Elawyers Elawyers
Ohio| Change
Find Similar Cases by Filters
You can browse Case Laws by Courts, or by your need.
Find 49 similar cases
CITIZENS` COMMITTEE TO PRESERVE LAKE LAFAYETTE vs. LEON COUNTY AND DEPARTMENT OF ENVIRONMENTAL REGULATION, 76-001217 (1976)
Division of Administrative Hearings, Florida Number: 76-001217 Latest Update: Feb. 23, 1977

The Issue The issues considered at final hearing were those issues set out in Petitioners' Amended Petition For A Formal Hearing. At the conclusion of the final hearing the parties were given an opportunity to file a proposed recommended order and memorandum in support thereof. Such memorandum and proposed recommended order was received by the Hearing Officer from the Department of Environmental Regulation on November 10, 1976, from Leon County on November 12, 1976, and from the Citizens' Committee to Preserve Lake Lafayette on November 15, 1976. Having fully considered the matters presented herein, the Hearing Officer enters the following:

Findings Of Fact Respondent, Leon County, Florida, has applied for a construction permit to construct a sanitary landfill in Sections 4 and 5, Township 1 South, Range 2 East, Leon County, Florida. The proposed site consists of 79.9 acres off of U.S. Highway 27 South. The application is in proper form and contains all information required by the Department of Environmental Regulation. The area to be served by the proposed sanitary landfill is Leon County, Florida, with a projected average population of 155,200. The responsible operating authority as set forth in the application is Leon County. The evidence presented did not establish that the proposed sanitary landfill will attract high concentrations of rodents, insects, or birds which would do serious damage to the land and crops surrounding the site or which would adversely affect the health and welfare of the residents near the site. The application proposes a program for the extermination of any rats discovered on site and further proposes that the working faces of the landfill area will be kept as small as possible with all exposed waste materials covered as frequently as practical to minimize the problem of flies and insects during hot, humid periods. Evidence was presented indicating that construction of the proposed sanitary landfill site could adversely affect surrounding property value. However, the evidence was not sufficient to conclusively establish the extent of this affect nor the time at which it would occur or for which it would endure. As designed the proposed sanitary landfill would not cause any solid waste to be disposed of by being placed in or within 200 feet of any natural or artificial body of water or on the watershed of any surface water supply. Lake Lafayette is hydraulically connected to the Floridan Aquifer. The proposed sanitary landfill site is located at least 500 feet from the flood prone area of Lake Lafayette and 1,000 feet from Lake Lafayette proper. As designed the proposed sanitary landfill will not cause any solid waste to be disposed of by being placed in a sink hole or in the immediate area thereof. Solid waste will be disposed of by being placed in a trench and covered over with successive lifts similarly covered. There are no active sink holes on or in the immediate area of, the proposed sanitary landfill site. Three ponds exist in the immediate vicinity of the site, one of which is to be used for surface water runoff. These ponds were probably formed by past sink hole activity but from the site topography and water elevations it appears that the ponds are now stable and are probably not hydraulically connected with the Floridan Aquifer. No limestone or gravel pits exist on site. The entire proposed site is well above the +50' MSL contour line below which are found flood prone areas in the vicinity of the site. The water table of the site is more than 5 feet below normal ground surface. As designed the proposed sanitary landfill will not require the disposal of solid waste in an area immediately adjacent to or within the cone of influence of a public water supply. As designed the proposed sanitary landfill will not require the disposal of solid waste within 200 feet of any habitation or place of business served by a public water supply system or within 1,000 feet of any habitation or place of business served by an individual potable shallow water supply well with the following exceptions. There are three wells located on the property which would be owned by Leon County that may be within 1,000 feet of the disposal site for solid waste. Of these three wells one has been abandoned and will be sealed. A second is located south of the proposed site at an existing house and will be used as a source of non-potable water and for monitoring the potable aquifer. The third well is located on the northwest portion of the county property and will be maintained as a standby source of potable water. There are two other wells located on the property to be owned by Leon County which are more than 1,000 feet from the proposed disposal site for solid waste and could be used to monitor the Floridan Aquifer. There is a well which serves a private residence and farm located plus or minus 1,200 feet west of the proposed site for the disposal of solid waste. No solid waste shall be disposed of in any area open to public view from any major thoroughfare. The proposed site in not on any public highway, road, alley or the right-of-way thereof. The Lake Lafayette drainage basin is approximately six miles long elongated in a west-northwest, east-southeast direction. The width varies between one-quarter to one-half mile. The western end of the basin contains many sink holes which probably have open connections to the underlying bedrock. The eastern end of the basin, near the proposed landfill site, is swampy and contains many cypress trees. The Lake Lafayette drainage basin appears to be an area of recharge to the Floridan Aquifer. The proposed sanitary landfill site is not located in the Lake Lafayette drainage basin. The engineering firm of Ardaman & Associates, Inc., conducted a subsurface investigation of the hydrologic and soil conditions at the site of the proposed sanitary landfill. As part of their investigation they performed ten soil borings and installed seven deep ground water monitoring wells. The results of the investigation of Ardaman & Associates, Inc., indicates a low probability of sink hole occurrence. In the course of their investigation, Ardaman & Associates, Inc., discovered a depression in the ground water level at Test Hole No. 9. The significance of this ground water low is that it may be a localized area of recharge. However, as shown by the testimony of the engineers who conducted the investigation for Ardaman & Associates, Inc., as well as by the report of their investigation, this depression creates no realistic danger with regard to the introduction of pollutants into the aquifer or ground water supply, so long as no putrescible wastes are placed within a distance of 1,000 feet of Test Hole No. 9. The hydro-geologist testifying on behalf of the Petitioners stated that he believed the radius of influence of the depression at Test Hole No. 9 may actually be less than 1,000 feet and that maintaining 1,000 feet distance from Test Hole No. 9 is a conservative distance. As designed, the proposed sanitary landfill will not dispose of any solid waste or other putrescible waste within 1,000 feet of Test Hole No. 9. The soils found on the proposed sanitary landfill site are of low permeability and suitable for a sanitary landfill. The low permeability of the soils will limit both the lateral and vertical seepage of leachate. The vertical flow of potential leachate to the Floridan Aquifer has been estimated at a rate of 1.0 to 1.5 feet per year. The lateral flow rate of such leachate through the soils overlying the bedrock in the Lafayette drainage basin has been estimated at the rate of 2 feet per year. As has been noted above, the proposed sanitary landfill site is located approximately 1,000 feet from Lake Lafayette, and 500 feet from the +50' MSL contour line which has been used to describe the perimeter of the flood prone area of the Lake Lafayette drainage basin. At the estimated flow rate it would therefore take several hundred years for any leachate produced by the sanitary landfill to reach the Lake Lafayette drainage basin. The Floridan Aquifer underlies all of Leon County at depths of 100 to 500 feet. As designed the proposed sanitary landfill will have test wells constructed throughout the site to provide a means of detecting any lateral migration of contaminants from the landfill operation should such occur. Periodic samples will be taken from these test wells and analyzed. The monitoring wells will be set up in such a manner that regardless of the direction of flow of subsurface water they will pick up and detect any pollutants that may be passing from the landfill. Some of these test wells will be placed in close proximity to the proposed sanitary landfill site to give early warning of the existence of any leachate flow. If there is any problem with the flow of leachate from the proposed site it will be detected easily within the first five years of operation. Since it would take several hundred years to reach the Lake Lafayette drainage basin at the estimated flow rates this should provide adequate warning and reaction time for the alleviation of any potential pollution problem. A significant flow of leachate is not expected. The existing pond which will receive the surface runoff from the sanitary landfill site is likely of sink hole origin but after a reasonable investigation it appears that the pond is now stable and not hydraulically connected to the Floridan Aquifer. It is estimated that the pond can contain at least a 25 year storm rainfall though there might be some flooding from the pond in a 100 year storm rainfall. As designed, no significant amount of leachate, if any, will reach the surface water runoff retention pond. Petitioners' hydro-geologist did not state that the site is unsuitable for a sanitary landfill. Rather he testified that on the information he had reviewed, which information was that available to the Department of Environmental Regulation, it was his opinion that the Department of Environmental Regulation lacks sufficient information to determine if the proposed site is suitable from a water quality standpoint. Based upon all the testimony and evidence it appears as a matter of fact that the information available to the Department of Environmental Regulation is reasonably sufficient to determine the suitability of the proposed site. There has been no showing of a necessity for alining the proposed trenches which will receive the solid waste. The Planning Director for the Tallahassee-Leon County Planning Department, in a letter to the Department of Environmental Regulation stated that the use of the proposed site for landfill purposes is not inconsistent with the land use plan. He further stated his concern for traffic on U.S. Highway 27, the possible adverse aesthetic impact which he felt could be minimized and his concern that Lake Lafayette be protected from landfill leachate through engineering design. In their Amended Petition Petitioners raised the question of the present zoning of the proposed site. No evidence was presented by Petitioners to show that the site is not properly zoned. Based upon the testimony and evidence presented there appears little possibility that the proposed sanitary landfill will pollute or seriously damage Lake Lafayette, the Floridan Aquifer or any other source of public or private water supply. The proposed sanitary landfill as designed is not likely to cause any significant water pollution or to degrade water quality below those standards set by the Department of Environmental Regulation. None of the prohibitions set out in Section 17-7.04, F.A.C, exist so as to require the denial of the application for a construction permit for a sanitary landfill by Respondent, Leon County. The sanitary landfill criteria set out in Section 17-7.05, F.A.C., have been met by Respondent, Leon County.

# 1
COLLIER COUNTY vs. DEPARTMENT OF ENVIRONMENTAL REGULATION, 75-001167 (1975)
Division of Administrative Hearings, Florida Number: 75-001167 Latest Update: Apr. 13, 1977

Findings Of Fact The proposed site consists of some 311 acres bounded on the South by Alligator Alley (SR 84) and is approximately 6 1/2 miles East of SR 858. The existing solid waste disposal facility at the airport is exceeding the capacity of the area to absorb any additional solid waste. An approved federal grant for expansion and improvement of the Naples airport is contingent upon the cessation of further solid waste disposal at this site. The original deadline for discontinuing use of the airport disposal site of June 30, 1975 has been extended to allow the processing of the instant application. Of the numerous sites considered the one proposed herein was considered by local, state, and federal agencies to be the best overall. The proposed site meets the requirements of, and has been approved by the USDA Soil Conservation Service, the Department of Environmental Regulations, and various state health organization. The plans and specifications which have been submitted by the county and approved by the various agencies concerned called for an excavation of the site to a depth of approximately 3 feet, with the solid waste after compaction being placed in the ground and each layer thereafter placed on top and covered on a daily basis with soil. A perimeter canal will be constructed around the site to divert surface water from outside the site to prevent flooding the area. Interior canals will be installed to provide for collection of the leachate, as well as water falling on the site. The project includes construction of leachate sump ponds on the site, which will be coated to preclude the leachate from percolating into the surrounding area. An all weather access road will be provided to the site, and the only vehicles permitted on the site will be those controlled by the county and city, which would include their contractor for hauling waste. The routes for these vehicles would be such that they would not pass' over the Golden Gate Boulevard, which goes through the community of Golden Gate. At the hearing little new evidence was submitted. Intervenor appeared to take the position that its opposition to the project was based upon the fact that: (1) The site proposed could flood; (2) An impermeable barrier should be installed in all cells to preclude harmful materials from permeating the soil; and (3) Leachate from the cells could enter into the ground water table. Testimony with respect to these objections revealed: (1) The pumping system proposed is adequate to handle any flooding that may reasonably be anticipated; (2) The site is not located on a watershed that could go to a public water supply; (3) The site is some 5 or 6 miles from the nearest public water supply and not so located that surface water from the site could flow to a public water supply; (4) No place in Collier County meets the 5 foot separation provision between water table and place where waste could be dumped; The safeguards provided by the proposed plan qualifies this site for waiver of provision (4) above; (5) If an impermeable barrier was installed beneath the cells it would be ineffective in preventing surface water contamination in the event the site is flooded; (6) In the event the proposed system proves inadequate to control flooding, modifications in the then existing system could be made that would control this problem; and (7) Use of impermeable barrier below cells is but one design method to meet requirements of the various regulatory agencies.

# 2
HENDRY CORPORATION vs DEPARTMENT OF ENVIRONMENTAL REGULATION, 92-002312 (1992)
Division of Administrative Hearings, Florida Filed:Tampa, Florida Apr. 14, 1992 Number: 92-002312 Latest Update: Aug. 10, 1993

Findings Of Fact The Department (DER) is the regulatory agency of Florida charged with the duty and authority to administer and enforce Chapter 403 and Sections 376.30-376.319, Florida Statutes, and rules and regulations promulgated thereunder. Hendry is a Florida corporation that has been conducting business in excess of 60 years. The two main aspects of its business are the dredging operation and the shipyard. Hendry's site can be loosely described as an industrial site. The shipyard division performs approximately one-half its work for governmental entities, particularly the U.S. Coast Guard, which operations are largely ship refurbishing. Hendry has a Coast Guard certificate enabling it to receive mixtures containing oil and oily water waste. A significant portion of Hendry's ship refurbishing work involves repairing/replacing steel on ships which has deteriorated due to salt water exposure. That work frequently requires cutting, welding and burning. Prior to commencing the refurbrushing work, the ships must be certified as safe. In certifying a ship as being safe, the bilge area is pumped of used oil or waste oil which collects in standing waste water and oil. Also, before that works commences, the ship is defueled. Currently, Hendry's practice is to subcontract the pumping of waste oil from the ships bilge, which waste oil is pumped directly into the tanker truck of the subcontractor. Hendry no longer pumps or stores waste oil on site. In the past, the waste oil and water from the ship's bilge was pumped from the ship through a pipeline from the dry dock across the property to a 10,000 gallon above-ground storage tank. During December 1987, the U.S. Coast Guard observed a fuel spill on the water at Petitioner's facility. Based on that observation, Respondent conducted site inspections of Petitioner's facility during March and April 1988. The fuel spill was occasioned by Petitioner's refurbishment of a tuna boat at its site. Petitioner subsequently received a warning notice regarding alleged violations in its petroleum storage tanks and contamination. The transfer pipeline is of steel construction. Between 1980 and 1984, the pipeline leaked. In 1984, the pipeline was rerun with PVC line and in 1986, it was refitted with 4 inch steel pipe. The 10,000 gallon above-ground tank is located in Area 1. The removal of waste oil occasionally resulted in accidental spills. After 1985, a smaller, above-ground tank was installed adjacent to the 10,000 gallon tank to provide a storage tank for draining off water from the 10,000 gallon tank. The small tank was used to receive only water drained from the 10,000 gallon tank. Prior to installation of the small tank, a retention pond was used to drain water from the 10,000 gallon tank. The retention pond had a 2 foot berm with a visqueen liner. In October 1988, Hendry submitted an EDI Program Notification Application, a prerequisite for EDI reimbursement eligibility, under the program for costs associated with cleanup of certain petroleum contamination. In May 1989, Hendry submitted a document entitled Preliminary Contamination Assessment III Specific Areas--Task IV Rattlesnake Terminal Facility--Westshore Boulevard, Hillsborough County prepared by Mortensen Engineering, Inc. That document included reports of analysis of oil and groundwater samples taken from the site in January, March and April 1989, demonstrating extensive contamination of soil and groundwater including "free product" in monitoring wells MW-2, MW-4 and MW-4A. By letter dated November 9, 1989, the Department informed Hendry of its determination that the facility had been denied EDI reimbursement based on specific enumerated findings. Hendry entered into a stipulation with the Department on October 16, 1990, "regarding the conduct of this case and the basis for denial. " Attached to the stipulation is a sketch of the facility grounds showing a rough division of the area into four separate areas. Area 1 has two waste tanks. One was a large 10,000 gallon closed tank approximately 20 feet high and 12 feet in diameter; the other contained a volume of approximately 1,500-2,000 gallons and was an open tank. Petitioner's practice was to pump bilge in the dry dock area, located west of "Area 2" and direct the waste through underground pipes to the 10,000 gallon tank. The smaller tank was used to "bleed" water from the larger tank. Bilge waste is approximately two-thirds water. Area 2 was the location of Hendry's diesel tank farm. In the stipulation, the Department agreed to withdraw two of the seven specific grounds for the denial, namely denial of site access and failure to report discharges. Likewise, Hendry agreed to withdraw "Area 4" from its application for EDI eligibility. In the stipulation, Hendry was informed of a then recent amendment to Section 376.3071(9), which offered certain applicants who had been earlier determined ineligible for participation in the EDI program, standards and procedures for obtaining reconsideration of eligibility. The amendment required the facility to come into compliance, certify that compliance and request reconsideration prior to March 31, 1991. Additionally, compliance was to be verified by a Department inspection. Pursuant to paragraph 5(b) of the stipulation, these standards and procedures were specifically to be applied to Areas 2 and 3 at the facility. Hendry did not make a written request for reconsideration of the denial of eligibility with respect to Areas 2 and 3 on or before March 31, 1991 or at anytime subsequently. Hendry also did not come into compliance with the underground or above-ground storage tanks system regulations on or before March 31, 1991 in that Hendry failed to register a 560-gallon above-ground diesel storage tank which was onsite on that date as required by Rule 17-762.400, Florida Administrative Code. Hendry also failed to notify the Department of the Hillsborough County Environmental Protection Commission (HCEPC), as the administrator of a designated local program at least thirty days prior to closure of the storage tank system, pursuant to Subsection 376.3073, Florida Statutes. These determinations were made on April 1, 1991 by Hector Diaz, inspector in the HCEPC tanks program. Hendry submitted a registration form for the 560-gallon tank on November 18, 1991, which was of course subsequent to the March 31, 1991 deadline. Hendry stored petroleum products and waste material including petroleum constituents in the above-ground tanks until approximately March 25, 1991 when it initiated tank removal. Hendry's above-ground storage tanks, which were in use at its facility for approximately three years after extensive soil contamination was documented, were without secondary containment. In November 1991, Hendry submitted a document entitled Supplemental Preliminary Contamination Assessment Report, prepared by Keifer-Block Environmental Services, Inc. (Supplemental PCAR). The stated purpose of the study was solely to determine whether hazardous constituents were present in groundwater in Areas 2 and 3. The report included laboratory analysis of groundwater samples taken from the site in August 1991 including monitoring wells located in Area 3. The results of these analysis reflect that Area 3 is contaminated solely with heavy metals, lead and chromium. No petroleum hydrocarbon contamination was detected in Area 3. In the area adjacent to Area 2, seven of eight monitoring wells show chromium or lead contamination. Hendry had, and continues to have, a practice of removing paint from vessels by blasting them with a gritty material known as "black beauty." This practice takes place in the dry dock area near Areas 2 and 3. The waste blast grit/paint chip mixture is vacuumed or shoveled into wheelbarrels or a frontend loader and dumped into an open pile. Occasionally, the waste blast grit/paint mixture is blown about or spilled. Waste "black beauty" has been observed scattered on the ground throughout the facility. Paints sometime contain heavy metals, specifically, lead and chromium. The concentrations and distribution of lead and chromium contamination at the site are consistent with Hendry's long-standing practice of grit-- blasting paint from ships and other vessels and allowing the metal-contaminated paint and waste mixture to fall to the ground. Areas 2 and 3 are contaminated with substances other than petroleum or petroleum products, namely heavy metals. Costs associated with cleanup of lead and chromium are not reimburseable under the EDI program. Paragraph 5(c) of the stipulation allowed Hendry an opportunity to establish eligibility for Area 1 by providing information regarding operating practices at two above-ground storage tanks and a retention pond in that area demonstrating that contamination in that area is predominantly from leaks or unintentional spills of petroleum products from the tanks in that area. Hendry did not provide the required information. On January 27, 1992, Hendry submitted to the Department an affidavit executed by its principal, Aaron Hendry, which Hendry contends fulfills the requirements of paragraph 5(c) of the stipulation. Hendry, the principal who executed the affidavit, is an affiant with a legal and financial interest in the outcome of the EDI eligibility determination. The executed affidavit did not contain specific information with respect to "operating practices at the tanks and retention ponds as required by the stipulation." Specifically, the affidavit is silent as to: What the tanks were made of; When, how and by whom they were installed; What piping, leak detection or overfill protection was associated with them; What repairs or alterations had been made to them; What inventory reconciliation methods were used; Where the materials came from which was put into the tanks; In what manner, how often, and by whom material was put into the tanks; In what manner, how often, and by whom material was removed from the tanks; Disposition of material removed from the tanks; When, how, by whom and why the retention pond was dug; How and for what period of time the retention pond was used; How, often and by whom inspections of the tanks were conducted; When and how leaks occurred and were discovered at the tanks; When and how spills occurred and were discovered at the tanks; What records, including reports to state or local agencies, insurance claims, newspaper accounts, and so forth were kept with respect to leaks or spills at the tanks; What cleanup efforts were made at the time of any leaks or spills; Documentation related to registration of the tanks with state or local agencies; and Documentation with respect to any removal of the tanks, including any description of the condition of the tanks when, or if, removed. For years, the facility's retention pit was used as a "waste pit" namely, a rectangular hole in the ground, approximately 30 feet by 120 feet by 3 feet, for direct discharge of bilge waste piped from vessels at the dry dock area to the waste pit, prior to installation of the storage tank systems. After installation of the large tank in Area 1, the retention pit was used to bleed water from the bilge tank. In the past, the Department has denied eligibility to facilities where a retention pond was used for disposal of petroleum related waste and cleanup of contamination resulting from use of a retention pond. Hendry's affidavit nor other documentation submitted to the Department prior to the EDI redetermination or at hearing establishes that the bilge waste taken from the storage tanks was "a liquid fuel commodity" or recycled into such a commodity. By letter dated June 9, 1992, the Department notified Hendry that reconsideration of its EDI eligibility request for Areas 2 and 3 was denied and that the affidavit of Aaron Hendry submitted with respect to Area 1 did not satisfy the requirements of the stipulation. Thereafter, Hendry challenged the Department's denial of reconsideration and EDI eligibility which joins the issue for this proceeding. The hazardous waste allegation discovered during an inspection of Hendry's facility on April 14, 1988, resulted in a consent order which was entered as a final order of the Department on November 21, 1990. The consent order allowed Hendry an opportunity to demonstrate that not all areas at the facility were hazardous waste disposal areas and, thus, not all areas would be subject to closure and cleanup under the permitting requirements of Subsection 403.722, Florida Statutes and the remediation standards set forth in Chapter 17-730, Florida Administrative Code. To establish appropriate remediation standards and procedures which would be applicable to various areas, Hendry was required to prepare a property diagram designating areas at the property exhibiting any of the following types of contamination: Areas contaminated solely by petroleum or petroleum products or used oil which is not hazardous waste; Areas contaminated by materials which are not hazardous waste; Areas contaminated by the past or present disposal of hazardous waste. The consent order allows contamination assessment and remediation pursuant to the standards and procedures set forth in Chapter 17-770, Florida Administrative Code, for areas contaminated solely by petroleum or petroleum products. (Petitioner's Exhibit 5, paragraph 11.) The consent order requires contamination assessment and remediation pursuant to the Department's corrective action and groundwater contamination cases for all areas at the facility contaminated by used oil which is not hazardous waste or by hazardous material. (Petitioner's Exhibit 5, paragraph 12.) The consent order requires contamination assessment and remediation pursuant to a closure permit with a contingent post-closure plan to close the areas at the facility contaminated by the disposal of hazardous waste. In response to the consent order to delineate areas on the property exhibiting various types of contamination, Hendry submitted the supplemental PCAR. By letter dated March 19, 1992, the Department responded to the supplemental PCAR with a determination that: Area 1 can be assessed and remediated through the standards set forth in Chapter 17-770, Florida Administrative Code. Contamination in Areas 2 and 3 includes heavy metals, which are hazardous materials. Thus, Areas 2 and 3 should be assessed and remediated through the corrective action process for groundwater contamination cases. A hazardous waste facility closure permit application should be submitted for assessment and remediation of Area 4, which, because of the presence of Dichloroethylene, a hazardous substance and chlorinated solvent, should be expanded to include the location of monitoring well MW KBMW-2. Hendry had a practice of cleaning electrical motors by placing such motors on the ground outside the electrical repair shop near Area 4. The motors were sprayed with Trichloroethylene, a waste solvent, which was allowed to runoff into the soil. At the time of this practice, the intention was to leave the solvent contamination unchecked. The Department, pursuant to directives from the United States Environmental Protection Agency (EPA), characterizes the disposition of hazardous waste to the environment as a result of intentional, ongoing industrial practices as "disposal of hazardous waste" within the meaning of Subsection 475.703(21), Florida Statutes and 40 CFR 260.10. The consent order allowed Hendry an opportunity to challenge the Department's determination with respect to delineation of the various areas by filing a petition per paragraph 21 of the order for formal administrative hearings. Hendry filed its petition with respect to the March 19, 1992 letter, which petition is the subject of DOAH Case No. 92-2312.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that: Respondent, Department of Environmental Regulation, issue a Final Order in these consolidated cases concluding that 1) the contamination areas at issue herein are not eligible for EDI reimbursement under Subsections 376.3071(9) and (12), Florida Statutes; 2) that Petitioner cleanup the contamination in Areas 1, 2 and 3 under the guidance document entitled "Corrective Actions for Groundwater Contamination Cases"; and 3) that Area 4 be expanded to include the location of monitoring well MW KBMW-2 and closed through a hazardous waste closure/post closure permit application process. DONE AND ENTERED this 26th day of April, 1993, in Tallahassee, Leon County, Florida. JAMES E. BRADWELL Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 26th day of April, 1993. APPENDIX Rulings on Petitioner's proposed findings of fact: Paragraph 14, partially adopted in Paragraph 13, Recommended Order. Paragraph 19, rejected, contrary to the greater weight of evidence and speculative. Paragraph 20, rejected, unnecessary. Paragraph 21, rejected, contrary to the greater weight of evidence, Paragraphs 24-28, Recommended Order. Paragraph 22, partially adopted, Paragraphs 13 and 14, Recommended Order. Paragraph 23, partially adopted, Paragraph 15, Recommended Order. Paragraph 29, partially adopted, Paragraph 18, Recommended Order. Paragraphs 31, 32, 35, 48, 49, 51, 52, 60, 62 and 73 rejected, unnecessary. Paragraph 33, adopted in part, Paragraph 23, Recommended Order. Paragraph 38, adopted in part, Paragraph 23, Recommended Order. Paragraph 41, rejected, contrary to the greater weight of evidence and the two cases cited at hearing where Respondent exercises his discretion are distinguishable from Petitioner's failure to timely apply. Paragraph 43, rejected, unnecessary and/or argument. Paragraph 45, rejected, contrary to the greater weight of evidence. Paragraph 50, rejected, contrary to the greater weight of evidence, Paragraphs 37-39, Recommended Order. Paragraph 54, rejected, not probative. Paragraph 55, rejected, not probative. Paragraphs 56 and 57, rejected, contrary to the greater weight of evidence, Paragraphs 30 and 31, Recommended Order. Paragraphs 58 and 59, rejected, contrary to the greater weight of evidence, Paragraphs 23 and 24, Recommended Order. Paragraph 61, rejected, speculative and unnecessary. Paragraph 63, rejected, speculative. Paragraph 67, rejected, not probative. Paragraph 68, rejected, contrary to the greater weight of evidence, Paragraphs 30 and 31, Recommended Order. Paragraph 69, rejected, not probative. Paragraph 70, adopted in part, Paragraph 23, Recommended Order. Paragraph 72, rejected, irrelevant and not necessary to the issues posed. Paragraph 74, rejected, contrary to the greater weight of evidence and unnecessary. Paragraph 75, rejected, contrary to the greater weight of evidence, Paragraph 53, Recommended Order. Paragraph 76, rejected, contrary to the greater weight of evidence, Paragraph 53, Recommended Order. Paragraph 77, rejected, contrary to the greater weight of evidence, Paragraph 53, Recommended Order. Paragraphs 78 and 79, rejected, irrelevant and unnecessary. Paragraph 80, rejected, not probative. Rulings in Respondent's proposed findings of fact: Paragraphs 2 and 3, adopted in part, Paragraph 9, Recommended Order. Paragraph 12, adopted in part, Paragraph 23, Recommended Order. Paragraph 23, adopted in part, Paragraph 32, Recommended Order. Paragraph 27, adopted in part, Paragraphs 38 and 39, Recommended Order. Paragraph 30, rejected, unnecessary. COPIES FURNISHED: Thomas J. Patka, Esquire Rory C. Ryan, Esquire HOLLAND & KNIGHT 200 South Orange Ave - Suite 2600 Post Office Box 1526 Orlando, Florida 32802 Agusta P. Posner, Esquire Lisa Duchene, Esquire Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32399 2400 Virginia B. Wetherell Secretary Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32399 2400 Daniel H. Thompson, Esquire Acting General Counsel Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32399 2400

USC (3) 40 CFR 260.1040 CFR 26140 CFR 261.31 Florida Laws (8) 120.57376.301376.3071376.3073403.703403.721403.722475.703
# 4
LAFAYETTE COUNTY vs. DEPARTMENT OF ENVIRONMENTAL REGULATION, 76-001961 (1976)
Division of Administrative Hearings, Florida Number: 76-001961 Latest Update: May 19, 1977

Findings Of Fact Petitioner's present solid waste-disposal system consists of the operation of six sanitary landfill sites. These sites are being operated in accordance with temporary permits issued by the Respondent. Four of the sites are not adequate sanitary landfill sites. Two of the sites, which are known as the "Sims Farm" and "Ephesus" sites can be developed into acceptable landfill sites. Petitioner has not developed any comprehensive plan designed to comply with the Florida Resource Recovery and Management Act, and the rules of the Respondent respecting solid waste disposal systems. When its present temporary permits expire the Petitioner intends basically to continue operating the Sims Farm and Ephesus landfill sites, and to' locate at least two other acceptable sanitary landfill sites. Petitioner intends to comply with all of the Respondent's regulations, but it contends that it cannot comply with the regulation which requires that the landfills be covered every working day. Petitioner proposes to cover the landfills twice weekly rather than daily. Lafayette County is a large county in terms of area, but is very small in population, having less than 3,500 residents. Residents of the county are engaged primarily in agriculture. The county does not have a broad tax base. Estimated revenues for the 1977 fiscal year are $113,340. Thirty thousand dollars has been designated from the county's budget to operate a solid waste disposal system. The clerk of the County Commission is in charge of the county's present solid waste disposal system. The county does not have a full time employee designated to operate the system. The clerk of the County Commission has many duties other than operating the solid waste disposal system. Residents of the county are satisfied with the present system. Prior to the opening of the present sanitary landfill sites there was considerable dumping on private property, on highway right-of-ways, or in the river slough. The amount of waste deposited in the county's present landfills is very small in relation to counties with a higher or more concentrated population. There is very little industrial or commercial waste, and a smaller percentage of putrescible materials than would be found in more urban counties. Although there is a county ordinance prohibiting it, dead animals are occasionally deposited in the landfill sites and burning of trash does occur. Chemical agricultural waste is also deposited in the landfills. Lafayette County has utilized temporary permits to operate its present landfill sites. The permits require the submission of periodic reports. The county has not submitted these reports as required by the permits. Counties surrounding Lafayette County have had varying experiences in reaching full compliance with the Florida Resource Recovery and Management Act, and the rules of the Respondent dealing with solid waste disposal systems. In Taylor County, a county with a population of approximately 14,500, approximately $120,000 was invested in equipment. Daily cover of sanitary landfills, including the dumping of green boxes utilized in Taylor County cost $6,512.42 in January, 1976, and $7,159.85 in January, 1977. Compliance with the statutes and regulations necessitated an increase in the county's tax rate. Compliance is being achieved in Gilchrist County, a small agricultural county at very low cost utilizing a single sanitary landfill site system. Compliance has been achieved in Dixie County, a small agricultural county through use of a green box system. Very little research has been performed by Lafayette County to determine how compliance could be achieved most inexpensively. Daily cover of sanitary landfill sites is desirable. Daily cover is the most effective means of preventing open burning in landfill sites, leachate of solid waste, flies and rodents. Daily cover does not totally alleviate these conditions, but it is the most effective means of combating them. Daily cover is much more necessary in areas where there are large amounts of solid wastes than it is in areas with small amounts. Daily cover is also more necessary in areas where there is a large proportion of putrescible versus non-putrescible materials than it is in areas with a smaller percentage. In order to comply with the Respondent's regulations when its present temporary permits expire, the Petitioner will need to purchase a tractor or bulldozer in order to provide a cover at the landfill sites. If daily cover is required, the county will need to hire a full-time individual to perform the cover. If twice weekly cover is permitted the county will be able to operate its system without the necessity of employing an additional person. Twice weekly cover would reduce the operating costs of the county's system by reducing fuel and maintenance costs of vehicles. In view of the fact that no detailed examination has been made of the cost of full compliance, it is not possible to determine from the facts presented whether it is practicable for the Petitioner to comply with the regulations, or whether the expense or cost of measures which the Petitioner must take in order to comply are so great that they should be spread over a considerable period of time. The most that can be determined is that daily cover would be more expensive than twice weekly cover, and that twice weekly cover would not have any profoundly negative environmental effects in Lafayette County.

Recommendation Based upon the foregoing Findings of Fact and Conclusions of Law, it is, RECOMMENDED: That a final order be entered denying the Petitioner's application for variance. RECOMMENDED this 18th day of March, 1977, in Tallahassee, Florida. G. STEVEN PFEIFFER, Hearing Officer Division of Administrative Hearings Room 530, Carlton Building Tallahassee, Florida 32304 (904) 488-9675 COPIES FURNISHED: Vance W. Kidder, Esquire Department of Environmental Regulation 2562 Executive Center Circle E. Montgomery Building Tallahassee, Florida 32301 Conrad C. Bishop, Jr., Esquire Weed & Bishop P. O. Box 1090 Perry, Florida 32347 Mr. Jay Landers, Secretary Department of Environmental Regulation 2562 Executive Center Circle E. Montgomery Building Tallahassee, Florida 32304

Florida Laws (2) 120.57403.201
# 5
CITY OF NEWBERRY vs WATSON CONSTRUCTION COMPANY, INC., 95-000752 (1995)
Division of Administrative Hearings, Florida Filed:Gainesville, Florida Feb. 21, 1995 Number: 95-000752 Latest Update: Apr. 19, 1999

The Issue Is Respondent, Watson Construction Company, Inc. (Watson), entitled to a general permit allowing it to operate a construction and demolition debris facility in Newberry, Alachua County, Florida?

Findings Of Fact DEP, in accordance with Chapter 403, Florida Statutes, is responsible for enhancing the beauty and quality of the environment; conservation and recycling of natural resources; prevention of the spread of disease and creation of nuisances; protection of the public health, safety and welfare; and provision for a coordinated statewide solid waste management program. It accomplishes these tasks, in part, by regulatory oversight directed to entities who operate solid waste facilities in Florida. That oversight includes permitting the activities by the facilities subject to compliance with statutory and rule requirements. Watson wishes to operate a solid waste facility in Newberry, Florida. In particular, Watson seeks to operate a C&D facility for off-site disposal of C&D debris to be placed where sand has been mined. Watson would pursue this enterprise by using a general permit, as allowed by DEP. Petitioner, City of Newberry (the City), is a political subdivision of the State of Florida. It opposes Watson's use of a general permit to conduct business as a C&D facility, based upon the belief that Watson has not demonstrated compliance with regulatory provisions that would allow Watson to use a general permit. Petitioner, Citizens for Watermelon Pond, Inc. (Citizens), is a corporation constituted of persons who oppose the use of the general permit for the same reasons expressed by the City. On July 21, 1994, Watson noticed DEP that it intended to use a general permit to operate a C&D facility. On July 29, 1994, a notice was published in the Gainesville Sun, a local newspaper, concerning the pendency of the use of a general permit to operate the C&D facility in Newberry, Florida. On August 12 and 16, 1994, the Petitioners filed petitions seeking an administrative hearing on the use of a general permit by Watson to operate the C & D facility. On August 19, 1994, DEP issued a Notice of Denial of the permission to use a general permit to operate the C&D facility. This permit request was under an arrangement between Watson and a co-applicant, Whitehurst. Following the Notice of Denial, no further action being requested by the applicants, DEP issued an order closing its file. In December 1994, in its name only, Watson resubmitted an application to use a general permit to operate the C&D facility in question. The level of consideration at that time was as a pre-application review. This was followed by a formal notice by Watson and application to use a general permit to operate the C&D facility. The formal application was filed on January 17, 1995. On January 24, 1995, notice was published in the Gainesville Sun concerning the more recent intention to use a general permit to operate the C&D facility. On February 6, 1995, Citizens filed a verified petition opposing the use of the general permit contemplated by the January 17, 1995 application. Two days later, the City filed a verified petition in opposition to the most recent request to use a general permit to operate the C&D facility. On February 15, 1995, DEP gave notice that it did not object to Watson's use of a general permit to operate the C&D facility. Watson's most recent request to use a general permit to operate a C&D facility was made on a form provided by DEP in accordance with Rule 62- 701.900(3), Florida Administrative Code. The application to use a general permit was sealed by a professional engineer. The legal description of the property in question is described in the application. It is located in Newberry, Alachua County, Florida. The site location for the proposed C&D facility is one and one-eighth mile south of Southwest 46th Avenue on the east side of County Road 337 in Newberry, Florida. Documentation has been provided which identifies the legal authorization to use the property as a C&D facility. The C&D facility has a planned active life of 50 years. It is intended that the sand that is excavated will be replaced by C&D debris at a similar grade. The mailing address and telephone number of the C&D owner and operator is identified. Watson is the owner/operator. There are 158 acres within the proposed site. Approximately 143 acres would be used in the C&D operation by mining sand as a prelude to recontouring the site by placing the C&D debris. It is intended to excavate tan sand and silty sand to a depth of 20-30 feet. Although Watson anticipates excavating sand to a depth of 30 feet, bore hole data reveals the existence of sand below that depth. Watson does not intend to excavate below 62 feet mean sea level (MSL). In any event, it is not the intention to excavate below the interface of the sand and underlying sandy clays. Once the sand has been excavated, it is anticipated that the bottom of the C&D disposal area will be approximately 15 feet above the piezometric water table associated with the Floridan Aquifer, according to the applicant. The proposed site is located in rolling terrain, whose elevations range from approximately 80 feet MSL to 100 feet MSL. To support the use of a general permit, Watson has provided a site plan with a scale not greater than 200 feet to the inch, which identifies the project location, with proposed disposal areas, total acreage of the site and of the proposed disposal area, and other relevant features that exist on or within 500 feet of the site. The property boundaries are identified. The site would be fenced. Access to the facility would be controlled by a locked gate on County Road 337. The gate would be open during daily operations. The site does not contain surface water. There being no surface water, the C&D facility does not require a surface water management permit from the Suwannee River Water Management District. The site does not present a problem with stormwater runoff. A potable well is located within 500 feet of the property boundary. However, placement of C&D debris would be offset by a 500-foot buffer from the well. Wetlands are located 2,100 feet from the southern edge of the proposed site in the eastern part of the adjacent Whitehurst parcel. Within 3,000 feet of the proposed site is an old phosphate mining pit on the Whitehurst parcel, and 6,200 feet from the proposed site is the northern-most unnamed pond associated with Watermelon Pond. The site is not susceptible to flooding at present. The sand mined at the proposed site would be used to build roads and for foundations for houses and other buildings. Clay removed from the building sites to make room for the sand would be placed in the C&D facility. The material that is removed from building sites and substituted by sand fill is clay with a high shrink and swell factor. That material, together with flint rocks, tree limbs and stumps, would be transported to the C&D facility by Watson's dump trucks. At present, Watson has 20 dump trucks. The dump trucks hold 20 yards each. In addition to those materials removed from Watson job sites by dump trucks, Watson has approximately 36 roll-off dumpsters which hold 20 yards each. Two Watson trucks are available to transport the roll-off dumpsters to the C&D facility. The roll-off dumpsters are placed on construction sites, not exclusively Watson's, and construction materials not used in the building process would be placed in the roll-off dumpsters for disposal at the C&D facility. Approximately 70 percent of the fill material to be placed in the C&D facility would be unsuitable soils, trees, limbs and stumps. The remaining material would be the C&D debris from construction at sites where the dumpsters have been placed. The dump trucks that hold the clay, limbs and stumps would be loaded by Watson employees, who can control what is placed in the trucks. Watson would not control what is placed in the roll-off dumpsters at other construction sites. The Watson dump trucks from job sites directly related to its activities would arrive at the C&D facility and dump their loads for compaction. Those loads would not be spotted for unsuitable fill materials. By contrast, the roll-off dumpsters would be examined at the construction site by the Watson driver. If the driver discovers excessive amounts of material not classified for C&D fill, contact would be made with the Watson office and the material taken to the Alachua County landfill for disposal. If the driver picks up the dumpster at the construction site and there are limited amounts of material not suitable for disposition at the C&D facility, the dumpster would be taken to the C&D facility. The material would be spread out, and a spotter would segregate materials that are not suitable for C&D fill. The unsuitable material would be placed in temporary containers at the disposal site and transported off-site to a permitted landfill or other appropriate facility. Some material brought to the landfill would be recycled. Woods, such as pine or hardwood would be recycled. The limbs and stumps would be placed in the pit as fill. Copper, aluminum, steel, iron, and any other metal would be recycled. The metals would be sold to a scrap-iron facility. An employee at the landfill would keep the money earned from recycling. Metal embedded in broken concrete would be used as fill. The C&D facility would be operated by two persons: one, a loader/operator who loads the dump trucks with the sand that is being excavated; the second individual, a bulldozer operator who pushes the dump truck loads of clay, limbs, and stumps into the fill area and spreads them. He would also spot the roll-off dumpsters and segregate the fill material from unsuitable material. The sorted construction material to be used as fill would be pushed into the working face of the pit, where the tree limbs, stumps and clay would have also been placed. It is anticipated that six to ten roll-off dumpsters with C&D material would be brought to the C&D facility on a daily basis. The amount of unsuitable material that must be sorted from the dumpsters would vary with the individual loads. Watson operates an existing C&D facility in Alachua County, Florida. The proposed C&D facility would be similar in its operation. Based upon the experience in the existing facility, there is no indication that the proposed C&D facility could not be adequately operated by two employees, taking into account the need to segregate unsuitable material before filling. The spotter would receive verbal training concerning his duties. The training provided the spotter is on-site training. He would be reminded once a week of the need to do an adequate job of looking for unsuitable materials. At present, Alachua County inspects the existing C&D facility on a weekly basis and reminds the spotter at that facility what is appropriate for placement and what is not. The expectation is that the same function would be performed at the proposed facility. If sinkholes are encountered in excavating the sand, the equipment operator would contact the Watson office. In turn, Watson would contact its consulting engineer to address the problem, to include placing a plug or cap to repair the breach caused by the sinkhole. In the event that limerock is encountered in the excavation, a clay cap will be placed to prohibit leachate from flowing into the ground water. Areas where limerock is located at higher elevations and not covered by clay present the greatest risk for sinkhole formation. The period between excavation and fill will be approximately two years, leaving the site exposed at the level of excavation before fill is replaced. When the site is closed, the front-end loader operator and bulldozer operator will spread 24 inches of soil as a cap and grade the site in preparation for planting of pine trees. The soil material would be constituted as six inches of top soil suitable for planting pine trees. The remaining 18 inches would contain clay with high shrink/swell properties. The planting of pine trees would be done through a contract forester. The equipment operated at the facility would employ approved muffler systems. Odor generated by the facility is not anticipated to be a problem, in that household garbage, if found, would only be temporarily maintained, pending placement in an appropriate landfill. The site will be examined on a weekly basis to remove blown "litter". Proper provision is made for maintenance of slopes and compaction of fill material as it is placed. Through the application process noticing DEP that Watson intends to use a general permit to operate its C&D facility, DEP has been informed of the location of the proposed site. DEP would have permission to inspect the site during normal business hours. In response to Rule 62-701.420, Florida Administrative Code, Watson conducted a geotechnical investigation and prepared a report to support the application for a general permit. In support of the application Kenneth J. Hill, P.E. investigated the subsurface conditions at the proposed site through drilling activities. The drilling was done at the site and adjacent to the site. In May, 1995, Douglas L. Smith, Ph.D., P.G., conducted an electrical resistivity study (ER) at the site to investigate the subsurface conditions. Thomas H. Patton, Ph.D., P.G. and Charles Swallows, P.E. assisted in the investigation of the subsurface conditions at the site. Ralph E. Eng, P.E., signed and sealed the application for general permit for the proposed C&D facility. In rendering a report following his investigation of the subsurface conditions, Mr. Hill signed and sealed the report and supporting documentation. Likewise, Dr. Smith signed and sealed the report and supporting documentation associated with the ER study, together with Anthony F. Randazzo, Ph.D., P.G. The contribution by Dr. Patton and Mr. Swallows to the geotechnical investigation did not include signing and sealing a report and documentation. Nonetheless, Dr. Patton and Mr. Swallows, when testifying concerning the permit request, as with other professional witnesses, were found qualified to offer testimony consistent with their professional credentials and factual knowledge. 1/ A foundation analysis to determine the ability of the foundation to support the loads and stresses imposed by the fill material revealed that the weight of the construction debris was approximately 70 pounds per cubic foot, whereas the weight of the existing sand to be excavated is approximately 100 pounds per cubic foot. Thus, the placement of fill material following excavation would impose less stress on the subsurface than before. No significant settlement of the fill materials is expected to occur, resulting from its weight. The nature and fate of leachate promoted by the placement of fill at the site, in an environmental susceptible to bio-chemical and physical influences in transport through the subsurface, has the potential to adversely impact ground water. Those impacts could possibly cause violations of water- quality standards, ground-water standards, and drinking-water standards. These issues are considered based upon facts associated with the imperatives which must be properly addressed through the geotechnical investigation. That process anticipates gaining an understanding of subsurface conditions, to include the soil stratigraphy and ground-water table conditions. The ground-water table conditions involves estimations of the average and maximum high ground-water table. The geotechnical investigation should also explore the possibility of and address the existence of any sinkholes on the site. No specific testimony was given concerning the degree to which leachate, when present in the ground water at the Floridan Aquifer, might promote water-quality violations. Leachate properties and constituents were described in general terms of water-quality considerations, for example, hardness, nitrates, nitrites, alkalinity, presence of ammonia, chlorides, iron manganese, phenols, barium, arsenic, cadmium, lead, mercury, zinc, TDS and sulfates, urea formaldehyde, plaster, creosote, glues, and mastic hardeners. The evidence presented concerning the parameters for water quality did include a reference to barium, ranging from .5UG/L to 8UG/L in basically similar circumstances. The fill material can influence the natural PH by creating acidic conditions causing the PH to fall from a neutral 7.0 to 5.5 to 6.5. The process that takes place over time with the fill material also releases gases, such as methane, hydrogensulphide, and carbon dioxide. Rainwater falling on the ground's surface forms the basis for transporting the leachate through the subsurface. Only the Floridan Aquifer is potentially at risk, there being no surface water bodies or surficial aquifer at the site. Taking into account rainfall disposition by evapotranspiration, storm- water runoff, and subsurface infiltration, without certainty as to the amounts in those processes, it can be said that a significant amount of rainfall is available through infiltration to recharge the Floridan Aquifer and to transport leachate promoted by the fill. This is borne out by the absence of surface water bodies and a surficial aquifer on the site. To gain basic information concerning the subsurface conditions, Watson had 14 standard penetration test borings conducted by Mr. Hill and his firm. Those borings were advanced to depths of 35-72 feet. Additionally, three auger borings were performed to a depth of 40-50 feet. The auger borings were at sites A-1, A-2, and A-3, performed on April 17, 1993. In July of 1993, standard penetration test borings were performed at sites B-1, B-2, B-3, and B-4. In April of 1994, standard penetration test borings were performed at sites B-5, B-6, B-7, and B-8. In September of 1994, standard penetration test borings were performed at sites B-9, B-10, B-11, B-12, B-13, and B-14. The borings that were performed at the proposed site were at B-2, B-5, B-6, B-9, B-10, and B-14, for a total of six borings. The other borings were performed on the adjacent parcel. The borings at the proposed site were widely dispersed over the 143 acres contemplated for excavation and fill. The borings on the adjacent parcel, referred to as the Whitehurst parcel, were widely dispersed over 475 acres. Logs of the soil borings were prepared depicting the findings in the subsurface. The soil stratigraphy found in the borings was varied with sand, clayey sand, sandy clay and limerock present in some but not all borings. The sands that have been described are Aeolian. The sands are remnants of an ancient coastal dune system. Soil permeability tests were conducted on a limited basis at boring B- 9 at a 25-foot sample depth. The tan and orange clayey sand described had a co- efficient for permeability of 1x10-6. That sample and others described were obtained through a split-spoon. At B-12, at 35 feet, tan and orange clayey sand was found with a co-efficient for permeability of 2.6x10-8. At B-13, at 30 feet, tan and orange clayey sand was found and tested as 2.0x10-8 for the co- efficient for permeability. At B-14, at 30 feet, tan and orange sandy clay was found with a co-efficient for permeability of 9.6x10-9. In describing the soils, sieve analysis was not performed to more precisely classify the sediments encountered. This description of the strata is by appearance and texture. The clayey sand and sandy clay found in the borings retard discharge of the leachate to the ground water in the Floridan Aquifer based upon the permeability in those soils. Generally stated, the tan sands described have a co-efficient for permeability of 10-1 to 10-4. These sands are highly permeable, presenting an easy opportunity to convey the leachate contained in the infiltrating rainwater. Anomalous findings concerning soil permeability are shown at B-4, an off-site location, which portrays only sand in the boring. Also, B-9, which was drilled four to five feet east of a known sinkhole at the site is noteworthy in that the boring log describes tan and orange sandy clay, with trace limerock below 30 feet. This is in contrast to the field notation by the driller of the "p" for push and drilling rod "free fall" from 38 feet BLS to 42.5 feet BLS before encountering limerock, connoting a possible cavity in the 38-foot BLS to 42.5-foot BLS region. The karst feature that is located in the area where boring B-9 was conducted will be surveyed and marked with fence posts prior to excavation. No excavation will be conducted within 200 feet of that site. In addition to the phenomenon at the B-9 boring area, sinkholes at the surface were observed one-half to three-quarters of a mile northeast of the site. Sinkholes can occur when the placement of fill changes the hydraulics and loading in a karst environment. Finally, at B-6, limerock was encountered above the 46.9 feet MSL regional piezometric surface of the Floridan Aquifer. That limerock is considered part of the aquifer system. The head pressure at that location was not sufficient to force the ground water from the Floridan Aquifer. The more typical experience was as shown in B-5, where the surface of the limerock was lower than the regional piezometric surface. In B-5, ground water was not encountered until the clayey layer was breached and water rose in the drill hole. On occasions, such as the experience in B-5, there was an indication that Artesian conditions existed at those places. At the locations where the Artesian conditions were experienced, the Floridan Aquifer is confined. At B-6, where the limestone rises higher than the regional piezometric surface, the Floridan Aquifer is not confined. The bore hole at B-2 was terminated before breaching the clayey layer, and ground water was not encountered. Watson's consultant Hill considered that the ground-water table was found within the Floridan Aquifer at the site whose regional potentiometric surface was 46.9 MSL. He perceived that the findings showed ground water at 45 feet MSL constituting the average for the site. Watson estimated that the "seasonal high" ground-water table at the site was 48 feet MSL. The term "seasonal high" is equated to maximum high. Watson claims that the fluctuation in the ground-water table would be only a few feet. This would mean that the 45 feet MSL from bore hole data would represent not only the average across the site but the average value at the site at any point in time during the year. Watson makes this assertion notwithstanding that the borings were made over two years during different seasons. The basis for the estimate of maximum high ground-water table is not evident. In Dr. Patton's remarks in the application, there is a reference to the fact that the lowest encountered elevation for the Floridan Aquifer was 45 feet MSL and the highest was 55 feet MSL, making the average 50 feet MSL. This runs contrary to the remarks by Hill in which Hill said the elevation in the region was 46.9, the elevation detected was 45, and that the seasonal high would be 48. The only borings that were made in which the log reflects the MSL elevation and the boring depth are borings that were conducted in April 1994. On that date, the boring depth at which ground water was encountered varied from 37-43 feet and the MSL depth varied from 39-47 feet. If only the information for B-5 and B-6 on the site proper is used, those two data points associated with the borings on April 1994 reveal ground water at an excavation depth of 37 feet and between 45-47 feet MSL, respectively. Overall, without reference to MSL, the depths at which the ground water was encountered in the borings varied from 19-44 feet, if encountered. Although it is not shown in the boring log what the relationship is to MSL, at B-9, water was found at a drilling depth of 38 feet; at B-10, at a depth of 36 and one-half feet; at B-2, no water had been encountered at a drilling depth of 50 feet; at B-14, no water had been encountered at a drilling depth of 35 feet; at B-1, water was encountered at a level of 44 feet; at B-3, water had not been encountered at the concluding depth of 50 feet; at B-4, water had not been encountered at the concluding depth of 50 feet; at B-11, water was encountered at a drilling depth of 31 and one-half feet; at B-12, water was encountered at a drilling depth of 19 feet; at B-13, water was encountered at a drilling depth of 21 and one-half feet. Where elevations were measured for the water table in the bore holes, the holes were left open until the drillings had been concluded. Then the measurements were made. In this project, the consultant did not equilibrate the ground-water table by the traditional method of leaving a piezometer in the bore hole to maintain its integrity for a day before making the measurement. Watson has not provided sufficient information and explanation to determine a proper estimate of the average and maximum high ground-water table across the site. Returning to the ER investigation, it involved 39 soundings, which is roughly equivalent to drilling bore holes. The sounding profiles were determined through Wenner-Array Sounding and Lee-Directional Equipment. This technique involves the passing of an electrical current underground and measuring its resistance to flow. The expectation is that earth materials, for example, clay, sand, limestone, and cavities will resist the flow of electrical current differently. Substantially greater contrast in the degree of resistance, anomalies, is used to identify and locate earth materials, as well as the presence and shape of cavities. The sounding measurements reveal two- dimensional detail below the surface at progressively-greater depths. Lee- Directional measurements determine the direction of higher or lower resistivity along the survey line. While in the field, electrodes are placed in the ground at equal distances from one another. After a measurement, this distance is increased in an orderly fashion. The greater distance between the electrodes, the greater the depth of penetration. The ER equipment's electrical current has the capacity to penetrate through clay and into lower features in the subsurface. Subsurface from depths five to 100 feet were examined in this study. Within the 39 groundings surveyed, various soils were encountered. Generally, a thick cover of unconsolidated sand was found overlying clayey sand, with a clay layer varying in thickness and limestone found in some soundings, but not others. Where limestone was detected, it was at deeper levels in the southwestern part of the site. Because ER cannot distinguish between clayey sand and sandy clay, the area where those soils are found is referred to in the report as a thinner clayey sand layer. Also, in some places the upper surface of limestone has suffered weathering or deterioration and may appear as the lower part of the clay unit in terms of its electrical properties. The general portrayal in the ER study concerning the soil stratigraphy, wherein reference is made to dry sand up to 30 feet in thickness overlying a thinner clayey sand layer, approximately 10 feet in thickness, overlying a relatively thick clay layer from 10-60 feet and then limestone, does not coincide with the complexity in the stratigraphy found in the soil borings. In the ER study, at stations 8 and 10, voids were encountered. The nature of those voids is unexplained by this investigative process. At station 8, the void was found at approximately 100 feet deep. At station 10, the voids were at 50 feet and 100 feet deep. At station 14, anomalous findings were explained as the placement of fill and organic material during land-clearing operations. The suggestion in the written report, which summarizes the findings in the ER investigation, that a water table was encountered at approximately 40 feet deep, coinciding with the top of the clay layer, is contrary to the findings in the soil borings. To the extent that finding is intended to suggest that there is a perched water table or surficial aquifer above the clay layer, that view is contrary to other evidence adduced at hearing and is rejected. Like the soil borings, the ER soundings examined very discreet areas, but revealed less discreet information. This investigative process is not designed by itself to resolve disputes concerning the character of the subsurface, taking into account statutory and rule requirements for issuing a general permit. To portray the subsurface conditions, in June 1995, Petitioners undertook another basic study by employing ground-penetrating radar (GPR) to reveal the subsurface conditions. Again, GPR, like ER, affords limited insight into the conditions in the subsurface. More precise information than is revealed in the results from the GPR study would be needed to understand the subsurface conditions. GPR is comprised of several pieces of equipment that are connected with cables and a power source. This equipment is mobile. It uses a transmitter and receiver antenna that essentially glides along the ground surface. A signal is emitted through the transmitter. It perpetrates into the ground. It is reflected off materials of different electrical properties back to the receiving antenna and charted. The record that is made is continuous. Unlike ER, GPR is capable of detecting small anomalies in the subsurface. In employing the equipment in this investigation, Petitioners' consultant was looking for either stratigraphic or water-table reflectors and anomalous conditions. The experience at this site was comparable to the experience at other sites in gaining an understanding of how geologic materials are deposited. The GPR investigation covered approximately 10 percent of the site. Four lines were traversed east to west. Two lines were traversed north to south, and two other lines were traversed on a diagonal. GPR will not significantly penetrate clay. Its ability to penetrate is dependent in some measure upon the nature of the clay unit encountered. However, GPR reveals contrasts in the conductivity of clay, when compared to the overlying sand. The greater the contrast, the greater the reflection event. In this connection, the presence of moisture can slow or prohibit the electromagnetic energy generated by GPR. The GPR study revealed a substantial number of subsurface anomalies that might be indicative of possible access for leachate generated by the placement of fill to enter the Floridan Aquifer. These anomalies might represent sand columns and cover subsidence sinkholes. Any sinkholes on the site would be expected to be "cover subsidence"- type sinkholes. Those sinkholes occur through a process in which overlying strata slowly subsides into the sub-adjacent karst feature, rather than suddenly collapsing. Sinkholes develop rarely, but pose more risk of development in areas where sinkholes have occurred previously. Sinkholes are not always seen at the land surface. Sinkholes can present a risk to ground water in the aquifer in view of solution cavities found in the limestone which is part of the aquifer, thus allowing leachate to flow through the cavities into the ground water. Some anomalies found in the GPR study were more significant. One that was observed in the third traverse was 100 feet wide by 80-90 feet deep. There is an indication that this area might be filled with sands, creating a more ready access to the lower subsurface than would be expected with other soils. Another anomaly discovered was 200-300 feet long and 400-500 feet wide, approximately 50 feet below the surface. Overall subsurface conditions are not readily understood. Watson, through its consultant, suggests that the site is part of the Newberry Sand Hills region of the Brooksville Ridge system. As such, karst activity has proceeded in a slower manner than other places in Alachua County, with no presently active karst conditions. In opposition, Petitioners assert that the site is part of the Brooksville Ridge System, which is an internally-drained area of karst-dominated highly fractured terrain, according to its consultants. If Petitioners are correct, those circumstances lead to solutioning of the limestone and are not indicative of area of continuous impermeable clay layers found at the site as part of the Hawthorne formation that Watson's consultant surmises. The exact nature of the site concerning factors that must be considered in this permit application have not been adequately resolved in this record. While it is sufficiently evident that the Floridan Aquifer is not confined, it is unclear whether the circumstances at the site present unacceptable risks to the ground water, in view of existing subsurface conditions. From the record, the proper manner to resolve the issue would be to perform more soil borings on the site proper to identify the subsurface conditions concerning soil stratigraphy and ground-water location.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that a Final Order be entered which denies Watson the use of a general permit to operate the proposed C&D facility. DONE AND ENTERED this 7th day of August, 1996, in Tallahassee, Florida. CHARLES C. ADAMS, Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 7th day of August, 1996.

# 6
CITIZENS VOICE ASSOCIATION OF HOLMES COUNTY vs ENVIRONMENTAL PROTECTORS ASSOCIATION, INC., AND DEPARTMENT OF ENVIRONMENTAL REGULATION, 92-000179 (1992)
Division of Administrative Hearings, Florida Filed:Bonifay, Florida Jan. 10, 1992 Number: 92-000179 Latest Update: May 14, 1993

Findings Of Fact This proceeding concerns an application for authority to construct and operate a 20-acre Class I, Class III, and an asbestos municipal solid waste landfill, as well as to close an existing 25.5-acre Class I municipal solid waste landfill located in Holmes County, Florida. This facility would function as a new regional landfill, in part, to replace the existing landfill in Holmes County. The applicant, EPAI, is a Florida corporation formed for the purpose of constructing and operating the proposed facility. EPAI has an option to purchase the site involved from its present owner, which will be accomplished after the facility is permitted, if it is, and all necessary permits for construction and operation have been obtained, then the applicant will sell stock in its corporation to City Management Corporation (City) domiciled in Detroit, Michigan. EPAI will then continue to exist as a wholly-owned subsidiary of City and will proceed to construct and operate the new landfill and initiate and complete all closure operations for the existing landfill. The Department of Environmental Regulation is an agency of the State of Florida subject to the provisions of Chapter 120, Florida Statutes, and charged with enforcing the provisions of Chapter 403, Florida Statutes, and Chapter 17- 701, FAC, as pertinent to this proceeding. It is thus charged with regulating solid waste management facilities, including permitting their construction, operation, and closure. It is charged with reviewing applications for such projects and issuing permits therefor if the statutes and rules it is charged with enforcing are found to have been complied with by a permit applicant. It has performed that function in this case up until the point that jurisdiction of the permit application dispute engendered by the filing of the subject petition resulted in transfer of the matter to the Division of Administrative Hearings. The Petitioner, CVA, is a group of Holmes County citizens opposing issuance of the landfill permit at issue. Based upon rulings on the motions to dismiss and extant law, CVA was required to present proof of its standing at the final hearing held in this cause. CVA called two witnesses, neither of whom presented evidence relevant to the issue of standing. CVA did not present any evidence, either through testimony or exhibits, to identify its members, to establish that a substantial number of its members would be affected by the issuance of the permit and the construction and operation of the landfill nor evidence which would identify members whose substantial interests will be affected by the construction and operation in a way different from any effect on the interests of the public at large. Project Background Holmes County currently leases a site on which its existing landfill is located. The site consists of 84 acres owned by Stone Container Corporation, the successor in interest to International Paper Company. The existing landfill itself covers approximately 25.5 acres. The proposed facility to be located on the same tract would serve as a new regional landfill to meet the solid waste disposal needs of Holmes County, as well as surrounding counties. The proposed facility would consist of approximately 20 acres divided into Class I, Class III, and asbestos landfill facilities. The project will be located on To Shoo Fly Bridge Road, lying approximately 3.3 miles northwest of the City of Bonifay in Holmes County. The northern portion of the present landfill is an unlined cell operated by the county which began receiving waste in 1979 and ceased depositing waste sometime in 1987. The southside cell of the landfill is clay lined with a leachate collection system. That portion of the county facility ceased accepting waste sometime in 1990. Holmes County is unable to properly operate or to close the existing landfill. Consequently, in June of 1989, the county and the Department entered into a consent order whereby the county agreed to meet certain operational, groundwater monitoring, landfill cell design, administrative and other requirements within certain time periods. The county attempted to meet the terms of that consent order but was unable to do so, primarily for financial reasons. In 1990, the county applied to the Department for a permit to close the existing landfill in accordance with the pertinent provisions of Chapter 403, Florida Statutes, and Chapter 17-7, FAC. The closure permit application was denied by Department order of May 22, 1991. Waste disposal at the Holmes County landfill had ceased in 1990, but it has not been properly closed pursuant to law and Department rules. Currently, it only has a temporary cover of soil and seeded grass in order to stabilize its slopes on the portion of the landfill commonly known as the "highrise". The closure costs for the existing landfill were estimated at approximately $700,000.00, which is beyond the resources of the county. Residents of unincorporated Holmes County currently are disposing of their solid waste by hauling it to the regional landfill in Campbellton in Jackson County nearby or by dumping it in unauthorized disposal areas, such as streams or roadsides. The City of Bonifay disposes its solid waste in the Campbellton landfill, as well. The Campbellton landfill, however, does not accept several solid waste components, such as yard trash. Since the county was unable to obtain the necessary permits to either operate or to close the existing landfill and was unable to meet State-mandated solid waste disposal and recycling requirements, it entered into an agreement with EPAI in May of 1990, whereby that entity assumed financial and legal responsibility for closure of the existing landfill, including obtaining the necessary permits from DER to close it, upon issuance of DER permits necessary to construct and operate a new Class I, Class III, and asbestos landfill at the same general site. The May 21, 1990 agreement between EPAI and the county authorized EPAI to so proceed before DER. Once EPAI obtained the permits necessary, the agreement provided that the county would surrender all right, title and interest in the 84-acre site to EPAI, convey all structures, equipment and appurtenances theretofore used by the county for its landfill operation to the corporation and to assign EPAI any legally assignable benefits which the county would receive under the 1988 Solid Waste Management Act, including recycling grants, if applicable. EPAI, the applicant, has an option to purchase the 84-acre site from Stone Container Corporation. After the issuance of any permits for closure and for construction and operation of the new facilities, the option would be exercised and the property would be conveyed by Stone Container Corporation to EPAI. Once it has purchased that property and the county has abandoned its lease on the property, pursuant to the May 21, 1990 agreement, EPAI would then hold fee title ownership and possession rights to the site. Once it obtained the necessary permits for construction and operation of the new landfill, EPAI will sell its stock to City. EPAI would then continue to exist as a wholly- owned subsidiary of City and will construct and operate the new landfill and close the existing landfill. City is a wholly-integrated waste management corporation based in Detroit, Michigan. It has been operating in the solid waste management field since 1961 and has extensive experience in landfill construction, operation and closure. It operates seven regional landfills, approximately ten transfer stations, and 30-40 residential and commercial solid waste collection companies in Michigan. It also operates hazardous waste facilities in Michigan and in Tampa, Florida. Through construction and operation of its regional landfill and hazardous waste facilities, it is familiar with and accustomed to compliance with all pertinent state and federal regulations applicable to such facilities. City holds a DER permit for its hazardous waste facility in the Tampa, Florida, area and has had a history of no major violations of applicable laws and rules. The corporation was shown to be financially sound. EPAI will operate the proposed facility, should it be permitted, as a regional landfill serving neighboring counties between Okaloosa and Jackson Counties, south to the Gulf of Mexico, and north to the Alabama border. The economic feasibility, however, was not shown to depend on interstate transport or disposal of out-of-state wastes in the landfill. Section 17-701.030, FAC, sets forth the permit submittal requirements for solid waste management facilities. CVA stipulated that EPAI met all applicable permit application submittal requirements in this section, except those in Sections 17-701.030(5)(h) & (i) and 17-701.030(7), FAC. EPAI has an option to purchase the landfill site from Stone Container Corporation, the current owner. EPAI has met the ownership requirement in Section 17-701.030(5)(h), FAC. The applicant will establish an escrow account to insure financial responsibility for closing and long-term care and maintenance of the landfill. A specific condition has been agreed to be placed in the permit requiring the applicant to submit written proof of having established financial assurance for closure and long-term care of the entire site 60 days prior to the acceptance of any solid waste at the facility and within 30 days after permit issuance for operations at the existing landfill. City has the financial ability to establish the escrow account and to provide the necessary financial assurance within 30 days after permit issuance. The applicant has thus satisfied the requirements of 17-701.030(5)(i), FAC, with regard to financial responsibility. Section 17-701.030(7), FAC, requires DER to forward a copy of the permit application to the Water Management District within seven days of receipt of the application. The Water Management District would then prepare an advisory report for DER on the landfill's potential impact on water resources with recommendations regarding disposition of the application. The Department sent the application to the Northwest Florida Water Management District, but the District did not prepare an advisory report. The administrator for the waste management program for the Department's northwest district office, who oversees solid waste facility permitting, testified that, as a matter of course, the District does not prepare an advisory report. Moreover, because the reports are advisory only, DER is not required to respond to any comments or follow any recommendations which may be made by the District in such a report. The Department normally issues solid waste facility permits as a matter of policy without having received a water management district report. 1/ Location and Site Requirements An aerial photograph of this area was prepared, as required by Section 17-701.050(4)(a), FAC. It shows the land uses, zoning, dwellings, wells, roads, and other significant features within one mile of the proposed landfill. This map shows several dwellings located within a mile of the site. The closest dwelling, as determined by aerial photograph and performance of a "windshield" survey, is approximately 2,400 feet from the site. The closest potable water well is at the dwelling located approximately 2,400 feet from the site. There are no existing or approved shallow wells within 500 feet of the proposed waste disposal areas at the landfill. Accordingly, the proposed landfill satisfies the condition in Section 17-701.040(2)(c), FAC, that solid waste not be disposed of within 500 feet of an existing or approved shallow water well. The surficial aquifer is located approximately 30 feet from the ground surface at the landfill site. The sediments in the area in which waste is to be disposed of consists of layers of clay and sandy clay having a very low vertical conductivity. The waste disposal cells will not be excavated down to the surficial aquifer. Therefore, waste will not be disposed of in ground water. Waste will not be disposed of in a sinkhole or in a limestone or gravel pit, as prohibited by Sections 17-701.030(2)(a) and 17-701.040(2)(b), FAC. The 100-year flood zone is located at approximately 120 feet national geodetic vertical datum (NGVD). The proposed landfill will be located at approximately 125 feet NGVD elevation and within a perimeter berm system. Therefore, waste will not be disposed of in an area subject to periodic and frequent flooding, as prohibited by Section 17-701.040(2)(e), FAC. The waste disposal areas are over 200 feet from Long Round Bay, the closest water body. Therefore, the 200-foot setback requirement is met. See, Section 17-701.040(2)(g), FAC. To Shoo Fly Bridge Road, on which the landfill is located, is not a major thoroughfare. There are no other major thoroughfares in the vicinity from which the landfill is visible. Accordingly, waste will not be disposed of in an area open to public view from a major thoroughfare. See, Section 17- 701.040(2)(h), FAC. The landfill site is not located on the right-of-way of a public highway, road or alley, and is not located within the bounds of any airport property. The landfill will not be located within a prohibited distance from airports, as proscribed by Section 17-701.040(2)(k), FAC. See also, Sections 17-701.040(2)(j) and (2)(i), FAC. There are no Class I surface waters within 3,000 feet of the landfill site so the setback provisions in Section 17-701.040(7), FAC, are satisfied. No lead-acid batteries, used oil, yard trash, white goods, or whole waste tires will be accepted at the Class I landfill cell. Only trash and yard trash will be accepted at the Class III cell. Therefore, the prohibitions in Section 17- 701.040(8), FAC, are not violated. A ground water monitoring plan has been developed for the landfill site, pursuant to Section 17-28.700(6), FAC, as required by Section 17- 701.050(3)(a), FAC. The original ground water monitoring plan was prepared by Post, Buckley, Schuh, and Jernigan, Inc. and submitted as part of the initial permit application. This plan addresses monitoring well placement, monitoring, and monitoring plan requirements. It proposes corrective action, as required by Section 17-28.700(6), FAC. Subsequent modifications to that plan were developed by Dr. Thomas Herbert, an expert in geology, hydrogeology, well installation and water quality monitoring. These modifications particularly address monitoring well location and provide additional assurances that the ground water monitoring plan complies with Section 17-28.700(6), FAC. These proposed modifications were submitted to DER prior to hearing. A site foundation analysis using appropriate ASTM methods to determine stability for disposal of waste, cover material, and structures constructed on site was performed and the results were submitted to DER as part of the initial application. Additional foundation stability information and the results of another field investigation regarding sinkhole development potential at the site was submitted to the Department. The field investigations and reports in evidence provide assurance that the disposal site location will provide adequate support for the landfill, as required by Section 17-701.050(3)(b), FAC. The landfill site is easily accessible by collection vehicles and other types of vehicles required to use the site. The site design provides for all weather roadways to be located throughout the site for ready ingress, egress, and movement around the site. The proposed landfill is located to safeguard against water pollution originating from disposal of solid waste. See Section 17-701.050(3)(c)2., FAC. The bottom of the waste disposal cells will be located at least six feet above the top of the surficial aquifer. To ensure that ground water is not polluted by waste disposal, the Class I cell will be lined with a composite liner system comprised of a lower unit consisting of 24 inches of compacted clay having a maximum permeability of 1 X 10-7 centimeters per second, and an upper synthetic liner unit consisting of a high density polyethylene (HDPE) of 80 mil thickness. Leachate generated by the waste in the landfill will be collected by a leachate collection and removal system. The leachate control system consists of a two- foot thick layer of sand having a minimum permeability of 1 X 10-3 centimeters per second, with a permeable geotextile filter cloth layer and a highly permeable geonet layer to collect and direct the leachate into a drainage system consisting of a collection pipe system to transfer the leachate to a containment lagoon. Once in the leachate lagoon, the leachate will be evaporated, recirculated over the working face of the landfill, or transported off site for treatment at a waste water treatment plant. The waste disposal areas are located at approximately 125 foot NGVD elevation. This is well above the 100- year flood plain and they are not located in water bodies or wetlands. An adequate quantity of acceptable earth cover is available on site. See, Section 17-701.050(3)(c)3., FAC. The soil for cover will be obtained from the northeast portion of the site located across To Shoo Fly Bridge Road from the landfill site. The landfill site was shown to conform to proper zoning, as required by Section 17-701.050(3)(c)4., FAC. The 1991 Comprehensive Plan Future Land Use Element for Holmes County designates this site for "public/semi- public/educational" land uses. The "public facilities land uses" designation includes "utilities and other service facilities" of which municipal solid waste landfills are an example. No other land use designation in the Holmes County 1991 Comprehensive Plan expressly includes landfill uses. CVA adduced testimony from Hilton Meadows, its expert witness, as to plant species he observed in the vicinity of the site. He observed plants that he identified as being species that grow on the edge of or in wetlands, but none of these species were shown to exist on the landfill site itself. Mr. Meadows observed them in locations outside the perimeter berms of the landfill site but did not identify their specific locations other than a general direction from the perimeter berms outside of which he observed the plants. He did not quantify the wetland species he observed so as to establish their dominance and did not conduct a jurisdictional wetland survey, as envisioned by Chapter 17- 301, FAC. Landfill Design Requirements As required by Section 17-701.050(4)(a), FAC, an aerial photograph was submitted with the permit drawings. Plot plans were submitted with the permit application, in evidence as EPAI exhibit 1, showing dimensions of the site, location of soil borings, proposed trenching or disposal areas, original elevations, proposed final contours, and previously-filled waste disposal areas. Topographic maps were also submitted with the correct scale and contour intervals required by Section 17-701.050(4)(c), FAC, which show numerous details such as proposed fill areas, borrow areas, access roads, grading, and other details of the design and the site. The design plans also include a report on the current and projected population for the area, the geographic area to be served by the landfill, the anticipated type, quantity and source of the solid waste, the anticipated useful life of the site, and the source and characteristics of cover materials. The landfill will be a regional facility serving the residents of Holmes and surrounding counties. The current population of the area to be served is approximately 63,183 with the projected population for the year 2000 being 76,792. The landfill will receive municipal sanitary solid waste, asbestos, petroleum-contaminated soils, and yard trash. It will not receive used oil, lead-acid batteries, biomedical wastes, hazardous wastes, or septic sludge. The permit application was shown to satisfy all design requirements of Section 17-701.050(4), FAC. Geology, Hydrogeology, and Foundation Stability Dr. Thomas Herbert, a registered professional geologist and licensed well driller in Florida testified of geologic and hydrogeologic investigations and analyses he performed. Mr. Herbert has over 25 years experience in the fields of geology and hydrogeology and was tendered and accepted as an expert in those fields. Dr. Herbert drilled shallow and deep core borings, which were converted into monitor wells to monitor ground water in the surficial and deep aquifers under the landfill site. In addition, he drilled several medium-depth borings along the western boundary of the site to analyze geologic and hydrogeologic conditions in this area, which is the portion of the site closest to Long Round Bay. Dr. Herbert used a hollow stem auger to take the soil borings and install the monitoring wells. This is a device which allows sampling tools to be placed down a hollow drill barrel for more accurate sediment sampling. Dr. Herbert used a continuous sampling system wherein a five-foot core barrel sampled the soil conditions ahead of the turning drill auger. Continuous sampling is preferable to other types of soil sampling equipment because it provides a detailed representative sample of the soil on the site and enables the sampler to precisely determine whether soil materials occur in small thin layers or bands on the site or whether there is a massive deposit of relatively uniform soils. The continuous sampling method also minimizes mixing of soils and creates an undisturbed profile that can be examined once the core barrel is opened. This type of sampling yields a very accurate picture of soil conditions on the site. In addition to the borings taken on the site by Dr. Herbert, other core borings were taken on site by Ardaman & Associates, a geotechnical engineering firm, for the purpose of analyzing the site foundation to determine the site's stability and potential for developing sinkholes. These core boring profiles were analyzed, along with those performed by Dr. Herbert, in determining the site geologic and hydrogeologic conditions. In addition to the core borings, Dr. Herbert reviewed studies on the geology and hydrogeology of the area, as well as the field investigations reported by Post, Buckley, Schuh, and Jernigan, as part of the original permit application submittal. In order to gather additional information on the geology and hydrogeology of the site, gamma ray logging was performed on the wells installed by Dr. Herbert, as well as on the existing wells at the site. Gamma ray logging measures natural gamma radiation from the sediments and permits identification of soil type based on the amount of gamma radiation coming through the soils. Generally, the higher the clay content, the higher the gamma ray count. Gamma ray logging provides an accurate means for determining clay, sand, or sandy clay soils. By examining gamma ray logs of wells he installed and sampled, as well as for wells already existing on the site, Dr. Herbert was able to obtain extensive information about the subsurface soil conditions at the site. Based on these information sources, the geology of the site was determined. The sediments ranging from the surface of the site down to more than 100 feet below the surface are part of the citronelle formation, which consists of consolidated to partially cemented sand, silt, and clay sediments, called clastics, deposited in the Plio-Pleistocene age, between one and four million years ago. The citronelle formation at the site is predominantly clay, with some thin sand lenses running through the clays. The sand lenses or "stringers" grade laterally into the clays or silts. A surficial aquifer is located between 30 and 40 feet below the land surface at the site and is confined immediately above and below by dense, dry clay layers. The top confining unit is estimated to be approximately 10 feet thick. The lower clay confining unit, down to approximately 100 feet below the land surface, consists of dense, dry clays with thin units of sandy or silty clays or clayey sands. Below the citronelle foundation, at approximately 100 feet below land surface, there is a sequence of weathered carbonate rock or mud, termed "residuum". This material is too fine-grained to yield water in usable quantities. Competent limestone is first encountered below the carbonate "residuum" at approximately 262 feet below the surface. This limestone is likely part of the lisbon- tallahatta formation, which is part of the Claiborne Aquifer. In order to investigate an area in the western portion of the site depicted in the Post, Buckley report as being sandy, Dr. Herbert installed a deep core boring and analyzed the soils in that area. He thus determined that rather than being solid sand, as depicted in the Post, Buckley report, the sediments in this area are actually sands interbedded with clay and silt stringers, which decrease the sediments' horizontal and vertical conductivity. He determined that the area is a sandy channel bounded laterally and below by dense clays. As with the rest of the site, the surficial aquifer also is confined in this area. As part of his ground water monitoring plan recommendations, Dr. Herbert recommended installation of an additional monitor well in this area. The core borings and gamma ray logging allowed accurate determination of the site hydrogeology. Transient surface water, termed "vadose" water, percolates down from the land surface through layers of clay, sand, and silt. Within these sediment layers, there are lenses of clay ranging from a few inches to a foot thick. Vadose water is trapped on top of the clay layers, creating shallow saturated zones called "perched" zones, ranging from one to a few inches thick. The vadose water and perched zones are not connected to any ground water systems. Below these perched zones, dense, dry clay layers create a confining layer above the surficial aquifer. The surficial aquifer occurs in discontinuous sandy layers 30 to 40 feet below the land surface. Beneath the surficial aquifer, dense, dry clay layers form a lower confining unit. These confining clay layers overlying and underlying the surficial aquifer create pressure or hydraulic "head", on the water in the surficial aquifer. When a core boring or well penetrates through the upper clay confining layer, the water in the surficial aquifer rises up the well or core casing, due to the hydraulic head, to a level called the potentiometric surface, which is at a higher elevation than the elevation at which the surficial acquifer is actually located. Based on the confined nature of the surficial aquifer, it was determined that water table elevations reported in the hydrogeologic report initially submitted as part of the application are actually potentiometric surface elevations. This is consistent with the information provided in the additional information submittal as part of the permit application which indicates that the potentiometric surface at the landfill site may be five to seven feet below the bottom of the liner. This was confirmed at hearing by Mike Markey, a professional geologist with the Department, who reviewed the permit application and hydrogeologic report submitted by Dr. Herbert and prepared a memorandum dated September 2, 1992, stating that his "previous concern regarding separation of the 'water table' aquifer and HDPE liner is no longer an issue because the 'water table' aquifer was not found" by Dr. Herbert. The surficial aquifer on the landfill site cannot yield enough water to support long-term use as a potable water source. Due to the high clay content in the aquifer, the water has a high sediment content and low water quality, rendering it unusable for domestic purposes. The overall horizontal conductivity for the surficial aquifer on a site-wide basis is estimated to be low due to the discontinuous sand layers comprising the surficial aquifer on the site. While some zones within the aquifer may have high horizontal conductivity, these zones have limited lateral extent and change rapidly into zones of low horizontal conductivity. The steep hydraulic gradient from the highest to lowest areas of the site further indicates that the surficial aquifer has low horizontal conductivity. If water were rapidly moving through the surficial aquifer across the site, the hydraulic gradient would be much less steep. The presence of the hydraulic gradient across the site indicates that the clay in the surficial aquifer system is so pervasive that the water in that system essentially is stagnant. Based upon his extensive experience and familiarity with the clastic sediments like those found at the landfill site, Dr. Herbert estimated the vertical permeability of the sediments comprising the upper and lower confining layers of the surficial aquifer to be in the range of 1 X 10-6 to 1 X 10-8 centimeters per second. These projected permeability values are very low, thus, very little water is moving vertically through the surficial aquifer to deeper depths. The original hydrogeology report on the site submitted as part of the application indicated that the ground water flow is to the west, southwest, and northwest based upon monitoring well and piezometric data. Dr. Herbert's subsequent field investigations confirmed the ground water flow direction as reported in the permit application. Dr. Herbert estimated that the surficial aquifer will be located between 8 and 15 feet below the finished bottom elevation of the Class I waste disposal cell. The intermediate aquifer system is located beginning 80 or 90 feet below the landfill site and is defined as all strata that lie between and retard the exchange of water between the surficial aquifer and the underlying Floridan aquifer, including the lower clay confining unit directly underlying the surficial aquifer. In this part of west Florida, the intermediate system is estimated to be 50 to 60 feet thick and acts as an "aquatard", which means that it retards the passage of water from the surficial aquifer to lower levels. The standard penetration test (SPT), which is an engineering test of soil density, yielded values of 40 to 50 blows per inch for soils sampled in the top 20 feet of the intermediate system throughout the site. These SPT values indicate the soils in the intermediate system are extremely dense, over-compacted clay materials. Below the clays, the lower portion of the intermediate system consists of a weathered limestone residuum. Due to the extremely fine grain size of the residuum, it will not yield water in quantities sufficient to support a well. The deep core borings taken at the site indicate that the Floridan aquifer limestone underlying the landfill site has undergone paleokarst evolution. The underlying limestone has been dissolved away over a long period of time, creating the limestone residuum detected in the deep core borings. Based on the deep core borings taken at the site, Dr. Herbert concluded there is no competent Floridan aquifer limestone capable of supporting wells underlying the landfill site, and the Floridan aquifer either is not present under the site or exists only as a relict or remnant of the limestone formations that make up the Floridan aquifer system in other parts of Florida. The core borings taken on site indicate that the paleokarst terrain underlying the landfill contains no cavities, large openings, sinkholes or other features in the rock that could cause the landfill foundation to collapse. All karst features in this area are filled in and "healed" by the carbonate residuum overlying the limestone under the landfill. Dr. Herbert also investigated the geologic nature of Long Round Bay. In addition to reviewing literature regarding the geology of west Florida in the vicinity of Holmes County and topographic maps depicting the site, Dr. Herbert took at least one sediment core boring in Long Round Bay and also circumnavigated the perimeter of the Bay. Based on information from these sources, Dr. Herbert opined that Long Round Bay, like many other drainage basins in the area north of Bonifay, is a collapse feature of the paleokarst sequence in the vicinity, and is a topographic depression caused by weathering away of the limestone over time. The sediments underlying Long Round Bay consist of deep citronelle clays washed into the collapse feature. Long Round Bay is relatively flat with poorly defined outlets and receives surface drainage from the surrounding area. Because there are no defined channels connecting Long Round Bay to Wright's Creek, water movement from Long Round Bay into Wright's Creek is extremely slow. Long Round Bay is likely not an aquifer recharge area because there is no direct karst connection between Long Round Bay and any aquifer. Clays have run off the surrounding area and accumulated in Long Round Bay for thousands of years sealing off any connections between it and any underlying aquifer. In addition to Dr. Herbert's determination of the potential for active karst formation under the landfill site, Ardaman & Associates performed the foundation analysis of the site, as required by Section 17-701.050(3)(b), FAC. The foundation analysis was supervised by William Jordan, a registered professional engineer. He has an extensive education in geotechnical engineering, as well as 11 years of experience in that field. He was tendered and accepted as an expert in geotechnical engineering and materials testing. As part of the foundation analysis, Ardaman & Associates performed two deep core borings to determine the potential for development of sinkholes at the site. Both borings were taken on the western side of the landfill site, closest to Long Round Bay. One of the borings was performed in an area having a relatively high sand content in the soil, as identified in the hydrogeology report submitted in the permit application. The borings were drilled down to approximately 160 feet below the surface, to the top of the weathered limestone horizon. In Mr. Jordan's extensive experience in foundation testing and analysis, presence or potential for sinkhole development is usually evident at the horizon of the limestone or within the top 15 feet of the limestone. The core borings did not reveal any joints, open seams, cavities, or very loose or soft zones at the horizon or on top of the limestone. In addition, the sediments overlying the limestone horizon were determined to consist of medium dense to dense and medium stiff to stiff sediments, which indicate lack of sinkhole activity or potential. No indication of active or imminent sinkhole conditions were found on the site, either through the core borings or from surficial observation. In addition to the deep core borings, Ardaman & Associates, under Mr. Jordan's supervision, also performed four other core borings to a depth of 60 feet below the land surface. These borings indicated the sediments at the site are composed of clayey sands, very clayey sands, "lean" sandy clays, and sandy "fat" clays. The SPT tests performed on the soils indicate the site soils range from medium to high density and are stiff to very stiff and hard. Mr. Jordan performed a settlement analysis of the landfill based on the types of sediments present on site and assuming a compacted unit weight of 37 pounds per cubic foot for the landfill waste. This unit weight is a typical weight value for compacted municipal waste. For settlement analysis, Mr. Jordan used the SMRF elastic compression and consolidation methods, both of which are professionally accepted standard methods for determining settlement of large structures, including landfills. Using these methods, he determined that the total settlement for the landfill over its total life would be between three and five and one-half inches. Based on the uniformity of the subsurface conditions and density of the soils on the site, any settlement would be uniform and thus would not result in tearing or other failure of the landfill liner. Mr. Jordan performed a bearing capacity analysis of the site. Based on the sediments on site, he estimated the safety factor against bearing capacity to be in excess of 10. The minimum acceptable safety factor for large habitable structures, such as buildings, is in the neighborhood of two to three. Thus, the safety factor determined for the landfill site far exceeds the minimum standard for bearing capacity. Mr. Jordan performed an embankment slope stability analysis for the perimeter berm of the landfill. The inside slope of the perimeter berm has a 3:1 slope and the outside slope has a 4:1 slope. Mr. Jordan's stability analysis was performed on the inside slope of the berm which is steeper and, therefore, less stable. Due to the stability of the clay sediments composing the subgrade of the perimeter berm, and based on his extensive experience in slope stability analysis, Mr. Jordan determined there is no danger of deep circular arc failure of the landfill berm. He used a professionally accepted standard slope stability evaluation method called the "infinite slope" method, to analyze the probability for shallow circular arc failure of the berm. He determined a safety factor of 2.0 to 2.4 for the embankment slope, which is between 1.5 and 2.0 times greater than the minimum accepted safety factor of between 1.3 and 1.5 for embankment slopes. Mr. Jordan also performed an analysis of the site subgrade stability for compaction. Mr. Jordan's analysis showed that the stiff or medium dense silty to clayey sands and clays on the site provide a stable base against which compaction over the life of the landfill can safely occur. Based on the foundation analysis performed by Mr. Jordan on the landfill site, it is evident that the landfill will not be located in an open sinkhole or in an area where geologic foundations or subterranean features will not provide adequate support for the landfill. (See Section 17-701.040(2)(a), FAC). The foundation analysis indicates the landfill will be installed upon a base or in a hydrogeologic setting capable of providing support to the liner and resistance to pressure gradients above and below the liner to prevent failure of the liner due to settlement compression, as required by Section 17- 701.050(5)(b)2., FAC. The foundation analysis further indicates the site will provide support for the landfill, including the waste, cover and structures built on the site (See Section 17-701.050(3)(b), FAC). Section 17-701.050(5)(d)1.a, FAC, requires the lower component of the landfill liner to consist of a compacted soil layer having a maximum hydraulic conductivity of 1 X 10-7 centimeters per second. Mr. Jordan analyzed nine additional core borings to determine if the native soils on the site meet the conductivity standard in the rule or if off-site soils must be blended with on- site soils to achieve the standard. To test whether the on-site soil will meet the conductivity standard, soils were compacted to approximately 95% of the standard maximum for density, which is the industry standard compaction for soil permeability testing. The soils from eight of the nine borings taken at the site exhibited conductivity values of approximately 4.8 X 10-8 centimeters per second. This value is five times less conductive than the value required by the above-cited rule. Only one boring exhibited a conductivity value in excess of the maximum value established in the rule. Based on the conductivity values determined at the site, it is likely the native soils on the landfill site will meet or exceed the maximum conductivity value mandated in the above-cited rule. If the on-site soils do not meet this standard, then bentonite or another material from off site will be blended with the on-site soils to achieve the conductivity standard mandated by the rule. Ground Water Monitoring and Water Quality As required by Section 17-701.050(3)(a), FAC, a ground water monitoring plan for the landfill site was completed in accordance with Section 17-28.700(6), FAC. The original ground water monitoring plan was submitted as part of the application. This plan was incorporated into the notice of intent and the attached draft permit for the landfill, as part of specific condition The ground water monitoring plan subsequently was modified and supplemented by Dr. Herbert to include monitor wells required to be installed by Holmes County on the site, pursuant to the consent order entered into by the county and DER on June 26, 1989, as well as the wells installed by Dr. Herbert as part of his hydrogeologic investigation. DER established a zone of discharge for the landfill site, as required by Rule 17-28.700(4), FAC. The horizontal boundary of the zone of discharge extends to the ground water monitoring compliance wells located at the western, northern, and southern portions of the site and to a line coextensive with the eastern property line for the southeastern portion of the property. The horizontal zone of discharge boundary is located inside the western, northern, and southern property boundaries. The vertical zone of discharge extends from the land surface down to the top of the clay layer underlying the site at approximately +50 to +60 feet NGVD. These zones are established in compliance with Section 17-28.700(4), FAC. The groundwater monitoring plan provides for 15 monitor wells to be located in close proximity to the waste disposal areas and the site boundaries to monitor compliance with all applicable ground water quality standards in Sections 17-3.402, 17-3.404, and 17-550.310, FAC. Four of these wells will be located near the western property boundary to closely monitor water quality to insure contaminants do not seep into Long Round Bay. To detect contamination that may violate applicable surface water quality standards in Sections 17-302.500, 17-302.510, and 17-302.560, FAC, at the edge of and beyond the zone of discharge, the ground water monitoring plan provides for several surface water sampling points on the landfill site near the edge of the zone of discharge. If contaminants are detected in the surface water monitoring system, remediation activities can be implemented to insure the surface water quality standards set forth in the above-cited rules are not violated outside the zone of discharge. As required by Section 17-28.700(6)(g)1., FAC, the ground water monitoring plan provides for a well to be located to detect natural, unaffected background quality of the ground water. The monitoring plan also provides for a well to be installed at the edge of the zone of discharge downgradient from the discharge site, as required by Section 17-28.700(6)(g)2., FAC, and for installation of two intermediate wells downgradient from the site within the zone of discharge to detect chemical, physical, and microbial characteristics of the discharge plume, in excess of the requirement for one such well contained in Section 17-701.050(6)(g)3., FAC. The location of the other wells in the ground water monitoring plan was determined according to the hydrogeologic complexity of the site to insure adequate reliable monitoring data in generally accepted engineering or hydrogeologic practice, as required by Section 17-28.700(6)(g)4., FAC. Due to the essentially stagnant nature of the ground water in the surficial aquifer system, and given the location of the intermediate monitoring wells, any contamination detected at the site can be remediated through recovery wells before it reaches the edge of the zone of discharge. Moreover, due to the confined nature of the surficial aquifer system, there is very little free water in the aquifer. Accordingly, any contamination could be quickly removed by recovery of ground water and de-watering of the area in which the contamination is detected through remediation wells. Also, given the location of the monitoring wells on the site, the northerly direction of the surficial aquifer ground water flow on the northern portion of the site near the existing landfill, and the essentially stagnant nature of the ground water in the surficial aquifer, contamination emanating from the existing cell could be discerned from that emanating from the new cell and recovery and remediation operations directed accordingly. The DER intent to issue and draft permit specify an extensive list of parameters which must be sampled at the ground water monitoring wells and surface water sampling points on the landfill site, as required by Sections 17- 3.402, 17-302.510, 17-302.560, and 17-550.310, FAC. These parameters must be sampled and reported to DER on a quarterly basis. In addition, annual water quality reports must be submitted to DER for the site. Based on the large amounts of clay content and the low horizontal and vertical conductivity values of the on-site sediments, the stagnant nature of the surficial aquifer system, the virtual absence of the Floridan aquifer under the site, and the location of the monitoring wells, the ground and surface water monitoring program provides reasonable assurance that the applicable water quality standards in the rules cited above will not be violated within and outside the zone of discharge. Liner Design, Performance, Quality Control, and Installation Section 17-701.050(5)(d)1., FAC, requires that a composite liner and leachate collection and removal system be installed in a landfill such as that proposed. Mr. Leo Overmann, is a registered professional engineer specializing in landfill engineering. He has over 10 years experience in landfill engineering, design, and construction and has worked on the design and construction of over 50 landfill facilities and 250 landfill disposal cells. He was tendered and accepted as an expert in liner design, quality control plans, and leachate control systems design and performance. It is thus established that the composite liner will have an initial 24-inch layer of compacted clay having a maximum hydraulic conductivity of 1 X 10-7 cm/sec. The 24-inch clay layer proposed by the applicant exceeds the 18- inch minimum thickness provided in the above-cited rule and will be placed in the field in layers or lifts of six inches or less. Each lift will then be treated and compacted to proper specifications in accordance with sound engineering practice in order to insure a tight bond between the clay layers. In the process of placing the clay lifts on the site, any roots, holes, channels, lenses, cracks, pipes, or organic matter in the clay will be broken up and removed, as required by the above-cited rule. In order to insure conductivity of the clay liner component does not exceed the above figure, testing will be done at the site or off-site by constructing a "test pad". A test pad is a site at which the liner construction techniques are tested using the clay material that will comprise the lower liner unit. Once the pad is constructed, the hydraulic conductivity of the clay can be tested to determine the most suitable construction methods in order to meet the above-mentioned conductivity standard and the other design and performance standards in the rule section cited last above. The applicant's liner quality control plan provides for testing of the clay liner hydraulic conductivity and compliance with the other liner design and performance standards in the rule (See Section 17- 701.050(5)(c), FAC). A synthetic geomembrane liner consisting of high density polyethylene (HDPE) will be placed directly on top of and in contact with the clay liner. If the geomembrane should leak, the clay will then retard leachate migration. Although Rule 17-701.050(5)(d)1.a., FAC, only requires a 60-mil thickness liner, the applicant has proposed to use a 80-mil liner. The thicker HDPE liner is less susceptible to stress and wear and tear in the daily landfill operation than is the thinner 60-mil liner required by the rule. The water vapor transmission rate of the 80-mil liner will be approximately 1 X 10-12 cm/sec, which is 10 times less transmissive than the maximum water vapor transmission standard of 1 X 10-11 cm/sec established in Rule 17-701.050(5)(d)1.a., FAC. The design also provides for a drainage layer and primary leachate collection and removal system to be installed above the HDPE liner, as required by the above-cited rule. The drainage layer above the liner consists in ascending order, of a layer of geonet material having an equivalent permeability of approximately three cm/sec; a layer of non-woven, needle-punched geotextile cloth, and a two-foot thick layer of sand. The sand provides a permeable layer which allows liquid to pass through it while protecting the underlying synthetic components of the drainage system and liner. The geotextile cloth component of the drainage layer filters fine particles while allowing liquid to pass through it to the geonet layer. The geonet layer is approximately 3,000 times more conductive than required by Section 17-701.050(5)(f), FAC, so as to allow rapid drainage of leachate off of the HDPE liner. The drainage layer is designed to reduce the leachate head or hydraulic pressure on the liner to one inch within one week following a 25-year, 24-hour storm event. This was determined by use of the Hydrologic Evaluation of Landfill Performance (HELP) model. This model is the standard computer model used in the landfill design and construction industry to determine leachate depth over the synthetic liner in lined landfills. The HELP model calculations submitted in the permit application were prepared by Pearce Barrett, the EPAI landfill design engineer, an expert witness. The HELP model analyzes water and rainfall that falls on active waste disposal cells and percolates through the waste, and the model helps determine the amount of leachate that will accumulate on top of the liner. To determine this amount, the HELP model uses several parameters, including rainfall amount, landfill size, and the number of waste and protective cover layers. The HELP model in this instance involved employment of Tallahassee-collected rainfall data because long-term, site-specific data for the landfill site was not available. The Tallahassee rainfall average is greater than the rainfall average for Chipley, which is closer to the landfill site and, therefore, provides a more conservative, "worst-case" rainfall figure for employment in the HELP model calculations. The HELP is itself a very conservative model, generating a worst-case determination of the amount of leachate that will end up on top of the landfill liner. The model's analysis and calculations indicate that the leachate will be reduced to a one-inch depth on the liner within one week after a 25-year, 24-hour storm event. The landfill project design specifications, in the permit application, provide that all materials in direct contact with the liner shall be free of rocks, roots, sharps, or particles larger than 3/8 of an inch. The geonet and geotextile material are in direct contact with the top of the HDPE liner and the clay liner is located directly below the HDPE liner. The project design specifically provides that the clay material comprising the clay liner component will not contain roots, rocks, or other particles in excess of 3/8 of an inch. No waste materials thus will come into contact with the clay liner. The design specifications also provide additional protection for the liner by requiring that the initial waste placed in the landfill be select waste that is monitored and screened for such things as metal objects, wooden posts, automobile frames and parts, and other sharp, heavy objects which could tear the liner. The liner design contained in the application meets the design requirements of Rule 17-701.050(5)(d), FAC. Section 17-701.050(5)(b), FAC, requires that the liner be constructed of materials having appropriate chemical properties and sufficient strength and thickness to prevent failure due to pressure gradients, physical contact with the waste or leachate to which they are exposed, climatic conditions, stress of installation, and daily operations. The liner is constructed of HDPE, which is superior to other types of plastic for use as municipal and hazardous waste landfill liners due to its physical and chemical properties. It is a material composed of long polymeric chain molecules, which are highly resistant to physical failure and to chemical weakening or alteration. The liner is of sufficient strength and thickness to resist punctures, tearing, and bursting. The liner has a safety factor of over seven, which is three and one-half times greater than the minimum acceptable safety factor of two, required in the Department's rules for landfill liners. The liner proposed in this instance will not fail due to pressure gradients, including static head or external hydrogeologic forces. Mr. Overmann evaluated the effects of a hydrologic head of one foot over the HDPE liner and the clay liner component and determined that the protective sand layer will insure the HDPE liner does not fail. Mr. Overmann relied on the testimony of Dr. Herbert with respect to hydrogeologic site characteristics in concluding that hydrogeologic forces will not cause liner failure. The 80-mil liner proposed by EPAI will be more resistant to the stresses of installation and daily operation than will a 60-mil liner. The two-foot sand layer above the drainage layer and the HDPE liner will also help protect the liner from stresses of daily operation. Mr. Overmann analyzed the liner's potential for failure between the point at which it is anchored on the edge of the landfill and the base of the landfill where settlement is greatest due to waste deposition. He determined that the HDPE liner would elongate on the order of one percent of its length. This is far less than 700 to 800 percent elongation required to break the liner material. Based on the site foundation analysis and the proposed liner design for the landfill, the liner will not fail due to hydrogeologic or foundation conditions at the site. The liner meets the performance requirements set forth in Rule 17-701.050(5)(b)2., FAC. The liner meets requirements that it cover all of the earth likely to be in contact with waste or leachate. The liner extends beyond the limits of the waste disposal cells to an anchor trench where the HDPE liner is anchored by soils and other materials to hold it in place during installation and operation. The liner design provides reasonable assurance that the liner performance standards contained in the above rule will be satisfied. There are no site- specific conditions at the Holmes County landfill site that would require extraordinary design measures beyond those specified in the rule cited above. The permit application includes a quality control and assurance plan for the soil and HDPE liner components and for the sand, geotextile, and geonet components of the drainage layer. A quality control plan is one in which the manufacturer or contractor monitors the quality of the product or services; a quality assurance plan is one in which an independent third party monitors the construction methods, procedures, processes, and results to insure they meet project specifications. The quality control/quality assurance plan requires the subgrade below the clay liner to be prepared to insure that it provides a dry, level, firm base on which to place the clay liner. The plan provides that low- permeability clay comprising the liner will be placed in lifts of specified thickness and kneaded with a sheepsfoot roller or other equipment. Low- permeability soil panels will be placed adjacent to the clay liner and scarified and overlapped at the end to achieve a tight bond. Each clay lift will be compacted and tested to insure it meets the specified density requirements and moisture specifications before a subsequent lift is placed. Lined surfaces will be graded and rolled to provide a smooth surface. The surface of the final low- permeability soil layer will be free of rocks, stones, sticks, sharp objects, debris, and other harmful materials. If any cracks should develop in the clay liner, the contractor must re-homogenize, knead, and recompact the liner to the depth of the deepest crack. The liner will be protected from the elements by a temporary protective cover used over areas of the clay liner exposed for more than 24 hours. The plan also provides specifications for visual inspection of the liner, measurement of in-place dry density of the soil, and measurement of hydraulic conductivity on undisturbed samples of the completed liner. These tests will be performed under the supervision of the professional engineer in charge of liner installation to insure that performance standards are met. There will be a quality control plan for installation of the HDPE liner in accordance with the DER approved quality control plan that incorporates the manufacturer's specifications and recommendations. The quality assurance and quality control plan calls for the use of numbered or identified rolls of the HDPE liner. The numbering system allows for identification of the manufacturing date and machine location, so that the liner quality can be traced to insure that there are no manufacturing anomalies, such as improper manufactured thickness of the liner. The plan also addresses in detail the installation of the HDPE liner. The liner is installed by unrolling it off spools in sections over the clay liner. As it is unrolled, it is tested for thickness with a micrometer and is visually inspected for flaws or potential flaws along the length of the roll. Flaws detected are marked, coded, and repaired. Records are prepared documenting each flaw. If flaws appear frequently, the HDPE is rejected and removed from the site. As the sheets are installed, they are overlapped and bonded together by heat fusing to create a watertight seam. As the sheets are seamed, they are tested in place by nondestructive testing methods to insure seam continuity and detect any leaks or flaws. If flaws are detected, they are documented and the seam is repaired. The seams are also subject to destructive testing, in which a sample of the seam is removed in the field and tested in the laboratory for shearing or peeling apart of the sheets. If destructive testing reveals seam flaws, additional field and laboratory testing is performed and necessary repairs are made. All tests, repairs, and retests are carefully documented, and a map depicting the location of all repairs is prepared for quality control and performance monitoring. The plan for the installation of the geonet, geotextile, and sand layers provides specifications for storage, installation, inspection, testing, and repair of the geonet and geotextile layers. The liner construction and installation will be in conformance with the methods and procedures contained in EPA publication EPA/600/2-88/052, Lining of Waste Containment and Other Impoundment Facilities, as required by Section 17-701.050(5)(a), FAC. The quality assurance and quality control plan proposed exceeds the requirements contained in Section 17-701.050(5)(c), FAC. Leachate Collection and Removal System The landfill design includes a leachate collection and removal system. See Section 17-701.050(5)(e)&(f), FAC. The leachate collection and removal system meets the requirements in the above rule by providing that the design incorporate at least a 12-inch drainage layer above the liner with a hydraulic conductivity of not less than 1 X 10-3 cm/sec at a slope to promote drainage. The drainage layer consists of a geonet layer, a geotextile layer, and a two- foot sand layer. The geonet has a hydraulic conductivity of two to three cm/sec, many times more permeable than required by the rule; and the sand layer will have a hydraulic conductivity of approximately 1 X 10-3 cm/sec. The leachate collection and removal system meets regulatory requirements contained in the above-cited rule that the design include a drainage tile or pipe collection system of appropriate size and spacing, with sumps and pumps or other means to efficiently remove the leachate. The design provides that the Class I cell will be divided into operating disposal cells. The design includes a piping system consisting of a 6-inch diameter pipe to be placed down the center of each of the operating cells and encased in a granular river rock medium. The HELP model calculations included in the permit application and evidence indicate that the leachate will be removed efficiently and effectively and that the leachate head will be maintained in compliance with the performance standards in the rule. The piping system is on a slope that drains to a central location or sump. Based on a design preference of City, the piping design will be slightly modified in the construction drawings to provide that rather than going through the HDPE liner, the leachate piping will run up the side of the cell wall and leachate will be pumped out of the cell into the leachate lagoon. The leachate collection and removal system design provides for a granular material or synthetic fabric filter overlying or surrounding the leachate collection and removal system to prevent clogging of the system by infiltration of fine sediments from the waste or drainage layer. A layer of non-woven, needle-punched geotextile will be wrapped around the granular river rock material surrounding the piping system to filter out fine particles. The design also provides a method for testing whether the system is clogged and for cleaning the system if it becomes clogged. A clean-out tool can be run through the openings in the leachate collection piping system to monitor and pressure clean the pipes if they become clogged. Thus, the leachate collection and removal system will satisfy the leachate system design requirements of Section 17-701.050(5)(f), FAC. The leachate collection and removal system will meet the performance standards in paragraph (e) of that rule, as well. The leachate collection and removal system will be located immediately above the liner and will be designed, constructed, operated, and maintained to collect and remove leachate from the landfill. The HELP model analysis and calculations indicate that the leachate depth will not exceed one foot on top of the liner. The leachate collection and removal system will be constructed of materials which are chemically resistant to the waste disposed of in the landfill and leachate expected to be generated. The geonet will be comprised of HDPE, which is chemically resistant to waste and leachate due to its molecular structure. The collection piping system also will be composed of HDPE. The geotextile layer will be composed of a non-woven polyester or polypropylene fabric, which has been determined to be resistant to and compatible with municipal solid waste leachates. The sand layer will consist of non-carbonate materials that are chemically resistant to or compatible with leachate. The evidence shows that the system will be of sufficient strength and thickness to prevent collapse under the pressures exerted by overlying waste, cover materials, and equipment used at the landfill. Geonet drainage layers, HDPE piping, geotextile fabric, and sand layers such as those proposed are routinely and effectively used in landfills, including those that are deeper than the landfill proposed in the instant situation. The leachate collection and removal system meets requirements in paragraph (e) of the above rule, as well, that the system be designed and operated to function without clogging through the active life and closure period of the landfill. The geonet and geotextile layers will prevent the piping system from clogging. If clogging occurs, the system is designed to allow cleaning of the pipes. The collection and removal system will be designed and constructed to provide for removal of the leachate within the drainage system to a central collection point for treatment and disposal. The leachate will drain by gravity from the sump into the leachate lagoon, but will be altered during construction to provide for pumping of leachate out of the system into the lagoon in order to prevent having to penetrate the HDPE liner with piping. Once the leachate is pumped into the lagoon, it will be recirculated over the landfill face, evaporated from the lagoon, or removed off site for treatment and disposal at a waste disposal and treatment plant. Surface Water and Storm Water Management System The storm water management system for the landfill is designed and sized according to local drainage patterns, soil permeability, annual precipitation calculations, area land use, and other characteristics of the surrounding watershed. (See Rule 17-701.050(5)(h), FAC). The engineering expert for the applicant, Mr. Barrett, designed the storm water management system. He considered the presence of dense clay soils on the site which do not provide good percolation because of low permeability, with regard to storm water falling on the site. He also took into account existing drainage patterns, as well as the annual precipitation. The retention and detention ponds and drainage ways designed into the system consist of three detention basins located at the north, southeast, and southwest quadrants of the site and one retention basin located on the western portion of the site. The site is divided into watersheds and is drained by an on-site gravity system consisting of runoff collection pipes to intercept the overland flow and convey the runoff into the retention and detention facilities. Runoff from the northern watershed is treated in detention basin 1, that from the southeast watershed in basin 3, and runoff from the southwest watershed area in detention basin 4. Runoff from the western area or watershed is treated in retention basin 2. A computer model was used by Mr. Barrett in determining the appropriate design for the storm water management system. The model is called the hydrologic engineering center-1 model developed by the U.S. Army Corps of Engineers. It is a model routinely and widely accepted in the storm water engineering design profession and discipline for designing such systems. It has historically been accepted by the Florida Department of Transportation, DER, the Corps of Engineers, and a number of counties and municipalities. A number of parameters, such as total runoff area, watershed characteristics, rainfall amount, time of concentration, lag time, and route description, were put into the model to develop the storm water management system design. Because no actual runoff data was available to calibrate the model, the model was run using data for two hypothetical storm events, the 25-year, 24-hour storm and the 10- year, 24-hour storm. Total rainfall amounts for these events were obtained from rainfall intensity duration-frequency curves developed by the Florida Department of Transportation (FDOT) for this geographical area. The detention basins are wet treatment facilities having permanent pools of water. Wetlands vegetation grows on the littoral slopes of the detention basins and removes pollutants from the storm water by natural uptake of pollutants contained in the water through the roots, stems, and leaves of the plants. Based on the HEC-1 model, the detention basins are designed to store one inch of runoff over the permanent pool control elevation and to retain the first one-half inch of rainfall, as required by Section 17-25.040(5), FAC, for projects having drainage areas of less than 100 acres. Each basin has several pipes to allow outflow when the water level exceeds the one-half retention level. As water rises to the outflow pipe level, it flows out of the basin and eventually discharges off site. The outflow pipes are two to three inches in diameter, allowing discharge of a controlled volume of water at a controlled rate. The discharge structures will be constructed in accordance with construction drawings that will include erosion control devices, such as rip- rap. The basins also have vertical riser pipes that discharge if water reaches a higher set elevation, specified in the permit application. Only if the water level rises to an elevation exceeding the 25-year, 24-hour storm elevation would the water flow over the berm. As required by Section 17-25.025(8), FAC, the storm water management system design provides for skimmers to be installed on discharge structures to skim oil, grease, and debris off water discharged from the basins. No more than one-half of the volume will be discharged in the first 60 hours following a storm event. The detention basin slopes that exceed a four to one slope down to a depth of two feet below control elevation will be fenced for safety purposes. See Rule 17-25.025(6), FAC. The retention basin is designed to retain the first one-half inch of rainfall with filtration of the first one-half inch through a sand filter bed in the bottom of the basin within 72 hours following the storm event. The sand filter bed will consist of clean well-graded sand having a minimum horizontal and vertical conductivity or percolation rate of six inches per hour. The retention basin has vertical risers, as provided in the application. Erosion and sediment control "best management practices" will be used during construction to retain sediment on site, as referenced in Rule 17-25.025(7), FAC. Other best management practices, such as sodding embankments or stabilizing slopes with geomats or sand bags will be used. The system is designed to minimize mixing of the storm water with the leachate. (Rule 17-701.050(5)(h)3., FAC). As waste is placed in the landfill, berms are constructed laterally across the cell face to segregate the waste disposal areas from other areas in the cell not yet receiving waste. Storm water coming into contact with waste flows down through it and eventually is collected and removed from that cell by the leachate collection and removal system described above. Storm water falling in a portion of a cell in which waste has not been deposited is collected by piping and pumped to the storm water management system for treatment of storm water because it does not constitute leachate, not having traversed on or through waste. Storm water will not come into contact with the waste within the system as designed. There are not any pipes connecting the waste disposal cells to the storm water system or basins. The storm water system in the permit application was designed in accordance with the criteria enunciated in the above-cited rule. This fact was established by the unrefuted expert testimony of Mr. Barrett and was independently confirmed by three other engineers, including the storm water program engineer of DER, each of whom reviewed the storm water system design. The storm water program engineer inspected the site and determined that the proposed management system will not pose any risk to downstream property, as required by the statute and rules enforced by the Northwest Florida Water Management District (NWFWMD). CVA adduced the testimony of Mr. Hilton Meadows in an effort to demonstrate that the storm water management system design in EPAI's application, and case-in-chief, does not meet applicable criteria in Chapters 17-701 and 17- 25, FAC, referenced above. Mr. Meadows attempted to demonstrate, by calculations determined using the "rational formula", that storm water will be discharged off the landfill site at a rate of 16.11 acre feet per minute during a 25-year, 24-hour storm event. An acre foot of water is a depth of one foot of water covering a surface acre in area. According to Mr. Meadows, all storm water would be thus discharged off site at a single discharge point creating a "blowout" of the storm water management system structure at that point which would flood and erode Long Round Bay off the site. In rebuttal, however, Mr. Barrett explained that Mr. Meadows' calculations merely determined the total amount of water that would fall on the landfill site during a 25-year, 24-hour storm event and failed to consider the time-volume reduction of storm water off the site over a 24-hour time period. Mr. Barrett clearly established that 16.11 acre feet of water would not be discharged per minute off the site during the 25-year, 24-hour storm event. It was further demonstrated that Mr. Meadows did not perform any computer modeling in analyzing site-specific compliance of the proposed storm water management system design against the framework of the applicable design and performance standards in Chapters 17-25 and 17-701, FAC. CVA did not adduce any preponderant evidence which would demonstrate that the storm water management system proposed will not meet the design performance standards contained in the rules and rule chapters referenced above. In view of the more extensive background, education, knowledge, and training acquired both through education and experience; in view of the more extensive and detailed investigation and calculations underlying his design, including the computer modeling effort referenced above; and in view of his corroboration by three other witnesses within the storm water engineering discipline, the opinions of Mr. Barrett, and the witnesses corroborating his testimony, are accepted over that of Mr. Meadows. Gas Control System The gas control system for the landfill will meet the design requirements contained in Rule 17-701.050(5)(j), FAC. It will be a passive system, meaning that no mechanical methods are necessary to withdraw gas from the landfill. A ventilation system will be installed as the final cap is placed on the landfill and will consist of perforated PVC pipes placed vertically down through the soil cover layers, to reach the solid waste disposal areas. The pipes are wrapped in geotextile fabric in order to prevent them from being infiltrated by fine soil particles which could cause clogging of the system. The pipes will run laterally across the top of the waste disposal areas to transfer gas to the vertical vents which vent the gases to the atmosphere. If gas production should exceed the capacity of the passive ventilation system, vegetation will be damaged and odor will become objectionable. If that occurs, a pump can be connected to the system to extract gases mechanically and vent them into the atmosphere or flame them off as a more positive control method. The proposed gas system is typical for landfills of this size and has been well tested for efficiency at other such facilities. The gas control system will not interfere with or cause failure of the liner or the leachate control systems. The gas control system is designed to prevent explosion and fires due to methane accumulation, damage to vegetation on the final cover of the closed portions of the landfill or vegetation beyond the perimeter of the property. It will control any objectionable odors migrating off site. The system, as proposed and proven in this case, meets the design requirements contained in the above-cited rule. Landfill Operation Paul Sgriccia, vice president of City, is a registered professional engineer specializing in landfill design, operation, and management. He has extensive professional experience in (and supervises a 20-person staff) designing landfills, obtaining permitting, and overseeing daily operation, environmental regulation compliance, compliance monitoring, hydrogeology, and groundwater monitoring with regard to landfill projects proposed, being constructed, or operated by City. Additionally, he is trained as an engineer. He was tendered and accepted as an expert in the fields of landfill operations and landfill management. The above-cited rule chapter requires landfills to have a ground water monitoring system that complies with monitor well location, construction, and sampling requirements of Sections 17-3.401, 17-4.26, and 17-28.700, FAC, and ground water sampling and testing in accordance with those sections, as well as Section 17-22, Parts III and IV, FAC. Mr. Sgriccia's testimony shows that the ground water monitoring plan proposed and considered in conjunction with the hydrogeologic investigation and ground water monitoring recommendations made by Dr. Herbert will meet these regulatory requirements. The recommendations made by Dr. Herbert concerning ground water monitoring should be incorporated as conditions on issuance of the permit. The applicant has voluntarily agreed to notify DER one year in advance of its ground water monitoring schedule so that DER can be present to collect "split samples", as referenced in Rule 17- 701.050(6)(a)3., FAC. Any grant of a permit should also be conditioned on this policy being strictly followed. The application also contains an operation plan, as required by the above-cited rule at paragraph (6)(b). The operation plan provides that EPAI will be the entity responsible for the operation and maintenance of the landfill. The plan provides that in the event of a natural disaster or equipment failure that would prevent waste from being deposited at the landfill, the waste will be disposed of at the Springhill landfill in adjacent Jackson County, pursuant to an agreement between EPAI and Waste Management, Inc., the operator of that landfill. The operation plan contains detailed procedures to control the type of waste received at the facility. Hazardous waste, biomedical waste, lead-acid batteries, white goods, used oil, and waste tires will not be accepted for disposal at the proposed landfill. Asbestos will only be accepted if it is in the proper regulatory approved containers. The operation plan specifies inspection procedures and procedures to be followed if prohibited wastes are discovered. All vehicles hauling waste to the landfill will be weighed and inspected by the operator or appointed attendants at the entry to the landfill. A load inspection will be performed to determine if the waste conforms to the approved waste description before the waste can be disposed. Paperwork, checks, controls, and records maintenance will be performed, as well as random load inspections for municipal solid waste generated by households. Spotters will observe the actual unloading of each vehicle at the active cells. Unacceptable waste will be rejected and cannot be disposed of at the site. Unacceptable waste that is already unloaded inadvertently at the site will be required to be removed immediately. DER will be notified of attempts to dispose of unacceptable waste at the landfill site. The operation plan provides for weighing and measuring of incoming waste and vehicle traffic control and unloading control. All these vehicles will be weighed and inspected before proceeding to disposal cells. The operation plan provides a method and sequence for filling waste into the disposal cells. Waste disposal will begin in the southwest corner of cell one and waste will be disposed in that cell up to an established final grade and the final capping process will be commenced before beginning disposal in another cell. Waste will be compacted on a daily basis when a load is received. Compaction equipment operates continuously over disposed waste loads to obtain maximum compaction. A daily cover of six inches of clean soil will be applied at the end of the day unless more waste will be disposed on the working face within 18 hours. Daily cover helps reduce disease-vectors, such as flies and rodents, as well as to reduce windborne litter. The gas control system will be maintained to insure that riser pipe vents are not dislodged and will be monitored to insure that explosive limits of methane are not reached. When leachate levels in the lagoon reach a certain level, the leachate will be withdrawn and recirculated back over the working face of the disposal area or else hauled off site to a waste water treatment facility for treatment and disposal. Leachate recirculation is becoming an accepted treatment method by regulatory agencies and is considered an effective industry standard treatment method. Leachate is recirculated by application to the active working face of the disposal cell by a watering truck and is dropped on the cell through a distribution bar or open valve pipe at the back of the truck. Leachate will not be applied during rainfall nor will it be aerially sprayed on the cell. Municipal solid waste has significant absorption capacity, so that large quantities of recirculated leachate are absorbed by the waste. The leachate that does eventually run through the waste is collected in the leachate collection and removal system and does not mix with runoff going into the storm water management system. The leachate lagoon is surrounded by a containment dike area with a loading station inside the dike for removal of leachate by truck for off-site treatment at a waste water treatment plant. A hose is hooked to a tank truck and leachate is pumped into the truck. Any spills during the loading process will be contained by the dike and will flow back into the leachate lagoon. The storm water management system will be operated to insure that there is no mingling of leachate with storm water runoff. The design provides for three diversion berms running the length of the Class I disposal cell which divide the cell into four smaller working cells. Any rainwater falling in the clean, unused cells will be removed to the storm water management system. The rain coming into contact with the working face is leachate and is collected and removed from the cell by the leachate control system. The operation plan addresses and satisfies each requirement of Section 17-701.050(6)(b), FAC. Rule 17-701.050(6)(c), FAC, requires certain operational design features to be incorporated in the landfill. Thus, the entire site will be enclosed by a minimum four-foot high fence with a gate that will be locked during off hours. To Shoo Fly Bridge Road is a county-maintained, all-weather road that provides main access to the landfill site. In addition, the roads on the site will be stabilized, all-weather roads. The operation plan provides for signs indicating the name of the operating authority, traffic flow, hours of operation, and any disposal charges, as well as scales for weighing the waste loads received at the site. Dust will be controlled by water spraying to avoid contaminated runoff due to chemical sprays and oils. Dust will be further minimized by use of paved roads, minimizing the areas of disturbed soil, vegetating stockpiles as soon as possible, and vegetating final and intermediate cover areas. Daily cover, use of portable fences, and cleaning operations by operating personnel will provide litter control. Firefighting equipment and facilities adequate to insure the safety of employees will be located on site. Daily cover will be used to minimize the potential for fire and fire extinguishers and water will be used to fight fires. If a fire is too large to effectively fight with on-site equipment, the Holmes County Fire Department will be called to assist. The operation plan for the landfill meets the requirements depicted in the above-cited rule at paragraph (d) in terms of personnel and facilities requirements. A certified attendant will be on site during all hours of operation and a telephone will be located on site. Equipment requirements are contained in the above-cited rule at paragraph (e). The applicant will thus maintain and operate a large bulldozer, soil scraper, front-end loader, water truck, motor-grader for cleaning roads, and portable pumps for storm water management and leachate management. In the event of an equipment breakdown, the plan provides for an agreement between the operator and a local heavy-equipment company to provide a compactor and other essential equipment within 24 hours. The equipment will have protective roll bars or roll cages, fire extinguishers on board, and windshields. The operation plan otherwise provides for protective devices and gear for heavy equipment and for personnel themselves, such as dust masks and hearing protection devices, hygienic facilities in the maintenance building and office, potable water, electric power, emergency first aid facilities and the like. Employees will be hired locally and trained in appropriate safety procedures and practices. In accordance with the provisions of Section 17-701.050(6)(j), FAC, the operation plan calls for solid waste in the Class I cell to be spread in layers of approximately two-feet in thickness and compacted to approximately one-foot thickness before the next layer is applied. Weekly compaction of the waste will be accomplished by heavy equipment at the Class III cell. The compostible materials and the yard trash at the Class III cell will be removed and composted on site. Bulky materials that are not easily compacted will be worked into the other waste materials to the extent practicable. As required by paragraph (k) of the above-cited rule, the compacted solid waste material will be formed into cells with the working face and side grades above surface at a slope of no greater than 30 degrees. The cell depth will be determined by the area in operation, daily volume of waste, width of the working face, and good safety practices. Waste will be placed into the cell beginning at the southwest corner and spread northward, eventually reaching grade level. As elevation of the cell approaches final grade, intermediate and final cover is applied to the cell. The final slope grade will be approximately 4:1 and will be terraced. The operation plan meets the requirements contained in paragraph (6)(1) of the above-cited rule that the cell working face be only wide enough to accommodate vehicles discharging waste and to minimize the exposed area and use of unnecessary cover material. The waste will not be spread across the entire cell immediately but instead will be spread on a small working face. The typical working area may be 50 feet by 50 feet or slightly larger, and will become larger as more loads of waste are received. Waste is deposited on the working face and compacted until final grade is reached, working across the face of the active cell in a terraced effect. Intermediate and final cover are applied to the portions of the cell that have reached design dimensions. The working face is kept as small as possible to minimize leachate generation, disease-vector problems, and the need for daily cover. The landfill operation meets the requirements contained in paragraph (6)(m) of the above-cited rule to the effect that initial cover will be applied to enclose each working cell except the working face, which may be left uncovered if solid waste will be placed on the working face within 18 hours. If there are adverse environmental impacts or problems with disease-vectors, initial cover will be placed on the working face at the end of each day for the Class I landfill cell and once a week for the Class III cell. The operation plan provides that an intermediate cover of one foot of compacted soil will be applied in addition to the six-inch daily cover within seven days of completion of the cell if final cover or an additional lift is not to be applied within 180 days of cell completion, as required by paragraph (6)(n) of the above-cited rule. The landfill will be closed in accordance with Sections 17-701.050(4) and 17-701.070-.076, FAC. The operation plan further provides that daily cover will control disease-vectors, such as flies, rather than employing use of pesticides. Uncontrolled or unauthorized scavenging will not be permitted at the landfill and will be controlled by fences and on-site personnel. Class III Cell The proposed Class III cell will be located over the old Class I cell last used by Holmes County. This area has a recompacted clay liner and a leachate collection system in place. Only yard trash will be deposited in the Class III cell, however. Based upon the Class III cell design and operating plan that will permit only yard trash disposal in it, any leachate generated from the Class III cell will not pose any threat to or violate applicable water quality standards in or outside the zone of discharge. Asbestos disposal is proposed at the landfill site. A separate asbestos disposal cell is proposed. The operation plan will provide that the asbestos be covered daily with a proper dust suppressant or six inches of non- asbestos material or will be disposed of in an area where proper warning signs, fences and barriers are present. Asbestos accepted for disposal at the landfill will be bagged and accompanied by shipping documents as required by EPA rules appearing in Title 40, Code of Federal Regulation. Persons working around asbestos will be specifically trained in its handling and must use appropriate protective equipment, as required by the National Emission Standards for Hazardous Air Pollutants set forth at 40 CFR 61.25 and other applicable federal regulations. The applicant proposes to dispose of petroleum contaminated soils at the landfill, as well. These soils will be mixed in with the waste on the working face. The soils will not be used as an intermediate cover or come into contact with surface water that will be conveyed to and treated in the storm water management system. Landfill Closure The application includes general plans and schedules for closure of the new and existing landfills. Once final grade is reached, an intermediate cover is applied over the daily cover if the working face will not receive any more waste or will receive final cover within 180 days. The gas control system will then be installed and the final cover consisting of an impermeable synthetic cap will be applied. The final cover will be a plastic cap constructed of polyvinyl chloride (PVC), HDPE, or some other synthetic material and covered by one foot of protective soil, topped by six inches of topsoil to promote vegetation growth. Soils for the closure effort will be obtained on site and will not be obtained by dredging in any jurisdictional wetlands. The final design provides for a terraced landfill profile for the new Class I cell. The waste levels will not exceed 10 feet in height and will be terraced at a 4:1 slope. The terraces will slope back against the cell wall and will be underlain by a subdrain to collect runoff and convey it to the storm water management system. This will prevent erosion of the final cover, waste exposure, and thus, additional leachate generation. The application contains a closure plan containing a general landfill information report and various other plans, investigations, and reports addressing all criteria and factors required to be addressed by Section 17- 701.073(6)(a)-(i), FAC. All such plans, reports and investigations were certified by Pearce Barrett, a registered professional engineer, expert witness and landfill designer for the applicant. The application contains a detailed estimate of closure costs and a monitoring and long-term care plan for the landfill meeting the requirements of Sections 17-701.075 and 17-701.076, FAC. An interest-bearing escrow account will be established for the landfill within 30 days of permanent issuance to cover the closure costs. Funds for closure, monitoring and long-term care of the landfill will be set aside as tipping fees are paid. As portions of the landfill are closed, funds in the escrow account will be available to pay for closure. This type of landfill closure and closure funding is termed "close as you go". This insures that available funds to close the landfill will be present so that funding problems such as those associated with the existing landfill will not arise. The long-term care plan provided for in the permit application and in the applicant's evidence provides for monitoring and maintenance of the landfill for a 20-year period after closure is complete. The storm water management system will be maintained and ground water monitored as part of this long-term care plan.

Recommendation Having considered the foregoing Findings of Fact, Conclusions of Law, the evidence of record, the candor and demeanor of the witnesses, and the pleadings and arguments of the parties, it is RECOMMENDED that a Final Order be entered by the Department of Environmental Regulation dismissing the petition filed in opposition to the permit application and approving EPAI's application for the permit at issue, authorizing construction and operation of a 20-acre Class I, Class III, and asbestos landfill, as well as authority to close the existing 25.5-acre Class I landfill in Holmes County, Florida, in the manner and under the conditions delineated in the application, as amended, the Intent to Issue and draft permit and the above Findings of Fact and Conclusions of Law. It is further RECOMMENDED that the motion for attorney's fees and cost be denied. DONE AND ENTERED this 6th day of April, 1993, in Tallahassee, Florida. P. MICHAEL RUFF Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 6th day of April, 1993.

USC (1) 40 CFR 61.25 Florida Laws (1) 120.57
# 7
ESCAMBIA COUNTY vs TRANSPAC, INC., AND DEPARTMENT OF ENVIRONMENTAL REGULATION, 89-003760 (1989)
Division of Administrative Hearings, Florida Filed:Pensacola, Florida Jul. 13, 1989 Number: 89-003760 Latest Update: Apr. 16, 1990

Findings Of Fact On November 29, 1988, Respondent, Trans Pac, Inc., (Trans Pac), a development company, filed its initial application for a construction permit to build a hazardous waste treatment and storage facility in Escambia County, Florida. Trans Pac's stock is owned by James Dahl of Los Angeles, California. Trans Pac's president is Steven Andrews. Steven Andrews is also president of The Andrews Group, d/b/a Chemical Development Company. Chemical Development Company is in the business of developing hazardous waste facilities. Sometime after filing its application, Trans Pac advertised for interested persons to contact it about the possible sale of the facility. At the time of the hearing, Trans Pac had not had any serious offers for the property and had not finally decided whether it will sell the facility. Trans Pac is seriously considering a joint venture arrangement, although no specifics as to such an arrangement have been formalized or finalized. When consideration is given to the unripe nature of this "proposed sale", it cannot be concluded that the above facts constitute competent and reliable evidence which would support the conclusion that Trans Pac had failed to give such reasonable assurances that the facility would be operated in accordance with Florida law. Too much speculation is required before such a conclusion can be reached. However, Trans Pac has stipulated that it will publish a notice of any sale prior to the closing of that sale if that event should occur. The notice would be published in accordance with the provisions and time periods established in Rule 17-103.15, Florida Administrative Code, and should afford an affected person a reasonable time to challenge the sale before the sale closes. Any contract of sale would incorporate the notice requirements and the sale would be made contingent upon compliance with the above conditions. Such a notice would afford any affected person the opportunity to challenge the ability of the transferee to operate the facility. With the above stipulation made a part of any permit, there is no failure by Trans Pac to provide reasonable assurances that the facility will be operated in accordance with Florida law. Escambia County is within the West Florida Planning Region. The West Florida Planning Region consists of Bay County, Escambia County, Holmes County, Okaloosa County, Santa Rosa County, Walton County and Washington County. The proposed site for the facility is just outside the community of Beulah, on County Road 99, northeast of and adjacent to the Perdido Landfill. The site is not within, but adjacent to the area designated by the West Florida Regional Planning Council as an area on which a hazardous waste temporary storage and transfer facility could be located. 2/ The proposed site is approximately one mile away from the Perdido River, an outstanding Florida water. The area is primarily a rural area. When the proposed location of this facility was announced in the local news, the value of property around the proposed site decreased. One person, who was within a few miles of the proposed site, lost the contract of sale on his property and was advised by the purchasers that no reduction in price would renew their interest. Another individual's property in the same area decreased in value by approximately $10,000. Many people in the Beaulah area had their dreams and the quiet enjoyment of their property threatened by the location of this facility. Some cannot afford to sell their property and relocate. At present there is no mechanism by which any of the property owners in proximity to the proposed site can recoup their losses. Some property owners believe that such a mechanism should include the establishment of some type of independent trust fund funded with enough money to cover an estimate of such losses, and an independent review of any disputed claims of loss. However, there is no provision under Florida law to impose a permit condition which establishes a procedure to cover the pecuniary losses of property owners close to the facility. The proposed facility will be a permanent storage and treatment facility and will have a maximum waste storage capacity of 106,000 gallons and a maximum treatment capacity of 2,000 gallons per day for neutralization, 5,000 gallons per day for organic separation, 2,000 gallons per day for ozonation, and 4,000 gallons per day for solidification. Hazardous waste is a solid waste which exhibits one or more of the following characteristics: a) ignitability, b) corrosivity, c) reactivity, d) EP toxicity. Such waste can be further classified as a toxic waste or as an acute hazardous waste. 3/ An acute hazardous waste is a solid waste which has been found to be fatal to humans in low doses or, has been shown in studies to have an oral, inhalation or dermal toxicity to rats or rabbits at a certain level, or has been shown to significantly contribute to an increase in serious irreversible, or incapacitating reversible, illness. A toxic waste is any waste containing any one of a number of specified constituents. A "characteristic" of hazardous waste is identified and defined only when a solid waste with a certain type of characteristic may: a) cause or significantly contribute to, an increase in mortality or an increase in serious irreversible, or incapacitating reversible, illness, or b) pose a substantial present or potential hazard to human health or the environment when it is improperly treated, stored, transported, disposed of or otherwise managed, and the characteristic can be: a) measured by an available standardized test, or b) can be reasonably detected by generators of solid waste through their knowledge of their waste. Put simply, hazardous waste is very dangerous to both humans and the environment and will kill or permanently incapacitate living beings and/or make the environment unlivable. Such waste has the potential to create a hazardous waste desert. A solid waste has the characteristic of ignitability if: a) it is a liquid, other than an aqueous solution containing 24 percent alcohol, which has a flashpoint of 60.C (140.F), b) it is not a liquid and is capable, under standard temperature and pressure, of causing fire through friction, absorption of moisture or spontaneous chemical changes and, when ignited burns so vigorously and persistently that it creates a hazard, c) it is an ignitable compressed gas, or d) it is an oxidizer. A solid waste has the characteristic of corrosivity if: a) it is aqueous and has a pH less than or equal to 2 or greater than or equal to 12.5 (strong acids or bases), or b) it is a liquid and corrodes steel at a rate greater than 6.35 millimeters (0.250 inch) per year at a test temperature of 55.C (130.F). A solid waste has the characteristic of reactivity if: a) it is normally unstable and readily undergoes violent change without detonating, b) it reacts violently with water, c) it forms potentially explosive mixtures with water, d) when mixed with water, it generates toxic gases, vapors or fumes in a quantity sufficient to present a danger to human health or the environment, e) it is a cyanide or sulfide bearing waste which, when exposed to pH conditions between 2 and 12.5, can generate toxic gases, vapors or fumes in a quantity sufficient to present a danger to human health or the environment, f) it is capable of detonation or explosive reaction if it is subjected to a strong initiating source or if heated under confinement, g) it is readily capable of detonation or explosive decomposition or reaction at standard temperature and pressure, or h) it is a forbidden or Class B explosive as defined in another federal rule. A solid waste has the characteristic of EP toxicity, if, using certain test methods, the extract from a representative sample of the waste contains certain contaminants (arsenic, barium, cadmium, chromium, lead, mercury, selenium, silver, endrin, lindane, etc.) at a concentration greater than or equal to specified levels for that contaminant. Although the above definitions sound exotic, the wastes which are defined are more often than not the waste generated by routine, normal living. Such waste is the result of almost any type of motor vehicle or machinery maintenance, such as oil and battery changes, metals manufacturing and finishing services, including auto body repair services, transportation services, construction and building repair services, medical and laboratory services, boat building and repair services, dry cleaning, printing of newspapers and 4/ magazines or agriculture, such as gardening. Further, such waste is generated by almost every commercial business category. Almost every person is either directly responsible through use or manufacture, or indirectly responsible through demand for a product or life-style, for the generation of hazardous waste in small quantities. These small individual quantities of hazardous waste add up to a significant portion of all the hazardous waste generated in this state and a significant portion of this waste is not disposed of properly. Improper disposal includes sending the waste to a local landfill or pouring such waste down the drain. Trans Pac's proposed facility will not be permitted for radioactive waste. The types of waste which will be treated and/or stored at the proposed facility are: Singularly or in any combination: D002 Waste --- A solid waste that exhibits the characteristic of corrosivity, but is not listed as a hazardous waste in Subpart D of 40 CFR 261. D003 Waste --- A solid waste that exhibits the characteristic of reactivity, but is not listed as a hazardous waste in Subpart D of 40 CFR 261. D004 Waste --- EP toxicity, contaminant arsenic D005 Waste --- EP toxicity, contaminant barium D006 Waste --- EP toxicity, contaminant cadmium D007 Waste --- EP toxicity, contaminant chromium D008 Waste --- EP toxicity, contaminant lead D010 Waste --- EP toxicity, contaminant mercury D011 Waste --- EP toxicity, contaminant silver Singularly or in any combination: F001 Waste --- TOXIC -- Spent halogenated solvents used in degreasing: tetrachloroethylene trichloroethylene, 1,1, 1-trichloroethane, methylene chloride, carbon tetrachloride, and chlorinated fluorocarbons, all spent solvent mixtures/blends used in degreasing containing, before use, 10 percent or more of one or more of the above halogenated solvents or those listed in F002, F004, or F005; still bottoms from the recovery of these solvents and mixtures F002 Waste --- TOXIC -- Spent halogenated solvents: tetrachloroethylene, methylene chloride, trichloroethylene, 1,1,1- trichloroethane, chlorobenzene, 1, 1, 2-trichlor-1, 2, 2-trifluoroethane, ortho-dichlorobenzene trichlorofluoromethane, 1, 1, 2 - trichloroethane, spent solvent mixtures/blends containing, before use, a total of 10 percent or more of one of the solvents listed in F001, F004, F005; and still bottoms from the recovery of these spent solvents and mixtures F003 Waste --- IGNITABLE -- Spent non-halogenated solvents: xylene, acetone, ethyl acetate, ethyl benzene, ethyl ether, methyl isobutyl ketone, n-butyl alcohol, cyclohexanone, methanol, all spent solvent mixtures/blends containing, before use, one or more of the above non-halogenated solvents and a total of 10 percent or more of the solvents listed in F001, F002, F004, F005; and still bottoms from the recovery of these spent solvents and mixtures F004 Waste --- TOXIC -- Spent non-halogenated solvents: creosols and cresylic acid, nitrobenzene, spent solvent mixtures/blends containing, before use, a total of 10 percent or more of the above non-halogenated solvents or the solvents listed in F001, F002, F005; and still bottoms from the recovery of these spent solvents and mixtures F005 Waste --- IGNITABLE, TOXIC -- Spent non- halogenated solvents: toluene, methyl ethyl ketone, carbon disulfide, isobutanol, pyridine, benzene, 2-ethoxyethanol, 2- nitropropane, spent solvent Mixtures/blends containing, before use, a total of 10 percent or more of the above non-halogenated solvents or those solvents listed in F001, F002, F004; and still bottoms from the recovery of these spent solvents and mixtures F006 Waste ---TOXIC -- Wastewater treatment sludges from electroplating from certain specified processes Singularly or in any combination: F007 Waste --- REACTIVE, TOXIC -- Spent cyanide plating bath solutions from electroplating operations F008 Waste --- REACTIVE, TOXIC -- Plating bath residues from the bottom of plating baths from electroplating operations where cyanides are used in the process F009 Waste --- REACTIVE, TOXIC -- Spent cleaning and stripping bath solutions from electroplating operations where cyanides are used in the process F010 Waste --- REACTIVE, TOXIC --Quenching bath residues from oil baths from metal heat treating operations where cyanides are used in the process F011 Waste --- REACTIVE, TOXIC -- Spent cyanide solutions from salt bath pot cleaning from metal heat treating operations F012 Waste --- TOXIC --Quenching wastewater treatment sludges from metal heat treating operations where cyanides are used in the process Singularly or in any combination: Petroleum refining: K048 Waste --- TOXIC -- Dissolved air flotation (DAF) float from the petroleum refining industry K049 Waste --- TOXIC -- slop oil emulsion solids from the petroleum refining industry K050 Waste --- TOXIC -- heat exchanger bundle cleaning sludge from the petroleum refining industry K051 Waste --- TOXIC -- API separator sludge from the petroleum refining industry K052 Waste --- TOXIC --- tank bottoms (leaded) from the petroleum refining industry Iron and steel: K062 Waste --- CORROSIVE, TOXIC -- spent pickle liquor generated by steel finishing operations of facilities within the iron and steel industry Ink formulation: K086 Waste --- TOXIC -- solvent washes and sludges, caustic washes and sludges, or water washes and sludges from cleaning tubs and equipment used in the formulation of ink from pigments, driers, soaps and stabilizers containing chromium and lead Secondary lead: K100 Waste --- TOXIC -- wastewater leaching solution from acid leaching of emission control dust/sludge from secondary lead smelting The federal law which governs hazardous waste is the Resource Conservation and Recovery Act (RCRA) and its amendments. The RCRA was part of the initial federal effort to manage hazardous waste and expressed a clear preference for the reduction of hazardous waste over managing such wastes at treatment, storage or disposal facilities. The Act required EPA to develop a national plan to manage and regulate hazardous waste and provide states with incentives to develop state hazardous waste management plans. Most of the incentives were based on the availability of federal funds. The federal funds were contingent on the states assuring EPA that a particular disposal site would be available for disposal of any waste generated by a remedial action taken under the Act. In 1980, Congress passed the Comprehensive Emergency Response Liability Act (CERCLA). The Act granted EPA the authority and funds to respond to uncontrolled site cleanup, emergency remedial activities, spills and other incidents due to hazardous waste. 5/ As of November, 1989, five such remedial sites are located in Escambia County. The Act also defines the liability of businesses that generate, transport and dispose of hazardous waste. Generators of hazardous waste, generally, have "cradle to grave" liability for the waste they generate. In 1980, the Florida Legislature enacted the state's first hazardous waste law. The law primarily adopted the federal regulations and guidelines on hazardous waste and established separate procedures for permitting and site selection of hazardous waste facilities. The act also directed DER to develop and implement a state hazardous waste management plan. The portions of the 1980 law relative to site selection (403.723, Florida Statutes) provided a cabinet override of a local decision adverse to the location of a hazardous waste facility. In order to obtain a cabinet override, the facility had to have been issued a permit by DER. Need for a hazardous waste facility was not addressed in either the permitting or site selection processes of the Act. In 1983, the legislature passed the Water Quality Assurance Act. The Act amended 403.723, Florida Statutes, to provide that each county prepare a Hazardous Waste Facility Needs Assessment and "designate areas within the County at which a hazardous waste storage facility could be constructed to meet a demonstrated need." The Act further provided in 403.723, Florida Statutes, that, after the counties had completed their assessments, each regional planning council, likewise, would prepare a regional Hazardous Waste Facility Needs Assessment and "designate sites at which a regional hazardous waste storage or treatment facility could be constructed." The regional Assessment included a determination of the quantities and types of hazardous waste generated in the region, a determination of the hazardous waste management practices in use within the region, a determination of the demand for offsite hazardous waste management services, a determination of existing and proposed offsite management capacity available to hazardous waste generators, a determination of the need for additional offsite hazardous waste facilities within the region, and the development of a plan to manage the hazardous waste generated in the region and/or to provide additional offsite hazardous waste treatment or storage facility needs. As noted earlier, these plans and designations were required to be made part of the county and regional comprehensive plans. The regional Assessment was completed by the West Florida Regional Planning Council in August of 1985. The assessment was based on a survey of suspected hazardous waste generators in the region. An overall response rate of 76.8 percent was received. The study showed that all types of hazardous waste, except for cyanide waste, are generated within the West Florida Planning Region. 6/ The quantity of hazardous waste produced annually within the region was estimated to be 14,245,064 pounds. The estimates for each County were as follows: Escambia County, 4,582,872 pounds; Okaloosa County, 3,203,534 pounds; Bay County, 2,433,343 pounds; Santa Rosa County, 1,866,831 pounds; Holmes County, 381,840 pounds; Walton County, 229,984 pounds; and Washington County, 170,244 pounds. Based on the survey responses, the study estimated that 11,903,738 pounds (83.6%) of hazardous waste generated annually within the region was not being properly treated or disposed of. The vast majority of the waste (78.1%) found to be improperly treated was a combination of waste oils and greases, spent solvents, and lead-acid batteries. Neither the waste oil and greases or lead- acid batteries are wastes which will be managed at the proposed Trans Pac facility. The study found that a recycling or reuse market existed for waste oil and greases, spent solvents and lead-acid batteries; and therefore, there was no need for a transfer/temporary storage facility. The remaining 2,602,630 pounds of hazardous waste not being properly managed was generated by both large and small quantity generators and is subject to a variety of appropriate waste management methods. The management plan adopted by the West Florida Regional Planning Council sought to encourage first waste reduction, second waste recycling, reuse or recovery, third onsite treatment or incineration methods, and fourth transporting wastes to offsite temporary storage facilities. One of the goals of the plan was to discourage, as much as possible, the importation of hazardous waste from outside the region, and particularly, with the close proximity of the Alabama state line, from outside the state. The plan concluded that due to the small quantity of mismanaged hazardous waste in the region there was no need for a permanent treatment and storage facility. The only need found to exist within the region was for a temporary transfer and storage facility. That need has since been met by a temporary transfer and storage facility located in Pensacola, Florida. 7/ However, Escambia County issued a Certificate of Need for a hazardous waste transfer, storage and treatment facility to Trans Pac on February 28, 1989. The Certificate of Need was issued pursuant to County Ordinance Number 85-7. The ordinance provides in relevant part that a Certificate of Need may be issued upon the Board's determination that the service or facility for which the certificate is requested "answers a public need, is necessary for the welfare of the citizens and residents of the county, is consistent with any solid waste management plan adopted pursuant to [this ordinance], and will not impair or infringe on any obligations established by contract, resolution, or ordinance." The ordinance further provides that no Certificate of Need may be denied solely on the basis of the number of such certificates in effect at the time. The issuance of that certificate appears to have been granted on the sole representations of need given by Trans Pac to gain issuance of the certificate and at a time when the Board's attention and consideration of the facility was on matters other than the true need as established in the regional plan or the exact service Trans Pac would actually provide. The evidence suggests that no formal or informal investigation of Trans Pac's representations or on the actual need of the region was conducted by the Board. Such an investigation was informally conducted by some of the Board members after the proposed facility became apparent to members of the public. The members of the public raised a great hue and cry of opposition towards the construction of the facility and prompted a closer look at Trans Pac's representations. The Board members who did conduct the informal investigation found there was no need for the facility within the county or region and discovered that the Certificate of Need had been issued in error. No evidence was presented that the County had ever formally rescinded the issuance of Trans Pac's certificate. However, the evidence did show that there was a de facto rescission of Trans Pac's certificate when the County authorized the filing of this administrative action. 8/ Trans Pac would have the ability to treat and store some of the waste generated in the region and some waste which is not generated in the region. Trans Pac would not treat or store a large part of the waste generated in the region. The small amount of regional waste which Trans Pac would be capable of handling would not be profitable. In order to be profitable, most of Trans Pac's waste would have to come from outside the region and/or the State. In 1986, Congress passed the Superfund Amendments and Reauthorization Act (SARA). The Act amended CERCLA to provide that, three years after the Act's effective date, a state could not receive any superfund monies unless the state entered into an agreement with the President providing assurance of the availability of hazardous waste treatment or disposal facilities which would have enough capacity for the treatment, disposal or storage of all hazardous waste generated within the state over the next 20 years. SARA was enacted because Congress did not believe that Superfund money should be spent in states that were taking insufficient steps to avoid creation of more superfund sites. Such steps included some provision for the future secure disposal or management of hazardous waste generated within that state. It was feared that certain states, because of public opposition and political pressure, could not create and permit enough hazardous waste facilities within their borders to properly manage, either through disposal or treatment, the hazardous waste generated within those states. Put simply, SARA requires each state to keep its own house clean and be responsible for the hazardous waste generated within its borders. SARA did not require the states to develop or permit hazardous waste facilities. The Act only required that each state provide assurances that the state possessed the capacity to manage or securely dispose of hazardous waste produced in that state over the next 20 years. Such assurances could take the form of developing hazardous waste treatment and storage facilities within that state's borders or by exporting its waste to another state. However, in order to provide adequate assurances of capacity if a state chose to export its hazardous waste, that state must enter into an interstate or regional agreement with the importing state. Such agreements could include contracts to ship hazardous waste to public or private facilities. Other assurances of capacity could be obtained through programs for the reduction of hazardous waste within the state. Whatever method of assurance adopted by a state, the goal of SARA was to force the states to provide assurances that their legislative program for the management of hazardous waste generated within their borders could work and would be used. In October, 1979, Florida entered into a Capacity Assurance Plan (CAP) with the President. The CAP established and implemented the statewide management plan required under the state statutes described earlier and under the SARA. The CAP is made up of four major components and includes a regional agreement between Florida and the other EPA Region IV Southeastern States. The four major components of the CAP are: 1) an assessment of past hazardous waste generation and capacity at facilities within or outside of Florida; 2) documentation of any waste reduction efforts that exist or are proposed for the future; 3) future projections of waste generation and capacity either within or outside of Florida and an assessment of any capacity shortfalls; and 4) descriptions of plans to permit facilities and a description of regulatory, economic, or other barriers which might impede or prevent the creation and permitting of such new facilities. The data gathered for the CAP showed that Florida currently has and will have a shortfall in its capacity to properly manage and dispose of its own hazardous waste. Therefore, Florida must provide and implement a way to increase its capacity for the management and disposal of the waste it now generates and will generate in the future or lose its funding for cleanup of superfund sites. Florida's plan to meet that shortfall consists of the interstate agreement, a commitment to a multistate treatment and storage facility and underfunded and understaffed incentives to reduce the generation of hazardous waste. The interstate agreement between the EPA Region IV Southeastern States is an effort at cooperative planning between these states for the management of hazardous waste. In reality, every state, including Florida, imports some hazardous waste from other states. Florida's imports are predominantly spent solvents and waste which can be burned as fuel. All of the imported waste was treated at recovery facilities located within the state. The majority of these imports came from Alabama, Georgia, Louisiana, Virginia and South Carolina. However, even with these imports, Florida is primarily an exporter of hazardous waste. The main recipients of Florida's exports are Alabama and South Carolina. 9/ The agreement, therefore, includes provisions on applicable interstate waste flow characteristics and quantities and on projected exports and imports between and among the participating states. The agreement provides that hazardous waste facilities presently exist or will be created and permitted to manage such exported waste. Besides the interstate agreement, Florida's plan includes a commitment to permit a multipurpose hazardous waste storage and treatment facility. The site selected for the facility is located in Union County. The permit has not yet been issued for this facility. However, the application for the facility is being processed by DER under the special statutes dealing with the Union County facility. Trans Pac's proposed facility is not required for the state to meet its assurances under the CAP entered into with the President. The hoped for benefit of the commitment to a statewide multipurpose facility is to allow Florida to reduce the amount of waste requiring export, but, at the same time allow enough waste to be exported, in accordance with the interstate agreement, to supply a sufficient waste stream to facilities in other states which need such additional waste in order to stay open. Florida's CAP also includes a waste reduction plan. The waste reduction plan is embodied in its Waste Reduction Assistance Program. The philosophy of the program is that recycling (particularly waste oil) and reduction of hazardous waste will produce greater long term across-the-board cost savings to both business and government, as well as the obvious benefit of having less of this very dangerous pollutant around in the environment. The program is not mandatory and is information-oriented. It consists of technical assistance, limited economic incentives (some of which have not been funded by the legislature), research and development, education and a waste exchange program operated by FSU and the Chamber of Commerce. The waste exchange program puts businesses in touch with other businesses who can use their waste for recycling or recovery. Additionally, in conjunction with Florida's CAP, the legislature passed Senate Concurrent Resolution #1146. The resolution states in part that, except for the siting of the Union County facility, "the Legislature has not and does not intend to enact barriers to the movement of hazardous waste and the siting of hazardous waste facilities for the storage, treatment, and disposal, other than land disposal, of hazardous waste." As can be seen from an overview of Florida's CAP, Trans Pac's proposed facility, while not being directly a part of the CAP, will have an impact on the implementation of that plan should state need not be a criteria for the issuance of a permit. A few of these potential impacts are listed below. First, a facility the size of Trans Pac's proposed facility has the potential to divert some waste away from the proposed Union County facility and may cause that facility to be unprofitable and inoperable. Second, Trans Pac's proposed facility may enable the State to handle more of its waste within its borders, thereby reducing its exports and Florida's dependency on the good offices of other states. Such reduction may or may not have an adverse impact on the interstate agreement contained in the CAP if Florida cannot meet the amount of waste established for export under that agreement. Third, Trans Pac's proposed facility has the potential to decrease the effectiveness of the State's hazardous waste reduction program by encouraging the use of its facilities instead of reduction, recycling or recovery methods. Such a decrease would be highly dependent on the prices charged by various hazardous waste facilities vis. a vis. reduction, recycling or recovery expenses, the cost of transportation to the various types of facilities, and the ease of use among the various types of facilities and reduction methods. Fourth, not considering at least the needs of the State for a hazardous waste facility allows the state to become a dumping ground for hazardous waste generated in other states. 10/ No evidence was presented on any of these points and because of the conclusions of law such an issue is not ripe for consideration in this case.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the Department of Environmental Regulation enter a final order granting the application of Trans Pac, Inc., for a permit to construct a hazardous waste treatment and storage facility in Escambia County, Florida subject to a permit condition requiring a pre-sale notice as described in this Recommended Order. DONE and ENTERED this 16th day of April, 1990, in Tallahassee, Florida. DIANE CLEAVINGER Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 Filed with the Clerk of the Division of Administrative Hearings this 16th day of April, 1990.

USC (4) 40 CFR 26140 CFR 26440 CFR 26540 CFR 270 Florida Laws (8) 120.52120.57120.68403.703403.721403.722403.7225403.723
# 8
HOLMES DIRT SERVICE, INC., AND WILLIAM J. HOLMES vs DEPARTMENT OF ENVIRONMENTAL PROTECTION, 02-002278EF (2002)
Division of Administrative Hearings, Florida Filed:Tavares, Florida Jun. 06, 2002 Number: 02-002278EF Latest Update: Jan. 27, 2004

The Issue The issue presented is whether Respondents, Holmes Dirt Service, Inc., and William J. Holmes, are in violation of various rules and regulations as alleged in the Notice of Violation issued by Petitioner, Department of Environmental Protection (Department).1

Findings Of Fact The Parties The Department is charged with the duty to administer and enforce the provisions of Chapter 403, Florida Statutes, and the rules promulgated thereunder in Chapter 62, Florida Administrative Code. Respondent, Holmes Dirt Service, Inc. (Holmes, Inc.), is a Florida corporation authorized to do business in the State of Florida. Holmes, Inc., along with William J. Holmes (Holmes), is responsible for the operation and management of a solid waste facility permitted by the Department under the name "Holmes Fill Dirt Landfill" (Facility). Holmes is a citizen of the State of Florida. Holmes was also the Director of Holmes Dirt Service, Inc. Background On or about August 24, 1998, the Department issued Permit/ Certification No. SO42-0133361-001 to Holmes Fill Dirt Landfill for the operation and management of a C & D disposal facility. The permit was sent to the attention of Holmes and had an expiration date of August 24, 2003. This was a renewal permit, with the initial permit issued in or around 1993. On or about June 26, 2000, Respondents notified the Department that the facility was temporarily closed. The Facility has remained closed since that time. Holmes, Inc., and Holmes own and operate the Facility known as Holmes Fill Dirt Landfill Holmes testified by deposition that he received a Conditional Use Permit from Marion County to operate the Facility. This permit expired on June 1, 2000. The Facility has been closed since at least June 1, 2000, although it has not been officially closed pursuant to Department rules.2 The Facility has not received any additional C & D material after June 1, 2000. On December 17, 2001, the Department issued a Notice of Violation to Holmes, Inc., and Holmes. On June 3, 2002, Respondents requested an administrative hearing before the Division. Count I-Failure to Provide Department with Adequate Financial Assurance Documentation In Count I, the Department alleges "that from June 2000, to the present, Respondents have failed to provide the Department with adequate financial assurance documentation." On June 4, 2001, the Department sent Respondents a letter advising that the financial assurance documentation was inadequate. (Respondents admit the letter was sent, but deny their documentation was inadequate.) The Department specifically contends that Respondents did not provide an annual update of the closing costs to the Department and that the assurance bond, previously issued in 1998, see Finding of Fact 11, was no longer acceptable to the Department. Rule 62-701.730(11), Florida Administrative Code, requires an owner or operator of an off-site construction and demolition debris disposal facility to provide to the Department proof of financial assurance "issued in favor of the State of Florida in the amount of the closing and long-term care cost estimates for the facility." This information is required to be submitted with the permit application for the facility. Financial assurance is required should the State of Florida have to take over closure or long term care of a facility. On May 29, 1998, Holmes, Inc., and Holmes (as Vice President of Holmes Inc.) entered into a Trust Agreement with United Southern Bank, as Trustee, to provide financial assurance for the Facility. This agreement contained a cost estimate of $76,551.72 for closure and post-closure of the Facility. On April 29, 1998, a bond was executed between Holmes, Inc., and Frontier Insurance Company (Frontier) in this amount. Thus, when the C & D permit was renewed in 1998, Respondents obtained financial assurance in the form of a closure cost/long-term care bond from Frontier. Rule 62-701.630(3), Florida Administrative Code, pertaining to "cost estimates for closure," provides that the owner or operator shall estimate the total closure cost for the permitted potions of the landfill for the period in the operation "when the extent and manner of its operation make closing costs most expensive." Rule 62-701.630(4)(a)-(d), Florida Administrative Code, pertaining to "cost adjustments for closure," requires the financial assurance to be updated annually to account for the inflation factor of 1.01. Once a bond is in place, as here as of 1998, these subsections require the permittee, here Holmes Inc., to provide the Department, on an annual basis, with an update to the closure cost, which includes the inflation factor. Additionally, the Department requires notification from the owner or operator that the annual update has been made. Prior to 2001, there was no set time for a facility to report this information. As of 2001, each facility was required to report by March 1 of each year. In 2000, the Department's Tallahassee office notified its Central District Office that the financial assurance for the Holmes Fill Dirt Landfill was inadequate. On June 14, 2000, the Central District Office mailed a letter to the Holmes facility notifying Respondents that there was a problem with financial assurance in that as of June 1, 2000, Frontier was no longer listed as an acceptable surety and, as a result, Respondents were requested to "submit proof of alternate financial assurance," or risk an enforcement action. A letter dated November 15, 2002, from Frontier to Judith Holmes, who is listed in the letter as the President of Holmes Dirt Service, Inc., was sent to Respondents to notify them that premiums were still due and outstanding on their closure/long-term care financial assurance bond for the past two years. This letter also informs that it was the position of Frank Hornbrook of the Department "that all of the requirements covered by our bond have not been satisfied and our bond has not been officially closed by the obligee. As a result, this bond still carries liability and premiums due." (The Department does not release a bond until a facility is officially closed and the Facility is not officially closed.) Invoices for "01/02 and 02/03 renewal premium due" were enclosed with the letter. Holmes admitted that the premium is past due and that he has no money to pay the premium. Even though the bond renewal premiums are past due, there is no persuasive evidence that Frontier has been relieved of its obligations under the bond issued in 1998. Rather, the Department wants a replacement bond from Respondents, but the original bond will remain in place until a replacement bond is furnished by Respondents. In fact, the Department will look to Frontier for potential payment under the 1998 bond, if necessary. However, Respondents have not provided the Department with the inflation update financial assurance in 2001. As a result, the current financial assurance for Holmes Fill Dirt Landfill is inadequate. Count II- Failure to Provide Ground Water Monitoring Reports The Department alleged that from "June 2000 to June 2001, Respondents failed to sample and analyze the ground water in accordance with the approved ground water monitoring plan for two consecutive sampling events." Respondents admit these allegations. Apparently, the last report was submitted to the Department in 2000. The Department does not allege that the ground water on and off-site violate Department rules. Holmes testified during a deposition that "the water tests have been clean. . . . until he stopped the sampling process." Holmes says he does not have "any money"--"[he is] broke." Count III-Objectionable Odors The Department alleged that "[d]uring the period June 2000 to the present, the Department has received numerous complaints from residents in the area, alleging objectionable odors emanating from the landfill." Respondents deny that there have been "objectionable odors." Chapter 62-701, Florida Administrative Code, pertains to "Solid Waste Management Facilities." Rule 62-701.730(7)(e), Florida Administrative Code, provides that C & D debris disposal facilities "shall be operated to control objectionable odors in accordance with Rule 62-296.320(2), F.A.C. If objectionable odors are detected off-site, the owner or operator shall comply with the requirements of paragraph 62-701.530(3)(b), F.A.C."3 Rule 62-701.200(84), Florida Administrative Code, incorporates the definition of "objectionable odors" found at Rule 62- 210.200(181), Florida Administrative Code. "Odor" is defined as "[a] sensation resulting from stimulation of the human olfactory organ." Rule 62- 210.200(182), Florida Administrative Code. Rule 62- 210.200(181), Florida Administrative Code, defines an "objectionable odor" as "[a]ny odor present in the outdoor atmosphere which by itself or in combination with other odors, is or may be harmful or injurious to human health or welfare, which unreasonably interferes with the comfortable use and enjoyment of life or property, or which creates a nuisance." Rule 62-296.320(2), Florida Administrative Code, provides that "[n]o person shall cause, suffer, allow or permit the discharge of air pollutants which cause or contribute to an objectionable odor." See also Rule 62-210.200(19)-(20), Florida Administrative Code. Joint Exhibit I is a study currently being done by Professor Timothy Townsend, Ph.D., of the University of Florida, Department of Environmental Services, which states that disposal of drywall, which contains gypsum, has caused hydrogen sulfide generation ("rotten egg" smell) at numerous C & D landfills in Florida. (Dr. Townsend is recognized as an authority on landfills.) Further, the primary constituents in the gas creating the problem is, among other reduced sulfur compounds, hydrogen sulfide. The main ingredient for these compounds is gypsum drywall. The study finds that hydrogen sulfide possesses a very strong odor at very low concentrations and is known to be toxic at high concentrations. The discussion of human health impact with regard to odor problems is raised and culminates with the observation that while hydrogen sulfide concentrations in ambient air surrounding C & D waste landfills are less than those thought of as harmful, some studies indicate that long- term exposure even to low concentrations can have a health impact.4 Holmes admitted that there is an odor problem at the Facility caused by gypsum and drywall and that the odor is worse in rainy weather. Holmes also admitted attempting to correct the problem by previously inviting individuals from the University of Florida to the facility, but reported that there was nothing they could do at that time, except for keeping the area covered with dirt. Individuals residing near the Facility offered opinion testimony that they suffered various problems resulting from the odor emanating from the Facility. Neighbor Charles F. LaBell, who resides 500 to 600 feet from the landfill, testified that the odor began as a rotten egg smell and evolved into what they "assumed was a hydrogen sulfide" odor. Mr. LaBell testified to being familiar with the odor of hydrogen sulfide due to his work experience at a wastewater treatment plant. Mr. LaBell further stated that the odor was unpredictable and not constant, but he equated rainy periods and "foggy mornings" with times when the odor would occur. The neighbors have found that outdoor activities have been severely impacted, resulting in a loss of use of portions of their property and diminished enjoyment of their outdoor life. Neighbor Donald L. Strickland confirmed Mr. LaBell's testimony, stating, in part, "You can't go outdoors, you can't stand it." James Bradner, an employee with the Department for twenty-three years and current manager of the Department's solid and hazardous waste program, offered opinion and expert testimony on the issue of odor problems at C & D debris disposal facilities. Mr. Bradner has served in a technical advisory capacity to a technical awareness group on odors caused by gypsum drywall in C & D debris facilities and has had experience at various C & D debris facilities in the State of Florida contending with odor problems. Mr. Bradner has experienced hydrogen sulfide odors at water treatment plants and would characterize the odor as a rotten egg odor. He has also had experience with C & D debris disposal facilities dealing with gypsum-related odor problems and testified that there are various methods to deal with the odor problems, such as putting an impervious cap (excluding water and liquids) of a clay liner and actually closing the Facility. Mr. Bradner has never been on the Facility site. The Department's rules do not define "health." Odor is a subjective measure, according to Mr. Bradner. Department employee John Turner was responsible for taking air samples in order to assess the odor problems at the Facility. Mr. Turner has been with the Department for 26 years, and in his experience with the Department, has smelled the rotten egg odor of hydrogen sulfide at sewage treatment plants and municipal solid waste facilities. Mr. Turner met with neighbors residing near the Facility as a results of complaints of odor. He visited the Facility five times to collect air samples. He detected an odor during his initial three visits, but did not take any samples because the aired smelled was not representative of a strong odor. For Mr. Turner, during each visit, the odor was the same in quality. There was some variation in strength. "It was periodic in some cases and less periodic in other cases." He collected samples during his fourth and fifth visits, but the "samples were below the minimum detection levels for the method." Mr. Turner offered no scientific evidence that would indicate that the air was harmful on the dates when samples were taken and analyzed. Nevertheless, Mr. Turner opined that the odor was objectionable in accordance with the definition found in Rule 62-210.200(181), Florida Administrative Code, on all five occasions. Count IV-Failure to Control Access The Department alleged that "access to the Facility was not completely controlled." Respondents deny the allegation. Rule 62-701.730(7)(c), Florida Administrative Code, provides: "Operation requirements. Owners and operators of construction and demolition debris disposal facilities shall comply with the following requirements by May 1, 1997, or at the time of permit issuance, whichever is sooner: . . .(c) Access to the disposal facility shall be controlled during the active life of the facility by fencing or other effective barriers to prevent disposal of solid waste other than construction and demolition debris." Department employee Gloria-Jean DePradine testified that Florida Rules require that all C & D facilities have an effective barrier so as to prevent unauthorized disposal of waste. An effective barrier could be fencing, although the Department does not require a specific type of fencing. It depends on the situation. Holmes originally owned a 46-acre tract (the property). The Facility is located on 13 acres of this property. Holmes resided on the property until he sold his residence in 2000 to Valentina Ellis. The property has an earthen berm along Highway 42, the southern boundary of the property, which is a barrier. The entrance to the property is controlled by a gate, which provides access to the property. There is no fence separating the Facility from the residence. A fence exists along the perimeter of the property. The property is in the same condition today as when the Department originally issued the permit in 1993. When the Facility was permitted and operated by Holmes, the Department found the access control to be acceptable. However, when a portion of the property (10 acres) was sold to Ms. Ellis, access was no longer being controlled completely because Holmes had provided the necessary security for the Facility, being the owner of the entire 46-acre tract. Because there are two separate property owners, Ms. Ellis can now directly enter the Facility property, or any other members of the public that entered her property, could enter the Facility and dump unauthorized waste. Randall Cunningham has been employed with the Department since May 1999, and has been working in the solid waste section since October 2000. On November 19, 2001, Mr. Cunningham conducted an inspection of the Facility site in response to an odor complaint and found that there was no barrier between the property owned by Ms. Ellis and the Facility. Mr. Cunningham was able to drive from Ms. Ellis’ property onto the landfill. Mr. Cunningham saw a fence leading onto Ms. Ellis' driveway with a swinging gate attached to a post, which was attached to a fence. Mr. Cunningham did not visit the Facility while it was in operation. There is no effective barrier between Ms. Ellis' property and the Facility. Additionally, the Facility is not yet officially closed. Count V-Investigative Costs The Department alleged that it incurred expenses of not less than $500 while investigating this matter. Investigative costs are recoverable pursuant to Section 403.141(1), Florida Statutes, which states: "Whoever commits a violation specified in s. 403.161(1) is liable to the state for . . . reasonable costs and expenses of the state in tracing the source of the discharge, [and] in controlling and abating the source and the pollutants. " Mr. Bradner’s salary is approximately $35.00 per hour. He spent approximately 20 to 30 hours on this case which would total approximately $700.00. Mr. Turner’s salary is approximately $25.00 per hour. Mr. Turner visited the Facility on five separate occasions in order to attempt to collect an air sample. It took him an hour and a half, to one hour and 45 minutes to get to the Facility. He usually spent approximately one half hour at the Facility. The Department conducted the two sampling events referred to above, which were sent to a lab in Los Angeles for analyses. Each analysis cost $250.00.

Conclusions Based on the foregoing Findings of Fact and Conclusions of Law, it is, therefore ORDERED: Respondents shall forthwith comply with all Department rules regarding solid waste management as related to the disposal of C & D debris. Respondents shall correct and redress all violations in the time periods required below and shall comply with all applicable rules in Chapters 62-296 and 62-701, Florida Administrative Code. Within 30 days of the effective date of this Final Order, Respondents shall prevent unauthorized waste disposal at the Facility, and shall provide access control by the use of fencing, gates, or other effective barriers on the portion of property that is contiguous with property owned by Ms. Valentina Ellis. Within 30 days of the effective date of this Final Order, Respondents shall obtain adequate financial assurance and shall provide the Department with proof of financial assurance issued in favor of the State of Florida, in the amount of the closing and long-term care cost estimates for the Facility, if the 1998 renewal bond is no longer in full force and effect. (If the renewal bond is in full force and effect, Respondents shall provide the Department with an appropriate financial update.) Otherwise, proof of financial assurance shall consist of one or more of the following instruments which, comply with the requirements of Rule 62-701.630(6), Florida Administrative Code: trust fund agreement; certificate of deposit; surety bonds guaranteeing payment; surety bonds guaranteeing performance; irrevocable letter of credit; closure insurance; or financial test and corporate guarantee. Respondents shall continue to monitor and analyze the ground water at the Facility in accordance with the approved monitoring plan through the active life of the Facility, and for five years after closure activities are completed. The ground water monitoring results shall be submitted to the Department for review within 45 days of each sampling event. Respondents shall control any objectionable odors emanating from the Facility in accordance with Rule 62- 296.320(2), Florida Administrative Code. Since strong odors have been detected off-site, beyond the disposal area boundary, Respondents shall comply with the requirements of Rule 62- 701.530(3)(b), Florida Administrative Code. See Endnote 3. Therefore, within 30 days of the effective date of this Final Order, Respondents shall implement a routine monitoring program to determine the timing and the extent of any off-site odors. If the monitoring program confirms the existence of objectionable odor, Respondents shall submit to the Department for approval an Odor Remediation Plan (Plan) within 60 days of confirmation of objectionable odors. The Plan shall describe the nature and extent of the problem and the proposed remedy. The Plan shall be implemented within 30 days of approval. Upon review of the Plan, the Department may request additional information. Any additional information shall be submitted to the Department within 30 days of receipt of the Department’s written request. If additional information is not submitted in a timely manner, the Department will approve or deny the Plan as submitted. Upon approval, the Plan shall be incorporated herein and made part of this Final Order and the Respondents shall implement the conditions in the Plan pursuant to an approved schedule. If the proposal is denied, Respondents shall submit a new plan or modifications to the plan within 30 days and the review process shall continue as detailed herein. Respondents shall submit monthly reports to the Department. The reports shall include all data collected during the monitoring. The first report shall be submitted to the Department within 45 days of the implementation of the plan and shall continue every 30 days thereafter. Respondents are ordered to close the Facility within 60 days of this Final Order, unless the time is extended by the Department. Respondents shall implement closure activities in accordance with Rule 62-701.730(9)(b)(c)(d) and (10), Florida Administrative Code. Closure activities shall include, but not be limited to the following: Grade and compact the disposal area to eliminate ponding, promote drainage and minimize erosion. Establish and maintain side slopes no greater than three feet horizontal to one foot vertical rise in all above-grade disposal areas. Establish and maintain final cover consisting of a 24-inch thick layer of clean soil, the upper six inches of which shall be capable of supporting vegetation. Seed and/or plant vegetative cover over the disposal area. Respondents shall monitor the effectiveness of the cover for a minimum of five years following completion of closure activities, and acceptance by the Department. Within 30 days of the completion of the closure activities, Respondents shall provide the Department with "Certification of Closure Construction Completion" and a final survey report, conducted by a Professional Land Surveyor in accordance with Rule 62-701.610(3) Florida Administrative Code, if the disposal operation has raised the elevation higher than 20 feet above natural land surface. Within 60 days of the effective date of this Order, Respondents shall pay $3,000.00 to the Department for the administrative penalties assessed above. Payment shall be made by cashier's check or money order payable to the "State of Florida Department of Environmental Protection" and shall include thereon the OGC Case No.: 01-1946 and notation "Ecosystem Management and Restoration Trust Fund." The payment shall be sent to the Department of Environmental Protection, Central District Office, 3319 Maguire Boulevard, Suite 232, Orlando, Florida 32803-3767. In addition to the administrative penalties, within 60 days of the effective date of this Final Order, Respondents shall pay $500.00 to the Department for costs and expenses. Payment shall be made by cashiers check or money order payable to "State of Florida Department of Environmental Protection" and shall include OGC Case No. 01-1946 thereon with the notation "Ecosystem Management and Restoration Fund." The payment shall be sent to the Department of Environmental Protection, Central District Office, 3319 Maguire Boulevard, Suite 232, Orlando, Florida 32803-3767. Respondents will remain liable to the Department for any damages resulting from the violations alleged herein and for the correction, control, and abatement of any pollution emanating from Respondents' Facility. Respondents may request and the Department may extend the time limits imposed by this Final Order. DONE AND ORDERED this 24th day of December, 2002, in Tallahassee, Leon County, Florida. CHARLES A. STAMPELOS Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings, this 24th day of December, 2002.

Florida Laws (7) 1.01120.57120.68403.031403.121403.141403.161
# 9
MOBIL CHEMICAL COMPANY vs. DEPARTMENT OF NATURAL RESOURCES, 83-001990 (1983)
Division of Administrative Hearings, Florida Number: 83-001990 Latest Update: May 23, 1984

Findings Of Fact Upon consideration of the oral and documentary evidence adduced at the hearing, the following relevant facts are found: Mobil seeks approval from DNR of its conceptual reclamation plan for the South Fort Meade (SFM) phosphate mine. The proposed new mine will replace Mobil's existing Fort Meade mine scheduled to be exhausted during 1988. The new mine is expected to sustain an average production rate of 3 to 3.5 million tons of phosphate per year. The SFM site is located in Polk County, between Fort Meade and Bowling Green, and contains some acres. It is anticipated that approximately 16,000 acres will be mined for phosphate over a 25-year period. The site is currently used predominantly for agricultural purposes, including both farming and range or pasture land. About 25 percent of the site is now comprised of forest lands. The SFM site is bordered on the west by the Peace River and on the north by Bowlegs Creek, a tributary of the Peace River. The central portion of the tract, comprising approximately 14,000 acres, is a relatively flat plateau used primarily for pasture and limited agriculture. It is bordered on the west by Mt. Pisgah Road which runs parallel to the Peace River, and on the north by Bowlegs Creek. The area west of Mt. Pisgah Road comprises the "western tract" and includes a developed area of homes. The "northern tract," north of Bowlegs Creek, and "western tract" are characterized by steep slopes or drops from elevated areas to Bowlegs Creek and the Peace River, respectively. The site contains three major drainage basins, with water moving north into Bowlegs Creek, west into the Peace River, and south, where it eventually flows into the Peace River several miles south of the site. Mobil proposes to use approximately 10,000 acres of the central tract for clay waste disposal and about 5,000 acres in the northern and western tracts for sand tailings fill. This will allow for the rapid reclamation of the northern and western tracts, which will be returned to natural grade and provide a surface suitable for structures. Under Mobil's conceptual plan, the central tract to be utilized for clay waste disposal will, after reclamation, be at an elevation approximately 20 feet above the original premining topography. During the mining process, clays in the settling areas will be at elevations up to 45 feet above existing natural grade. After reclamation, the elevated central tract will be returned to primarily agricultural use. Phosphate mining in Florida involves the removal of a matrix containing phosphate, sand and clay in varying percentages. In order to reach the matrix, draglines or other machinery must remove the overburden (earth overlying the matrix), which is then cast aside to expose the matrix. Some of the overburden is used to erect retention dams around the outside of the mine pit and the remainder is generally cast back into previously mined out cuts. The matrix is removed and placed into an adjacent depression or slurry pit where it is mixed with water and pumped to the beneficiation plant. At the plant, the matrix is separated, by a washing and flotation process, into its three components -- phosphate, clay and sand. The two waste products -- clay, referred to as slimes, and sand, also known as tailings, must then be removed from the plant. The sand tailings do not present a disposal problem due to their rapid dewatering capabilities. The tailings can be used as clean backfill material, for construction of perimeter dams for the clay disposal areas and for mixture with clay as part of reclamation. Mobil plans to place some 70 percent of the sand tailings produced from its mining activities in the areas near the Peace River, Mt. Pisgah Road and Bowlegs Creek, with the result that those areas will require little time for settling and will have structural stability. Clay presents a greater disposal problem. During the extraction and beneficiation process, clay swells to over five times the volume of its natural state in the matrix. In its natural state, the clay would comprise about 9 feet of a 34 foot mining depth. Once disaggregated, it expands to a volume with a height of 44 feet. This phenomenon of volumetric expansion results in the unavoidable consequence of above-grade storage of clay wastes at Florida phosphate mines. The extent to which above-grade storage must be used, the length of time required for maximum clay consolidation and the most effective method for dewatering the clay depend upon numerous factors. Such factors include the types of clay at the mine site, the volume of clay generated by mining and the ratio of sand to clay in the matrix. Clays are identified by their plasticity and their liquid limit. Plasticity refers to the ability of the clay to be deformed into various shapes without fracture. The more plastic a clay, the more difficult it is to dewater or force consolidation. The liquid limit is the moisture content at which a clay material becomes a fluid. Clays very high in plasticity and liquid limits have the poorest consolidation properties. The ratio of sand to clay in the matrix affects the amount of clay that must be disposed of and the amount of sand that can be used to aid in the consolidation process. Due to the unique characteristics of clay type, volume and sand to clay ratio, any mine reclamation plan must be highly site specific. Test samples of clay from the SFM site generally revealed poor consolidating properties. The types of clay were mainly attapulgite and a number (approximately half) of the samples showed very high plasticity and liquid limits. The sand to clay ratio on site is 1.2 parts sand to one part clay. This ratio is lower than any other mine in Florida. There are various methods of waste clay disposal. The conventional clay settling method involves pumping the clays into the mine cuts, which are in a connecting row formation, surrounded by elevated dam structures. As the clays consolidate slowly over a period of time, water is drained off and used in the plant recirculation system. As water is released, the clays in the elevated disposal areas will solidify and settle. The dams erected with overburden are then graded down on top of the waste clay areas, resulting in elevated reclaimed topography. Another method is stage filling. This process involves the introduction of clay wastes into a settling area in thin layers. Natural settlement occurs and then more clay is introduced into the settling area. A third method of disposal which results in a more rapid dewatering of the waste clays, and thus a lesser storage volume and lowered elevations for clay disposal areas, is to mix waste clays with sand. This typically requires a ratio of sand to clay of at least two parts sand to one part clay. Another method of waste clay disposal is the removal of overburden from the mined out cuts in order to increase the volume or void available for below ground waste disposal. If the overburden were placed over the clay instead of under it, it could be used as a cap in order to increase the consolidation or surcharge effect. There is also a new technique which is currently being field tested known as the sand/clay cap method of waste disposal. This is the method chosen by Nobil for the central tract at the SFM site, and will be discussed in more detail below. Basically, the sand/clay cap method involves the deployment of a cap made of a ratio of four parts sand to one part clay over the clay settling area. The added weight of the cap provides a surcharge effect and speeds consolidation. Mobil evaluated numerous possible methods of waste clay disposal for its SFM site. The stage filling method was rejected because it is a slow method and, due to the large amount of clay found in the matrix as compared with the amount of sand, disposal areas would be filled during the earliest years of the mining operation. The use of the sand/clay mix, which requires a 2:1 ratio, was rejected because Mobil would not have enough sand to mix all their clays for the entire mine site. The technique of removing overburden from the mined out cuts to increase the space available for below-ground storage was rejected as an alternative because of the cost of equipment and manpower necessary to accomplish this method. Once the overburden material is wet, it is difficult to remove with conventional equipment. It is estimated that the removal of all overburden from the pits would increase the cost of phosphate production per product ton by $3.80. Other waste disposal techniques, such as sand/clay mix and sand/clay capping, increase mining costs by $1.00 to $2.00 per product ton. As noted above, the Mobil conceptual reclamation plan contemplates backfilling with sand tailings in the western and northern tracts (approximately 5,000 acres) and elevated clay storage areas capped with a 4:1 sand/clay mix in the central tract. Between 50 percent and 60 percent of the mined land will be used for the disposal of waste clays. Instead of continually filling its mine cuts as an interconnecting water recirculation system, Mobil proposes to fill each settling area separately, and then take that area out of the mining operation. The technique of actually placing the cap on the clay has not been perfected, but research on that matter is presently being conducted. Mobil proposes to utilize a cap of approximately 5 feet in thickness. The surcharge performance of the cap is related to the depth of the cap. Ongoing capping experiments have involved caps as thick as 8.5 feet. A cap thicker than 5 feet would promote the goal of returning the reclaimed surface back to original grade as quickly as possible. Use of a larger area of the mine site for waste clay disposal would also help to reduce the elevation of above-grade storage. If the area planned for sand tailings disposal were used for waste clay disposal, the above-grade elevation could be reduced by 4 to 7 feet. The use of the sand/clay cap in the central tract will allow the land to be returned to agricultural use with better tillage characteristics and better fertility than what currently exists on site. The use of overburden would also improve the agronomic characteristics of the site, though not as much as the sand/clay cap. DNR recognizes that above-grade settling of waste clay cannot be totally eliminated. The usage of greater areas for waste clay storage and a combination of disposal techniques, such as a 2:1 sand/clay mix to pit depth and the removal of overburden, could reduce above-grade elevations during and after the mining process. Based upon considerations of both technical end economic feasibility, Mobil is committed to a constant review and implementation of new advances and techniques for waste clay dewatering. As noted above, under Mobil's plan, the post-reclamation elevation of the central tract will be approximately 20 feet higher than premining conditions. It can be anticipated that the sand/clay cap proposed by Mobil will have a lesser infiltration rate than that which currently exists on site. This factor is expected to be offset by decreases in slopes and increases in depressional areas caused by differential settling. The effect of the 20-foot elevational change in topography and lesser infiltration rates may well be to increase surface water runoff and increase the velocities of waters. Various artificial structures are planned by Mobil to dissipate the water energy and prevent erosion. These include pools or ponds, 100 feet in diameter and at 500 feet intervals, as well as rip rap or large rocks in the stream channels. Some stream channels will be relocated, but it is not clear from the evidence as to whether the same linear footage of stream channels (60,000) will exist post- reclamation. The stream channels will be designed to meet a 25 year, 24 hour storm event. This method of channel construction is normally used for a specific drainage problem where artificial structures are appropriate. The total acreages of the three major drainage basins will be rearranged. For example, the Bowlegs Creek drainage basin will decrease from 7,978 acreas to 6,939 acres, the Peace River basin will increase from 5,175 to 5,378 acres and the Little Charlie Creek drainage basin will increase from 4,248 to 5,084 acres. All water leaving the site will ultimately 4 flow to the Peace River, as it does now. The best method of restoring drainage patterns is to restore the premining topography. A review of other Final Orders of the Governor and Cabinet, sitting as agency head of the DNR, approving conceptual reclamation plans for other Florida phosphate mines reveals that preexisting mines have been permitted a certain degree of noncompliance with current DNR rules relating to above-grade storage and the restoration of drainage patterns. Consideration was given to the fact that mines in existence at the time the current rules were promulgated were restrained with years of investment and physical constraints, whereas new mines would have the flexibility to plan in accordance with DNR rules. The reclamation rules themselves make no distinction between compliance by a preexisting mine and a new mine. When applications for reclamation plans were submitted by existing phosphate mines, it was reasonable and equitable to recognize that certain factors would preclude or diminish the applicant's ability to comply with the DNR reclamation rules. These factors include the location of the beneficiation plant, established clay settling areas, water recirculation systems and power lines, as well as the length of total mine life remaining.

Florida Laws (1) 211.32
# 10

Can't find what you're looking for?

Post a free question on our public forum.
Ask a Question
Search for lawyers by practice areas.
Find a Lawyer