competent substantial evidence 151-161. Rejected as unnecessary, cumulative and not based on competent substantial evidence. 162-164. Rejected in Finding of Fact 37 and otherwise not based on competent substantial evidence. 165-169. Rejected as unnecessary and cumulative. 170. Rejected in Findings of Fact 34, 39, 41. 171-173. Rejected as unnecessary and cumulative. 174-177. Rejected in Findings of Fact 36, 37. 178-179. Rejected in Findings of Fact 50, 51. 180. Adopted in Finding of Fact 39. 181-186. Rejected as not based on competent substantial evidence and otherwise unnecessary. 187-189. Rejected in Finding of Fact 32, and otherwise not based on competent substantial evidence. 190-193. Rejected as unnecessary and cumulative. 194-195. Rejected as not based on competent substantial evidence. 196. Rejected as unnecessary. 197-200. Rejected as not based on competent substantial evidence. 201-205. Rejected in Findings of Fact 32, 33 and otherwise not based on competent substantial evidence. 206-210. Rejected in Findings of Fact 32, 33, 36, 37. 211-268. Rejected in Findings of Fact 35, 36, 39-41, 52-54 and otherwise unnecessary and contrary to competent substantial evidence. 269-278. Adopted in part in Finding of Fact 3, but otherwise rejected as unnecessary. 279-297. Rejected in Findings of Fact 32, 33, 35, 36, 41, 42 and otherwise as unnecessary. 298. Rejected as irrelevant and unnecessary. 299-300. Adopted in part in Finding of Fact 3. Rejected as unnecessary. Rejected in Finding of Fact 44. Adopted and rejected in part in Findings of Fact 45-47. 304-305. Adopted in Finding of Fact 4. 306-312. Rejected in Findings of Fact 44-48 and otherwise not based on competent substantial evidence. Rejected in Findings of Fact 43, 45. Rejected in Finding of Fact 48. 315-321. Rejected as unnecessary and not based on competent substantial evidence. 322-323. Adopted and rejected in part in Finding of Fact 50. 324. Rejected as unnecessary. 325-329. Adopted and rejected in part in Finding of Fact 28. 330. Rejected as unnecessary. Rulings on Respondent Fairfield Communities' Proposed Findings of Fact: Adopted in Findings of Fact 9, 58. Adopted in Findings of Fact 10, 59. Adopted in Findings of Fact 11, 59. Adopted in Findings of Fact 15, 59. Adopted in Finding of Fact 12. Adopted in Findings of Fact 13, 27. Adopted in Findings of Fact 14, 59. Rejected as unnecessary based on Finding of Fact 28 Adopted in Findings of Fact 30, 60. Adopted in Findings of Fact 16, 17, 61, 62. Adopted in Findings of Fact 4, 6, 18, 19 Adopted in Findings of Fact 20, 65. Adopted in Finding of Fact 26. Adopted 1n Findings of Fact 21, 67. Adopted and rejected in Finding of Fact 28 Adopted in Finding of Fact 28. Adopted in Finding of Fact 1. Adopted in Finding of Fact 2. Adopted in Finding of Fact 3. 20-22. Adopted in Finding of Fact S. 23-24. Adopted in Finding of Fact 6. Adopted in Finding of Fact 7. Adopted in Finding of Fact 8. Adopted in Finding of Fact 77, 81. 28-30. Adopted in Finding of Fact 74. Adopted in Finding of Fact 75. Adopted in Findings of Fact 75, 76 Adopted in Finding of Fact 76. Adopted 1n Findings of Fact 75, 76. Rejected as unnecessary. 36-37. Adopted in Finding of Fact 75. 38. Adopted in Finding of Fact 77, but otherwise rejected 39-40. Adopted in Finding of Fact 76 evidence. 41-43. Adopted in Findings of Fact 76-80, but otherwise rejected as cumulative and unnecessary. 44-47. Adopted in Finding of Fact 74 48-50. Adopted in Finding of Fact 78 51-55 Adopted in Finding of Fact 79. Rejected as unnecessary. Adopted in Findings of Fact 77, 80. Adopted in Findings of Fact 77, 83. Adopted in Finding of Fact 80. Adopted in Findings of Fact 78, 79. Adopted in Finding of Fact 79. 62-63. Adopted in Finding of Fact 81. 64-65. Adopted in Finding of Fact 77 Adopted in Findings of Fact 4; 77. Adopted in Finding of Fact 82. Adopted in Finding of Fact 82, but otherwise rejected as unnecessary. 69-70. Rejected as unnecessary and cumulative 71-72. Adopted in Finding of Fact 30. 73-75. Adopted in Finding of Fact 31 76-84. Adopted in Findings of Fact 31, 32, but otherwise rejected as unnecessary 85-88. Adopted in Finding of Fact 33. 89-92. Adopted in Findings of Fact 36, 37, but otherwise rejected as unnecessary. Adopted in Finding of Fact 34. Adopted in Finding of Fact 82, but otherwise rejected as unnecessary. Rejected as unnecessary Adopted in Finding of Fact 43 Adopted in Finding of Fact 36 Adopted in Findings of Fact 4i, 42 Adopted in Findings of Fact 2, 38 Adopted in Findings of Fact 41, 42. 101-102. Adopted in Finding of Fact 39 Adopted in Finding of Fact 40. Adopted in Finding of Fact 35. 105-105. Adopted in Finding of Fact 41. 110-115. Adopted in Finding of Fact 42 116-117. Adopted in Findings of Fact 36, 42, but otherwise rejected as unnecessary. 118-121. Adopted in Finding of Fact 50, but otherwise rejected as unnecessary 122. Rejected as unnecessary, cumulative and inaccurate. 123-125. Rejected as cumulative and unnecessary. Adopted in Findings of Fact 29, 31. Adopted in Finding of Fact 43. 128-131. Adopted in Finding of Fact 56. 132-133. Adopted in Finding of Fact 36. 134-135. Adopted in Finding of Fact 56, but otherwise rejected as unnecessary. 136. Adopted in Finding of Fact 51. 137-138. Adopted in Finding of Fact 35. Adopted in Finding of Fact 36. Adopted in Finding of Fact 52. Adopted in Findings of Fact 52, 53. Adopted in Finding of Fact 54. Adopted in Finding of Fact 55. 144-148. Adopted in Finding of Fact 44, but otherwise rejected as unnecessary. 149. Adopted in Findings of Fact 4, 43, 44, but otherwise rejected as unnecessary. 150-151. Adopted in Finding of Fact 45. Rejected as unnecessary. Adopted in Finding of Fact 45. 154-155. Adopted in Finding of Fact 46. Adopted in Finding of Fact 47. Adopted in Finding of Fact 48. 158-160. Adopted in Finding of Fact 49. Rulings on Respondent St. John's River Water Management District's Proposed Findings of Fact: (The District's proposal was not timely filed, and the District did not seek permission from the Hearing Officer for late filing. It also consists of serial, unnumbered paragraphs from pages 18 to 48 despite specific instruction of the Hearing Officer to the parties to number paragraphs in proposed findings in order to allow specific rulings to be made. Despite these failures, a ruling will be made on the District's proposals, after having consecutively numbered each unnumbered paragraph, since counsel for the District indicates counsel for Petitioners has no objection to this late-filing, and in fact no Motion to Strike has been filed on behalf of Petitioners.) Adopted in Finding of Fact 1. Adopted in Finding of Fact 2. Adopted in Finding of Fact 4. Adopted in Finding of Fact 75. Adopted in Finding of Fact 76. Adopted in Findings of Fact 77, 81. Adopted in Finding of Fact 60. Adopted in Finding of Fact 30.47 Adopted in Findings of Fact 16, 17. Adopted in Finding of Fact 18. Adopted in Finding of Fact 6. Adopted in Findings of Fact 66, 83. Adopted in Finding of Fact 83. Adopted in Finding of Fact 20. 15-16. Adopted in Finding of Fact 57. 17. Adopted in Findings of Fact 21, G7. 18-21. Adopted in Finding of Fact 74. Adopted in Findings of Fact 74-76. Adopted in Finding of Fact 74. 24-26. Rejected as irrelevant and unnecessary. 27. Adopted in Finding of Fact 77. 28-35. Adopted in Finding of Fact 76. 36-41. Adopted in Finding of Fact 78. 42. Adopted in Finding of Fact 80. 43-45. Adopted in Finding of Fact 79. Adopted in Finding of Fact 75. Adopted in Findings of Fact 75, 79. Adopted in Finding of Fact 79. 49-50. Adopted in Finding of Fact 81. 51-52. Adopted in Finding of Fact 79. Adopted in Finding of Fact 80. Adopted in Finding of Fact 79. Adopted in Finding of Fact 77. Adopted in Finding of Fact 81. 57-58. Adopted in Finding of Fact 77. Adopted in Findings of Fact 34, 82. Rejected as unnecessary. Adopted in Finding of Fact 77. Rejected as unnecessary and cumulative. Adopted in Finding of Fact 78. 64-65. Adopted in Finding of Fact 30. 66. Adopted in Findings of Fact 34, 39. 67-72. Adopted in Finding of Fact 31. 73-81. Adopted in Finding of Fact 32. 82. Adopted in Findings of Fact 36, 42. 83-84. Adopted in Findings of Fact 32, 33. 85-87. Adopted in Finding of Fact 33. 88-94. Rejected as unnecessary. 95. Adopted in Finding of Fact 37. 96-98. Adopted in Finding of Fact 36, but otherwise rejected as unnecessary. Adopted in Finding of Fact 54. Adopted in Findings of Fact 34-36. 101-102. Rejected as unnecessary and cumulative. Adopted in Findings of Fact 2, 38. Rejected as unnecessary and cumulative. Adopted in Findings of Fact 36, 39. Adopted in Finding of Fact 39. Adopted in Findings of Fact 41. Adopted in Finding of Fact 35. Rejected as unnecessary. 110-118. Adopted in Finding of Fact 41, but otherwise rejected as unnecessary. Adopted in Finding of Fact 53. Adopted in Findings of Fact 52, 53, but otherwise rejected as unnecessary. Adopted in Finding of Fact 55. Adopted in Finding of Fact 42. 124-128. Adopted in Findings of Fact 32, 36, 42, but otherwise rejected as unnecessary. Adopted in Findings of Fact 35, 42, but otherwise rejected as unnecessary. Rejected as unnecessary. 131-134. Adopted in Finding of Fact 50, but otherwise rejected as unnecessary. 135. Adopted in Findings of Fact 42, 43. 136-138. Adopted in Finding of Fact 56. 139. Adopted in Findings of Fact 36, 56. 140-141. Adopted in Finding of Fact 56. 142. Adopted in Finding of Fact 51. 143-144. Adopted in Finding of Fact 35. Adopted in Finding of Fact 36. Rejected as cumulative, unnecessary and incorrect. Adopted and rejected in part in Finding of Fact 28. Adopted in Finding of Fact 28. ================================================================ AGENCY FINAL ORDER ================================================================ IN THE ST. JOHNS RIVER WATER MANAGEMENT DISTRICT FRIENDS OF FORT GEORGE, INC., Petitioners, and LOGAN DIVING, INC., SOUTHEASTERN FISHERIES ASSOCIATIONS, INC., THE FLORIDA AUDUBON SOCIETY, THE DOAH Case No. 85-3537 DUVAL AUDUBON SOCIETY, and THE (Management and Storage FLORIDA WILDLIFE FEDERATION, of Surface Waters) SJRWMD Case No. 85-3948 Intervenors, v. FAIRFIELD COMMUNITIES, INC., and ST. JOHNS RIVER WATER, MANAGEMENT DISTRICT, Respondents. / FRIENDS OF FORT GEORGE, INC., et al., Petitioners, and THE FLORIDA AUDUBON SOCIETY DOAH Case No. 85-3596 and THE DUVAL AUDUBON SOCIETY, (Consumptive Use Permit) SJRWMD Case No. 85-394A Intervenors, v. FAIRFIELD COMMUNITIES, INC., and ST. JOHNS RIVER WATER MANAGEMENT DISTRICT, Respondents. /

Florida Laws (11) 120.57373.019373.042373.086373.114373.219373.223373.413373.416373.617403.412 Florida Administrative Code (4) 40C-2.30140C-4.09140C-4.30140C-42.025
# 9
KAREN AHLERS AND JERI BALDWIN vs SLEEPY CREEK LANDS, LLC AND ST. JOHNS RIVER WATER MANAGEMENT DISTRICT, 14-002610 (2014)
Division of Administrative Hearings, Florida Filed:Palatka, Florida Jun. 03, 2014 Number: 14-002610 Latest Update: Oct. 24, 2016

The Issue The issue to be determined is whether Consumptive Use Permit No. 2-083-91926-3, and Environmental Resource Permit No. IND-083-130588-4 should be issued as proposed in the respective proposed agency actions issued by the St. Johns River Water Management District.

Findings Of Fact The Parties Sierra Club, Inc., is a national organization, the mission of which is to explore, enjoy, and advocate for the environment. A substantial number of Sierra Club’s 28,000 Florida members utilize the Silver River, Silver Springs, the Ocklawaha River, and the St. Johns River for water-based recreational activities, which uses include kayaking, swimming, fishing, boating, canoeing, nature photography, and bird watching. St. Johns Riverkeeper, Inc., is one of 280 members of the worldwide Waterkeepers Alliance. Its mission is to protect, restore, and promote healthy waters of the St. Johns River, its tributaries, springs, and wetlands -- including Silver Springs, the Silver River, and the Ocklawaha River -- through citizen- based advocacy. A substantial number of St. Johns Riverkeeper’s more than 1,000 members use and enjoy the St. Johns River, the Silver River, Silver Springs, and the Ocklawaha River for boating, fishing, wildlife observation, and other water-based recreational activities. Karen Ahlers is a native of Putnam County, Florida, and lives approximately 15 miles from the Applicant’s property on which the permitted uses will be conducted. Ms. Ahlers currently uses the Ocklawaha River for canoeing, kayaking, and swimming, and enjoys birding and nature photography on and around the Silver River. Over the years, Ms. Ahlers has advocated for the restoration and protection of the Ocklawaha River, as an individual and as a past-president of the Putnam County Environmental Council. Jeri Baldwin lives on a parcel of property in the northeast corner of Marion County, approximately one mile from the Applicant’s property on which the permitted uses will be conducted. Ms. Baldwin, who was raised in the area, and whose family and she used the resources extensively in earlier years, currently uses the Ocklawaha River for boating. Florida Defenders of the Environment (FDE) is a Florida corporation, the mission of which is to conserve and protect and restore Florida's natural resources and to conduct environmental education projects. A substantial number of FDE’s 186 members, of which 29 reside in Marion County, Florida, use and enjoy Silver Springs, the Silver River, and the Ocklawaha Aquatic Preserve, and their associated watersheds in their educational and outreach activities, as well as for various recreational activities including boating, fishing, wildlife observation, and other water-based recreational activities. Sleepy Creek Lands, LLC (Sleepy Creek or Applicant), is an entity registered with the Florida Department of State to do business in the state of Florida. Sleepy Creek owns approximately 21,000 acres of land in Marion County, Florida, which includes the East Tract and the North Tract on which the activities authorized by the permits are proposed. St. Johns River Water Management District (SJRWMD or District) is a water-management district created by section 373.069(1). It has the responsibility to conserve, protect, manage, and control the water resources within its geographic boundaries. See § 373.069(2)(a), Fla. Stat. The Consumptive Use Permit The CUP is a modification and consolidation of two existing CUP permits, CUP No. 2-083-3011-7 and CUP No. 2-083- 91926-2, which authorize the withdrawal of 1.46 mgd from wells located on the East Tract. Although the existing CUP permits authorize an allocation of 1.46 mgd, actual use has historically been far less, and rarely exceeded 0.3 mgd. The proposed CUP modification will convert the authorized use of water from irrigation of 1,010 acres of sod grass on the East Tract, to supplemental irrigation of improved pasture for grass and other forage crops (approximately 97 percent of the proposed withdrawals) and cattle watering (approximately three percent of the proposed withdrawals) on the North Tract and the East Tract. An additional very small amount will be used in conjunction with the application of agricultural chemicals. CUP No. 2-083-3011-7 is due to expire in 2021. CUP No. 2-083-91926-2 is due to expire in 2024. In addition to the consolidation of the withdrawals into a single permit, the proposed agency action would extend the term of the consolidated permit to 20 years from issuance, with the submission of a compliance report due 10 years from issuance. Sleepy Creek calculated a water demand of 2.569 mgd for the production of grasses and forage crops necessary to meet the needs for grass-fed beef production, based on the expected demand in a 2-in-10 drought year. That calculation is consistent with that established in CUP Applicant’s Handbook (CUP A.H.) section 12.5.1. The calculated amount exceeds the authorized average allocation of 1.46 mgd. Mr. Jenkins testified as to the District’s understanding that the requested amount would be sufficient, since the proposed use was a “scaleable-type project,” with adjustments to cattle numbers made as necessary to meet the availability of feed. Regardless of demand, the proposed permit establishes the enforceable withdrawal limits applicable to the property. With regard to the East Tract, the proposed agency action reduces the existing 1.46 mgd allocation for that tract to a maximum allocation of 0.464 mgd, and authorizes the irrigation of 611 acres of pasture grass using existing extraction wells and six existing pivots. With regard to the North Tract, the proposed agency action authorizes the irrigation of 1,620 acres of pasture and forage grain crops using 15 center pivot systems. Extraction wells to serve the North Tract pivots will be constructed on the North Tract. The proposed North Tract withdrawal wells are further from Silver Springs than the current withdrawal locations. The proposed CUP allows Sleepy Creek to apply the allocated water as it believes to be appropriate to the management of the cattle operation. Although the East Tract is limited to a maximum of 0.464 mgd, there is no limitation on the North Tract. Thus, Sleepy Creek could choose to apply all of the 1.46 mgd on the North Tract. For that reason, the analysis of impacts from the irrigation of the North Tract has generally been based on the full 1.46 mgd allocation being drawn from and applied to the North Tract. The Environmental Resource Permit As initially proposed, the CUP had no elements that would require issuance of an ERP. However, in order to control the potential for increased runoff and nutrient loading resulting from the irrigation of the pastures, Sleepy Creek proposes to construct a stormwater management system to capture runoff from the irrigated pastures, consisting of a series of vegetated upland buffers, retention berms and redistribution swales between the pastures and downgradient wetland features. Because the retention berm and swale system triggered the permitting thresholds in rule 62-330.020(2)(d) (“a total project area of more than one acre”) and rule 62-330.020(2)(e) (“a capability of impounding more than 40 acre-feet of water”), Sleepy Creek was required to obtain an Environmental Resource Permit for its construction. Regional Geologic Features To the west of the North Tract is a geologic feature known as the Ocala Uplift or Ocala Platform, in which the limestone that comprises the Floridan aquifer system exists at or very near the land surface. Karst features, including subterranean conduits and voids that can manifest at the land surface as sinkholes, are common in the Ocala Uplift due in large part to the lack of consolidated or confining material overlaying the limestone. Water falling on the surface of such areas tends to infiltrate rapidly through the soil into the Floridan aquifer, occasionally through direct connections such as sinkholes. The lack of confinement in the Ocala Uplift results in few if any surface-water features such as wetlands, creeks, and streams. As one moves east from the Ocala Uplift, a geologic feature known as the Cody Escarpment becomes more prominent. In the Cody Escarpment, the limestone becomes increasingly overlain by sands, shell, silt, clays, and other less permeable sediments of the Hawthorn Group. The North Tract and the East Tract lie to the east of the point at which the Cody Escarpment becomes apparent. As a result, water tends to flow overland to wetlands and other surface water features. The Property The North and East Tracts are located in northern Marion County near the community of Fort McCoy. East Tract Topography and Historic Use The East Tract is located in the Daisy Creek Basin, and includes the headwaters of a small creek that drains directly to the Ocklawaha River. The historic use of the East Tract has been as a cleared 1,010-acre sod farm. The production of sod included irrigation, fertilization, and pest control. Little change in the topography, use, and appearance of the property will be apparent as a result of the permits at issue, but for the addition of grazing cattle. The current CUPs that are subject to modification in this proceeding authorize groundwater withdrawals for irrigation of the East Tract at the rate of 1.46 mgd. Since the proposed agency action has the result of reducing the maximum withdrawal from wells on the East Tract to 0.464 mgd, thus proportionately reducing the proposed impacts, there was little evidence offered to counter Sleepy Creek’s prima facie case that reasonable assurance was provided that the proposed East Tract groundwater withdrawal allocation will meet applicable CUP standards. There are no stormwater management structures to be constructed on the East Tract. Therefore, the ERP permit discussed herein is not applicable to the East Tract. North Tract Topography and Historic Use The North Tract has a generally flat topography, with elevations ranging from 45 feet to 75 feet above sea level. The land elevation is highest at the center of the North Tract, with the land sloping towards the Ocklawaha River to the east, and to several large wet prairie systems to the west. Surface water features on the North Tract include isolated, prairie, and slough-type wetlands on approximately 28 percent of the North Tract, and a network of creeks, streams, and ditches, including the headwaters of Mill Creek, a contributing tributary of the Ocklawaha River. A seasonal high groundwater elevation on the North Tract is estimated at 6 to 14 inches below ground surface. The existence of defined creeks and surface water features supports a finding that the North Tract is underlain by a relatively impermeable confining layer that impedes the flow of water from the surface and the shallow surficial aquifer to the upper Floridan and lower Floridan aquifers. If there was no confining unit, water going onto the surface of the property, either in the form of rain or irrigation water, would percolate unimpeded to the lower aquifers. Areas in the Ocala Uplift to the west of the North Tract, where the confining layer is thinner and discontiguous, contain few streams or runoff features. Historically, the North Tract was used for timber production, with limited pasture and crop lands. At the time the 7,207-acre North Tract was purchased by Sleepy Creek, land use consisted of 4,061 acres of planted pine, 1,998 acres of wetlands, 750 acres of improved pasture, 286 acres of crops, 78 acres of non-forested uplands, 20 acres of native forest, 10 acres of open water, and 4 acres of roads and facilities. Prior to the submission of the CUP and ERP applications, much of the planted pine was harvested, and the land converted to improved pasture. Areas converted to improved pasture include those proposed for irrigation, which have been developed in the circular configuration necessary for future use with center irrigation pivots. As a result of the harvesting of planted pine, and the conversion of about 345 acres of cropland and non-forested uplands to pasture and incidental uses, total acreage in pasture on the North Tract increased from 750 acres to 3,938 acres. Other improvements were constructed on the North Tract, including the cattle processing facility. Aerial photographs suggest that the conversion of the North Tract to improved pasture and infrastructure to support a cattle ranch is substantially complete. The act of converting the North Tract from a property dominated by planted pine to one dominated by improved pasture, and the change in use of the East Tract from sod farm to pasture, were agricultural activities that did not require a permit from the District. As such, there is no impropriety in considering the actual, legal use of the property in its current configuration as the existing use for which baseline conditions are to be measured. Petitioners argue that the baseline conditions should be measured against the use of the property as planted pine plantation, and that Sleepy Creek should not be allowed to “cattle-up” before submitting its permit applications, thereby allowing the baseline to be established as a higher impact use. However, the applicable rules and statutes provide no retrospective time-period for establishing the nature of a parcel of property other than that lawfully existing when the application is made. See West Coast Reg’l Water Supply Auth. v. SW Fla. Water Mgmt. Dist., Case No. 95-1520 et seq., ¶ 301 (Fla. DOAH May 29, 1997; SFWMD ) (“The baseline against which projected impacts conditions [sic] are those conditions, including previously permitted adverse impacts, which existed at the time of the filing of the renewal applications.”). The evidence and testimony in this case focused on the effects of the water allocation on the Floridan aquifer, Silver Springs, and the Silver River, and on the effects of the irrigation on water and nutrient transport from the properties. It was not directed at establishing a violation of chapter 373, the rules of the SJRWMD, or the CUP Applicant’s Handbook with regard to the use and management of the agriculturally-exempt unirrigated pastures, nor did it do so. Soil Types Soils are subject to classifications developed by the Soil Conservation Service based on their hydrologic characteristics, and are grouped into Group A, Group B, Group C, or Group D. Factors applied to determine the appropriate hydrologic soil group on a site-specific basis include depth to seasonal high saturation, the permeability rate of the most restrictive layer within a certain depth, and the depth to any impermeable layers. Group A includes the most well-drained soils, and Group D includes the most poorly-drained soils. Group D soils are those with seasonal high saturation within 24 inches of the soil surface and a higher runoff potential. The primary information used to determine the hydrologic soil groups on the North Tract was the depth to seasonal-high saturation, defined as the highest expected annual elevation of saturation in the soil. Depth to seasonal-high saturation was measured through a series of seven hand-dug and augered soil borings completed at various locations proposed for irrigation across the North Tract. In determining depth to seasonal-high saturation, the extracted soils were examined based on depth, color, texture, and other relevant characteristics. In six of the seven locations at which soil borings were conducted, a restrictive layer was identified within 36 inches of the soil surface. At one location at the northeastern corner of the North Tract, the auger hole ended at a depth of 48 inches -- the length of the auger -- at which depth there was an observable increase in clay content but not a full restrictive layer. However, while the soil assessment was ongoing, a back-hoe was in operation approximately one hundred yards north of the boring location. Observations of that excavation revealed a heavy clay layer at a depth of approximately 5 feet. In each of the locations, the depth to seasonal-high saturation was within 14 inches of the soil surface. Based on the consistent observation of seasonal-high saturation at each of the sampled locations, as well as the flat topography of the property with surface water features, the soils throughout the property, with the exception of a small area in the vicinity of Pivot 6, were determined to be in hydrologic soil Group D. Hydrogeologic Features There are generally five hydrogeologic units underlying the North Tract, those units being the surficial aquifer system, the intermediate confining unit, the upper Floridan aquifer, the middle confining unit, and the lower Floridan aquifer. In areas in which a confining layer is present, water falling on the surface of the land flows over the surface of the land or across the top of the confining layer. A surficial aquifer, with a relatively high perched water table, is created by the confinement and separation of surface waters from the upper strata of the Floridan aquifer. Surface waters are also collected in or conveyed by various surface water features, including perched wetlands, creeks, and streams. The preponderance of the evidence adduced at the final hearing demonstrates that the surficial aquifer exists on the property to a depth of up to 20 feet below the land surface (bls). Beneath the surficial aquifer is an intermediate confining unit of dense clay interspersed with beds of sand and calcareous clays that exists to a depth of up to 100 feet bls. The clay material observed on the North Tract is known as massive or structureless. Such clays are restrictive with very low levels of hydraulic conductivity, and are not conducive to development of preferential flow paths to the surficial or lower aquifers. The intermediate confining unit beneath the North Tract restricts the exchange of groundwater from the surficial aquifer to the upper Floridan aquifer. The upper Floridan aquifer begins at a depth of approximately 100 feet bls, and extends to a depth of approximately 340 feet bls. At about 340 feet bls, the upper Floridan aquifer transitions to the middle confining unit, which consists of finely grained, denser material that separates the interchange of water between the upper Floridan aquifer and the lower Floridan aquifer. Karst Features Karst features form as a result of water moving through rock that comprises the aquifer, primarily limestone, dissolving and forming conduits in the rock. Karst areas present a challenging environment to simulate through modeling. Models assume the subsurface to be a relatively uniform “sand box” through which it is easier to simulate groundwater flow. However, if the subsurface contains conduits, it becomes more difficult to simulate the preferential flows and their effect on groundwater flow paths and travel times. The District has designated parts of western Alachua County and western Marion County as a Sensitive Karst Area Basin. A Sensitive Karst Area is a location in which the porous limestone of the Floridan aquifer occurs within 20 feet of the land surface, and in which there is 10 to 20 inches of annual recharge to the Floridan aquifer. The designation of an area as being within the Sensitive Karst Area Basin does not demonstrate that it does, or does not, have subsurface features that are karstic in nature, or that would provide a connection between the surficial aquifer and the Floridan aquifer. The western portion of the North Tract is within the Sensitive Karst Area Basin. The two intensive-use areas on the North Tract that have associated stormwater facilities -- the cattle unloading area and the processing facility -- are outside of the Sensitive Karst Area Basin. The evidence was persuasive that karst features are more prominent to the west of the North Tract. In order to evaluate the presence of karst features on the North Tract, Mr. Andreyev performed a “desktop-type evaluation,” with a minimal field survey. The desktop review included a review of aerial photographs and an investigation of available data, including the Florida Geological Survey database of sinkhole occurrence in the area. The aerial photographs showed circular depressions suggestive of karst activity west and southwest of the North Tract, but no such depressions on the North Tract. Soil borings taken on the North Tract indicated the presence of layers of clayey sand, clays, and silts at a depth of 70 to 80 feet. Well-drilling logs taken during the development of the wells used for an aquifer performance test on the North Tract showed the limestone of the Floridan aquifer starting at a depth below ground surface of 70 to 80 feet. Other boring data generated on the North Tract suggests that there is greater than 100 feet of clay and sandy clay overburden above the Floridan aquifer on and in the vicinity of the North Tract. Regardless of site-specific differences, the observed confining layer separating the surficial aquifer from the Floridan aquifer is substantial, and not indicative of a karst environment. Aquifer performance tests performed on the North Tract were consistent in showing that drawdown in the surficial aquifer from the tests was minimal to non-detectable, which is strong evidence of an intact and low-permeability confining layer. The presence of well-developed drainage features on the North Tract is further evidence of a unit of confinement that is restricting water from going deeper into the subsurface, and forcing it to runoff to low-lying surface water features. Petitioners’ witnesses did not perform any site- specific analysis of karst features on or around the Sleepy Creek property. Their understanding of the nature of the karst systems in the region was described as “hypothetical or [] conceptual.” Dr. Kincaid admitted that he knew of no conduits on or adjacent to the North Tract. As a result of the data collected from the North Tract, Mr. Hearn opined that the potential for karst features on the property that provide an opening to the upper Floridan aquifer “is extremely remote.” Mr. Hearn’s opinion is consistent with the preponderance of the evidence in this case, and is accepted. In the event a surface karst feature were to manifest itself, Sleepy Creek has proposed that the surface feature be filled and plugged to reestablish the integrity of the confining layer. More to the point, the development of a surficial karst feature in an area influenced by irrigation would be sufficient grounds for the SJRWMD to reevaluate and modify the CUP to account for any changed conditions affecting the assumptions and bases for issuance of the CUP. Silver Springs, the Silver River, and the Ocklawaha River The primary, almost exclusive concern of Petitioners was the effect of the modified CUP and the nutrients from the proposed cattle ranch on Silver Springs, the Silver River, and the Ocklawaha River. Silver Springs Silver Springs has long been a well-known attraction in Florida. It is located just to the east of Ocala, Florida. Many of the speakers at the public comment period of this proceeding spoke fondly of having frequented Silver Springs over the years, enjoying its crystal clear waters through famous glass-bottomed boats. For most of its recorded history, Silver Springs was the largest spring by volume in Florida. Beginning in the 1970s, it began to lose its advantage, and by the year 2000, Rainbow Springs, located in southwestern Marion County, surpassed Silver Springs as the state’s largest spring. Silver Springs exists at the top of the potentiometric surface of the Floridan aquifer. Being at the “top of the mountain,” when water levels in the Floridan aquifer decline, groundwater flow favors the lower elevation springs. Thus, surrounding springshed boundaries expand to take more water to maintain their baseflows, at the expense of the Silver Springs springshed, which contracts. Rainbow Springs shares an overlapping springshed with Silver Springs. The analogy used by Dr. Knight was of the aquifer as a bucket with holes at different levels, and with the Silver Springs “hole” near the top of the bucket. When the water level in the bucket is high, water will flow from the top hole. As the water level drops below that hole, it will preferentially flow from the lower holes. Rainbow Springs has a vent or outlet from the aquifer, that is 10 feet lower in elevation than that of Silver Springs. Coastal springs are lower still. Thus, as groundwater levels decline, the lower springs “pirate flow” from the upper springs. Since the first major studies of Silver Springs were conducted in the 1950s, the ecosystem of Silver Springs has undergone changes. The water clarity, though still high as compared to other springs, has been reduced by 10 to 15 percent. Since the 1950s, macrophytic plants, i.e., rooted plants with seeds and flowers, have declined in population, while epiphytic and benthic algae have increased. Those plants are sensitive to increases in nitrogen in the water. Thus, Dr. Knight’s opinion that increases in nitrogen emerging from Silver Springs, calculated to have risen from just over 0.4 mg/l in the 1950s, to 1.1 mg/l in 2004, and to up to 1.5 mg/l at present,1/ have caused the observed vegetative changes is accepted. Silver River Silver Springs forms the headwaters for the Silver River, a spring run 5 1/2 miles in length, at which point it becomes a primary input to the Ocklawaha River. Issues of water clarity and alteration of the vegetative regime that exist at Silver Springs are also evident in the Silver River. In addition, the reduction in flow allows for more tannic water to enter the river, further reducing clarity. Dr. Dunn recognized the vegetative changes in the river, and opined that the “hydraulic roughness” caused by the increase in vegetation is likely creating a spring pool backwater at Silver Springs, thereby suppressing some of the flow from the spring. The Silver River has been designated as an Outstanding Florida Water. There are currently no Minimum Flows and Levels established by the District for the Silver River. Ocklawaha River The Ocklawaha River originates near Leesburg, Florida, at the Harris Chain of Lakes, and runs northward past Silver Springs. The Silver River is a major contributor to the flow of the Ocklawaha River. Due to the contribution of the Silver River and other spring-fed tributaries, the Ocklawaha River can take on the appearance of a spring run during periods of low rainfall. Historically, the Ocklawaha River flowed unimpeded to its confluence with the St. Johns River in the vicinity of Palatka, Florida. In the 1960s, as part of the Cross-Florida Barge Canal project, the Rodman Dam was constructed across the Ocklawaha River north of the Sleepy Creek property, creating a large reservoir known as the Rodman Pool. Dr. Knight testified convincingly that the Rodman Dam and Pool have altered the Ocklawaha River ecosystem, precipitating a decline in migratory fish populations and an increase in filamentous algae. At the point at which the Ocklawaha River flows past the Sleepy Creek property, it retains its free-flowing characteristics. Mill Creek, which has its headwaters on the North Tract, is a tributary of the Ocklawaha River. The Ocklawaha River, from the Eureka Dam south, has been designated as an Outstanding Florida Water. However, the Ocklawaha River at the point at which Mill Creek or other potential surface water discharges from the Sleepy Creek property might enter the river are not included in the Outstanding Florida Water designation. There are currently no Minimum Flows and Levels established by the District for the Ocklawaha River. The Silver Springs Springshed A springshed is that area from which a spring draws water. Unlike a surface watershed boundary, which is fixed based on land features, contours, and elevations, a springshed boundary is flexible, and changes depending on a number of factors, including rainfall. As to Silver Springs, its springshed is largest during periods of more abundant rainfall when the aquifer is replenished, and smaller during drier periods when groundwater levels are down, and water moves preferentially to springs and discharge points that are lower in elevation. The evidence in this case was conflicting as to whether the North Tract is in or out of the Silver Springs springshed boundary. Dr. Kincaid indicated that under some of the springshed delineations, part of the North Tract was out of the springshed, but over the total period of record, it is within the springshed. Thus, it was Dr. Kincaid’s opinion that withdrawals anywhere within the region will preferentially impact Silver Springs, though he admitted that he did not have the ability to quantify his opinion. Dr. Knight testified that the North Tract is within the Silver Springs “maximum extent” springshed at least part of the time, if not all the time. He did not opine as to the period of time in which the Silver Springs springshed was at its maximum extent. Dr. Bottcher testified that the North Tract is not within the Silver Springs springshed because there is a piezometric rise between North Tract and Silver Springs. Thus, in his opinion, withdrawals at the North Tract would not be withdrawing water going to Silver Springs. Dr. Dunn agreed that the North Tract is on the groundwater divide for Silver Springs. In his view, the North Tract is sometimes in, and sometimes out of the springshed depending on the potentiometric surface. In his opinion, the greater probability is that the North Tract is more often outside of the Silver Springs springshed, with seasonal and year—to—year variation. Dr. Dunn’s opinion provides the most credible explanation of the extent to which the North Tract sits atop that portion of the lower Floridan aquifer that feeds to Silver Springs. Thus, it is found that the groundwater divide exists to the south of the North Tract for a majority of the time, and water entering the Floridan aquifer from the North Tract will, more often than not, flow away from Silver Springs. Silver Springs Flow Volume The Silver Springs daily water discharge has been monitored and recorded since 1932. Over the longest part of the period of record, up to the 1960s, flows at Silver Springs averaged about 800 cubic feet per second (cfs). Through 1989, there was a reasonable regression between rainfall and springflow, based on average rainfalls. The long-term average rainfall in Ocala was around 50 inches per year, and long-term springflow was about 800 cfs, with deviations from average generally consistent with one another. Between 1990 and 1999, the relationship between rainfall and springflow declined by about 80 cubic feet per second. Thus, with average rainfall of 50 inches per year, the average springflow was reduced to about 720 cfs. From 2000 to 2009, there was an additional decline, such that the total cumulative decline for the 20-year period through 2009 was 250 cfs. Dr. Dunn agreed with Dr. Knight that after 2000, there was an abrupt and persistent reduction in flow of about 165 cfs. However, Dr. Dunn did not believe the post-2000 flow reduction could be explained by rainfall directly, although average rainfall was less than normal. Likewise, groundwater withdrawals did not offer an adequate explanation. Dr. Dunn described a natural 30-year cycle of wetter and drier periods known as the Atlantic Multidecadal Oscillation (AMO) that has manifested itself over the area for the period of record. From the 1940s up through 1970, the area experienced an AMO wet cycle with generally higher than normal rainfall at the Ocala rain station. For the next 30-year period, from 1970 up to 2000, the Ocala area ranged from a little bit drier to some years in which it was very, very dry. Dr. Dunn attributed the 80 cfs decline in Silver Springs flow recorded in the 1990s to that lower rainfall cycle. After 2000, when the next AMO cycle would be expected to build up, as it did post—1940, it did not happen. Rather, there was a particularly dry period around 2000 that Dr. Dunn believes to have had a dramatic effect on the lack of recovery in the post-2000 flows in the Silver River. According to Mr. Jenkins, that period of deficient rainfall extended through 2010. Around the year 2001, the relationship between rainfall and flow changed such that for a given amount of rainfall, there was less flow in the Silver River, with flow dropping to as low as 535 cfs after 2001. It is that reduction in flow that Dr. Knight has attributed to groundwater withdrawals. It should be noted that the observed flow of Silver Springs that formed the 1995 baseline conditions for the North Central Florida groundwater model that will be discussed herein was approximately 706 cfs. At the time of the final hearing in August 2014, flow at Silver Springs was 675 cfs. The reason offered for the apparent partial recovery was higher levels of rainfall, though the issue was not explored in depth. For the ten-year period centered on the year 2000, local water use within Marion and Alachua County, closer to Silver Springs, changed little -- around one percent per year. From a regional perspective, groundwater use declined at about one percent per year for the period from 1990 to 2010. The figures prepared by Dr. Knight demonstrate that the Sleepy Creek project area is in an area that has a very low density of consumptive use permits as compared to areas adjacent to Silver Springs and more clearly in the Silver Springs springshed. In Dr. Dunn’s opinion, there were no significant changes in groundwater use either locally or regionally that would account for the flow reduction in Silver Springs from 1990 to 2010. In that regard, the environmental report prepared by Dr. Dunn and submitted with the CUP modification application estimated that groundwater withdrawals accounted for a reduction in flow at Silver Springs of approximately 20 cfs as measured against the period of record up to the year 2000, with most of that reduction attributable to population growth in Marion County. In the March 2014, environmental impacts report, Dr. Dunn described reductions in the stream flow of not only the Silver River, but of other tributaries of the lower Ocklawaha River, including the upper Ocklawaha River at Moss Bluff and Orange Creek. However, an evaluation of the Ocklawaha River water balance revealed there to be additional flow of approximately 50 cfs coming into the Ocklawaha River at other stations. Dr. Dunn suggested that changes to the vent characteristics of Silver Springs, and the backwater effects of increased vegetation in the Silver River, have resulted in a redistribution of pressure to other smaller springs that discharge to the Ocklawaha River, accounting for a portion of the diminished flow at Silver Springs. The Proposed Cattle Operation Virtually all beef cattle raised in Florida, upon reaching a weight of approximately 875 pounds, are shipped to Texas or Kansas to be fattened on grain to the final body weight of approximately 1,150 pounds, whereupon they are slaughtered and processed. The United States Department of Agriculture has a certification for grass—fed beef which requires that, after an animal is weaned, it can only be fed on green forage crops, including grasses, and on corn and grains that are cut green and before they set seed. The forage crops may be grazed or put into hay or silage and fed when grass and forage is dormant. The benefit of grass feeding is that a higher quality meat is produced, with a corresponding higher market value. Sleepy Creek plans to develop the property as a grass- fed beef production ranch, with pastures and related loading/unloading and slaughter/processing facilities where calves can be fattened on grass and green grain crops to a standard slaughter weight, and then slaughtered and processed locally. By so doing, Sleepy Creek expects to save the transportation and energy costs of shipping calves to the Midwest, and to generate jobs and revenues by employing local people to manage, finish, and process the cattle. As they currently exist, pastures proposed for irrigation have been cleared and seeded, and have “fairly good grass production.” The purpose of the irrigation is to enhance the production and quality of the grass in order to maintain the quality and reliability of feed necessary for the production of grass-fed beef. East Tract Cattle Operation The East Tract is 1,242 acres in size, substantially all of which was previously cleared, irrigated, and used for sod production. The proposed CUP permit authorizes the irrigation of 611 acres of pasture under six existing center pivots. The remaining 631 acres will be used as improved, but unirrigated, pasture. Under the proposed permit, a maximum of 1,207 cattle would be managed on the East Tract. Of that number, 707 cattle would be grazed on the irrigated paddocks, and 500 cattle would be grazed on the unirrigated improved pastures. If the decision is made to forego irrigation on the East Tract, with the water allocation being used on the North Tract or not at all, the number of cattle grazed on the six center pivot pastures would be decreased from 707 cattle to 484 cattle. The historic use of the East Tract as a sod farm resulted in high phosphorus levels in the soil from fertilization, which has made its way to Daisy Creek. Sleepy Creek has proposed a cattle density substantially below that allowed by application of the formulae in the Nutrient Management Plan in order to “mine” the phosphorus levels in the soil over time. North Tract Cattle Operation The larger North Tract includes most of the “new” ranch activities, having no previous irrigation, and having been put to primarily silvicultural use with limited pasture prior to its acquisition by Sleepy Creek. The ranch’s more intensive uses, i.e., the unloading corrals and the slaughter house, are located on the North Tract. The North Tract is 7,207 acres in size. Of that, 1,656 acres are proposed for irrigation by means of 15 center- pivot irrigation systems. In addition to the proposed irrigated pastures, the North Tract includes 2,382 acres of unirrigated improved pasture, of which approximately 10 percent is wooded. Under the proposed permit, a maximum of 6,371 cattle would be managed on the North Tract. Of that number, 3,497 cattle would be grazed on the irrigated paddocks (roughly 2.2 head of cattle per acre), and 2,374 cattle would graze on the improved pastures (up to 1.1 head of cattle per acre). The higher cattle density in the irrigated pastures can be maintained due to the higher quality grass produced as a result of irrigation. The remaining 500 cattle would be held temporarily in high-concentration corrals, either after offloading or while awaiting slaughter. On average, there will be fewer than 250 head of cattle staged in those high-concentration corrals at any one time. In the absence of irrigation, the improved pasture on the North Tract could sustain about 4,585 cattle. Nutrient Management Plan, Water Conservation Plan, and BMPs The CUP and ERP applications find much of their support in the implementation of the Nutrient Management Plan (NMP), the Water Conservation Plan, and Best Management Practices (BMPs). The NMP sets forth information designed to govern the day to day operations of the ranch. Those elements of the NMP that were the subject of substantive testimony and evidence at the hearing are discussed herein. Those elements not discussed herein are found to have been supported by Sleepy Creek’s prima facie case, without a preponderance of competent and substantial evidence to the contrary. The NMP includes a herd management plan, which describes rotational grazing and the movement of cattle from paddock to paddock, and establishes animal densities designed to maintain a balance of nutrients on the paddocks, and to prevent overgrazing. The NMP establishes fertilization practices, with the application of fertilizer based on crop tissue analysis to determine need and amount. Thus, the application of nitrogen- based fertilizer is restricted to that capable of ready uptake by the grasses and forage crops, limiting the amount of excess nitrogen that might run off of the pastures or infiltrate past the root zone. The NMP establishes operation and maintenance plans that incorporate maintenance and calibration of equipment, and management of high-use areas. The NMP requires that records be kept of, among other things, soil testing, nutrient application, herd rotation, application of irrigation water, and laboratory testing. The irrigation plan describes the manner and schedule for the application of water during each irrigation cycle. Irrigation schedules for grazed and cropped scenarios vary from pivot to pivot based primarily on soil type. The center pivots proposed for use employ high-efficiency drop irrigation heads, resulting in an 85 percent system efficiency factor, meaning that there is an expected evaporative loss of 15 percent of the water before it becomes available as water in the soil. That level of efficiency is greater than the system efficiency factor of 80 percent established in CUP A.H. section 12.5.2. Other features of the irrigation plan include the employment of an irrigation manager, installation of an on-site weather station, and cumulative tracking of rain and evapotranspiration with periodic verification of soil moisture conditions. The purpose of the water conservation practices is to avoid over application of water, limiting over-saturation and runoff from the irrigated pastures. Sleepy Creek has entered into a Notice of Intent to Implement Water Quality BMPs with the Florida Department of Agriculture and Consumer Services which is incorporated in the NMP and which requires the implementation of Best Management Practices.2/ Dr. Bottcher testified that implementation and compliance with the Water Quality Best Management Practices manual creates a presumption of compliance with water quality standards. His testimony in that regard is consistent with Department of Agriculture and Consumer Services rule 5M-11.003 (“implementation, in accordance with adopted rules, of BMPs that have been verified by the Florida Department of Environmental Protection as effective in reducing target pollutants provides a presumption of compliance with state water quality standards.”). Rotational Grazing Rotational grazing is a practice by which cattle are allowed to graze a pasture for a limited period of time, after which they are “rotated” to a different pasture. The 1,656 acres proposed for irrigation on the North Tract are to be divided into 15 center-pivot pastures. Each individual pasture will have 10 fenced paddocks. The 611 acres of irrigated pasture on the East Tract are divided into 6 center-pivot pastures. The outer fence for each irrigated pasture is to be a permanent “hard” fence. Separating the internal paddocks will be electric fences that can be lowered to allow cattle to move from paddock to paddock, and then raised after they have moved to the new paddock. The NMP for the North Tract provides that cattle are to be brought into individual irrigated pastures as a single herd of approximately 190 cattle and placed into one of the ten paddocks. They will be moved every one to three days to a new paddock, based upon growing conditions and the reduction in grass height resulting from grazing. In this way, the cattle are rotated within the irrigated pasture, with each paddock being used for one to three days, and then rested until each of the other paddocks have been used, whereupon it will again be used in the rotation. The East Tract NMP generally provides for rotation based on the height of the pasture grasses, but is designed to provide a uniform average of cattle per acre per year. Due to the desire to “mine” phosphorus deposited during the years of operation of the East Tract as a sod farm, the density of cattle on the irrigated East Tract pastures is about 30 percent less than that proposed for the North Tract. The East Tract NMP calls for a routine pasture rest period of 15 to 30 days. Unlike dairy farm pastures, where dairy cows traverse a fixed path to the milking barn several times a day, there will be minimal “travel lanes” within the pastures or between paddocks. There will be no travel lanes through wetlands. If nitrogen-based fertilizer is needed, based upon tissue analysis of the grass, fertilizer is proposed for application immediately after a paddock is vacated by the herd. By so doing, the grass within each paddock will have a sufficient period to grow and “flush up” without grazing or traffic, which results in a high—quality grass when the cattle come back around to feed. Sleepy Creek proposes that rotational grazing is to be practiced on improved pastures and irrigated pastures alike. The rotational practices on the improved East Tract and North Tract pastures are generally similar to those practiced on the irrigated pastures. The paddocks will have permanent watering troughs, with one trough serving two adjacent paddocks. The troughs will be raised to prevent “boggy areas” from forming around the trough. Since the area around the troughs will be of a higher use, Sleepy Creek proposes to periodically remove accumulated manure, and re-grade if necessary. Other cattle support items, including feed bunkers and shade structures are portable and can be moved as conditions demand. Forage Crop Production The primary forage crop on the irrigated pastures is to be Bermuda grass. Bermuda grass or other grass types tolerant of drier conditions will be used in unirrigated pastures. During the winter, when Bermuda grass stops growing, Sleepy Creek will overseed the North Tract pastures with ryegrass or other winter crops. Due to the limitation on irrigation water, the East Tract NMP calls for no over-seeding for production of winter crops. Crops do not grow uniformly during the course of a year. Rather, there are periods during which there are excess crops, and periods during which the crops are not growing enough to keep up with the needs of the cattle. During periods of excess, Sleepy Creek will cut those crops and store them as haylage to be fed to the cattle during lower growth periods. The North Tract management plan allows Sleepy Creek to dedicate one or more irrigated pastures for the exclusive production of haylage. If that option is used, cattle numbers will be reduced in proportion to the number of pastures dedicated to haylage production. As a result of the limit on irrigation, the East Tract NMP does not recommend growing supplemental feed on dedicated irrigation pivot pastures. Direct Wetland Impacts Approximately 100 acres proposed for irrigation are wetlands or wetland buffer. Those areas are predominantly isolated wetlands, though some have surface water connections to Mill Creek, a water of the state. Trees will be cut in the wetlands to allow the pivot to pass overhead. Tree cutting is an exempt agricultural activity that does not require a permit. There was no persuasive evidence that cutting trees will alter the fundamental benefit of the wetlands or damage water resources of the District. The wetlands and wetland buffer will be subject to the same watering and fertigation regimen as the irrigated pastures. The application of water to wetlands, done concurrently with the application of water to the pastures, will occur during periods in which the pasture soils are dry. The incidental application of water to the wetlands during dry periods will serve to maintain hydration of the wetlands, which is considered to be a benefit. Fertilizers will be applied through the irrigation arms, a process known as fertigation. Petitioners asserted that the application of fertilizer onto the wetlands beneath the pivot arms could result in some adverse effects to the wetlands. However, Petitioners did not quantify to what extent the wetlands might be affected, or otherwise describe the potential effects. Fertigation of the wetlands will promote the growth of wetland plants. Nitrogen applied through fertigation will be taken up by plants, or will be subject to denitrification -- a process discussed in greater detail herein -- in the anaerobic wetland soils. The preponderance of the evidence indicated that enhanced wetland plant growth would not rise to a level of concern. Since most of the affected wetlands are isolated wetlands, there is expected to be little or no discharge of nutrients from the wetlands. Even as to those wetlands that have a surface water connection, most, if not all of the additional nitrogen applied through fertigation will be accounted for by the combined effect of plant uptake and denitrification. Larger wetland areas within an irrigated pasture will be fenced at the buffer line to prevent cattle from entering. The NMP provided a blow-up of the proposed fencing related to a larger wetland on Pivot 8. Although other figures are not to the same scale, it appears that larger wetlands associated with Pivots 1, 2, 3, and 12 will be similarly fenced. Cattle would be allowed to go into the smaller, isolated wetlands. Cattle going into wetlands do not necessarily damage the wetlands. Any damage that may occur is a function of density, duration, and the number of cattle. The only direct evidence of potential damage to wetlands was the statement that “[i]f you have 6,371 [cattle] go into a wetland, there may be impacts.” The NMP provides that pasture use will be limited to herds of approximately 190 cattle, which will be rotated from paddock to paddock every two to three days, and which will allow for “rest” periods of approximately 20 days. There will be no travel lanes through any wetland. Thus, there is no evidence to support a finding that the cattle at the density, duration, and number proposed will cause direct adverse effects to wetlands on the property. High Concentration Areas Cattle brought to the facility are to be unloaded from trucks and temporarily corralled for inspection. For that period, the cattle will be tightly confined. Cattle that have reached their slaughter weight will be temporarily held in corrals associated with the processing plant. The stormwater retention ponds used to capture and store runoff from the offloading corral and the processing plant holding corral are part of a normal and customary agricultural activity, and are not part of the applications and approvals that are at issue in this proceeding. The retention ponds associated with the high-intensity areas do not require permits because they do not exceed one acre in size or impound more than 40 acre-feet of water. Nonetheless, issues related to the retention ponds were addressed by Petitioners and Sleepy Creek, and warrant discussion here. The retention ponds are designed to capture 100 percent of the runoff and entrained nutrients from the high concentration areas for a minimum of a 24—hour/25—year storm event. If rainfall occurs in excess of the designed storm, the design is such that upon reaching capacity, only new surface water coming to the retention pond will be discharged, and not that containing high concentrations of nutrients from the initial flush of stormwater runoff. Unlike the stormwater retention berms for the pastures, which are to be constructed from the first nine inches of permeable topsoil on the property, the corral retention ponds are to be excavated to a depth of six feet which, based on soil borings in the vicinity, will leave a minimum of two to four feet of clay beneath the retention ponds. In short, the excavation will penetrate into the clay layer underlying the pond sites, but will not penetrate through that layer. The excavated clay will be used to form the side slopes of the ponds, lining the permeable surficial layer and generally making the ponds impermeable. Organic materials entering the retention ponds will form an additional seal. An organic seal is important in areas in which retention ponds are constructed in sandy soil conditions. Organic sealing is less important in this case, where clay forms the barrier preventing nutrients from entering the surficial aquifer. Although the organic material is subject to periodic removal, the clay layer will remain to provide the impermeable barrier necessary to prevent leakage from the ponds. Dr. Bottcher testified that if, during excavation of the ponds, it was found that the remaining in-situ clay layer was too thin, Sleepy Creek would implement the standard practice of bringing additional clay to the site to ensure adequate thickness of the liner. Nutrient Balance The goal of the NMP is to create a balance of nutrients being applied to and taken up from the property. Nitrogen and phosphorus are the nutrients of primary concern, and are those for which specific management standards are proposed. Nutrient inputs to the NMP consist generally of deposition of cattle manure (which includes solid manure and urine), recycling of plant material and roots from the previous growing season, and application of supplemental fertilizer. Nutrient outputs to the NMP consist generally of volatization of ammonia to the atmosphere, uptake and utilization of the nutrients by the grass and crops, weight gain of the cattle, and absorption and denitrification of the nutrients in the soil. The NMP, and the various models discussed herein, average the grass and forage crop uptake and the manure deposition to match that of a 1,013 pound animal. That average weight takes into account the fact that cattle on the property will range from calf weight of approximately 850 pounds, to slaughter weight of 1150 pounds. Nutrients that are not accounted for in the balance, e.g., those that become entrained in stormwater or that pass through the plant root zone without being taken up, are subject to runoff to surface waters or discharge to groundwater. Generally, phosphorus not taken up by crops remains immobile in the soil. Unless there is a potential for runoff to surface waters, the nutrient balance is limited by the amount of nitrogen that can be taken up by the crops. Due to the composition of the soils on the property, the high water table, and the relatively shallow confining layer, there is a potential for surface runoff. Thus, the NMP was developed using phosphorus as the limiting nutrient, which results in nutrient application being limited by the “P-index.” A total of 108 pounds of phosphorus per acre/per year can be taken up and used by the irrigated pasture grasses and forage crops. Therefore, the total number of cattle that can be supported on the irrigated pastures is that which, as a herd, will deposit an average of 108 pounds of phosphorus per year over the irrigated acreage. Therefore, Sleepy Creek has proposed a herd size and density based on calculations demonstrating that the total phosphorus contained in the waste excreted by the cattle equals the amount taken up by the crops. A herd producing 108 pounds per acre per year of phosphorus is calculated to produce 147 pounds of nitrogen per acre per year. The Bermuda grass and forage crops proposed for the irrigated fields require 420 pounds of nitrogen per acre per year. As a result of the nitrogen deficiency, additional nitrogen-based fertilizer to make up the shortfall is required to maintain the crops. Since phosphorus needs are accounted for by animal deposition, the fertilizer will have no phosphorus. The NMP requires routine soil and plant tissue tests to determine the amount of nitrogen fertilizer needed. By basing the application of nitrogen on measured rather than calculated needs, variations in inputs, including plant decomposition and atmospheric deposition, and outputs, including those affected by weather, can be accounted for, bringing the full nutrient balance into consideration. The numeric values for crop uptakes, manure deposition, and other estimates upon which the NMP was developed were based upon literature, values, and research performed and published by the University of Florida and the Natural Resource Conservation Service. Dr. Bottcher testified convincingly that the use of such values is a proven and reliable method of developing a balance for the operation of similar agricultural operations. A primary criticism of the NMP was its expressed intent to “reduce” or “minimize” the transport of nutrients to surface waters and groundwater, rather than to “negate” or “prevent” such transport. Petitioners argue that complete prevention of the transport of nutrients from the property is necessary to meet the standards necessary for issuance of the CUP and ERP. Mr. Drummond went into some detail regarding the total mass of nutrients expected to be deposited onto the ground from the cattle, exclusive of fertilizer application. In the course of his testimony, he suggested that the majority of the nutrients deposited on the land surface “are going to make it to the surficial aquifer and then be carried either to the Floridan or laterally with the groundwater flow.” However, Mr. Drummond performed no analysis on the fate of nitrogen through uptake by crops, volatization, or soil treatment, and did not quantify the infiltration of nitrogen to groundwater. Furthermore, he was not able to provide any quantifiable estimate on any effect of nutrients on Mill Creek, the Ocklawaha River, or Silver Springs. In light of the effectiveness of the nutrient balance and other elements of the NMP, along with the retention berm system that will be discussed herein, Mr. Drummond’s assessment of the nutrients that might be expected to impact water resources of the District is contrary to the greater weight of the evidence. Mr. Drummond’s testimony also runs counter to that of Dr. Kincaid, who performed a particle track analysis of the fate of water recharge from the North Tract. In short, Dr. Kincaid calculated that of the water that makes it as recharge from the North Tract to the surficial aquifer, less than one percent is expected to make its way to the upper Floridan aquifer, with that portion originating from the vicinity of Pivot 6. Recharge from the other 14 irrigated pastures was ultimately accounted for by evapotranspiration or emerged at the surface and found its way to Mill Creek. The preponderance of the competent, substantial evidence adduced at the final hearing supports the effectiveness of the NMPs for the North Tract and East Tract at managing the application and use of nutrients on the property, and minimizing the transport of nutrients to surface water and groundwater resources of the District. North Central Florida Model All of the experts involved in this proceeding agreed that the use of groundwater models is necessary to simulate what might occur below the surface of the ground. Models represent complex systems by applying data from known conditions and impacts measured over a period of years to simulate the effects of new conditions. Models are imperfect, but are the best means of predicting the effects of stresses on complex and unseen subsurface systems. The North Central Florida (NCF) model is used to simulate impacts of water withdrawals on local and regional groundwater levels and flows. The NCF model simulates the surficial aquifer, the upper Floridan aquifer, and the lower Floridan aquifer. Those aquifers are separated from one another by relatively impervious confining units. The intermediate confining unit separates the surficial aquifer from the upper Floridan aquifer. The intermediate confining unit is not present in all locations simulated by the NCF model. However, the evidence is persuasive that the intermediate confining unit is continuous at the North Tract, and serves to effectively isolate the surficial aquifer from the upper Floridan aquifer. The NCF model is not a perfect depiction of what exists under the land surface of the North Tract or elsewhere. It was, however, acknowledged by the testifying experts in this case, despite disagreements as to the extent of error inherent in the model, to be the best available tool for calculating the effects of withdrawals of water within the boundary of the model. The NCF model was developed and calibrated over a period of years, is updated routinely as data becomes available, and has undergone peer review. Aquifer Performance Tests In order to gather site-specific data regarding the characteristics of the aquifer beneath the Sleepy Creek property, a series of three aquifer performance tests (APTs) was conducted on the North Tract. The first two tests were performed by Sleepy Creek, and the third by the District. An APT serves to induce stress on the aquifer by pumping from a well at a high rate. By observing changes in groundwater levels in observation wells, which can be at varying distances from the extraction well, one can extrapolate the nature of the subsurface. In addition, well-completion reports for the various withdrawal and observation wells provide actual data regarding the composition of subsurface soils, clays, and features of the property. The APT is particularly useful in evaluating the ability of the aquifer to produce water, and in calculating the transmissivity of the aquifer. Transmissivity is a measure of the rate at which a substance passes through a medium and, as relevant to this case, measures how groundwater flows through an aquifer. The APTs demonstrated that the Floridan aquifer is capable of producing water at the rate requested. The APT drawdown contour measured in the upper Floridan aquifer was greater than that predicted from a simple run of the NCF model, but the lateral extent of the drawdown was less than predicted. The most reasonable conclusion to be drawn from the combination of greater than expected drawdown in the upper Floridan aquifer with less than expected extent is that the transmissivity of the aquifer beneath the North Tract is lower than the NCF model assumptions. The conclusion that the transmissivity of the aquifer at the North Tract is lower than previously estimated means that impacts from groundwater extraction would tend to be more vertical than horizontal, i.e., the drawdown would be greater, but would be more localized. As such, for areas of lower than estimated transmissivity, modeling would over-estimate off-site impacts from the extraction. NCF Modeling Scenarios The initial NCF modeling runs were based on an assumed withdrawal of 2.39 mgd, an earlier -- though withdrawn - - proposal. The evidence suggests that the simulated well placement for the 2.39 mgd model run was entirely on the North Tract. Thus, the results of the model based on that withdrawal have some limited relevance, especially given that the proposed CUP allows for all of the requested 1.46 mgd of water to be withdrawn from North Tract wells at the option of Sleepy Creek, but will over-predict impacts from the permitted rate of withdrawal. A factor that was suggested as causing a further over-prediction of drawdown in the 2.39 mgd model run was the decision, made at the request of the District, to exclude the input of data of additional recharge to the surficial aquifer, wetlands and surface waters from the irrigation, and the resulting diminution in soil storage capacity. Although there is some merit to the suggestion that omitting recharge made the model results “excessively conservative,” the addition of recharge to the model would not substantially alter the predicted impacts. A model run was subsequently performed based on a presumed withdrawal of 1.54 mgd, a rate that remains slightly more than, but still representative of, the requested amount of 1.46 mgd. The 1.54 mgd model run included an input for irrigation recharge. The simulated extraction points were placed on the East Tract and North Tract in the general configuration as requested in the CUP application. The NCF is designed to model the impacts of a withdrawal based upon various scenarios, identified at the hearing as Scenarios A, B, C, and D. Scenario A is the baseline condition for the NCF model, and represents the impacts of all legal users of water at their estimated actual flow rates as they existed in 1995. Scenario B is all existing users, not including the applicant, at end-of-permit allocations. Scenario C is all existing users, including the applicant, at current end-of-permit allocations. Scenario D is all permittees at full allocation, except the applicant which is modeled at the requested (i.e., new or modified) end-of-permit allocation. To simulate the effects of the CUP modification, simulations were performed on scenarios A, C, and D. In order to measure the specific impact of the modification of the CUP, the Scenario C impacts to the surficial, upper Floridan, and lower Floridan aquifers were compared with the Scenario D impacts to those aquifers. In order to measure the cumulative impact of the CUP, the Scenario A actual-use baseline condition was compared to the Scenario D condition which predicts the impacts of all permitted users, including the applicant, pumping at full end-of-permit allocations. The results of the NCF modeling indicate the following: 2.39 mgd - Specific Impact The surficial aquifer drawdown from the simulated 2.39 mgd withdrawal was less than 0.05 feet on-site and off- site, except to the west of the North Tract, at which a drawdown of 0.07 feet was predicted. The upper Floridan aquifer drawdown from the 2.39 mgd withdrawal was predicted at between 0.30 and 0.12 feet on-site, and between 0.30 and 0.01 feet off-site. The higher off-site figures are immediately proximate to the property. The lower Floridan aquifer drawdown from the 2.39 mgd withdrawal was predicted at less than 0.05 feet at all locations, and at or less than 0.02 feet within six miles of the North Tract. 2.39 mgd - Cumulative Impact The cumulative impact to the surficial aquifer from all permitted users, including a 2.39 mgd Sleepy Creek withdrawal, was less than 0.05 feet on-site, and off-site to the north and east, except to the west of the North Tract, at which a drawdown of 0.07 feet was predicted. The cumulative impact to the upper Floridan aquifer from all permitted users, including a 2.39 mgd Sleepy Creek withdrawal, ranged from 0.4 feet to 0.8 feet over all pertinent locations. The cumulative impact to the lower Floridan aquifer from all permitted users, including a 2.39 mgd Sleepy Creek withdrawal, ranged from 1.0 to 1.9 feet over all pertinent locations. The conclusion drawn by Mr. Andreyev that the predicted impacts to the lower Floridan are almost entirely from other end-of-permit user withdrawals is supported by the evidence and accepted. 1.54 mgd - Specific Impact The NCF model runs based on the more representative 1.54 mgd withdrawal predicted a surficial aquifer drawdown of less than 0.01 feet (i.e., no drawdown contour shown) on the North Tract, and a 0.01 to 0.02 foot drawdown at the location of the East Tract. The drawdown of the upper Floridan aquifer from the CUP modification was predicted at up to 0.07 feet on the property, and generally less than 0.05 feet off-site. There were no drawdown contours at the minimum 0.01 foot level that came within 9 miles of Silver Springs. The lower Floridan aquifer drawdown from the CUP modification was predicted at less than 0.01 feet (i.e., no drawdown contour shown) at all locations. 1.54 mgd - Cumulative Impact A comparison of the cumulative drawdown contours for the 2.36 mgd model and 1.54 mgd model show there to be a significant decrease in predicted drawdowns to the surficial and upper Floridan aquifers, with the decrease in the upper Floridan aquifer drawdown being relatively substantial, i.e., from 0.5 to 0.8 feet on-site predicted for the 2.36 mgd withdrawal, to 0.4 to 0.5 feet on-site for the 1.54 mgd model. Given the small predicted individual impact of the CUP on the upper Floridan aquifer, the evidence is persuasive that the cumulative impacts are the result of other end-of-permit user withdrawals. The drawdown contour for the lower Floridan aquifer predicted by the 1.54 mgd model is almost identical to that of the 2.36 mgd model, thus supporting the conclusion that predicted impacts to the lower Floridan are almost entirely from other end-of-permit user withdrawals. Modeled Effect on Silver Springs As a result of the relocation of the extraction wells from the East Tract to the North Tract, the NCF model run at the 1.54 mgd withdrawal rate predicted springflow at Silver Springs to increase by 0.15 cfs. The net cumulative impact in spring flow as measured from 1995 conditions to the scenario in which all legal users, including Sleepy Creek, are pumping at full capacity at their end-of-permit rates for one year3/ is roughly 35.4 cfs, which is approximately 5 percent of Silver Springs’ current flow. However, as a result of the redistribution of the Sleepy Creek withdrawal, which is, in its current iteration, a legal and permitted use, the cumulative effect of the CUP modification at issue is an increase in flow of 0.l5 cfs. Dr. Kincaid agreed that there is more of an impact to Silver Springs when the pumping allowed by the CUP is located on the East Tract than there is on the North Tract, but that the degree of difference is very small. Dr. Knight testified that effect on the flow of Silver Springs from relocating the 1.46 mgd withdrawal from the East Tract to the North Tract would be “zero.” The predicted increase of 0.15 cfs is admittedly miniscule when compared to the current Silver Springs springflow of approximately 675 cfs. However, as small as the modeled increase may be -- perhaps smaller than its “level of certainty” -- it remains the best evidence that the impact of the CUP modification to the flow of Silver Springs will be insignificant at worst, and beneficial at best. Opposition to the NCF Model Petitioners submitted considerable evidence designed to call the results generated by the District’s and Sleepy Creek’s NCF modeling into question. Karst Features A primary criticism of the validity of the NCF model was its purported inability to account for the presence of karst features, including conduits, and their effect on the results. It was Dr. Kincaid’s opinion that the NCF model assigned transmissivity values that were too high, which he attributed to the presence of karst features that are collecting flow and delivering it to springs. He asserted that, instead of assuming the presence of karst features, the model was adjusted to raise the overall capacity of the porous medium to transmit water, and thereby match the observed flows. In his opinion, the transmissivity values of the equivalent porous media were raised so much that the model can no longer be used to predict drawdowns. That alleged deficiency in the model is insufficient for two reasons. First, as previously discussed in greater detail, the preponderance of the evidence in this case supports a finding that there are no karst features in the vicinity of the North Tract that would provide preferential pathways for water flow so as to skew the results of the NCF model. Second, Dr. Kincaid, while acknowledging that the NCF model is the best available tool for predicting impacts from groundwater extraction on the aquifer, suggested that a hybrid porous media and conduit model would be a better means of predicting impacts, the development of which would take two years or more. There is no basis for the establishment of a de facto moratorium on CUP permitting while waiting for the development of a different and, in this case, unnecessary model. For the reasons set forth herein, it is found that the NCF model is sufficient to accurately and adequately predict the effects of the Sleepy Creek groundwater withdrawals on the aquifers underlying the property, and to provide reasonable assurance that the standards for such withdrawals have been met. Recharge to the Aquifer Petitioners argued that the modeling results showing little significant drawdown were dependent on the application of unrealistic values for recharge or return flow from irrigation. In a groundwater model, as in the physical world, some portion of the water extracted from the aquifer is predicted to be returned to the aquifer as recharge. If more water is applied to the land surface than is being accounted for by evaporation, plant uptake and evapotranspiration, surface runoff, and other processes, that excess water may seep down into the aquifer as recharge. Recharge serves to replenish the aquifer and offset the effects of the groundwater withdrawal. Dr. Kincaid opined that the NCF modeling performed for the CUP application assigned too much water from recharge, offsetting the model's prediction of impacts to other features. It is reasonable to assume that there is some recharge associated with both agricultural and public supply uses. However, the evidence suggests that the impact of recharge on the overall NCF model results is insignificant on the predicted impacts to Silver Springs, the issue of primary concern. Mr. Hearn ran a simulation using the NCF model in which all variables were held constant, except for recharge. The difference between the “with recharge” and “without recharge" simulations at Silver Springs was 0.002 cfs. That difference is not significant, and is not suggestive of adverse impacts on Silver Springs from the CUP modification. Dr. Kincaid testified that “the recharge offset on the property is mostly impacting the surficial aquifer,” and that “the addition of recharge in this case didn't have much of an impact on the upper Floridan aquifer system.” As such, the effect of adding recharge to the model would be as to the effect of groundwater withdrawal on wetlands or surface water bodies, and not on springs. As previously detailed, the drawdown of the surficial aquifer simulated for the 2.39 mgd “no recharge” scenario were less than 0.05 feet on-site and off-site, except for a predicted 0.07 foot drawdown to the west of the North Tract. The predicted drawdown of the surficial aquifer for the 1.54 mgd “with recharge” scenario was 0.02 feet or less. The preponderance of the evidence supports a finding that drawdowns of either degree are less than that at which adverse impacts to wetlands or surface waters would occur. Thus, issues related to the recharge or return flows from irrigation are insufficient to support a finding or conclusion that the NCF model failed to provide reasonable assurance that the standards for issuance of the CUP modification were met. External Boundaries The boundaries of the NCF model are not isolated from the rest of the physical world. Rather, groundwater flows into the modeled area from multiple directions, and out of the modeled area in multiple directions. Inflows to the model area are comprised of recharge, which is an assigned value, and includes water infiltrating and recharging the aquifer from surface waters; injection wells; upward and downward leakage from lower aquifers; and flow across the external horizontal boundaries. Outflows from the model area include evapotranspiration; discharge to surface waters, including springs and rivers; extraction from wells; upward and downward leakage from lower aquifers; and flow against the external model boundaries. Dr. Kincaid testified that flow across the external model boundary is an unknown and unverifiable quantity which increases the uncertainty in the model. He asserted that in the calibrated version of the model, there is no way to check those flows against data. His conclusion was that the inability of the NCF model to accurately account for external boundary flow made the margin of error so great as to make the model an unreliable tool with which to assess whether the withdrawal approved by the proposed CUP modification will increase or decrease drawdown at Silver Springs. The District correlates the NCF model boundaries with a much larger model developed by the United States Geological Survey, the Peninsula of Florida Model, more commonly referred to as the Mega Model, which encompasses most of the State of Florida and part of Southeast Georgia. The Mega Model provides a means to acknowledge that there are stresses outside the NCF model, and to adjust boundary conditions to account for those stresses. The NCF is one of several models that are subsets of the Mega Model, with the grids of the two models being “nested” together. The 1995 base year of the NCF model is sufficiently similar to the 1993-1994 base year of the Mega Model as to allow for a comparison of simulated drawdowns calculated by each of the models. By running a Mega Model simulation of future water use, and applying the change in that use from 1993 base year conditions, the District was able to come to a representative prediction of specific boundary conditions for the 1995 NCF base year, which were then used as the baseline for simulations of subsequent conditions. In its review of the CUP modification, the District conducted a model validation simulation to measure the accuracy of the NCF model against observed conditions, with the conditions of interest being the water flow at Silver Springs. The District ran a simulation using the best information available as to water use in the year 2010, the calculated boundary conditions, irrigation, pumping, recharge, climatic conditions, and generally “everything that we think constitutes that year.” The discharge of water at Silver Springs in 2010 was measured at 580 cfs. The discharge simulated by the NCF model was 545 cfs. Thus, the discharge predicted by the NCF model simulation was within six percent of the observed discharge. Such a result is generally considered in the modeling community to be “a home run.” Petitioners’ objections to the calculation of boundary conditions for the NCF model are insufficient to support a finding that the NCF model is not an appropriate and accurate tool for determining that reasonable assurance has been provided that the standards for issuance of the CUP modification were met. Cumulative Impact Error As part of the District’s efforts to continually refine the NCF, and in conjunction with a draft minimum flows and levels report for Silver Springs and the Silver River, the cumulative NCF model results for the period of baseline to 2010 were compared with the simulated results from the Northern District Model (NDF), a larger model that overlapped the NCF. As a result of the comparison, which yielded different results, it was discovered that the modeler had “turned off” not only the withdrawal pumps, but inputs to the aquifer from drainage wells and sinkholes as well. When those inputs were put back into the model run, and effects calculated only from withdrawals between the “pumps-off” condition and 2010 pumping conditions, the cumulative effect of the withdrawals was adjusted from a reduction in the flow at Silver Springs of 29 cfs to a reduction of between 45 and 50 cfs, an effect described as “counterintuitive.” Although that result has not undergone peer review, and remains subject to further review and comparison with the Mega Model, it was accepted by the District representative, Mr. Bartol. Petitioners seized upon the results of the comparison model run as evidence of the inaccuracy and unreliability of the NCF model. However, the error in the NCF model run was not the result of deficiencies in the model, but was a data input error. Despite the error in the estimate of the cumulative effect of all users at 2010 levels, the evidence in this case does not support a finding that the more recent estimates of specific impact from the CUP at issue were in error. NCF Model Conclusion As has been discussed herein, a model is generally the best means by which to calculate conditions and effects that cannot be directly observed. The NCF model is recognized as being the best tool available for determining the subsurface conditions of the model domain, having been calibrated over a period of years and subject to peer review. It should be recognized that the simulations run using the NCF model represent the worst—case scenario, with all permittees simultaneously drawing at their full end-of-permit allocations. There is merit to the description of that occurrence as being “very remote.” Thus, the results of the modeling represent a conservative estimate of potential drawdown and impacts. While the NCF model is subject to uncertainty, as is any method of predicting the effects of conditions that cannot be seen, the model provides reasonable assurance that the conditions simulated are representative of the conditions that will occur as a result of the withdrawals authorized by the CUP modification. Environmental Resource Permit The irrigation proposed by the CUP will result in runoff from the North Tract irrigated pastures in excess of that expected from the improved pastures, due in large measure to the diminished storage capacity of the soil. Irrigation water will be applied when the soils are dry, and capable of absorbing water not subject to evaporation or plant uptake. The irrigation water will fill the storage space that would exist without irrigation. With irrigation water taking up the capacity of the soil to hold water, soils beneath the irrigation pivots will be less capable of retaining additional moisture during storm events. Thus, there is an increased likelihood of runoff from the irrigated pastures over that expected with dry soils. The increase in runoff is expected to be relatively small, since there should be little or no irrigation needed during the normal summer wet season. The additional runoff may have increased nutrient levels due to the increased cattle density made possible by the irrigation of the pastures. The CUP has a no—impact requirement for water quality resulting from the irrigation of the improved pasture. Thus, nutrients leaving the irrigated pastures may not exceed those calculated to be leaving the existing pre-development use as improved pastures. Retention Berms The additional runoff and nutrient load is proposed to be addressed by constructing a system of retention berms, approximately 50,0004/ feet in length, which is intended to intercept, retain, and provide treatment for runoff from the irrigated pasture. The goal of the system is to ensure that post—development nutrient loading from the proposed irrigated pastures will not exceed the pre—development nutrient loading from the existing improved pastures. An ERP permit is required for the construction of the berm system, since the area needed for the construction of the berms is greater than the one acre in size, and since the berms have the capability of impounding more than 40 acre-feet of water. The berms are to be constructed by excavating the top nine inches of sandy, permeable topsoil and using that permeable soil to create the berms, which will be 1 to 2 feet in height. The water storage areas created by the excavation will have flat or horizontal bottoms, and will be very shallow with the capacity to retain approximately a foot of water. The berms will be planted with pasture grasses after construction to provide vegetative cover. The retention berm system is proposed to be built in segments, with the segment designed to capture runoff from a particular center pivot pasture to be constructed prior to the commencement of irrigation from that center pivot. A continuous clay layer underlies the areas in which the berms are to be constructed. The clay layer varies from 18 to 36 inches below the ground surface, with at least one location being as much as five feet below the ground surface. As such, after nine inches of soil is scraped away to create the water retention area and construct the berm, there will remain a layer of permeable sandy material above the clay. The berms are to be constructed at least 25 feet landward of any jurisdictional wetland, creating a “safe upland line.” Thus, the construction, operation, and maintenance of the retention berms and redistribution swales will result in no direct impacts to jurisdictional wetlands or other surface waters. There will be no agricultural activities, e.g., tilling, planting, or mowing, within the 25-foot buffers, and the buffers will be allowed to establish with native vegetation to provide additional protection for downgradient wetlands. As stormwater runoff flows from the irrigated pastures, it may, in places, create concentrated flow ways. Redistribution swales will be built in those areas to spread any remaining overland flow of water and reestablish sheet flow to the retention berm system. At any point at which water may overtop a berm, the berm will be hardened with rip—rap to insure its integrity. The berms are designed to intercept and collect overland flow from the pastures and temporarily store it behind the berms, regaining the soil storage volume lost through irrigation. A portion of the runoff intercepted by the berm system will evaporate. The majority will infiltrate either through the berm, or vertically into the subsurface soils beneath it. When the surficial soils become saturated, further vertical movement will be stopped by the impermeable clay layer underlying the site. The runoff water will then move horizontally until it reemerges into downstream wetland systems. Thus, the berm system is not expected to have a measurable impact on the hydroperiod of the wetlands on the North Tract. Phosphorus Removal Phosphorus tends to get “tied up” in soil as it moves through it. Phosphorus reduction occurs easily in permeable soil systems because it is removed from the water through a chemical absorption process that is not dependent on the environment of the soil. As the soils in the retention areas and berms go through drying cycles, the absorption capacity is regenerated. Thus, the retention system will effectively account for any increase in phosphorus resulting from the increased cattle density allowed by the irrigation such that there is expected to be no increase in phosphorus levels beyond the berm. Nitrogen Removal When manure is deposited on the ground, primarily as high pH urine, the urea is quickly converted to ammonia, which experiences a loss of 40 to 50 percent of the nitrogen to volatization. Soil conditions during dry weather conditions are generally aerobic. Remaining ammonia in the manure is converted by aerobic bacteria in the soil to nitrates and nitrites. Converted nitrates and nitrites from manure, along with nitrogen from fertilizer, is readily available for uptake as food by plants, including grasses and forage crops. Nitrates and nitrites are mobile in water. Therefore, during rain events of sufficient intensity to create runoff, the nitrogen can be transported downstream towards wetlands and other receiving waters, or percolate downward through the soil until blocked by an impervious barrier. During storm events, the soils above the clay confining layer and the lower parts of the pervious berms become saturated. Those saturated soils are drained of oxygen and become anaerobic. When nitrates and nitrites encounter saturated conditions, they provide food for anaerobic bacteria that exist in those conditions. The bacteria convert nitrates and nitrites to elemental nitrogen, which has no adverse impact on surface waters or groundwater. That process, known as denitrification, is enhanced in the presence of organic material. The soils from which the berms are constructed have a considerable organic component. In addition to the denitrification that occurs in the saturated conditions in and underlying the berms, remaining nitrogen compounds that reemerge into the downstream wetlands are likely to encounter organic wetland-type soil conditions. Organic wetland soils are anaerobic in nature, and will result in further, almost immediate denitrification of the nitrates and nitrites in the emerging water. Calculation of Volume - BMPTRAINS Model The calculation of the volume necessary to capture and store excess runoff from the irrigated pastures was performed by Dr. Wanielista using the BMPTRAINS model. BMPTRAINS is a simple, easy to use spreadsheet model. Its ease of use does not suggest that it is less than reliable. The model has been used as a method of calculating storage volumes in many conditions over a period of more than 40 years. The model was used to calculate the storage volumes necessary to provide storage and treatment of runoff from fifteen “basins” that had a control or a Best Management Practice associated with them. All of the basins were calculated as being underlain by soils in poorly-drained hydrologic soil Group D, except for the basin in the vicinity of Pivot 6, which is underlain by the more well-drained soil Group A. The model assumed about percent of the property to have soil Group A soils, an assumption that is supported by the evidence. Soil moisture conditions on the property were calculated by application of data regarding rainfall events and times, the irrigation schedule, and the amount of irrigation water projected for use over a year. The soil moisture condition was used to determine the amount of water that could be stored in the on-site soils, known as the storage coefficient. Once the storage coefficient was determined, that data was used to calculate the amount of water that would be expected to run off of the North Tract, known as the curve number. The curve number is adjusted by the extent to which the storage within a soil column is filled by the application of irrigation water, making it unable to store additional rainfall. As soil storage goes down, the curve number goes up. Thus, a curve number that approaches 100 means that more water is predicted to run off. Conversely, a lower curve number means that less water is predicted to run off. The pre-development curve number for the North Tract was based on the property being an unirrigated, poor grass area. A post-development curve number was assigned to the property that reflected a wet condition representative of the irrigated soils beneath the pivots. In calculating the storage volume necessary to handle runoff from the basins, the wet condition curve number was adjusted based on the fact that there is a mixture of irrigated and unirrigated general pasture within each basin to be served by a segment of the retention berm system, and by the estimated 15 percent of the time that the irrigation areas would be in a drier condition. In addition, the number was adjusted to reflect the 8 to 10 inches of additional evapotranspiration that occurs as a result of irrigation. The BMPTRAINS model was based on average annual nutrient-loading conditions, with water quality data collected at a suitable point within Reach 22, the receiving waterbody. The effects of nutrients from the irrigated pastures on receiving waterbodies is, in terms of the model, best represented by average annual conditions, rather than a single highest-observed nutrient value. Pre-development loading figures were based on the existing use of the property as unirrigated general pasture. The pre-development phosphorus loading figure was calculated at an average event mean concentration (EMC) of 0.421 milligrams per liter (mg/l). The post—condition phosphorus loading figure was calculated at an EMC of 0.621 mg/l. Therefore, in order to achieve pre-development levels of phosphorus, treatment to achieve a reduction in phosphorus of approximately 36 percent was determined to be necessary. The pre-development nitrogen loading figure was calculated at an EMC of 2.6 mg/l. The post—condition nitrogen loading figure was calculated at an EMC of 3.3 mg/l. Therefore, in order to achieve pre-development levels of nitrogen, treatment to achieve a reduction in nitrogen of approximately 25 percent was determined to be necessary. The limiting value for the design of the retention berms is phosphorus. To achieve post-development concentrations that are equal to or less than pre-development concentrations, the treatment volume of the berm system must be sufficient to allow for the removal of 36 percent of the nutrients in water being retained and treated behind the berms, which represents the necessary percentage of phosphorus. In order to achieve the 36 percent reduction required for phosphorus, the retention berm system must be capable of retaining approximately 38 acre—feet of water from the 15 basins. In order to achieve that retention volume, a berm length of approximately 50,000 linear feet was determined to be necessary, with an average depth of retention behind the berms of one foot. The proposed length of the berms is sufficient to retain the requisite volume of water to achieve a reduction in phosphorus of 36 percent. Thus, the post-development/irrigation levels of phosphorus from runoff are expected to be no greater than pre-development/general pasture levels of phosphorus from runoff. By basing the berm length and volume on that necessary for the treatment of phosphorus, there will be storage volume that is greater than required for a 25 percent reduction in nitrogen. Thus, the post-development/irrigation levels of nitrogen from runoff are expected to be less than pre- development/general pasture levels of nitrogen from runoff. Mr. Drummond admitted that the design of the retention berms “shows there is some reduction, potentially, but it's not going to totally clean up the nutrients.” Such a total clean-up is not required. Rather, it is sufficient that there is nutrient removal to pre-development levels, so that there is no additional pollutant loading from the permitted activities. Reasonable assurance that such additional loading is not expected to occur was provided. Despite Mr. Drummond’s criticism of the BMPTRAINS model, he did not quantify nutrient loading on the North Tract, and was unable to determine whether post-development concentrations of nutrients would increase over pre-development levels. As such, there was insufficient evidence to counter the results of the BMPTRAINS modeling. Watershed Assessment Model In order to further assess potential water quantity and water quality impacts to surface water bodies, and to confirm stormwater retention area and volume necessary to meet pre-development conditions, Sleepy Creek utilized the Watershed Assessment Model (WAM). The WAM is a peer-reviewed model that is widely accepted by national, state, and local regulatory entities. The WAM was designed to simulate water balance and nutrient impacts of varying land uses. It was used in this case to simulate and provide a quantitative measure of the anticipated impacts of irrigation on receiving water bodies, including Mill Creek, Daisy Creek, the Ocklawaha River, and Silver Springs. Inputs to the model include land conditions, soil conditions, rain and climate conditions, and water conveyance systems found on the property. In order to calculate the extent to which nutrients applied to the land surface might affect receiving waters, a time series of surface water and groundwater flow is “routed” through the modeled watershed and to the various outlets from the system, all of which have assimilation algorithms that represent the types of nutrient uptakes expected to occur as water goes through the system. Simulations were performed on the North Tract in its condition prior to acquisition by Sleepy Creek, in its current “exempted improved pasture condition,” and in its proposed “post—development” pivot-irrigation condition. The simulations assessed impacts of the site conditions on surface waters at the point at which they leave the property and discharge to Mill Creek, and at the point where Mill Creek merges into the Ocklawaha River. The baseline condition for measuring changes in nutrient concentrations was determined to be that lawfully existing at the time the application was made. Had there been any suggestion of illegality or impropriety in Sleepy Creek’s actions in clearing the timber and creating improved pasture, a different baseline might be warranted. However, no such illegality or impropriety was shown, and the SJRWMD rules create no procedure for “looking back” to previous land uses and conditions that were legally changed. Thus, the “exempted improved pasture condition” nutrient levels are appropriate for comparison with irrigated pasture nutrient levels. The WAM simulations indicated that nitrogen resulting from the irrigation of the North Tract pastures would be reduced at the outflow to Mill Creek at the Reach 22 stream segment from improved pasture levels by 1.7 percent in pounds per year, and by 0.6 percent in milligrams per liter of water. The model simulations predicted a corresponding reduction at the Mill Creek outflow to the Ocklawaha River of 1.3 percent in pounds per year, and 0.5 percent in milligrams per liter of water. These levels are small, but nonetheless support a finding that the berm system is effective in reducing nitrogen from the North Tract. Furthermore, the WAM simulations showed levels of nitrogen from the irrigated pasture after the construction of the retention berms to be reduced from that present in the pre- development condition, a conclusion consistent with that derived from the BMPTRAINS model. The WAM simulations indicated that phosphorus from the irrigated North Tract pastures, measured at the outflow to Mill Creek at the Reach 22 stream segment, would be reduced from improved pasture levels by 3.7 percent in pounds per year, and by 2.6 percent in milligrams per liter of water. The model simulations predicted a corresponding reduction at the Mill Creek outflow to the Ocklawaha River of 2.5 percent in pounds per year, and 1.6 percent in milligrams per liter of water. Those levels are, again, small, but supportive of a finding of no impact from the permitted activities. The WAM simulations showed phosphorus in the Ocklawaha River at the Eureka Station after the construction of the retention berms to be slightly greater than those simulated for the pre-development condition (0.00008 mg/l) -- the only calculated increase. That level is beyond miniscule, with impacts properly characterized as “non- measurable” and “non-detectable.” In any event, total phosphorus remains well below Florida’s nutrient standards. The WAM simulations were conducted based on all of the 15 pivots operating simultaneously at full capacity. That amount is greater than what is allowed under the permit. Thus, according to Dr. Bottcher, the predicted loads are higher than those that would be generated by the permitted allocation, making his estimates “very conservative.” Dr. Bottcher’s testimony is credited. During the course of the final hearing, the accuracy of the model results was questioned based on inaccuracies in rainfall inputs due to the five-mile distance of the property from the nearest rain station. Dr. Bottcher admitted that given the dynamics of summer convection storms, confidence that the rain station rainfall measurements represent specific conditions on the North Tract is limited. However, it remains the best data available. Furthermore, Dr. Bottcher testified that even if specific data points simulated by the model differ from that recorded at the rain station, that same error carries through each of the various scenarios. Thus, for the comparative purpose of the model, the errors get “washed out.” Other testimony regarding purported inaccuracies in the WAM simulations and report were explained as being the result of errors in the parameters used to run alternative simulations or analyze Sleepy Creek’s simulations, including use of soil types that are not representative of the North Tract, and a misunderstanding of dry weight/wet weight loading rates. There was agreement among witnesses that the WAM is regarded, among individuals with expertise in modeling, as an effective tool, and was the appropriate model for use in the ERP application that is the subject of this proceeding. As a result, the undersigned accepts the WAM simulations as being representative of comparative nutrient impacts on receiving surface water bodies resulting from irrigation of the North Tract. The WAM confirmed that the proposed retention berm system will be sufficient to treat additional nutrients that may result from irrigation of the pastures, and supports a finding of reasonable assurance that water quality criteria will be met. With regard to the East Tract, the WAM simulations showed that there would be reductions in nitrogen and phosphorus loading to Daisy Creek from the conversion of the property to irrigated pasture. Those simulations were also conservative because they assumed the maximum number of cattle allowed by the nutrient balance, and did not assume the 30 percent reduction in the number of cattle under the NMP so as to allow existing elevated levels of phosphorus in the soil from the sod farm to be “mined” by vegetation. Pivot 6 The evidence in this case suggests that, unlike the majority of the North Tract, a small area on the western side of the North Tract drains to the west and north. Irrigation Pivot is within that area. Dr. Harper noted that there are some soils in hydrologic soil Group A in the vicinity of Pivot 6 that reflect soils with a deeper water table where rainfall would be expected to infiltrate into the ground. Dr. Kincaid’s particle track analysis suggested that recharge to the surficial aquifer ultimately discharges to Mill Creek, except for recharge at Pivot 11, which is accounted for by evapotranspiration, and recharge at Pivot 6. Dr. Kincaid concluded that approximately 1 percent of the recharge to the surficial aquifer beneath the North Tract found its way into the upper Floridan aquifer. Those particle tracks originated only on the far western side of the property, and implicated only Pivot 6, which is indicative of the flow divide in the Floridan aquifer. Of the 1 percent of particle tracks entering the Floridan aquifer, some ultimately discharged at the St. John’s River, the Ocklawaha River, or Mill Creek. Dr. Kincaid opined, however, that most ultimately found their way to Silver Springs. Given the previous finding that the Floridan aquifer beneath the property is within the Silver Springs springshed for less than a majority of the time, it is found that a correspondingly small fraction of the less than 1 percent of the particle tracks originating on the North Tract, perhaps a few tenths of one percent, can reach Silver Springs. Dr. Bottcher generally agreed that some small percentage of the water from the North Tract may make it to the upper Floridan aquifer, but that amount will be very small. Furthermore, that water reaching the upper Floridan aquifer would have been subject to the protection and treatment afforded by the NMP and the ERP berms. The evidence regarding the somewhat less restrictive confinement of the aquifer around Pivot 6 is not sufficient to rebut the prima facie case that the CUP modification, coupled with the ERP, will meet the District’s permitting standards. Public Interest The primary basis upon which Sleepy Creek relies to demonstrate that the CUP is “consistent with the public interest” is that Florida's economy is highly dependent upon agricultural operations in terms of jobs and economic development, and that there is a necessity of food production. Sleepy Creek could raise cattle on the property using the agriculturally-exempt improved pastures, but the economic return on the investment would be questionable without the increased quality, quantity, and reliability of grass and forage crop production resulting from the proposed irrigation. Sleepy Creek will continue to engage in agricultural activities on its properties if the CUP modification is denied. Although a typical Florida beef operation could be maintained on the property, the investment was based upon having the revenue generation allowed by grass-fed beef production in order to realize a return on its capital investment and to optimize the economic return. If the CUP modification is denied, the existing CUP will continue to allow the extraction of 1.46 mgd for use on the East Tract. The preponderance of the evidence suggests that such a use would have greater impacts on the water levels at Silver Springs, and that the continued use of the East Tract as a less stringently-controlled sod farm would have a greater likelihood of higher nutrient levels, particularly phosphorus levels which are already elevated.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law set forth herein it is RECOMMENDED that the St. Johns River Water Management District enter a final order: approving the issuance of Consumptive Use Permit No. 2-083-91926-3 to Sleepy Creek Lands, LLC on the terms and conditions set forth in the complete Permit Application for Consumptive Uses of Water and the Consumptive Use Technical Staff Report; and approving the issuance of Environmental Resource Permit No. IND-083-130588-4 to Sleepy Creek Lands, LLC on the terms and conditions set forth in the complete Joint Application for Individual and Conceptual Environmental Resource Permit and the Individual Environmental Resource Permit Technical Staff Report. DONE AND ENTERED this 29th day of April, 2015, in Tallahassee, Leon County, Florida. S E. GARY EARLY Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 29th day of April, 2015.

Florida Laws (27) 120.54120.569120.57120.60120.68373.016373.019373.036373.042373.0421373.069373.079373.175373.223373.227373.229373.236373.239373.246373.406373.413373.4131373.414403.067403.087403.9278.031 Florida Administrative Code (12) 28-106.10828-106.21740C-2.30140C-2.33140C-44.06540C-44.06662-302.30062-330.05062-330.30162-4.24062-4.24262-40.473
# 10

Can't find what you're looking for?

Post a free question on our public forum.
Ask a Question
Search for lawyers by practice areas.
Find a Lawyer