Elawyers Elawyers
Washington| Change
Find Similar Cases by Filters
You can browse Case Laws by Courts, or by your need.
Find 49 similar cases
APALACHICOLA BAY AND RIVER KEEPER, INC. vs DEPARTMENT OF ENVIRONMENTAL PROTECTION, 01-001467RP (2001)
Division of Administrative Hearings, Florida Filed:Tallahassee, Florida Apr. 13, 2001 Number: 01-001467RP Latest Update: Jun. 06, 2003

The Issue Whether proposed Rule Chapter 62-303, Florida Administrative Code, which describes how the Department of Environmental Protection will exercise its authority under Section 403.067, Florida Statutes, to identify and list those surface waters in the state that are impaired for purposes of the state's total maximum daily load (commonly referred to as "TMDL") program, is an "invalid exercise of delegated legislative authority," within the meaning of Chapter 120, Florida Statutes, for the reasons asserted by Petitioners.

Findings Of Fact Based upon the evidence adduced at hearing and the record as a whole, the following findings of fact are made to supplement the factual stipulations contained in the parties' Prehearing Stipulation: State TMDL Legislation Over the last 30 years, surface water quality management in Florida, like in the rest of the United States, has focused on the control of point sources of pollution (primarily domestic and industrial wastewater) through the issuance, to point source dischargers, of National Pollutant Discharge Elimination System (NPDES) permits, which specify effluent-based standards with which the permit holders must comply. Although "enormously successful in dealing with . . . point sources" of pollution, the NPDES program has not eliminated water quality problems largely because discharges from other sources of pollution (nonpoint sources) have not been as successfully controlled. In the late 1990's, the Department recognized that, to meet Florida's water quality goals, it was going to have to implement a TMDL program for the state. Wanting to make absolutely sure that it had the statutory authority to do so, the Department sought legislation specifically granting it such authority. Jerry Brooks, the deputy director of the Department's Division of Water Resource Management, led the Department's efforts to obtain such legislation. He was assisted by Darryl Joyner, a Department program administrator responsible for overseeing the watershed assessment and groundwater protection sections within the Division of Water Resource Management. Participating in the drafting of the legislation proposed by the Department, along with Mr. Brooks and Mr. Joyner, were representatives of regulated interests. No representatives from the environmental community actively participated in the drafting of the proposed legislation. The Department obtained the TMDL legislation it wanted when the 1999 Florida Legislature enacted Chapter 99-223, Laws of Florida, the effective date of which was May 26, 1999. Section 1 of Chapter 99-223, Laws of Florida, added the following to the definitions set forth in Section 403.031, Florida Statutes, which define "words, phrases or terms" for purposes of "construing [Chapter 403, Florida Statutes], or rules or regulations adopted pursuant [t]hereto": (21) "Total maximum daily load" is defined as the sum of the individual wasteload allocations for point sources[11] and the load allocations for nonpoint sources and natural background. Prior to determining individual wasteload allocations and load allocations, the maximum amount of a pollutant that a water body or water segment can assimilate from all sources without exceeding water quality standards must first be calculated. Section 4 of Chapter 99-223, Laws of Florida, added language to Subsection (1) of Section 403.805, Florida Statutes, providing that the Secretary of the Department, not the Environmental Regulation Commission, "shall have responsibility for final agency action regarding total maximum daily load calculations and allocations developed pursuant to s. 403.067(6)," Florida Statutes. The centerpiece of Chapter 99-223, Laws of Florida, was Section 3 of the enactment, which created Section 403.067, Florida Statutes, dealing with the "[e]stablishment and implementation of total maximum daily loads." Section 403.067, Florida Statutes, was amended in 2000 (by Chapter 2000-130, Laws of Florida) and again in 2001 (by Chapter 2001-74, Laws of Florida). It now reads, in its entirety, as follows: LEGISLATIVE FINDINGS AND INTENT.-- In furtherance of public policy established in s. 403.021, the Legislature declares that the waters of the state are among its most basic resources and that the development of a total maximum daily load program for state waters as required by s. 303(d) of the Clean Water Act, Pub. L. No. 92-500, 33 U.S.C. ss. 1251 et seq. will promote improvements in water quality throughout the state through the coordinated control of point and nonpoint sources of pollution.[12] The Legislature finds that, while point and nonpoint sources of pollution have been managed through numerous programs, better coordination among these efforts and additional management measures may be needed in order to achieve the restoration of impaired water bodies. The scientifically based total maximum daily load program is necessary to fairly and equitably allocate pollution loads to both nonpoint and point sources. Implementation of the allocation shall include consideration of a cost- effective approach coordinated between contributing point and nonpoint sources of pollution for impaired water bodies or water body segments and may include the opportunity to implement the allocation through nonregulatory and incentive-based programs. The Legislature further declares that the Department of Environmental Protection shall be the lead agency in administering this program and shall coordinate with local governments, water management districts, the Department of Agriculture and Consumer Services, local soil and water conservation districts, environmental groups, regulated interests, other appropriate state agencies, and affected pollution sources in developing and executing the total maximum daily load program. LIST OF SURFACE WATERS OR SEGMENTS.-- In accordance with s. 303(d) of the Clean Water Act, Pub. L. No. 92-500, 33 U.S.C. ss. 1251 et seq., the department must submit periodically to the United States Environmental Protection Agency a list of surface waters or segments for which total maximum daily load assessments will be conducted. The assessments shall evaluate the water quality conditions of the listed waters and, if such waters are determined not to meet water quality standards, total maximum daily loads shall be established, subject to the provisions of subsection (4). The department shall establish a priority ranking and schedule for analyzing such waters. The list, priority ranking, and schedule cannot be used in the administration or implementation of any regulatory program. However, this paragraph does not prohibit any agency from employing the data or other information used to establish the list, priority ranking, or schedule in administering any program. The list, priority ranking, and schedule prepared under this subsection shall be made available for public comment, but shall not be subject to challenge under chapter 120. The provisions of this subsection are applicable to all lists prepared by the department and submitted to the United States Environmental Protection Agency pursuant to s. 303(d) of the Clean Water Act, Pub. L. No. 92-500, 33 U.S.C. ss. 1251 et seq., including those submitted prior to the effective date of this act, except as provided in subsection (4). If the department proposes to implement total maximum daily load calculations or allocations established prior to the effective date of this act, the department shall adopt those calculations and allocations by rule by the secretary pursuant to ss. 120.536(1) and 120.54 and paragraph (6)(d). ASSESSMENT.-- Based on the priority ranking and schedule for a particular listed water body or water body segment, the department shall conduct a total maximum daily load assessment of the basin in which the water body or water body segment is located using the methodology developed pursuant to paragraph (b). In conducting this assessment, the department shall coordinate with the local water management district, the Department of Agriculture and Consumer Services, other appropriate state agencies, soil and water conservation districts, environmental groups, regulated interests, and other interested parties. The department shall adopt by rule a methodology for determining those waters which are impaired. The rule shall provide for consideration as to whether water quality standards codified in chapter 62- 302, Florida Administrative Code, are being exceeded, based on objective and credible data, studies and reports, including surface water improvement and management plans approved by water management districts under s. 373.456 and pollutant load reduction goals developed according to department rule. Such rule also shall set forth: Water quality sample collection and analysis requirements, accounting for ambient background conditions, seasonal and other natural variations; Approved methodologies; Quality assurance and quality control protocols; Data modeling; and Other appropriate water quality assessment measures. If the department has adopted a rule establishing a numerical criterion for a particular pollutant, a narrative or biological criterion may not be the basis for determining an impairment in connection with that pollutant unless the department identifies specific factors as to why the numerical criterion is not adequate to protect water quality. If water quality non-attainment is based on narrative or biological criteria, the specific factors concerning particular pollutants shall be identified prior to a total maximum daily load being developed for those criteria for that surface water or surface water segment. APPROVED LIST.-- If the department determines, based on the total maximum daily load assessment methodology described in subsection (3), that water quality standards are not being achieved and that technology- based effluent limitations[13] and other pollution control programs under local, state, or federal authority, including Everglades restoration activities pursuant to s. 373.4592 and the National Estuary Program, which are designed to restore such waters for the pollutant of concern are not sufficient to result in attainment of applicable surface water quality standards, it shall confirm that determination by issuing a subsequent, updated list of those water bodies or segments for which total maximum daily loads will be calculated. In association with this updated list, the department shall establish priority rankings and schedules by which water bodies or segments will be subjected to total maximum daily load calculations. If a surface water or water segment is to be listed under this subsection, the department must specify the particular pollutants causing the impairment and the concentration of those pollutants causing the impairment relative to the water quality standard. This updated list shall be approved and amended by order of the department subsequent to completion of an assessment of each water body or water body segment, and submitted to the United States Environmental Protection Agency. Each order shall be subject to challenge under ss. 120.569 and 120.57. REMOVAL FROM LIST.-- At any time throughout the total maximum daily load process, surface waters or segments evaluated or listed under this section shall be removed from the lists described in subsection (2) or subsection (4) upon demonstration that water quality criteria are being attained, based on data equivalent to that required by rule under subsection (3). CALCULATION AND ALLOCATION.-- Calculation of total maximum daily load. Prior to developing a total maximum daily load calculation for each water body or water body segment on the list specified in subsection (4), the department shall coordinate with applicable local governments, water management districts, the Department of Agriculture and Consumer Services, other appropriate state agencies, local soil and water conservation districts, environmental groups, regulated interests, and affected pollution sources to determine the information required, accepted methods of data collection and analysis, and quality control/quality assurance requirements. The analysis may include mathematical water quality modeling using approved procedures and methods. The department shall develop total maximum daily load calculations for each water body or water body segment on the list described in subsection (4) according to the priority ranking and schedule unless the impairment of such waters is due solely to activities other than point and nonpoint sources of pollution. For waters determined to be impaired due solely to factors other than point and nonpoint sources of pollution, no total maximum daily load will be required. A total maximum daily load may be required for those waters that are impaired predominantly due to activities other than point and nonpoint sources. The total maximum daily load calculation shall establish the amount of a pollutant that a water body or water body segment may receive from all sources without exceeding water quality standards, and shall account for seasonal variations and include a margin of safety that takes into account any lack of knowledge concerning the relationship between effluent limitations and water quality. The total maximum daily load may be based on a pollutant load reduction goal developed by a water management district, provided that such pollutant load reduction goal is promulgated by the department in accordance with the procedural and substantive requirements of this subsection. Allocation of total maximum daily loads. The total maximum daily loads shall include establishment of reasonable and equitable allocations of the total maximum daily load among point and nonpoint sources that will alone, or in conjunction with other management and restoration activities, provide for the attainment of water quality standards and the restoration of impaired waters. The allocations may establish the maximum amount of the water pollutant from a given source or category of sources that may be discharged or released into the water body or water body segment in combination with other discharges or releases. Allocations may also be made to individual basins and sources or as a whole to all basins and sources or categories of sources of inflow to the water body or water body segments. Allocations shall be designed to attain water quality standards and shall be based on consideration of the following: Existing treatment levels and management practices; Differing impacts pollutant sources may have on water quality; The availability of treatment technologies, management practices, or other pollutant reduction measures; Environmental, economic, and technological feasibility of achieving the allocation; The cost benefit associated with achieving the allocation; Reasonable timeframes for implementation; Potential applicability of any moderating provisions such as variances, exemptions, and mixing zones; and The extent to which nonattainment of water quality standards is caused by pollution sources outside of Florida, discharges that have ceased, or alterations to water bodies prior to the date of this act. Not later than February 1, 2001, the department shall submit a report to the Governor, the President of the Senate, and the Speaker of the House of Representatives containing recommendations, including draft legislation, for any modifications to the process for allocating total maximum daily loads, including the relationship between allocations and the watershed or basin management planning process. Such recommendations shall be developed by the department in cooperation with a technical advisory committee which includes representatives of affected parties, environmental organizations, water management districts, and other appropriate local, state, and federal government agencies. The technical advisory committee shall also include such members as may be designated by the President of the Senate and the Speaker of the House of Representatives. The total maximum daily load calculations and allocations for each water body or water body segment shall be adopted by rule by the secretary pursuant to ss. 120.536(1), 120.54, and 403.805. The rules adopted pursuant to this paragraph shall not be subject to approval by the Environmental Regulation Commission. As part of the rule development process, the department shall hold at least one public workshop in the vicinity of the water body or water body segment for which the total maximum daily load is being developed. Notice of the public workshop shall be published not less than 5 days nor more than 15 days before the public workshop in a newspaper of general circulation in the county or counties containing the water bodies or water body segments for which the total maximum daily load calculation and allocation are being developed. IMPLEMENTATION OF TOTAL MAXIMUM DAILY LOADS.-- The department shall be the lead agency in coordinating the implementation of the total maximum daily loads through water quality protection programs. Application of a total maximum daily load by a water management district shall be consistent with this section and shall not require the issuance of an order or a separate action pursuant to s. 120.536(1) or s. 120.54 for adoption of the calculation and allocation previously established by the department. Such programs may include, but are not limited to: Permitting and other existing regulatory programs; Nonregulatory and incentive-based programs, including best management practices, cost sharing, waste minimization, pollution prevention, and public education; Other water quality management and restoration activities, for example surface water improvement and management plans approved by water management districts under s. 373.456 or watershed or basin management plans developed pursuant to this subsection; Pollutant trading or other equitable economically based agreements; Public works including capital facilities; or Land acquisition. In developing and implementing the total maximum daily load for a water body, the department, or the department in conjunction with a water management district, may develop a watershed or basin management plan that addresses some or all of the watersheds and basins tributary to the water body. These plans will serve to fully integrate the management strategies available to the state for the purpose of implementing the total maximum daily loads and achieving water quality restoration. The watershed or basin management planning process is intended to involve the broadest possible range of interested parties, with the objective of encouraging the greatest amount of cooperation and consensus possible. The department or water management district shall hold at least one public meeting in the vicinity of the watershed or basin to discuss and receive comments during the planning process and shall otherwise encourage public participation to the greatest practical extent. Notice of the public meeting shall be published in a newspaper of general circulation in each county in which the watershed or basin lies not less than 5 days nor more than 15 days before the public meeting. A watershed or basin management plan shall not supplant or otherwise alter any assessment made under s. 403.086(3) and (4), or any calculation or allocation made under s. 403.086(6). The department, in cooperation with the water management districts and other interested parties, as appropriate, may develop suitable interim measures, best management practices, or other measures necessary to achieve the level of pollution reduction established by the department for nonagricultural nonpoint pollutant sources in allocations developed pursuant to paragraph (6)(b). These practices and measures may be adopted by rule by the department and the water management districts pursuant to ss. 120.536(1) and 120.54, and may be implemented by those parties responsible for nonagricultural nonpoint pollutant sources and the department and the water management districts shall assist with implementation. Where interim measures, best management practices, or other measures are adopted by rule, the effectiveness of such practices in achieving the levels of pollution reduction established in allocations developed by the department pursuant to paragraph (6)(b) shall be verified by the department. Implementation, in accordance with applicable rules, of practices that have been verified by the department to be effective at representative sites shall provide a presumption of compliance with state water quality standards and release from the provisions of s.376.307(5) for those pollutants addressed by the practices, and the department is not authorized to institute proceedings against the owner of the source of pollution to recover costs or damages associated with the contamination of surface or ground water caused by those pollutants. Such rules shall also incorporate provisions for a notice of intent to implement the practices and a system to assure the implementation of the practices, including recordkeeping requirements. Where water quality problems are detected despite the appropriate implementation, operation, and maintenance of best management practices and other measures according to rules adopted under this paragraph, the department or the water management districts shall institute a reevaluation of the best management practice or other measures. 1. The Department of Agriculture and Consumer Services may develop and adopt by rule pursuant to ss. 120.536(1) and 120.54 suitable interim measures, best management practices, or other measures necessary to achieve the level of pollution reduction established by the department for agricultural pollutant sources in allocations developed pursuant to paragraph (6)(b). These practices and measures may be implemented by those parties responsible for agricultural pollutant sources and the department, the water management districts, and the Department of Agriculture and Consumer Services shall assist with implementation. Where interim measures, best management practices, or other measures are adopted by rule, the effectiveness of such practices in achieving the levels of pollution reduction established in allocations developed by the department pursuant to paragraph (6)(b) shall be verified by the department. Implementation, in accordance with applicable rules, of practices that have been verified by the department to be effective at representative sites shall provide a presumption of compliance with state water quality standards and release from the provisions of s.376.307(5) for those pollutants addressed by the practices, and the department is not authorized to institute proceedings against the owner of the source of pollution to recover costs or damages associated with the contamination of surface or ground water caused by those pollutants. In the process of developing and adopting rules for interim measures, best management practices, or other measures, the Department of Agriculture and Consumer Services shall consult with the department, the Department of Health, the water management districts, representatives from affected farming groups, and environmental group representatives. Such rules shall also incorporate provisions for a notice of intent to implement the practices and a system to assure the implementation of the practices, including recordkeeping requirements. Where water quality problems are detected despite the appropriate implementation, operation, and maintenance of best management practices and other measures according to rules adopted under this paragraph, the Department of Agriculture and Consumer Services shall institute a reevaluation of the best management practice or other measure. 2. Individual agricultural records relating to processes or methods of production, or relating to costs of production, profits, or other financial information which are otherwise not public records, which are reported to the Department of Agriculture and Consumer Services pursuant to this paragraph or pursuant to any rule adopted pursuant to this paragraph shall be confidential and exempt from s. 119.07(1) and s. 24(a), Art. I of the State Constitution. Upon request of the department or any water management district, the Department of Agriculture and Consumer Services shall make such individual agricultural records available to that agency, provided that the confidentiality specified by this subparagraph for such records is maintained. This subparagraph is subject to the Open Government Sunset Review Act of 1995 in accordance with s. 119.15, and shall stand repealed on October 2, 2006, unless reviewed and saved from repeal through reenactment by the Legislature. The provisions of paragraphs (c) and (d) shall not preclude the department or water management district from requiring compliance with water quality standards or with current best management practice requirements set forth in any applicable regulatory program authorized by law for the purpose of protecting water quality. Additionally, paragraphs (c) and (d) are applicable only to the extent that they do not conflict with any rules promulgated by the department that are necessary to maintain a federally delegated or approved program. RULES.-- The department is authorized to adopt rules pursuant to ss. 120.536(1) and 120.54 for: Delisting water bodies or water body segments from the list developed under subsection (4) pursuant to the guidance under subsection (5); Administration of funds to implement the total maximum daily load program; Procedures for pollutant trading among the pollutant sources to a water body or water body segment, including a mechanism for the issuance and tracking of pollutant credits. Such procedures may be implemented through permits or other authorizations and must be legally binding. No rule implementing a pollutant trading program shall become effective prior to review and ratification by the Legislature; and The total maximum daily load calculation in accordance with paragraph (6)(a) immediately upon the effective date of this act, for those eight water segments within Lake Okeechobee proper as submitted to the United States Environmental Protection Agency pursuant to subsection (2). APPLICATION.-- The provisions of this section are intended to supplement existing law, and nothing in this section shall be construed as altering any applicable state water quality standards or as restricting the authority otherwise granted to the department or a water management district under this chapter or chapter 373. The exclusive means of state implementation of s. 303(d) of the Clean Water Act, Pub. L. No. 92-500, 33 U.S.C. ss. 1251 et seq. shall be in accordance with the identification, assessment, calculation and allocation, and implementation provisions of this section. CONSTRUCTION.-- Nothing in this section shall be construed as limiting the applicability or consideration of any mixing zone, variance, exemption, site specific alternative criteria, or other moderating provision. IMPLEMENTATION OF ADDITIONAL PROGRAMS.-- The department shall not implement, without prior legislative approval, any additional regulatory authority pursuant to s. 303(d) of the Clean Water Act or 40 C.F.R. part 130, if such implementation would result in water quality discharge regulation of activities not currently subject to regulation. In order to provide adequate due process while ensuring timely development of total maximum daily loads, proposed rules and orders authorized by this act shall be ineffective pending resolution of a s. 120.54(3), s. 120.56, s. 120.569, or s. 120.57 administrative proceeding. However, the department may go forward prior to resolution of such administrative proceedings with subsequent agency actions authorized by subsections (2)-(6), provided that the department can support and substantiate those actions using the underlying bases for the rules or orders without the benefit of any legal presumption favoring, or in deference to, the challenged rules or orders. Key Provisions of Law Referenced in Section 403.067, Florida Statutes Section 403.021, Florida Statutes Section 403.021, Florida Statutes, which is referenced in Subsection (1) of Section 403.067, Florida Statutes, provides, in pertinent part, as follows: The pollution of the air and waters of this state constitutes a menace to public health and welfare; creates public nuisances; is harmful to wildlife and fish and other aquatic life; and impairs domestic, agricultural, industrial, recreational, and other beneficial uses of air and water. It is declared to be the public policy of this state to conserve the waters of the state and to protect, maintain, and improve the quality thereof for public water supplies, for the propagation of wildlife and fish and other aquatic life, and for domestic, agricultural, industrial, recreational, and other beneficial uses and to provide that no wastes be discharged into any waters of the state without first being given the degree of treatment necessary to protect the beneficial uses of such water. * * * It is hereby declared that the prevention, abatement, and control of the pollution of the air and waters of this state are affected with a public interest, and the provisions of this act are enacted in the exercise of the police powers of this state for the purpose of protecting the health, peace, safety, and general welfare of the people of this state. The Legislature finds and declares that control, regulation, and abatement of the activities which are causing or may cause pollution of the air or water resources in the state and which are or may be detrimental to human, animal, aquatic, or plant life, or to property, or unreasonably interfere with the comfortable enjoyment of life or property be increased to ensure conservation of natural resources; to ensure a continued safe environment; to ensure purity of air and water; to ensure domestic water supplies; to ensure protection and preservation of the public health, safety, welfare, and economic well-being; to ensure and provide for recreational and wildlife needs as the population increases and the economy expands; and to ensure a continuing growth of the economy and industrial development. The Legislature further finds and declares that: Compliance with this law will require capital outlays of hundreds of millions of dollars for the installation of machinery, equipment, and facilities for the treatment of industrial wastes which are not productive assets and increased operating expenses to owners without any financial return and should be separately classified for assessment purposes. Industry should be encouraged to install new machinery, equipment, and facilities as technology in environmental matters advances, thereby improving the quality of the air and waters of the state and benefiting the citizens of the state without pecuniary benefit to the owners of industries; and the Legislature should prescribe methods whereby just valuation may be secured to such owners and exemptions from certain excise taxes should be offered with respect to such installations. Facilities as herein defined should be classified separately from other real and personal property of any manufacturing or processing plant or installation, as such facilities contribute only to general welfare and health and are assets producing no profit return to owners. In existing manufacturing or processing plants it is more difficult to obtain satisfactory results in treating industrial wastes than in new plants being now planned or constructed and that with respect to existing plants in many instances it will be necessary to demolish and remove substantial portions thereof and replace the same with new and more modern equipment in order to more effectively treat, eliminate, or reduce the objectionable characteristics of any industrial wastes and that such replacements should be classified and assessed differently from replacements made in the ordinary course of business. * * * It is the policy of the state to ensure that the existing and potential drinking water resources of the state remain free from harmful quantities of contaminants. The department, as the state water quality protection agency, shall compile, correlate, and disseminate available information on any contaminant which endangers or may endanger existing or potential drinking water resources. It shall also coordinate its regulatory program with the regulatory programs of other agencies to assure adequate protection of the drinking water resources of the state. It is the intent of the Legislature that water quality standards be reasonably established and applied to take into account the variability occurring in nature. The department shall recognize the statistical variability inherent in sampling and testing procedures that are used to express water quality standards. The department shall also recognize that some deviations from water quality standards occur as the result of natural background conditions. The department shall not consider deviations from water quality standards to be violations when the discharger can demonstrate that the deviations would occur in the absence of any human-induced discharges or alterations to the water body. Rule Chapter 62-302, Florida Administrative Code Rule Chapter 62-302, Florida Administrative Code, which is referenced in Subsection (3)(b) of Section 447.067, Florida Statutes, contains Florida's "[s]urface water quality standards." Rule 62-302.300, Florida Administrative Code, is entitled, "Findings, Intent, and Antidegradation Policy for Surface Water Quality," and provides as follows: Article II, Section 7 of the Florida Constitution requires abatement of water pollution and conservation and protection of Florida's natural resources and scenic beauty. Congress, in Section 101(a)(2) of the Federal Water Pollution Control Act, as amended,[14] declares that achievement by July 1, 1983, of water quality sufficient for the protection and propagation[15] of fish, shellfish, and wildlife, as well as for recreation in and on the water, is an interim goal to be sought whenever attainable. Congress further states, in Section 101(a)(3), that it is the national policy that the discharge of toxic pollutants in toxic amounts be prohibited. The present and future most beneficial uses of all waters of the State have been designated by the Department by means of the Classification system set forth in this Chapter pursuant to Subsection 403.061(10), F.S.[16] Water quality standards[17] are established by the Department to protect these designated uses.[18] Because activities outside the State sometimes cause pollution[19] of Florida's waters, the Department will make every reasonable effort to have such pollution abated. Water quality standards apply equally to and shall be uniformly enforced in both the public and private sector. Public interest shall not be construed to mean only those activities conducted solely to provide facilities or benefits to the general public. Private activities conducted for private purposes may also be in the public interest. The Commission, recognizing the complexity of water quality management and the necessity to temper regulatory actions with the technological progress and the social and economic well-being of people, urges, however, that there be no compromise where discharges of pollutants constitute a valid hazard to human health. The Commission requests that the Secretary seek and use the best environmental information available when making decisions on the effects of chronically and acutely toxic substances and carcinogenic, mutagenic, and teratogenic substances. Additionally, the Secretary is requested to seek and encourage innovative research and developments in waste treatment alternatives that might better preserve environmental quality or at the same time reduce the energy and dollar costs of operation. The criteria set forth in this Chapter are minimum levels which are necessary to protect the designated uses of a water body. It is the intent of this Commission that permit applicants should not be penalized due to a low detection limit associated with any specific criteria. (10)(a) The Department's rules that were adopted on March 1, 1979 regarding water quality standards are designed to protect the public health or welfare and to enhance the quality of waters of the State. They have been established taking into consideration the use and value of waters of the State for public water supplies, propagation of fish and wildlife, recreational purposes, and agricultural, industrial, and other purposes, and also taking into consideration their use and value for navigation. Under the approach taken in the formulation of the rules adopted in this proceeding: The Department's rules that were adopted on March 1, 1979 regarding water quality standards are based upon the best scientific knowledge related to the protection of the various designated uses of waters of the State; and The mixing zone,[20] zone of discharge, site specific alternative criteria, exemption, and equitable allocation provisions are designed to provide an opportunity for the future consideration of factors relating to localized situations which could not adequately be addressed in this proceeding, including economic and social consequences, attainability, irretrievable conditions, natural background,[21] and detectability. This is an even-handed and balanced approach to attainment of water quality objectives. The Commission has specifically recognized that the social, economic and environmental costs may, under certain special circumstances, outweigh the social, economic and environmental benefits if the numerical criteria are enforced statewide. It is for that reason that the Commission has provided for mixing zones, zones of discharge, site specific alternative criteria, exemptions and other provisions in Chapters 62-302, 62-4, and 62-6, F.A.C. Furthermore, the continued availability of the moderating provisions is a vital factor providing a basis for the Commission's determination that water quality standards applicable to water classes in the rule are attainable taking into consideration environmental, technological, social, economic and institutional factors. The companion provisions of Chapters 62-4 and 62-6, F.A.C., approved simultaneously with these Water Quality Standards are incorporated herein by reference as a substantive part of the State's comprehensive program for the control, abatement and prevention of water pollution. Without the moderating provisions described in (b)2. above, the Commission would not have adopted the revisions described in (b)1. above nor determined that they are attainable as generally applicable water quality standards. Section 403.021, Florida Statutes, declares that the public policy of the State is to conserve the waters of the State to protect, maintain, and improve the quality thereof for public water supplies, for the propagation of wildlife, fish and other aquatic life, and for domestic, agricultural, industrial, recreational, and other beneficial uses. It also prohibits the discharge of wastes into Florida waters without treatment necessary to protect those beneficial uses of the waters. The Department shall assure that there shall be achieved the highest statutory and regulatory requirements for all new and existing point sources, and all cost- effective and reasonable best management practices for nonpoint source control. For the purposes of this rule, highest statutory and regulatory requirements for new and existing point sources are those which can be achieved through imposition of effluent limits required under Sections 301(b) and 306 of the Federal Clean Water Act (as amended in 1987) and Chapter 403, F.S. For the purposes of this rule, cost-effective and reasonable best management practices for nonpoint source control are those nonpoint source controls authorized under Chapters 373 and 403, F.S., and Department rules. The Department finds that excessive nutrients (total nitrogen and total phosphorus) constitute one of the most severe water quality problems facing the State. It shall be the Department's policy to limit the introduction of man-induced nutrients into waters of the State. Particular consideration shall be given to the protection from further nutrient enrichment of waters which are presently high in nutrient concentrations or sensitive to further nutrient concentrations and sensitive to further nutrient loadings. Also, particular consideration shall be given to the protection from nutrient enrichment of those waters presently containing very low nutrient concentrations: less than 0.3 milligrams per liter total nitrogen or less than 0.04 milligrams per liter total phosphorus. Existing uses and the level of water quality necessary to protect the existing uses shall be fully maintained and protected. Such uses may be different or more extensive than the designated use. Pollution which causes or contributes to new violations of water quality standards or to continuation of existing violations is harmful to the waters of this State and shall not be allowed. Waters having water quality below the criteria established for them shall be protected and enhanced. However, the Department shall not strive to abate natural conditions. If the Department finds that a new or existing discharge will reduce the quality of the receiving waters below the classification established for them or violate any Department rule or standard, it shall refuse to permit the discharge. If the Department finds that a proposed new discharge or expansion of an existing discharge will not reduce the quality of the receiving waters below the classification established for them, it shall permit the discharge if such degradation is necessary or desirable under federal standards and under circumstances which are clearly in the public interest, and if all other Department requirements are met. Projects permitted under Part IV of Chapter 373, F.S., shall be considered in compliance with this subsection if those projects comply with the requirements of subsection 373.414(1), F.S.; also projects permitted under the grandfather provisions of Sections 373.414(11) through (16), F.S., or permitted under Section 373.4145, F.S., shall be considered in compliance with this subsection if those projects comply with the requirements of Rule 62-312.080(2), F.A.C. (18)(a) Except as provided in subparagraphs (b) and (c) of this paragraph, an applicant for either a general permit or renewal of an existing permit for which no expansion of the discharge is proposed is not required to show that any degradation from the discharge is necessary or desirable under federal standards and under circumstances which are clearly in the public interest. If the Department determines that the applicant has caused degradation of water quality over and above that allowed through previous permits issued to the applicant, then the applicant shall demonstrate that this lowering of water quality is necessary or desirable under federal standards and under circumstances which are clearly in the public interest. These circumstances are limited to cases where it has been demonstrated that degradation of water quality is occurring due to the discharge. If the new or expanded discharge was initially permitted by the Department on or after October 4, 1989, and the Department determines that an antidegradation analysis was not conducted, then the applicant seeking renewal of the existing permit shall demonstrate that degradation from the discharge is necessary or desirable under federal standards and under circumstances which are clearly in the public interest. Rule 62-302.400, Florida Administrative Code, classifies all surface waters of the state "according to designated uses." The rule provides for five classifications: Class I ("Potable Water Supplies"); Class II ("Shellfish Propagation or Harvesting"); Class III ("Recreation, Propagation of a Healthy, Well-Balanced Population of Fish and Wildlife": Fresh and Marine); Class IV ("Agricultural Water Supplies"); and Class V ("Navigation, Utility and Industrial Use").22 See Rule 62-302.400(1), Florida Administrative Code. These "[w]ater quality classifications are arranged in order of degree of protection required, with Class I water having generally the most stringent water quality criteria23 and Class V the least. However, Class I, II, and III surface waters share water quality criteria established to protect recreation and the propagation and maintenance of a healthy well-balanced population of fish and wildlife." Rule 62-302.400(4), Florida Administrative Code. Waters designated as "Outstanding Florida Waters and Outstanding National Resource Waters" are given "special protection." See Rule 62-302.700(1) and (7), Florida Administrative Code ("It shall be the Department policy to afford the highest protection to Outstanding Florida Waters and Outstanding National Resource Waters. No degradation of water quality, other than that allowed in Rule 62-4.242(2) and (3), F.A.C., is to be permitted in Outstanding Florida Waters and Outstanding National Resource Waters, respectively, notwithstanding any other Department rules that allow water quality lowering. . . . The policy of this section shall be implemented through the permitting process pursuant to Section 62-4.242, F.A.C.").24 According to Subsection (5) of Rule 62-302.400, Florida Administrative Code, Criteria applicable to a classification are designed to maintain the minimum conditions necessary to assure the suitability of water for the designated use of the classification. In addition, applicable criteria are generally adequate to maintain minimum conditions required for the designated uses of less stringently regulated classifications. Therefore, unless clearly inconsistent with the criteria applicable, the designated uses of less stringently regulated classifications shall be deemed to be included within the designated uses of more stringently regulated classifications. "The specific water quality criteria corresponding to each surface water classification are listed in Rules 62-302.500 and 62-302.530," Florida Administrative Code. Rule 62- 302.400(3), Florida Administrative Code. Subsection (1) of Rule 62-302.500, Florida Administrative Code, sets forth what are known as the "free froms." It provides as follows: Minimum Criteria. All surface waters of the State shall at all places and at all times be free from: Domestic, industrial, agricultural, or other man-induced non-thermal components of discharges which, alone or in combination with other substances or in combination with other components of discharges (whether thermal or non-thermal): Settle to form putrescent deposits or otherwise create a nuisance; or Float as debris, scum, oil, or other matter in such amounts as to form nuisances; or Produce color, odor, taste, turbidity, or other conditions in such degree as to create a nuisance; or Are acutely toxic; or Are present in concentrations which are carcinogenic, mutagenic, or teratogenic to human beings or to significant, locally occurring, wildlife or aquatic species, unless specific standards are established for such components in Rules 62-302.500(2) or 62-302.530; or Pose a serious danger to the public health, safety, or welfare. Thermal components of discharges which, alone, or in combination with other discharges or components of discharges (whether thermal or non-thermal): Produce conditions so as to create a nuisance; or Do not comply with applicable provisions of Rule 62-302.500(3), F.A.C. Silver in concentrations above 2.3 micrograms/liter in predominantly marine waters. Rule 62-302.530, Florida Administrative Code, has a table that contains both numeric and narrative surface water quality criteria to be applied except within zones of mixing. The left-hand column of the Table is a list of constituents [or parameters] for which a surface water criterion exists. The headings for the water quality classifications are found at the top of the Table. Applicable criteria lie within the Table. The individual criteria should be read in conjunction with other provisions in water quality standards, including Rules 62- 302.500 and 62-302.510, F.A.C. The criteria contained in Rules 62-302.500 or 62-302.510 also apply to all waters unless alternative or more stringent criteria are specified in Rule 62-302.530, F.A.C. Unless otherwise stated, all criteria express the maximum not to be exceeded at any time. In some cases, there are separate or additional limits, such as annual average criteria, which apply independently of the maximum not to be exceeded at any time. The following are the specific parameters listed in the table: Alkalinity; Aluminum; Ammonia (un-ionized); Antimony; Arsenic (total and trivalent); Bacteriological Quality (Fecal Coliform Bacteria); Bacteriological Quality (Total Coliform Bacteria); Barium; Benzene; Beryllium; Biological Integrity; BOD (Biochemical Oxygen Demand); Bromine (free molecular); Cadmium; Carbon Tetrachloride; Chlorides; Chlorine (total residual); Chromium (trivalent and hexavalent); Chronic Toxicity; Color; Conductance (specific); Copper; Cyanide; Detergents; 1,1- Dichloroethylene (1,1-di-chloroethene); Dichloromethane (methylene chloride); 2,4-Dinitrotoluene; Dissolved Oxygen; Dissolved Solids; Fluorides; Halomethanes; Hexachlorobutadiene; Iron; Lead; Manganese; Mercury; Nickel; Nitrate; Nuisance Species;25 Nutrients;26 Odor; Oils and Greases; Pesticides and Herbicides (2,4,5-TP; 2-4-D; Aldrin; Betahexachlorocyclohexane; Chlordane; DDT; Demeton; Dieldrin; Endosulfan; Endrin: Guthion; Heptachlor; Lindane; Malathion; Methoxychlor; Mirex; Parathion; Toxaphene); pH; Phenolic Compounds; Phosphorous (Elemental); Polycyclic Aromatic Hydrocarbons; Radioactive Substances; Selenium; Silver; 1,1,2,2-Tetrachloroethane; Tetrachloroethylene; Thallium; Total Dissolved Gases; Transparency; Trichloroeylene (trichloroethene); Turbidity; and Zinc. Rule 62-302.800, Florida Administrative Code, provides for the establishment of "[s]ite [s]pecific [a]lternative [c]riteria" where a water body, or portion thereof, does "not meet a particular ambient water quality criterion specified for its classification, due to natural background conditions or man- induced conditions which cannot be controlled or abated."27 Section 303(d) of the Clean Water Act Section 303(d) of the Clean Water Act (33 U.S.C. Section 1313(d)), which is referenced in Subsections (1), (2), (9), and (11) of Section 447.067, Florida Statutes, provides as follows: Identification of areas with insufficient controls; maximum daily load; certain effluent limitations revision (1)(A) Each State shall identify those waters within its boundaries for which the effluent limitations required by section 1311(b)(1)(A) and section 1311(b)(1)(B) of this title are not stringent enough to implement any water quality standard applicable to such waters. The State shall establish a priority ranking for such waters, taking into account the severity of the pollution and the uses to be made of such waters. Each State shall identify those waters or parts thereof within its boundaries for which controls on thermal discharges under section 1311 of this title are not stringent enough to assure protection and propagation of a balanced indigenous population of shellfish, fish, and wildlife. Each State shall establish for the waters identified in paragraph (1)(A) of this subsection, and in accordance with the priority ranking, the total maximum daily load, for those pollutants which the Administrator identifies under section 1314(a)(2) of this title as suitable for such calculation. Such load shall be established at a level necessary to implement the applicable water quality standards with seasonal variations and a margin of safety which takes into account any lack of knowledge concerning the relationship between effluent limitations and water quality. Each State shall submit to the Administrator from time to time, with the first such submission not later than one hundred and eighty days after the date of publication of the first identification of pollutants under section 1314(a)(2)(D) of this title, for his approval the waters identified and the loads established under paragraphs (1)(A), (1)(B), (1)(C), and (1)(D) of this subsection. The Administrator shall either approve or disapprove such identification and load not later than thirty days after the date of submission. If the Administrator approves such identification and load, such State shall incorporate them into its current plan under subsection (e) of this section. If the Administrator disapproves such identification and load, he shall not later than thirty days after the date of such disapproval identify such waters in such State and establish such loads for such waters as he determines necessary to implement the water quality standards applicable to such waters and upon such identification and establishment the State shall incorporate them into its current plan under subsection (e) of this section. For the specific purpose of developing information, each State shall identify all waters within its boundaries which it has not identified under paragraph (1)(A) and (1)(B) of this subsection and estimate for such waters the total maximum daily load with seasonal variations and margins of safety, for those pollutants which the Administrator identifies under section 1314(a)(2) of this title as suitable for such calculation and for thermal discharges, at a level that would assure protection and propagation of a balanced indigenous population of fish, shellfish and wildlife. Limitations on revision of certain effluent limitations Standard not attained For waters identified under paragraph (1)(A) where the applicable water quality standard has not yet been attained, any effluent limitation based on a total maximum daily load or other waste load allocation established under this section may be revised only if (i) the cumulative effect of all such revised effluent limitations based on such total maximum daily load or waste load allocation will assure the attainment of such water quality standard, or (ii) the designated use which is not being attained is removed in accordance with regulations established under this section. Standard attained For waters identified under paragraph (1)(A) where the quality of such waters equals or exceeds levels necessary to protect the designated use for such waters or otherwise required by applicable water quality standards, any effluent limitation based on a total maximum daily load or other waste load allocation established under this section, or any water quality standard established under this section, or any other permitting standard may be revised only if such revision is subject to and consistent with the antidegradation policy established under this section. Development of Proposed Rule Chapter 62-303, Florida Administrative Code The rule development process that culminated in the adoption of proposed Rule Chapter 62-303, Florida Administrative Code, began shortly after the enactment of Chapter 99-223, Laws of Florida, when the Department decided, consistent with its routine practice in complex rulemaking cases, to form a technical advisory committee (TAC) to assist the Department in developing an "identification of impaired surface waters" rule by rendering advice to the Department concerning technical and scientific matters.28 The Department solicited nominations for TAC membership from stakeholder groups, but ultimately rejected the nominations it received and instead selected individuals it believed were best qualified to contribute based upon their expertise (in areas including water quality monitoring, water quality chemistry, water quality modeling, estuarine ecology, wetland ecology, analytical chemistry, statistics, bioassessment procedures, limnology, coastal ecology, fish biology, and hydrology). The first TAC meeting was held August 12, 1999. There were 12 subsequent TAC meetings, the last two of which were held on August 4, 2000, and August 28, 2000. The TAC meetings were held in various locations throughout the state (Pensacola, Tallahassee, Jacksonville, Gainesville, Orlando, Tampa, St. Petersburg, and West Palm Beach) and were open to public, with members of the public able to make comments. All 13 TAC meetings were noticed in the Florida Administrative Weekly. The TAC meetings were chaired by Mr. Joyner, who was the Department employee primarily responsible for drafting an "identification of impaired surface waters" rule. Mr. Joyner emphasized to the TAC members that their role was simply to give advice and make recommendations to the Department and that their advice and recommendations might not be followed. As it turned out, there were several instances where the Department rejected a TAC recommendation. In addition to seeking the advice of experts on technical and scientific matters, the Department wanted to hear from stakeholders regarding policy issues. Towards that end, it took steps to establish a Policy Advisory Committee (PAC). An organizational meeting of the PAC was held on March 24, 2000, in Tallahassee, the day after the seventh TAC meeting (which was also held in Tallahassee). After being told about the government in the sunshine and public records laws with which they would have to comply as PAC members, "no one wanted to be on the PAC." The consensus of those present was to "just have public meetings [to elicit stakeholder input] and not have a formal PAC." The Department acted accordingly. Following this March 24, 2000, meeting, the Department abandoned its efforts to form a PAC and instead held four public meetings to obtain input from the public regarding policy questions involved in crafting an "identification of impaired surface waters" rule. The last two of these public meetings were combined with the last two TAC meetings (held on August 4, 2000, and August 28, 2000). Each of the five "policy" public meetings held by the Department (including the March 24, 2000, PAC organizational meeting) were noticed in the Florida Administrative Weekly. The Department also held two rule development workshops (one on September 7, 2000, and the other on December 7, 2000), both of which were also noticed in the Florida Administrative Weekly. Between the time these two rule development workshops were held, Mr. Joyner met with representatives of regulated interests and the environmental community to discuss their thoughts regarding what should be included in an "identification of impaired surface waters" rule. Throughout the rule development process, the Department also received and considered written comments from interested persons. Information about the rule development process was posted on the Department's web site for the public to read. The Department e-mailed approximately 350 persons (whose names were on a list of interested persons compiled by the Department) to notify them in advance of any meetings and workshops on proposed Rule Chapter 62-303, Florida Administrative Code. Proposed Rule Chapter 62-303, Florida Administrative Code, underwent numerous revisions during the rule development process. Whenever a revised version of the proposed rule chapter was prepared, the Department sent a copy of it, via e-mail, to the persons on the Department's 350 "interested persons" e-mail list. Changes to proposed Rule Chapter 62-303, Florida Administrative Code, were made not only in response to comments made by members of the TAC and stakeholders, but also in response to comments made by staff of the Region IV office of the United States Environmental Protection Agency (EPA), with whom Department staff had extensive discussions regarding the proposed rule chapter. The Environmental Regulation Commission (ERC) "exercise[s] the standard-setting authority of the [D]epartment."29 In March of 2001, approximately 19 months after the first TAC meeting, the Department was ready to present its most recent version of proposed Rule Chapter 62-303, Florida Administrative Code, to the ERC for adoption. Accordingly, it published a Notice of Proposed Rulemaking in the March 23, 2001 (Volume 27, Number 12) edition of the Florida Administrative Weekly announcing that a hearing on the proposed rule chapter would be held before the ERC on April 26, 2001. The Notice contained the complete text of the proposed rule chapter, as well as the following statement of “[p]urpose, effect, and summary”: The purpose of the proposed new rule is to establish a methodology to identify impaired waters that will be included on the State's verified list of impaired waters, for which the Department will calculate Total Maximum Daily Loads, pursuant to subsection 403.067(4), Florida Statutes (F.S.), and which will be submitted to the United States Environmental Protection Agency pursuant to subparagraphs 303(d)(1)(A) and 303(d)(1)(C) of the Clean Water Act. As directed by 403.067, F.S., the development of the State's 303(d) list will be a two-step process; waters will first be identified as potentially impaired and then any impairment will be verified before listing the water. The rule implements this statutory direction by providing a methodology to identify surface waters of the state that will be included on a "planning list" of waters. Pursuant to subsection 403.067(2) and (3), F.S., the Department will evaluate the data used to place these waters on the planning list, verify that the data meet quality assurance and data sufficiency requirements of the "verified list," and collect additional data, as needed, to complete the assessment. The rule also provides information about the listing cycle, the format of the verified list, and delisting procedures. At the ERC's regularly scheduled March 29, 2001, meeting, Mr. Joyner formally briefed the ERC on the status of the rule development process (as he had previously done at ERC's regularly scheduled meetings on June 29, 2000, August 24, 2000, December 5, 2000, and January 25, 2001). At the March 29, 2001, meeting, Mr. Joyner went through the proposed rule chapter with the ERC "paragraph by paragraph." As noted above, prior to the scheduled April 26, 2001, ERC hearing, petitions challenging the proposed rule chapter (as published in the March 23, 2001, edition of the Florida Administrative Weekly) were filed with the Division by Petitioner Lane (on April 10, 2001) and by all Joint Petitioners excluding Save Our Suwannee, Inc. (on April 13, 2001). On April 21, 2001, all Joint Petitioners excluding Save Our Suwannee, Inc., filed a Request with ERC asking: that rulemaking proceedings regarding proposed Rule 62-303 be conducted under the provisions of Sections 120.569 and 120.57, Florida Statutes, as to all parties, or alternatively at least to the six petitioners; that the evidentiary processes involved under the provisions of Sections 120.569 and 120.57, Florida Statutes, be combined with the already pending DOAH proceedings of all parties, or at least the six petitioners; and that rulemaking proceedings, as to proposed Rule 62-303, be suspended pending completion of the evidentiary processes before DOAH as well as the DOAH ruling on the pending petitions, as to all parties or at least the six petitioners. The Request was considered and denied by the ERC at the outset of its hearing on the proposed rule chapter, which was held as scheduled on April 26, 2001. That same day, the ERC issued a written order denying the Request, which read, in pertinent part as follows: But for their request to combine the requested evidentiary proceeding with the existing rule challenges pending before DOAH, Petitioners have requested conversion of the instant rulemaking proceeding to an evidentiary hearing or "draw out." A draw out is authorized under proper circumstances by Section 120.54(3)(c)2, Florida Statutes, which states: "Rulemaking proceedings shall be governed solely by the provisions of this section unless a person timely asserts that the person's substantial interests will be affected in the proceeding and affirmatively demonstrates to the agency that the proceeding does not provide adequate opportunity to protect those interests. If the agency determines that the rulemaking proceeding is not adequate to protect the person's interests, it shall suspend the rulemaking proceeding and convene a separate proceeding under the provisions of ss. 120.569 and 120.57. Similarly situated persons may be requested to join and participate in the separate proceeding. Upon conclusion of the separate proceeding, the rulemaking proceeding shall be resumed." A participant in the rulemaking proceeding who requests such relief is asking to "draw out" of the rulemaking proceeding and for the agency to afford the party an evidentiary hearing in lieu thereof.[30] A copy of each of the six petitions filed by the parties with DOAH was attached to the joint notice now before the Commission. But for minor variations in allegations to establish standing, each of the six petitions sets out seventeen (17) counts with each count asserting that a particular provision, or provisions, of proposed Rule 62-303 is an invalid exercise of delegated legislative authority or otherwise a violation of Section 403.067, F.S., or the federal Clean Water Act. None of the individual petitions, or the joint notice, demonstrate that the pending rulemaking proceeding fails to protect the petitioners' substantial interests, nor have petitioners raised any factual issues that would require a separate evidentiary hearing beyond the scope of the DOAH proceedings already pending. Under these circumstances, Section 120.56(2)(b), F.S., specifically allows an agency to proceed with all other steps in the rulemaking process, except for final adoption, while a DOAH rule challenge is pending.[31] In view of the foregoing, and in exercising its discretion as afforded by Section 120.54(3)(c)2., F.S., the Commission has determined that the rulemaking proceeding adequately protects the interests asserted by each of the six petitioners who joined in the joint notice as filed April 20th, 2001. Accordingly, the petitioners' joint request for relief therein is denied. The version of the proposed rule chapter published in the March 23, 2001, edition of the Florida Administrative Weekly, with some modifications, was adopted by the ERC at its April 26, 2001, meeting (at which members of the public were given the opportunity to comment prior to ERC deliberation). The modifications were noticed in a Notice of Change published in the May 11, 2001, edition (Volume 27, Number 19) of the Florida Administrative Weekly. Contents of the ERC-Adopted Version of Proposed Rule Chapter 62- 303, Florida Administrative Code Proposed Rule Chapter 62-303, Florida Administrative Code, is entitled, "Identification of Impaired Surface Waters." It is divided into four parts. Part I: Overview Part I of proposed Rule Chapter 62-303, Florida Administrative Code, contains the following "general" provisions: Proposed Rules 62-303.100, 62-303.150, and 62- 303.200, Florida Administrative Code. Part I: Proposed Rule 62-303.100, Florida Administrative Code Proposed Rule 62-303.100, Florida Administrative Code, is entitled, "Scope and Intent." It provides an overview of the proposed rule chapter and reads as follows: This chapter establishes a methodology to identify surface waters of the state that will be included on the state's planning list of waters that will be assessed pursuant to subsections 403.067(2) and (3), Florida Statutes (F.S.). It also establishes a methodology to identify impaired waters that will be included on the state's verified list of impaired waters, for which the Department will calculate Total Maximum Daily Loads (TMDLs), pursuant to subsection 403.067(4) F.S., and which will be submitted to the United States Environmental Protection Agency (EPA) pursuant to paragraph 303(d)(1) of the Clean Water Act (CWA). Subsection 303(d) of the CWA and section 403.067, F.S., describe impaired waters as those not meeting applicable water quality standards, which is a broad term that includes designated uses, water quality criteria, the Florida antidegradation policy, and moderating provisions. However, as recognized when the water quality standards were adopted, many water bodies naturally do not meet one or more established water quality criteria at all times, even though they meet their designated use.[32] Data on exceedances of water quality criteria will provide critical information about the status of assessed waters, but it is the intent of this chapter to only list waters on the verified list that are impaired due to point source or nonpoint source pollutant discharges. It is not the intent of this chapter to include waters that do not meet water quality criteria solely due to natural conditions or physical alterations of the water body not related to pollutants. Similarly, it is not the intent of this chapter to include waters where designated uses are being met and where water quality criteria exceedances are limited to those parameters for which permitted mixing zones or other moderating provisions (such as site-specific alternative criteria) are in effect. Waters that do not meet applicable water quality standards due to natural conditions or to pollution not related to pollutants shall be noted in the state's water quality assessment prepared under subsection 305(b) of the CWA. This chapter is intended to interpret existing water quality criteria and evaluate attainment of established designated uses as set forth in Chapter 62-302, F.A.C., for the purposes of identifying water bodies or segments for which TMDLs will be established. It is not the intent of this chapter to establish new water quality criteria or standards, or to determine the applicability of existing criteria under other provisions of Florida law. In cases where this chapter relies on numeric indicators of ambient water quality as part of the methodology for determining whether existing narrative criteria are being met, these numeric values are intended to be used only in the context of developing a planning list and identifying an impaired water pursuant to this chapter. As such, exceedances of these numeric values shall not, by themselves, constitute violations of Department rules that would warrant enforcement action. Nothing in this rule is intended to limit any actions by federal, state, or local agencies, affected persons, or citizens pursuant to other rules or regulations. Pursuant to section 403.067, F.S., impaired waters shall not be listed on the verified list if reasonable assurance is provided that, as a result of existing or proposed technology-based effluent limitations and other pollution control programs under local, state, or federal authority, they will attain water quality standards in the future and reasonable progress towards attainment of water quality standards will be made by the time the next 303(d) list is scheduled to be submitted to EPA. Specific Authority 403.061, 403.067, FS. Law Implemented 403.021(11). 403.062, 403.067, FS. History -- New Subsection (1) of proposed Rule 62-303.100, Florida Administrative Code, refers to the narrowing and winnowing process (more fully described in subsequent portions of the proposed rule chapter) that will yield the Department's "updated list" of waters for which TMDLs will be calculated, which list will be submitted to the EPA in accordance with Section 303(d) of the Clean Water Act. (The Department last submitted such a list to the EPA in 1998. This list is referred to by the Department as its 1998 303(d) list.) The Department's intent not to include on its "updated list" of waters for which TMDLs will be calculated those "[w]aters that do not meet applicable water quality standards due to natural conditions or to pollution not related to pollutants," as provided in Subsection (2) of proposed Rule 62- 303.100, Florida Administrative Code, is consistent with the view expressed in Section 403.067, Florida Statutes, that TMDLs are appropriate only where there is man-induced pollution involving the discharge (from either a point or nonpoint source) of identifiable pollutants. See, e.g., Section 403.067(1), Florida Statutes ("[T]he development of a total maximum daily load program for state waters as required by s. 303(d) of the Clean Water Act, Pub. L. No. 92-500, 33 U.S.C. ss. 1251 et seq. will promote improvements in water quality throughout the state through the coordinated control of point and nonpoint sources of pollution"); Section 403.067(4), Florida Statutes ("If a surface water or water segment is to be listed under this subsection, the department must specify the particular pollutants causing the impairment and the concentration of those pollutants causing the impairment relative to the water quality standard."); and Section 403.067(6)(a)2., Florida Statutes ("For waters determined to be impaired due solely to factors other than point and nonpoint sources of pollution, no total maximum daily load will be required."). While "[w]aters that do not meet applicable water quality standards due to natural conditions or to pollution not related to pollutants" will not appear on the Department's "updated list" of waters for which TMDLs will be calculated, they will be included in the "water quality assessment prepared under subsection 305(b) of the CWA" (305(b) Report), which provides as follows: Each State shall prepare and submit to the Administrator by April 1, 1975, and shall bring up to date by April 1, 1976, and biennially thereafter, a report which shall include-- a description of the water quality of all navigable waters in such State during the preceding year, with appropriate supplemental descriptions as shall be required to take into account seasonal, tidal, and other variations, correlated with the quality of water required by the objective of this chapter (as identified by the Administrator pursuant to criteria published under section 1314(a) of this title) and the water quality described in subparagraph (B) of this paragraph; an analysis of the extent to which all navigable waters of such State provide for the protection and propagation of a balanced population of shellfish, fish, and wildlife, and allow recreational activities in and on the water; an analysis of the extent to which the elimination of the discharge of pollutants and a level of water quality which provides for the protection and propagation of a balanced population of shellfish, fish, and wildlife and allows recreational activities in and on the water, have been or will be achieved by the requirements of this chapter, together with recommendations as to additional action necessary to achieve such objectives and for what waters such additional action is necessary; an estimate of (i) the environmental impact, (ii) the economic and social costs necessary to achieve the objective of this chapter in such State, (iii) the economic and social benefits of such achievement, and (iv) an estimate of the date of such achievement; and a description of the nature and extent of nonpoint sources of pollutants, and recommendations as to the programs which must be undertaken to control each category of such sources, including an estimate of the costs of implementing such programs. The Administrator shall transmit such State reports, together with an analysis thereof, to Congress on or before October 1, 1975, and October 1, 1976, and biennially thereafter. The declaration made in Subsection (3) of proposed Rule 62-303.100, Florida Administrative Code, that "[t]his chapter is intended to interpret existing water quality criteria and evaluate attainment of established designated uses as set forth in Chapter 62-302, F.A.C., for the purposes of identifying water bodies or segments for which TMDLs will be established" is similar to that made in Subsection (9) of Section 403.067, Florida Statutes, that "[t]he provisions of this section are intended to supplement existing law, and nothing in this section shall be construed as altering any applicable state water quality standards." Subsection (5) of proposed Rule 62-303.100, Florida Administrative Code, together with proposed Rule 62-303.600, Florida Administrative Code (which will be discussed later), are designed to give effect to and make more specific the language in Subsection (4) of Section 403.067, Florida Statutes, that an impaired water may be listed on the Department's "updated list" of waters for which TMDLs will be calculated only "if technology-based effluent limitations and other pollution control programs under local, state, or federal authority, including Everglades restoration activities pursuant to s. 373.4592 and the National Estuary Program, which are designed to restore such waters for the pollutant of concern are not sufficient to result in attainment of applicable surface water quality standards." Section 403.061, Florida Statutes, which is cited as the "[s]pecific [a]uthority" for proposed Rule 62-303.100, Florida Statutes (and every other proposed rule in the proposed rule chapter), authorizes the Department to, among other things, "[a]dopt rules pursuant to ss. 120.536(1) and 120.54 to implement the provisions of [Chapter 403, Florida Statutes]." See Section 403.061(7), Florida Statutes. Section 403.062, Florida Statutes, which is included among the statutory provisions cited in proposed Rule 62- 303.100, Florida Statutes (and every other proposed rule in the proposed rule chapter) as the "[l]aw [i]mplemented," reads as follows: Code Pollution control; underground, surface, and coastal waters.-- The department and its agents shall have general control and supervision over underground water, lakes, rivers, streams, canals, ditches, and coastal waters under the jurisdiction of the state insofar as their pollution may affect the public health or impair the interest of the public or persons lawfully using them. Part I: Proposed Rule 62-303.150, Florida Administrative Proposed Rule 62-303.150, Florida Administrative Code, explains the "[r]elationship [b]etween [p]lanning and [v]erified [l]ists." It provides as follows: The Department shall follow the methodology in Section 62-303 300 to develop a planning list pursuant to subsection 403.067(2), F.S. As required by subsection 403.067(2), F.S., the planning list shall not be used in the administration or implementation of any regulatory program, and shall be submitted to EPA for informational purposes only. Waters on this planning list will be assessed pursuant to subsection 403.067(3) F.S., as part of the Department's watershed management approach. During this assessment, the Department shall determine whether the water body is impaired and whether the impairment is due to pollutant discharges using the methodology in Part III. The resultant verified list of impaired waters, which is the list of waters for which TMDLs will be developed by the Department pursuant to subsection 403.067(4), will be adopted by Secretarial Order and will be subject to challenge under subsection [sic] 120.569 and 120.57 F.S. Once adopted, the list will be submitted to the EPA pursuant to paragraph 303(d)(1) of the CWA. Consistent with state and federal requirements, opportunities for public participation, including workshops, meetings, and periods to submit comments on draft lists, will be provided as part of the development of planning and verified lists. Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New The initial drafts of proposed Rule Chapter 62-303, Florida Administrative Code, provided for merely a single list of impaired waters needing TMDLs. It was only after the last TAC meeting (and before the first rule development workshop) that the concept of having two lists (a preliminary, "planning list" of potentially impaired waters requiring further assessment and a final, "verified list . . . of waters for which TMDLs will be developed by the Department") was incorporated into proposed Rule Chapter 62-303, Florida Administrative Code, by Department staff (although the idea of having a "potentially impaired subset" of impaired waters was discussed at TAC meetings). Such action was taken in response to concerns raised during the rule development process that the proposed rule chapter, as then drafted with its one-list methodology, "was too restrictive, that it would only get a small subset of waters on [the Departments 303(d)] list." To decrease, in a manner consistent with the provisions of Section 403.067, Florida Statutes, the chance that an impaired water needing a TMDL would be erroneously excluded, Department staff revised the proposed rule chapter to provide for a two-step listing process where potentially impaired waters would first be placed on a "planning list" based upon criteria generally less "restrictive" than the listing criteria contained in the previous drafts of the proposed rule chapter and then further tested (if necessary) and assessed to verify if, based upon criteria generally more rigorous than the "planning list" criteria, they should be included on a "verified list" of waters needing TMDLs (to be submitted to the EPA as the state's "updated" 303(d) list). Weighing against Department staff making it any easier for a water to be placed on the "verified list" was the significant regulatory consequence of such action. Erroneously listing a water as needing a TMDL would result in the unnecessary expenditure of considerable time, money, and effort. The more rigorous the listing criteria, the less likely it would be that a water would be listed erroneously and such unnecessary expenditures made. Subsequent to the ERC's adoption of proposed Rule Chapter 62-303, Florida Administrative Code, the National Research Council (NRC),33 through one of its committees,34 acting at the request of Congress to analyze the scientific basis of the nationwide TMDL program, issued a report entitled, "Assessing the TMDL Approach to Water Quality Management" (NRC Publication). In the NRC Publication, the committee endorses a "two-list process" like the one incorporated in proposed Rule Chapter 62-303, Florida Administrative Code, explaining as follows: Determining whether there should be some minimum threshold of data available when evaluating waterbodies for attainment of water quality standards is an issue of great concern to states. On the one hand, many call for using only the "best science" in making listing decisions, while others fear that many impaired waters will not be identified in the wait for additional data. The existence of a preliminary list addresses these concerns by focusing attention on waters suspected to be impaired without imposing on stakeholders and the agencies the consequences of TMDL development, until additional information is developed and evaluated. According to Subsection (1) of proposed Rule 62- 303.150, Florida Administrative Code, "[w]aters on th[e] planning list will be assessed pursuant to subsection 403.067(3) F.S., as part of the Department's watershed management approach." The following are the major concepts incorporated in the "Department's watershed management approach": The basin management unit is the geographic or spatial unit used to divide the state into smaller areas for assessment- -generally groups of Hydrologic Unit Codes (HUCs)[35] . . . . The basin management cycle is the five- year cycle within which watersheds are assessed and management plans developed and implemented. The Management Action Plan (MAP), a document developed over the five-year cycle and subsequently updated every five years, describes the watershed's problems and how participants plan to address them. Forums and communications networks allow participants to collect and evaluate as much information as possible on their individual basins and to reach a consensus on strategic monitoring, priority water bodies, and management strategies. The statewide basin management schedule establishes the proposed sequence for assessing individual watersheds. . . . Each individual basin cycle under the "Department's watershed management approach" takes five years to complete, and is "repeated every five years." It is, in other words, an iterative process. The five phases of the cycle are as follows: Phase I: Preliminary Basin Assessment; Phase II: Strategic Monitoring; Phase III: Data Analysis and TMDL Development; Phase IV: Management Action Plan; and Phase V: Implementation. The first two phases of the cycle are discussed in greater detail in proposed Rule 62-303.700, Florida Administrative Code. Part I: Proposed Rule 62-303.200, Florida Administrative Code Proposed Rule 62-303.200, Florida Administrative Code, contains definitions of various terms and phrases used in proposed Rule Chapter 62-303, Florida Administrative Code. It provides as follows: As used in this chapter: "BioRecon" shall mean a bioassessment conducted following the procedures outlined in "Protocols for Conducting a Biological Reconnaissance in Florida Streams," Florida Department of Environmental Protection, March 13. 1995, which is incorporated by reference. "Clean techniques" shall mean those applicable field sampling procedures and analytical methods referenced in "Method 1669: Sampling Ambient Water for Trace Metals at EPA Water Quality Criteria Levels, July 1996, USEPA. Office of Water, Engineering and Analysis Division. Washington, D.C.," which is incorporated by reference. "Department" or "DEP" shall mean the Florida Department of Environmental Protection. "Designated use" shall mean the present and future most beneficial use of a body of water as designated by the Environmental Regulation Commission by means of the classification system contained in Chapter 62-302, F.A.C. "Estuary" shall mean predominantly marine regions of interaction between rivers and nearshore ocean waters, where tidal action and river flow mix fresh and salt water. Such areas include bays, mouths of rivers, and lagoons. "Impaired water" shall mean a water body or water body segment that does not meet its applicable water quality standards as set forth in Chapters 62-302 and 62-4 F.A.C., as determined by the methodology in Part III of this chapter, due in whole or in part to discharges of pollutants from point or nonpoint sources. "Lake Condition Index" shall mean the benthic macroinvertebrate component of a bioassessment conducted following the procedures outlined in "Development of Lake Condition Indexes (LCI) for Florida," Florida Department of Environmental Protection, July, 2000, which is incorporated by reference. "Natural background" shall mean the condition of waters in the absence of man- induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody or on historical pre-alteration data. "Nuisance species" shall mean species of flora or fauna whose noxious characteristics or presence in sufficient number, biomass, or areal extent may reasonably be expected to prevent, or unreasonably interfere with, a designated use of those waters. "Physical alterations" shall mean human-induced changes to the physical structure of the water body. "Planning list" shall mean the list of surface waters or segments for which assessments will be conducted to evaluate whether the water is impaired and a TMDL is needed, as provided in subsection 403.067(2), F.S. "Pollutant" shall be as defined in subsection 502(6) of the CWA. Characteristics of a discharge, including dissolved oxygen, pH, or temperature, shall also be defined as pollutants if they result or may result in the potentially harmful alteration of downstream waters. "Pollution" shall be as defined in subsection 502(19) of the CWA and subsection 403.031(2), F.S. "Predominantly marine waters" shall mean surface waters in which the chloride concentration at the surface is greater than or equal to 1,500 milligrams per liter. "Secretary" shall mean the Secretary of the Florida Department of Environmental Protection. "Spill" shall mean a short-term, unpermitted discharge to surface waters, not to include sanitary sewer overflows or chronic discharges from leaking wastewater collection systems. "Stream" shall mean a free-flowing, predominantly fresh surface water in a defined channel, and includes rivers, creeks, branches, canals, freshwater sloughs, and other similar water bodies. "Stream Condition Index" shall mean a bioassessment conducted following the procedures outlined in "Development of the Stream Condition Index (SCI) for Florida," Florida Department of Environmental Protection, May, 1996, which is incorporated by reference. "Surface water" means those waters of the State upon the surface of the earth to their landward extent, whether contained in bounds created naturally or artificially or diffused. Water from natural springs shall be classified as surface water when it exits from the spring onto the earth's surface. "Total maximum daily load" (TMDL) for an impaired water body or water body segment shall mean the sum of the individual wasteload allocations for point sources and the load allocations for nonpoint sources and natural background. Prior to determining individual wasteload allocations and load allocations, the maximum amount of a pollutant that a water body or water segment can assimilate from all sources without exceeding water quality standards must first be calculated. A TMDL shall include either an implicit or explicit margin of safety and a consideration of seasonal variations. "Verified list" shall mean the list of impaired water bodies or segments for which TMDLs will be calculated, as provided in subsection 403.067(4), F.S., and which will be submitted to EPA pursuant to paragraph 303(d)(1) of the CWA. "Water quality criteria" shall mean elements of State water quality standards, expressed as constituent concentrations, levels, or narrative statements, representing a quality of water that supports the present and future most beneficial uses. "Water quality standards" shall mean standards composed of designated present and future most beneficial uses (classification of waters), the numerical and narrative criteria applied to the specific water uses or classification, the Florida antidegradation policy, and the moderating provisions (mixing zones, site-specific alternative criteria, and exemptions) contained in Chapter 62-302, F.A.C., and in Chapter 62-4, F.A.C., adopted pursuant to Chapter 403, F.S. "Water segment" shall mean a portion of a water body that the Department will assess and evaluate for purposes of determining whether a TMDL will be required. Water segments previously evaluated as part of the Department's 1998 305(b) Report are depicted in the map titled "Water Segments of Florida," which is incorporated by reference. "Waters" shall be those surface waters described in Section 403.031(13) Florida Statutes. Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New There are some high salinity waters of the state that, although they do not have riverine input, nonetheless meet the definition of "estuary" found in Subsection (5) of proposed Rule 62-303.200, Florida Administrative Code, because they are "bays" or "lagoons," as those terms are used in the second sentence of Subsection (5). Rule Chapter 62-4, Florida Administrative Code, which is referenced in Subsections (6) and (23) of proposed Rule 62- 303.200, Florida Administrative Code, addresses the subject of "[p]ermits." According to Subsection (1) of Rule 62-4.210, Florida Administrative Code, "[n]o person shall construct any installation or facility which will reasonably be expected to be a source of . . . water pollution without first applying for and receiving a construction permit from the Department unless exempted by statute or Department rule." Subsection (1) of Rule 62-4.240, Florida Administrative Code, requires that "[a]ny person intending to discharge wastes into the waters of the State shall make application to the Department for an operation permit." An "operation permit" must: Specify the manner, nature, volume and frequency of the discharge permitted; Require proper operation and maintenance of any pollution abatement facility by qualified personnel in accordance with standards established by the Department; and Contain such additional conditions, requirements and restrictions as the Department deems necessary to preserve and protect the quality of the receiving waters and to ensure proper operation of the pollution control facilities. Rule 62-4.240(3), Florida Administrative Code. "An operation permit [will] be issued only if all Department requirements are met, including the provisions of Rules 62-302.300 and 62-302.700 and Rule 62-4.242, F.A.C." Rule 62-4.240(2), Florida Administrative Code. Subsection (1) of Rule 62-4.242, Florida Administrative Code, describes "[a]ntidegradation [p]ermitting [r]equirements." It provides as follows: Permits shall be issued when consistent with the antidegradation policy set forth in Rule 62-302.300 and, if applicable, Rule 62- 302.700. In determining whether a proposed discharge which results in water quality degradation is necessary or desirable under federal standards and under circumstances which are clearly in the public interest, the department shall consider and balance the following factors: Whether the proposed project is important to and is beneficial to the public health, safety, or welfare (taking into account the policies set forth in Rules 62- 302.100, 62-302.300, and, if applicable, 62- 302.700); and Whether the proposed discharge will adversely affect conservation of fish and wildlife, including endangered or threatened species, or their habitats; and Whether the proposed discharge will adversely affect the fishing or water-based recreational values or marine productivity in the vicinity of the proposed discharge; and Whether the proposed discharge is consistent with any applicable Surface Water Improvement and Management Plan that has been adopted by a Water Management District and approved by the Department. In addition to subsection (b) above, in order for a proposed discharge (other than stormwater discharges meeting the requirements of Chapter 62-25, F.A.C.), to be necessary or desirable under federal standards and under circumstances which are clearly in the public interest, the permit applicant must demonstrate that neither of the following is economically and technologically reasonable: Reuse of domestic reclaimed water. Use of other discharge locations, the use of land application, or reuse that would minimize or eliminate the need to lower water quality. Subsections (2) and (3) of Rule 62-4.242, Florida Administrative Code, prescribe "[s]tandards [a]pplying to Outstanding Florida Waters" and "[s]tandards [a]pplying to Outstanding National Resource Waters," respectively. Subsection (4) of Rule 62-4.242, Florida Administrative Code, "prescribe[s] the means by which the Department, upon the petition of a license applicant, will equitably allocate among such persons [directly discharging significant amounts of pollutants into waters which fail to meet one or more of the water quality criteria applicable to those waters] the relative levels of abatement responsibility of each for abatement of those pollutants." Subsection (1) of Rule 62-4.244, Florida Administrative Code, provides that the Department, upon application, may "allow the water quality adjacent to a point of discharge to be degraded to the extent that only the minimum conditions described in subsection 62-302.500(1), Florida Administrative Code, apply within a limited, defined region known as the mixing zone"; provided, that the "mixing zone" does not "significantly impair any of the designated uses of the receiving body of water." Subsection 502(6) of the Clean Water Act (33 U.S.C. Section 1362(6)), which is referenced in Subsection (12) of proposed Rule 62-303.200, Florida Administrative Code, provides as follows: The term "pollutant" means dredged spoil, solid waste, incinerator residue, sewage, garbage, sewage sludge, munitions, chemical wastes, biological materials, radioactive materials, heat, wrecked or discarded equipment, rock, sand, cellar dirt and industrial, municipal, and agricultural waste discharged into water. This term does not mean (A) "sewage from vessels or a discharge incidental to the normal operation of a vessel of the Armed Forces" within the meaning of section 1322 of this title; or (B) water, gas, or other material which is injected into a well to facilitate production of oil or gas, or water derived in association with oil or gas production and disposed of in a well, if the well used either to facilitate production or for disposal purposes is approved by authority of the State in which the well is located, and if such State determines that such injection or disposal will not result in the degradation of ground or surface water resources. Subsection 502(19) of the Clean Water Act (33 U.S.C. Section 1362(19)), which is referenced in Subsection (13) of proposed Rule 62-303.200, Florida Administrative Code, provides as follows: The term "pollution" means the man-made or man-induced alteration of the chemical, physical, biological, and radiological integrity of water. In Chapter 403, Florida Statutes, the definition of "pollution" is found, not in Subsection (2) of Section 403.031, Florida Statutes, as indicated in Subsection (13) of proposed Rule 62-303.200, Florida Administrative Code, but in Subsection (7) of the statute. The "water segments" referenced in the second sentence of Subsection (24) of proposed Rule 62-303.200, Florida Administrative Code, are, for the most part, either approximately five linear miles each (in the case of streams) or approximately five square miles each (in the case of waters not in a defined channel). Subsection (13) of Section 403.031, Florida Statutes, which is referenced in Subsection (25) of proposed Rule 62- 303.200, Florida Administrative Code, provides that "'[w]aters' include, but are not limited to, rivers, lakes, streams, springs, impoundments, wetlands, and all other waters or bodies of water, including fresh, brackish, saline, tidal, surface, or underground waters." The other terms and phrases defined in proposed Rule 62-303.200, Florida Administrative Code, will be discussed, where appropriate, later in this Final Order. Part II: Overview Part II of proposed Rule Chapter 62-303, Florida Administrative Code, contains the following provisions, which describe the "planning list" of potentially impaired waters and how the list will be compiled: Proposed Rules 62-303.300, 62- 303.320, 62-303.330, 62-303.340, 62-303.350, 62-303.351, 62- 303.352, 62-303.353, 62-303.360, 62-303.370, and 62-303.380, Florida Administrative Code. Code Part II: Proposed Rule 62-303.300, Florida Administrative Proposed Rule 62-303.300, Florida Administrative Code, is entitled, "Methodology to Develop the Planning List." It provides as follows: This part establishes a methodology for developing a planning list of waters to be assessed pursuant to subsections 403.067(2) and (3), F.S. A waterbody shall be placed on the planning list if it fails to meet the minimum criteria for surface waters established in Rule 62-302.500, F.A.C.; any of its designated uses, as described in this part; or applicable water quality criteria, as described in this part. It should be noted that water quality criteria are designed to protect either aquatic life use support, which is addressed in sections 62- 303.310-353, or to protect human health, which is addressed in sections 62-303.360- 380. Waters on the list of water segments submitted to EPA in 1998 that do not meet the data sufficiency requirements for the planning list shall nevertheless be included in the state's initial planning list developed pursuant to this rule. Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New The second sentence of Subsection (1) of proposed Rule 62-303.300, Florida Administrative Code, incorporates the concept of "independent applicability" by providing that only one of the listed requirements need be met for a water to be placed on the "planning list." At the April 26, 2001, rule adoption hearing, the ERC initially voted to delete from proposed Rule Chapter 62-303, Florida Administrative Code, the language in Subsection (2) of proposed Rule 62-303.300, Florida Administrative Code. The ERC, however, later in the hearing, reversed itself after learning of a letter, dated April 26, 2001, that was sent to the Department by Beverly H. Bannister, the Director of the EPA's Region 4 Water Management Division. Ms. Bannister's letter read, in pertinent part, as follows: EPA expressed significant concern that, under earlier versions of the IWR [Impaired Waters Rule], waters currently identified as impaired on the State's 1998 Section 303(d) list which were determined to have "insufficient data" would be removed from the State's Section 303(d) list and also not appear on the State's planning list with its associated requirement for additional data collection. As a result of EPA concerns, the latest version of the IWR provides that waters on the current 1998 Section 303(d) list that do not meet the data sufficiency requirement of the planning list will be placed on the IWR's planning list, and sufficient data will be collected to verify the water's impairment status. In further discussions with the State regarding the EPA's concern about the 2002 Section 303(d) list, the State has committed to review all waters on the 1998 303(d) list and include all waters that meet the verification requirements of the IWR on the State's 2002 list. In addition, the State will also review all available data from 1989 to 1998 for development of a statewide planning list and include on the 2002 list any additional waters that meet the verification requirements, based on data from 1994 to 1998. (The State is unable to do a complete assessment for data gathered in 1999, 2000, and 2001 because of a national problem in the upload of data into the new Federal STORET data system.) Those waters on the 1998 303(d) list that do not meet the verification requirements will be de-listed for "good cause" and placed on the State's planning list as insufficient to verify the water's use-support status according to the methodology in the IWR. The "good cause" justification for de- listing the waters is based on several factors: 1) the requirements of the State Rule that these waters be moved to a planning list for additional data collection and assessment that will occur within a reasonable period of time; 2) a determination will be made that the waters are either impaired (and placed on the 303(d) list) or attaining its uses; and 3) the State's commitment to EPA that waters on the planning list that appeared on the State's 1998 Section 303(d) list will be monitored and assessed during the first or second rotation through the State's Watershed Management Process consistent with the schedule for TMDL development in EPA's consent decree with Earthjustice. High priority water/pollutant combinations will be monitored and assessed during the first rotation of the watershed cycle (i.e., within 5 years of 2001), and low priority water/pollutant combinations will be monitored and assessed during the second rotation of the watershed cycle (i.e., within 10 years of 2001). After this additional data collection and assessment, the water will be added to the appropriate future 303(d) list if the water is verified to be impaired, or the water will be "de- listed" based on the "good cause" justification that the water is attaining its uses. Waters on the 1998 303(d) list where sufficient data exists to demonstrate the water is meeting the IWR's planning list criteria for use support will be de-listed in the 2002 303(d) list submittal. It is EPA's view that this process will achieve the intent of the CWA and will provide sufficient documentation of the waters still requiring TMDLs by FDEP. Together with the data collection requirements found in Part III of the proposed rule chapter, Subsection (2) of proposed Rule 62-303.300, Florida Administrative Code, ensures that all waters on the Department's 1998 303(d) list (which list is referenced in Subsection (2)(c) of Section 403.067, Florida Statutes) will be assessed by the Department and that they will not be eliminated from consideration for TMDL development simply because there is not enough data to determine whether a TMDL is needed. Part II: Proposed Rule 62-303.310, Florida Administrative Code Proposed Rule 62-303.310, Florida Administrative Code, is entitled, "Evaluation of Aquatic Life Use Support." It provides as follows: A Class I, II, or III water shall be placed on the planning list for assessment of aquatic life use support (propagation and maintenance of a healthy, well-balanced population of fish and wildlife) if, based on sufficient quality and quantity of data, it: exceeds applicable aquatic life-based water quality criteria as outlined in section 62-303.320, does not meet biological assessment thresholds for its water body type as outlined in section 62-303.330, is acutely or chronically toxic as outlined in section 62-303.340, or exceeds nutrient thresholds as outlined in section 62-303.350. Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New This proposed rule, like Subsection (1) of proposed Rule 62-303.300, Florida Administrative Code, incorporates the concept of "independent applicability." A water need meet only one of the four listed benchmarks to be placed on the "planning list for assessment of aquatic life use support." Each of these benchmarks is discussed at greater length in one or more of the subsequent sections of Part II of the proposed rule chapter. Part II: Proposed Rule 62-303.320, Florida Administrative Code Proposed Rule 62-303.320, Florida Administrative Code, addresses the "[e]xceedances of [a]quatic [l]ife-[b]ased [w]ater [q]uality [c]riteria" benchmark described in Subsection (1) of proposed Rule 62-303.310, Florida Administrative Code. It cites Sections 403.061 and 403.067, Florida Statutes, as its "[s]pecific [a]uthority" and Sections 403.062 and 403.067, Florida Statutes, as the "[l]aw[s] [i]mplemented" by the proposed rule. Proposed Rule 62-303.320, Florida Administrative Code, establishes a statistical method (involving "data modeling," as that term is used in Subsection (3)(b)4. of Section 403.067, Florida Statutes) for use in determining whether a water should be placed on the "planning list." It is not feasible, due to limited resources, to examine a water body at every point to determine its true overall condition. Rather, samples must be taken over time and inferences drawn from the sampling results, taking into consideration the "variability [of water quality] occurring in nature" and "that some deviations from water quality standards occur as the result of natural background conditions" (as the Legislature observed in Subsection (11) of Section 403.021, Florida Statutes). The process is, necessarily, characterized by a lack of certainty and the possibility of error. As stated in the NRC Publication: Given the finite monitoring resources, it is obvious that the number of sampling stations included in the state program will ultimately limit the number of water quality measurements that can be made at each station. Thus, in addition to the problem of defining state waters and designing the monitoring network to assess those waters, fundamental statistical issues arise concerning how to interpret limited data from individual sampling stations. Statistical inference procedures must be used on the sample data to test hypotheses about whether the actual condition in the water body meets the criterion. Thus, water quality assessment is a hypothesis-testing procedure. A statistical analysis of sample data for determining whether a water body is meeting a criterion requires the definition of a null hypothesis; for listing a water body, the null hypothesis would be that the water is not impaired. The analysis is prone to the possibility of both Type I error (a false conclusion that an unimpaired water is impaired) and Type II error (a false conclusion that an impaired water is not impaired). . . . The TAC and Department staff had extensive discussions regarding the issue of what particular type of "statistical analysis" to incorporate in the proposed rule chapter before deciding on a binomial distribution analysis. The binomial model is a time-tested nonparametric statistical method that is used where there are two possible outcomes, such as, in the case of water quality sampling, whether a water quality criterion has been exceeded or not. A parametric statistical analysis, based upon an assumption of normal distribution, which, unlike the binomial model incorporated in the proposed rule chapter, takes into account the magnitude of exceedances,36 was considered, but reasonably rejected by the TAC and Department staff because it was anticipated that, in many instances, the number of samples available to the Department would not be adequate to make the underlying distributional assumption with the requisite degree of certainty. The binomial model, which takes sample size into consideration, offers greater certainty with a limited number of samples than does the parametric statistical analysis that the TAC and Department staff rejected. Nonetheless, even in the case of the binomial model, the more samples there are, the more precise the analysis will be. Both Type I errors (false positives) and Type II errors (false negatives) decrease as sample size increases. To ensure greater analytic precision, proposed Rule 62-303.320, Florida Administrative Code, and its counterpart in Part III of the proposed rule chapter (proposed Rule 62-303.420, Florida Administrative Code) contain reasonable minimum sample size requirements (ten, with limited exceptions, for placement on the "planning list," and 20 for placement on the "verified list," which is ten more than the TAC recommended37). The NRC Publication contains the following discussion regarding the appropriateness of employing a binomial model to identify impaired waters needing TMDLs: The committee does not recommend any particular statistical method for analyzing monitoring data and for listing waters. However, one possibility is that the binomial hypothesis test could be required as a minimum and practical first step (Smith et al., 2001). The binomial method is not a significant departure from the current approach--called the raw score approach--in which the listing process treats all sample observations as binary values that either exceed the criterion or do not, and the binomial method has some important advantages. For example, one limitation of the raw score approach is that it does not account for the total number of measurements made. Clearly, 1 out of 6 measurements above the criterion is a weaker case for impairment than is 6 out of 36. The binomial hypothesis test allows one to take sample size into account. By using a statistical procedure, sample sizes can be selected and one can explicitly control and make trade-offs between error rates. (see Smith et al., 2001, and Gibbons, in press, for guidance in managing the risk of false positive and false negative errors). Several states, including Florida and Virginia, are considering or are already using the binomial hypothesis test to list impaired waters. Detailed examples of how to apply the test are beyond the scope of this document, but can be found in Smith et al. (2001) and the proposed Chapter 62-303 of the Florida Administrative Code. In a footnote, the committee added the following: The choice of Type I error rate is based on the assessor's willingness to falsely categorize a water body. It also is the case that, for any sample size, the Type II error rate decreases as the acceptable Type I error rate increases. The willingness to make either kind of mistake will depend on the consequences of the resulting action (more monitoring, costs to do a TMDL plan, costs to implement controls, possible health risk) and who bears the cost (public budget, private parties, etc.). The magnitude and burden of a Type I versus Type II error depend on the statement of the null hypothesis and on the sample size. When choosing a Type I error rate, the assessor may want to explicitly consider these determinants of error rates. The TAC recommended a Type I error rate of five percent (or, stated differently, a confidence level of 95 percent) be used in making listing decisions.38 Department staff responsible for drafting the proposed rule chapter, believing that, as a matter of policy, a 95 percent confidence level was too high and that a higher Type I error rate should be tolerated in order to reduce Type II error, reasonably settled on an 80 percent confidence level for placement on the "planning list" and a 90 percent confidence level for placement on the "verified list." Scientific studies generally do not employ a confidence level below 80 percent. A 50 percent confidence level is "comparable to flipping a coin." Use of the binomial model to determine impairment for purposes of TMDL development (based upon exceedances of water quality criteria) further requires the selection of a fixed "exceedance frequency" representing an acceptable rate of violation beneath which a water segment will not be considered impaired. A permissible "exceedance frequency" accounts for the natural variability of water quality and the uncertainty that the measurements taken are representative of the overall condition of the water segment sampled. The Department, pursuant to EPA guidance, has historically used a ten percent "exceedance frequency" for purposes of identifying, in its 305(b) Report, waters not meeting their designated uses. The TAC and Department staff agreed that a ten percent "exceedance frequency" should likewise be incorporated in the proposed rule chapter. The NRC Publication contains the following discussion regarding "exceedance frequencies" in general and a ten percent "exceedance frequency" in particular: Whether the binomial or the raw score approach is used, there must be a decision on an acceptable frequency of violation for the numeric criterion, which can range from 0 percent of the time to some positive number. Under the current EPA approach, 10 percent of the sample measurements of a given pollutant made at a station may exceed the applicable criterion without having to list the surrounding waterbody. The choice of 10 percent is meant to allow for uncertainty in the decision process. Unfortunately, simply setting an upper bound on the percentage of measurements at a station that may violate a standard provides insufficient information to properly deal with the uncertainty concerning impairment. The choice of acceptable frequency of violation is also supposed to be related to whether the designated use will be compromised, which is clearly dependent on the pollutant and on waterbody characteristics such as flow rate. A determination of 10 percent cannot be expected to apply to all water quality situations. In fact, it is inconsistent with federal water quality criteria for toxics that specify allowable violation frequencies of either one day in three years, four consecutive days in three years, or 30 consecutive days in three years (which are all less than 10 percent). Embedded in the EPA raw score approach is an implication that 10 percent is an acceptable violation rate, which it may not be in certain circumstances. Nonetheless, as the chairman of the committee that produced the NRC Publication, Dr. Kenneth Reckhow, testified at the final hearing in these consolidated cases when asked whether he "believe[d] that a determination of ten percent exceedance [frequency] cannot be expected to apply to all water quality situations": the "notion of one size fits all is . . . a pragmatic approach to the limits of what can be done in a regulatory environment." Dr. Reckhow, during his testimony, declined to "endorse[] as a scientist" the use of an "exceedance frequency" of ten percent (as opposed to some other "particular level"),39 but he stated his opinion (which the undersigned accepts) that "it is important to select a level, and from a science perspective it would be useful to see states employ a level like that or levels roughly around that point and see how effectively they have worked in terms of achieving the goal of meeting designated uses." Subsection (1) of proposed Rule 62-303.320, Florida Administrative Code, sets forth in tabular form, by sample size (from ten samples to 500 samples), the minimum number of exceedances needed for placement on the "planning list." It provides as follows: Water segments shall be placed on the planning list if, using objective and credible data, as defined by the requirements specified in this section, the number of exceedances of an applicable water quality criterion due to pollutant discharges is greater than or equal to the number listed in Table 1 for the given sample size. This table provides the number of exceedances that indicate a minimum of 10% exceedance frequency with a minimum of an 80% confidence level using a binomial distribution. Table 1: Planning List Minimum number of measured exceedances needed to put a water on the Planning list with at least 80% confidence that the actual exceedance rate is greater than or equal to ten percent. Sample Are listed if they Sizes have at least this # of exceedances From To 10 15 3 16 23 4 24 31 5 32 39 6 40 47 7 48 56 8 57 65 9 66 73 10 74 82 11 83 91 12 92 100 13 101 109 14 110 118 15 119 126 16 127 136 17 137 145 18 146 154 19 155 163 20 164 172 21 173 181 22 182 190 23 191 199 24 200 208 25 209 218 26 219 227 27 228 236 28 237 245 29 246 255 30 256 264 31 265 273 32 274 282 33 283 292 34 293 301 35 302 310 36 311 320 37 321 329 38 330 338 39 339 348 40 349 357 41 358 367 42 368 376 43 377 385 44 386 395 45 396 404 46 405 414 47 415 423 48 424 432 49 433 442 50 443 451 51 452 461 52 462 470 53 471 480 54 481 489 55 490 499 56 500 500 57 The "calculations [reflected in Table 1] are correct." Subsection (2) of proposed Rule 62-303.320, Florida Administrative Code, provides as follows: The U.S. Environmental Protection Agency's Storage and Retrieval (STORET) database shall be the primary source of data used for determining water quality criteria exceedances. As required by rule 62- 40.540(3), F.A.C., the Department, other state agencies, the Water Management Districts, and local governments collecting surface water quality data in Florida shall enter the data into STORET within one year of collection. Other sampling entities that want to ensure their data will be considered for evaluation should ensure their data are entered into STORET. The Department shall consider data submitted to the Department from other sources and databases if the data meet the sufficiency and data quality requirements of this section. STORET is a "centralized data repository" maintained by the EPA. It contains publicly available water quality data, contributed by state agencies and others, on waters throughout the nation. Subsection (3) of Rule 62-40.540, Florida Administrative Code, which is referenced in Subsection (2) of proposed Rule 62-303.320, Florida Administrative Code, provides that "[t]he U.S. Environmental Protection Agency water quality data base (STORET) shall be the central repository of the state's water quality data" and that"[a]ll appropriate water quality data collected by the Department, Districts, local governments, and state agencies shall be placed in the STORET system within one year of collection." At the end of 1998, STORET underwent a major overhaul. It is "now more accommodating of meta data," which is auxiliary information about the underlying data. As Ms. Bannister indicated in her April 26, 2001, letter to the Department, there was a "problem in the upload of data into the new Federal STORET data system." This new version of STORET is still not "very user-friendly." Subsection (2) of proposed Rule 62-303.320, Florida Administrative Code, however, while it strongly encourages the entry of data into STORET, does not require that data be entered into STORET to be considered by the Department in determining whether there have been the requisite number of exceedances for placement on the "planning list," as the last sentence of Subsection (2) makes abundantly clear. Subsection (3) of proposed Rule 62-303.320, Florida Administrative Code, imposes reasonable age-related restrictions on what data can be used to determine whether a water should be placed on the "planning list" based upon "[e]xceedances of [a]quatic [l]ife-[b]ased [w]ater [q]uality [c]riteria." It provides as follows: When determining water quality criteria exceedances, data older than ten years shall not be used to develop planning lists. Further, more recent data shall take precedence over older data if: the newer data indicate a change in water quality and this change is related to changes in pollutant loading to the watershed or improved pollution control mechanisms in the watershed contributing to the assessed area, or the Department determines that the older data do not meet the data quality requirements of this section or are no longer representative of the water quality of the segment. The Department shall note for the record that the older data were excluded and provide details about why the older data were excluded. These provisions are reasonably designed to increase the likelihood that the decision to place a water on the "planning list" will be based upon data representative of the water's current conditions. While the data that will be excluded from consideration by Subsection (3) of proposed Rule 62-303.320, Florida Administrative Code, may be objective and credible data, such data merely reflects what the conditions of the water in question were at the time the samples yielding the data were collected. Declining to rely on this data because it is too old to be a reliable indicator of current conditions is not unreasonable. The TAC recommended that listing decisions be based on data no older than five years.40 Department staff, however, believed that, for purposes of compiling a "planning list," a ten-year cut-off was more appropriate. The binomial model is predicated on independent sampling. Subsection (4) of proposed Rule 62-303.320, Florida Administrative Code, addresses "in a very straightforward, simple, but reasonable way, the notion of spatial independence and temporal independence." It provides as follows: To be assessed for water quality criteria exceedances using Table 1, a water segment shall have a minimum of ten, temporally independent samples for the ten year period. To be treated as an independent sample, samples from a given station shall be at least one week apart. Samples collected at the same location less than seven days apart shall be considered as one sample, with the median value used to represent the sampling period. However, if any of the individual values exceed acutely toxic levels, then the worst case value shall be used to represent the sampling period. The worst case value is the minimum value for dissolved oxygen, both the minimum and maximum for pH, or the maximum value for other parameters. However, when data are available from diel or depth profile studies, the lower tenth percentile value shall be used to represent worst case conditions. For the purposes of this chapter, samples collected within 200 meters of each other will be considered the same station or location, unless there is a tributary, an outfall, or significant change in the hydrography of the water. Data from different stations within a water segment shall be treated as separate samples even if collected at the same time. However, there shall be at least five independent sampling events during the ten year assessment period, with at least one sampling event conducted in three of the four seasons of the calendar year. For the purposes of this chapter, the four seasons shall be January 1 through March 31, April 1 through June 30, July 1 through September 30, and October 1 through December 31. States may set their "[a]quatic [l]ife-[b]ased [w]ater [q]uality [c]riteria" at either acutely toxic levels or chronically toxic levels. The EPA, based on data from toxicity tests, has determined what these acutely toxic levels and chronically toxic levels should be, and it has provided its recommendations to the states for their use in setting appropriate water quality criteria. With one exception (involving silver in predominantly marine waters), the Department, in Rule Chapter 62-302, Florida Administrative Code, has opted to establish "[a]quatic [l]ife-[b]ased [w]ater [q]uality [c]riteria" at chronically toxic levels, rather than at acutely toxic levels, because chronic-toxicity-based criteria are, in the Department's view, "more protective." Subsection (4) of proposed Rule 62-303.320, Florida Administrative Code, will require the Department, under certain circumstances, to determine whether acutely toxic levels of parameters listed in Rule Chapter 62-302, Florida Administrative Code (other than silver in predominantly marine waters) have been exceeded. Neither the Department's existing rules, nor the proposed rule chapter, specifies what these levels are. In making this determination, the Department intends to use the acutely toxic levels recommended by the EPA. The last two sentences of Subsection (4) of proposed Rule 62-303.320, Florida Administrative Code, address "seasonal . . . variations," as required by Subsection (3)(b)1. of Section 403.067, Florida Statutes, and do so in a manner consistent with the TAC's recommendation on the matter. As Subsection (3)(b)1. of Section 403.067, Florida Statutes, suggests, water quality may vary from season to season. Such variations tend to be more pronounced in the northern part of the state than in South Florida in the case of certain parameters, such as dissolved oxygen, which is usually "at its critical condition" during the warmer months. While certain types of exceedances may be more likely to occur during a particular season or seasons of the year, exceedances may occur at any time during the year. Department staff, as recommended by the TAC, included the last two sentences in Subsection (4) of proposed Rule 62-303.320, Florida Administrative Code, in a reasonable effort to avoid a situation where a listing decision would be based upon skewed data (provided by persons "with an agenda") reflecting only isolated instances of worst or best case conditions, as opposed to "data . . . spread throughout the year as much as possible." Data from each of the four seasons of the calendar year were not required "because then some data sets might be excluded just because they missed a quarterly sample," an outcome the TAC and Department staff considered to be undesirable because they "wanted to be all-inclusive and . . . capture all waters that in fact might even potentially be impaired" on the "planning list." Notwithstanding the "three out of four seasons" data sufficiency requirement of Subsection (4) of proposed Rule 62-303.320, Florida Administrative Code, because the proposed rule establishes an "exceedance frequency" threshold of ten percent, a water may qualify for placement on the "planning list" under the proposed rule even though all of the exceedances evidenced by the data in the Department's possession (covering at least three of the four seasons of the year) occurred in the one season when conditions are typically at their worst for the water. (If there were other exceedances, they would not be excluded from consideration under the proposed rule simply because they occurred during a time of year when exceedances are atypical.) The "three out of four seasons" requirement does not completely protect against persons "with an agenda" obtaining the result they want by providing the Department skewed data, but, as Dr. Reckhow testified at the final hearing, it would be difficult, if not impossible, for the Department to devise a rule which provides for Department consideration of data submitted by members of the public and, at the same time, completely "prevent[s] someone who is clever [enough] from contriving the analysis." As Dr. Reckhow pointed out, to counteract the data submissions of such a person, those who believe that the data is not truly representative of the overall condition of the water can "collect their own data and make the[ir] case" to the Department. Subsection (5) of proposed Rule 62-303.320, Florida Administrative Code, which reads as follows, provides two exceptions to the data sufficiency requirements of Subsection of the proposed rule: Notwithstanding the requirements of paragraph (4), water segments shall be included on the planning list if: there are less than ten samples for the segment, but there are three or more temporally independent exceedances of an applicable water quality criterion, or there are more than one exceedance of an acute toxicity-based water quality criterion in any three year period. The "three or more exceedances" exception (found in Subsection (5)(a) of proposed Rule 62-303.320, Florida Administrative Code) to the proposed rule's minimum sample size requirement of ten was not something that the "TAC ever voted on." It was included in the proposed rule by Department staff at the request of Petitioners. As noted above, the only "acute toxicity-based water quality criterion" in Rule Chapter 62-302, Florida Administrative Code, is the criterion for silver in predominantly marine waters. Accordingly, Subsection (5)(b) of proposed Rule 62-330.320, Florida Administrative Code, applies only where that criterion has been exceeded (more than once in a three year period). Subsection (6) of proposed Rule 62-330.320, Florida Administrative Code, provides that certain data (described therein) will be excluded from consideration by the Department in determining whether a water should be placed on the "planning list" pursuant to the proposed rule. It reads as follows: Values that exceed possible physical or chemical measurement constraints (pH greater than 14, for example) or that represent data transcription errors shall be excluded from the assessment. Outliers identified through statistical procedures shall be evaluated to determine whether they represent valid measures of water quality. If the Department determines that they are not valid, they shall be excluded from the assessment. However, the Department shall note for the record that the data were excluded and explain why they were excluded. The exclusion of the data described in Subsection (6) of proposed Rule 62-330.320, Florida Administrative Code, is entirely appropriate. Indeed, it would be unreasonable for the Department to consider such data. Earlier versions of Subsection (6) of proposed Rule 62-330.320, Florida Administrative Code, automatically excluded outliers from consideration. The ERC-adopted version, however, provides that outliers will first be identified41 and then examined and, only if they are determined by the Department, using its "best professional judgment," not to be "valid measures of water quality," will they be excluded from consideration. (Values, although extreme, may nonetheless "represent valid measures of water quality."). Subsection (7) of proposed Rule 62-303.320, Florida Administrative Code, which provides as follows, addresses "[q]uality assurance and [q]uality control protocols," as those terms are used in Subsection (3)(b)3. of Section 403.067, Florida Statutes: The Department shall consider all readily available water quality data. However, to be used to determine water quality exceedances, data shall be collected and analyzed in accordance with Chapter 62-160, F.A.C., and for data collected after one year from the effective date of this rule, the sampling agency must provide to the Department, either directly or through entry into STORET, all of the data quality assessment elements listed in Table 2 of the Department's Guidance Document "Data Quality Assessment Elements for Identification of Impaired Surface Waters" (DEP EAS 01-01, April 2001), which is incorporated by reference. Rule Chapter 62-160, Florida Administrative Code, which is referenced in Subsection (7)(a) of proposed Rule 62- 303.320, Florida Administrative Code, contains "[q]uality assurance requirements" that, with certain limited exceptions, "apply to all programs, projects, studies, or other activities which are required by the Department, and which involve the measurement, use, or submission of environmental data or reports to the Department." Rule 62-160.110, Florida Administrative Code. Adherence to quality assurance requirements such as those in Rule Chapter 62-160, Florida Administrative Code, is essential to obtaining data that is objective and credible. Compliance with these requirements makes it less likely that sampling results will be inaccurate. DEP EAS 01-01, April 2001, which is incorporated by reference in Subsection (7)(b) of proposed Rule 62-303.320, Florida Administrative Code, provides as follows: The Department relies on environmental data from a variety of sources to carry out its mission. Those data must satisfy the needs for which they are collected, comply with applicable standards, specifications and statutory requirements, and reflect a consideration of cost and economics. Careful project planning and routine project and data reviews, are essential to ensure that the data collected are relevant to the decisions being made. Many aspects of a project affect data quality. Sampling design, selection of parameters, sampling technique, analytical methodologies and data management activities are a few such aspects, whether the data are being collected for a compliance program, or for research activities. The level of quality of each of those elements will affect the final management decisions that are based on a project's outcome. Data quality assessment is one activity that is instrumental in ensuring that data collected are relevant and appropriate for the decisions being made. Depending on the needs of the project, the intended use of the final data and the degree of confidence required in the quality of the results, data quality assessment can be conducted at many levels. For the purposes of identification of impaired surface waters, the level of data quality assessment to be conducted (Table 1) requires providing the appropriate data elements (Table 2). If the data and applicable data elements are in an electronic format, data quality assessments can be performed automatically on large volumes of data using software tools, without significant impact to staffing. Department programs can realize significant improvement in environmental protection without additional process using these types of review routinely. Table 1: Recommended Quality Assessment Checks Quality Test Review to determine if analyses were conducted within holding times Review for qualifiers indicative of problems Screen comments for keywords indicative of problems Review laboratory certification status for particular analyte at the time analysis was performed Review data to determine if parts are significantly greater than the whole (e.g., ortho-P>total phosphorous, NH3>TKN, dissolved metal>total metal) Screen data for realistic ranges (e.g., is pH<14?) Review detection limits and quantification limits against Department criteria and program action levels to ensure adequate sensitivity Review for blank contamination Table 2: Data Elements Related to Quality Assessment ID Element Description Sample ID Unique Field Sample Identifier Parameter Name Name of parameter measured Analytical Result Result for the analytical measurement 4. Result Units Units in which measurement is reported DEP Qualifiers Qualifier code describing specific QA conditions as reported by the data provider Result Comments Free-form text where data provider relates information they consider relevant to the result Date (Time) of Sample Collection Date (Time) of Sample Preparations Date (Time) of Sample Analysis Analytical Method Method number used for sample analysis Prep Method Method number used for sample preparation prior to analysis Sample Matrix Was the sample a surface water or groundwater sample, a fresh- water or saltwater sample DOH Certificate Certificate number Number/ issued by the Laboratory ID Department of Health's lab certification program Preservatives Description of Added preservatives added to the sample after collection MDL Method detection limit for a particular result PQL Practical quantification limit for a particular result Sample Type Field identifying sample nature (e.g., environmental sample, trip blank, field blank, matrix spike, etc. Batch ID Unambiguous reference linking samples prepped or analyzed together (e.g., trip preparation, analysis Ids) 19 Field, Lab Blank Results Results for field/laboratory blank analysis required by the methods 20 CAS Number CAS registry number of the parameter measured Having the auxiliary information listed in Table 2 of DEP EAS 01-01 will help the Department evaluate the data that it receives from outside sources to determine whether the data are usable (for purposes of implementing the provisions of the proposed rule chapter). Subsection (8) of proposed Rule 62-303.320, Florida Administrative Code, also addresses "[q]uality assurance and [q]uality control protocols." It reads as follows: To be used to determine exceedances of metals criteria, surface water data for mercury shall be collected and analyzed using clean sampling and analytical techniques, and the corresponding hardness value shall be required to determine exceedances of freshwater metals criteria that are hardness dependent, and if the ambient hardness value is less than 25 mg/L as CaCO3, then a hardness value of 25 will be used to calculate the criteria. If data are not used due to sampling or analytical techniques or because hardness data were not available, the Department shall note for the record that data were excluded and explain why they were excluded. The "clean sampling and analytical techniques" referenced in Subsection (8)(a) of proposed Rule 62-303.320, Florida Administrative Code, are, as noted above, defined in Subsection (2) of proposed Rule 62-303.200, Florida Administrative Code, as "those applicable field sampling procedures and analytical methods" permitted by the EPA's "Method 1669." "Method 1669" is a "performance-based," "guidance document" that, as its "Introduction" and introductory "Note," which read, in pertinent part, as follows, reveal, allows for the use of procedures other than those specifically described therein for "[s]ampling [a]mbient [w]ater for [t]race [m]etals at EPA [w]ater [q]uality [c]riteria [l]evels": . . . . In developing these methods, EPA found that one of the greatest difficulties in measuring pollutants at these levels was precluding sample contamination during collection, transport, and analysis. The degree of difficulty, however, is dependent on the metal and site-specific conditions. This method, therefore, is designed to provide the level of protection necessary to preclude contamination in nearly all situations. It is also designed to provide the protection necessary to produce reliable results at the lowest possible water quality criteria published by EPA. In recognition of the variety of situations to which this method may be applied, and in recognition of continuing technological advances, the method is performance-based. Alternative procedures may be used, so long as those procedures are demonstrated to yield reliable results. . . . Note: This document is intended as guidance only. Use of the terms "must," "may," and "should" are included to mean that the EPA believes that these procedures must, may, or should be followed in order to produce the desired results when using this guidance. In addition, the guidance is intended to be performance-based, in that the use of less stringent procedures may be used as long as neither samples nor blanks are contaminated when following those modified procedures. Because the only way to measure the performance of the modified procedures is through the collection and analysis of uncontaminated blank samples in accordance with this guidance and the referenced methods, it is highly recommended that any modification be thoroughly evaluated and demonstrated to be effective before field samples are collected. Subsection (8)(a) of proposed Rule 62-303.320, Florida Administrative Code, requires that "Method 1669"- permitted procedures be used only where a water is being tested to determine if it exceeds the criterion for mercury (.012 micrograms per liter in the case of Class I waters and Class III freshwaters, and .025 micrograms per liter in the case of Class II waters and Class III marine waters). Use of these procedures is necessary to avoid the sample contamination (from, among other things, standard lab bottles, hair, dandruff, atmospheric fallout, and pieces of cotton from clothing) which commonly occurs when standard, non- "Method 1669"-permitted techniques are used. Because "the criteria [for mercury are] so low" and may be exceeded due solely to such contamination, it is essential to employ "Method 1669"-permitted techniques in order to obtain results that are reliable and meaningful. The "Method 1669"-permitted techniques are approximately five times more costly to employ than standard techniques and the Department's laboratory is the only laboratory in the state (with the possible exception of a laboratory at Florida International University) able to provide "clean sampling and analytical techniques" to measure mercury levels in surface water. Nonetheless, as Timothy Fitzpatrick, the Department's chief chemist, testified at the final hearing in these consolidated cases: [I]f you want to measure methyl mercury or total mercury in surface water, you have to use clean techniques or you're measuring noise. And the whole purpose behind using clean techniques is to do sound science and to have confidence in the number. It's not to determine whether or not you're throwing out a body of data. It's to be able to get numbers that make sense. And there's no point in having a database full of information that's virtually worthless because it contains noise, analytical noise. As Subsection (8)(b) of proposed Rule 62-303.320, Florida Administrative Code, suggests, there are certain "metals for which the actual water quality criterion itself changes as the hardness [of the water, measured in milligrams per liter calcium carbonate] changes." Criteria for these metals are set (in the table contained in Rule 62-302.530, Florida Administrative Code) at higher levels for high hardness waters than for low hardness waters. To know which criterion applies in a particular case, the Department needs to know the hardness of the water sampled. Subsection (9) of proposed Rule 62-303.320, Florida Administrative Code, guards against reliance on data that, due to the use of inappropriate methods, may fail to reveal exceedances that actually exist. It provides as follows: Surface water data with values below the applicable practical quantification limit (PQL) or method detection limit (MDL) shall be assessed in accordance with Rules 62- 4.246(6)(b)-(d) and (8), F.A.C. If sampling entities want to ensure that their data will be considered for evaluation, they should review the Department's list of approved MDLs and PQLs developed pursuant to Rule 62-4.246, F.A.C., and, if available, use approved analytical methods with MDLs below the applicable water quality criteria. If there are no approved methods with MDLs below a criterion, then the method with the lowest MDL should be used. Analytical results listed as below detection or below the MDL shall not be used for developing planning lists if the MDL was above the criteria and there were, at the time of sample collection, approved analytical methods with MDLs below the criteria on the Department's list of approved MDLs and PQLs. If appropriate analytical methods were used, then data with values below the applicable MDL will be deemed to meet the applicable water quality criterion and data with values between the MDL and PQL will be deemed to be equal to the MDL. Subsections (6)(b) through (d) and (8) of Rule 62- 4.246, Florida Administrative Code, provide as follows: All results submitted to the Department for permit applications and monitoring shall be reported as follows: The approved analytical method and corresponding Department-established MDL and PQL levels shall be reported for each pollutant. The MDLs and PQLs incorporated in the permit shall constitute the minimum reporting levels for each parameter for the life of the permit. The Department shall not accept results for which the laboratory's MDLs or PQLs are greater than those incorporated in the permit. All results with laboratory MDLs and PQLs lower than those established in the permit shall be reported to the Department. Unless otherwise specified, all subsequent references to MDL and PQL pertain to the MDLs and PQLs incorporated in the permit. Results greater than or equal to the PQL shall be reported as the measured quantity. Results less than the PQL and greater than or equal to the MDL shall be reported as less than the PQL and deemed to be equal to the MDL. Results less than the MDL shall be reported as less than the MDL. * * * (8) The presence of toxicity (as established through biomonitoring), data from analysis of plant or animal tissue, contamination of sediment in the vicinity of the installation, intermittent violations of effluent limits or water quality standards, or other similar kinds of evidence reasonably related to the installation may indicate that a pollutant in the effluent may cause or contribute to violations of water quality criteria. If there is such evidence of possible water quality violations, then (unless the permittee has complied with subsection (9) below) in reviewing reports and applications to establish permit conditions and determine compliance with permits and water quality criteria, the Department shall treat any result less than the MDL of the method required in the permit or the method as required under subsection (10) below or any lower MDL reported by the permittee's laboratory as being one half the MDL (if the criterion equals or exceeds the MDL) or one half of the criterion (if the criterion is less than the MDL), for any pollutant. Without the permission of the applicant, the Department shall not use any values determined under this subsection or subsection (9) below for results obtained under a MDL superseded later by a lower MDL. The final subsection of proposed Rule 62-303.320, Florida Administrative Code, Subsection (10), provides as follows: It should be noted that the data requirements of this rule constitute the minimum data set needed to assess a water segment for impairment. Agencies or groups designing monitoring networks are encouraged to consult with the Department to determine the sample design appropriate for their specific monitoring goals. Proposed Rule 62-303.320, Florida Administrative Code, establishes a relatively "rigid" framework, based upon statistical analysis of data, with little room for the exercise of "best professional judgment," for determining whether a water qualifies for placement on the "planning list." There are advantages to taking such a "cookbook" approach. It promotes administrative efficiency and statewide uniformity in listing decisions. Furthermore, as Dr. Reckhow pointed out during his testimony, it lets the public know "how a [listing] decision is arrived at" and therefore "makes it easier for the public to get engaged and criticize the outcome." Such "rigidity," however, comes at a price, as Dr. Reckhow acknowledged, inasmuch as observations and conclusions (based upon those observations) made by the "experienced biologist who really understands the system . . . get[] lost." While proposed Rule 62-303.320, Florida Administrative Code, may rightfully be characterized as a "rigid statistical approach," it must be remembered that, in the subsequent portions of Part II of the proposed rule chapter, the Department provides other ways for a water to qualify for placement on the "planning list." A discussion of these alternatives follows. Code Part II: Proposed Rule 62-303.330, Florida Administrative Proposed Rule 62-303.330, Florida Administrative Code, is entitled, "Biological Assessment." As noted in Subsection (2) of proposed Rule 62-303.310, Florida Administrative Code, it "outline[s]" the requirements that must be met for a water to qualify for placement on the "planning list" based upon a failure to "meet biological assessment thresholds for its water body type." It lists Sections 403.061 and 403.067, Florida Statutes, as its "[s]pecific [a]uthority" and Sections 403.062 and 403.067, Florida Statutes, as the "[l]aw [i]mplemented." A "[b]iological [a]ssessment" provides more information about the overall ability of a water to sustain aquatic life than does the "data used for determining water quality exceedances" referenced in Subsection (2) of proposed Rule 62-303.320, Florida Administrative Code. This is because "[b]iological [a]ssessment[s]," as is noted in the NRC Publication, "integrate the effects of multiple stressors over time and space." As Mr. Joyner pointed out in his testimony, a "[b]iological [a]ssessment" is "more than just a snapshot like a water quality sample is of the current water quality [at the particular location sampled]." Unlike proposed Rule 62-303.320, Florida Administrative Code, proposed Rule 62-303.330, Florida Administrative Code, deals with "biological criteria," not "numerical criteri[a]," as those terms are used in Subsection (3)(c) of Section 403.067, Florida Statutes, and the method it establishes for determining "planning list" eligibility does not involve statistical analysis. Subsection (1) of proposed Rule 62-303.330, Florida Administrative Code, provides that "[b]iological data must meet the requirements of paragraphs (3) and (7) in section 62- 303.320," Florida Administrative Code, which, as noted above, impose age ("paragraph" (3)) and quality assurance/quality control and data submission ("paragraph" (7)) restrictions on the use of data. While the "biological component of STORET is not . . . usable" at this time and the biological database maintained by the Department "is not a database where members of the public can input data," pursuant to "paragraph" (7)(b) of proposed Rule 62-303.320, Florida Administrative Code, data collected by someone outside the Department that is not entered into either STORET or the Department's own biological database may still be considered by the Department if it is provided "directly" to the Department. Inasmuch as "[b]iological [a]ssessment[s]" reflect the "effects of multiple stressors over time and space," failed assessments are no more likely during one particular time of the year than another. Consequently, there is no need to limit the time of year in which "[b]iological [a]ssessment[s]" may be conducted. The first sentence of Subsection (2) of proposed Rule 62-303.330, Florida Administrative Code, provides that "[b]ioassessments used to assess streams and lakes under this rule shall include BioRecons, Stream Condition Indices (SCIs), and the benthic macroinvertebrate component of the Lake Condition Index (LCI), which only applies to clear lakes with a color less than 40 platinum cobalt units." The BioRecon and SCI, as those terms are defined in Subsections (1) and (18), respectively, of proposed Rule 62- 303.200, Florida Administrative Code, are rapid bioassessment protocols for streams developed by the Department. They are "similar to the original rapid bioassessment protocols that were designed by the U.S. EPA in [19]89." Conducting a BioRecon or SCI requires the deployment of a Standard D frame dip net approximately one and a half meters in length (including its handle), which is used to obtain samples of the best available habitat that can be reached. The samples are obtained by taking "sweeps" with the one and a half meter long dip net. Both wadable and non-wadable streams can be, and have been, sampled using this method prescribed by the BioRecon and SCI, although sampling is "more challenging when the water body is deeper than waist deep." In these cases, a boat is used to navigate to the areas where sampling will occur. The sampling "methods are identical regardless of the depth of the water." The BioRecon and SCI both include an assessment of the health of the habitat sampled, including the extent of habitat smothering from sediments and bank instability. The purpose of such an assessment is "to ascertain alteration of the physical habitat structure critical to maintenance of a healthy biological condition." Like all bioassessment protocols, the BioRecon and SCI employ "reasonable thresholds" of community health (arrived at by sampling "reference sites," which are the least affected and impacted sites in the state) against which the health of the sampled habitat is measured. Impairment is determined by the sampled habitat's departure from these "reasonable thresholds" (which represent expected or "reference" conditions). The BioRecon is newer, quicker and less comprehensive than the SCI. Only four sweeps of habitat are taken for the BioRecon, compared to 20 sweeps for the SCI. Furthermore, the BioRecon takes into consideration only three measures of community health (taxa richness, Ephemeroptera/ Plecoptera/Tricoptera Index, and Florida Index), whereas the SCI takes into account four additional measures of community health. For these reasons, the BioRecon is considered a "screening version" of the SCI. Like the BioRecon and the SCI, the LCI is a "comparative index." Conditions at the sampled site are compared to those at "reference sites" to determine the health of the aquatic community at the sampled site. Samples for the LCI are taken from the sublittoral zone of the targeted lake,42 which is divided into twelve segments. Using a petite PONAR or Ekman sampler dredge, a sample is collected from each of the twelve segments. The twelve samples are composited into a single, larger sample, which is then examined to determine what organisms it contains. The results of such examination are considered in light of six measures of community health: Total taxa, EOT taxa, percent EOT, percent Diptera, the Shannon-Weiner Diversity Index, and the Hulbert Index. Lakes larger than 1,000 acres are divided into two subbasins or into quadrants (as appropriate), and each subbasin or quadrant is sampled separately, as if it were a separate site. It is essential that persons conducting BioRecons, SCIs, and LCIs know the correct sampling techniques to use and have the requisite amount of taxonomic knowledge to identify the organisms that may be found in the samples collected. For this reason, a second sentence was included in Subsection (2) of proposed Rule 62-303.330, Florida Administrative Code, which reads as follows: Because these bioassessment procedures require specific training and expertise, persons conducting the bioassessments must comply with the quality assurance requirements of Chapter 62-160, F.A.C., attend at least eight hours of Department sanctioned field training, and pass a Department sanctioned field audit that verifies the sampler follows the applicable SOPs in Chapter 62-160, F.A.C., before their bioassessment data will be considered valid for use under this rule. The Department has developed SOPs for BioRecons, SCIs, and LCIs, which are followed by Department personnel who conduct these bioassessments. The Department is in the process of engaging in rulemaking to incorporate these SOPs in Rule Chapter 62-160, Florida Administrative Code, but had not yet, as of the time of the final hearing in these consolidated cases, completed this task.43 Subsection (3) of proposed Rule 62-303.330, Florida Administrative Code, provides as follows: Water segments with at least one failed bioassessment or one failure of the biological integrity standard, Rule 62- 302.530(11), shall be included on the planning list for assessment of aquatic life use support. In streams, the bioassessment can be an SCI or a BioRecon. Failure of a bioassessment for streams consists of a "poor" or "very poor" rating on the Stream Condition Index, or not meeting the minimum thresholds established for all three metrics (taxa richness, Ephemeroptera/Plecoptera/Tricoptera Index, and Florida Index) on the BioRecon. Failure for lakes consists of a "poor" or "very poor" rating on the Lake Condition Index. Subsection (11) of Rule 62-302.530, Florida Administrative Code, prescribes the following "biological integrity standard[s]" for Class I, II and III waters: Class I The Index for benthic macroinvertebrates shall not be reduced to less than 75% of background levels as measured using organisms retained by a U.S. Standard No. 30 sieve and collected and composited from a minimum of three Hester-Dendy type artificial substrate samplers of 0.10 to 0.15m2 area each, incubated for a period of four weeks. Class II The Index for benthic macroinvertebrates shall not be reduced to less than 75% of established background levels as measured using organisms retained by a U.S. Standard No. 30 sieve and collected and composited from a minimum of three natural substrate samples, taken with Ponar type samplers with minimum sampling area of 2252. Class III: Fresh The Index for benthic macroinvertebrates shall not be reduced to less than 75% of established background levels as measured using organisms retained by a U.S. Standard No. 30 sieve and collected and composited from a minimum of three Hester-Dendy type artificial substrate samplers of 0.10 to 0.15m2 area each, incubated for a period of four weeks. Class III: Marine The Index for benthic macroinvertebrates shall not be reduced to less than 75% of established background levels as measured using organisms retained by a U.S. Standard No. 30 sieve and collected and composited from a minimum of three natural substrate samples, taken with Ponar type samplers with minimum sampling area of 2252. The "Index" referred to in these standards is the Shannon-Weaver Diversity Index. Subsection (4) of proposed Rule 62-303.330, Florida Administrative Code, which reads as follows, allows the Department to rely upon "information relevant to the biological integrity of the water," other than a failure of a BioRecon, SCI, or LCI or a failure of the "biological integrity standard" set forth in Subsection (11) of Rule 62-302.530, Florida Administrative Code, to place a water on the "planning list" where the Department determines, exercising its "best professional judgment," that such "information" reveals that "aquatic life use support has [not] been maintained": Other information relevant to the biological integrity of the water segment, including information about alterations in the type, nature, or function of a water, shall also be considered when determining whether aquatic life use support has been maintained. The "other information" that would warrant placement on the "planning list" is not specified in Subsection (4) because, as Mr. Frydenborg testified at the final hearing, "[t]he possibilities are so vast." Proposed Rule 62-303.330, Florida Administrative Code, does not make mention of any rapid type of bioassessment for estuaries, the failure of which will lead to placement of a water on the "planning list," for the simple reason that the Department has yet to develop such a bioassessment.44 Estuaries, however, may qualify for "planning list" placement under proposed Rule 62-303.330, Florida Administrative Code, based upon "one failure of the biological integrity standard," pursuant to Subsection (3) of the proposed rule,45 or based upon "other information," pursuant to Subsection (4) of the proposed rule (which may include "information" regarding seagrasses, aquatic macrophytes, or algae communities). Part II: Proposed Rule 62-303.340, Florida Administrative Code Proposed Rule 62-303.340, Florida Administrative Code, is entitled, "Toxicity," and, as noted in Subsection (3) of proposed Rule 62-303.310, Florida Administrative Code, "outline[s]" the requirements that must be met for a water to qualify for placement on the "planning list" based upon it being "acutely or chronically toxic." These requirements, like those found in proposed Rule 62-303.330, Florida Administrative Code, relating to "[b]iological [a]ssessment[s]," are not statistically-based. They are as follows: All toxicity tests used to place a water segment on a planning list shall be based on surface water samples in the receiving water body and shall be conducted and evaluated in accordance with Chapter 62- 160, F.A.C., and subsections 62-302.200(1) and (4), F.A.C., respectively. Water segments with two samples indicating acute toxicity within a twelve month period shall be placed on the planning list. Samples must be collected at least two weeks apart over a twelve month period, some time during the ten years preceding the assessment. Water segments with two samples indicating chronic toxicity within a twelve month period shall be placed on the planning list. Samples must be collected at least two weeks apart, some time during the ten years preceding the assessment. Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New Subsection (1) of Rule 62-320.200, Florida Administrative Code, which is referenced in Subsection (1) of proposed Rule 62-303.340, Florida Administrative Code, defines "acute toxicity." It provides as follows: "Acute Toxicity" shall mean the presence of one or more substances or characteristics or components of substances in amounts which: are greater than one-third (1/3) of the amount lethal to 50% of the test organisms in 96 hours (96 hr LC50) where the 96 hr LC50 is the lowest value which has been determined for a species significant to the indigenous aquatic community; or may reasonably be expected, based upon evaluation by generally accepted scientific methods, to produce effects equal to those of the concentration of the substance specified in (a) above. Subsection (4) of Rule 62-320.200, Florida Administrative Code, which is also referenced in Subsection (1) of proposed Rule 62-303.340, Florida Administrative Code, defines "chronic toxicity." It provides as follows: "Chronic Toxicity" shall mean the presence of one or more substances or characteristics or components of substances in amounts which: are greater than one-twentieth (1/20) of the amount lethal to 50% of the test organisms in 96 hrs (96 hr LC50) where the 96 hr LC50 is the lowest value which has been determined for a species significant to the indigenous aquatic community; or may reasonably be expected, based upon evaluation by generally accepted scientific methods, to produce effects equal to those of the concentration of the substance specified in (a) above. Testing for "acute toxicity" or "chronic toxicity," within the meaning of Subsections (1) and (4) of Rule 62- 320.200, Florida Administrative Code (and therefore proposed Rule 62-303.340, Florida Administrative Code) does not involve measuring the level of any particular parameter in the water sampled. Rather, the tests focus upon the effects the sampled water has on test organisms. Mortality is the end point that characterizes "acute toxicity." "Chronic toxicity" has more subtle effects, which may include reproductive and/or growth impairment. Historically, the Department has tested effluent for "acute toxicity" and "chronic toxicity," but it has not conducted "acute toxicity" or "chronic toxicity" testing in receiving waters. The requirement of Subsections (2) and (3) of proposed Rule 62-303.340, Florida Administrative Code, that test data be no older than ten years old is reasonably designed to make it less likely that a water will be placed on the "planning list" based upon toxicity data not representative of the water's current conditions. Requiring that toxicity be established by at least "two samples" taken "at least two weeks apart" during a "twelve month period," as do Subsections (2) and (3) of proposed Rule 62-303.340, Florida Administrative Code, is also a prudent measure intended to minimize inappropriate listing decisions. To properly determine whether toxicity (which can "change over time") is a continuing problem that may be remedied by TMDL implementation, it is desirable to have more than one sample indicating toxicity. "The judgment was made [by the TAC] that two [samples] would be acceptable to make that determination." The TAC "wanted to include as much data regarding . . . toxicity . . . , and therefore lowered the bar in terms of data sufficiency . . . to only two samples." As noted above, the "minimum criteria for surface waters established in Rule 62-302.500, F.A.C.," which, if not met, will result in a water being placed on the "planning list" pursuant to Subsection (1) of proposed Rule 62-303.300, Florida Administrative Code, include the requirement that surface waters not be "acutely toxic." Whether a water should be placed on the "planning list" because it fails to meet this "minimum criterion" (or "free from") will be determined in light of the provisions of proposed Rule 62-303.340, Florida Administrative Code. Except for "[s]ilver in concentrations above 2.3 micrograms/liter in predominantly marine waters," "acute toxicity" is the only "free from" addressed in any portion of Part II of the proposed rule chapter outside of Subsection (1) of proposed Rule 62-303.300, Florida Administrative Code. Part II: Proposed Rules 62-303.350 through 62-303.353, Florida Administrative Code Proposed Rules 62-303.350 through 62-303.353, Florida Administrative Code, address "nutrients." Nutrients, which consist primarily of nitrogen and phosphorous, stimulate plant growth (and the production of organic materials). Waste water treatment facilities, certain industrial facilities that discharge waste water, phosphate mines, and agricultural and residential lands where fertilizers are used are among the sources of nutrients that affect water bodies in Florida. Nutrients are important to the health of a water body, but when they are present in excessive amounts, problems can arise. Excessive amounts of nutrients can lead to certain species, typically algaes, out-competing native species that are less able to use these nutrients, which, in turn, results in a change in the composition of the aquatic population and, subsequently, the animal population. Factors influencing how a water body responds to nutrient input include location, water body type, ecosystem characteristics, water flow, and the extent of light inhibition. As Mr. Frydenborg testified at the final hearing, nutrients are "probably the most widespread and pervasive cause of environmental disturbance in Florida" and they present "the biggest challenge [that needs to be] overcome in protecting aquatic systems." See also Rule 62-302.300(13), Florida Administrative Code ("The Department finds that excessive nutrients (total nitrogen and total phosphorus) constitute one of the most severe water quality problems facing the State."). As noted above, nutrients are among the parameters for which water quality criteria have been established by the Department in Rule 62-302.530, Florida Administrative Code. The criterion for nutrients set forth in Subsection (48)(b) of the rule (which applies to all "water quality classifications") is a "narrative . . . criterion," as that term is used in Subsection (3)(c) of Section 403.067, Florida Statutes. It is as follows: "In no case shall nutrient concentrations of a body of water be altered as to cause an imbalance of natural populations of aquatic flora or fauna." Proposed Rule 62-303.350, Florida Administrative Code, is entitled, "Interpretation of Narrative Nutrient Criteria," and, as noted in Subsection (4) of proposed Rule 62- 303.310, Florida Administrative Code, "outline[s]" the requirements that must be met for a water to qualify for placement on the "planning list" based upon excessive "nutrient enrichment." It lists Sections 403.061 and 403.067, Florida Statutes, as its "[s]pecific [a]uthority" and Sections 403.062 and 403.067, Florida Statutes, as the "[l]aw [i]mplemented." Subsection (1) of proposed Rule 62-303.350, Florida Administrative Code, reads as follows: Trophic state indices (TSIs) and annual mean chlorophyll a values shall be the primary means for assessing whether a water should be assessed further for nutrient impairment. Other information indicating an imbalance in flora or fauna due to nutrient enrichment, including, but not limited to, algal blooms, excessive macrophyte growth, decrease in the distribution (either in density or areal coverage) of seagrasses or other submerged aquatic vegetation, changes in algal species richness, and excessive diel oxygen swings shall also be considered. Any type of water body (stream, estuary, or lake) may be placed on the "planning list" based upon the "other information" described in the second sentence of Subsection (1) of proposed Rule 62-303.350, Florida Administrative Code. Whether to do so in a particular case will involve the exercise of "best professional judgment" on the part of the Department. The items specifically mentioned in the second sentence of Subsection (1) of proposed Rule 62-303.350, Florida Administrative Code, "[a]lgal blooms, excessive macrophyte growth, decrease in the distribution (either in density or areal coverage) of seagrasses or other submerged aquatic vegetation,46 changes in algal species richness, and excessive diel oxygen swings," are all indicators of excessive "nutrient enrichment." The "but not limited to" language in this sentence makes it abundantly clear that this is not an exhaustive listing of "other information indicating an imbalance in flora or fauna due to nutrient enrichment" that will be considered by the Department in determining whether a water should be placed on the "planning list." During the rule development process, there were a number of members of the public who expressed the view that the Department's possession of the "information" described in the second sentence of Subsection (1) of proposed Rule 62-303.350, Florida Administrative Code, should be the sole basis for determining "nutrient impairment" and that TSIs and annual mean chlorophyll a values should not be used. Department staff rejected these suggestions and drafted the proposed rule chapter to provide for additional ways, using TSIs and annual mean chlorophyll a values, for a water to make the "planning list" based upon excessive "nutrient enrichment." Chlorophyll a is the photosynthetic pigment in algae. Measuring chlorophyll a concentrations in water is a reasonable surrogate for measuring the amount of algal biomass present (which is indicative of the extent of nutrient enrichment inasmuch as nutrients promote algal growth). Chlorophyll a values, expressed in micrograms per liter, reflect the concentration of suspended algae (phytoplankton) in the water.47 High amounts of chlorophyll a indicate that there have been algal blooms. Algal blooms represent significant increases in algal population (phytoplankton) over a short period of time. They have a deleterious effect on the amount of dissolved oxygen in the water. Algal blooms may occur in any season. There are no adequate means to predict when they will occur. An annual mean chlorophyll a value reflects the level of nutrient enrichment occurring in a water over the course of a year. Biologists look at these values when studying the productivity of aquatic systems. Using an annual mean is the "best way" of determining whether nutrient enrichment is a consistent enough problem to cause an imbalance in flora or fauna. The TSI was developed for the Department's use in preparing 305(b) Reports. It is a "tried and true method" of assessing lakes (and only lakes) for "nutrient impairment." No comparable special index exists for other types of water bodies in this state. TSI values are derived from annual mean chlorophyll a, as well as nitrogen and phosphorous, values (which are composited). The process of "[c]alculating the Trophic State Index for lakes" was described in the "State's 1996 305(b) report" (on page 86) as follows: The Trophic State Index effectively classifies lakes based on their chlorophyll levels and nitrogen and phosphorous concentrations. Based on a classification scheme developed in 1977 by R.E. Carlson, the index relies on three indicators-- Secchi depth, chlorophyll, and total phosphorous-- to describe a lake's trophic state. A ten unit change in the index represents a doubling or halving or algal biomass. The Florida Trophic State Index is based on the same rationale but also includes total nitrogen as a third indicator. Attempts in previous 305(b) reports to include Secchi depth have caused problems in dark-water lakes and estuaries, where dark waters rather than algae diminish transparency. For this reason, our report drops Secchi depth as a category. We developed Florida lake criteria from a regression analysis of data on 313 Florida lakes. The desirable upper limit for the index is 20 micrograms per liter of chlorophyll, which corresponds to an index of 60. Doubling the chlorophyll concentration to 40 micrograms per liter increases the index to 70, which is the cutoff for undesirable (or poor) lake quality. Index values from 60 to 69 represent fair water quality. . . . The Nutrient Trophic State Index is based on phosphorous and nitrogen concentrations and the limiting nutrient concept. The latter identifies a lake as phosphorous limited if the nitrogen-to-phosphorous concentration ratio is greater than 30, nitrogen limited if the ratio is less than 10, and balanced (depending on both nitrogen and phosphorous) if the ratio is 10 to 30. The nutrient ratio is thus based solely on phosphorous if the ratio is greater than 30, solely on nitrogen if less than 10, or on both nitrogen and phosphorous if between 10 and 30. We calculated an overall Trophic State Index based on the average of the chlorophyll and nutrient indices. Calculating an overall index value requires both nitrogen and phosphorous measurements. Subsections (2) and (3) of proposed Rule 62-303.350, Florida Administrative Code, which provide as follows, impose reasonable data sufficiency and quality requirements for calculating TSIs and annual mean chlorophyll a values and changes in those values from "historical levels": To be used to determine whether a water should be assessed further for nutrient enrichment, data must meet the requirements of paragraphs (2)-(4), (6), and (7) in rule 62- 303.320, at least one sample from each season shall be required in any given year to calculate a Trophic State Index (TSI) or an annual mean chlorophyll a value for that year, and there must be annual means from at least four years, when evaluating the change in TSI over time pursuant to paragraph 62- 303.352(3). When comparing changes in chlorophyll a or TSI values to historical levels, historical levels shall be based on the lowest five-year average for the period of record. To calculate a five-year average, there must be annual means from at least three years of the five-year period. These requirements do not apply to the "other information" referenced in the second sentence of Subsection (1) of proposed Rule 62-303.350, Florida Administrative Code. As was stated in the NRC Publication, and as Department staff recognized, "data are not the same as information." Subsection (2)(b) of proposed Rule 62-303.350, Florida Administrative Code, being more specific, modifies Subsection (2)(a) of the proposed rule, to the extent that Subsection (2)(a) incorporates by reference the requirement of Subsection (4) of proposed Rule 62-303.320, Florida Administrative Code, that "at least one sampling event [be] conducted in [only] three of the four seasons of the calendar year." Requiring data from at least each season is appropriate because the data will be used to arrive at numbers that represent annual means. Furthermore, as noted above, there is no season in which bloom events never occur in this state. Four years of data, as required by Subsection (2)(c) of proposed Rule 62-303.350, Florida Administrative Code, establishes a "genuine trend" in the TSI. The requirement, in Subsection (2)(c) of proposed Rule 62-303.350, Florida Administrative Code, that the "lowest five-year average for the period of the record" be used to establish "historical levels" was intended to make it easier for a water to be placed on the "planning list" for "nutrient impairment." 190. Proposed Rules 62-303.351, 62-303.352, and 62- 303.353, Florida Administrative Code, establish reasonable statewide TSI and annual mean chlorophyll a values, which if exceeded, will result in a water being placed on the "planning list."48 In establishing these statewide threshold values, Department staff took into consideration that averaging values obtained from samples taken during bloom events with lower values obtained from other samples taken during the course of the year (to get an annual mean value for a water) would minimize the impact of the higher values and, accordingly, they set the thresholds at levels lower than they would have if the thresholds represented, not annual mean values, but rather values that single samples, evaluated individually, could not exceed. Department staff recognized that the statewide thresholds they set "may not be protective of very low nutrient waters." They therefore, in proposed Rules 62-303.351, 62- 303.352, and 62-303.353, Florida Administrative Code, reasonably provided that waters not exceeding these thresholds could nonetheless get on the "planning list" for "nutrient impairment" based upon TSI values (in the case of lakes) or annual mean chlorophyll a values (in the case of streams and estuaries) if these values represented increases, of sufficient magnitude, as specified in the proposed rules, over "historical levels." Proposed Rule 62-303.351, Florida Administrative Code, is entitled, "Nutrients in Streams," and reads as follows: A stream or stream segment shall be included on the planning list for nutrients if the following biological imbalances are observed: algal mats are present in sufficient quantities to pose a nuisance or hinder reproduction of a threatened or endangered species, or annual mean chlorophyll a concentrations are greater than 20 ug/l or if data indicate annual mean chlorophyll a values have increased by more than 50% over historical values for at least two consecutive years. Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New The TAC and Department staff investigated the possibility of evaluating "nutrient impairment" in streams by looking at the amount of attached algae (measured in milligrams of chlorophyll a per square meter) as opposed to suspended algae, but "weren't able to come up with" an appropriate "number." They were advised of a "paper" in which the author concluded that 150 milligrams of chlorophyll a per square meter was "indicative of imbalances in more northern conditions rivers." Reviewing Florida data, the TAC and Department staff determined that this threshold would be "non-protective in our state" inasmuch as the "the highest chlorophylls" in the Florida data they reviewed were 50 to 60 milligrams of chlorophyll a per square meter. Subsection (1) of proposed Rule 62-303.351, Florida Administrative Code, which describes, in narrative terms, another type of "information indicating an imbalance in flora or fauna due to nutrient enrichment" (in addition to those types of information specified in Subsection (1) of proposed Rule 62- 303.350, Florida Administrative Code), was included in proposed Rule 62-303.351 in lieu of establishing a numerical "milligrams of chlorophyll a per square meter" threshold. The term "nuisance," as used in Subsection (1) of proposed Rule 62-303.351, Florida Administrative Code, was intended to have the same meaning as it has in Rule 62-302.500, Florida Administrative Code. "Nuisance species," as used in Rule Chapter 62-500, Florida Administrative Code, are defined as "species of flora or fauna whose noxious characteristics or presence in sufficient number, biomass, or areal extent may reasonably be expected to prevent, or unreasonably interfere with, a designated use of those waters." Mr. Joyner knew that the Suwannee River "had problems with algal mats49 and that those algal mats might hinder reproduction of the sturgeon" in the river. The "hinder reproduction of a threatened or endangered species" language was inserted in Subsection (1) of proposed Rule 62-303.351, Florida Administrative Code, "to address things like that" occurring in the Suwannee River. It was "very difficult" for the TAC and Department staff to come up with a "micrograms per liter" threshold for Subsection (2) of proposed Rule 62-303.351, Florida Administrative Code. All available data on Florida streams were reviewed before the TAC and Department staff decided on a threshold. The threshold ultimately selected, 20 micrograms per liter, "represents approximately the 80th percentile value currently found in Florida streams," according to the data reviewed. The "20 micrograms per liter" threshold, combined with the other provisions of the proposed rule and the second sentence of proposed Rule 62-303.350, Florida Administrative Code, was "thought to be something that would hold the line on future [nutrient] enrichment," particularly with respect to streams "like the lower St. Johns River which tends to act more like a lake." Anything over 20 micrograms per liter of chlorophyll a "is a clear indication that an imbalanced situation is occurring." There are some streams in Florida that have high nutrient concentrations but, because of flow conditions and water color, also have low levels of chlorophyll a in the water column (reflecting that the nutrients' presence in the water has not resulted in significant algal growth). That these streams would not qualify for placement on the "planning list" pursuant to proposed Rule 62-303.351, Florida Administrative Code, as drafted, did not concern the TAC and Department staff because they thought it appropriate "to focus on [the] realized impairment" caused by nutrients, not on their mere presence in the stream. If these nutrients travel downstream and adversely affect the downstream water to such an extent that the downstream water qualifies for a TMDL, "all the sources upstream would be addressed" in the TMDL developed for the downstream water. Pursuant to Subsection (2) of proposed Rule 62- 303.351, Florida Administrative Code, streams with "very, very low chlorophylls," well under 20 micrograms per liter, can nonetheless qualify for placement on the planning list based upon two consecutive years of increased annual mean chlorophyll a values "over historical values." In the case of a stream with "historical values" of two micrograms per liter, for instance, the increase would need to be only more than one microgram per liter. Proposed Rule 62-303.352, Florida Administrative Code, is entitled, "Nutrients in Lakes," and reads as follows: For the purposes of evaluating nutrient enrichment in lakes, TSIs shall be calculated based on the procedures outlined on pages 86 and 87 of the State's 1996 305(b) report, which are incorporated by reference. Lakes or lake segments shall be included on the planning list for nutrients if: For lakes with a mean color greater than 40 platinum cobalt units, the annual mean TSI for the lake exceeds 60, unless paleolimnological information indicates the lake was naturally greater than 60, or For lakes with a mean color less than or equal to 40 platinum cobalt units, the annual mean TSI for the lake exceeds 40, unless paleolimnological information indicates the lake was naturally greater than 40, or For any lake, data indicate that annual mean TSIs have increased over the assessment period, as indicated by a positive slope in the means plotted versus time, or the annual mean TSI has increased by more than 10 units over historical values. When evaluating the slope of mean TSIs over time, the Department shall use a Mann's one-sided, upper-tail test for trend, as described in Nonparametric Statistical Methods by M. Hollander and D. Wolfe 16 (1999 ed.), pages 376 and 724 (which are incorporated by reference), with a 95% confidence level. Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New As noted above, a TSI value of 60, the threshold established in Subsection (1) of proposed Rule 62-303.352, Florida Administrative Code, for darker-colored lakes, is the equivalent of a chlorophyll a value of 20 micrograms per liter, which is the "micrograms per liter" threshold for streams established in Subsection (2) of proposed Rule 62-303.351, Florida Administrative Code. A TSI value 40, the threshold established in Subsection (2) of proposed Rule 62-303.352, Florida Administrative Code, for lighter-colored lakes, corresponds to a chlorophyll a value of five micrograms per liter, which "is an extremely low level." A TSI value of 40 is "very protective for that particular category of lake[s]." A lower threshold was established for these lighter- colored lakes (having a mean color less than or equal to 40 platinum cobalt units) because it was felt that these lakes needed "extra protection." Providing such "extra protection" is reasonably justified inasmuch as these lakes (due to their not experiencing the "infusion of leaf litter" that affects darker- colored lakes) tend to have a "lower nutrient content naturally" and therefore "very different aquatic communities" than their darker counterparts. Some lakes are naturally eutrophic or even hyper- eutrophic. Inasmuch as the TMDL program is not designed to address such natural occurrences, it makes sense to provide, as Subsections (1) and (2) of proposed Rule 62-303.352, Florida Administrative Code, do, that the TSI thresholds established therein will not apply if "paleolimnological information" indicates that the TSI of the lake in question was "naturally greater" than the threshold established for that type of lake (60 in the case of a darker-colored lake and 40 in the case of a lighter-colored lake). Lakes with TSI values that do not exceed the appropriate threshold may nonetheless be included on the "planning list" based upon "increas[es] in TSIs" pursuant to Subsection (3) of proposed Rule 62-303.352, Florida Administrative Code. Any statistically significant increase in TSI values "over the assessment period," as determined by "use [of] a Mann's one-sided, upper-tail test for trend" and a "95% confidence level" (which the TAC recommended inasmuch as it is "the more typical scientific confidence level"), or an increase in the annual mean TSI of more than ten units "over historical values," will result in a lake being listed pursuant to Subsection (3) of proposed Rule 62-303.352, Florida Administrative Code. The first of these two alternative ways of a lake getting on the "planning list" based upon "increas[es] in TSIs" is "more protective" than the second. Under this first alternative, a lake could be listed before there was more than a ten unit increase in the annual mean TSI "over historical values." A ten-unit increase in the annual mean TSI represents a doubling (or 100 percent increase) "over historical values." As noted above, pursuant to Subsection (3) of proposed Rule 62- 303.351, Florida Administrative Code, only a 50 percent increase "over historical values" in annual mean chlorophyll a values is needed for a stream to make the "planning list" and, as will be seen, proposed Rule 62-303.353, Florida Administrative Code, contains a similar "50 percent increase" provision for estuaries; however, because "lakes are much more responsive to nutrients," Department staff reasonably believed that "the ten- unit change was a protective measure." Proposed Rule 62-303.353, Florida Administrative Code, is entitled, "Nutrients in Estuaries," and reads as follows: Estuaries or estuary segments shall be included on the planning list for nutrients if their annual mean chlorophyll a for any year is greater than 11 ug/l or if data indicate annual mean chlorophyll a values have increased by more than 50% over historical values for at least two consecutive years. Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New Estuaries are at "the very bottom" of the watershed. The amount of nutrients in an estuary is dependent, not only on what is occurring in and around the immediate vicinity of the estuary,50 but also "what is coming down" any river flowing into it. Not all of the nutrients in the watershed reach the estuary inasmuch as "there is assimilation and uptake along the way." The "11 micrograms per liter" threshold ultimately selected as a "protective number in terms of placing estuaries on the 'planning list'" was recommended by the TAC following a review of data reflecting trends with respect to chlorophyll a levels in various Florida estuaries. In addition, the TAC heard a presentation concerning the "modeling work" done by the Tampa Bay National Estuary Program to establish "site-specific" chlorophyll a targets for segments of Tampa Bay, including the target of 13.2 micrograms per liter that was established for the Hillsborough Bay segment of Tampa Bay, which is "closer to the [nutrient] sources" than other parts of Tampa Bay. The TAC also considered information about "various bloom situations" in estuaries which led to the "general feeling" that an estuarine algal bloom involved chlorophyll a values "considerably higher" than 11 micrograms per liter. An alternative method for an estuary to make the "planning list" for "nutrient impairment" based upon a 50 percent increase in annual mean chlorophyll a values "over historical values" was included in proposed Rule 62-303.353, Florida Administrative Code, because the "11 micrograms per liter" threshold was not expected "to be adequately protect[ive]" of "the very clear sea grass communities" like those found in the Florida Keys. Part II: Proposed Rule 62-303.360, Florida Administrative Code Proposed Rule 62-303.360, Florida Administrative Code, establishes four separate ways for a water to be placed on the "planning list" for failing to provide "primary contact and recreation use support." It reads as follows: Primary Contact and Recreation Use Support A Class I, II, or III water shall be placed on the planning list for primary contact and recreation use support if: the water segment does not meet the applicable water quality criteria for bacteriological quality based on the methodology described in section 62-303.320, or the water segment includes a bathing area that was closed by a local health Department or county government for more than one week or more than once during a calendar year based on bacteriological data, or the water segment includes a bathing area for which a local health Department or county government has issued closures, advisories, or warnings totaling 21 days or more during a calendar year based on bacteriological data, or the water segment includes a bathing area that was closed or had advisories or warnings for more than 12 weeks during a calendar year based on previous bacteriological data or on derived relationships between bacteria levels and rainfall or flow. For data collected after August 1, 2000, the Florida Department of Health (DoH) database shall be the primary source of data used for determining bathing area closures. Advisories, warnings, and closures based on red tides, rip tides, sewage spills, sharks, medical wastes, hurricanes, or other factors not related to chronic discharges of pollutants shall not be included when assessing recreation use support. However, the Department shall note for the record that data were excluded and explain why they were excluded. Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New The "water quality criteria for bacteriological quality" referenced in Subsection (1)(a) of proposed Rule 62- 303.360, Florida Administrative Code, are set forth in Subsections (6) and (7) of Rule 62-303.530, Florida Administrative Code, which provide as follows: Parameter: Bacteriological Quality (Fecal Coliform Bacteria) Units: Number per 100 ml (Most Probable Number (MPN) or Membrane Filter (MF)) Class I: MPN or MF counts shall not exceed a monthly average of 200, nor exceed 400 in 10% of the samples, nor exceed 800 on any one day. Monthly averages shall be expressed as geometric means based on a minimum of 5 samples taken over a 30 day period. Class II: MPN shall not exceed a median value of 14 with not more than 10% of the samples exceeding 43, nor exceed 800 on any one day. Class III: Fresh: MPN or MF counts shall not exceed a monthly average of 200, nor exceed 400 in 10% of the samples, nor exceed 800 on any one day. Monthly averages shall be expressed as geometric means based on a minimum of 10 samples taken over a 30 day period. Class III: Marine: MPN or MF counts shall not exceed a monthly average of 200, nor exceed 400 in 10% of the samples, nor exceed 800 on any one day. Monthly averages shall be expressed as geometric means based on a minimum of 10 samples taken over a 30 day period. Parameter: Bacteriological Quality (Total Coliform Bacteria) Units: Number per 100 ml (Most Probable Number (MPN) or Membrane Filter (MF)) Class I: < = 1,000 as a monthly avg., nor exceed 1,000 in more than 20% of samples examined during any month, nor exceed 2,400 at any time using either MPN or MF counts. Class II: Median MPN shall not exceed 70 and not more than 10% of the samples shall exceed an MPN of 230. Class III: Fresh: < = 1,000 as a monthly average, nor exceed 1,000 in more than 20% of samples examined during any month, < = 2,400 at any time. Monthly averages shall be expressed as geometric means based on a minimum or 10 samples taken over a 30 day period, using either the MPN or MF counts. Class III: Marine: < = 1,000 as a monthly average, nor exceed 1,000 in more than 20% of samples examined during any month, < = 2,400 at any time. Monthly averages shall be expressed as geometric means based on a minimum or 10 samples taken over a 30 day period, using either the MPN or MF counts. Fecal coliform bacteria are found in the feces of animals and humans. They can be identified in the laboratory "fairly easily, usually within 24 to 48 hours" and "are used worldwide as indicators of fecal contamination and potential public health risks." Enterococci are another "distinct group of bacteria." They too are found in animal and human feces. The recommendation has been made that enterococci be used as bacteriological "indicators" for assessing "public health risk and swimmability," particularly in marine waters. The Department, however, is not convinced that there is "sufficient science at this time" to warrant adoption of this recommendation in states, like Florida, with "warmer climates," and it has not amended Rule 62-303.530, Florida Administrative Code, to provide for the assessment of bacteriological quality using enterococci counts.51 The statistical "methodology described in [proposed Rule] 62-303.320," Florida Administrative Code (which is incorporated by reference in Subsection (1)(a) of proposed Rule 62-303.360, Florida Administrative Code) is as appropriate for determining whether a water should be placed on the "planning list" based upon exceedances of bacteriological water quality criteria as it is for determining whether a water should be placed on the "planning list" for "[e]xceedances of [a]quatic [l]ife-[b]ased [c]riteria." Unlike Subsection (1)(a) of proposed Rule 62-303.360, Florida Administrative Code, Subsections (1)(b), (1)(c), and (1)(d) of the proposed rule, at least indirectly, allow for waters to be placed on the "planning list" based upon enterococci counts. The closures, advisories, and warnings referenced in Subsections (1)(b), (1)(c), and (1)(d) of proposed Rule 62- 303.360, Florida Administrative Code, are issued, not by the Department, but by local health departments or county governments, and may be based upon enterococci sampling done by those governmental entities. Subsection (1)(b) of proposed Rule 62-303.360, Florida Administrative Code, provides for listing based exclusively upon bathing area closures. It was included in the proposed rule upon the recommendation of the EPA "to track their 305(b) guidance." Both freshwater and marine bathing areas in Florida may be closed if circumstances warrant. The Department of Health (which operates the various county health departments) does not close marine beaches, but county governments may. Subsection (1)(c) of proposed Rule 62-303.360, Florida Administrative Code, provides for listing based upon any combination of closures, advisories, or warnings "totaling 21 days or more during a calendar year," provided the closures, advisories, and warnings were based upon up-to-date "bacteriological data." Department staff included this provision in the proposed rule in lieu of a provision recommended by the TAC (about which Petitioner Young had expressed concerns) that would have made it more difficult for a water to be placed on the "planning list" as a result of bacteriological data-based closures, advisories, or warnings. In doing so, Department staff exercised sound professional judgment. The 21 days or more of closures, advisories, or warnings needed for listing under the proposed rule do not have to be consecutive, although they all must occur in the same calendar year. Subsection (1)(d) of proposed Rule 62-303.360, Florida Administrative Code, like Subsection (1)(c) of the proposed rule, provides for listing based upon a combination of closures, advisories, or warnings, but it does not require that it be shown that the closures, advisories, or warnings were based upon up-to-date "bacteriological data." Under Subsection (1)(d) of the proposed rule, the closures, advisories, or warnings need only have been based upon "previous [or, in other words, historical] bacteriological data" or "derived relationships between bacteria levels and rainfall or flow." Because assessments of current bacteriological quality based upon "previous bacteriological data" or on "derived relationships between bacteria levels and rainfall or flow" are less reliable than those based upon up-to-date "bacteriological data," Department staff were reasonably justified in requiring a greater total number of days of closures, advisories, or warnings in this subsection of the proposed rule (more than 84) than they did in Subsection (1)(c) of the proposed rule (more than 21). (Like under Subsection (1)(c) of the proposed rule, the days of closures, advisories, or warnings required for listing under Subsection (1)(d) of the proposed rule do not have to be consecutive days.) Subsection (1)(d) was included in the proposed rule in response to comments made at a TAC meeting by Mike Flannery of the Pinellas County Health Department concerning Pinellas County beaches that were "left closed for long periods of time" without follow-up bacteriological testing. Subsection (3) of proposed Rule 62-303.360, Florida Administrative Code, reasonably limits the closures, advisories, and warnings upon which the Department will be able to rely in determining whether a water should be placed on the "planning list" pursuant to Subsections (1)(b), (1)(c), or (1)(d) of the proposed rule to those closures, advisories, and warnings based upon "factors . . . related to chronic discharges of pollutants." The TMDL program is designed to deal neither with short-term water quality problems caused by extraordinary events that result in atypical conditions,52 nor with water quality problems unrelated to pollutant discharges in this state. It is therefore sensible to not count, for purposes of determining "planning list" eligibility pursuant to Subsections (1)(b), (1)(c), or (1)(d) of proposed Rule 62-303.360, Florida Administrative Code, closures, advisories, and warnings that were issued because of the occurrence of such problems. A "spill," by definition (set out in Subsection (16) of proposed Rule 62-303.200, Florida Administrative Code, which is recited above), is a "short term" event that does not include "sanitary sewer overflows or chronic discharges from leaking wastewater collection systems." While a one-time, unpermitted discharge of sewage (not attributable to "sanitary sewer overflow") is a "short- term" event constituting a "sewage spill," as that term is used in Subsection (3) of proposed Rule 62-303.360, Florida Administrative Code, repeated unpermitted discharges occurring over an extended period of time (with or without interruption) do not qualify as "sewage spills" and therefore Subsection (3) of the proposed rule will not prevent the Department from considering closures, advisories, and warnings based upon such discharges in deciding whether the requirements for listing set forth in Subsections (1)(b), (1)(c), or (1)(d) of the proposed rule have been met. Like "sewage spills," "red tides" are among the events specifically mentioned in Subsection (3) of proposed Rule 62-303.360, Florida Administrative Code. "Red tide" is a "very loose term" that can describe a variety of occurrences. It is apparent from a reading of the language in Subsection (3) of proposed Rule 62-303.360, Florida Administrative Code, in its entirety, that "red tide," as used therein, was intended to describe an event "not related to chronic discharges of pollutants." Department staff's understanding of "red tides" was shaped by comments made at a TAC meeting by one of the TAC members, George Henderson of the Florida Marine Research Institute. Mr. Henderson told those present at the meeting that "red tides are an offshore phenomenon that move on shore" and are fueled by nutrients from "unknown sources" likely located, for the most part, outside of Florida, in and around the Mississippi River. No "contrary scientific information" was offered during the rule development process.53 Lacking "scientific information" clearly establishing that "red tides," as they understood the term, were the product of "pollutant sources in Florida," Department staff reasonably concluded that closures, advisories, and warnings based upon such "red tides" should not be taken into consideration in deciding whether a water should be placed on the "planning list" pursuant to Subsections (1)(b), (1)(c), or (1)(d) of proposed Rule 62- 303.360, Florida Administrative Code, and they included language in Subsection (3) of the proposed rule to so provide. The "red tides" to which Mr. Henderson referred are harmful algae blooms that form off-shore in the Gulf of Mexico and are brought into Florida coastal waters by the wind and currents. There appears to be an association between these blooms of toxin-producing algae and nutrient enrichment, but the precise cause of these bloom events is "not completely understood." Scientists have not eliminated the possibility that, at least in some instances, these "red tides" are natural phenomena not the result of any pollutant loading either in or outside of Florida. The uncertainty surrounding the exact role, if any, that Florida-discharged pollutants play in the occurrence of the "red tides" referenced in Subsection (3) of proposed Rule 62-303.360, Florida Administrative Code, reasonably justifies the Department's declining, for purposes of determining whether the listing requirements of Subsections (1)(b), (1)(c), or (1)(d) of the proposed rule have been met, to take into consideration closures, advisories, and warnings based upon such "red tides." The exclusions contained in Subsection (3) of proposed Rule 62-303.360, Florida Administrative Code, will have no effect on the "information" or "data" that the Department will be able to consider under any provision in Part II of the proposed rule chapter other than Subsections (1)(b), (1)(c), and (1)(d) of proposed Rule 62-303.360. This includes the provisions of proposed Rule 62-303.350, Florida Administrative Code, which, as noted above, provides, among other things, that "planning list" eligibility may be based upon "information indicating an imbalance in flora or fauna due to nutrient enrichment, including . . . algal blooms." Accordingly, notwithstanding the "red tides" exclusion in Subsection (3) of proposed Rule 62-303.360, Florida Administrative Code, the presence of algal blooms of any type "indicating an imbalance in flora or fauna due to nutrient enrichment" will result in the affected water making the "planning list" pursuant to proposed Rule 62-303.350, Florida Administrative Code, to be "assessed further for nutrient impairment." Part II: Proposed Rule 62-303.370, Florida Administrative Code Proposed Rule 62-303.370, Florida Administrative Code, provides three separate ways for a water to "be placed on the planning list for fish and shellfish consumption." It reads as follows: Fish and Shellfish Consumption Use Support A Class I, II, or III water shall be placed on the planning list for fish and shellfish consumption if: the water segment does not meet the applicable Class II water quality criteria for bacteriological quality based on the methodology described in section 62-303.320, or there is either a limited or no consumption fish consumption advisory. issued by the DoH, or other authorized governmental entity, in effect for the water segment, or for Class II waters, the water segment includes an area that has been approved for shellfish harvesting by the Shellfish Evaluation and Assessment Program, but which has been downgraded from its initial harvesting classification to a more restrictive classification. Changes in harvesting classification from prohibited to unclassified do not constitute a downgrade in classification. Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New Subsection (1) of proposed Rule 62-303.370, Florida Administrative Code, which effectively duplicates the provisions of Subsection (1)(a) of proposed Rule 62-303.360, Florida Administrative Code, to the extent that those provisions apply to Class II waters, establishes an appropriate means of determining whether a water should "be placed on the planning list for fish and shellfish consumption." Waters that do not qualify for listing pursuant to Subsection (1) of proposed Rule 62-303.370, Florida Administrative Code, may make the "planning list" based upon "fish consumption advisories" under Subsection (2) of the proposed rule. The Department of Health, which issues these advisories, does so after conducting a statistical evaluation of fish tissue data collected from at least 12 fish. A large number of fish consumption advisories have been issued to date for a number of parameters, including, most significantly, mercury. The first fish consumption advisory was issued in 1989 after "high levels of mercury" were found in the sampled fish tissue. Many fish consumption advisories were issued ten or more years ago and are still in effect. Fish consumption advisories are continued until it is shown that they are not needed. Most of the fish tissue data for the fish consumption advisories now in effect were collected between 1989 and 1992. There is no reason to reject this data as not "being representative of the conditions under which those samples were collected." There has been data collected since 1992, but 1992 was "the last peak year" of sampling. Over the last ten years, the "focus has been on the Everglades" with respect to sampling for mercury, although sampling has occurred in "a broadly representative suite of water bodies statewide." The TAC recommended against using fish consumption advisories for listing coastal and marine waters because of the possibility that these advisories might be based upon tissue samples taken from fish who ingested mercury, or other substances being sampled, outside of the state. Department staff, however, rejected this recommendation and did not include a "coastal and marine waters" exclusion in Subsection (2) of proposed Rule 62-303.370, Florida Administrative Code. The Shellfish Evaluation and Assessment Program, which is referenced in Subsection (3) of proposed Rule 62- 303.370, Florida Administrative Code, is administered by the Florida Department of Agriculture and Consumer Services' Division of Aquaculture's Shellfish Environmental Assessment Section. The Shellfish Environmental Assessment Section (SEAS) is responsible for classifying and managing Florida shellfish harvesting areas in a manner that maximizes utilization of the state's shellfish resources and reduces the risk of shellfish- borne illness. In carrying out its responsibilities, the SEAS applies the "[s]hellfish [h]arvesting [a]rea [s]tandards" set forth in Rule 5L-1.003, Florida Administrative Code, which provides as follows: The Department shall describe and/or illustrate harvesting areas and provide harvesting area classifications as approved, conditionally approved, restricted, conditionally restricted, prohibited, or unclassified as defined herein, including criteria for opening and closing shellfish harvesting areas in accordance with Chapters II and IV of the National Shellfish Sanitation Program Model Ordinance. Copies of the document Shellfish Harvesting Area Classification Maps, revised October 14, 2001, and the document Shellfish Harvesting Area Classification Boundaries and Management Plans, revised October 14, 2001, containing shellfish harvesting area descriptions, references to shellfish harvesting area map numbers, and operating criteria herein incorporated by reference may be obtained by writing to the Department at 1203 Governors Square Boulevard, 5th Floor, Tallahassee, Florida 32301. Approved areas -- Growing areas shall be classified as approved when a sanitary survey, conducted in accordance with Chapter IV of the National Shellfish Sanitation Program Model Ordinance, indicates that pathogenic microorganisms, radionuclides, and/or harmful industrial wastes do not reach the area in dangerous concentrations and this is verified by laboratory findings whenever the sanitary survey indicates the need. Shellfish may be harvested from such areas for direct marketing. This classification is based on the following criteria: The area is not so contaminated with fecal material or poisonous or deleterious substances that consumption of the shellfish might be hazardous; and The bacteriological quality of every sampling station in those portions of the area most probably exposed to fecal contamination shall meet one of the following standards during the most unfavorable meteorological, hydrographic, seasonal, and point source pollution conditions: 1) The median or geometric mean fecal coliform Most Probable Number (MPN) of water shall not exceed 14 per 100 ml., and not more than 10 percent of the samples shall exceed a fecal coliform MPN of 43 per 100 ml. (per 5-tube, 3-dilution test) or 2) The median or geometric mean fecal coliform Most Probable Number (MPN) of water shall not exceed 14 per 100 ml., and not more than 10 percent of the samples shall exceed a fecal coliform MPN of 33 per 100 ml. (per 12-tube, single-dilution test). Harvest from temporarily closed approved areas shall be unlawful. Conditionally approved areas -- A growing area shall be classified as conditionally approved when a sanitary survey, conducted in accordance with Chapter IV of the National Shellfish Sanitation Program Model Ordinance, indicates that the area is subjected to intermittent microbiological pollution. The suitability of such an area for harvesting shellfish for direct marketing may be dependent upon attainment of established performance standards by wastewater treatment facilities discharging effluent directly or indirectly into the area. In other instances, the sanitary quality of the area may be affected by seasonal populations, climatic and/or hydrographic conditions, non-point source pollution, or sporadic use of a dock, marina, or harbor facility. Such areas shall be managed by an operating procedure that will assure that shellfish from the area are not harvested from waters not meeting approved area criteria. In order to develop effective operating procedures, these intermittent pollution events shall be predictable. Harvest from temporarily closed conditionally approved areas shall be unlawful. Restricted areas -- A growing area shall be classified as restricted when a sanitary survey, conducted in accordance with Chapter IV of the National Shellfish Sanitation Program Model Ordinance, indicates that fecal material, pathogenic microorganisms, radionuclides, harmful chemicals, and marine biotoxins are not present in dangerous concentrations after shellfish from such an area are subjected to a suitable and effective purification process. The bacteriological quality of every sampling station in those portions of the area most probably exposed to fecal contamination shall meet the following standard: The median or geometric mean fecal coliform Most Probable Number (MPN) of water shall not exceed 88 per 100 ml. and not more than 10 percent of the samples shall exceed a fecal coliform MPN of 260 per 100 ml. (per 5-tube, 3-dilution test) in those portions of the area most probably exposed to fecal contamination during the most unfavorable meteorological, hydrographic, seasonal, and point source pollution conditions. Harvest is permitted according to permit conditions specified in Rule 5L-1.009, F.A.C. Harvest from temporarily closed restricted areas shall be unlawful. Conditionally restricted area -- A growing area shall be classified as conditionally restricted when a sanitary survey or other monitoring program data, conducted in accordance with Chapter IV of the National Shellfish Sanitation Program Model Ordinance, indicates that the area is subjected to intermittent microbiological pollution. The suitability of such an area for harvest of shellfish for relaying or depuration activities is dependent upon the attainment of established performance standards by wastewater treatment facilities discharging effluent, directly or indirectly, into the area. In other instances, the sanitary quality of such an area may be affected by seasonal population, non-point sources of pollution, or sporadic use of a dock, marina, or harbor facility, and these intermittent pollution events are predictable. Such areas shall be managed by an operating procedure that will assure that shellfish from the area are not harvested from waters not meeting restricted area criteria. Harvest is permitted according to permit conditions specified in Rule 5L- 1.009, F.A.C. Harvest from temporarily closed conditionally restricted areas shall be unlawful. Prohibited area -- A growing area shall be classified as prohibited if a sanitary survey indicates that the area does not meet the approved, conditionally approved, restricted, or conditionally restricted classifications. Harvest of shellfish from such areas shall be unlawful. The waters of all man-made canals and marinas are classified prohibited regardless of their location. Unclassified area -- A growing area for which no recent sanitary survey exists, and it has not been classified as any area described in subsections (2), (3), (4), (5), or (6) above. Harvest of shellfish from such areas shall be unlawful. Approved or conditionally approved, restricted, or conditionally restricted waters shall be temporarily closed to the harvesting of shellfish when counts of the red tide organism Gymnodinium breve[54] exceed 5000 cells per liter in bays, estuaries, passes or inlets adjacent to shellfish harvesting areas. Areas closed to harvesting because of presence of the red tide organism shall not be reopened until counts are less than or equal to 5000 cells per liter inshore and offshore of the affected shellfish harvesting area, and shellfish meats have been shown to be free of toxin by laboratory analysis. The Department is authorized to open and temporarily close approved, conditionally approved, restricted, or conditionally restricted waters for harvesting of shellfish in emergencies as defined herein, in accordance with specific criteria established in operating procedures for predictively closing individual growing areas, or when growing areas do not meet the standards and guidelines established by the National Shellfish Sanitation Program . Operating procedures for predictively closing each growing area shall be developed by the Department; local agencies, including those responsible for operation of sewerage systems, and the local shellfish industry may be consulted for technical information during operating procedure development. The predictive procedure shall be based on evaluation of potential sources of pollution which may affect the area and should establish performance standards, specify necessary safety devices and measures, and define inspection and check procedures. Under Subsection (3) of proposed Rule 62-303.370, Florida Administrative Code, only the "downgrading" of an area initially approved for shellfish harvesting to a more restrictive classification will cause a Class II water to be "placed on the planning list for fish and shellfish consumption." The temporary closure of an approved harvesting area will not have the same result. Temporary closures of harvesting areas are not uncommon. These closures typically occur when there is heavy local rainfall or flooding events upstream, which result in high fecal coliform counts in the harvesting areas. While these areas are not being harvested during these temporary closures, "[p]ropagation is probably maximized in closure conditions." This is because, during these periods, there are "more nutrients for [the shellfish] to consume" inasmuch as the same natural events that cause fecal coliform counts to increase also bring the nutrients (in the form detritus) into the area. The Department of Agriculture and Consumer Services (DACS) does not reclassify an area simply because there have been short-term events, like sewage spills or extraordinary rain events, that have resulted in the area's temporary closure. Where there are frequent, extended periods of closures due to high fecal coliform counts in an area that exceed Class II water quality criteria for bacteriological quality, however, one would reasonably expect that reclassification action would be taken. Even if the DACS does not take such action, the water may nonetheless qualify for placement on the "planning list" pursuant to Subsection (1) of proposed Rule 62-303.370, Florida Administrative Code, based upon the fecal coliform data relied upon by the DACS in closing the area, provided the data meets the requirements set forth in proposed Rule 62-303.320, Florida Administrative Code. The DACS has never reclassified an area from "prohibited" to "unclassified." David Heil, the head of the SEAS, made a presentation at the April 20, 2000, TAC meeting, during which he enumerated various ways that the Department could determine "impairment as it relates to shellfish harvesting waters" and recommended, over the others, one of those options: combination of the average number and duration of closures over time. None of the options listed by Mr. Heil, including his top recommendation, were incorporated in proposed Rule 62- 303.370, Florida Administrative Code. The TAC and Department staff looked into the possibility of using the option touted by Mr. Heil, but determined that it would not be practical to do so. Relying on the DACS' reclassification of harvesting areas was deemed to be a more practical approach that was "consistent with the way the Department classifies waters as Class II and therefore it was included in the proposed rule."55 Code Part II: Proposed Rule 62-303.380, Florida Administrative Proposed Rule 62-303.380, Florida Administrative Code, provides three separate ways for a water to "be placed on the planning list for drinking water use support" and, in addition, addresses "human-health based criteria" not covered elsewhere in Part II of the proposed rule chapter. It reads as follows: Drinking Water Use Support and Protection of Human Health. A Class I water shall be placed on the planning list for drinking water use support if: the water segment does not meet the applicable Class I water quality criteria based on the methodology described in section 62-303.320, or a public water system demonstrates to the Department that either: Treatment costs to meet applicable drinking water criteria have increased by at least 25% to treat contaminants that exceed Class I criteria or to treat blue-green algae or other nuisance algae in the source water, or the system has changed to an alternative supply because of additional costs that would be required to treat their surface water source. When determining increased treatment costs described in paragraph (b), costs due solely to new, more stringent drinking water requirements, inflation, or increases in costs of materials shall not be included. A water shall be placed on the planning list for assessment of the threat to human health if: for human health-based criteria expressed as maximums, the water segment does not meet the applicable criteria based on the methodology described in section 62- 303.320, or for human health-based criteria expressed as annual averages, the annual average concentration for any year of the assessment period exceeds the criteria. To be used to determine whether a water should be assessed further for human-health impacts, data must meet the requirements of paragraphs (2), (3), (6), and (7) in rule 62-303.320. Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New Use of the statistical "methodology described in [proposed Rule] 62-303.320," Florida Administrative Code, is not only appropriate (as discussed above) for making "planning list" determinations based upon "[e]xceedances of [a]quatic [l]ife- [b]ased [c]riteria" and "water quality criteria for bacteriological quality," it is also a reasonable way to determine whether a water should "be placed on the planning list for drinking water use support" based upon exceedances of "applicable Class I water quality criteria" (as Subsection (1)(a) of proposed Rule 62-303.380, Florida Administrative Code, provides) and to determine whether a water should "be placed on the planning list for assessment of the threat to human health" based upon exceedances of other "human-health based criteria expressed as maximums" (as Subsection (2)(a) of the proposed Rule 62-303.380, Florida Administrative Code, provides). Subsection (1)(b) was included in proposed Rule 62- 303.380, Florida Administrative Code, because the TAC and Department staff wanted "some other way," besides having the minimum number of exceedances of "applicable Class I water quality criteria" required by Subsection (1)(a) of the proposed rule, for a Class I water to qualify for "place[ment] on the planning list for drinking water use support." Looking at the costs necessary for public water systems to treat surface water,56 as Subsection (1)(b) of proposed Rule 62-303.380, Florida Administrative Code, allows, is a reasonable alternative means of determining whether a Class I water should be "placed on the planning list for drinking water use support." Under Subsection (1)(b) of proposed Rule 62-303.380, Florida Administrative Code, the cost analysis showing that the requirements for listing have been met must be provided by the public water system. This burden was placed on the public water system because the Department "does not have the resources to do that assessment on [its] own." The Department cannot be fairly criticized for not including in Subsection (1)(b)1. of proposed Rule 62-303.380, Florida Administrative Code, references to the other contaminants (in addition to blue-green algae) that have "been put on a list by the EPA to be . . . evaluated for future regulations" inasmuch as there are no existing criteria in Chapter 62-302, Florida Administrative Code, specifically relating to these contaminants. Particularly when read together with the third sentence of Subsection (1) of proposed Rule 62-303.300 (which provides that "[i]t should be noted water quality criteria are designed to protect either aquatic life use support, which is addressed in sections 62-303.310-353, or to protect human health, which is addressed in sections 62-303.360-380"), it is clear that the "human health-based criteria" referenced in Subsection (2) of proposed Rule 62-303.380, Florida Administrative Code, are those numerical criteria in Rule Chapter 62-302, Florida Administrative Code, designed to protect human health. While laypersons not familiar with how water quality criteria are established may not be able to determine (by themselves) which of the numerical water quality criteria in Rule Chapter 62-302, Florida Administrative Code, are "human health-based," as that term is used Subsection (2) of proposed Rule 62-303.380, Florida Administrative Code, Department staff charged with the responsibility of making listing decisions will be able to so. "[H]uman health-based criteria" for non-carcinogens are "expressed as maximums" in Rule Chapter 62-302, Florida Administrative Code. "[H]uman health-based criteria" for carcinogens are "expressed as annual averages" in Rule Chapter 62-302, Florida Administrative Code. "Annual average," as that term is used in Rule Chapter 62-302, Florida Administrative Code, is defined therein as "the maximum concentration at average annual flow conditions. (see Section 62-4.020(1), F.A.C.)." Subsection (1) of Rule 62- 4.020, Florida Administrative Code, provides that "[a]verage [a]nnual [f]low "is the long-term harmonic mean flow of the receiving water, or an equivalent flow based on generally accepted scientific procedures in waters for which such a mean cannot be calculated." The "annual mean concentration" is not exactly the same as, but it does "generally approximate" and is "roughly equivalent to," the "maximum concentration at average annual flow conditions." Using "annual mean concentrations" to determine whether there have been exceedances of a "human health-based criteria expressed as annual averages" is a practical approach that makes Subsection (2)(b) of proposed Rule 62-303.380, Florida Administrative Code, more easily "implementable" inasmuch as it obviates the need to calculate the "average annual flow," which is a "fairly complicated" exercise requiring "site-specific flow data" not needed to determine the "annual mean concentration."57 Subsection (2)(b) of proposed Rule 62-303.380, Florida Administrative Code, does not impose any minimum sample size requirements, and it requires only one exceedance of any "human health-based criteri[on] expressed as [an] annual average[]" for a water to be listed. The limitations it places on the data that can be considered (by incorporating by reference the provisions of Subsections (2), (3), (6), and (7) of proposed Rule 62-303.320, Florida Administrative Code, which have been discussed above) are reasonable. Part III: Overview Part III of proposed Rule Chapter 62-303, Florida Administrative Code, contains the following provisions, which describe the "verified list" of impaired waters for which TMDLs will be calculated, how the list will be compiled, and the manner in which waters on the list will be "prioritized" for TMDL development: Proposed Rules 62-303.400, 62-303.420, 62- 303.430, 62-303.440, 62-303.450, 62-303.460, 62-303.470, 62- 303.480, 62-303.500, 62-303.600, 62-303.700, and 62-303.710, Florida Administrative Code. Code Part III: Proposed Rule 62-303.400, Florida Administrative Proposed Rule 62-303.400, Florida Administrative Code, is entitled, "Methodology to Develop the Verified List," and reads as follows: Waters shall be verified as being impaired if they meet the requirements for the planning list in Part II and the additional requirements of sections 62- 303.420-.480. A water body that fails to meet the minimum criteria for surface waters established in Rule 62-302.500, F.A.C.; any of its designated uses, as described in this part; or applicable water quality criteria, as described in this part, shall be determined to be impaired. Additional data and information collected after the development of the planning list will be considered when assessing waters on the planning list, provided it meets the requirements of this chapter. In cases where additional data are needed for waters on the planning list to meet the data sufficiency requirements for the verified list, it is the Department's goal to collect this additional data[58] as part of its watershed management approach, with the data collected during either the same cycle that the water is initially listed on the planning list (within 1 year) or during the subsequent cycle (six years). Except for data used to evaluate historical trends in chlorophyll a or TSIs, the Department shall not use data that are more than 7.5 years old at the time the water segment is proposed for listing on the verified list. Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New Pursuant to the first sentence of proposed Rule 62- 303.400, Florida Administrative Code, if a water qualifies for placement on the "planning list" under a provision in Part II of the proposed rule chapter that does not have a counterpart in proposed Rules 62-303.420 through 62-303.480, Florida Administrative Code, that water will automatically be "verified as being impaired." Examples of provisions in Part II of the proposed rule chapter that do not have counterparts in proposed Rules 62-303.420 through 62-303.480, Florida Administrative Code, are: the provision in Subsection (3) of proposed Rule 62- 303.330, Florida Administrative Code, that "water segments with at least . . . one failure of the biological integrity standard, Rule 62-302.530(11), shall be included on the planning list for assessment of aquatic life use support"; Subsection (1) of proposed Rule 62-303.370, Florida Administrative Code, which provides that a water will be placed on the "planning list" if it "does not meet applicable Class II water quality criteria for bacteriological quality based upon the methodology described in section 62-303.320," Florida Administrative Code; Subsection (3) of proposed Rule 62-303.370, Florida Administrative Code, which provides that a Class II water will be placed on the "planning list" if it "includes an area that has been approved for shellfish harvesting by the Shellfish Evaluation and Assessment Program, but which has been downgraded from its initial harvesting classification to a more restrictive classification"; and Subsection (1)(b) of proposed Rule 62-303.380, Florida Administrative Code, pursuant to which a water may qualify for "planning list" placement based upon water treatment costs under the circumstances described therein. Waters that are "verified as being impaired," it should be noted, will not automatically qualify for placement on the "verified list." They will still have to be evaluated in light of the provisions (which will be discussed later in greater detail) of proposed Rule 62-303.600, Florida Administrative Code (relating to "pollution control mechanisms") and those of proposed Rules 62-303.700 and 62- 303.710, Florida Administrative Code (which require that the Department identify the "pollutant(s)" and "concentration(s)" that are "causing the impairment" before placing a water on the "verified list"). Of the "minimum criteria for surface waters established in Rule 62-302.500, F.A.C.," the only ones addressed anywhere in proposed Rules 62-303.310 through 62-303.380 and 62- 303.410 through 62-303.480, Florida Administrative Code, are the requirement that surface water not be "acutely toxic" and the requirement that predominantly marine waters not have silver in concentrations above 2.3 micrograms per liter. In determining whether there has been a failure to meet the remaining "minimum criteria," the Department will exercise its "best professional judgment." Like the second sentence of Proposed Rule 62-303.300, Florida Administrative Code, the second sentence of proposed Rule 62-303.400, Florida Administrative Code, incorporates the concept of "independent applicability" by providing that only one of the listed requirements need be met for a water to be deemed "impaired." Neither Subsection (1) of proposed Rule 62-303.400, Florida Administrative Code, nor any other provision in the proposed rule chapter, requires that a water be on the "planning list" as a prerequisite for inclusion on the "verified list." Indeed, a reading of Subsection (3)(c) of proposed Rule 62- 303.500, Florida Administration, the "prioritization" rule, which will be discussed later, leaves no reasonable doubt that, under the proposed rule chapter, a water can be placed on the "verified list" without having first been on the "planning list." The second sentence of Subsection (2) of proposed Rule 62-303.400, Florida Administrative Code, indicates when the Department hopes to be able to collect the "additional data needed for waters on the planning list to meet the [more rigorous] data sufficiency requirements for the verified list," which data the Department pledges, in subsequent provisions of Part III of the proposed rule chapter, will be collected (at some, unspecified time). The Department did not want to create a mandatory timetable for its collection of the "additional data" because it, understandably, wanted to avoid making a commitment that, due to funding shortfalls that might occur in the future, it would not be able to keep.59 If it has the funds to do so, the Department intends to collect the "additional data" within the time frame indicated in the second sentence of proposed Rule 62-303.400, Florida Administrative Code. The Department will not need to collect this "additional data" if the data is collected and presented to the Department by an "interested party" outside the Department. (The proposed rule chapter allows data collected by outside parties to be considered by the Department in making listing decisions, provided the data meets the prescribed quality requirements.) Requiring (as the third and final sentence of Subsection (2) of proposed Rule 62-303.400, Florida Administrative Code, does) that all data relied upon by the Department for placing waters on the "verified list," except for data establishing "historical trends in chlorophyll a or TSIs," under no circumstances be older than "7.5 years old at the time the water segment is proposed for listing on the verified list" is a reasonable requirement designed to avoid final listing decisions based upon outdated data not representative of the water's current conditions. As noted above, the TAC recommended that listing decisions be based upon data no older than five years old. Wanting to "capture as much data for the assessment process" as reasonably possible, Department staff determined that the appropriate maximum age of data should be two and half years older than that recommended by the TAC (the two and a half years representing the amount of time it could take to "do additional data collection" following the creation of the "planning list"). Part III: Proposed Rule 62-303.410, Florida Administrative Code Proposed Rule 62-303.410, Florida Administrative Code, is entitled, "Determination of Aquatic Life Use Support," and provides as follows: Failure to meet any of the metrics used to determine aquatic life use support listed in sections 62-303.420-.450 shall constitute verification that there is an impairment of the designated use for propagation and maintenance of a healthy, well-balanced population of fish and wildlife. Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New Like proposed Rule 62-303.310, Florida Administrative Code, its analogue in Part II of the proposed rule chapter, proposed Rule 62-303.410, Florida Administrative Code, incorporates the concept of "independent applicability." A failure of any of the "metrics" referenced in the proposed rule will result in "verification" of impairment. Code Part III: Proposed Rule 62-303.420, Florida Administrative Proposed Rule 62-303.420, Florida Administrative Code, the counterpart of proposed Rule 62-303.320, Florida Administrative Code, establishes a reasonable statistical method, involving binomial distribution analysis, to verify impairment based upon "[e]xceedances of [a]quatic [l]ife-[b]ased [w]ater [q]uality [c]riteria" due to pollutant discharges. It reads as follows: Exceedances of Aquatic Life-Based Water Quality Criteria The Department shall reexamine the data used in rule 62-303.320 to determine exceedances of water quality criteria. If the exceedances are not due to pollutant discharges and reflect either physical alterations of the water body that cannot be abated or natural background conditions, the water shall not be listed on the verified list. In such cases, the Department shall note for the record why the water was not listed and provide the basis for its determination that the exceedances were not due to pollutant discharges. If the Department cannot clearly establish that the exceedances are due to natural background or physical alterations of the water body but the Department believes the exceedances are not due to pollutant discharges, it is the Department's intent to determine whether aquatic life use support is impaired through the use of bioassessment procedures referenced in section 62-303.330. The water body or segment shall not be included on the verified list for the parameter of concern if two or more independent bioassessments are conducted and no failures are reported. To be treated as independent bioassessments, they must be conducted at least two months apart. If the water was listed on the planning list and there were insufficient data from the last five years preceding the planning list assessment to meet the data distribution requirements of section 303.320(4) and to meet a minimum sample size for verification of twenty samples, additional data will be collected as needed to provide a minimum sample size of twenty. Once these additional data are collected, the Department shall re-evaluate the data using the approach outlined in rule 62- 303.320(1), but using Table 2, which provides the number of exceedances that indicate a minimum of a 10% exceedance frequency with a minimum of a 90% confidence level using a binomial distribution. The Department shall limit the analysis to data collected during the five years preceding the planning list assessment and the additional data collected pursuant to this paragraph. Table 2: Verified List Minimum number of measured exceedances needed to put a water on the Planning list with at least 90% confidence that the actual exceedance rate is greater than or equal to ten percent. Sample Are listed if they Sizes have at least this From To # of exceedances 20 25 5 26 32 6 33 40 7 41 47 8 48 55 9 56 63 10 64 71 11 72 79 12 80 88 13 89 96 14 97 104 15 105 113 16 114 121 17 122 130 18 131 138 19 139 147 20 148 156 21 157 164 22 165 173 23 174 182 24 183 191 25 192 199 26 200 208 27 209 217 28 218 226 29 227 235 30 236 244 31 245 253 32 254 262 33 263 270 34 271 279 35 280 288 36 289 297 37 298 306 38 307 315 39 316 324 40 325 333 41 334 343 42 344 352 43 353 361 44 362 370 45 371 379 46 380 388 47 389 397 48 398 406 49 407 415 50 416 424 51 425 434 52 435 443 53 444 452 54 453 461 55 462 470 56 471 479 57 480 489 58 490 498 59 499 500 60 (3) If the water was placed on the planning list based on worst case values used to represent multiple samples taken during a seven day period, the Department shall evaluate whether the worst case value should be excluded from the analysis pursuant to subsections (4) and (5). If the worst case value should not be used, the Department shall then re-evaluate the data following the methodology in rule 62-303.420(2), using the more representative worst case value or, if all valid values are below acutely toxic levels, the median value. If the water was listed on the planning list based on exceedances of water quality criteria for metals, the metals data shall be validated to determine whether the quality assurance requirements of rule 62- 303.320(7) are met and whether the sample was both collected and analyzed using clean techniques, if the use of clean techniques is appropriate. If any data cannot be validated, the Department shall re-evaluate the remaining valid data using the methodology in rule 62-303.420(2), excluding any data that cannot be validated. Values that exceed possible physical or chemical measurement constraints (pH greater than 14, for example) or that represent data transcription errors, outliers the Department determines are not valid measures of water quality, water quality criteria exceedances due solely to violations of specific effluent limitations contained in state permits authorizing discharges to surface waters, water quality criteria exceedances within permitted mixing zones for those parameters for which the mixing zones are in effect, and water quality data collected following contaminant spills, discharges due to upsets or bypasses from permitted facilities, or rainfall in excess of the 25-year, 24-hour storm, shall be excluded from the assessment. However, the Department shall note for the record that the data were excluded and explain why they were excluded. Once the additional data review is completed pursuant to paragraphs (1) through (5), the Department shall re-evaluate the data and shall include waters on the verified list that meet the criteria in rules 62-303.420(2) or 62-303.320(5)(b). Specific Authority: 403.061, 403.067, FS. Law Implemented: 403.021(11), 403.062, 403.067, FS. History -- New The TMDL program is intended to address only water quality impairment resulting from pollutant discharges (from point or non-point sources), as is made clear by a reading of Section 403.067, Florida Statutes, particularly Subsection 6(a)2. thereof (which, as noted above, provides that, "[f]or waters determined to be impaired due solely to factors other than point and nonpoint sources of pollution, no maximum daily load will be required"). Subsection (1)(a) of proposed Rule 62- 303.420(1)(a), Florida Administrative Code, is in keeping with this intent. Subsection (1)(b) of proposed Rule 62-303.420, Florida Administrative Code, should be read together with Subsection (1)(a) of the proposed rule. The "physical alterations of the water body" referred to in Subsection (1)(b) are the same type of "physical alterations" referred to in Subsection (1)(a), to wit: "physical alterations of the water body that cannot be abated." "Best professional judgment" will be used by the Department in determining, as it must under Subsection (1) of proposed Rule 62-303.420, Florida Administrative Code, whether or not exceedances are due to pollutant discharges. If the Department, exercising its "best professional judgment," finds that there is not proof "clearly establish[ing] that the exceedances are due to natural background or physical alterations of the water body but the Department believes the exceedances are not due to pollutant discharges," the Department, pursuant to Subsection (1)(b) of proposed Rule 62- 303.420, Florida Administrative Code, will determine whether the water in question should be "verified as impaired" for aquatic life use support by relying on "[b]iological [a]ssessment[s]" conducted in accordance with the procedures set forth in proposed Rule 62-303.330, Florida Administrative Code (which, among other things, prohibit reliance on "[b]iological [a]ssessment[s]" based on "data older than ten years"). The results of these "[b]iological [a]ssessment[s]" will not make the Department any better able to "answer the question of whether natural background or physical alterations were responsible for [the] exceedances," but, as noted above, it will enable the Department to make a more informed decision about the overall ability of the water to sustain aquatic life. Subsection (1)(b) of proposed Rule 62-303.420, Florida Administrative Code, reasonably provides that the water will not be "verified as impaired" for aquatic life use support if there have been two or more "[b]iological [a]ssessment[s]" conducted at least two months apart over the last ten years and "no failures [have been] reported." That a water has "passe[d]" these "[b]iological [a]ssessment[s]" establishes "that aquatic life use support is being maintained" and, under such circumstances, it would be inappropriate to include that water on the "verified list." Looking at just the data "from the last five years preceding the planning list assessment," as the first sentence of Subsection (2) of proposed Rule 62-303.420, Florida Administrative Code, requires the Department to do, rather than all of the data supporting the placement of the water in question on the "planning list," regardless of when the data was collected, makes sense because, to properly discharge its responsibilities under Section 403.067, Florida Statutes, the Department must ascertain what the current overall condition of the water in question is. As noted above, Subsection (2) of proposed Rule 62- 303.420, Florida Administrative Code, requires a "minimum sample size for verification [of impairment based upon "[e]xceedances of [a]quatic [l]ife-[b]ased [w]ater [q]uality [c]riteria]" of twenty samples," with no exceptions. While this is more than the number of samples required for "planning list" compilation purposes under proposed Rule 62-303.320, Florida Administrative Code, it "is a very small number of samples relative to the [number of] samples that [the Department] would need to take to do a TMDL." Furthermore, unlike any provision in proposed Rule 62-303.320, Florida Administrative Code, Subsection (2) of proposed Rule 62-303.420, Florida Administrative Code, provides that, if a water (on the "planning list") lacks the required minimum number of samples, the "additional data" needed to meet the minimum sample requirement "will be collected" (at some unspecified time in the future). Because these additional samples "will be collected," the requirement of proposed Rule 62-303.420, Florida Administrative Code, that there be a minimum of 20 samples should not prevent deserving waters from ultimately being "verified as impaired" under the proposed rule (although it may serve to delay such "verification"). Such delay would occur if a water on the "planning list" had five or more exceedances within the "last five years preceding the planning list assessment" (five being the minimum number of exceedances required for "verification" under proposed Rule 62- 303.420, Florida Administrative Code), but these exceedances were based on fewer than 20 samples. The additional samples that would need to be collected to meet the minimum sample size requirement of Subsection (2) of proposed Rule 62-303.420, Florida Administrative Code, would have no effect on the Department's "verification" determination, even if these samples yielded no exceedances, given that proposed Rule 62-303.420, Florida Administrative Code, does not contain any provision comparable to Subsection (3) of Rule 62-303.320, Florida Administrative Code, providing that, under certain circumstances, "more recent data" may render "older data" unusable.60 The water would qualify for "verification" regardless of what the additional samples revealed. That is not to say, however, that taking these additional samples would serve no useful purpose. Data derived from these additional collection efforts (shedding light on the severity of the water quality problem) could be used by the Department to help it "establish priority rankings and schedules by which water bodies or segments will be subjected to total maximum daily load calculations," as the Department is required to do pursuant to Subsection (4) of Section 403.067, Florida Statutes. The "calculations [reflected in the table, Table 2, which is a part of Subsection (2) of proposed Rule 62-303.420, Florida Administrative Code] are correct." They are based on "a minimum of a 10% exceedance frequency with a minimum of a 90% confidence level using a binomial distribution." As noted above, the Department did not act unreasonably in selecting this "exceedance frequency" and "confidence level" for use in determining which waters should be "verified as impaired" based upon "[e]xceedances of [a]quatic [l]ife-[b]ased [w]ater [q]uality [c]riteria." Subsection (4) of proposed Rule 62-303.420, Florida Administrative Code, imposes reasonable quality assurance requirements that must be met in order for "metals data" to be considered "valid" for purposes of determining whether a water has the minimum number of exceedances needed to be "verified as impaired" under the proposed rule. It requires that "Method 1669"-permitted procedures be used only where these procedures are "appropriate." Determining the appropriateness of these procedures in a particular case will require the Department to exercise its "best professional judgment," taking into consideration the amount of the metal in question needed to violate the applicable water quality criterion, in relation to the amount of contamination that could be expected to occur during sample collection and analysis if conventional techniques were used. Doing so should result in "Method 1669"-permitted procedures being deemed "appropriate" in only a few circumstances: when a water is being tested to determine if it exceeds the applicable criterion for mercury, and when testing low hardness waters61 for exceedances of the applicable criterion for cadmium and lead. It is necessary to use "Method 1669"-permitted procedures in these instances to prevent test results that are tainted by contamination occurring during sample collection and analysis. Subsection (5) of proposed Rule 62-303.420, Florida Administrative Code, reasonably excludes other data from the "verification" process. It contains the same exclusions that pursuant to Subsection (6) of proposed Rule 62-303.320, Florida Administrative Code, apply in determining whether a water should be placed on the "planning list" based upon "[e]xceedances of [a]quatic [l]ife-[b]ased [w]ater [q]uality [c]riteria" ("[v]alues that exceed possible physical or chemical measurement constraints (pH greater than 14, for example) or that represent data transcription errors, [and] outliers the Department determines are not valid measures of water quality"), plus additional exclusions. Among the additional types of data that will be excluded from consideration under Subsection (5) of proposed Rule 62-303.420, Florida Administrative Code, are "exceedances due solely to violations of specific effluent limitations contained in state permits authorizing discharges to surface waters." Permit violations, by themselves, can cause water quality impairment; however, as the Department has reasonably determined, the quickest and most efficient way to deal with such impairment is to take enforcement action against the offending permittee. To take the time and to expend the funds to develop and implement a TMDL62 to address the problem, instead of taking enforcement action, would not only be unwise and an imprudent use of the not unlimited resources available to combat poor surface water quality in this state, but would also be inconsistent with the expression of legislative intent in Subsection (4) of Section 403.067, Florida Statutes, that the TMDL program not be utilized to bring a water into compliance with water quality standards where "technology-based effluent limitations [or] other pollution control programs under local, state, or federal authority" are sufficient to achieve this result. It is true that the Department has not stopped, through enforcement, all permit violations and that, as Mr. Joyner acknowledged during his testimony at the final hearing, "there are certain cases out there where there are chronic violations of permits." The appropriate response to this situation, however, is for the Department to step up its enforcement efforts, not for it to develop and implement TMDLs for those waters that, but for these violations, would not be impaired. (Citizens dissatisfied with the Department's enforcement efforts can themselves take action, pursuant to Section 403.412(2), Florida Statutes, to seek to enjoin permit violations.) It will be "extremely difficult" to know whether exceedances are due solely to permit violations. Because of this, it does not appear likely that the Department "will be using [the permit violation exclusion contained in] proposed [R]ule [62-303.420(5), Florida Administrative Code] very often." Subsection (5) of proposed Rule 62-303.420, Florida Administrative Code, will not exclude from consideration all water quality criteria exceedances in mixing zones . Only those exceedances relating to the parameters "for which the mixing zones are in effect" will be excluded. The exclusion of these exceedances is appropriate inasmuch as, pursuant to the Department's existing rules establishing the state's water quality standards (which the Legislature made clear, in Subsections (9) and (10) of Section 403.067, Florida Statutes, it did not, by enacting Section 403.067, intend to alter or limit), these exceedances are permitted and not considered to be violations of water quality standards. To the extent that there may exist "administratively- continued" permits (that is, permits that remain in effect while a renewal application is pending, regardless of their expiration date) which provide for outdated "mixing zones," this problem should be addressed through the permitting process, not the TMDL program. A "contaminant spill," as that term is used in Subsection (5) of proposed Rule 62-303.420, Florida Administrative Code, is a short-term, unpermitted discharge [of contaminants63] to surface waters." (See Subsection (16) of proposed Rule 62-303.200, Florida Administrative Code, recited above, which defines "spill," as it is used in the proposed rule chapter). It is well within the bounds of reason to exclude from consideration (as Subsection (5) of proposed Rule 62- 303.420, Florida Statutes, indicates the Department will do in deciding whether a water should be "verified as being impaired" under the proposed rule) data collected in such proximity in time to a "contaminant spill" that it reflects only the temporary effects of that "short-term" event (which are best addressed by the Department taking immediate action), rather than reflecting a chronic water quality problem of the type the TMDL program is designed to help remedy. In deciding whether this exclusion applies in a particular case, the Department will need to exercise its "best professional judgment" to determine whether the post-"contaminant spill" data reflects a "short- term" water quality problem attributable to the "spill" (in which case the exclusion will apply) or whether, instead, it reflects a chronic problem (in which case the exclusion will not apply). "Bypass" is defined in Subsection (4) of Rule 62- 620.200, Florida Administrative Code, as "the intentional diversion of waste streams from any portion of a treatment works." "Upset" is defined in Subsection (50) of Rule 62- 620.200, Florida Administrative Code, as follows: "Upset" means an exceptional incident in which there is unintentional and temporary noncompliance with technology-based effluent limitations because of factors beyond the reasonable control of the permittee. An upset does not include noncompliance caused by operational error, improperly designed treatment facilities, inadequate treatment facilities, lack of preventive maintenance, careless or improper operation. An upset constitutes an affirmative defense to an action brought for noncompliance with technology based permit effluent limitations if the requirements of upset provisions of Rule 62-620.610, F.A.C., are met. The "upset provisions of Rule 62-620.610, F.A.C." are as follows: (23) Upset Provisions. A permittee who wishes to establish the affirmative defense of upset shall demonstrate, through properly signed, contemporaneous operating logs, or other relevant evidence that: An upset occurred and that the permittee can identify the cause(s) of the upset; The permitted facility was at the time being properly operated; The permittee submitted notice of the upset as required in condition (20) of this permit; and The permittee complied with any remedial measures required under condition (5) of this permit. In any enforcement proceeding, the permittee seeking to establish the occurrence of an upset has the burden of proof. Before an enforcement proceeding is instituted, no representation made during the Department review of a claim that noncompliance was caused by an upset is final agency action subject to judicial review. Rule 62-620.610, Florida Administrative Code, also contains "[b]ypass [p]rovisions," which provide as follows: (22) Bypass Provisions. Bypass is prohibited, and the Department may take enforcement action against a permittee for bypass, unless the permittee affirmatively demonstrates that: Bypass was unavoidable to prevent loss of life, personal injury, or severe property damage; and There were no feasible alternatives to the bypass, such as the use of auxiliary treatment facilities, retention of untreated waste, or maintenance during normal periods of equipment downtime. This condition is not satisfied if adequate back-up equipment should have been installed in the exercise of reasonable engineering judgment to prevent a bypass which occurred during normal periods of equipment downtime or preventive maintenance; and The permittee submitted notices as required under condition (22)(b) of this permit. If the permittee knows in advance of the need for a bypass, it shall submit prior notice to the Department, if possible at least 10 days before the date of the bypass. The permittee shall submit notice of an unanticipated bypass within 24 hours of learning about the bypass as required in condition (20) of this permit. A notice shall include a description of the bypass and its cause; the period of the bypass, including exact dates and times; if the bypass has not been corrected, the anticipated time it is expected to continue; and the steps taken or planned to reduce, eliminate, and prevent recurrence of the bypass. The Department shall approve an anticipated bypass, after considering its adverse effect, if the permittee demonstrates that it will meet the three conditions listed in condition (22)(a)1. through 3. of this permit. A permittee may allow any bypass to occur which does not cause reclaimed water or effluent limitations to be exceeded if it is for essential maintenance to assure efficient operation. These bypasses are not subject to the provision of condition (22)(a) through (c) of this permit. The "bypasses" to which the Department refers in Subsection (5) of proposed Rule 62-303.420, Florida Administrative Code, are those that are not prohibited (as Mr. Joyner testified and is evidenced by the grouping of "bypasses" in the same provision with "upsets" and by the fact that there is another provision in Subsection (5) of the proposed rule that deals with permit violations). Since these types of bypasses, as well as upsets, are exceptional events that, under the Department's existing rules, are allowed to occur without the permittee being guilty of a permit violation, it is reasonable, in verifying impairment under proposed Rule 62-303.420, Florida Administrative Code, to discount data tainted by their occurrence, which reflect atypical conditions resulting from legally permissible discharges. The "25-year, 24-hour storm" exclusion was included in Subsection (5) of proposed Rule 62-303.420, Florida Administrative Code, in response to the TAC's recommendation that the proposed rule "exclude data from extreme storm events." The "25-year, 24-hour storm" is "commonly used in the regulatory context as a dividing line between extremely large rainfall events and less extreme events." It is a rainfall event (or as one witness, the chief of the Department's Bureau of Watershed Management, Eric Livingston, put it, a "gully washer") that produces an amount of rainfall within 24 hours that is likely to be exceeded on the average only once in 25 years. In Florida, that amount is anywhere from about eight to 11 inches, depending on location. Because a "25-year, 24-hour storm" is an extraordinary rainfall event that creates abnormal conditions in affected waters, there is reasonable justification for the Department's not considering, in the "verification" process under proposed Rule 62-303.420, Florida Administrative Code, "25-year, 24-hour storm"-impacted data. This should result in the exclusion of very little data. Data collected following less severe rainfall events (of which there are many in Florida)64 will be unaffected by the "25- year, 24-hour storm" exclusion in Subsection (5) of proposed Rule 62-303.420, Florida Administrative Code. Code Part III: Proposed Rule 62-303.430, Florida Administrative Proposed Rule 62-303.430, Florida Administrative Code, the counterpart of proposed Rule 62-303.330, Florida Administrative Code, establishes a reasonable non-statistical approach, involving "[b]iological [a]ssessment," to be used as an alternative to the statistical method described in proposed Rule 62-303.420, Florida Administrative Code, in verifying aquatic life use support impairment. Proposed Rule 62-303.430, Florida Administrative Code, reads as follows: Biological Impairment All bioassessments used to list a water on the verified list shall be conducted in accordance with Chapter 62-160, F.A.C., including Department-approved Standard Operating Procedures. To be used for placing waters on the verified list, any bioassessments conducted before the adoption of applicable SOPs for such bioassessments as part of Chapter 62-160 shall substantially comply with the subsequent SOPs. If the water was listed on the planning list based on bioassessment results, the water shall be determined to be biologically impaired if there were two or more failed bioassessments within the five years preceding the planning list assessment. If there were less than two failed bioassessments during the last five years preceding the planning list assessment the Department will conduct an additional bioassessment. If the previous failed bioassessment was a BioRecon, then an SCI will be conducted. Failure of this additional bioassessment shall constitute verification that the water is biologically impaired. If the water was listed on the planning list based on other information specified in rule 62-303.330(4) indicating biological impairment, the Department will conduct a bioassessment in the water segment, conducted in accordance with the methodology in rule 62-303.330, to verify whether the water is impaired. For streams, the bioassessment shall be an SCI. Failure of this bioassessment shall constitute verification that the water is biologically impaired. Following verification that a water is biologically impaired, a water shall be included on the verified list for biological impairment if: There are water quality data reasonably demonstrating the particular pollutant(s) causing the impairment and the concentration of the pollutant(s); and One of the following demonstrations is made: if there is a numeric criterion for the specified pollutant(s) in Chapter 62-302, F.A.C., but the criterion is met, an identification of the specific factors that reasonably demonstrate why the numeric criterion is not adequate to protect water quality and how the specific pollutant is causing the impairment, or if there is not a numeric criterion for the specified pollutant(s) in Chapter 62- 302, F.A.C., an identification of the specific factors that reasonably demonstrate how the particular pollutants are associated with the observed biological effect. Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New Subsection (1) of proposed Rule 62-303.430, Florida Administrative Code, was written in anticipation of the "adoption of applicable SOPs" for BioRecons, SCIs, and LCIs "as part of [Rule] Chapter 62-160," Florida Administrative Code, subsequent to the adoption of the proposed rule chapter. As noted above, at the time of the final hearing in these cases, the Department was in the process of engaging in rulemaking to incorporate in Rule Chapter 62-160, Florida Administrative Code, the SOPs for BioRecons, SCIs, and LCIs that Department personnel currently use to conduct these "[b]iological [a]ssessment[s]." Until the rulemaking process is completed and any amendments to Rule Chapter 62-160, Florida Administrative Code, become effective,65 to be "used to list a water on the verified list" pursuant to Subsection (1) of proposed Rule 62-303.430, Florida Administrative Code, "[b]iological [a]assessment[s]" need meet only the quality assurance requirements of the pre-amendment version of Rule Chapter 62-160 (which does not include SOPs for BioRecons, SCIs and LCIs). Once the amendments become effective, however, "[b]iological [a]assessment[s]," both pre- and post-amendment, will have to have been conducted in substantial compliance with the applicable SOPs included in the new version of Rule Chapter 62-160. No "[b]iological [a]assessment" will be rejected under Subsection (1) of proposed Rule 62-303.430, Florida Administrative Code, because it fails to comply with an SOP that, at the time of the "verification" determination, has not been made a part of the Department's rules. The TAC-approved requirement of Subsection (2) of proposed Rule 62-303.430, Florida Administrative Code, that there be at least "two failed bioassessments during the last five years preceding the planning list assessment" (as opposed to a longer period of time) in order for a water to be "verified as being [biologically] impaired," without the need to conduct another "[b]iological [a]assessment," is reasonably designed to avoid listing decisions that are based upon test results not representative of the existing overall biological condition of the water in question. Two such failed "[b]iological [a]assessment[s]" will provide the Department with a greater degree of assurance that the water truly suffers from "biological impairment" than it would have if only one failed "[b]iological [a]assessment" was required. If there are fewer than "two failed bioassessments during the last five years preceding the planning list assessment," Subsection (2) of proposed Rule 62-303.430, Florida Administrative Code, provides that the Department will conduct another "[b]iological [a]ssessment" to determine whether the water should be "verified as being [biologically] impaired," and failure of this additional "[b]iological [a]assessment" will constitute "verification that the water is biologically impaired." The requirement that there be another failed "[b]iological [a]assessment" to confirm "biological impairment" before a water is "verified as being [biologically] impaired" under Subsection (2) of proposed Rule 62-303.430, Florida Administrative Code, is scientifically prudent, particularly in those cases where the water was placed on the "planning list" based upon a "[b]iological [a]ssessment" conducted more than five years earlier. The failure of this additional "[b]iological [a]ssessment" is enough to get the water "verified as being [biologically] impaired" even if there were no failed "[b]iological [a]ssessment[s]" in the "last five years preceding the planning list assessment." Inasmuch as the SCI, compared to the BioRecon, is a more comprehensive and rigorous test, it is reasonable to require (as Subsection (2) of proposed Rule 62-303.430, Florida Administrative Code, does) that, in the case of a stream placed on the "planning list" as a result of a failed BioRecon, the additional "[b]iological [a]ssessment" be an SCI, not a BioRecon, and to also require (as Subsection (3) of proposed Rule 62-303.430, Florida Administrative Code, does) that an SCI, rather than a BioRecon, be conducted where a stream has been placed on the "planning list" based upon "other information specified in rule 62-303.330(4) indicating biological impairment." Until such time as the Department develops a rapid bioassessment protocol for estuaries, where the Department is required in Part II of the proposed rule chapter to conduct an additional "[b]iological [a]ssessment, the Department intends to meet this obligation by engaging in "biological integrity standard" testing. TMDLs are pollutant-specific. If a water is "verified as [biologically] impaired," but the Department is not able to identify a particular pollutant as the cause of the impairment, a TMDL cannot be developed. See Section 403.031(21), Florida Statutes (to establish TMDL it is necessary to calculate the "maximum amount of a pollutant that a water body or water segment can assimilate from all sources without exceeding water quality standards"); and Section 403.067(6)(a)2., Florida Statutes ("The total maximum daily load calculation shall establish the amount of a pollutant that a water body or water body segment may receive from all sources without exceeding water quality standards"). Accordingly, as noted above, in Subsection (3)(c) of Section 403.067, Florida Statutes, the Legislature has imposed the following perquisites to the Department listing, on its "updated list" of waters for which TMDLs will be calculated, those waters deemed to be impaired based upon "non-attainment [of] biological criteria": If the department has adopted a rule establishing a numerical criterion for a particular pollutant, a narrative or biological criterion may not be the basis for determining an impairment in connection with that pollutant unless the department identifies specific factors as to why the numerical criterion is not adequate to protect water quality. If water quality non-attainment is based on narrative or biological criteria, the specific factors concerning particular pollutants shall be identified prior to a total maximum daily load being developed for those criteria for that surface water or surface water segment. Furthermore, Subsection (4) of Section 403.067, Florida Statutes, provides that, if a water is to placed on the "updated list" on any grounds, the Department "must specify the particular pollutants causing the impairment and the concentration of those pollutants causing the impairment relative to the water quality standard." The requirements of Subsection (4) of proposed Rule 62-303.430, Florida Administrative Code, are consistent with these statutory mandates. Proposed Rule 62-303.430, Florida Statutes, does not address waters placed on the "planning list" based upon a failure of the "biological integrity standard" set forth in Subsection (11) of Rule 62-302.530, Florida Administrative Code. Therefore, by operation of proposed Rule 62-303.400, Florida Administrative Code, waters meeting the minimum requirements for "planning list" placement based upon failure of the "biological integrity standard" (a single failure within the ten-year period preceding the "planning list" assessment) will automatically be "verified as being impaired." This is a less stringent "verification" requirement than the Department adopted in proposed Rule 62-303.430, Florida Administrative Code, for "verification" of waters placed on the "planning list" based upon a failed BioRecon, SCI, or LCI. While the results of BioRecons, SCIs, and LCIs are more accurate indicators of "biological impairment" than are the results of "biological integrity standard" testing, the Department's decision to make it more difficult for a water to be "verified as being impaired" if it was placed on the "planning list" based upon a failed BioRecon, SCI, or LCI (as opposed to a failure of the "biological integrity standard") is reasonably justified inasmuch as the "biological integrity standard" is one of the water quality criteria that have been established by the Department in Rule 62-302.530, Florida Administrative Code, whereas, in contrast, neither the BioRecon, SCI, nor LCI are a part of the state's water quality standards. Code Part III: Proposed Rule 62-303.440, Florida Administrative Proposed Rule 62-303.440, Florida Administrative Code, the counterpart of proposed Rule 62-303.340, Florida Administrative Code, prescribes another reasonable method, that is not statistically-based, to verify aquatic life use support impairment. It reads as follows: : Toxicity A water segment shall be verified as impaired due to surface water toxicity in the receiving water body if: the water segment was listed on the planning list based on acute toxicity data, or the water segment was listed on the planning list based on chronic toxicity data and the impairment is confirmed with a failed bioassessment that was conducted within six months of a failed chronic toxicity test. For streams, the bioassessment shall be an SCI. Following verification that a water is impaired due to toxicity, a water shall be included on the verified list if the requirements of paragraph 62-303 430(4) are met. Toxicity data collected following contaminant spills, discharges due to upsets or bypasses from permitted facilities, or rainfall in excess of the 25-year, 24-hour storm, shall be excluded from the assessment. However, the Department shall note for the record that the data were excluded and explain why they were excluded. Specific Authority 403.061, 403.067, FS. Law Implemented 403. 062, 403.067, FS. History -- New Pursuant to Subsections (1)(a) and (3) of proposed Rule 62-303.440, Florida Administrative Code, a water will automatically be "verified as impaired" for aquatic life use support if it was placed on the "planning list" on the basis of being "acutely toxic," provided that the data supporting such placement was "not collected following contaminant spills, discharges due to upsets or bypasses from permitted facilities, or rainfall in excess of the 25-year, 24-hour storm." The TAC and Department staff determined that additional testing was not necessary for "verification" under such circumstances because the end point that characterizes "acute toxicity" is so "dramatic" in terms of demonstrating impairment that it would be best to "just go ahead and put [the water] on the list with the two acute [toxicity] failures and start figuring out any potential sources of that impairment." The TAC and Department staff, however, reasonably believed that, because "chronic toxicity tests, in contrast, are measuring fairly subtle changes in a lab test organism" and there is "a very long history within the NPDES program of people questioning the results of the chronic toxicity test," before a water is "verified as being impaired" due to "chronic toxicity," the impairment should be "confirmed with a bioassessment that was conducted within six months of a failed chronic toxicity test"66 (as Subsection (1)(b) of proposed Rule 62-303.440, Florida Administrative Code, provides). It is reasonable to require that the bioassessment, in the case of a stream, be an SCI, rather than a BioRecon, because, as noted above, of the two, the former is the more comprehensive and rigorous test. The requirements of Subsection (2) of proposed Rule 62-303.440, Florida Administrative Code, are consistent with the provisions of the Subsections (3)(c) and (4) of Section 403.067, Florida Statutes. It may be difficult to identify the pollutant causing the impairment inasmuch as toxicity tests are not designed to yield such information. The rationale for excluding, in the assessment process described in proposed Rule 62-303.440, Florida Administrative Code, "data collected following contaminant spills, discharges due to upsets or bypasses from permitted facilities, or rainfall in excess of the 25-year, 24-hour storm" (as Subsection (3) of the proposed rule does) is the same, justifiable rationale (discussed above) supporting the exclusion of such data in the assessment of impairment under proposed Rule 62-303.420, Florida Administrative Code. Code Part III: Proposed Rule 62-303.450, Florida Administrative Proposed Rule 62-303.450, Florida Administrative Code, the counterpart of proposed Rules 62-303.350 through 62- 303.353, Florida Administrative Code, provides other reasonable ways, not based upon statistics, for waters to be "verified as [being] impaired" for aquatic life use support. It reads as follows: Interpretation of Narrative Nutrient Criteria. A water shall be placed on the verified list for impairment due to nutrients if there are sufficient data from the last five years preceding the planning list assessment combined with historical data (if needed to establish historical chlorophyll a levels or historical TSIs), to meet the data sufficiency requirements of rule 62- 303.350(2). If there are insufficient data, additional data shall be collected as needed to meet the requirements. Once these additional data are collected, the Department shall re-evaluate the data using the thresholds provided in rule 62-303.351- .353, for streams, lakes, and estuaries, respectively, or alternative, site-specific thresholds that more accurately reflect conditions beyond which an imbalance in flora or fauna occurs in the water segment. In any case, the Department shall limit its analysis to the use of data collected during the five years preceding the planning list assessment and the additional data collected in the second phase. If alternative thresholds are used for the analysis, the Department shall provide the thresholds for the record and document how the alternative threshold better represents conditions beyond which an imbalance in flora or fauna is expected to occur. If the water was listed on the planning list for nutrient enrichment based on other information indicating an imbalance in flora or fauna as provided in Rule 62-303 350(1), the Department shall verify the imbalance before placing the water on the verified list for impairment due to nutrients and shall provide documentation supporting the imbalance in flora or fauna. Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New The requirement of the first sentence of Subsection (1) of proposed Rule 62-303.450, Florida Administrative Code, that there be sufficient (non-historical) data (as measured against the requirements of Subsection (2) of proposed Rule 62- 303.350, Florida Administrative Code67) "from [just] the last five years preceding the planning list assessment" in order for a "nutrient impair[ed]" water to go directly from the "planning list" to the "verified list" (subject to the provisions of proposed Rules 62-303.600, 62-303.700, and 62-303.710, Florida Administrative Code) is reasonably designed to avoid listing decisions based upon outdated data not representative of the water's current conditions. According to the second and third sentences of Subsection (1) of proposed Rule 62-303.450, Florida Administrative Code, if there is not enough data from this five- year time period, the additional data needed to meet the data sufficiency requirements "will be collected" by the Department, and such additional data, along with the data "from the last five years preceding the planning list assessment," will be evaluated to determine whether one of the applicable thresholds set out in proposed Rules 62-303.351 through 62-303.353, Florida Administrative Code, or an "alternative" threshold established specifically for that water, has been met or exceeded. Deciding whether "alternative, site-specific thresholds" should be used and, if so, what they should be, will involve the exercise of the Department's "best professional judgment," as will the determination as to how, in each case the Department is presented with a water placed on the "planning list for nutrient enrichment based on other information indicating an imbalance in flora or fauna," it should go about "verify[ing] the imbalance," as the Department will be required to do by Subsection (2) of proposed Rule 62-303.450, Florida Administrative Code. In some instances, the Department will only need to thoroughly review the "other information" to "verify the imbalance." In other cases, where the "other information" is not sufficiently detailed, new "information" will need to be obtained. How the Department will proceed in a particular case will depend upon the specific circumstances of that case. Code Part III: Proposed Rule 62-303.460, Florida Administrative Proposed Rule 62-303.460, Florida Administrative Code, the counterpart of proposed Rule 62-303.360, Florida Administrative Code, establishes a reasonable means to determine whether waters should be "verified as [being] impaired" for primary contact and recreation use support. It reads as follows: Primary Contact and Recreation Use Support The Department shall review the data used by the DoH as the basis for bathing area closures, advisories or warnings and verify that the values exceeded the applicable DoH thresholds and the data meet the requirements of Chapter 62-160. If the segment is listed on the planning list based on bathing area closures, advisories, or warnings issued by a local health department or county government, closures, advisories, or warnings based on red tides, rip tides, sewer line breaks, sharks, medical wastes, hurricanes, or other factors not related to chronic discharges of pollutants shall not be included when verifying primary contact and recreation use support. The Department shall then re-evaluate the remaining data using the methodology in rule 62- 303.360(1)(c). Water segments that meet the criteria in rule 62-303.360(1)(c) shall be included on the verified list. If the water segment was listed on the planning list due to exceedances of water quality criteria for bacteriological quality, the Department shall, to the extent practical, evaluate the source of bacteriological contamination and shall verify that the impairment is due to chronic discharges of human-induced bacteriological pollutants before listing the water segment on the verified list. The Department shall take into account the proximity of municipal stormwater outfalls, septic tanks, and domestic wastewater facilities when evaluating potential sources of bacteriological pollutants. For water segments that contain municipal stormwater outfalls, the impairment documented for the segment shall be presumed to be due, at least in part, to chronic discharges of bacteriological pollutants. The Department shall then re-evaluate the data using the methodology in rule 62-303.320(1), excluding any values that are elevated solely due to wildlife. Water segments shall be included on the verified list if they meet the requirements in rule 62-303.420(6). Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New The first sentence of Subsection (1) of proposed Rule 62-303.460, Florida Administrative Code, was included in the proposed rule in response to comments made by stakeholders during the rule development process that the Department would be "abdicating [its] authority" if, in determining whether a water was impaired for purposes of TMDL development, it relied solely on action taken by other governmental entities. Department staff agreed that the Department, "as the agency responsible for preparing this list," should at least "review the data used by the DoH as the basis for bathing area closures, advisories or warnings and verify that the values exceeded the applicable DoH thresholds and the data meet the requirements of Chapter 62- 160," Florida Administrative Code. The rationale for the Department not considering bathing area "closures, advisories, or warnings based on red tides, rip tides, sewer line breaks, sharks, medical wastes, hurricanes, or other factors not related to chronic discharges of pollutants . . . when verifying [impairment of] primary contact and recreation use support" (per the second sentence of Subsection (1) of proposed Rule 62-303.460, Florida Administrative Code) is the same, justifiable rationale (discussed above) supporting the exclusions of these closures, advisories, and warnings from consideration in the determination of whether a water should be placed on the "planning list" pursuant to Subsections (1)(b), (1)(c), or (1)(d) of the proposed Rule 62-303.360, Florida Administrative Code. The exclusions set forth in the second sentence of Subsection (1) of proposed Rule 62-303.460, Florida Administrative Code, will have no effect on the "information" or "data" that the Department will be able to consider under any provision in Part III of the proposed rule chapter other than Subsection (1) of proposed Rule 62-303.460. Pursuant to the third and fourth sentences of Subsection (1) of proposed Rule 62-303.460, Florida Administrative Code, after the Department determines, in accordance with the first and second sentences of this subsection of the proposed rule, what bacteriological data-based bathing area closures, advisories, and warnings should be counted, it will determine whether there were a total of at least 21 days of such closures, advisories, and warnings during a calendar year (the number required by Subsection (1)(c) of proposed Rule 62-303.360, Florida Administrative Code, for placement on the "planning list") and, if there were, it will verify the water in question as being impaired for primary contact and recreation use support. This is the only way for a water to be "verified as being impaired" based upon bathing area closures, advisories, or warnings under the proposed rule chapter. The "criteria" set forth in Subsections (1)(b) and (1)(d) of proposed Rule 62-303.360, Florida Administrative Code (unlike the criteria set forth in Subsection (1)(c) of proposed Rule 62-303.360) are not carried forward in proposed Rule 62- 303.460, Florida Administrative Code. Subsection (2) of proposed Rule 62-303.460, Florida Administrative Code, provides another way, based upon a statistical analysis of "exceedances of water quality criteria for bacteriological quality," for a water to be "verified as being impaired" for primary contact and recreation use support. It reasonably requires the Department, in determining whether such impairment exists, to use the same valid statistical methodology (discussed above) that it will use, pursuant to proposed Rule 62-303.420, Florida Administrative Code, to determine whether a water should be "verified as being impaired" based upon "[e]xceedances of [a]quatic [l]ife-[b]ased [c]riteria." Under Subsection (2) of proposed Rule 62-303.460, Florida Administrative Code, the Department, to the extent practical, will evaluate the source of an exceedance to make sure that it is "due to chronic discharges of human-induced bacteriological pollutants," and, if such evaluation reveals that the exceedance was "solely due to wildlife," the exceedance will be excluded from the calculation. While it is true that "microbial pollutants from [wildlife] do constitute a public health risk in recreational waters," the purpose of the TMDL program is to control human-induced impairment and, consequently, the Department is not required to develop TMDLs "[f]or waters determined to be impaired due solely to factors other than point and nonpoint sources of pollution." See Section 403.067(6)(a)2., Florida Statutes. Part III: Proposed Rule 62-303.470, Florida Administrative Code Rule 62-303.470, Florida Administrative Code, the counterpart of proposed Rule 62-303.370, Florida Administrative Code, establishes a reasonable means to determine whether waters should be "verified as being impaired" for fish and shellfish consumption use support. It provides as follows: Fish and Shellfish Consumption Use Support In order to be used under this part, the Department shall review the data used by the DoH as the basis for fish consumption advisories and determine whether it meets the following requirements: the advisory is based on the statistical evaluation of fish tissue data from at least twelve fish collected from the specific water segment or water body to be listed, starting one year from the effective date of this rule the data are collected in accordance with DEP SOP FS6000 (General Biological Tissue Sampling) and FS 6200 (Finfish Tissue Sampling), which are incorporated by reference, the sampling entity has established Data Quality Objectives (DQOs) for the sampling, and the data meet the DQOs. Data collected before one year from the effective date of this rule shall substantially comply with the listed SOPs and any subsequently developed DQOs. there are sufficient data from within the last 7.5 years to support the continuation of the advisory. If the segment is listed on the planning list based on fish consumption advisories, waters with fish consumption advisories for pollutants that are no longer legally allowed to be used or discharged shall not be placed on the verified list because the TMDL will be zero for the pollutant. Waters determined to meet the requirements of this section shall be listed on the verified list. Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New Proposed Rule 62-303.470, Florida Administrative Code, imposes additional requirements only for those waters placed on the "planning list" based upon fish consumption advisories pursuant to Subsection (2) of proposed Rule 62- 303.370, Florida Administrative Code. Waters placed on the "planning list" pursuant to Subsections (1) and (3) of proposed Rule 62-303.370, Florida Administrative Code, are not addressed in the proposed rule (or anywhere else in Part III of the proposed rule chapter). Accordingly, as noted above, these waters will go directly from the "planning list" to the "verified list" (subject to the provisions of proposed Rules 62- 303.600, 62-303.700, and 62-303.710, Florida Administrative Code). The mere fact that a fish consumption advisory is in effect for a water will be enough for that water to qualify for placement on the "planning list" under Subsection (2) of proposed Rule 62-303.370, Florida Administrative Code. The Department will not look beyond the four corners of the advisory at this stage of the "identification of impaired surface waters" process. Proposed Rule 62-303.470, Florida Administrative Code, however, will require the Department, before including the water on the "verified list" based upon the advisory, to conduct such an inquiry and determine the adequacy of the fish tissue data supporting the initial issuance of the advisory and its continuation. Mandating that the Department engage in such an exercise as a prerequisite to verifying impairment based upon a fish consumption advisory is a provident measure in keeping with the Legislature's directive that the TMDL program be "scientifically based." Department staff's intent, in requiring (in Subsection (1)(a) of proposed Rule 62-303.470, Florida Administrative Code) that there be fish tissue data from at least 12 fish, "was to maintain the status quo" and not require any more fish tissue samples than the Department of Health presently uses to determine whether an advisory should be issued. The SOPs incorporated by reference in Subsection (1)(b) of proposed Rule 62-303.470, Florida Administrative Code, contain quality assurance requirements that are essentially the same as those that have been used "for many years" to collect the fish tissue samples upon which fish consumption advisories are based. These SOPs have yet to be incorporated in Rule Chapter 62-160, Florida Administrative Code. Data Quality Objectives are needed for sampling to be scientifically valid. There are presently no Data Quality Objectives in place for the sampling that is done in connection with the Department of Health's fish consumption advisory program. Pursuant to Subsection (1)(b) of proposed Rule 62- 303.470, Florida Administrative Code, after one year from the effective date of the proposed rule, in order for data to be considered in determining data sufficiency questions under the proposed rule, the sampling entity will have to have established Data Quality Objectives for the collection of such data and the data will have to meet, or (in the case of "data collected before one year from the effective date of this rule") substantially comply with, these Data Quality Objectives. As noted above, the majority of fish consumption advisories now in effect were issued based upon fish tissue data collected more than 7.5 years ago that has not been supplemented with updated data. It "will be a huge effort to collect additional data that's less than seven-and-a-half years old" for the waters under these advisories (and on the "planning list" as a result thereof) to determine, in accordance with Subsection (1)(c) of proposed Rule 62-303.470, Florida Administrative Code, whether the continuation of these advisories is warranted. Undertaking this "huge effort," instead of relying on data more than 7.5 years old to make these determinations, is reasonably justified because this 7.5-plus-year-old data that has already been collected may no longer be representative of the current conditions of the waters in question and it therefore is prudent to rely on more recent data. Subsection (1)(c) of proposed Rule 62-303.470, Florida Administrative Code, does not specify the amount of fish tissue data that will be needed in order for the Department to determine that there is sufficient data to "support the continuation of the advisory." The Department will need to exercise its "best professional judgment" on a case-by-case basis in making such sufficiency determinations. Part III: Proposed Rule 62-303.480, Florida Administrative Code Proposed Rule 62-303.480, Florida Administrative Code, the counterpart of proposed Rule 62-303.380, Florida Administrative Code, establishes a reasonable means to determine whether waters should be "verified as being impaired" for the protection of human health. It provides as follows: Drinking Water Use Support and Protection of Human Health If the water segment was listed on the planning list due to exceedances of a human health-based water quality criterion and there were insufficient data from the last five years preceding the planning list assessment to meet the data sufficiency requirements of section 303.320(4), additional data will be collected as needed to meet the requirements. Once these additional data are collected, the Department shall re-evaluate the data using the methodology in rule 62-303.380(2) and limit the analysis to data collected during the five years preceding the planning list assessment and the additional data collected pursuant to this paragraph (not to include data older than 7.5 years). For this analysis, the Department shall exclude any data meeting the requirements of paragraph 303.420(5). The following water segments shall be listed on the verified list: for human health-based criteria expressed as maximums, water segments that meet the requirements in rule 62-303.420(6), or for human health-based criteria expressed as annual averages, water segments that have an annual average that exceeds the applicable criterion. Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New Proposed Rule 62-303.480, Florida Administrative Code, imposes additional requirements only for those waters placed on the "planning list" for "assessment of the threat to human health" pursuant to Subsection (2) of proposed Rule 62- 303.380, Florida Administrative Code. Notwithstanding that proposed Rule 62-303.480, Florida Administrative Code, is entitled, "Drinking Water Use Support and Protection of Human Health," waters placed on the "planning list" for drinking water use support pursuant to Subsection (1) of proposed Rule 62- 303.380, Florida Administrative Code, are not addressed in the proposed rule (or anywhere else in Part III of the proposed rule chapter). Accordingly, as noted above, these waters will go directly from the "planning list" to the "verified list" (subject to the provisions of proposed Rules 62-303.600, 62- 303.700, and 62-303.710, Florida Administrative Code). Proposed Rule 62-303.480, Florida Administrative Code, reasonably requires the Department, in determining whether a water should be "verified as being impaired" for the protection of human health based upon exceedances of "human health-based criteria expressed as maximums," to use the same valid statistical methodology (discussed above) that it will use, pursuant to proposed Rule 62-303.420, Florida Administrative Code, to determine whether a water should be "verified as being impaired" based upon "[e]xceedances of [a]quatic [l]ife-[b]ased [c]riteria." Proposed Rule 62-303.480, Florida Administrative Code, also sets forth an appropriate method for use in determining whether a water should be "verified as being impaired" based upon exceedances of "human health-based criteria expressed as annual averages." Only one exceedance of any "human health-based criteria expressed as an annual average" will be needed for a water to be listed under the proposed rule, the same number needed under Subsection (2)(b) of proposed Rule 62-303.380, Florida Administrative Code, for a water to make the "planning list." Under proposed Rule 62-303.480, Florida Administrative Code, however, unlike under Subsection (2)(b) of proposed Rule 62-303.380, Florida Administrative Code, the data relied upon by the Department will have to meet the "data sufficiency requirements of section [62]-303.320(4)," Florida Administrative Code, and, in addition, data of the type described in Subsection (5) of proposed Rule 62-303.420, Florida Administrative Code, as well as data collected more than "five years preceding the planning list assessment," will be excluded from the Department's consideration. Code Part III: Proposed Rule 62-303.500, Florida Administrative As noted above, Subsection (4) of Section 403.067, Florida Statutes, directs the Department, "[i]n association with [its preparation of an] updated list [of waters for which TMDLs will be calculated, to] establish priority rankings and schedules by which water bodies or segments will be subjected to total maximum daily load calculations." Proposed Rule 62- 303.500, Florida Administrative Code, explains how the Department will go about carrying out this statutory directive. It reads as follows: When establishing the TMDL development schedule for water segments on the verified list of impaired waters, the Department shall prioritize impaired water segments according to the severity of the impairment and the designated uses of the segment taking into account the most serious water quality problems; most valuable and threatened resources; and risk to human health and aquatic life. Impaired waters shall be prioritized as high, medium, or low priority. The following waters shall be designated high priority: Water segments where the impairment poses a threat to potable water supplies or to human health. Water segments where the impairment is due to a pollutant regulated by the CWA and the pollutant has contributed to the decline or extirpation of a federally listed threatened or endangered species, as indicated in the Federal Register listing the species. The following waters shall be designated low priority: [W]ater segments that are listed before 2010 due to fish consumption advisories for mercury (due to the current insufficient understanding of mercury cycling in the environment). Man-made canals, urban drainage ditches, and other artificial water segments that are listed only due to exceedances of the dissolved oxygen criteria. Water segments that were not on a planning list of impaired waters, but which were identified as impaired during the second phase of the watershed management approach and were included in the verified list, unless the segment meets the criteria in paragraph (2) for high priority. All segments not designated high or low priority shall be medium priority and shall be prioritized based on the following factors: the presence of Outstanding Florida Waters. the presence of water segments that fail to meet more than one designated use. the presence of water segments that exceed an applicable water quality criterion or alternative threshold with a greater than twenty-five percent exceedance frequency with a minimum of a 90 percent confidence level. the presence of water segments that exceed more than one applicable water quality criteria. administrative needs of the TMDL program, including meeting a TMDL development schedule agreed to with EPA, basin priorities related to following the Department's watershed management approach, and the number of administratively continued permits in the basin. Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New It is anticipated that most waters on the Department's "updated list" will fall within the "medium priority" category. Subsections (4)(a) through (4)(e) of proposed Rule 62-303.500, Florida Administrative Code, describe those factors (including, among others, the "presence of Outstanding Florida Waters" and "the number of administratively continued permits in the basin," the latter being added "based on input from the Petitioners") that will be taken into account by the Department in prioritizing waters within this "medium priority" category; but nowhere in the proposed rule does the Department specify how much weight each factor will be given relative to the other factors. This is a matter that, in accordance with the TAC's recommendation, will be left to the "best professional judgment" of the Department. "[T]here is a lot known about mercury" and its harmful effects; however, as the Department correctly suggests in Subsection (3)(a) of proposed Rule 62-303.500, Florida Administrative Code, there is not yet a complete understanding of "mercury cycling in the environment" and how mercury works its way up the food chain. "[T]here are a series of projects that are either on the drawing board or in progress now" that, hopefully, upon their conclusion, will give the Department a better and more complete understanding of what the sources of mercury in Florida surface waters are and how mercury "cycles" in the environment and ends up in fish tissue. Until the Department has such an understanding, though, it is reasonable for waters "verified as being impaired" due to fish consumption advisories for mercury to be given a "low priority" designation for purposes of TMDL development (as the Department, in Subsection (3)(a) of proposed Rule 62-303.500, Florida Administrative Code, indicates it will). Code Part III: Proposed Rule 62-303.600, Florida Administrative As noted above, proposed Rule 62-303.600, Florida Administrative Code, like Subsection (5) of proposed Rule 62- 303.100, Florida Administrative Code, is designed to give effect to and make more specific the language in Subsection (4) of Section 403.067, Florida Statutes, that an impaired water may be listed on the Department's "updated list" of waters for which TMDLs will be calculated only "if technology-based effluent limitations and other pollution control programs under local, state, or federal authority, including Everglades restoration activities pursuant to s. 373.4592 and the National Estuary Program, which are designed to restore such waters for the pollutant of concern are not sufficient to result in attainment of applicable surface water quality standards." It reads as follows: Evaluation of Pollution Control Mechanisms Upon determining that a water body is impaired, the Department shall evaluate whether existing or proposed technology- based effluent limitations and other pollution control programs under local, state, or federal authority are sufficient to result in the attainment of applicable water quality standards. If, as a result of the factors set forth in (1), the water segment is expected to attain water quality standards in the future and is expected to make reasonable progress towards attainment of water quality standards by the time the next 303(d) list is scheduled to be submitted to EPA,[68] the segment shall not be listed on the verified list. The Department shall document the basis for its decision, noting any proposed pollution control mechanisms and expected improvements in water quality that provide reasonable assurance that the water segment will attain applicable water quality standards. Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New It is beyond reasonable debate that, pursuant to Subsection (4) of Section 403.067, Florida Statutes, before the Department may include impaired waters on the "updated list" of waters for TMDLs will be calculated, it must evaluate whether "technology-based effluent limitations and other pollution control programs" are sufficient for water quality standards in these waters to be attained in the future. (To construe the statute as requiring the Department to simply look back, and not forward into the future, in conducting its mandated evaluation of "pollution control programs" would render meaningless the language in the statute directing the Department to conduct such an evaluation after having determined that these waters are impaired.69 As Mr. Joyner testified at the final hearing in explaining what led Department staff "to conclude that [the Department] should be considering future achievement of water quality standards or future implementation of such [pollution control] programs": [I]t [Subsection (4) of Section 403.067, Florida Statutes] basically requires two findings. It's impaired and these things won't fix the problem. If the "won't fix the problem" required it to be fixed right now in the present tense [to avoid listing], then it couldn't be impaired. So it would just be an illogical construction of having two requirements in the statute.) Proposed Rule 62-303.600, Florida Administrative Code, does not specify when "in the future" water quality attainment resulting from an existing or proposed "pollution control program" must be expected to occur in order for a presently impaired water to not be listed; but neither does Subsection (4) of Section 403.067, Florida Statutes, provide such specificity. Indeed, the statute's silence on the matter was the very reason that Department staff did "not set a time frame for [expected] compliance with water quality standards." Rather than "set[ting] such a time frame," Department staff took other measures "to address the open nature of the statute" and limit the discretion the Legislature granted the Department to exclude presently impaired waters from the "updated list" based upon there being pollution control programs sufficient to result in these waters attaining water quality standards in the future "for the pollutant of concern." They included language in Subsection (5) of proposed Rule 62-303.100, Florida Administrative Code, and in proposed Rule 62-303.600, Florida Administrative Code, requiring that the Department, before exercising such discretion to exclude a presently impaired water from the "updated list," have "reasonable assurance" that water quality standards will be attained and that "reasonable progress" will be made in attaining these standards within a specified time frame, to wit: "by the time the next 303(d) list is scheduled to be submitted to EPA." "Reasonable assurance" is a term that has a "long history" of use by the Department in various programs,70 including its wastewater permitting program.71 Neither sheer speculation that a pollution control program will result in future water quality attainment, nor mere promises to that effect, will be sufficient, under Subsection of proposed Rule 62-303.100, Florida Administrative Code, and proposed Rule 62-303.600, Florida Administrative Code, to exclude an impaired water from the "updated list." The Department will need to examine and analyze the specific characteristics of each impaired water, as well as the particular pollution control program in question, including its record of success and/or failure, if any, before determining (through the use of its "best professional judgment") whether there is the "reasonable assurance" required by these proposed rule provisions. How much time it will take for an impaired water to attain water quality standards will depend on various water- specific factors, including the size of the water body, the size of the watershed, and whether there are pollutants stored in the sediment. The particular circumstances of each case, therefore, will dictate what constitutes "reasonable progress72 towards attainment of water quality standards by the time the next 303(d) list is scheduled to be submitted to EPA," within the meaning of Subsection (5) of proposed Rule 62-303.100, Florida Administrative Code, and proposed Rule 62-303.600, Florida Administrative Code. Because of the case-specific factors involved in determining "reasonable assurance" and "reasonable progress," it was not practicable for Department staff to specify in Subsection (5) of proposed Rule 62-303.100, Florida Administrative Code, and in proposed Rule 62-303.600, Florida Administrative Code, exactly what would be needed to be shown in each case to establish "reasonable assurance" and "reasonable progress." At the April 26, 2001, rule adoption hearing, Department staff proposed an amendment to proposed Rule 62- 303.600, Florida Administrative, to make the proposed rule more specific by adding "a list of elements that needed to be addressed to provide reasonable assurance" and defining "reasonable progress." The amendment, which was opposed by the DACS and regulated interests, was withdrawn before being considered by the ERC because Department staff felt that is was not "quite well thought out enough," particularly insofar as it addressed the concept of "reasonable progress." Part III: Proposed Rule 62-303.700, Florida Administrative Code As noted above, proposed Rule 62-303.700, Florida Administrative Code, describes the first two phases of the "basin management cycle" and the TMDL-related events that will occur during these phases. It reads as follows: Listing Cycle The Department shall, to the extent practical, develop basin-specific verified lists of impaired waters as part of its watershed management approach, which rotates through the State's surface water basins on a five year cycle. At the end of the first phase of the cycle, which is designed to develop a preliminary assessment of the basin, the Department shall update the planning list for the basin and shall include the planning list in the status report for the basin, which will be noticed to interested parties in the basin. If the specific pollutant causing the impairment in a particular water segment is not known at the time the planning list is prepared, the list shall provide the basis for including the water segment on the planning list. In these cases, the pollutant and concentration causing the impairment shall be identified before the water segment is included on the verified list to be adopted by Secretarial Order. During the second phase of the cycle, which is designed to collect additional data on waters in the basin, interested parties shall be provided the opportunity to work with the Department to collect additional water quality data. Alternatively, interested parties may develop proposed water pollution control mechanisms that may affect the final verified list adopted by the Secretary at the end of the second phase. To ensure that data or information will be considered in the preliminary basin assessment, it must be submitted to the Department or entered into STORET or, if applicable, the DoH database no later than September 30 during the year of the assessment. Within a year of the effective date of this rule, the Department shall also prepare a planning list for the entire state. Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New The preference expressed in proposed Rule 62-300.700, Florida Administrative Code, for verified lists to be developed on a "basin-specific" basis "as part of the Department's watershed management approach" is consistent with the directive in the first sentence of Subsection (3)(a) of Section 403.067, Florida Statutes, that the Department conduct its TMDL assessment for the “basin in which the water body . . . is located.” Proposed Rule 62-300.700, Florida Administrative Code, carries out the mandate in the second sentence of Subsection (3)(a) of Section 403.067, Florida Statutes, that, in conducting its TMDL assessment, the Department "coordinate" with "interested parties." Furthermore, the proposed rule makes clear that parties outside the Department will have the opportunity "work with the Department to collect additional water quality data" needed to meet data sufficiency requirements. Identifying the "pollutant and concentration causing the impairment" before including a water on the "verified list," as proposed Rule 62-303.700, Florida Administrative Code, requires be done, is something the Department will need to do to comply with the directive contained in the third sentence of Subsection (4) of Section 403.067, Florida Statutes. Part III: Proposed Rule 62-303.710, Florida Administrative Code Proposed Rule 62-303.710, Florida Administrative Code, addresses the "[f]ormat of [v]erified [l]ist and [v]erified [l]ist [a]pproval." It reads as follows: The Department shall follow the methodology established in this chapter to develop basin-specific verified lists of impaired water segments. The verified list shall specify the pollutant or pollutants causing the impairment and the concentration of the pollutant(s) causing the impairment. If the water segment is listed based on water quality criteria exceedances, then the verified list shall provide the applicable criteria. However, if the listing is based on narrative or biological criteria, or impairment of other designated uses, and the water quality criteria are met, the list shall specify the concentration of the pollutant relative to the water quality criteria and explain why the numerical criterion is not adequate. For waters with exceedances of the dissolved oxygen criteria, the Department shall identify the pollutants causing or contributing to the exceedances and list both the pollutant and dissolved oxygen on the verified list. For waters impaired by nutrients, the Department shall identify whether nitrogen or phosphorus, or both, are the limiting nutrients, and specify the limiting nutrient(s) in the verified list. The verified list shall also include the priority and the schedule for TMDL development established for the water segment, as required by federal regulations. The verified list shall also note any waters that are being removed from the current planning list and any previous verified list for the basin. The verified basin-specific 303(d) list shall be approved by order of the Secretary. Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New The second and fourth sentences of Subsection (1) of proposed Rule 62-303.710, Florida Administrative Code, track the requirements of the third sentence of Subsection (4) and the first and second sentences of Subsection (3)(c), respectively, of Section 403.067, Florida Statutes. Furthermore, as a practical matter, a TMDL cannot be developed if the culprit pollutant is not able to be identified. Subsection (2) of proposed Rule 62-303.710, Florida Administrative Code, was included in the proposed rule because, in most instances, the Department does not consider dissolved oxygen to be a pollutant. The pollutants most frequently associated with exceedances of the dissolved oxygen criteria are nutrients (nitrogen and/or phosphorous). It is essential to identify the "limiting nutrient," as Subsection (3) of proposed Rule 62-303.710, Florida Administrative Code, requires the Department to do, inasmuch as the "limiting nutrient" is the particular pollutant for which a TMDL will be developed. Part IV: Overview Part IV of proposed Rule Chapter 62-303, Florida Administrative Code, is entitled, "Miscellaneous Provisions." It includes two proposed rules, proposed Rule 62-303.720, Florida Administrative Code, and proposed Rule 62-303.810, Florida Administrative Code. Part IV: Proposed Rule 62-303.720, Florida Administrative Code Proposed Rule 62-303.720, Florida Administrative Code, describes how waters may be removed from the "planning list" and the "verified list." The proposed rule, which is entitled, "Delisting Procedures," cites Sections 403.061 and 403.067, Florida Statutes, as its "[s]pecific [a]uthority" and Sections 403.062 and 403.067, Florida Statutes, as the "[l]aw [i]mplemented" by the proposed rule. Subsection (1) of proposed Rule 62-303.720, Florida Administrative Code, addresses the removal of waters from the "planning list." It reads as follows: Waters on planning lists developed under this Chapter that are verified to not be impaired during development of the verified list shall be removed from the State's planning list. Once a water segment is verified to not be impaired pursuant to Part III of this chapter, the data used to place the water on the planning list shall not be the sole basis for listing that water segment on future planning lists. The "removal" provisions of Subsection (1) of proposed Rule 62-303.720, Florida Administrative Code, will apply to all waters on the planning list "that are verified to not be impaired during development of the verified list," including those waters that had been placed on the "planning list" pursuant to Subsection (2) of proposed Rule 62-303.300, Florida Administrative Code, by virtue of their having been on the state's 1998 303(d) list. Waters removed from the "planning list" pursuant to Subsection (1) of proposed Rule 62-303.720, Florida Administrative Code, will be eligible to reappear on "future planning lists," but not based exclusively on "the data used to [initially] place the water on the planning list." Additional data will be needed. Subsections (2) and (3) of proposed Rule 62-303.720, Florida Administrative Code, address the removal of waters from the "verified list." They read as follows: Water segments shall be removed from the State's verified list only after completion of a TMDL for all pollutants causing impairment of the segment or upon demonstration that the water meets the water quality standard that was previously established as not being met. For waters listed due to failure to meet aquatic life use support based on water quality criteria exceedances or due to threats to human health based on exceedances of single sample water quality criteria, the water shall be delisted when: the number of exceedances of an applicable water quality criterion due to pollutant discharges is less than or equal to the number listed in Table 3 for the given sample size, with a minimum sample size of 30. This table provides the number of exceedances that indicate a maximum of a 10% exceedance frequency with a minimum of a 90% confidence level using a binomial distribution, or following implementation of pollution control activities that are expected to be sufficient to result in attainment of applicable water quality standards, evaluation of new data indicates the water no longer meets the criteria for listing established in section 62-303.420, or following demonstration that the water was inappropriately listed due to flaws in the original analysis, evaluation of available data indicates the water does not meet the criteria for listing established in section 62-303.420. New data evaluated under rule 62- 303.720(2)(a)1. must meet the following requirements: they must include samples collected during similar conditions (same seasons and general flow conditions) that the data previously used to determine impairment were collected with no more than 50% of the samples collected in any one quarter, the sample size must be a minimum of 30 samples, and the data must meet the requirements of paragraphs 62-303.320(4), (6) and (7). For waters listed due to failure to meet aquatic life use support based on biology data, the water shall be delisted when the segment passes two independent follow-up bioassessments and there have been no failed bioassessments for at least one year. The follow-up tests must meet the following requirements: For streams, the new data may be two BioRecons or any combination of BioRecons and SCIs. The bioassessments must be conducted during similar conditions (same seasons and general flow conditions) under which the previous bioassessments used to determine impairment were collected. The data must meet the requirements of Section 62-303.330(1) and (2), F.A.C. For waters listed due to failure to meet aquatic life use support based on toxicity data, the water shall be delisted when the segment passes two independent follow-up toxicity tests and there have been no failed toxicity tests for at least one year. The follow-up tests must meet the following requirements: The tests must be conducted using the same test protocols and during similar conditions (same seasons and general flow conditions) under which the previous test used to determine impairment were collected. The data must meet the requirements of rules 62-303.340(1), and the time requirements of rules 62-303.340(2) or (3). For waters listed due to fish consumption advisories, the water shall be delisted following the lifting of the advisory or when data complying with rule 62-303.470(1)(a) and (b) demonstrate that the continuation of the advisory is no longer appropriate. For waters listed due to changes in shellfish bed management classification, the water shall be delisted upon reclassification of the shellfish harvesting area to its original or higher harvesting classification. Reclassification of a water from prohibited to unclassified does not constitute a higher classification. For waters listed due to bathing area closure or advisory data, the water shall be delisted if the bathing area does not meet the listing thresholds in rule 62-303.360(1) for five consecutive years. For waters listed based on impacts to potable water supplies, the water shall be delisted when applicable water quality criteria are met as defined in rule 62- 303.380(1)(a) and when the causes resulting in higher treatment costs have been ameliorated. For waters listed based on exceedance of a human health-based annual average criterion, the water shall be delisted when the annual average concentration is less than the criterion for three consecutive years. For waters listed based on nutrient impairment, the water shall be delisted if it does not meet the listing thresholds in rule 62-303.450 for three consecutive years. For any listed water, the water shall be delisted if following a change in approved analytical procedures, criteria, or water quality standards, evaluation of available data indicates the water no longer meets the applicable criteria for listing. Table 2: Delisting Maximum number of measured exceedances allowable to DELIST with at least 90% confidence that the actual exceedance rate is less than or equal to ten percent. Sample Sizes From To Maximum # of exceedances allowable for delisting 30 37 0 38 51 1 52 64 2 65 77 3 78 90 4 91 103 5 104 115 6 116 127 7 128 139 8 140 151 9 152 163 10 164 174 11 175 186 12 187 198 13 199 209 14 210 221 15 222 232 16 233 244 17 245 255 18 256 266 19 267 278 20 279 289 21 290 300 22 301 311 23 312 323 24 324 334 25 335 345 26 346 356 27 357 367 28 368 378 29 379 389 30 390 401 31 402 412 32 413 423 33 424 434 34 435 445 35 446 456 36 457 467 37 468 478 38 479 489 39 490 500 40 Any delisting of waters from the verified list shall be approved by order of the Secretary at such time as the requirements of this section are met. Subsection (2)(a)1. of proposed rule 62-303.720, Florida Administrative Code, establishes a statistical methodology appropriate for "delisting" waters that have been listed as impaired based upon {e]xceedances of [a]quatic [l]ife- [b]ased [w]ater [q]uality [c]riteria." This "delisting" methodology" is the "equivalent" (as that term is used in Subsection (5) of Section 403.067, Florida Statutes) of the statistical methodology that will be used, pursuant to proposed Rule 62-303.420, Florida Administrative Code, to verify impairment based upon such exceedances. Both methodologies are based on the binomial model and use an "exceedance frequency" threshold of ten percent with a minimum confidence level of 90 percent. A greater minimum sample size is required under Subsection (2)(a)1. of proposed Rule 62-303.720, Florida Administrative Code, because the Department will need, thereunder, "to have at least 90 percent confidence that the actual exceedance rate is less than ten percent" "as opposed to greater than ten percent, which is a bigger range." The "calculations [reflected in the table, Table 3, which is a part of Subsection (2)(a)1. of proposed Rule 62- 303.720, Florida Administrative Code] are correct." There is nothing unreasonable about the "delisting" criteria set forth in Subsections (2)(c) and (2)(j) of proposed Rule 62-303.720, Florida Administrative Code. Subsection (2)(c) of proposed Rule 62-303.720, Florida Administrative Code, reasonably requires the Department, where waters have been "listed due to failure to meet aquatic life use support based on toxicity data" (in the form of two failed toxicity tests conducted "two weeks apart over a twelve month period"), to "delist" these waters if the Department has more recent "equivalent [toxicity] data" (in the form of two passed "follow-up toxicity tests," with no failed tests for at least twelve months) showing that the waters are not toxic. Subsection (2)(j) of proposed Rule 62-303.720, Florida Administrative Code, reasonably requires the Department to "delist" a water "following a change in approved analytical procedures" only where the change calls into question the validity and accuracy of the data that was relied upon to make the original listing determination and there is other data demonstrating that the water meets water quality standards. Code Part IV: Proposed Rule 62-303.810, Florida Administrative Proposed Rule 62-303.810, Florida Administrative Code, is entitled, "Impairment of Interstate and Tribal Waters." It reads as follows: The Department shall work with Alabama, Georgia, and federally recognized Indian Tribes in Florida to share information about their assessment methodology and share water quality data for waters that form state boundaries or flow into Florida. In cases where assessments are different for the same water body, the Department shall, to the extent practical, work with the appropriate state, Indian Tribe and EPA to determine why the assessments were different. Specific Authority 403.061, 403.067, FS. Law Implemented 403.062, 403.067, FS. History -- New

# 1
PASCO COUNTY (RYALS ROAD) vs DEPARTMENT OF ENVIRONMENTAL PROTECTION, 94-000001RX (1994)
Division of Administrative Hearings, Florida Filed:Tampa, Florida Jan. 03, 1994 Number: 94-000001RX Latest Update: Nov. 07, 1995

Findings Of Fact On or about July 25, 1989, Stephen G. Thompson, Permitting Engineer with the Department of Environmental Regulation (DER), predecessor of the Department of Environmental Protection (DEP), wrote a memorandum to Howard Rhodes, Deputy Director of DER's Bureau of Water Facilities Planning and Regulation. The memo relayed a question being posed by an engineering consultant working for Pasco County on its Lake Padgett Effluent Disposal System, DER construction Permit No. DC51-159899. The question was whether Special Condition 15 should be deleted from the permit. The Lake Padgett permit was for a rapid rate infiltration (percolation pond) land application system for the disposal, via ground water recharge, of domestic wastewater effluent. Through the question passed along to Rhodes, Rhodes understood that the system included percolation ponds and drainage ditches on the site, which the County's engineer referred to as "perimeter ditches." Rhodes was given to understand that the perimeter ditches were designed to improve the performance of the system by lowering the ground water table at the site and increasing the hydraulic capacity of the ponds. The question posed by the County's engineer indicated to Rhodes that Special Condition 15 to the Lake Padgett permit prohibited discharges from the perimeter ditches into wetlands, citing Section 403.086 of the Florida Statutes. The County's engineer suggested: Since these perimeter ditches are being installed 100 feet from the wetted perimeter of the percolation ponds, I believe it is correct to define the water in said ditches as groundwater rather than wastewater effluent. Therefore, I do not believe that Chapter 403.086 would apply to the water in these perimeter ditches. In passing the question along to Rhodes, Thompson also cast it in his own words: If the permittee designs the project with a perimeter ditch system 100 feet away from the edge of the percolation/evaporation pond wetted area, will the discharge from the ditch system have to meet WQBEL or Grizzle-Figg limits if applicable? According to Chapter 17-610.517(2) and 17-610.522, the collection and discharge of more than 50 percent of the applied reclaimed water shall be considered as an effluent disposal system. The question is whether the 100 feet buffer will allow the descrip- tion of the perimeter ditch water to be ground water or a co-mingled ground/reclaimed water. Rhodes reviewed the question and answered by memorandum dated September 15, 1989, which stated in salient part: Based on this review, discharges from perimeter ditch systems of percolation ponds must meet surface water quality requirements of advanced treatment, water quality based effluent limitations, or Grizzle- Figg limitations where applicable. Attached are comments which explain why these surface water quality requirements must be met. * * * COMMENTS Depending on site-specific parameters such as the infiltration rate, existing ground water table, subsurface flow, percolation pond depth, and ditch depth, the content of the water in the ditch may be either ground water or a mixture of ground water and reclaimed water. Because these parameters are site-specific, the content of water in the ditch is site-specific. However, knowledge of whether the water in the ditch is ground water or a mixture of ground water and reclaimed water is not important in determining the effluent limitations of the discharge from the ditch. . . . Because construction of perimeter ditches is associated with the operation of percolation ponds, the ditch should be considered part of the wastewater treatment facility and any discharge from the ditch must meet the applicable requirements of Rule 17-6, F. A. C., or Chapter 403, F.S. Also, because perimeter ditches are constructed around percolation ponds to improve performance, the ditches are located near the percolation ponds and some reclaimed water is normally drained to and collected in the ditch. Rule 17-610.517(2), F.A.C., specifically states discharge from perimeter drainage features that collect reclaimed water after land application are restricted by surface water quality considerations of additional treatment or the WQBEL provisions of Rule 17-6, F.A.C. . . . It was argued that because the zone of discharge is 100-feet from the percolation pond and the ditch is also 100-feet from the percolation pond, the water in the perimeter ditch system is ground water. However, zone of discharge as defined by Rule 17-6.0321(33), F.A.C., does not mean that all water located outside the zone of discharge is ground water. Zone of discharge is more appropriately interpreted as a "mixing zone" for ground water. Waters inside the zone do not have to meet water quality standards. If waters outside the zone do not meet water quality standards, the permit is violated. The following question also was raised: Why do the effluent limitations of Chapter 403.086, F.S., apply for the discharge of a perimeter ditch constructed 100-feet from a percolation pond when they do not apply for the discharge from a percola- tion pond constructed 100-feet away from wetlands? The answer to this question is: The discharge from the ditch is a surface water discharge whereas the discharge from the percolation pond is a ground water discharge. In the case of ground water discharges, ground water quality standards must be met outside the zone of discharge. . . . It seems that [the second sentence of F.A.C. Rule 17-610.517(2)] was interpreted to mean; if more than 50 percent of the applied reclaimed water is collected in the ditch, the water is considered effluent and if 50 percent or less of the applied reclaimed water is collected, the water is considered ground water. This is not the intent of this rule. The intent is; if more than 50 percent of the applied reclaimed water is collected in the ditch, the applied reclaimed water is considered an effluent disposal system and if 50 percent or less of the applied reclaimed water is collected, the applied reclaimed water may be considered a reuse system. Therefore, this section of rule is not applicable to the Lake Padgett effluent disposal question. The permittee requested Specific Condition 15 be deleted from the permit. In some cases, this may be done. However, if it is deleted, a condition should be added to the permit that the discharge from the ditch meet surface water quality requirements of advanced treatment, WQBELS, or Grizzle-Figg limitations, where applicable . . ., [and] the permittee should also be required to provide reasonable assurance that the required discharge limitations can be met. On March 15, 1990, another Department employee, named Jim Bottone, prepared a two-page memorandum generally discussing the increasing use of perimeter ditches conjunction with rapid-rate land application systems. The memorandum concluded: "In summary, the use of perimeter ditches in conjunction with rapid-rate systems appears to be a 'force fit' of technology in order to save money on disposal. These systems appear to circumvent the intent of the Department's reuse initiative." The discussion included a statement: "Rule 17- 610.517(2) states that the discharge from a perimeter ditch shall be restricted by surface water quality considerations." On December 13, 1990, the Department's Reuse Coordinator, David W. York, Ph.D., P.E., sent Richard Harvey, Deputy Director of the Department's Division of Water Facilities, a memorandum on the subject of perimeter ditches and rapid-rate land application systems. It referred to the Rhodes and Bottone memos, stating that the Rhodes memo "clearly addresses the applicability of surface water quality considerations for this type of system." It also stated: If perimeter ditches are used in association with land application projects, and if the ditches receive flows containing a portion of the applied reclaimed water, the ditches are subject to surface water quality constraints. Surface water quality constraints may include technology-based effluent limits, water quality-based effluent limits, or Grizzle-Figg limitations, as appropriate. F.A.C. Rule Chapter 17-610 pertains to "Reuse of Reclaimed Water and Land Application." F.A.C. Rule 17-610.517 is entitled "Surface Runoff Control." Paragraph (1) of the rule requires that the land application site be designed to prevent the entrance of surface runoff, if necessary by placement of berms around the application area for this purpose. Paragraph (2) of the rule provides: Discharge from perimeter drainage features that collect reclaimed water after land application, shall be restricted by surface water quality considerations pursuant to additional treatment or WQBEL provisions of Rules 17-600.420(2) and 17-600.430, F.A.C., respectively. Rapid-rate land application systems that result in the collection and discharge of more than 50 percent of the applied reclaimed water shall be considered as effluent disposal systems. Rules 17-600.420(2) and 17-600.430 establish additional levels of wastewater treatment for facilities that discharge to surface waters. The Department is in the process of amending part (2) of Rule 17- 610.517(2) by separating the sentences, making the second sentence a new part (3) of the rule, and explaining that the new part (3) would be used solely to classify projects as "reuse" or "disposal" and would in no way affect the requirements of part (2) of the rule. This amendment explicitly would codify in the rule the explanation in the Rhodes memo that the second sentence of current Rule 17-610.517(2) addresses the classification of disposal systems and, to that end, establishes as a benchmark the "collection and discharge [in the ditches] of more than 50 percent of the applied reclaimed water." F.A.C. Rule 17-610.522, entitled "Subsurface Drainage," provides: Subsurface drain systems, where necessary, shall be designed in accordance with appropriate portions of Rule 17-610.300(4)(f), F.A.C., concerning Soil Conservation Service criteria for subsurface drains. The drainage system shall be designed so that the seasonal high water table is drawn down to a minimum of 36 inches below pond bottoms during resting periods. Pollutant content (including fecal coliforms) of the reclaimed water collected by the underdrains may be further restricted by surface water quality considerations pursuant to additional treatment or WQBEL provisions of Rules 17-600.420(2) or 17-600.430, F.A.C., respectively. Rapid-rate land application systems that result in the collection and discharge of more than 50 percent of the applied reclaimed water shall be considered as effluent disposal systems. The Department also is in the process of amending Rule 17-610.522 by separating the sentences, making the last sentence a new part (2) of the rule, and explaining that the new part (2) would be used solely to classify projects as "reuse" or "disposal" and would in no way affect the requirements of part (1) of the rule. The 50 percent figure in F.A.C. Rules 17-610.517(2) and 17-610.522 was chosen based on deliberations by the 1988-89 Reuse Technical Advisory Committee (RTAC). The RTAC offers technical expertise and advice to the Department as revisions to Chapter 17-610 are drafted. A criterion was needed for categorization purposes, and it was determined that 50 percent represented a reasonable break point. The members of the RTAC represent the national leaders in reuse of reclaimed water. F.A.C. Rule 17-610.521(2) establishes a minimum 500-foot setback distance between the wetted areas of a reuse land application site and Class I and II surface waters of the state, reduced to 100 feet if high-level disinfection is provided. F.A.C. Rule 17-610.521(5) provides that setback distances to other classes of surface waters "shall be sufficient to provide reasonable assurance of compliance with applicable water quality standards." F.A.C. Rule 17-610.521(8) provides: The minimum setbacks . . . shall only be used if, based on review of the soils and hydrogeology of the area, the proposed hydraulic loading rate, quality of the reclaimed water, expected travel time of the ground water to the potable water supply wells and surface waters, and similar considerations, there is reasonable assurance that applicable water quality standards will not be violated. There is a valid reason for not establishing the same minimum setback distances between the wetted edge of percolation ponds and perimeter drainage features that collect reclaimed water after land application. Unlike reclaimed water that disperses and diffuses in the ground before a part of it reaches a water body solely through the ground, even though reclaimed water may travel through the ground for 100 feet before reaching perimeter drainage features, those features then collect and concentrate the resulting mixture of reclaimed water and groundwater for discharge into the surface water, typically at a limited number of discharge points and at higher volumes and flow rates. At some point as it migrates through the ground and mixes with other ground water, reclaimed becomes indistinguishable from naturally occurring ground water. It is, of course, difficult to pinpoint precisely how far from the wetted edge of a percolation pond this occurs.

Florida Laws (5) 120.52120.54120.56120.68403.086
# 2
SRQUS, LLC vs CITY OF SARASOTA AND SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT, 12-002161 (2012)
Division of Administrative Hearings, Florida Filed:Sarasota, Florida Jun. 19, 2012 Number: 12-002161 Latest Update: Oct. 10, 2019

The Issue The issue is whether reasonable assurance has been provided by Sarasota County (County) for the issuance of Environmental Resource Permit (ERP) No. 44040881.000 authorizing the proposed alteration of a drainage ditch in the City of Sarasota (City), and whether Petitioner, SRQUS, LLC, was entitled to receive notice of the application pursuant to Florida Administrative Code Rule 40D-1.603(9)(a) and (b).

Findings Of Fact Parties Petitioner is a Florida limited liability corporation established in 2010 whose only members are Erika and Achim Ginsberg-Klemmt. In 2010, Petitioner purchased parcel 2009-16- 0015 in a tax deed sale. The parcel consists primarily of the submerged lands within the marina basin adjacent to the project area. Petitioner contends that the tax deed accords it ownership of the western most 130 feet of the existing ditch and that the County is not authorized to do work on that property. The City and County dispute this claim and it is now being litigated in circuit court. The City claims ownership or control of all of the project area to be addressed under the permit. The City authorized the County to apply for and construct the improvements authorized by the permit pursuant to an interlocal agreement with the County for consolidation of stormwater management responsibilities. The District is the agency charged with the responsibility of controlling water resources within its geographic boundaries and to administer and enforce chapter 373 and the rules promulgated in rule division 40D. The County submitted the application pursuant to an interlocal agreement with the City and will construct, operate, and maintain the project if the permit is issued. The Project U.S. Highway 41, also known as Tamiami Trail, travels through downtown Sarasota. During rainy months, between Fruitville Road and Second Street, U.S. Highway 41 experiences frequent roadway flooding. At the area where U.S. Highway 41 floods and between the Quay development to the north and the Ritz-Carlton Hotel to the south, is a stormwater ditch that drains west into a marina basin or bayou adjoining Sarasota Bay. However, it does not directly discharge into Sarasota Bay. The ditch is an upland cut drainage ditch approximately 650 feet in length and has been in existence for decades. The ditch is covered under a National Pollutant Discharge Elimination System (NPDES) Municipal Separate Stormwater Sewer System (MS4) permit issued to the County for the surrounding communities. Contaminants in the stormwater system are addressed under this permit. The ditch provides the only outfall for an approximately 46-acre heavily urbanized drainage basin for which stormwater is collected through the stormwater system. The stormwater is discharged into the drainage ditch through a double concrete box culvert under U.S. Highway 41 and is ultimately conveyed to a marina basin adjoining Sarasota Bay. The ditch is located in what was originally platted as the right-of-way for Eighth Street (now known as Second Street) on the Central Broadway subdivision plat within the City. Pursuant to an earlier exemption determination by the District, in 2004 the County conducted maintenance dredging on the easterly portion of the drainage ditch in an effort to remove the sediments and vegetation that had built up in the ditch over the years and reduced its flow. Since that time, the ditch has again filled in as a result of the significant amounts of sedimentation from stormwater flows entering and settling in the ditch and significant amounts of vegetation. Also, flooding on U.S. Highway 41 has become more frequent. In its current condition, the ditch is approximately eight to 12 feet wide and eight to 12 inches deep, is poorly drained due to the sedimentation and heavily overgrown mangroves and nuisance vegetation, and is tidally influenced. Accumulated sediments in the ditch are approximately four feet thick at the eastern end and become thinner at the western end of the ditch. In August 2009, staff from the City, County, District, and Florida Department of Transportation met at the site of the ditch to conduct a pre-application meeting and discuss possible ways of addressing flooding problems at this location. Aside from the ditch improvements being proposed by the County, the only other remedy is to pipe the ditch, which is cost-prohibitive and would defeat the County's goal of keeping as much desirable vegetation in place as possible. To address flooding and maintenance concerns, on September 8, 2011, the County submitted an ERP application to the District to seek authorization to dredge and undertake ditch improvements. The application identifies the ditch as being within City right-of-way. Included with the application was a letter from the City authorizing the County to apply for the ERP on behalf of the City pursuant to their interlocal stormwater agreement. At the time the application was filed, the County Property Appraiser's Office Geographic Information Systems tax parcel map showed the ditch and dredge area as being within the City right-of-way. The proposed project consists of reconstruction of the ditch with a defined channel to be lined with rip rap and geotextile fabric and the addition of two sediment sump boxes. Some of the mangroves and nuisance vegetation will be removed as necessary to construct the ditch improvements. Mangroves will be preserved where not impacted by construction. The Property Dispute Petitioner claims ownership of the western 130 feet of the right-of-way in which the ditch is located. As noted above, at the time the permit application was submitted, official property records showed the existing ditch as located within City right-of-way. Therefore, the County and District had no reason to doubt City ownership or control of the ditch area. A recently filed circuit court action seeks to determine ownership of a portion of the right-of-way in which the ditch is located. The circuit court has exclusive jurisdiction over all actions involving the titles and boundaries or right of possession of real property. District rules permit applicants to demonstrate sufficient ownership or legal control of the proposed project area in order to conduct the activities to be permitted. An applicant with eminent domain authority that does not have ownership or control for all property necessary for the proposed project may rely on its eminent domain authority to demonstrate sufficient ownership or legal control of the property necessary to construct the project. The permit will be conditioned to prohibit construction until all ownership or legal control of the property necessary to construct the project is acquired by the permittee. See Fla. Admin. Code R. 40D-4.301(1)(j); BOR § 2.0. The proposed permit contains Specific Condition No. 8 which enforces this requirement. Reasonable assurance of sufficient ownership or legal control of the project area is provided by virtue of the City's and County's eminent domain authority and the fact that the proposed permit prohibits construction until the permittee acquires all necessary ownership or other legal control of the property necessary to construct the project. Notice Requirements Petitioner contends the permit should be denied because it did not receive notice of the application pursuant to rule 40D-1.603(9). That rule provides that when the applicant is an entity with the power of eminent domain that does not have current ownership or control of the entire project area as described in the application, the applicant shall provide the property owner(s) identified in the application with so-called eminent domain noticing, which consists of (a) written notice of District receipt of the application, and (b) written notice of agency action on the application. Persons entitled to eminent domain noticing are owners of property located within the proposed project area as identified in the county property appraiser's records within 30 days prior to the filing of the application. The purpose of the District's eminent domain noticing provision is to provide notice and an opportunity to be heard to owners of property subject to being condemned or otherwise acquired by the applicant for part of the project area. As originally submitted, the application proposed some activities extending approximately ten feet into the marina basin and beyond the claimed City right-of-way. The permit application did not indicate City ownership or control of submerged lands within the marina basin. Consequently, in its request for additional information (RAI), the District advised that pursuant to rule 40D-1.603(9)(a) and (b), eminent domain notices to affected landowners would be required for any proposed easements over offsite property. As part of the application process, a seagrass study was prepared which showed seagrasses and oyster beds growing in the marina basin just beyond the end of the ditch, where some construction activity was proposed. Because seagrasses were observed growing at the end of the ditch, the County responded to the RAI by scaling back the project to confine activities to the City's right-of-way. With the change in project area, offsite easements were no longer necessary for the project. Thus, the project no longer required eminent domain noticing pursuant to rule 40D-1.603(9). The County and District acknowledge that Petitioner did not receive eminent domain notices. Although not provided notice, Petitioner nevertheless became aware of the permit application during the course of its own application process with the Department of Environmental Protection (DEP) for an ERP to construct a 4,760-square foot, ten-slip docking facility on its adjacent submerged lands in the marina basin. The lack of notice has not prevented Petitioner from challenging the project or has otherwise prejudiced it. Having received actual notice of the permit, Petitioner filed a timely objection and request for hearing in this matter. Petitioner contends that while it does not oppose the ditch dredging, it would have wanted an opportunity to suggest a re-design of the ditch to include a dingy dock and kayak launching facility. Although it has known of the project since at least May 21, 2012, when it filed its first petition, and probably several months earlier, Petitioner has not provided the County or District with any alternative designs to maximize the potential for recreational use of the drainage canal. There is no requirement for ERP applicants to provide alternative designs to maximize potential public recreational uses. Requiring the County to do so would impose requirements that go beyond the conditions for permit issuance. ERP Permitting Criteria To obtain an ERP, a permit applicant must provide reasonable assurance that the proposed activities will not cause adverse impacts to water quality, water quantity, and other environmental resources. For activities proposed in, on, or over wetlands and other surface waters, reasonable assurance must also be provided that such activities are not contrary to the public interest and do not cause unacceptable cumulative impacts upon wetlands and other surface waters. The conditions for issuance of an ERP are set forth in rules 40D-4.301 and 40D-4.302. The standards and criteria in the BOR are used to determine whether an applicant has met the conditions for issuance in those two rules. The parties have stipulated that the project either complies with the following conditions for issuance or that they are not applicable: 40D-4.301(1)(b), (c), (g), (h), (j), and (k) and 40D-4.302(1)(a)6. Also, rule 40D-4.302(1)(c) and (d), which concerns projects located in, adjacent to, or in close proximity to certain shellfish harvesting waters or which involve vertical seawalls, is not applicable to this matter. Based on the parties' Stipulation, at issue is whether reasonable assurance has been provided that the proposed activities will not cause adverse water quantity impacts to receiving waters and adjacent lands (40D-4.301(1)(a)); will not adversely impact the value of functions provided to fish and wildlife by wetlands and other surface waters (40D-4.301(1)(d)); will not adversely affect the quality of receiving waters such that applicable state water quality standards will be violated (40D-4.301(1)(e)); and will not cause adverse secondary impacts to the water resources (40D-4.301(1)(f)). Petitioner also contends that the County has failed to give reasonable assurance that the project is not contrary to the public interest and that it will not cause unacceptable cumulative impacts, as required by rule 40D-4.302(1)(a) and (b). Water Quantity Impacts Rule 40D-4.301(1)(a) requires reasonable assurance be provided that the project will not cause adverse water quantity impacts to receiving waters and adjacent lands. Existing and post-construction flows were modeled by the County using the accepted Inter-Connected Pond Routing model. Drainage calculations demonstrate that for the 25-year storm, the flood stage will be reduced by 1.94 feet, and for the 100-year storm event, by 1.75 feet, which will provide flood relief. Modeling results demonstrate a reduction in flood stages not just for U.S. Highway 41 but for other adjoining properties. The evidence establishes that while the project is not designed to eliminate all potential flooding, flooding during normal events will be reduced. Specifically, no adverse water quantity impacts were demonstrated with respect to Petitioner's adjacent submerged lands. Improvements proposed to the ditch will increase its storage capacity and allow water to flow more efficiently. By increasing the storage and hydraulic efficiency of the ditch without generating any additional runoff volume, the proposed activities will not cause adverse water quantity impacts and will have no adverse water quantity impacts on the receiving waters. Reasonable assurance has been demonstrated that the project will not cause adverse water quantity impacts to receiving waters or adjacent lands and will not cause adverse flooding to on-site or off-site property, including adjacent submerged lands owned by Petitioner. Impact on Value of Functions Rule 40D-4.301(1)(d) requires that reasonable assurance be provided that project activities "will not adversely impact the value of functions provided to fish and wildlife, and listed species including aquatic and wetland dependent species, by wetlands, other surface waters and other water related resources of the District." The existing ditch provides limited ecological functions for fish and wildlife, as it contains significant levels of exotics and nuisance vegetation that provide little in the way of habitat. The removal of the nuisance vegetation, improved water circulation, and decreased sediments will be an improvement. The proposed ditch reconstruction and replanting with other vegetation will provide a more suitable habitat for younger life stages of fish such as sea trout, red fish, and hog chokers, which are species typically found in tidally influenced drainage systems. Overall, the proposed project will result in an improved habitat available for fish and wildlife. The project will retain as many of the existing mangroves as possible, thereby retaining the ecology of the mangrove wetlands. Reasonable assurance has been provided that the project will not adversely impact the value of functions being provided to fish and wildlife and will actually improve the ecological functions provided by the ditch. Quality of Receiving Waters Rule 40D-4.301(1)(e) requires that reasonable assurance be provided that the proposed ditch alterations will not adversely affect the quality of receiving waters such that water quality standards will be violated. The parties have stipulated that the project will not violate water quality standards set forth in rule chapters 62-522 and 62-550. Petitioner contends, however, that reasonable assurance has not been provided concerning possible impacts relating to surface water quality standards in rule chapter 62-302, the anti- degradation provisions of rule chapter 62-4, or the groundwater permitting and monitoring requirements of rule chapter 62-522. No evidence was presented by Petitioner that the activities will adversely affect the groundwater protection provisions of rule chapter 62-522. The proposed ditch alterations do not involve activities relating to these state water quality standards. Under BOR section 3.2.4, reasonable assurance must be provided for the short term and the long term that water quality standards are not violated. As to potential construction or short-term impacts, the proposed construction work involves the removal of sediments accumulated in the ditch, reconstruction of the ditch to be wider and deeper and within a more defined course, the addition of rip rap and geotextile fabric on the ditch bottom, and replanting of the ditch banks with salt- tolerant grasses and other vegetation to provide soil stabilization and erosion control. The proposed permit addresses the potential for turbidity during construction activities to cause short-term water quality violations by authorizing a temporary mixing zone and by requiring the installation of turbidity barriers and ongoing turbidity monitoring during construction. To further minimize the potential for any water quality violation during construction activities, construction methods will include the use of cofferdams or similar techniques to provide a barrier between the open water of the marina basin and the work being constructed within the ditch, which will be undertaken in segments starting at the eastern outfall at U.S. Highway 41. These provisions adequately address the potential for any short- term water quality impacts and are consistent with BOR provisions relating to short-term water quality. As to possible long-term water quality impacts, the evidence establishes that the proposed activities will not add any additional pollutants or new pollutant source to the receiving waters and will not cause or contribute to any violation of water quality standards. To the contrary, by removing existing stormwater sediments, which are known to contain pollutants, controlling sedimentation through collection of sediments in sediment sumps, and armoring the ditch channel to prevent erosion, water quality is expected to improve. The proposed sediment sumps to be added as a best management practice are appropriately sized to handle the approximately 5,600 pounds of sediments that accumulate annually in the ditch, as determined by annual pollutant load calculations provided by the County. The sumps will be located most efficiently at the outfall where the ditch begins. Preventing sediments from entering the receiving waters is one of the best things that can be done to improve water quality in nearby Sarasota Bay. Improvements in water quality are also expected to occur as a result of the addition of rip rap that will dissipate the flow energy, thereby allowing any remaining sediments to settle down, and the geotextile fabric that will keep soil in place and not allow it to float up. The sodding and replanting of the ditch embankments will also prevent side erosion from occurring, which erosion could add sediments in the ditch. Once constructed, the ditch will be regularly maintained by the County, with sediments to be cleaned out of the sump on a quarterly schedule. Any sediments settling on the rip rap and on plant vegetation would be cleaned out as needed, as determined by regular inspections. Petitioner contends that reasonable assurance has not been provided to show that water quality standards in rule chapter 62-302, and the anti-degradation provisions of rule chapter 62-4, will not be violated by the proposed activities. Its expert opined that the impact of the proposed activity on state water quality standards cannot be determined because no sampling of the receiving water was conducted, the permit does not require compliance monitoring, and the existing ditch sediments were not sufficiently analyzed. The evidence establishes that it can be reasonably presumed, without compliance monitoring or sampling, that the water flowing from the 46-acre urbanized watershed served by the ditch contains sediments and other pollutants typically associated with urban runoff. Most of the expected pollutants are contained within, or settle into the sediments that are deposited into, the ditch. By removing sediments through the use of adequately sized sediment sumps, slowing the water down to allow suspended solids to settle out within the ditch, adding geotextile fabric and rip rap covering the ditch bottom, establishing vegetation on the ditch sidebanks to prevent erosion, and implementing periodic maintenance through vacuum removal of collected sediments, the proposed activities will remove pollutants from the water flowing into the ditch and discharging into the marina basin and ultimately entering Sarasota Bay. Thus, it is reasonable to expect without sampling or monitoring that the proposed activities will improve water quality. In addition to identifying the positive benefits of the proposed activities, the evidence established that the proposed activities will not add a pollutant source to the receiving waters. This was not credibly disputed by Petitioner. Because the project does not generate pollutants, the proposed activities will not cause or contribute to a violation of state water quality standards. There is no reason to require pre-construction or baseline sampling to compare with post- construction sampling, as no pollutants will be generated. The removal of sediments and ongoing ditch maintenance will result in an improvement in water quality. Therefore, it can be reasonably assured without requiring sampling or monitoring that the activities will not result in any violations of state water quality standards. Secondary Impacts Rule 40D-4.301(1)(f) and BOR section 3.2.7 require that an applicant provide reasonable assurance that a regulated activity will not cause adverse secondary impacts to the water resource. As originally proposed, the project included activities extending beyond the end of the ditch and into the marina basin, where seagrasses and oyster beds are present. By avoiding impacts to these resources, the project also avoids any secondary impacts to manatees that may frequent Sarasota Bay. Turbidity control measures to be used during construction will also avoid secondary impacts to these resources. Petitioner provided no evidence that secondary impacts would occur as a result of the project. Reasonable assurance has been provided that the proposed activities will not result in any secondary impacts to the water resources. Public Interest Test Rule 40D-4.302(1)(a) requires an applicant to provide reasonable assurance that activities to be located in, on, or over wetlands and other surface waters will not be contrary to the public interest, as determined by balancing certain criteria, or if such activity significantly degrades or is within an Outstanding Florida Water (OFW), that the activity will be clearly in the public interest. The proposed activities are not located within Sarasota Bay, a designated OFW. Petitioner provided no evidence that the proposed activities would significantly degrade that body of water. Therefore, the County need only demonstrate that the proposed activities are not contrary to the public interest. The parties have stipulated that rule 40D- 4.302(1)(a)6., which governs historical and archaeological resources, is not applicable to this matter. The remaining criteria at issue are whether the activity will adversely affect the public health, safety, or welfare or the property of others; whether the activity will adversely affect the conservation of fish and wildlife, including endangered or threatened species, or their habitats; whether the activity will adversely affect navigation or the flow of water or cause harmful erosion or shoaling; whether the activity will adversely affect the fishing or recreational values of marine productivity in the vicinity of the activity; whether the activity will be of a temporary or permanent nature; and the current condition and relative value of functions being performed by areas affected by the proposed activity. The evidence establishes that the project will reduce flooding during normal stages and remove sediments. By reducing the potential for roadway flooding and improving water quality through sediment reduction, the project will have a beneficial impact on public health, safety, and welfare, and will not adversely affect the property of others. Efforts were made to reduce or eliminate impacts to wetlands and other surface waters in the design of the project. Proposed activities will involve the removal of some of the existing mangroves. Based upon an analysis conducted pursuant to the Uniform Mitigation Assessment Manual, the unavoidable impacts to wetlands and other surface waters will result in a functional loss score of 0.08. Unavoidable wetland and other surface water impacts anticipated from the project will be appropriately mitigated through the use of a 0.08 credit from the Curry Creek Regional Offsite Mitigation Area (ROMA). The evidence demonstrates that the project will not adversely affect the value of functions provided by wetlands and other surface waters to conservation of fish and wildlife, including any endangered or threatened species, or their habitats and will actually result in an improvement in wetland and other surface water functions and habitat. The evidence establishes that the proposed activities will not adversely impact navigation or the flow of water and will not cause erosion or shoaling. The ditch reconstruction will prevent the possibility of shoaling at the downstream end of the ditch adjoining Petitioner's submerged lands by increasing the width of the ditch, slowing the water down, removing sedimentation along the ditch bottom, and reducing erosion through the planting of salt-tolerant sod and other vegetation along the ditch side banks. Petitioner presented no contrary evidence. No adverse impacts are expected to occur with respect to fishing or recreational values or marine productivity in the vicinity of the proposed activity. By removing sediments, the project will provide an improvement to fishing and recreational activities in the marina basin and Sarasota Bay. Petitioner raised concerns regarding the amount of floatable material that will be discharged from the ditch as a result of removal of mangroves. As provided in the permit plans, significant portions of the mangroves will remain undisturbed. Under current conditions, the ditch and mangroves do not prevent or trap all trash and floatables entering the ditch. On-site observations of existing conditions confirmed there is not a large amount of trash and floatables currently being retained by existing mangroves. Any temporarily retained floatables within the ditch area ultimately float out to Sarasota Bay with the tide. The evidence establishes that even with the removal of some mangroves, the project is not expected to result in an easier flow or increased amount of floatables entering the marina basin. Finally, because the project activities do not add floatable materials to the ditch, requiring the County to implement design changes to remove floatables would exceed what is necessary to meet the conditions for permit issuance. Petitioner also raised concerns regarding the levels of fecal coliform and the possibility of illicit connections to the stormwater collection outfalls to the ditch. The ditch is part of a MS4 permit that is regulated pursuant to NPDES Permit No. FLS000004 issued to the County. The NPDES permit governs stormwater discharges within the unincorporated portions of the County, the municipalities within the County, and that part of Longboat Key that is in Manatee County. The primary function of the MS4 permit is to address issues of water quality as they relate to stormwater discharges. The MS4 permit requirements would be the appropriate regulatory framework to address elevated fecal coliform, illicit connections, or other water quality concerns in the stormwater emanating from the drainage basin served by the ditch, and not the ERP regulatory program. Having weighed and balanced the six applicable criteria, and based upon the evidence presented, the County has provided reasonable assurance that the proposed activities will not be contrary to the public interest. Cumulative Impacts Rule 40D-4.302(1)(b) requires an applicant to demonstrate that the proposed activities will not cause unacceptable cumulative impacts on wetlands and other surface waters, as further described in BOR sections 3.2.8 through 3.2.8.2. BOR section 3.2.8 provides that if an applicant proposes to mitigate any adverse impacts within the same drainage basin as the impacts, and if the mitigation fully offsets those impacts, then the regulated activity is considered to have no unacceptable cumulative impacts upon wetlands and other surface waters. Mitigation for unavoidable wetland impacts upon wetlands will be provided through the use of the 0.08 credit from the Curry Creek ROMA. The evidence establishes that the proposed mitigation fully offsets the impacts and is within the same drainage basin as the proposed impacts. No adverse cumulative impacts will occur with the project. Petitioner presented no contrary evidence of adverse cumulative impacts. Impaired Receiving Waters Petitioner contends that the project does not comply with the requirements of rule 40D-4.301(2) and related BOR section 3.2.4.5, which are applicable when existing ambient water quality does not meet state water quality standards. Rule 40D-4.301(2) provides that if an applicant is unable to meet water quality standards because existing ambient water quality does not meet standards, the applicant shall meet the requirements of BOR section 3.2.4.5 and related sections cited in that provision. Together, these provisions require that where existing ambient water quality does not meet standards, the applicant must demonstrate that for the parameters that do not meet water quality standards, the proposed activity will not contribute to the existing violation. If it does contribute to the existing violation, mitigation measures will be required that result in a net improvement of the water quality in the receiving waters for the parameter that does not meet standards. The marina basin that is the receiving waters for the ditch has been identified by DEP as impaired due to levels of mercury in fish tissue. The evidence demonstrates that the project will not contribute to this water quality violation. Although not required to implement mitigation measures that will cause a net improvement of the levels of mercury in fish tissue, the evidence establishes that to the extent existing sediments contain mercury deposits, removal of the sediments reduce a source of mercury that can be ingested by fish in the receiving waters. Water Quality Certification Petitioner contends that Specific Condition No. 9 of the proposed permit, which expressly waives certification of compliance with state water quality standards, is contrary to Section 401 of the Clean Water Act, 33 U.S.C. § 1341, and inconsistent with the legislative declaration of policy set forth in section 373.016(3)(f) and (j). As explained by unrefuted testimony of the District, the water quality certification provisions of Section 401 allow states an opportunity to address the water resource impacts of federally issued permits and licenses. Under Section 401, a federal agency cannot issue a permit or license for an activity that may result in a discharge to waters of the United States unless the affected state has granted or waived Section 401 certification. A state may grant, deny, or waive certification. Granting certification allows the federal permit or license to be issued. Denying certification prohibits the federal permit or license from being issued. Waiving certification allows the permit or license to be issued without state comment. Pursuant to rule 40D-4.101(4), an application for an ERP shall also constitute an application for certification of compliance with state water quality standards where necessary pursuant to Section 401. Issuance of the permit constitutes certification of compliance with water quality standards unless the permit is issued pursuant to the net improvement provision of section 373.414(1), or the permit specifically states otherwise. By letter dated February 2, 1998, to the United States Environmental Protection Agency, DEP has delegated to the state's five water management districts the authority to issue, deny, or waive water quality certifications under Section 401. DEP has also established categories of activities for which water quality certification will be considered waived. Under the DEP delegation, water management districts may waive water quality certification for four situations, one of which is when the permit or authorization expressly so provides. This is still current DEP direction. The types of permitting decisions which constitute the granting of water quality certification and the types of activities for which water quality certification could be considered waived are also addressed in the current Operating Agreement between the United States Army Corps of Engineers (USACE), DEP, and the five water management districts. According to both DEP guidance and the water management district agreement with the USACE, water quality certification will be considered waived when the permit or authorization expressly so states. The District most often expressly waives water quality certification for permits issued pursuant to the net improvement provisions and for projects that discharge into impaired waters. Proposed Specific Condition No. 9 of the permit expressly waives water quality certification due to the fact that the receiving waters are listed by DEP as impaired. Conditioning of the permit in this manner is consistent with DEP guidance and District practice under these circumstances. Although water quality certification for federal permitting review purposes is waived, the project must still comply with water quality requirements by demonstrating that the proposed activities do not cause or contribute to a violation of state water quality standards or if the activities contribute to an existing violation, that a net benefit is provided. The evidence establishes that the project will not cause or contribute to a violation of water quality standards and is not expected to contribute to the receiving water impairment of elevated mercury levels in fish tissue. While not required, the project is nevertheless expected to have a positive benefit on overall water quality and likely will reduce mercury levels in fish tissue by removing the sediments that contain metals such as mercury. The District's waiver of water quality certification is consistent with Section 401, the legislative declaration of policy set forth in section 373.016(3)(f) and (j), and applicable regulatory practices for Clean Water Act water quality certification.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the Southwest Florida Water Management District enter a final order approving the issuance of ERP No. 44040881.000 to the City and County, as joint permittees. DONE AND ENTERED this 7th day of May, 2013, in Tallahassee, Leon County, Florida. S D. R. ALEXANDER Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 7th day of May 2013. COPIES FURNISHED: Blake C. Guillery, Executive Director Southwest Florida Water Management District 2379 Broad Street Brooksville, Florida 34604-6899 Erika Ginsberg-Klemmt SRQUS, LLC 3364 Tanglewood Drive Sarasota, Florida 34239-6515 Achim Ginsberg-Klemmt SRQUS, LLC 3364 Tanglewood Drive Sarasota, Florida 34239-6515 Martha A. Moore, Esquire Southwest Florida Water Management District 7601 Highway 301 North Tampa, Florida 33637-6758 Alan W. Roddy, Esquire Office of the County Attorney 1660 Ringling Boulevard, Second Floor Sarasota, Florida 34236-6808 Michael A. Connolly, Esquire Fournier, Connolly, Warren & Shamsey, P.A. One South School Avenue, Suite 700 Sarasota, Florida 34237-6014

USC (2) 33 U.S.C 1333 U.S.C 1341 Florida Laws (7) 120.569120.57120.6826.012373.016373.414373.421 Florida Administrative Code (3) 40D-4.30140D-4.30240D-4.351
# 3
OLD FLORIDA PLANTATION, LTD. vs POLK COUNTY BOARD OF COUNTY COMMISSIONERS AND SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT, 00-004928 (2000)
Division of Administrative Hearings, Florida Filed:Bartow, Florida Dec. 07, 2000 Number: 00-004928 Latest Update: Nov. 05, 2001

The Issue The issue in this matter is whether Respondent, Polk County Board of Commissioners (Polk County or County) has provided Respondent, Southwest Florida Water Management District (SWFWMD), with reasonable assurances that the activities Polk County proposed to conduct pursuant to Standard General Environmental Resource Permit (ERP) No. 4419803.000 (the Permit) meet the conditions for issuance of permits established in Rules 40D-4.301, and 40D-40.302, Florida Administrative Code. (All rule citations are to the current Florida Administrative Code.)

Findings Of Fact Events Preceding Submittal of ERP Application The Eagle-Millsite-Hancock drainage system dates back to at least the 1920's, and has been altered and modified over time, especially as a result of phosphate mining activities which occurred on OFP property in the 1950's-1960's. The system is on private property and is not owned and was not constructed by the County. Prior to 1996, the Eagle-Millsite-Hancock drainage system was in extremely poor repair and not well- maintained. The Eagle-Millsite-Hancock drainage system originates at Eagle Lake, which is an approximately 641-acre natural lake, and discharges through a ditch drainage system to Lake Millsite, which is an approximately 130-acre natural lake. Lake Millsite drains through a series of ditches, wetlands, and ponds and flows through OFP property through a series of reclaimed phosphate pits, ditches and wetlands and ultimately flows into Lake Hancock, which is an approximately 4500-acre lake that forms part of the headwaters for the Peace River. The drainage route is approximately 0.5 to 1 mile in overall length. The Eagle-Millsite-Hancock drainage system is one of eight regional systems in the County for which the County and SWFWMD have agreed to share certain funding responsibilities pursuant to a 1996 letter agreement. To implement improvements to these drainage systems, Polk County would be required to comply with all permitting requirements of SWFWMD. During the winter of 1997-1998, Polk County experienced extremely heavy rainfall, over 39 inches, as a result of El Nino weather conditions. This unprecedented rainfall was preceded by high rainfalls during the 1995-1996 rainy season which saturated surface waters and groundwater levels. During 1998, Polk County declared a state of emergency and was declared a federal disaster area qualifying for FEMA assistance. Along the Lake Eagle and Millsite Lake drainage areas, septic tanks were malfunctioning, wells were inundated and roads were underwater. The County received many flooding complaints from citizens in the area. As a result of flooding conditions, emergency measures were taken by the County. The County obtained SWFWMD authorization to undertake ditch cleaning or vegetative control for several drainage ditch systems in the County, including the Eagle-Millsite-Hancock drainage system. No SWFWMD ERP permit was required or obtained for this ditch cleaning and vegetative control. During its efforts to alleviate flooding and undertake emergency ditch maintenance along the Eagle-Millsite-Hancock drainage route, the County discovered a driveway culvert near Spirit Lake Road which was crushed and impeding flow. The evidence was unclear and contradictory as to the size of the culvert. Petitioner's evidence suggested that it consisted of a 24-inch pipe while evidence presented by the County and by SWFWMD suggested that it was a 56-inch by 36-inch arched pipe culvert. It is found that the latter evidence was more persuasive. On February 25, 1998, the County removed the crushed arched pipe culvert at Spirit Lake Road and replaced it with two 48-inch diameter pipes to allow water to flow through the system. The replacement of this structure did not constitute ditch maintenance, and it required a SWFWMD ERP. However, no ERP was obtained at that time (although SWFWMD was notified prior to the activity). (One of the eight specific construction items to be authorized under the subject ERP is the replacement of this culvert.) Old Florida Plantation, Ltd. (OFP) property also experienced flooding during February 1998. OFP's property is situated along the eastern shore of Lake Hancock, and the Eagle- Millsite-Hancock drainage system historically has flowed across the property before entering Lake Hancock. In the 1950's and 1960's, the property was mined for phosphate. The mining process destroyed the natural vegetation and drastically altered the soils and topography, resulting in the formation of areas of unnaturally high elevations and unnaturally deep pits that filled with water. OFP purchased the property from U.S. Steel in 1991. The next year OFP initiated reclamation of the property, which proceeded through approximately 1998. In 1996, OFP applied to the County for approval of a development of regional impact (DRI). OFP blamed the flooding on its property in 1998 on the County's activities upstream, claiming that the property had never flooded before. But upon investigation, the County discovered a 48-inch diameter pipe on OFP property which, while part of OFP's permitted drainage system, had been blocked (actually, never unopened) due to OFP's concerns that opening the pipe would wash away wetlands plants recently planted as part of OFP's wetland restoration efforts. With OFP and SWFWMD approval, the County opened this pipe in a controlled manner to allow flowage without damaging the new wetlands plants. Following the opening of this blocked pipe, OFP property upstream experienced a gradual drop in flood water levels. When the water level on OFP's property stabilized, it was five feet lower and no longer flooded. Nonetheless, OFP continues to maintain not only that the County's activities upstream caused flooding on OFP property but also that they changed historic flow conditions. This contention is rejected as not being supported by the evidence. Not only did flooding cease after the 48-inch pipe on OFP's property was opened, subsequent modeling of water flows also demonstrated that the County's replacement of the crushed box culvert at the driveway on Spirit Lake Road as described in Finding 8, supra, did not increase flood stages by the time the water flows into the OFP site and did not cause flooding on OFP property in 1998. (To the contrary, OFP actions to block flows onto its property may have contributed to flooding upstream.) On October 6, 1998, the County entered into a contract with BCI Engineers and Scientists to initiate a study on the Eagle-Millsite-Hancock drainage system, identify options for alleviating flooding along the system and prepare an application for an ERP to authorize needed improvements to the system. Prior to the County's submittal of an ERP application, SWFWMD issued a conceptual ERP to OFP for its proposed wet detention surface water management system to support its proposed DRI on the OFP property. OFP's conceptual permit incorporated the Eagle-Millsite-Hancock drainage system and accommodated off-site flowage into the system. Before submitting an ERP application to SWFWMD, the County had communications with representatives of OFP concerning an easement for the flow of the drainage system through OFP property. In March 1999, the County reached an understanding with OFP's engineering consultant whereby OFP would provide the County with an easement across OFP lands to allow water to flow through to Lake Hancock. In turn, the County would: construct and pay for a control structure and pipe east of OFP to provide adequate flowage without adversely affecting either upstream or downstream surface waters; construct and upgrade any pipes and structures needed to convey water across OFP property to Lake Hancock; and provide all modeling data for OFP's review. The ERP Application Following completion of the engineering study, the County submitted ERP Application No. 4419803.000 for a Standard General ERP to construct improvements to the Eagle-Millsite- Hancock drainage system on August 18, 1999. Eight specific construction activities are proposed under the County's project, at various points along the Eagle- Millsite-Hancock drainage system as follows: 1) Add riprap along channel bottom; 2) Modify culvert by replacing 56-inch by 36- inch arch pipe by two 48-inch pipes (after-the-fact, done in 1998, as described in Finding 8, supra); 3) Add riprap along channel bottom; 4) Add box, modify culvert by replacing existing pipe with two 48-inch pipes, add riprap along channel bottom; 5) add riprap along channel bottom; 6) Add weir, modify culvert by replacing existing 24-inch pipe with two 48-inch pipes, add riprap along channel bottom; 7) Add box and modify culvert by replacing existing 24-inch pipe with two 48-inch pipes; 8) Modify existing weir. Under the County's application, construction activities Nos. 6, 7, and 8 would occur on OFP property. In addition, it was proposed that surface water would flow across OFP's property (generally, following existing on-site drainage patterns), and it was indicated that flood elevations would rise in some locations on OFP's property as a result of the improvements proposed in the County's application. (Most if not all of the rise in water level would be contained within the relatively steep banks of the lakes on OFP's property--the reclaimed phosphate mine pits.) In its application, the County stated that it was in the process of obtaining easements for project area. As part of the ERP application review process, SWFWMD staff requested, by letter dated September 17, 1999, that the County clarify the location of the necessary rights-of-way and drainage easements for the drainage improvements and provide authorization from OFP as property owner accepting the peak stage increases anticipated in certain OFP lakes as a result of the County's proposed project activities. On September 28, 1999, OFP obtained a DRI development order (DO) from the County. In pertinent part, the DRI DO required that OFP not adversely affect historical flow of surface water entering the property from off-site sources. Historical flow was to be determined in a study commissioned by the County and SWFWMD. The DO appeared to provide that the study was to be reviewed by OFP and the County and approved by SWFWMD. Based on the study, a control structure and pipe was to be constructed, operated and maintained by the County at the upstream side of the property that would limit the quantity of off-site historical flow, unless otherwise approved by OFP. OFP was to provide the County with a drainage easement for this control structure and pipe, as well as a flowage easement from this structure, through OFP property, to an outfall into Lake Hancock. The DO specified that the flowage easement was to be for quantitative purposes only and not to provide water quality treatment for off-site flows. The DO required OFP to grant a defined, temporary easement prior to first plat approval. In its November 11, 1999, response to SWFWMD's request for additional information, the County indicated it would obtain drainage easements and that it was seeking written acknowledgment from OFP accepting the proposed increases in lake stages. During the ERP application review process, the County continued efforts to obtain flowage easements or control over the proposed project area and OFP's acknowledgment and acceptance of the increase in lake stages. At OFP's invitation, the County drafted a proposed cross-flow easement. But before a binding agreement could be executed, a dispute arose between OFP and the County concerning other aspects of OFP's development plans, and OFP refused to enter into an agreement on the cross- flow easement unless all other development issues were resolved as well. On August 4, 2000, in response to SWFWMD's request that the County provide documentation of drainage easements and/or OFP's acceptance of the increased lake stages on OFP property, the County submitted a proposed and un-executed Perpetual Flowage and Inundation Easement and an Acknowledgment to be signed by OFP accepting the increased lake stages. On August 7, 2000, the OFP property was annexed by the City of Bartow (the City). On October 16, 2000, the City enacted Ordinance No. 1933-A approving OFP's DRI application. The City's DO contained essentially the same provision on Off- Site Flow contained in the County's DO. See Finding 18, supra. However, the City's DO specified that the historical flow study was required to be reviewed and approved by OFP (as well as by the County and by SWFWMD). OFP has not given formal approval to historical flow studies done to date. On October 6, 2000, SWFWMD issued a Notice of Final Agency Action approving Polk County ERP No. 4419803.000. Permit Specific Condition No. 7 provides that "all construction is prohibited within the permitted project area until the Permittee acquires legal ownership or legal control of the project area as delineated in the permitted construction drawings." As a result of this permit condition, the County cannot undertake construction as authorized under the Permit until any needed easement or legal control is obtained. Precise Easement Route Approximately two months before final hearing, a dispute arose as to the precise cross-flow easement route proposed by the County. OFP had understood that the County's proposed route was based on a detailed survey. But closer scrutiny of the County's proposed route indicated that it cut corners of existing lakes on OFP's property, crossed residential lots proposed by OFP, and veered north into uplands (also proposed for residential use) in the western portion of the route before looping south and then north again to the outfall at Lake Hancock. Information subsequently revealed in the course of discovery suggested that the County's proposed route may have been based on pre-reclamation topography of OFP's property. After OFP recognized the implications of the cross- flow easement route being proposed by the County, OFP provided the County with several different alternative easement routes through the OFP property. While agreement as to the precise route has not yet been reached, the precise route of the easement is not significant to the County, as long as water can flow across OFP property to Lake Hancock and so long as the County does not have to re-locate existing ditches. Such adjustments in the location of the proposed flowage easement would not affect SWFWMD staff's recommendation for permit issuance, as long as it covered the defined project areas. In addition, OFP's current site plan is a preliminary, conceptual plan subject to change before it is finalized. Regardless what cross-flow easement route is chosen, it will be temporary and subject to modification when OFP's development plan is finalized. If the County is unable to not negotiate a flowage easement across OFP property, it could obtain whatever easement is required through use of the County's eminent domain powers. The County's acquisition of an easement to accommodate a flowage route and anticipated increased stage on OFP property gives reasonable assurance that any stage increases will not cause adverse impacts to OFP property and gives reasonable assurance that the County will have sufficient legal control to construct and maintain the improvements. Project Area The County applied for a Standard General Permit and specified a total project area of 0.95 acre. This acreage reflects the area required for actual construction and alteration of control structures and drainage ditches in the preexisting Eagle-Millsite-Hancock system. It does not reflect the entire acreage drained by that system (approximately 1,800 to 2,000 acres). It also does not reflect the area of the cross-flow easement, which the County has yet to obtain. When determining project size for purposes of determining the type of permit applicable to a project, SWFWMD staff considers maximum project area to be limited to the acreage owned or controlled by the applicant. In addition, since this is a retrofit project for improvement of an existing drainage system not now owned or controlled by the County, SWFWMD staff only measured the area required for actual construction and alteration of control structures and drainage ditches. Future easements necessary for future maintenance of the system were not included. When OFP applied for its conceptual ERP for its proposed DRI, the project area was considered to be the acreage owned by OFP. The rest of the basin draining through OFP's property to Lake Hancock (again, approximately 1,800 to 2,000 acres) was not considered to be part of the project area. Water Quantity Impacts The County's project will retrofit certain components of the same drainage system which OFP will utilize for surface water management and treatment pursuant to its conceptual ERP. Modeling presented in the County's application demonstrates that there will be some rises and some lowering of some of the lake levels on OFP's property during certain rain events. Anticipated rises are lower than the top of banks authorized in OFP's conceptual permit; hence the system will continue to function properly. While there are some differences in the County's permit application and OFP's conceptual permit application concerning modeling estimates of flow rates through OFP property, the differences are minor and are attributed to differences in modeling inputs. The County used more detailed modeling information. Any such differences are not significant. Differences in flow rates provided in the County's proposed permit and in OFP's conceptual permit do not render the permits as incompatible. If the County's permit were issued, any modeling undertaken in connection with a subsequent application by OFP for a construction permit would have to be updated to include the County's improvements to the system. This outcome is not a basis for denial of the County's permit. While the rate at which water will flow through the system will increase, no change in volume of water ultimately flowing through the drainage system is anticipated as a result of the County's proposed improvements. The increased lake stages which are anticipated to occur on OFP property as a result of the County's project will not cause adverse water quantity impacts to the receiving waters of Lake Hancock or adjacent lands. The project will not cause adverse flooding to on-site or off-site property. The project will not cause adverse impacts to existing surface water storage and conveyance capabilities. The project will not adversely impact the maintenance of surface or ground water levels or surface water flows established pursuant to Chapter 373.042, Florida Statutes. Water Quality Impacts No adverse impacts to water quality on OFP property are anticipated from the County's proposed drainage improvements. The project will not add any pollutant loading source to the drainage system and is not expected to cause any algae blooms or fish kills in OFP waters or cause any additional nutrient loading into OFP's surface water management systems. As reclaimed phosphate mine pits, the lakes on OFP's property are high in phosphates. Meanwhile, water quality in upstream in Millsite Lake and Eagle Lake is very good. Off-site flow of higher quality water flushing the OFP lakes will improve the water quality on the OFP site. The County's project will have no adverse impact on the quality of water in the downstream receiving of Lake Hancock (which currently has poor water quality due in large part to past phosphate mining). Upstream of OFP, the project will not cause any adverse water quality impacts and is anticipated to result in positive impacts by lessening the duration of any flooding event and thereby lessening septic tank inundation from flooding. This will have a beneficial impact on public health, safety, and welfare. Thus, there is a public benefit to be gained in having the County undertake the proposed drainage and flood control improvements now, rather than waiting for OFP to finalize its plat and construct its development project. The County's proposed improvements do not require any formal water quality treatment system. The improvements are to a conveyance system and no impervious surfaces or other facilities generating pollutant loading will be added. Upstream of OFP, the Eagle-Millsite-Hancock drainage system flows through natural lakes and wetlands systems that provide natural water quality treatment of the existing drainage basin. OFP expressed concern that the County's improvements to drainage through these areas (including the ditch maintenance already performed in 1998) will increase flow and reduce residence time, thereby reducing natural water quality treatment. But ditch maintenance does not require an ERP, and the County gave reasonable assurances that reduction in natural water quality treatment will not be significant, especially in view of the good quality of the water flowing through the system out of Eagle Lake and Millsite Lake. As a result, it is found that the County's proposed project will not adversely affect the quality of receiving waters such that any applicable quality standards will be violated. Indeed, OFP's expert consultant conceded in testimony at final hearing that OFP has no reason to be concerned about the quality of water at present. Rather, OFP's real concern is about water quality in the future. Essentially, OFP is asking SWFWMD to require the County to guarantee OFP that future development in the area will not lead to any water quality problems. Requiring such a guarantee as a condition to issuance of an ERP would go far beyond SWFWMD requirements and is never required of any applicant. Besides being speculative on the evidence in this case, future development in the area will be required to meet applicable SWFWMD water quality requirements. SWFWMD permitting required for such future development would be the proper forum for OFP to protect itself against possible future reduction in water quality (as well as possible future increase in water quantity). Environmental Impacts The drainage ditches to be improved by the County's project were originally constructed before 1984. These upland cut ditches were not constructed for the purpose of diverting natural stream flow, and are not known to provide significant habitat for any threatened or endangered species. The County provided reasonable assurance that the proposed project will not change the hydroperiod of a wetland or other surface water, so as to adversely affect wetland functions or other surface water functions. The functions of the wetlands and surface waters to be affected by the proposed project include conveyance, some water quality treatment, and possibly some wildlife movement or migration functions between the wetlands served by the ditches. Wetland impacts from the project consists of .63 acre of permanent impacts and .21 acre of temporary impacts, for a total of .84 acre of impact. The permanent impacts consist of the replacement of pipes with new structures in the ditches and the addition of rip rap in areas to prevent sedimentation and erosion. The proposed project's anticipated increase in the rate of flow is expected to lessen the duration of any flooding event at the upper end of the drainage system, and at the downstream end is expected to create a subsequent rise in some of the lakes and storage areas on the OFP property during certain rain events. The anticipated rise in some of the reclaimed lakes on OFP property is not anticipated to have any adverse impact on the functions that those surface waters provide to fish, wildlife or any threatened or endangered species. The reclaimed lakes subject to rise in water levels for certain rain events are steep-sided and do not have much littoral zone, and little, if any, loss of habitat will result. The County's application provides reasonable assurance that the anticipated stage increase in affected wetlands or surface waters will not adversely affect the functions provided by those wetlands or surface waters. The County provided reasonable assurance that the proposed project will not violate water quality standards in areas where water quality standards apply, in either the short- term or the long-term. Long-term effects were addressed in Finding 43-51, supra. Short-term water quality impacts anticipated during the construction of the proposed improvements will be addressed through the use of erosion and sediment controls. The proposed project also will not create any adverse secondary impacts to water resources. The project will not cause any adverse impacts to the bird rookery located to the north on OFP property. The project will not cause any adverse impacts to the bass in OFP's lakes, a concern expressed by OFP relatively recently. To the contrary, since the project will improve water quality in OFP's lakes, the impact on OFP's bass is expected to be positive. OFP raised the issue of a bald eagle nesting site located on its property. The evidence was that a pair of bald eagles has built a nest atop a Tampa Electric Company (TECO) power pole on the property in October of each year since 1996. Each year the pair (which is thought to be the same pair) has used a different TECO power pole. Most of the nests, including the one built in October 2000, have been on poles well south of any construction proposed under the County's ERP and clearly outside of the primary and secondary eagle management zones designated by the U.S. Fish and Wildlife Service. But one year, a nest was built on a pole farther north and possibly within the secondary eagle management zone. OFP presented testimony that U.S. Fish and Wildlife would require OFP to apply for an "incidental take" in order to build homes within the primary eagle protection zones around any of the four poles on which eagles have built nests since 1996; timing of construction of homes within the secondary protection zones may be affected. Even accepting OFP's testimony, there was no evidence as to how U.S. Fish and Wildlife would view construction of the County's proposed drainage improvements on OFP property within those zones. In addition, the evidence was that, in order to accomplish its DRI plans to build homes in the vicinity of the TECO power poles that have served as eagle nests in recent years, without having to apply for an "incidental take," OFP plans to place eagle poles (more suitable for eagle nests than power poles, which actually endanger the eagles) in another part of its property which is much more suitable habitat in order to encourage the eagles to build their nest there. The new location would put the County's proposed construction activity far outside the primary and secondary eagle management zones. Other Permitting Requirements The County's proposed project is capable, based on generally accepted scientific engineering and scientific principles, of being effectively performed and of functioning as proposed. The County has the financial, legal, and administrative capability of ensuring that the activity proposed to be undertaken can be done in accordance with the terms and conditions of the permit. No evidence was presented by Petitioner that the Project will cause adverse impacts to any work of the District established under Section 373.086, Florida Statutes. No evidence was presented by Petitioner that the project will not comply with any applicable special basin or geographic area criteria established under Chapter 40D-3, Florida Administrative Code.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the Southwest Florida Water Management District enter a final order issuing Standard General Environmental Resource Permit No. 4419803.000. DONE AND ENTERED this 17th day of September, 2001, in Tallahassee, Leon County, Florida. J. LAWRENCE JOHNSTON Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 17th day of September, 2001. COPIES FURNISHED: Linda L. McKinley, Esquire Polk County Attorney's Office Post Office Box 9005, Drawer AT01 Bartow, Florida 33831-9005 Gregory R. Deal, Esquire 1525 South Florida Avenue, Suite 2 Lakeland, Florida 33803 Margaret M. Lytle, Esquire Martha A. Moore, Esquire Southwest Florida Water Management District 2379 Broad Street Brooksville, Florida 34604-6899 E. D. Sonny Vergara, Executive Director Southwest Florida Water Management District 2379 Broad Street Brooksville, Florida 34609-6899

Florida Laws (2) 373.042373.086 Florida Administrative Code (12) 40D-1.60340D-1.610540D-4.02140D-4.09140D-4.10140D-4.30140D-4.30240D-4.38140D-40.04040D-40.30262-302.30062-4.242
# 4
BURNT STORE ISLES ASSOCIATION, INC. vs W. B. PERSICO AND DEPARTMENT OF ENVIRONMENTAL REGULATION, 90-003093 (1990)
Division of Administrative Hearings, Florida Filed:Port Charlotte, Florida May 21, 1990 Number: 90-003093 Latest Update: Nov. 09, 1990

The Issue The issue for consideration in this hearing is whether the Respondent, W. B. Persico, should be issued a permit to construct a commercial marina as described in the Department's Intent to Issue, in Class III waters of the state in Charlotte County, Florida.

Findings Of Fact At all times pertinent to the issues herein, the Petitioner, Burnt Store Isles Association, Inc., was an association of property owners whose property is located in the Burnt Store Isles subdivision located in Charlotte County, Florida. The applicant, W. B. Persico, is the owner of a piece of property located adjacent to the subdivision and applicant for a permit to construct a marina on his property. The Department of Environmental Regulation is the state agency responsible for the regulation and permitting of dredge and fill activities in the waters of the state. Mr. Persico's property is located on a dead end basin canal in Charlotte County, Florida. The canal is a Class III water but is not classified as an Outstanding Florida Water. On July 31, 1989, Mr. Persico applied to the Department for a permit to construct a 75 slip, 5660 square foot commercial marina on his property within this artificial, dead end basin. Because of objections by the Department to several aspects of the proposed project, on February 27, 1990, Mr. Persico submitted a modification proposal in which he eliminated the use of pressure treated lumber for pilings, substituting concrete pilings; incorporated boat lifts in each slip; reduced the number of slips from 75 to 65; committed himself to installing a sewage pump-out facility at the site; committed to creating an inter-tidal littoral shelf planted with mangroves; agreed to face the existing vertical bulkhead seawall in the basin with rip-rap; and incorporated a commitment to include, as a part of his rental contract, long term agreements prohibiting vessel maintenance and liveaboards on boats at the site, and insuring the perpetual use of boat lifts and pump out facilities provided. He now proposes to market the marina as a condominium ownership operation. The basin in which the Persico project is proposed is 136 feet across at the entrance, (the narrowest point), and 326 feet across at the widest point. The length of the basin is more than 900 feet. The docking structure to be created will have fingers extending no more than 39 feet into the water from the existing vertical seawall. It will have a 4 foot wide walkway parallel to and 10 feet from the existing seawall from which the arms will extend 25 feet into the basin. The basin which is the proposed location for the marina is at the end of the easternmost canal in the Burnt Store Isles subdivision. It is located just west of and parallel to US Route 41, and at the entrance point, joins a perimeter waterway which meanders approximately 1 mile seaward toward a lock which joins that waterway to Alligator Creek which is an Outstanding Florida Water. The waterway from the basin through the lock into Alligator Creek and thereafter to the Gulf provides the only navigable access for most vessels moored in the Burnt Store canals and which would be moored in the proposed marina between Charlotte Harbor and the Gulf of Mexico. The lock which joints the Burnt Store canals to Alligator Creek consists of two hydraulically operated swinging gates which are operated by a boater entering or exiting the canal system. This lock was constructed as a part of a 1973 agreement between Punta Gorda Isles, Inc., a developer, and the state to prevent the construction and runoff polluted waters of the canal from freely mingling with the Outstanding Florida Water in Alligator Creek. The lock is now maintained in an open position from November 15 to May 15 because boaters complained of the inconvenience of having to operate the lock system. Available evidence indicates that a complete passage through the lock, one way when closed, takes 15 minutes. No more than 24 boats can complete a round trip in a 12 hour boating day. When the lock is open there is no appreciable delay. The residential lots which abut the Burnt Store canals are still mostly vacant. The City of Punta Gorda has assumed the responsibility of conducting a 5 year water quality monitoring program which was previously agreed to by Punt Gorda Isles, Inc. when the lock was built. The 1973 agreement was amended in 1984 to permit the operation of the lock in a closed position for an entire year if water quality monitoring should indicate a degradation of water quality in either Alligator Creek of the Burnt Store Isles canals. This has not been necessary. The Petitioners fear that pollution generated by the addition of 65 additional boats moored at and operating from the proposed marina will cause the Department to implement that clause and order the lock to operate from a closed position year round. This does not mean that the lock would not be opened for boats, but that it would be closed when not being used. Petitioners contend that the increased usage would create an intolerable traffic jam at the lock which would, for the most part, make their use of the waterway to the Gulf intolerable. Mr. Persico is a former road and bridge contractor. Though he has never owned a marina, at one time he rehabilitated one in the Chicago area. He has owned the property in question here for four years and now plans to develop a condominium ownership marina. When he decided to do so, he hired Mr. James M. Stilwell, an environmental consultant, to prepare and submit to the Department the application for the required dredge and fill permit. Initial discussions between Mr. Stilwell and the Department dealt with many environmental issues. Mr. Stilwell pointed out that the water in the canal might already be stale and avenues were explored to mitigate that problem. They did not discuss the type of docks to be installed or the potential for destruction of mangrove stands along the seawall, but even though the original plan called for the docks to be placed against the seawall, it was to be done in such a way as not to disturb the mangroves. The modified plan removing the docks to a point 10 feet off from the wall will obviate any damage to the mangroves. Admittedly, the original submittal prepared by Mr. Stilwell contained factors which were considered unacceptable to the Department. These included construction of the finger piers with pressure treated wood. To eliminate possible pollution from leaching, the pressure treated wood was replaced with a floating dock using concrete pilings. Liveaboards, and the potential contamination from that activity, have been prohibited. The provision and required use of a sewage pump-out facility should prevent any escape of polluting sewage into the waters of the basin. The use of power hoists at each slip should prevent pollution from bottom paint leaching, and boat maintenance at the marina is to be prohibited. Fueling of the vessels will not be permitted at the site thereby obviating the potential of polluting fuel spills. The construction of a 10 foot wide littoral shelf, planted with mangroves, between the dock and the sea wall will provide increased water filtration and improve water quality. It would also help the development of the fish and wildlife population and would reduce the flushing time. Air released into the water from the use of the boat lifts should add oxygen and contribute to improved water quality. At the present time, the ambient water quality in the basin, as it pertains to dissolved oxygen, is probably below standards in the lower depths of the basin, and of the outside channels as well, due to poor light penetration. The channel depth is anywhere from 20 to 25 feet. The oxygen level at the bottom is undoubtedly depleted. Mangroves are currently located along 300 feet of the 1,300 foot seawall. Mr. Stilwell's proposal, and that approved by the Department, does not call for removal of the mangroves, but they would be built around or possibly trimmed. Mr. Stilwell is of the opinion that provision for trimming of the mangroves is inherent in the granting of the permit though such permission was not specifically sought. There is no evidence to contradict this thesis. Water quality issues were raised subsequent to the filing of the original application, and the facility as now planned is designed to minimize impacts on the environment as best as can be done. Water quality would be improved, or at worst not adversely affected, by the prohibitions against liveaboards and fueling, the provision of boat lifts and a pump station, and the prohibition against other structures beyond the dock and slips. Flushing of the water is important considering the fact that the dissolved oxygen content in the water is already low. However, Mr. Stilwell is satisfied, and it would so appear, that water quality would be improved by the implementation of the proposals as included in the conditions to the permit. Mr. Stilwell, admittedly, did no dissolved oxygen tests because they were not considered as a part of the permit application. If the Department requests them, they are done, but they were not requested in this case. It is clear that the original application did not address all the environmental concerns that Petitioners feel are pertinent. Nonetheless, those items already discussed were treated, as were turbidity control during construction. As to others of concern to Petitioners, many are included in the state standards and need not be specifically addressed in the application. The Department considered the application in light of the state standards, and by the use of the conditions appended to the Intent to Issue, provided for the water quality and other environmental standards to be sufficiently addressed and met. In his February 22, 1990 letter to the Department, Mr. Stilwell directly addressed the public interest concerns including the mangroves and the construction of the littoral shelf. The Department was satisfied that the public interest criteria were met, and considered the plans to be environmentally sound. They appear to be so. Petitioners have raised some question as to the effect of the 39 foot long dock fingers interfering with navigation within the basin. Mr. Stilwell does not feel that the facility would create this problem, even at the narrowest point, and it is so found. The width of the canal there is 136 feet. The portion of the slip designed to accommodate vessels is no more than 25 feet long, and presumably, vessels of a length much greater than that would not visit the basin. Even subtracting 39 feet from the 136 feet narrow point, 97 feet of turning space remains, and this is almost four times the length of the normal vessel anticipated in the basin. Mr. Stilwell did not address the subject of the lock as it relates to navigation, but primarily as it relates to the impact on water quality and the environment. Nonetheless, he is of the opinion, and there is no evidence to the contrary, that keeping the lock open on a year round basis would not trigger a change to the ongoing program under the agreement between the state and Punta Gorda Isles and result in the lock being closed year round. Mr. Shultz, the environmental specialist with the Department, reviewed the application here initially for file completeness, and when all required information was in, made a site visit. He evaluated the application and the attachments for permitability. For Class III waters, the project must meet water quality standards outlined in the Department's rules. Only one of the water quality criteria, that of dissolved oxygen, was shown to be not met. Since the water was already below that standard, the test to be applied then is whether the project will create some improvement." In Mr. Shultz' opinion, planting the mangroves, as proposed by the applicant, does this, as does the use of the lifts. The existing mangroves will not be impacted by the project as it is proposed, and the use of rip-rap, as proposed, will provide additional surface area for organisms which will improve the water quality. When first reviewed, the Department had some concern about on-water storage of boats. These concerns were treated by the use of hoists to hold the boats out of the water when not in use, and as a result, pollutants will not be introduced by bottom paint leaching and, presumably, bilge pumping. Standard conditions included in all Department Intents to Issue, require the project to comply with applicable state water quality standards or to give assurances that such general standards for surface waters and Class III waters will be met. In this case, Mr. Shultz is satisfied that the applicant has demonstrated that water quality standards will be maintained, and there was no evidence presented by the Petitioners to contradict this. Once water quality standards are shown to be protected, then the project is balanced against the public interest criteria outlined in the statute. Here, the requirement is for a showing that the project is not contra to the public interest. It does not, because of its nature, require a positive showing that the project is in the public interest. In his opinion this project, as modified, will not adversely affect the health, safety and welfare of the public, (it will have no environmental effect on other property). It will not adversely affect the conservation of fish or wildlife in their habitats, (the planting of mangroves will provide a net improvement to species habitat in the area). The project will not adversely affect navigation, flow of water, or erosion, (the width and length of the dock system appear to pose no threat to navigation in the basin and there would appear to be no obstruction or potential therefor as a result of this project; the project is within a no-wake zone; and the size of vessels is limited by the slip size). The permit will not adversely affect marine productivity, (there is currently very little productivity in the area now since waters below 0 depth of 6 feet are already low in oxygen, and the project would, at least minimally, improve this condition). The project is permanent and would not adversely affect historical or archeological resources in the area, (there are no objects or known resources in the area, but a standard condition in the permit requires immediate notification if known resources or objects are found). The project would not adversely affect the current condition and relative value of functions being performed in the area since the area is currently a real estate development which is far from completely built. Based on his consideration of these criteria, Mr. Shultz concludes that the project is not contrary to the public interest and this appears to be a valid conclusion. There appears to be no evidence of sufficient weight, presented by the Petitioners, either through direct evidence or through cross examination of the applicant and Department witnesses that would tend to diminish the credibility of Mr. Shultz' analysis. If there are subsequent violations, the Department has enforcement action available. There is, consistent with the multiple use zoning category applied to the area across the basin from the marina, the potential for up to an additional 100 docks to be constructed in the basin beyond those treated here. Nonetheless, the Department does not consider 165 boats to be a problem either in the basin or at the lock. This is not necessarily a supportable conclusion, however. Those 100 additional docks do not currently exist and their potential should not be considered in determining whether to approve the permit under consideration here. In opposition to the applicant, Mr. Konover and Mr. Forsyth both indicated that the addition of 65 more boats would seriously overtax the operation of the lock and make it difficult, if not hazardous, to operate boats in that area between the Burnt Store Isles subdivision and Alligator Creek. Both individuals agree, and it is so found, that in general, motor boats pollute to some degree the waters on which that are operated as a result of oil leaks from engine operation, leakage of bilge oil, escape of sewage, and leaching of copper paint and other solvents. In addition, manatee have been seen in the area, and the increase of boating operations could present some hazard to the manatee population. There is, however, no indication that a manatee population is permanently in residence there or is even there frequently. It is also accepted that boat wake has an adverse effect on sea walls, and all of these factors should have been and, in fact were, considered in the analysis of the permitability of the project. The concerns of Mr. Konover and Mr. Forsyth were echoed by Mr. Gunderson who, over 30 years operating boats, has seen what he considers to be a definite lack of concern for the environment by many boaters who pump bilges directly into the water, throw debris overboard, and use detergents to wash their boats at marinas. He is of the opinion that renters of slips are generally less concerned about water quality than those who live on the water, and take a more cavalier approach to water quality standards. These sentiments are also held by Mr. Young who, over the years, has owned marinas in Connecticut and has observed the approach of nonowning slip users to the water at their disposal. His concerns could be met by the strict enforcement of standards at the marina. Mr. Powell, a nurseryman who owns the lot across the basin from the site of the proposed marina, fishes from his lot and has observed the an increase of pollution in the canal. He routinely sees floating dead fish, palm leaves, cocoanuts, bottles, slicks and other debris, and though he owns a multifamily lot, would have a difficult time putting in many slips since his lot, at the entrance to the basin at the narrow point, would be across from the slips proposed by applicant and their proximity would, he feels, hinder his ability to build out into the basin as well.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is, therefore: RECOMMENDED that the Department of Environmental Regulation enter a Final Order issuing Permit No. 081679445, to W. B. Persico as modified and outlined in the Intent to Issue dated March 16, 1990. RECOMMENDED this 9 day of November, 1990, in Tallahassee, Florida. ARNOLD H. POLLOCK, Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 9 day of November, 1990. APPENDIX TO RECOMMENDED ORDER IN CASE NO. 90-3093 The following constitutes my specific rulings pursuant to S 120.59(2), Florida Statutes, on all of the Proposed Findings of Fact submitted by the parties to this case. FOR THE PETITIONER: 1. & 2. Accepted and incorporated herein. 3. & 4. Accepted. Accepted but applicable only when the locks are closed. Accepted. - 9. Accepted and incorporated herein. Accepted. & 12. Accepted and incorporated in substance herein. 13. & 14. Accepted and incorporated herein. Accepted and incorporated herein. Rejected as contrary to the weight of the evidence. Accepted and incorporated herein. & 19. Accepted and incorporated herein. 20. & 21. Unsupported by convincing evidence of record. Accepted as valid when the lock is operated from a closed position. However, the evidence indicates that currently the lock is left open from November 15 to May 15 of each year and this does not cause delay. Accepted if the lock is operated from a closed position. Unsupported by convincing evidence of record. FOR THE APPLICANT: 1. - 6. Accepted and incorporated herein. 7. - 15. Accepted and incorporated herein. Accepted and incorporated herein. & 18. Accepted and incorporated herein. Accepted and incorporated herein. Accepted. Accepted. - 32. Accepted and incorporated herein. FOR THE DEPARTMENT: Accepted. and incorporated herein. - 4. Accepted and incorporated herein. Accepted and incorporated herein. Accepted and incorporated herein. Accepted and incorporated herein. & 9. Accepted and incorporated herein. 10. - 14. Accepted and incorporated herein. 15. - 18. Accepted and incorporated herein. COPIES FURNISHED: Joseph F. Lynch Burnt Store Isles Association, Inc. P.O. Box 956 Punta Gorda, Florida 33951-0956 Michael P. Haymans, Esquire P.O. Box 2159 Port Charlotte, Florida 33949 Cecile I. Ross, Esquire Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32399-2400 Dale H. Twachtmann Secretary Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32399-2400 Daniel H. Thompson General Counsel Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32399-2400

Florida Laws (2) 120.57267.061
# 5
PALM BEACH POLO HOLDINGS, INC., AND WELLINGTON COUNTRY PLACE PROPERTY OWNERS ASSOCIATION, INC. vs ACME IMPROVEMENT DISTRICT AND SOUTH FLORIDA WATER MANAGEMENT DISTRICT, 03-002469 (2003)
Division of Administrative Hearings, Florida Filed:West Palm Beach, Florida Jul. 07, 2003 Number: 03-002469 Latest Update: Jun. 07, 2004

The Issue The issue in this case is whether the South Florida Water Management District (SFWMD) should modify Surface Water Management (SWM) Permit No. 50-00548-S, held by the ACME Improvement District (Acme) to authorize alternate SWM facilities within Acme Basin B primarily by: eliminating the water quality function originally provided by a 79-acre retention area known as Peacock Pond pursuant to a 1979 permit; replacing it with adequate alternate methods of water quality treatment; and authorizing an alternative pump operation schedule for the remainder of Acme Basin B. The permit should be modified only if Acme has provided reasonable assurances that the proposed modifications comply with the relevant portions of SFWMD's Environmental Resource Permit (ERP) regulations set forth in: Part IV of Chapter 373, Florida Statutes; Chapter 40E-4, Florida Administrative Code; and the Basis of Review for ERP Applications (BOR) (collectively referred to as ERP criteria).

Findings Of Fact General SFWMD is a public corporation existing by virtue of Chapter 25270, Laws of Florida, 1949, and operating pursuant to Chapter 373, Florida Statutes, and Title 40E, Florida Administrative Code, as a multipurpose water management district with its principal office in West Palm Beach, Florida. Acme is a dependent special district of the Village of Wellington, a municipality of the State of Florida. Polo is a Florida corporation and a developer in the Village of Wellington, Palm Beach County, Florida, including a 79-acre parcel of real property known as Peacock Pond, and other undeveloped property that are part of the subject of this permitting proceeding. Wellington Country Place Property Owners Association, Inc. (POA) is the property owners association for WCPPUD. Permit History 1978 Permit In 1978, SFWMD issued to Acme the original backbone SWM permit for approximately 18,000 acres, including primary drainage Basins A (to the north) and B (to the south). Pierson Road, which runs east/west, is the boundary between the two basins. (The backbone C-23 canal parallels Pierson Road to its immediate north.) Acme Basin A discharges to the C-51 canal, which flows east to the Atlantic Ocean. Acme Basin B, which consists of approximately 8,680 acres, discharges to the Loxahatchee National Wildlife Refuge (Refuge) through two Acme pump stations. The Refuge is part of what is now designated the Everglades Protection Area. The 1978 backbone permit, which modified a still earlier permit, established lower water control elevations in Basin A, which was being developed for urban use, than in Basin B, which was planned to remain largely in agricultural use. Under the 1978 permit, the maintained (regulation) stage in Basin A was set at 11' above mean sea level (msl) with discharge beginning at 12' msl during the wet season and 12' msl with discharge beginning at 13' msl during the dry season. The maintained stage in Basin B remained at 13' msl in both the wet and dry season. Under the 1978 permit, it was anticipated that routing surface water runoff in Basin A through canals and retention lakes would provide the water quality treatment required under the criteria in effect at the time (including a requirement to provide half an inch of detention over the entire Basin A for water quality treatment purposes.) At the time, planned residential development in the extreme southwest corner of Basin B was anticipated to generate only limited quantities of runoff due to the nature of typical development in 5-acre parcels; quality of runoff was expected to be better than from previous agricultural use. Presumably because there would be no change under the 1978 permit, water quality treatment in the remainder of Basin B was not addressed. 1979 Permit By 1979, Acme requested a permit modification for development of the Wellington WCPPUD, which is located entirely within Acme Basin B. The PUD's northern boundary is Pierson Road; the western boundary is the backbone C-2 canal; and the eastern boundary is the backbone C-6 canal. The north/south backbone C-4 canal divides the western third of the PUD from its eastern two-thirds; it also forms the western boundary of the area known as Peacock Pond. The southern boundary of the PUD generally follows the east/west backbone C-24 canal.2 The 1979 permit modification authorized construction and operation of water management facilities in portions of WCPPUD, including a 79-acre pumped retention area (which was to become known as Peacock Pond), pump station, and control structure. Under the 1979 permit, the maintenance stage (water control) elevation within WCPPUD only was set at 12' National Geodetic Vertical Datum (NGVD) (essentially, the same as msl) in the wet season and 13' NGVD in the dry season. The minimum road and finish floor elevations were established at elevation 16' and 17' NGVD, respectively. Without regard to seasonality, the retention area pump station was to begin operation when a stage of 13' NGVD was reached in the adjacent C-4 canal and was to discontinue operation when the system was drawn down to elevation 12' NGVD. The 1979 permit used the 79-acre area known as Peacock Pond as its central water quality feature. Runoff from WCPPUD was to be collected in roadside swales within road right-of-ways and routed by storm sewer inlets and pipe to either a proposed 12-acre lake or one of the collector swales or canals connected to the Peacock Pond site. The 1979 permit contemplated use of the Peacock Pond site as a "retention-type" surface water management facility. Generally, such a facility detains the water, allows the pollutants to settle, then slowly lets the water out. In the 1979 permit, Acme was required to construct a berm or dike around the 79-acre area to create an above-ground impoundment to serve as the retention area. A pump was required to be installed at the northwest corner of Peacock Pond to pump water from the adjacent C-4 canal into the retention area. The berm or dike was to detain water on the site until it reached the level of a gravity flashboard riser outfall structure at the southwest corner of the site, which would be set at 15' NGVD and would return the water to Acme's C-4 canal just downstream of a broad-crested weir, which would be set at 14' NGVD. Additional discharge from the system would be provided by two 72-inch gravity-flow flashboard risers with crest elevation 14' NGVD-- one to the C-4 canal and the other to the C-6 canal. Water discharged from the system would flow south and west through Acme's system of Basin B canals, eventually discharging to the Refuge through the two pump stations to the south and southwest. During a rise in stage in the C-4 from 13' to 14' NGVD, the pump station in the northwest corner of Peacock Pond would continue filling the retention area. Considering pumped inflow of 4000 gallons per minute (gpm), the retention area would take 3.3 days to reach a peak stage of 16'. At that stage, 58 acre-feet of water would be stored within the retention area. SFWMD calculated that Peacock Pond would treat approximately 200 million gallons of water a year in this way. SFWMD and Acme have taken the position in this case that the sole purpose of Peacock Pond in the 1979 permit was to serve as a water quality treatment area for the Wellington WCPPUD. It is true that the 1979 permit contemplated that flood protection for Basin B would be provided through use of the two pumps discharging into the Refuge (Pump #1 capable of pumping at the rate of 100,000 gpm, and Pump #2 capable of pumping at 120,000 gpm). But, as subsequent events showed, the Peacock Pond retention area was part of an overall SWM system for WCPPUD that maintained water stage elevations there at a lower level than in the rest of Basin B. In other words, while designed primarily to provide water quality treatment, and not designated a flood control facility, it had some residual flood control benefit within WCPPUD. Actual Operation After 1979 Permit Although Peacock Pond was critical to the functioning of the SWM system for WCPPUD and Basin B, SFWMD never obtained from the owner the legal right to use it for SWM purposes. From 1979 to 1986, SFWMD was advised that the Peacock Pond facility was in substantial conformance with the permitted conditions. But some time after property, including Peacock Pond, was transferred to Landmark Land Company of Florida, Inc., the pumps in the northwest corner of Peacock Pond stopped being used regularly.3 Instead, Acme water control structure 115 (a 48-inch culvert and 72-inch flashboard riser which replaced the broad- crested weir in the C-4 canal through a 1982 permit modification) and structure 117 (discharging to the C-6 canal) were opened so that water levels in Wellington Country Place equalized with the surrounding Acme Basin B, which was controlled by the two pump stations discharging to the Refuge to the south and southwest. The evidence indicates, for at least the last ten years, the Basin B pumps have been operated to maintain water elevations of 12' NGVD in the wet season and 13' NGVD in the dry season--the same as for the County Place PUD under the 1979 permit. Under this water elevation control regime, flooding within WCPPUD was not a problem, but the water quality treatment from the Peacock Pond facility required under the 1979 permit was not being realized. The pump operation schedule under the 1979 permit did not specify a "bleed-down" mechanism. As a result, when internal stages exceeded the specified control elevation threshold, both Basin B pumps would be operated at a combined rate of 220,000 gpm until the seasonal water control elevation was again established. This operation did not take full advantage of the nutrient removal capacity of the existing system. 1989 Equestrian Estates Permit Modification In 1989, construction and operation authorization was issued for the Equestrian Estates development located within WCPPUD west of the C-4 canal. Among other things, this modification to SWM Permit No. 50-00548-S included the construction of lakes for use as wet detention ponds and a control structure allowing discharge from Lake No. 5 (as designated in Exhibit 2 of the Staff Report, SFWMD Exhibit 5) to the C-4 Canal. However, this control structure and its associated culvert were never constructed. Peacock Pond Enforcement Proceedings Around 1997, SFWMD was informed that the Peacock Pond pump was not being operated and initially brought enforcement proceedings against Polo, which had become the owner of the property in 1993, to resume pumping into Peacock Pond. At the time, SFWMD was involved in enforcement proceedings against Polo, as owner, for unauthorized dredging and filling in Peacock Pond, and SFWMD made an incorrect assumption that Polo was the operator of the Peacock Pond facility under the 1979 permit. SFWMD subsequently realized that Acme, not Polo, was the permit holder. When Acme attempted to turn the pumps on again, Polo refused to allow Acme to do so without compensation. SFWMD then brought an enforcement action against Acme for not operating Peacock Pond in accordance with its permit. SFWMD and Acme entered into a Consent Order requiring Acme to operate Peacock Pond and the rest of the SWM system as required by the 1979 permit. Acme subsequently brought eminent domain proceedings against Polo to acquire Peacock Pond and obtained a final judgment, but the compensation required under the final judgment was prohibitive. SFWMD and the Village of Wellington then entered into a Joint Cooperation Agreement, which (among other things) required the Village of Wellington to submit an "application to modify the Peacock Pond Permit and Consent Agreement to either eliminate or substantially reduce the size of Peacock Pond [which] must provide reasonable assurances that demonstrate that the water quality treatment, water quantity and environmental benefits associated with the Peacock Pond Permit are maintained through the modified facility or by other equivalent measures." In the meantime, SFWMD ordered Acme to set control structures 115 in the C-4 canal and 117 in the C-6 canal at 14' NGVD as required by the original 1979 permit. When this was done without operation of the Peacock Pond retention area as also contemplated and required by the 1979 Permit, the water levels caused septic tank problems to some residents in WCPPUD, leading SFWMD to issue emergency authorizations to lower the crest-settings of structures 115 and 117 to 12.5' NGVD. At those settings, water levels in WCPPUD stayed between 12' and 13' NGVD, and there have been no septic tank problems in the last two years. Specifically, measured water levels in the C-4 canal north of control structure 115 generally ranged between elevation 12' NGVD and 13' NGVD from November 2001 through October 2003, with occasional variances above or below due to drought or rain periods. Proposed Modification to Eliminate Use of Peacock Pond On May 12, 2000, Acme filed an application to modify its permit. The primary purpose of this modification was to authorize alternate SWM facilities within Basin B (primarily within WCPPUD) to maintain the water quality treatment function that was assumed would be realized by Peacock Pond in the WCPPUD permit issued in 1979. Additional components of the permit modification are: installation of a 7.8 acre flow through littoral zone within the C-2 Canal for additional cleansing of Acme Basin B water; modification of the pump operation schedule for Basin B; revision of surface water management design requirements for future development within Country Place to include additional lake acreage and littoral zones; elimination of a previously permitted (but not constructed) control structure allowing discharge from Lake No. 5 to the C- 4 Canal so that water from Lake 5 continues to drain through established canals and lakes into the C-4 Canal; modification of existing flashboard riser water control structures 115 and 117 within the C-4 and C-6 Canals to crest elevations of 12’ and 13’ NGVD, respectively, so that water will be detained upstream but water from both the eastern and western ends of the Wellington WCPPUD drain toward and into the C-4 canal during low flow; and an analysis of nutrient (and phosphorus) loading, removal and export from the Country Place system During the application process, Acme submitted detailed water quality calculations analyzing and comparing the 1979 permit, based on the land uses at that time and the anticipated phosphorous loading that would be discharged from the system, and the proposed modification with current land uses and phosphorous loading now anticipated. To support its modification application, Acme recalculated the water quality treatment currently provided by existing lakes--many of which were not planned in 1979--and other water quality treatment features in WCPPUD. Acme's calculations assumed that all land owners of undeveloped tracts in Basin B, including land owners in WCPPUD, wishing to develop their properties in the future will have to provide for adequate water quality treatment or other acceptable alternatives, as required by SFWMD regulations in place at the time the future permit applications are filed. In order to meet those requirements, future developers can either create lakes on their properties, treat their water off-site on properties such as Peacock Pond, or use other equivalent alternatives. In conformance with current SFWMD criteria, Acme’s application only considered and counted as water quality treatment features water bodies with an average width of at least 100' and a size of at least 0.5 acres. SFWMD spent an enormous amount of time reviewing the data and analyses that were submitted. SFWMD then issued numerous lengthy requests for additional administrative and technical information, requiring Acme among other things to provide water level information and perform management calculations. Acme provided necessary calculations to demonstrate that flood levels within WCPPUD would not be affected by the elimination of Peacock Pond as a water quality feature. Acme's calculations demonstrated that the water quality treatment functions currently provided by existing lakes meeting SFWMD's dimensional criteria and by on-site swales, together with the 7.8-acre off-site littoral shelf to be constructed in canal C-2, would be sufficient to replace the water quality treatment functions assumed to be provided by Peacock Pond under the 1979 permit. SFWMD issued a Staff Report on April 29, 2003, recommending approval of the application to modify the SWM permit. SFWMD found that Acme had provided reasonable assurances by Acme that the applicable permit criteria would be met. On May 15, 2003, the SFWMD Governing Board approved the Staff Report to issue a modification to SWM Permit No. 50-00548- S, Application No. 000512-12. Control Elevations and Pump Operation Schedules The proposed permit modification states that there will be a change in the permitted water control elevations and pump operation schedule within Basin B. However, as set out in Finding 17, supra, in actual practice, water elevations throughout Basin B have been maintained at the levels permitted for WCPPUD under the 1979 permit for at least the last ten years, which include the time period after the Peacock Pond pumped retention area stopped being operated as required under the 1979 permit. The proposed modifications essentially would continue the historical operation of the Acme Basin B system during this time period. In essence, the changes in Basin B outside WCPPUD will simply conform the permit conditions to actual conditions for at least the last ten years. For that reason, SFWMD and Acme has referred to modification as being only "on paper." As reflected in Finding 23(e), supra, water control structures 115 and 117 would be modified in association with this permit modification so that structure 115 (located in the C-4 canal adjacent to Peacock Pond) will have a weir crest elevation of 12' NGVD and structure 117 (located adjacent to the C-6 canal) will have a weir crest elevation of 13' NGVD. As a result, when the water level in WCPPUD exceeds 12' NGVD, it would begin to "bleed down" out of structure 115 in the C-4 canal. If the water level in WCPPUD continued to rise and reached 13' NGVD, it would begin to "bleed down" out of the 117 structure in the C-6 canal as well. Under the proposed permit modification, the pump operation schedule would be revised so that no pumping would occur until Basin B stages reached 13' NGVD. Then, the pump rate will average 30,000 gpm, which equates to a "bleed down" discharge of 20 percent of the one-inch detention above 12' NGVD per day. When the stage has been brought down to 12' NGVD, all pumping would cease. During significant storm events, when the internal stages exceed 13' NGVD, the previously permitted peak discharge rate of 220,000 gpm will be maintained. If the pumps are operated as proposed in this modification, the system will be able to take full advantage of its nutrient removal capacity. At the same time, water levels will be maintained within the ranges of historical operation over at least the last ten years. The only difference is that, except for major storm events, water levels will be allowed to "bleed down" at a slower rate. Notwithstanding these facts, Petitioners believe that control elevations in WCPPUD have always been higher than in Basin B, and are concerned that the proposed "on paper" modification is in the nature of a "smoke and mirrors" trick. Petitioners are concerned the proposed modifications will cause additional water to be detained in WCPPUD to the detriment of the equine industry there. But the evidence indicated that the their concerns are not well-taken. Under the proposed modification, there will be one inch of detention over the entire Basin B water management system between the elevations of 12' NGVD and 13' NGVD. This is the same range of elevations established for WCPPUD in the 1979 SWM permit. The calculated detention volume accounts for the volume of water which is physically accommodated in the system between 12' NGVD and 13' NGVD. There is no additional detention created in the WCPPUD system through the proposed changes. The proposed Basin B pump schedule will result in the same range of water table fluctuation as required in the 1979 SWM permit. As Petitioners' witness, Mr. Straub, testified, the system has worked well as operated for the last three years. No significant changes are to be expected as a result of the proposed pump operation schedule changes designed to achieve greater water quality treatment benefits. In combination, the modification of the pump operation schedule for Basin B and the revisions to the WCPPUD system are expected to result in an improvement in flood control with lower flood stages within WCPPUD through a more efficient water management system. Acme has demonstrated that the proposed modifications will not result in a change in actual water control elevations on Petitioners' properties; will not cause water to back up and cause flooding or septic tank problems within WCPPUD; and will comply with Florida Administrative Code Rule 40E-4.301(1)(a), (b), and (c.) The undisputed expert testimony was that Acme gave reasonable assurances that the proposed permit modification will not "lower existing water table elevations." (Emphasis added.) Fla. Admin. Code R. 40E-41.363(4). Equivalent Water Quality Treatment Provided Acme provided calculations comparing the treatment which was assumed to take place within the originally permitted surface water management system of WCPPUD (which included Peacock Pond), the treatment which is currently being provided by the existing system, and the treatment that will be provided under various assumed future scenarios. Acme demonstrated that there will be an equivalent amount of water quality treatment even though the use of Peacock Pond as a water quality retention area is being eliminated. Petitioner did not provide any contrary evidence to show that the removal of Peacock Pond reduced water quality treatment in the system. As a result, reasonable assurances were given that there will be no adverse effect on the quality of receiving waters as a result of this proposed modification. Additional Wet Detention Areas Now Exist Although the 1979 permit required only 12 acres of wet retention ponds, analysis of aerial photographs and existing permits issued after 1979 indicates that 54.4 acres of wet detention lakes meeting current regulatory criteria now exist in WCPPUD. Another 33 acres of existing wet retention areas (including canals) are present but do not meet the minimum width criteria required for wet detention ponds. Approximately another 4 acres meet the dimensional requirements but are not legally encumbered for use by Acme for water quality purposes. For example, Lakes 6 and 8 meet the dimensional criteria but are not platted as water management areas or encumbered by suitable drainage easement. A similar situation exists with Lake 9, which has been assumed to provide wet detention treatment over only 15.41 acres since the northern 2.25 acres of the 17.66-acre lake are outside the platted water management area's footprint. If all lakes, ponds, and canals within WCPPUD were counted for water quality purposes, Acme calculated that there would be enough capacity to treat approximately one inch of runoff from WCPPUD. Not counting the water bodies not meeting dimensional requirements or not legally encumbered, but assuming that future development within WCPPUD will have 13% water bodies qualifying for use as wet detention areas under current criteria, Acme calculated that there would be capacity to treat one inch runoff from current and future development within WCPPUD. (Instead of 13 percent qualifying wet detention areas, alternative equivalent water quality treatment also could be used to meet applicable water quality treatment criteria.) Planted Filter Marsh Located in C-2 Canal Provides Additional Water Quality Treatment Phosphorus loading can be described as the pounds of phosphorus which are being discharged to a water body through storm water runoff. In WCPPUD today, phosphorous loading is higher than originally anticipated and calculated when the 1979 Permit was issued due to differences in the way the land has been developed over the last 20 years. The main difference is more equestrian activity and its higher phosphorus loading than anticipated in 1979. Acme submitted detailed phosphorus loading information which is included in Exhibits 7A through 7E to the Staff Report (SFWMD Exhibit 5), comparing what the original permit anticipated to what is happening today, and what would happen with the modified system. The detailed information is summarized on Exhibit 8 to the Staff Report. To address phosphorus loading, the proposed project includes construction of a 7.8-acre filter marsh within a portion of the Acme C-2 Canal right-of-way located within Basin B about a half mile west of WCPPUD. The project will extend from the intersection of the C-2 and C-23A canals southwards approximately 6,800'. The filter marsh will treat water flowing south through the C-2 canal prior to reaching the Acme pump stations discharging into the Refuge. The existing Acme C-2 canal will be expanded to a width of approximately 80' to 130' and will incorporate a meandering 40' to 60' wide constructed and planted littoral shelf at elevation 10.0' NGVD. Adjacent to the proposed littoral zone, a 25' wide section of the canal will be excavated to an elevation of approximately 6.0' NGVD. This deeper section is proposed to prevent any reduction in hydraulic capacity of the existing C-2 Canal. The 7.8-acre area will be planted with native wetland vegetation on three centers. It is anticipated that the planted vegetation will meet or exceed the eighty percent coverage requirement within two years; however, additional plants will be installed if the area fails to meet such expectations. Monitoring will occur on a monthly basis until the filter marsh achieves a 50 percent areal coverage of desirable planted and recruited wetland vegetation. Upon attainment of the 50 percent coverage criterion, the monitoring frequency will be reduced to four times per year for a period of three years. Subsequent maintenance and monitoring events will occur semi- annually. Should exotic infestation occur, herbicide and/or hand clearing will be utilized to bring the filter marsh into compliance with desired plant specie densities. Special Condition No. 12 of the Staff Report (SFWMD Exhibit 5) requires that the Acme adhere to the filter marsh maintenance plan. The proposed littoral zone construction is expected to be initiated within six months of permit issuance and completed within six months of commencement. The pollutant loading/removal spreadsheets provide an estimate that the marsh will result in the annual removal of 33 pounds of total phosphorus. At the same time, the proposed filter marsh will add the equivalent of one-half inch of water quality treatment benefits within the entirety of Basin B. As a result, with the proposed filter marsh, Acme gave reasonable assurances that the proposed permit modification would provide "an additional fifty (50) percent retention/detention water quality treatment addition to the water quality treatment volumes required in section 5.2.1. of the Basis of Review [for projects within a Water Protection Area or Area Basin]." Fla. Admin. Code R. 40E-41.363(5). Approximately half of the proposed filter marsh will extend north of the east/west C-24 Canal, and half will extend south of it. The northern half will treat water from an area of relatively intense equestrian use just west of WCPPUD; the southern half will continue to treat water flowing through the northern half of the filter marsh. However, the southern half also will treat some water from the C-4 and C-6 canals in WCPPUD, which flows south to the C-24 and then west to the C-2. Exhibit 9B of the Staff Report (SFWMD Exhibit 5) delineates the assumed contributing area of 960 acres. BMPs Provide Improvements in Water Quality Best Management practices (BMPs) are water quality treatment operational practices to prevent pollutants from ultimately entering the receiving water body. BMPs are also often referred to as source controls. Examples of BMPs include street-sweeping and cleaning out storm gutters to control pollutants at their source. BMPs are commonly considered in ERP permitting. The Village of Wellington has mandated a BMP program in Basin B, including: an ordinance dealing with phosphorus and water quality improvement; an ordinance regulating the application of fertilizer, requiring no more than two percent phosphorus content; and an equestrian BMP requiring equestrian residuals, commonly known as manure, be collected and contained in concrete covered bins. Historically, horse manure was stockpiled in the open and exposed to rainfall. Stormwater runoff from the stockpiled manure often flowed directly into the Acme canals. Stormwater runoff from equestrian residuals has been a major contributing factor to the amount of phosphorus being discharged to the Everglades from Basin B. The Village of Wellington also is implementing BMPs for its own canal maintenance and for cleaning phosphorous-laden sediments from its canals. The calculations provided to SFWMD by Acme concerning BMPs do not assume an initial 100-percent compliance. Initially, a 20-percent compliance was assumed because the ordinances are fairly new. These BMPs were not in place when the 1979 permit was issued. Under the current application, it is expected that the BMPs throughout Basin B will significantly reduce the amount of phosphorus ultimately discharged through the two Acme pump stations to the Refuge. Although there is an increase in phosphorus loading from that anticipated in 1979, the BMPs, filter marsh, amendment to the pump operation schedule, comprehensive water quality monitoring plan, and other items in the modification offset the increase. (The modifications in the proposed permit are not designed to address the overall Basin B phosphorus problems.) Comprehensive Water Quality Monitoring Program SFWMD and the Village of Wellington have implemented a comprehensive water quality monitoring program with Basin B. This program includes existing and proposed sampling points within WCPPUD shown on Exhibits 2 and 9B of the Staff Report (SFWMD Exhibit 5). This permit modification requires that Acme continue this monitoring program as specified in Special Condition No. 11 to the Staff Report. Elimination of Existing Control Structure As stated in Finding 19, supra, a 1989 modification to the 1979 authorized construction and operation of a control structure allowing discharge from Lake No. 5 (as designated in Exhibit 2 of the Staff Report, SFWMD Exhibit 5) to the C-4 Canal, which was never built. Instead, as shown on Exhibit 2 of the Staff Report, the existing SWM system for Equestrian Estates discharges to the C-4 Canal well to the north of the authorized control structure via a 100' wide canal. The proposed permit modification will eliminate the authorization for the Equestrian Estates control structure which was never constructed. This revision is necessary to ensure that discharge from the development will continue to occur upstream of Structure 115, as it does today, and that the on- site detention facilities within Equestrian Estates will function as modeled in the water quality analysis. Polo's Pending Application for Peacock Pond Polo has pending a separate application to SFWMD (Application No. 020215-10) requesting authorization for development of Peacock Pond as a polo field. Polo’s proposed water quality feature for its Peacock Pond polo fields development includes a lake on the north end of Peacock Pond. It appears that the lake would utilize lakes/canals 12 and 13, which are currently located at the north end and northeast corner of Peacock Pond, essentially enlarging those lakes/canals to the south and west into Peacock Pond. Polo's application is currently incomplete and fails to address a number of significant water resource issues. SFWMD mailed an initial Request for Additional Information (RAI) to Polo on March 15, 2002. Responses were due within thirty days. As of the date of the final hearing in this case, no response to the initial RAI had been submitted. Notwithstanding its pending application, Polo professes to believe that its undeveloped properties in WCPPUD are "vested," so that Polo should not be required to provide water quality treatment when developing its properties in the future. But the 1979 permit stated that it only permitted construction in certain parts of WCPPUD and that individual permit modifications would be required for the future development of additional phases. (SFWMD Exhibit 2 at p. 1; special conditions.) All "grand fathered" development already has taken place. No evidence or convincing legal argument was presented by Petitioners for the proposition that land owners seeking to develop their properties in Wellington WCPPUD now or in the future should be "vested" and thus subject to different water management regulations than other land owners seeking to develop their properties in Acme Basin B. SFWMD's Proposed Corrections to Staff Report At the Final Hearing, SFWMD suggested that two corrections be made to the Staff Report. The first would add "Section No. 20" on page 1 of the Staff Report (SFWMD Exhibit 5) to clarify the property is actually located in sections 20 and This type of change would be made administratively even without this proceeding. The other correction is proposed on page 4 of the Staff Report (SFWMD Exhibit 5), pertaining to the description of the water elevation within Basin B and Country Place, as follows: The water elevation within Basin B and Country Place was originally permitted with a wet season control elevation of 12.0' and a dry season control of 13.0' NGVD. The minimum road and finish floor elevations were established at elevation 16.0' and 17.0 NGVD, respectively. The water elevation within Basin B was permitted in 1978 with a schedule stage of 13' NGVD in the wet season and 13' NGVD in the dry season; however, the system has historically been operated with a control elevation of 12' NGVD in the wet season and 13' in the dry season. WCPPUD was originally permitted with a wet season control elevation of 12' NGVD and a dry season control elevation of 13' NGVD. The Country Place pump station discharging into Peacock Pond was to begin operation when water elevations reached 13' NGVD and discontinue when the system was drawn down to elevation 12' NGVD. The operational elevations authorized in this staff report are consistent with those authorized in 1979 for Country Place. The 1978 permit also established a minimum road grade elevation of 16' NGVD and a finished floor elevation of 17' NGVD for Basin B. The 1979 permit for Country Place established the same minimum road grade and finished floor elevations. This correction accurately describes the 1978 permit for Basin B; it is not a substantive change. These and other possible changes to the Staff Report were drafted shortly before the final hearing in the form of an "Addendum to Staff Report." Petitioners contended that this denied them due process. However, this Addendum (which was not introduced into evidence) was presented to propose corrections to minor errors in the original Staff Report and to suggest appropriate ways to address issues raised by Petitioners during prehearing procedures in this case in order to help clarify the intention of the Staff Report for Petitioners' benefit. SFWMD offered to withdraw the latter Addendum proposals if Petitioners so wished; Petitioners declined to request that these proposals be withdrawn, but none are considered to be necessary. Other Contentions Raised By Petitioners Alleged Elimination of Petitioners' Water Treatment Facilities Petitioners contended in their Second Amended Petition that the modification will cause "33 acres of previously permitted and constructed water management facilities to no longer be considered toward meeting water quality treatment." But the 33 acres referenced by the Petitioners were never counted for water quality treatment in the previous permits. Additionally, as discussed above, they do not meet the minimal dimensional criteria or have not been encumbered for water quality purposes. See Finding 41, supra. The only surface water management facility which has a change in its permitted status for water quality treatment is Peacock Pond. Future Development is Not Precluded from Proposing Alternative Water Quality Treatment Petitioners expressed a concern that the proposed permit modification would bind future development to the Acme's design assumptions--specifically, the assumption that, in order to meet SFWMD's criteria for new development, future development projects would include 13 percent lakes. This concern seems to spring primarily from the following statement on page 3 of 21 of the Staff Report (SFWMD Exhibit 5): "This permit modification requires that applicants adhere to the stated surface water management system assumptions for all future development." Reading the Staff Report as a whole, it was reasonably clear that Acme's assumption was made only for purposes of its permit modification application and would not bind future developers in WCPPUD. Rather, future applicants may propose any alternative methods that comply with Chapter 40E-4, Florida Administrative Code, and the BOR to demonstrate compliance with water quality requirements. For example, the Staff Report states on page 13: Future Country Place applicants are not precluded from proposing alternative means of treatment which can be demonstrated to provide an equivalent level of treatment. Further, the assumptions do not preclude the SFWMD from requiring additional treatment measures as necessary from an applicant to provide reasonable assurance that future projects will not cause or contribute to existing water quality problems in Basin B. The testimony of SFWMD witnesses confirmed this reading of the Staff Report. There is no need to further modify the Staff Report to allay Petitioners' expressed concern. Canals/Lakes 12 and/or 13 Not Affected Petitioners' Second Amended Petition questioned whether Acme's canals/lakes 12 and 13, which border Peacock Pond on the north and in the northeast corner, are properly located within Acme's easements. But Acme's application proposes no modifications to those canals/lakes. Not only are canals/lakes 12 and 13 not the subject of this permit modification, Petitioners introduced no competent, substantial evidence demonstrating improper placement of those conveyance features. In an abundance of caution, SFWMD suggested adding the following Special Condition Number 14 to address this issue: If a final determination is made by a court of competent jurisdiction that Acme does not own, have an easement or otherwise have the right to utilize the area where canal/lake Number 12 and/or canal/lake Number 13 is located, then within 30 days of such determination, Acme shall file an application with the SFWMD to move the canal/lake Number 12 and or canal/lake Number 13 to an area which is determined to be owned by Acme or over which Acme has an easement, or modify the surface water management system to discontinue use of canal/lake Number 12 and or canal/lake Number 13. Inclusion of this language would confirm that, if a court makes a final determination that Acme does not have the right or access to utilize Canals/Lakes Number 12 and/or 13, Acme would be required to modify the permit. While adding the suggested language to the Staff Report is appropriate, it is not necessary; reasonable assurances have been provided without any additional language that the permit criteria have been satisfied. If canal/lakes 12 and 13 should ever become unusable, thus preventing a discharge of the eastern half of WCPPUD into the C-4 canal, the drainage system could be split so that the western half discharges into the C-4 canal and the eastern half into the C-6 canal. In that case, a minor modification would be required to lower the weir at structure 117 to 12’ NGVD and the permit is modified. Mr. Higgins performed calculations to demonstrate that such a minor modification would be permittable under applicable criteria.4 Wetlands in Pod F Not Adversely Affected The Staff Report includes reference to wetlands located in the southeast corner of Pod F of WCPPUD. (Pod F itself is in the southeast corner of Section 20.) Petitioners seemed to take issue with the Staff Report's description of these wetlands. They also disputed whether Acme provided reasonable assurance that these wetlands would not be adversely affected by the proposed modifications. Specifically, Polo expressed concern that the proposed modifications would undermine a plan it has to restore wetlands in Pod F for use as mitigation for an after-the-fact permit to be issued to resolve a SFWMD cease and desist order imposed on Polo for activities in an adjacent polo field, and perhaps also as mitigation for wetland impacts by Polo and other future developers in the area. In taking these positions, Petitioners criticized SFWMD for not presenting expert testimony from a biologist. The Staff Report states that "the 3.74-acres of cypress wetland contained within Pod F" are the only other wetlands in WCPPUD besides Peacock Pond. These wetlands were described as being "in poor biological condition." Petitioners argued that the testimony of their expert supported a finding that the wetlands in Pod F actually are approximately 25 acres in size. However, her actual testimony was that her proposed wetlands restoration project was 25 acres in size. Part of her proposed restoration project includes the "vertical relocation" of higher ground now infested with melaleuca and other nuisance and exotic species. In addition, she admitted that she had not delineated wetlands in Pod F using the methodology adopted for that purpose by the State of Florida; instead, she used methodology adopted by the United States Army Corps of Engineers was used. Not only are the two methodologies different, the Army Corps methodology includes wetlands not included under the State of Florida methodology. Finally, Petitioners' expert admitted that less than 4 acres of the 25 acres included in her project area consisted of "cypress heads." Taken as a whole, the evidence did not demonstrate a need to revise the Staff Report's description of the size of the wetlands in Pod F. As for the Staff Report's description of the Pod F wetlands' "poor biological condition," this is consistent with the testimony of Petitioners' expert. She testified that the wetlands' hydrology was deficient, especially on the northern half of the restoration project area, and that the tract is "highly infested with exotic vegetation," leading to the need for restoration. The hydrology is better on the southern half of the restoration project area, where the cypress trees are healthy; but the cypress trees on the northern half of the tract are under stress, with lots of old world climbing vines on them and other infestation of exotic vegetation, including melaleuca. On site visits, the expert saw "wading birds, snakes, signs of raccoon [and n]umerous bird species." No endangered or threatened species were said to be using the tract at this time. One purpose of the restoration project would be to create better wildlife habitat. Petitioners' expert testified that if water levels were lowered in the proposed restoration project area, there could be an adverse impact on existing and planned wetlands. However, Petitioners' expert did not have evidence or information indicating historic or current water levels. Petitioners' expert also did not know whether the permit modification will lower or have any affect on the water levels in that area. Petitioners introduced neither competent evidence of current groundwater levels under the proposed wetlands mitigation project, nor competent evidence as to how the permit modification might change those groundwater levels. Acme and SFWMD presented evidence that the water levels in the C-4 and C-23 canals, directly adjacent to Pod F, will not be changed significantly as a result of the permit modification; that the proposed permit modification will have no effect on the groundwater levels in this wetland area; and that, as a result, no wetland impacts will occur from the permit modifications. Petitioners did not rebut the Respondents' evidence. As a result, Acme has demonstrated that not only groundwater and surface water flows and levels but also the value of wetland functions in Pod F will not be adversely impacted, as required by Rule 40E-4.301(d) and (g), Florida Administrative Code. The evidence was that SFWMD biologists visited the Pod F wetlands and prepared a report which formed the basis of statements in the Staff Report about the absence of wetland impacts. Given the finding that groundwater levels in the Pod F will not change, the testimony of expert biologists was not necessary. Assumed Commercial Acreage Through the testimony of Michael Nelson, Petitioners questioned a purported statement in the Staff Report that there are 24.4 acres of commercial acreage in WCPPUD. According to Mr. Nelson, there actually are only five acres of commercially zoned property in the PUD. Mr. Nelson stated that this, along with other alleged errors, undermine his confidence in SFWMD's entire evaluation of the proposed permit modification. In fact, the Staff Report, at page 8, states that "the original permit application (in 1979) included only two land uses: 935.6 acres of single family use . . . and 24.4 acres of commercial area." There was no statement that 24.4 acres is zoned commercial today. Past Violations Petitioners also assert that the proposed permit modification should be denied because Acme has not strictly abided by applicable permits. But Acme's most significant past violation was the failure to operate Peacock Pond as required by the 1979 Permit. As reflected in Findings 21 and 23, supra, the primary purpose of this proposed modification is to resolve the enforcement proceedings that arose out of the Peacock Pond violation. Acme also has been one of thousands of SFWMD permit holders who have not certified construction of their systems in conformance with the applicable permits, which is required to transfer the permit into operational status. For many years, SFWMD did not monitor permits for certification and did not enforce failure to certify permits. When monitoring and enforcement was initiated in 1995, it was found that over 12,000 permits were in violation for failure to submit the required certifications. SFWMD prioritized the missing certifications and began methodical follow-up. When SFWMD raised the issue with Acme, Acme responded, and the outstanding violations are being resolved. SFWMD saw no need to initiate formal enforcement proceedings and has been treating the outstanding violations as a "non-compliance" issue since it is a paperwork problem, not an environmental resource problem. At this time, the modifications to structures 115 and 117 in accordance with the several emergency authorizations to address septic tank problems have been certified. However, as indicated, the 1979 Permit itself cannot be certified so long as the Peacock Pond pumped retention area is not in place and operational. It is found that Acme has sufficient financial, legal, and administrative capabilities to ensure that water management modifications will be undertaken in accordance with the terms and conditions of the modified permit. (Since Acme is now a dependent special district of the Village of Wellington, the Village of Wellington actually will be responsible for installation, operation, and maintenance of these structures.) Notwithstanding the past violations, reasonable assurances have been given that Acme will comply with the terms of its proposed permit modification. Propriety of Petitioners’ Purpose Acme has raised the issue whether Petitioners participated in this proceeding for an "improper purpose," i.e., "primarily to harass or to cause unnecessary delay or for frivolous purpose or to needlessly increase the cost of licensing or securing the approval of an activity." § 120.595(1)(e)1, Fla. Stat. (2003). But it is found that, under the totality of circumstances, Petitioners' participation in this proceeding was not for an improper purpose, as defined by statute. Petitioners' participation in this proceeding has indeed needlessly increased Acme's cost of obtaining SFWMD's permit approval; but the evidence did not prove that this was Petitioners' primary purpose. It also is clear that Petitioners attempted to delay this proceeding through repeated requests for continuances (and other procedural and evidentiary objections) and that, while they usually based their requests for continuances in part on the alleged need for more time for more discovery, they failed to pick up voluminous copies of requested discovery documents and complained about how much money they had already spent on discovery. Nonetheless, it is found that Acme did not prove that Petitioners' primary purpose for participating in this proceeding was to delay the proceeding. It seems reasonably clear that, had Petitioners retained a competent expert engineer to evaluate its case, the expert probably would have advised Petitioners that they would not be able to successfully challenge SFWMD's proposed agency action. For that and other reasons, a reasonable person would not have raised and pursued some of the issues raised by Petitioners in this proceeding. But it cannot be found that all of the issues they raised were frivolous or that their participation in this proceeding was for an improper purpose.

Florida Laws (8) 120.569120.57120.595120.6217.66373.413373.41657.105
# 6
PINKHAM E. PACETTI vs. DEPARTMENT OF ENVIRONMENTAL REGULATION, 84-003810 (1984)
Division of Administrative Hearings, Florida Number: 84-003810 Latest Update: Feb. 28, 1986

The Issue The issues set forth in DOAH Case No. 84-3810 concern the question of whether the State of Florida, Department of Environmental Regulation (DER) should issue a permit to Homer Smith d/b/a Homer Smith Seafood (Homer Smith) to construct a wastewater treatment facility which is constituted of a screening mechanism, dissolved air flotation treatment system, sludge drying bed, pumping station and subaqueous pipeline. In the related action, DOAH Case No. 84-3811, the question is raised whether DER should issue a dredge and fill permit to Homer Smith for the installation of the aforementioned pipeline along submerged lands in Trout Creek, Palmo Cove and the St. Johns River.

Findings Of Fact Introduction and Background In 1982, Homer Smith, under the name of Homer Smith Seafood, established a calico scallop processing facility in the vicinity of the intersection of State Road 13 and Trout Creek in St. Johns County, Florida. From that point forward, Smith has owned and operated the processing plant. His plant adjoins Trout Creek, which is a tributary to the St. Johns River. Both Trout Creek and the St. Johns River are tidally influenced waters that are classified as Class III surface waters under Rule 17-3.161, Florida Administrative Code. The processing undertaken by Smith's operation at Trout Creek contemplates the preparation of the scallops for human consumption. In particular, it involves the purchase of calico scallops from Port Canaveral, Florida, after which the scallops are transported by refrigerated trucks to the processing plant. They are then unloaded into metal hoppers and directed into rotating tumblers which separate out the scallops from sand, mud and other extraneous material. The scallops are placed in a steam tumbler that removes the shells and then passed through a flow tank that washes away sand, grit and shell particles. The scallops are next passed through eviscerators. These eviscerators are long tubes of aluminum with roughened surfaces that pull the viscera off of the scallops. The detached scallops are then sent along a conveyor belt, with scallops in need of further cleaning being picked out and sent to a second eviscerator. The eviscerated scallops are then chilled and packed for marketing. It is the viscera and wastewater associated with this material that is the subject of permitting. Homer Smith is one of about six automated scallop processing plants located in Florida. Two other plants are within St. Johns County, on the San Sebastian River in St. Augustine, Florida. Three other plants are located in Port Canaveral, Florida. When Smith commenced his operation of the scallop processing plant in the summer of 1982, he discharged the scallop processing wastewater into an area described as a swamp with an associated canal which connected to Trout Creek. By the fall of 1982, Smith had been told by representatives of the Department of Environmental Regulation that to operate his facility with the discharge would require a permit(s) from DER. At the time of this discussion, automatic scallop processing was an industry for which appropriate wastewater treatment alternatives had not been specifically identified by the Department of Environmental Regulation or the United States Environmental Protection Agency. This was and continues to be the case as it relates to the promulgation of technology-based effluent limitations designed for calico scallop processors. This circumstance is unlike the situation for most other industries for which DER has established technology-based effluent limitations. To rectify this situation, Florida Laws 85-231 at Section 403.0861, Florida Statutes, requires DER to promulgate technology-based effluent limitations for calico scallop processors by December 1986. In the interim, consideration of any permits that might be afforded the calico scallop processors by the exercise of DER's regulatory authority must be done on a case-by-case basis, when examining the question of technology-based effluent limitations. DER sent a warning letter to Smith on April 20, 1983, informing the processor that discarding its wastewater into Trout Creek without a DER permit constituted a violation of state law. After the warning letter, scallop harvesting declined to the point that by mid-June of 1983 the plant had closed down, and it did not reopen until the middle part of September 1983. Upon the recommencement of operations, DER issued a cease and desist notice and ordered Smith to quit the discharge of wastewater from the facility into Trout Creek. On the topic of the cease and desist, through litigation, Smith has been allowed the right to conduct interim operation of his business which involves direct discharge of wastewater into Trout Creek, pending assessment of wastewater treatment alternatives and pursuit of appropriate DER permits. 1/ When Smith filed for permits on April 10, 1984, he asked for permission to dredge and fill and for construction rights pertaining to industrial wastewater discharge into the St. Johns River. The application of April 10, 1984, involved the installation of a wastewater treatment system and an associated outfall pipeline to transport treated wastewater to the St. Johns River from the plant location. This system would utilize a series of settling tanks and a shell-filter lagoon as the principal wastewater treatment. DER, following evaluation, gave notice in October 1984 of its intent to issue permits related to dredge and fill and the construction of the wastewater treatment facility. In the face of that notification, the present Petitioners offered a timely challenge to the issuance of any DER permits. In considering treatment alternatives, Homer Smith had employed various consultants and discovered that treatment beyond coarse screening had not been attempted in processing calico scallop wastewater. Those consultants were of the opinion that conventional treatment methods such as clarification, sand filtration, vortex separation, breakpoint chlorination, polymers and spray irrigation were of limited viability due to the inability to remove key constituents within the waste stream or based upon certain operational difficulties that they thought would be experienced in attempting those methods of treatment. As envisioned by the April 10, 1984, application for permit, interim treatment of the wastewater was provided by the use of a series of settling tanks and a shell-filter lagoon, within which system adjustments were made to the delivery of wastewater treatment. The April 10, 1984, permit application by Smith did not envision any chemical treatment of the wastewater aside from that which might occur in association with the settling and filtration through the shell-filter lagoon. Following DER's statement of intent to issue a permit for construction of the wastewater treatment facility as described in the April 10, 1984, application by Smith, DER became concerned about the potential toxicity of calico scallop wastewater, based upon its own studies. As a consequence, Smith amended the application for wastewater treatment facility to include use of chemical coagulation and flotation. This amendment occurred in March 1985, and the wastewater treatment process in that application envisioned the use of an electroflotation wastewater system. In view of toxicity problems experienced with the testing related to the use of an electroflotation wastewater treatment system, this treatment alternative was discarded in favor of a dissolved air flotation (DAF) system. This system was pursuant to an amendment to the application effective May 31, 1985. This amendment of May 1985 was in furtherance of the order of the hearing officer setting a deadline for amendments to the application. DER issued an amended intent to grant permits for the DAF unit and the associated pipeline and that action dates from June 28, 1985. The Petitioners oppose the grant of these permits for the DAF unit and pipeline, and under the auspices of their initial petition have made a timely challenge to the grant of a permit for the installation of the DAF wastewater treatment unit and associated pipeline. It is the DAF unit and pipeline that will be considered in substance in the course of this recommended order. On July 6, 1984, Smith sought an easement from the State of Florida, Department of Natural Resources (DNR) for the installation of the pipeline. This was necessary in view of the fact that the pipeline would traverse sovereignty lands which were located beneath Trout Creek, Palmo Cove and the St. Johns River. On December 17, 1984, DNR issued a notice of intent to submit that application to the Board of Trustees of the Internal Improvement Trust Fund with a recommendation of approval. This action was challenged by the Petitioners on January 7, 1985, in a petition for formal hearing challenging the grant of the easement. DOAH Case No. 85-0277 concerns this challenge to grant of an easement. Originally, by action of January 28, 1985, the easement case was consolidated with the present DER permit actions. At the instigation of DNR, the easement case was severed from consideration with the present action. The order of severance was entered on July 31, 1985. The DNR case will be heard on a future date yet to be established. The DNR case was severed because that agency preferred to see test results of treatment efficiencies following the construction of the DAF unit. By contrast, the present DER cases contemplate a decision being reached on the acceptability of the construction of the DAF unit and attendant features, together with the pipeline on the basis of theoretical viability of this entire system. This arrangement would be in phases in which the construction of the upland treatment system would occur within 90 days of the receipt of any construction permit from DER, followed by a second phase within which Smith would construct the pipeline within 60 days of receipt of any other necessary governmental approval, such as the DNR easement approval. Furthermore, DER would wish to see the results of an integrated treatment system involving the upland treatment by the DAF unit and its attendant features and the use of the pipeline and the availability of a mixing zone, that is to say the end of pipe discharge, before deciding on the ultimate question of the grant of an operating permit for the wastewater treatment system. The quandary presented by these arrangements concerns the fact that discharge from the DAF treatment unit would be temporarily introduced into Trout Creek, pending the decision by DNR to grant an easement for the pipeline and the necessary time to install that pipeline. Given the difficult circumstances of these actions, there is raised the question of the propriety of discharging wastewater into Trout Creek pending resolution of the question of whether DNR wishes to grant an easement to place the pipeline over sovereignty submerged lands. This is a perplexing question in view of the fact that DNR requested severance from the present action, thereby promoting further delay in the time between any installation of the upland treatment system and the pipeline. Finally, Trout Creek is an ecosystem which has undergone considerable stress in the past, and it is more susceptible to the influences of pollution than the St. Johns River would be as a point of ultimate discharge from the pipeline. This dilemma is addressed in greater detail in subsequent sections within the recommended order. Petitioner River Systems Preservation, Inc., is a nonprofit organization comprised of approximately seven hundred persons. The focus of the organization is to protect and enhance the environment of northeast Florida. The individual Petitioners, Pinkham E. Pacetti, Robert D. Maley, Ruth M. Whitman and others, are members of the corporation who own property or live near the scallop processing plant of Respondent Smith. In addition, Pacetti owns a marina and recreational fishing camp that is located across Trout Creek from Smith's plant. Pacetti's fish camp dates from 1929. On the occasion of the opportunity for the public to offer their comments about this project, a significant number of persons made presentations at the public hearing on August 29, 1985. Some members of the public favored the project and others were opposed to the grant of any permits. St. Johns County Board of County Commissioners, in the person of Commissioner Sarah Bailey, indicated opposition to the project, together with Bill Basford, President of the Jacksonville City Council. Warren Moody, the vice-chairman of the Jacksonville Waterways Authority spoke in opposition to the project. The Florida Wildlife Federation and the Jacksonville Audubon Society expressed opposition to the project. The officials related the fact of the expenditure of considerable amounts of public tax dollars to improve water quality in the St. Johns River and their concern that those expenditures not be squandered with the advent of some damage to the St. Johns River by allowing the permits in question to be issued. These officials considered the St. Johns River to be a significant resource which they are committed to protecting. The City of Jacksonville, Clay County, Green Cove Springs, the Jacksonville Waterways Authority, the Northeast Florida Regional Planning Council and St. Johns County expressed opposition to the project contemplated by the present permit application, through the adoption of certain resolutions. These broad-based statements of opposition were not spoken to in the course of the hearing by members of any technical staffs to these governmental institutions. Private members of the public, some of whom are affiliated with River Systems Preservation, Inc., expressed concern about water quality violations, harm to fish and other environmental degradations that have been caused by the Homer Smith operation in the past and their belief that these problems will persist if the permits at issue are granted. Those persons who favored the project, in terms of public discussion, primarily centered on the idea that, in the estimation of those witnesses, fairness demanded that Smith be afforded an opportunity to demonstrate that this proposed system of treatment was sound and the quality of the water being discharged from the Homer Smith plant was not as bothersome as had been portrayed by the persons who opposed the grant of environmental permits. Industrial Wastewater Construction Permit Treatment System Description of Homer Smith's Plant and Its Operation. The source of water used for the processing of the scallops at the Homer Smith plant is a well which is located on that property. Homer Smith is allowed to withdraw 300,000 gallons of water per day in accordance with a consumptive use permit that has been issued by the St. Johns River Water Management District. To ensure Smith's compliance with this permit, a metering device is located on the well. Typically, the plant operates an eighteen-hour day, five days a week, using water at a rate of 200 gallons per minute. This would equate to 215,000 gallons per day over an eighteen-hour day. Prior to the imposition of restrictions by the Department of Environmental Regulation through the consent order, this facility had processed as much as 40,000 pounds of scallops each day, for a total of 36,000 gallons each week, at a gross revenue figure of $225,000 per week. Characteristics and Frequency of Effluent Discharge The wastewater generated by the scallop processing that is done at the Homer Smith plant is principally constituted of the well water used to clean the scallops, proteinaceous organic materials, and metals. The metals are introduced into the wastewater stream from the scallop tissue. The wastewater stream also has a certain amount of sand and grit, together with shell fragments. The concentrations of organic materials within the wastewater stream are at high levels. There is also an amount of fecal coliform bacteria and suspended solids. The pollution sources within the wastewater stream include total suspended solids (TSS), biochemical oxygen demand (BOD), nutrients (nitrogen and phosphorus) and the coliform bacteria. In the neighborhood of 30 percent of the BOD in the wastewater is soluble. The balance of the BOD is associated with the suspended solids. With time the organic materials in the wastewater stream will decompose and with the decomposition present certain organic decomposition products, which would include ammonia, amines and sulfides. Heavy metals in the wastewater have been in the scallop tissue and are released with the cleaning of the scallops. These metals include cadmium, copper, zinc, iron, manganese, silver and arsenic. The presence of these metals within the tissues of the scallops are there in view of the fact that the scallops are "filter-feeders" which have taken in these elements or metals that naturally occur in the ocean water. The permit application contemplates an average of five days a week of operation for eighteen hours a day. Notwithstanding the fact that in the past the Homer Smith Seafood operation had processed scallops seven day week, twenty- four hours per day, Smith does not desire to operate more than five and a half days a week in the future. That is perceived to mean five eighteen-hour days and a twelve-hour day on the sixth day. The treatment system contemplated here is for a flow volume of around 200 gallons per minute during normal operation. The system can operate as high as 300 gallons per minute. That latter figure approaches the design capabilities of the treatment system proposed. Wastewater is discharged only when scallops are being processed. There is basically 1:1 ratio between the volume of well water used to process the scallops and the amount of wastewater discharged. Proposed Treatment System and Alternatives As already stated, there is no specific industry standard set forth in the DER rules which would describe technology-based standards for the treatment of calico scallop wastewater. In those instances where the agency is confronted with an industry for which technology-based standards have not been established, DER examines the question of whether that effluent is amenable to biological treatment as contemplated in Rule 17-6.300(1)(n)1., Florida Administrative Code, as an alternative. Biological treatment is a treatment form normally associated with domestic waste and the imposition of this treatment technique is in furtherance of achieving a secondary treatment standard found in Chapter 17-6, Florida Administrative Code, which results in 20 mg/L of BOD and TSS, or 90 percent removal of those constituents, whichever is the greater performance in removal efficiency. In the absence of specific standards related to the calico scallop industry, and in the face of the interpretation of its rules in which DER calls for an examination of the possibility of biological treatment as an alternative to treatment specifically described for a given industry, it was incumbent upon this Applicant to examine the viability of biological treatment of the scallop wastewater product. The Applicant has considered biological treatment as an alternative and rejected that treatment form, in that Smith's consultants believe the wastewater is not amenable to biological treatment. By contrast, Petitioners' consultants believe that biological treatment should be the principal focus in treating the scallop wastewater and contend that biological treatment is a more viable choice when contrasted with the option chosen by the Applicant. If this waste is not amenable to biological treatment, Rule 17-6.300(1)(n)1., Florida Administrative Code, envisions an acceptable or minimum level of secondary treatment shall be determined on a case-by-case basis. In the instance where biological treatment is not a reasonable choice, the Applicant is expected to achieve treatment results which are comparable to those arrived at in treating domestic waste by the use of biological treatment techniques. On this occasion, DER had not established what they believe to be a comparable degree of treatment for calico scallop waste, assuming the unavailability of biological treatment. The present case is a matter of first impression. As a result, the idea of a comparable degree of treatment shall be defined in this hearing process, assuming the inefficacy of biological treatment. In that event, DER must be assured that the proposed treatment plan has an efficiency that rivals the success which biological treatment promotes with domestic waste, taking into account the quality of the effluent prior to treatment, available technology, other permitting criteria and the ambient conditions where the waste stream is being discharged. In arguing in favor of biological treatment, Petitioners pose the possibility of an integrated system in which primary settling tanks or clarifiers would be used together with a biological treatment step, which is referred to as a trickling filter, followed by final settling by the use of tanks or clarifiers in an effort to achieve BOD concentrations in the range of 200 mg/L to 400 mg/L. In this connection, the dissolved air flotation system is seen in the role of alternative to the initial stage of settling of the constituents within the wastewater stream. It is not regarded as the principal means of treatment of the waste. The trickling filter system as a biological treatment medium involves the use of a bacterial culture for the purpose of consuming the oxygen-demanding constituents, BOD. The trickling filter technique, if a viable choice, has the ability to remove 70 to 75 percent of BOD and TSS. Petitioners suggest further treatment of the waste beyond primary and final settling and trickling filter can be afforded by involving activated sludge, which according to their experts would end up with a biological oxygen demand in the 20 mg/L range. Although the constituents of the Smith plant's waste are of a highly organic nature, and, at first blush a candidate for biological treatment by use of the trickling filter, the problem with this form of treatment has to do with the intermittent flow in the Smith operation. This intermittent flow is caused by the fact that the plant does not operate throughout the year. The plant operations are seasonal, depending on calico scallop harvesting which does not occur on a routine basis. Therefore, the problem is presented of trying to keep the biological treatment system "alive" and operating at levels of efficiency which can be expected to maintain the percentage of removal of BOD and TSS that a healthy system can deliver. The bacteria colonies which are vital to the success of the biological treatment system must be fed on a continuous basis to maintain balance in the population of the colony. This would be a difficult undertaking with the Smith operation, given the interruptions in operations which could lead to the decline in the bacterial population and a poorer quality of treatment once the operations were resumed. This finding takes into account the fact that the colony can survive for a week or two by simply recirculating water over the filter. Obviously, in order to maintain necessary efficiencies within this biological treatment, the bacteria must do more than survive. The further suggestion that has been offered that the bacteria could be sustained for longer periods of time by feeding them seafood waste or dog food are not found to achieve the level of efficiency in the operation that would be necessary in posing biological treatment as an alternative. Again, it is more of an intervening measure designed to assure the survival of bacteria pending the continuation of the operations of the plant, as contrasted with a system which is continual and taking into account the uniformity of the waste product more efficient. Another problem with feeding the bacteria when the plant is not operating is that of disposing of the waste produced when this auxiliary feeding is occurring. Just as importantly, biological treatment is questionable given the long retention times necessary for that process and the build-up of toxic levels or concentrations of ammonia. The Applicant had employed an aerated lagoon in attempting to treat the waste and experienced problems with ammonia build up. Although this system did not call for the degree of treatment of the waste prior to the introduction into the lagoon that is contemplated by the present proposal of the Applicant, it does point to the fact of the problems with ammonia in the biological treatment system. Dr. Grantham, a witness whose testimony was presented by the Petitioner, conceded the difficulty of removing ammonia from the trickling filter. Moreover, the biological treatment system is not especially efficient in removing metals and phosphorus from the wastewater. Alternative treatment would be necessary to gain better efficiency in removals of those constituents. The trickling filter is expected to gain 50 percent metals removal, which is inadequate given the concentrations of heavy metals found in the scallop wastewater. Phosphorus could be removed after treatment by the trickling filter by the use of lime or alum. Assuming optimum conditions in the use of biological treatment after primary and final settling, thereby arriving at a BOD level of 200 mg/L, it would then be necessary to make further treatment by the use of activated sludge to see 20 mg/L BOD. The problem with activated sludge is related to the fact that this form of treatment is particularly sensitive to interruptions in flow, which are to be expected in this wastewater treatment setting. On balance, biological treatment does not present a viable choice in treating scallop waste. That leaves for consideration the question of whether the Applicant's proposal would afford a comparable degree of treatment to that expected in the use of biological treatment of domestic waste. The manufacturer of the dissolved air flotation unit or DAF system proposed, known as the Krofta "Supracell," offers another piece of equipment known as the "Sandcell" which in addition to the provision for dissolved air flotation provides sand filtration. The Sandcell might arrive at BOD levels of 400 mg/L. However, the testimony of the witness Lawrence K. Wang, who is intimately familiar with the Krofta products, in responding to questions about the use of the Sandcell system and suggestion that the system would arrive at 400 mg/L BOD responded "could be." This answer does not verify improvement through the contribution of sand filtration. For that reason inclusion of a Sandcell for filtration of BOD is not suggested in this fact finding and the system as proposed must be sufficient in its own right. Having realized the need to provide greater treatment than screening or filtering the waste stream, the Applicant attempted to design a treatment system using flotation technology together with chemical precipitation and coagulation. At first the Applicant examined the possibility of the use of electroflotation (EF). This involved the collection of wastewater in a retention tank and the generation of an electric current to create a series of bubbles to float insoluble flocs. Those flocs are caused by the use of ferric chloride, sodium hydroxide and various polymers which are added to the waste stream. The flocs are then pushed to the top of the chamber by the air bubbles, and this particulate matter is skimmed off by the use of a paddle. Pilot testing was done of the electroflotation technology and showed promising results, so promising that a full-scale electroflotation unit was installed and tested. The full-scale electroflotation showed reasonable removal of BOD, TSS, nutrients, coliform and trace metals. This technique was discarded, however, when bioassay testing of the treated effluent was not successful. In examining the explanation for the failure, the experts of the Applicant were of the opinion that certain chemical reactions were occurring as a result of the passage of the electrical current through the wastewater stream. When this problem with acute toxicity could not be overcome through a series of adjustments to the process, the Applicant decided to test another form of flotation, which is referred to as dissolved air flotation (DAF). This system employs the use of chemicals to create insoluble flocs. Unlike the electroflotation unit, though, it does not utilize electrical currents to create the air bubbles employed in the flotation. The dissolved air flotation thereby avoids problems of toxicity which might be attributed to the passage of electrical current through the water column. The present system as proposed by the Applicant has a number of components. The first component of treatment involves the passage of raw wastewater through a mechanical screening device, which is designed to remove a certain number of particulates by catching those materials on the screen. That material is then removed from the plant and disposed of off site. The balance of the wastewater after this first stage of treatment passes into a sump area and from there into a primary mix/ aeration tank. This water is then chemically treated to facilitate the formation of insoluble flocs. The chemically treated wastewater then enters a premanufactured Krofta Supracell 15 DAF unit which is designed to form bubbles by the use of pressurized air, with those bubbles floating the waste materials within the floc to the surface. Again, this method does not use electrolysis. The floated solid materials are then skimmed from the surface and directed to a holding tank and subsequently pumped to sludge drying beds. Some of the treated wastewater is recycled through the DAF unit after pressurization and in furtherance of forming the necessary bubbles for the DAF unit. The balance of the water is directed to a force main lift station. This water would then be transported through the eight-inch PVC pipe some 13,000 feet into the main channel of the St. Johns River where it is distributed through a five port diffuser. The screening mechanism spoken of had been installed in mid-December 1984 and has been used since that time to filter the wastewater. The screening mechanism is in substitution of settling tanks and shell pits. The shell pits which had been used before presented problems with odors as well as the ammonia build up which has been addressed in a prior paragraph. The removal efficiency of the screening mechanism is 30 percent of particulates associated with pollution parameters, as example BOD, total Kjeldahl nitrogen, total phosphorus and TSS. The frequency of the transport of these screened materials to the off site disposal is four to six times a day and the screen is decontaminated at the end of each day when the operations are closed. The application contemplates the same operating procedures of disposal and maintenance with the advent of any construction permit. The primary mix/aeration tank aerates the wastewater and through that process and the retention time contemplated, equalizes the flow regime and promotes a more balanced concentration of waste materials prior to the introduction of that wastewater for chemical coagulation and flotation. This step in the treatment process enhances the treatment efficiency. Some question was raised by the Petitioners on the size of the primary mix-aeration tank as to whether that tank was sufficient to equalize the flow, and conversely, the impacts of having too much retention time built into that tank, which would promote the build-up of toxic concentrations of ammonia in the wastewater. The retention time within the sump and the primary mix-aeration tank approximates one and one-half hours. The retention time and size of the primary mix-aeration tank are found to be acceptable. This design appropriately addresses concerns about the build-up of decomposition products and toxicity, to include ammonia. The sludge which collects in the primary mix-aeration tank will be pumped back to the sump pit by return flow. The sump pit itself will be pumped out in the fashion of cleaning a septic tank on the basis of once a week. The sump pit also receives the return flow of leachate from the sludge drying bed. Once equalization of flow is achieved in the primary mix-aeration tank, that wastewater is then treated by the use of alum, sodium aluminate and polymers. The purpose of this treatment is to convert soluble and insoluble organic matter such as TSS and BOD, trace elements and phosphorus into insoluble flocs that can be removed by flotation. These combinations of chemicals and dosage rates have been tested in electroflotation and dissolved air flotation bench and pilot scales for use associated with this project and a list of appropriate chemicals and ranges of dosage rates has been determined. It will be necessary for these chemicals and general dosages to be adjusted in the full- scale operation under terms of the construction permit. This facet of the treatment process must be closely monitored. Once the wastewater stream has received the chemical treatment, it is introduced into the Krofta Supracell 15 DAF unit. This unit is 15 feet in diameter, and within this cylinder bubbles are generated by pressurizing some of the chemically treated wastewater and potentially clean tap water. The use of clean tap water promotes dilution of the wastewater stream as well as greater efficiency in the production of the bubbles. Chemically treated wastewater is brought into the cylinder through the back of a revolving arm that moves around a center column of the DAF unit at the speed of the effluent flow. The purpose of this mechanical arrangement is to eliminate horizontal water velocity, to protect the integrity of the flocs that are being formed by the use of the chemicals. Those flocs float to the surface in a few minutes' time, given the normal turbulence and shallow depth of the DAF unit. This limited retention time also avoids ammonia build up. The floating material is then scooped and poured into a stationary center section and is discharged by gravity to the sludge holding tank. Wiper blades which are attached to the revolving arm scrape the bottom and sides of the tank and discharge any settled sludge to a built-in sump in the DAF unit. These materials which are settled in the bottom of the DAF cylinder are transported through the sludge holding tank and eventually placed in the sludge drying beds. The treated wastewater is removed by an extraction pipe associated with the center section of the DAF unit. It is then discharged. The use of clean tap water from the well and the ability to recycle the waste stream can promote greater treatment efficiency in terms of removal of undesirable constituents of the waste stream and the reduction of concentrations of those materials. As a measurement, approximately 8 percent of the wastewater flow will be removed as sludge. This sludge is sufficiently aerated to be reduced in volume by about one-half over a period of ten to thirty minutes in the sludge holding tank. It is then sent to the sludge drying beds. The sludge drying beds are designed to accommodate 30,000 gallons of sludge. They are 60 feet long, 25 feet wide and 4 feet deep. Those drying beds are of greater size than is necessary to accommodate the volume of sludge. The sludge drying beds have a sand and gravel bottom. The water drains from the sludge as leachate and returns to the sump pit in the treatment system at a rate of five to ten gallons a minute. Some concern has been expressed that the "gelatinous" nature of the sludge will make it very difficult to dewater or dry. This opinion is held by experts of the Petitioners, notwithstanding the fact that polymers are used in the treatment process. One expert in particular did not believe that the sludge would adequately dry. Having Considered the evidence, the opinion that the sludge will not dry sufficiently is rejected. Nonetheless, it is incumbent upon the Applicant to monitor drying conditions of the sludge very carefully and, if need be, to add some chemical such as calcium hydroxide to enhance the drying capacity of the sludge material. It is anticipated that the sludge will be removed once a day and this arrangement should be adhered to. With adequate drying, the sludge material can be removed with the use of shovels, rakes and a front-end loader as proposed by the Applicant. With frequent removal and adequate drying, problems with odors can be overcome, and problems with ammonia build up and the generation of unreasonable levels of bacteria can be avoided. Should problems with odors, ammonia and bacteria occur, it would be necessary for the Applicant to purge the drying beds, to include the sand and gravel which had been invested with the sludge materials that had caused the problems. Although Smith has not tested the drying bed leachate as to specific nature, the treatment process can be expected to deal with problems of any build-up of ammonia concentrations, fecal coliform bacteria and other organic decomposition products. This pertains to the ability to remove these offending substances from the site in terms of removal of the residual solids and the ability to treat those parameters within the leachate as the wastewater is cycled through the system. The treated wastewater will be transported to a pumping station by gravity flow and then pumped via the pipeline to the proposed point of discharge in the main channel of the St. Johns River. This pipeline is constituted of fabricated sections of pipe 20 feet in length, connected with bell and spigot joints, rubber gaskets and solvent welding. The treated wastewater is released into the river through a five point diffuser which has three-quarter inch openings angled at ten degrees from the horizontal bottom. The pipeline is anchored with prefilled 80-pound concrete bags attached with polypropelene straps which are placed at 8-foot intervals. These are placed to keep the pipe from floating. The diffuser is supported by four piles driven into the river bottom and surrounded by a series of concrete bags. The purpose of this arrangement is to hold the diffuser in place and to protect it against potential damage from anchors or other possible impact. The Applicant acquiesces in the choice to have the pipeline tested for leaks once a month in the period June through September and every other month during other parts of the year. If leaks are found, the Applicant would be responsible for repairing those leaks. As stated before, it is necessary for the Applicant to receive permission from the State of Florida to be granted an easement before the pipe can be installed. Prior to that permission being granted, the treated wastewater would be placed in Trout Creek, which is adjacent to the processing plant. Predicted End of Pipeline Quality of the Effluent In trying to predict the quality of effluent at the end of the pipeline, bench scale and pilot scale testing was done related to the DAF technology. This testing was done related to screened wastewater that was collected from the plant in April 1985. In this connection two series of DAF bench scale tests were performed. They related to samples collected on April 18 and 19, 1985, which were packed in ice and shipped directly to a research laboratory in Lenox, Massachusetts, where they were treated with chemicals and a laboratory size DAF unit. The concentration of the wastewater parameters were measured and recorded before and after treatment, and the results of those tests are set forth in the Applicant's Exhibit A-4(B)(3), at Table 2-1. The pilot scale testing that was done in this case related to a 4-foot diameter DAF unit which had been installed at the Homer Smith plant. This testing occurred in April 1985. The basis of the testing was samples taken on April 15 and 19, 1985. Again, wastewater parameters were measured before and after treatment and the results are set forth in Applicant's Exhibit A-4(B)(3), at Table 2-1. When the initial testing was done with the DAF, results for total coliform bacteria uniformly fell below a range of 35 organisms/100 ml. Subsequent pilot tests yielded higher bacterial counts which would indicate that there was a build-up of bacteria within the DAF unit. This verifies the need to require that the DAF unit contemplated by the application be routinely cleaned or sanitized to avoid the build-up problem. TSS in the pilot unit effluent was reduced to 40 mg/L and lower. The capacity for metals removal in the pilot scale testing was good pertaining to copper and zinc. The ability to remove cadmium showed a result of 0.013 and 0.015 mg/L. The best performance in the pilot scale testing related to BOD removal showed a value of 510 mg/L. It should be noted that the bench scale testing and pilot scale testing were in the face of significant variations in the amount of BOD presented by the screened wastewater. This identifies the need to pay close attention to the removal efficiency of the system related to the BOD parameter in order to achieve consistent levels of BOD following treatment. The system under review is referred to as full-scale treatment. This treatment can be expected to exceed the levels achieved in the DAF bench and pilot scale testing because: (a) As a general proposition, treatment efficiency improves as the scale of machinery increases from bench to pilot to full-scale; (b) The bench and pilot scale tests were run without the benefit of the primary mix-aeration tank and the benefits derived from that part of the treatment apparatus, that is to say, uniformity of the flow and better dispersion of the constituents of the wastewater stream, prior to chemical treatment; (c) The pilot DAF unit used exclusively recycled wastewater to undergo pressurization for the creation of the air bubbles. In the course of the hearing it was established that approximately 50 gallons per minute of clean tap water could be brought in to the treatment process resulting in the formation of more bubbles and the facilitation of up to 10 percent greater treatment efficiency based upon that change. The other contribution made by the use of clean tap water was the possibility of as much as a 20 percent dilution of the wastewater stream, in terms of concentration of constituents within the wastewater stream; (d) In a full-scale operation, the opportunity is presented to routinely adjust the chemical dosages as well as select among a range of chemicals in order to achieve the greatest treatment efficiency; (e) In employing routine sanitization of the DAF unit by use of a mild chlorine compound, the tendency to accumulate coliform bacteria can be overcome. Removal of this adverse influence improves the water quality. In traveling through the pipeline, the transit time is in the range of two to three hours. At a normal rate of 250 gallons per minute of discharge, the transit time in the pipeline is 2.25 hours. Given the constituents of the wastewater, bacterial populations can be expected and could conceivably consume sufficient amounts of oxygen to affect the dissolved oxygen levels within the wastewater as it exits the pipe at the diffuser ports. In addition, there is some possibility of ammonia build up within the pipeline. To avoid the build up of bacteria at harmful levels, sanitation of the DAF unit must be accomplished. In addition, the pipeline itself should be flushed with clean water at the close of operations each day and treated with small amounts of chlorine to address bacteria which may form within the pipeline. This avoids the increasing concentrations of ammonia and protects against lowered dissolved oxygen concentrations and the possibility of increased levels of toxic substances in the effluent which might be attributable to the proliferation of bacteria and the build-up of ammonia during the transport through the pipeline. Taking into the account the nature of this wastewater and the velocity associated with the transport and the sanitization of the pipeline, sedimentation associated with organic solids or other materials will not present a problem. The pollution parameters associated with the treated effluent at the point of discharge from the pipeline can be expected to meet Class III orders, excepting unionized ammonia, specific conductance, copper, cadmium, pH and zinc. In order to achieve satisfactory compliance with regulatory requirements related to those parameters, the Applicant has requested a two-meter mixing zone. The purpose of that mixing zone would be to afford an opportunity for dispersion and mixing in the ambient water before imposition of water quality standards. The implications of that mixing zone are discussed in a subsequent section to the fact finding within the Recommended Order. In effect use of the mixing zone will promote compliance with standards pertaining to the subject parameters. Petitioners point out the fact that the Applicant has based its assumptions on the results of treatment on the availability of four sets of data which were obtained from DAF effluent--two sets of data coming from the bench tests and two sets of data from the pilot plant. Further, there is an indication of the variation in quality of the effluent from one test to the next and the need to employ different dosage rates of chemicals in the face of those variations. The full-scale system utilizes a number of techniques to gain some uniformity in the quality of the effluent prior to chemical treatment and thereby some uniformity in the amount of chemicals necessary to treat the effluent. This overall system can then be expected to produce treated wastewater that is basically uniform in its constituents. Petitioners point out the limited amount of data in the testing related to BOD. There were, in fact, only two data points: one related to the bench system and one related to the pilot system pertaining to BOD, both of these the product of different chemical dosages for treatment. Again, the system that is at issue in this proceeding can be expected to arrive at a more consistent level of BOD than is depicted in the results pertaining to bench scale and pilot scale testing. In fact, those results were not remarkably disparate in that the bench sale test produced 560 mg/L and the pilot scale test produced 510 mg/L. While the data related to BOD is limited, it still gives sufficient insight as to the probability of successful full-scale treatment and the test data is found to be a reliable indication of success in achieving the goal of 510 mg/L BOD. Contrary to the Petitioners' perceptions, the treatment efficiency is improved with the system that is under review. Petitioners believe that the bench and pilot scale testing not only is unrepresentative of the full-size DAF system, they also believe that the full-size system represents a lesser quality of treatment. In this regard reference is made to features which would adversely affect the treatment efficiencies. The first of those pertains to leachate which drains from beneath the sludge drying beds and is recirculated to the existing sump pit and added to the waste stream. Sludge which sits in the drying bed does decompose and causes biochemical reactions to occur, as Petitioners suggest. Moreover, no specific testing has been done of the leachate to ascertain the ammonia concentrations, pH or other chemical characteristics. Nonetheless, given the intention to clean out the residual matter within the sump pit frequently, and the flexibility to make that cleanup more routinely, and the fact that this amount of leachate is comparatively small in its ratio to wastewater which is being sent through the system for treatment, the leachate is not found to be an unmanageable problem. Nor is the sludge a problem. Likewise, the amounts of heavy metals within the leachate can be accommodated. Concerns expressed by the Petitioners related to the organic materials in the primary mix-aeration tank that is being returned to the sump pit can also be dealt with by the evacuation of the materials in the bottom of the sump pit. This can be achieved more frequently than on a weekly basis if that becomes necessary, and in doing so avoid problems with concentrations of ammonia, bacteria, amines, sulfides and general organic decomposition products. These materials which are returned to the treatment process as wastewater reintroduced into the primary mix-aeration tank can be adequately addressed in the subsequent treatment that occurs by reaeration, the use of the chemicals and DAF flotation. The retention inherent in the sump pit, primary mix-aeration tank and sludge drying bed has a potential to cause problems with ammonia build-up; however, the problems can be satisfactorily addressed, as well as potential problems with other toxic substances in the effluent, by routinely taking the residual material in the sump pit and sludge drying bed out of the treatment system. While the specific chemicals and precise dosage rates to be used with a full-size DAF system remain open, the basic concept of chemical treatment has been identified sufficiently. The precaution that is necessary is to make certain that close monitoring is made of the results of changes in the chemicals and dosage rates. Likewise, special attention should be paid to the implications of adjustments in the pH of the effluent to make certain that compliance is achieved with the Class III water criterion related to changes in pH above background. Adjustments can be made without violating Class III water standards related to pH. In testing that was done pertaining to the electroflotation effluent, a number of other chemicals were observed, to include trimethylamine, dimethyl sulfide, chloroform and other hydrocarbons. There is some indication of the presence of dichleoroethane, ethylbenezene and other aromatics. The possibility exists that these substances may also be products within the DAF effluent. In that event, the critical question would be whether they have any adverse effect in the sense of influences on the ability of the effluent to pass bioassays and the ability of the effluent to comply with standards related to other parameters such as dissolved oxygen, BOD, and TSS. The routine testing which is called for by the draft permit, which is deemed to be appropriate, would create a satisfactory impression of the materials set forth in the paragraph in the sense of the implications of their presence and allow any necessary adjustments in treatment. While the effluent produced in the testing on the part of the Applicant is different, it is representative, and the treated effluent which will be produced in the full-scale system will be of a better quality and present less adverse impacts than shown in the past testing. Petitioners question whether the Applicant has given a conservative portrayal in analyzing the effluent. In particular, it is urged that the Applicant claimed to be vying for use of the bench scale testing as a conservative depiction of the results of treatment. In this connection, the impression given in the hearing was that of ascendancy in treatment efficiency beyond the use of bench scale, pilot scale and ending in full-scale treatment. As pointed out by Petitioners, in making his case the Applicant has used results of bench and pilot scale testing. As example, use was made of the results of testing in the pilot scale in describing the removal effioiencies related to cadmium, whereas in the measurements of nitrogen concentrations the bench scale result was better than that of the pilot testing and was utilized. The real question is whether the overall testing has given some reasonable indication of success in full-scale treatment. To that end, use of results from either the bench scale or pilot scale testing is appropriate, and those results point to success in the full-scale operation. The system that is proposed is designed to address fluctuations in flow and concentrations in the effluent, given the primary mix-aeration tank contribution and the ability to recycle flow within the DAF unit, with the use of clean tap water. This will allow the Applicant to deal with the remarkable differences in BOD that were seen in the test period, ranging from 900 to 3000 mg/L. COD data as well as BOD data is limited but is found to be an ample depiction of potential treatment efficiencies related to that former parameter. In addition to the aforementioned references to changes in chemicals in the treatment process, Petitioners characterize the use of clean tap water in the recycle flow as being "unsubstantiated speculation." While the use of tap water was discussed in a theoretical vein, that discussion is found to be an accurate assessment of the value of the contribution of clean tap water to the treatment system. Impacts on St. Johns River Ambient Water Quality and Conditions The St. Johns River and the area of the proposed discharge is a riverine estuary. It has a freshwater source flowing from the south and a tidal ocean boundary to the north. The confluence of freshwater flow and tidal influences causes the water movement within this area to be oscillatory. That is to say that at different times the water will flow downstream, to the north, and upstream, to the south. There are occasions in which the net flow over a given tidal cycle will be zero; however, the water is always moving. Conductivity and chloride data indicate that the freshwater flow is the dominant flow compared to tidal influences. The extrapolation of available flow data indicates that there is a net downstream flow of fresh water averaging approximately 6,000 CFS. The St. Johns River at the point of discharge is over one and a half miles wide and relatively shallow with maximum depth in the range of 3 to 3.5 meters. Given the fact of the width and depth in this segment of the river, and the imposition of wind conditions and tidal influence, the water is well mixed and flushed. There is no stratification in this portion of the river. The Applicant looked into the question of current bearing and velocity in depths between two to fourteen feet in the water column. Eleven sampling stations were utilized in arriving at information about current bearing. This observation was over an eleven-nautical-mile stretch of the main channel of the St. Johns River. These stations are depicted on Applicant's Exhibit 38. In this portion of the river the current at all measured depth was flowing up and down the main channel. Within these sections there is no indication of a pronounced subsurface water movement toward the east and west banks of the river. Current velocities within the three stations closest to the POD averaged in the range of 0.5 feet per second and velocities in the other stations found within the main channel were within that range of movement. By contrast current velocities within the embayment areas along the east bank of the river were substantially weaker. DER conducted two studies using tracing dyes poured into the St. Johns River at the approximate point of discharge and monitored the course of dispersement of that dye. During this observation the dye was constantly replenished while being carried on the currents. While the dye remained within the area of the main channel, it stayed on the east side of the river as it moved down river on the outgoing tide in the direction of Smith's Point and the Shands Bridge. As the tide was slowing before the change of tide, the dye drifted for approximately two hours in the immediate vicinity of the point of discharge. The DER dye study was a fairly gross measurement of the direction of water movement within the river beyond the point of discharge. It tended to confirm that the water flow was basically up and down river, depending on whether the tide is incoming or outgoing. The studies were not sufficiently refined to speak with any certainty on the possibility that some part of the flow regime would move toward the east or west bank of the river. Nonetheless, in examining the nature of the shallow embayment areas along the banks of the St. Johns River, they are not seen to be subject to the basic flow regime that is occurring in the main channel during tide events. The bathymetry in this area is such that if the main flow regime was having some influence on the embayment areas, the depths within those embayments would be more similar to the depths found in the main channel of the river. Petitioners have employed a number of dye and drogue measurements to try to give a more accurate depiction of the influence of flow within the main channel upon the dispersion of effluent upon discharge and the possibility of those pollutants reaching the embayment areas. While there is no dispute over the fact that Trout Creek is a tributary to the St. Johns River with some tidal influences being shown in that Creek and there is no dispute that water from the St. Johns River flows in and out of Palmo Cove and Trout Creek, there does not appear to be a significant flow of water from the St. John River into the cove and creek from the main channel, in particular from the area of the point of discharge. One of the witnesses of the Petitioners, Sandy Young, did a dye procedure in which a plume was allowed to develop over a distance of approximately 1,000 feet. Although some slight lateral variation was shown in the dye plume, it did not identify a basic flow pattern toward the embayment areas on the east side of the river. The DER dye study was over a distance of some eight thousand feet and also showed some minor lateral variation. Both of these dye studies tend to show a basic flow pattern within the main channel. The dye study run by the Petitioners' witness White gave the same basic depiction as seen in the studies by DER and Young and did not identify a flow pattern out of the main channel toward the embayment areas. In the drogue studies run by Young three Chlorox bottles were filled to 95 percent of volume with water and released at the point of discharge. They were followed for a period of five hours. They moved initially with the outgoing tide toward Jack Wright Island and then when the tide slowed, the drogues slowed. When the tide changed with the incoming tide, the drogues moved toward the center of Palmo Cove. The drogue studies by Young do tend to indicate that some water was exchanged from the main channel at the point of discharge and the embayment areas. It is not a very exact measurement as it only deals with the surface area of the water column, given the wind and wave conditions existing on that occasion. It is in no way representative of the flow direction of the rest of the water column. Therefore, although it may tend to identify that some of the pollutants leaving the point of discharge may find their way to Palmo Cove, it does not establish that quantity of that pollution dispersion and the significance of that dispersion. Based upon this evidence it cannot be seen to be so revealing that the assumptions made by the applicant in trying to identify the dispersion characteristics of the effluent at point of discharge are negated based upon the results of the drogue study. The drogue study which Young did and the observation of the movement from Smith's Point to Little Florence Cove are no more compelling than the dye studies done at the point of discharge. When the Petitioners suggest that there is some influence by centrifugal force pushing the water to the outside of the curve toward the eastern bank, they are correct. However, the contention by the Petitioners that the incoming and outgoing tides sweep to the eastern shoreline of the St. Johns River moving toward Pacetti Point, Palmo Cove, Florence Cove and Smith Point is not accepted. Again, the general flow regime is up and down the main channel of the river and not primarily to the eastern bank. Finally, the fact that the Tetratech data produced for the benefit of the Applicant showing the flow pattern within the overall water column, which indicated that the general direction is the same at the top or bottom of the water column, did not tend to identify the fact that pollutants throughout the water column will be dispersed into the embayment areas from the point of discharge. The data collected in the main channel seem to establish that the water was flowing up and down the channel at depths below the surface. The question becomes whether the amount of pollutants that are being brought into the embayment areas is in such concentrations that they tend to cause problems along the shoreline, especially as it pertains to dissolved oxygen levels. From the facts presented, this outcome is not expected. Levels of dissolved oxygen in the St. Johns River can vary in the natural condition as much as 2 to 3 mg daily. These variations are influenced by algal activity and are not uncommon in Florida waters. Dissolved oxygen is essential to aquatic life. Optimum levels of dissolved oxygen for the fish population of the river are in the neighborhood of 6 to 8 mg/L. DER has established a minimum DO standard of 5 mg/L for Class III waters such as Trout Creek, Palmo Cove and the St. Johns River. This standard is designed to achieve uniform compliance throughout water column at whatever time the measurement may be made. DER, by the employment of this rule, is attempting to deal with those instances in which, in view of the dissolved oxygen level, aquatic organisms are placed under greater stress. The lowest DO concentration expected is normally seen in the summer in July, August and September. DO concentrations in the water column are expected to be highest at the surface area and lowest near the bottom. Measurements near the bottom are significant in this instance because the discharge will occur approximately one foot off the bottom of the river. The Applicant took DO measurements of the area in question during the spring of 1984 over a period of three days. These measurements were taken at a time when a better quality of dissolved oxygen might be expected as contrasted with circumstances in the summer. With the amount of wind involved impressive levels of reaeration were also occurring. These measurements showed that in all stations DO levels were at least 5.0 mg/L at all depths. A study by Applicant's consultant Environmental Science Engineering related to a diurnal event for dissolved oxygen was taken approximately one kilometer downstream from the point of discharge in August 1985 and did not reveal any measurements below 5.0 mg/L. The river was choppy on that day and this would improve the quality of dissolved oxygen. Historical data by DER related to water quality at Picolata, which is south of the POD in the St. Johns River, reveals average DO levels of approximately 6 mg/L. Historical water quality data collected by the Florida Game and Freshwater Fish Commission near Green Cove Springs, which is several kilometers north of the point of discharge, indicated average DO levels in compliance with water quality standards. Diurnal data from near Green Cove Springs did not show any history of DO values below the state standards. There is other historical data, however, which indicates that DO concentrations in the general vicinity of the point of discharge do go below 5.0 mg/L. Game and Freshwater Fish Commission data indicate that the readings below 5.0 mg/L could occur as much as 10 percent of the time. This relates to the study done at Green Cove Springs. There does not appear to be any particular pattern to these events of low DO violations other than the expectation of their occurring in the summer months, occurring more frequently in the lower depths of the water column and in areas which are shallow with limited flow. The summer circumstance is one in which there is a possibility of very heavy rainfall followed by hot weather with overcast skies and no wind, and the DO values go down in that set of conditions. The DO values are, in addition to being lower near the bottom of the water column, likely to be lowest in the evening or early morning hours and persist in length of time from eight to ten hours. Some of the Florida Game and Freshwater Fish Commission data from Green Cove Springs depicted some DO concentrations as low as 1.8 mg/L at the bottom and 2.1 mg/L at the surface. The low readings that were taken at Green Cove Springs occurred in September 1979 after Hurricane David had created unusual conditions in the upper St. Johns River as to effects on DO. The same report indicated DO concentrations at eleven stations in the lower St. Johns River in July and September 1982 were in the range to 4.0 to 4.5 mg/L respectively. This particular data is not particularly valuable in view of the location of those stations. There are occasions when the DO concentration at the point of discharge could go below 5 mg/L and could be as low as 2 mg/L on the bottom, but this is not a routine occurrence and would not persist. The Petitioners' consultant Young had taken certain dissolved oxygen readings at the point of discharge in April 1985 and found compliance with the 5 mg/L standard. At other times he and the consultant white measured substandard dissolved oxygen concentrations at the point of discharge. On July 20, 1985, white collected water samples at the surface and at two feet above the bottom and determined that the readings were 4 mg at the surface and 3 mg near the bottom. On August 10, 1985, Young measured DO concentrations of 4 mg/L near the bottom. On August 30, 1985, Young measured DO values of 4 mg/L at the point of discharge. Young had also measured DO concentrations at Green Cove Springs on August 10, 1985, and discovered readings as low as .5 mg/L and ranging up to 3.8 mg/L. A downstream measurement away from the point of discharge in the main channel made on August 10, 1985, by Young showed a dissolved oxygen reading of 4 mg/L. In these August measurements Young had discovered a number of readings that were in compliance with the 5 mg/L requirement. Again on September 5, 1985, Young made a measurement of dissolved oxygen near the bottom of the water column at the point of discharge which was 5.3 mg/L. Young's measurements of dissolved oxygen at the surface and in the intermediate depth, typically were above 5 mg/L. Bottom readings taken by Young in the main channel of the river and to some extent in the embayment areas were extracted from the soft detrital materials, the place of intersection of the river bottom and the water column. DO levels in these anoxic materials would tend to give lower dissolved oxygen readings and, to the extent that this anoxic material remains in the test probe while taking measurements toward the surface, would have an influence on the readings, making them appear lower than would be the case if the anoxic sediments were not present in the test device. These effects were not so dramatic as to cause the rejection of the data collected by this witness. Some explanation for lower DO readings at the point of discharge can be attributable to the fact that the anoxic material associated with high benthic oxygen demand on the bottom reduces the dissolved oxygen in the water column. Although Rangia clams were present at the point of discharge and they are capable of living in an environment of low salinity and low DO, they are likewise able to live in higher ranges of DO and their presence cannot be regarded as meaning that the dissolved oxygen levels are consistently below 5 mg/L. Petitioners' consultant White opined that there would be a very frequent violation of DO standards at the point of discharge, approaching 25 percent of the time. Considering the facts on the subject of dissolved oxygen in that area, this opinion is rejected, as is the opinion that DO concentrations will go below DER standards most of the time in July, August, and September. Young believes that a more involved study of worst case conditions would reveal DO violations throughout the column in the center of the river. The data that was presented was ample to demonstrate that violations would not be that widespread. Nor is the opinion of the consultant Parks on the subject of DO violations, to the effect that they will occur on many occasions accepted. In the Palmo Cove area it is not unusual to see some DO readings below the 5 mg/L standards. The E.S.E. group found substandard DO conditions in Palmo Cove at sampling Station 1 in September and October 1984 and some instances in April and May 1985. DO concentrations were found in the range of .4 and .6 mg/L in August 15 and 30, 1984, respectively, with DO concentrations of 1.8 and 2.1 mg/L reported on October 4 and October 29, 1984, respectively. DO violations in four out of eight checking periods between April 25 and May 24, 1985, were shown in the Palmo Cove area. Measurements taken by the consultant white showed 3 mg/L at the surface and 2 mg/L at the bottom on July 28, 1985. The consultant Young also made a measurement of 3.2 mg/L of dissolved oxygen on August 10, 1985, in a mid-depth reading in the Palmo Cove area. On September 5, 1985, he found a DO reading of 4.0 mg/L. At those places along the eastern shoreline of the St. Johns River and the relative vicinity of Florence Cove, Jack Wright Island, Little Florence Cove and Colee Cove, low dissolved oxygen readings were found, that is below 5 mg/L. These coves can be expected to have substandard readings frequently during the summer period, based upon measurements taken by the consultant Young. In the conduct of the drogue study related to the Chlorox bottle, the consultant Young in tracking the path of those bottles, found a couple of locations in the path of the drogue which were in the range 2.8 to 4.2 mg/L and 2.0 to 4.6 mg/L. The influences of the discharge will not reduce DO in the embayments. The ambient conditions for BOD in the area where the discharge is contemplated is relatively low and there is no thermal or saline stratification even in the summer months. Nutrient concentrations in this part of the St. Johns River are as indicated within the Applicants Exhibit A-4(B)(3) and at present are at such levels as to promote a healthy fish community. There is algae production that can be sufficient in some areas within this section to cause algae blooms. Algae blooms are not found to be a routine occurrence. Algae blooms reflect higher levels of nitrogen and phosphorus. The consultants Young and White have seen algae blooms in the St. Johns River away from the general area of concern, both upstream and downstream. Should those algae blooms occur, they would promote significant rises and falls in DO concentrations. In Palmo Cove and the St. Johns River, supersaturated DO concentrations have been detected and they are indications of high rates of primary algal productivity. The circumstance of supersaturated conditions, related to dissolved oxygen, can be the by-product of an algal bloom. The concentrations of nitrogen range from an average of 1.42 to a maximum of 2.54 mg/L. Nitrogen concentrations of 1.4 mg to 1.5 mg/L are optimally advantageous for fish production. Significant increases above those levels would cause the decline of the fish population. Total phosphorus concentrations in the ambient waters are high. Concentrations in excess of 0.1 mg/L of total phosphorus are regarded as a indication of eutrophication and the average concentration here is measured as 0.3 mg/L with a maximum ambient concentration found at 0.52 milligrams per liter. There is significant algal growth in the inshore areas and an indication of some eutrophication in the grass beds. The dominant species of algae found in that vicinity are blue-green, which are seen as being nuisance species. The grass beds along the shoreline are basically healthy. On the other hand, some of the public witnesses identified the fact that grass beds and other vegetation have died with the advent of discharge from the Applicant's plant into Trout Creek. This was under a system in which little or no treatment was afforded the effluent. One other public witness indicated that his dock in the Florence Cove area had been covered with a slimy material and algae during the past two years. Significant grass beds are found along Jack Wright Island and in other areas along the eastern shoreline of the river. These grass beds are important as fish habitat to include nursery areas, areas for various juvenile species of fish and other organisms. Some of these grass beds are showing signs of environmental stress, and nutrient loading can contribute to that stress. Some of the grass beds are covered with higher amounts of algae, duckweed and periphyton than are desirable. The duckweed had floated into these areas from other locations and can be expected to move away. The presence of algae is an indication of nutrient loading. The presence of duckweed is not a product of nutrient loading in the sense of the production of the duckweed at the site where they were found along the shoreline. The area in question between Pacetti Point and Shands Bridge serves as a nursery in a sense of providing habitat for juvenile species of fish and other organisms. The grass beds along the shoreline provide habitat for feeding and breeding related to juvenile organisms, to include such species as bass and shrimp. Juvenile catfish are found within the deeper portions of the river as well as croaker and other marine species. There is a high number of juvenile blue crabs in this area of the river and this is a commercial resource. Shrimp are taken by recreational fisherman in the area of the North Shore Pacetti Point. Clam beds are also present near the point of discharge. Juvenile and adult manatee have been seen in the St. Johns River and in the area near Jack Wright Island. Manatee have also been observed in Trout Creek at a time before the operation of the Applicant's plant and at times following the cessation of operations in June 1985. During the course of the operation of the Applicant's plant, when raw effluent was discharged into Trout Creek, fish kills were observed. Those events had not been seen prior to the operation of the plant. Indications are that fish were killed in the creek due to the use by the Applicant of fly bait, which made its way into the water. Dispersion Modeling of Water Quality Impact In order to gain some impression of the influences caused by the dispersion of the pollutants within the effluent, the Applicant through its expert employed several modeling techniques. DER was made aware of this modeling as it developed. A far-field model was used to calculate what the long-term or steady state impacts of the treated effluent would be on the ambient water quality. In trying to identify the influence of the discharge, measurement of metals were taken based upon an assessment of long term increases. BOD, which breaks down and consumes oxygen over time, was examined in the sense of the long term effects as to DO deficits. In essence these projections were superimposed over the ambient condition to gain an impression of the adjusted ambient values, taking into account the influence of the discharge. The Applicant also ran a plume model which was designed to calculate spreading and dispersion of the treated effluent within the zone of initial dilution or mixing zone at the point of discharge. This model responds to the discharge configuration. Through the use of computer calculations, it was established that a five-point diffuser with port openings of 0.75 inches in diameter angled upward at ten degrees would result in an effluent dilution ratio of 28.5:1 within two meters of the point of discharge. The calculated impacts of the plume model were superimposed upon the adjusted ambient water quality conditions set forth in the far-field model in order to determine net impact upon the receiving waters within the mixing zone. A third model was used, referred to as the lateral diffusivity model. This model is designed to calculate the six-hour or short term water quality impacts of the treated effluent when it moves from the zone of initial dilution during flood and ebb tide conditions. By estimating dispersion rate, this model predicts what dilution would occur in the path of the effluent plume. These impacts were then superimposed upon the adjusted ambient water quality conditions to determine the total impact in the path of the plume. The modeling work by the Applicant's consultant is a reasonable depiction of the predicted impacts of the pollution on the ambient conditions. The calculations used in the far-field model assumed a freshwater flow of 2,000 CFS. This assumption in the far-field model satisfactorily addresses worst case flow conditions related to seven-day, 10-year low flow. The temperature utilized in depicting ambient water was 30 degrees centigrade when employed in the far-field and lateral diffusivity models. This corresponds to warm weather conditions, which are more profound in describing effects on water quality. The far-field and lateral diffusivity models assumed that the treated effluent discharged from the pipeline would have a BOD concentration of 665 mg/L. This is contrasted with the maximum concentration allowed by the draft permit, which is 510 mg/L, which is the expected amount of BOD. This tends to depict the impacts of the discharge more conservatively. The model assumes the BOD loading of 2,720 kg per week, equating to an average discharge concentration of 665 mg/L if the plant operates five days a week on an eighteen-hour day. The reaeration rate and NBOD and CBOD decay rates used in the far field and lateral diffusivity models are acceptable. Likewise, the longitudinal dispersion coefficient that was used in the far-field model is acceptable. The standard modeling methodology in this process calls for an assumption of a 1.33 growth rate of the plume in the lateral diffusivity model. The Applicant's consultant decided to use a lower constant diffusivity growth rate. As a consequence, less lateral spreading is depicted. With less lateral spreading, less dilution is shown, and the impacts predicted by the model are exaggerated. One of the parameters of the plume model has to do with river flow which causes some turbulence and also brings about dilution. In this instance the plume model calculations assume stagnant conditions which is a more conservative assessment. As the Petitioners have suggested, the modeling to explain the impacts of dispersion of the pollutants is not designed to give precise calculations of the DO deficit at each point in the river along the eastern shoreline. It is indeed an estimate. The estimate on this occasion is reasonable. Although DER performs mathematical analysis of dispersion of proposed discharge in some cases, it did not do so on this occasion. Nonetheless DER was satisfied with the present choice for modeling the dispersion characteristics of the discharge. Although the models utilized were not subject to exact calibration by measurement of the dispersion at the site, the information gained by the Applicant prior to the imposition of the modeling techniques was sufficient to develop the models and to give a theoretical verification of the expected impacts from the discharge. The Applicant's belief that the maximum DO deficit caused by the discharge will not exceed 0.1 mg/L is accepted. The dissolved oxygen level in the effluent at the point of discharge will be above 5 mg/L. The Applicant's choice of reaeration rates, CBOD decay rates, NBOD decay rates, discharge rate from the pipeline, hours of operation, average reversing current speed, net non- tidal flow, non-tidal velocity, time lag before NBOD decay, maximum tidal velocity, and other variables and assumptions within the models were acceptable choices. Although the possibility exists of an occasional 5 1/2 day operation in which 10 additional hours of operation are added, this would not be so significant as to set aside the predictions as to the pollutant dispersion. The Applicant's consultant who modeled the dispersion rates did not conduct dye studies to verify or calibrate the actual dispersion in the river. One of the dye studies indicated a lateral spreading rate which was less than that predicted by the model. Notwithstanding this revelation, the overall techniques used by the Applicant in predicting lateral spreading rate are sound and do not present a risk of a greater DO deficit than was predicted based upon incorrect assumptions as to lateral spreading rates. The Applicant's consultant's use of 2,000 CFS as the net non-tidal low flow was a more convincing estimate than the field data collected by the United States Geological Service, given the paucity of information about the flow conditions within the St. Johns River. The Applicant's choices in describing maximum tidal velocities and average velocity are accepted. The critique of the modeling efforts done by the Applicant that was made by Petitioners' consultant, Dr. Parks, in which he concludes that the DO deficit is considerably greater than 0.1 mg/L is not accepted. Comparison of Predicted Impacts of Discharge with Statutory and Regulatory Criteria Inside the Mixing Zone Applicant's assumptions about the increase in nutrient concentrations in the St. Johns caused by the discharge are accepted. This is based on the assumption of a nitrogen value of 52 mg/L which was achieved in bench scale testing of the effluent and which can be achieved in the full scale operation. As the effluent is discharged from the diffuser within the mixing zone, there will be some turbidity problems in that the bottom near the point of discharge. The soft silt there is easily resuspended. When the discharge is concluded, the material will settle back to the bottom. There will be further resuspension when the operation commences again and there is a discharge. The transport of these suspended materials is limited in that the water velocity associated with the discharge is quickly dissipated. This phenomenon will not cause adverse environmental impacts. The mixing zone does not include an area approved by the State of Florida, Department of Natural Resources for shellfish harvesting; it does not exceed the presumptive maximum size set forth in Rule 17-4.244, Florida Administrative Code. Nor does it include an existing drinking water supply intake or any other existing supply intake that would be significantly impaired by the proposed mixing zone. The water in this area is of sufficient depth that it will not support grass beds that are associated with a principal nursery area, such as pond weed, midgeon grass, manatee grass, turtle grass or eel grass which are used to support nursery activities. These grasses are normally found inshore. Although juvenile fish are found throughout this reach of the St. Johns River, and for that matter in the entire lower eighty miles of the St. Johns River, the mixing zone is not of such dimensions that it will preempt the health of juvenile fish. Most of the freshwater fish in this system use the littoral areas for reproduction. Marine and estuarine species do not reproduce in the St. Johns River. There is some reproduction that is occurring with some species, such as catfish. Given the size of the mixing zone, no significant adverse effects will occur with the established community of organisms in this portion of the river. The mixing zone will not otherwise impair designated uses of the St. Johns River. The treated effluent will not create a nuisance condition or violate any other DER standards that apply within the mixing zone. With the advent of the full scale facility, maximum, average and chronic toxicity criteria can be reasonably expected to be met at the point of discharge, within the mixing zone and at the boundary of the mixing zone. As described before, the effects of sediment transport upon discharge are localized. The proposal for a mixing zone takes into account Rule 17-4.244, Florida Administrative Code, in the sense of addressing present and future sources of pollutants and the combined effects with other pollutants or substances which may be present in the ambient waters. One of the concerns which DER has about wastewater is the effect which that pollutant has on organisms within the environment. To gain an impression of that influence, testing is required to establish whether the wastewater is acutely toxic. The testing is known as bioassay assessment. While this assessment is normally done after the grant of a construction permit, when confronted with uncertainty about the quality of the effluent, some testing is beneficial prior to the grant of a construction permit. This is especially true given DER's experiences in dealing with raw effluent of several of the scallop processors, to include Homer Smith, which showed that the raw effluent was acutely toxic. This acute toxicity testing is done by placing test organisms into aquaria containing the effluent and measuring survival of those species over time. Results are described in terms of a measurement of the concentration of the effluent at which 50 percent of the organisms are killed during a prescribed test period. In static testing the organisms are simply exposed to the effluent for the requisite period of time. By contrast, a static renewal test calls for the effluent to be replaced with another sample of the effluent at various intervals within the test period. Finally, a flow through bioassay test calls for a continuous stream of fresh effluent to be introduced in prescribed concentrations over the duration of the test. A bioassay assessment in the static condition was performed related to DAF pilot scale effluent that was collected on April 19, 1985. In this instance Daphnia magna were used as test organisms and demonstrated a survival rate of greater than 50 percent in a 100 percent concentration of effluent over a period of 96 hours in the setting of static and static renewal tests. That survival rate was also shown in lesser concentrations of effluent as well. The April 19, 1985, sample was also used in testing the response of Pimephales promelas. These test organisms did not survive either in the static or static renewal tests. While an hypothesis has been made that acute toxicity was experienced in this test organism attributable to build-ups of ammonia, which is greater with this type of organism than with the Daphnia, due to larger biomass which allows for a greater number of ammonia generating bacteria to be presented in the test aquaria and the fact that the Pimethales excrete more ammonia, these differences do not definitely explain why the Daphnia survived and the Pimephales did not. In the series of static renewal bioassays performed on the wastewater that was collected at the plant on April 29, 1985, and shipped to Lenox, Massachusetts, for bench scale treatment, the test organisms of both types failed to survive for 96 hours. It was discovered that during the course of the test period, levels of ammonia rose rapidly. Trace metals in the treated effluent are principally in the form of stable species, as opposed to free ions. These constituents standing alone are not likely to have caused the mortality in the test organisms. The effect of decomposition of the organic constituents in the waste stream is the most likely explanation of why the bioassays of pilot and bench scale treated effluent did not lead to a satisfactory result. Unionized ammonia, a by-product of organic decomposition, is found to be a principle player in the explanation of why the treated effluent was acutely toxic to the test organisms. The exact cause of toxicity has not been precisely identified. Given the complex nature of the effluent, other potentially toxic substances such as sulfides, amines, and other organic compounds could have contributed to the demise of the test organisms. Moreover, toxicity can increase with combinations of chemicals acting in a synergistic fashion, making their combined effects more devastating than the effect of any single substance. Having in mind the fact that ammonia is a major problem in the survival of test organisms subjected to a bioassay, the question becomes one of what may be done to remove ammonia. The production of ammonia in wastewater would depend upon the presence of bacteria. The proposed DAF system removes substantial numbers of bacteria, thereby limiting the possibility of ammonia build-up, if bacteria are not allowed to recolonize in some part of the system prior to discharge. As discussed before, reduction of bacterial activity can be achieved within the proposed treatment system. This is unlike the experience with the bench scale and pilot scale testing that was done on the effluent in which a substantial amount of time transpired before subjecting the test organisms to the effluent and in which a substantial amount of time transpired while the test organisms were being subjected to static and static renewal procedures with the same effluent. The time intervals contributed to the build- up of toxic levels of ammonia in the effluent. The system which is proposed in this instance can avoid the problem of time as it relates to the build-up of levels of ammonia. To further reduce the influence of retention of the waste product, flow through bioassay testing would be the most appropriate measurement of the survivability of the test organism in that it would be responding to real case conditions pertaining to the quality of effluent and its potential toxicity. Under these circumstances, it is reasonable to believe that in a flow through bioassay test of the full scale treatment system, the test organisms could survive. This determination is reached given the reduction in retention time compared to the bench and pilot scale testing, which reduces ammonia, with further ability to reduce ammonia by frequent removal of residual materials from the sludge drying bed and sump pit and taking into account basic improvements in treatment efficiency associated with the full scale system. In addition, the pH of the effluent can be regulated to avoid toxicity in the ammonia which is associated with inappropriate balance within the pH. While a 96-hour LC-50 cannot be calculated with the results of bench scale and pilot scale testing, a reasonable possibility exists for the establishment of that measurement with the advent of a flow through bioassay. There is sufficient similarity between the effluent in the pilot and bench scale testing and the expected effluent in the full-size system for the bioassay testing that was done in those limited systems to give a meaningful indication of the probability that the Applicant can pass a flow through bioassay. Applicant can be reasonably expected to produce an effluent in the mixing zone which will not exceed the 96 hour LC-50 for acute toxicity. As with the circumstance of ammonia, pH can be controlled within the system to address the implications of changes in pH as it pertains to other pollutants in the wastewater. Ammonia production can be influenced by the amount of alkalinity in the effluent and the receiving waters. Alkalinity has not been measured thus far. Alkalinity could be established for the effluent and receiving waters and dealt with if it was suspected as being an explanation of problems with the build up of ammonia which might exceed DER standards. The discharge from the Applicant's plant will not cause long-term problems with low DO, high nutrients, algal imbalances, and chronic toxicity. Outside the Mixing Zone Those constituents within the waste stream, to include those for which a mixing zone was sought, will comply with applicable water quality standards at the boundary of the mixing zone. The dissolved oxygen deficit at its maximum can be expected to be in the neighborhood of 0.1 mg/L and will be exerted somewhere in the range between 1 and 2.5 km downstream of the point of discharge across the width of the plume in worst case conditions. This deficit is not of a dimension which is easily detectable. The implications of that deficit are difficult to perceive in terms of tangible environmental consequences. While a deficit in the range of 0.1 mg/L has some relevance in the DER permitting decision, that deficit as it is dispersed is not expected to cause or contribute to violations of water quality standards in the main channel of the river or in the inshore and embayment areas. While it is true that there are periodic fluctuations of dissolved oxygen below 5 mg/L, DER, as a matter of present policy and professional judgment believes that in this system which evidences characteristics of a clean well-flushed, unstratified water body occasional readings of low DO are not regarded as an indication of violation of water quality standards. This speaks to the main channel area of the river where the only quantifiable influence is expected. The facts presented in this case support the soundness of this policy choice. Petitioners presented the testimony of former officials within DER, namely Parks and Young, who stated that dissolved oxygen standards of 5 mg/L are applied at all times and at all places. They felt that the DER policy was to the effect that permits would not be granted for discharge in any circumstance where the DO concentrations are substandard in the ambient waters, regardless of the amount of decrease or deficit that would be promoted. Parks spoke of the availability of site specific alternative criteria, variances, exceptions or exemptions from the terms of the water quality rule. Having considered these remarks, the present DER policy of allowing the permit to be granted in the instance where occasional violations of ambient water quality standards related to 5 mg/L occur, in the face of the small deficit which is involved in this case, is the better choice. Further, it is a choice that is not so inconsistent with prior practices as to be arbitrary in nature. Finally, DER's position that it would be unadvisable to require a request for site specific alternative criteria, variances, exceptions or exemptions in circumstances such as this case is accepted, when taking into account the problems which would be presented to the agency in administering the permit program, should each Applicant who is confronted with occasional violations below standards for dissolved oxygen have to seek extraordinary relief. While the facts do identify that some pollutants can reach the embayment areas on the eastern shore, the facts do not depict a circumstance in which the amount and quality of that effluent will be such that it will cause or contribute to dissolved oxygen violations in those areas. The water quality in the embayment areas is lower than that in the main area of the river due to inadequate flushing. The areas inshore do not interact with the main channel in a way that would take advantage of the faster moving currents found in the main channel as this interaction might promote a better quality of water. In view of the situation in the embayment areas, the Applicant, on advice of his consultants, moved the proposed location of the discharge into the main channel away from the areas which were under greater stress in terms of dissolved oxygen values and in doing so avoided damage to these areas. The current velocities in the area east of the main channel are weak. There is a substantial distance from the point of discharge to the inshore areas. As the effluent moves toward the inshore or nearshore areas it will become so diluted it will not have an adverse influence on dissolved oxygen. Not only the distances involved, but also the fact that water flowing near the surface is well aerated contributes to the dilution of the effluent as it approaches the shore. Although it has been shown that some stress in the grasses along the eastern shoreline has occurred and the existence of blue-green algae has been shown, together with indications of undesirable algal production, the nutrients which are part of the effluent at the point of discharge are not expected to cause an imbalance in the natural populations of flora and fauna or create nuisance conditions or violations of transparency standards. The nitrogen increase could cause an increase in algal production in the order of one percent, which is inconsequential. The treated effluent will not adversely effect biological integrity of the St. Johns River. The benthic microinvertebrate community in this part of the river is fairly low density due to the fluctuations in salinity levels and predation by fish and blue crabs and given the nature of this substrate which is unstable with low levels of dissolved oxygen. The organisms that are predominant have a tolerance to siltation and fluctuations in dissolved oxygen. The treated effluent will not adversely effect the microinvertebrate community. Petitioners point out the fact that when DO concentrations decrease below optimum levels, fish and other organisms suffer. The fish reduce their movement, feeding and reproduction and they are less disease resistant. They are placed in a position of having to leave the area or risk death if the impacts of the decrease in dissolved oxygen are severe. The influence of the effluent at the point of discharge in this project is not expected to have significant impact on fish and other organisms within these topics of concern expressed in the paragraph. Even though the dissolved oxygen deficit extends in amounts below 0.1 mg/L as far as 2.1 km upstream and 4.5 km downstream and within a wide breadth of the center portion of the river, those deficits will not be significant to the water quality. The BOD associated with the discharge, allowing for mixing will not depress dissolved oxygen levels below DER standards of 5 mg/L. The combination of BOD and nutrient discharge will not cause an imbalance of algal production in the river, nor will it contribute to the dominance of nuisance algal species. The BOD nutrient loading associated with the discharge into the St. Johns will not promote significant ecological impacts on the St. Johns River, to include the possibility of more frequent and severe algae blooms, increase in benthic oxygen demand, risk of increase eutrophication, destruction of grass beds or decline in the fishery. With the advent of discharge in the St. Johns DO fluctuations in the river will not be greater nor will there be an occurrence of a swing from substandard dissolved oxygen levels to supersaturated dissolved oxygen. While the discharge from the Applicant's plant contains pollutants such as cadmium, zinc, arsenic, copper and organic decomposition products, the treatment provided the wastewater is expected to overcome any acute toxicity associated with these materials individually or in combination. Chronic toxicity is not expected related to these materials. The effects of these materials are not expected to cause physiological and behavioral responses which are abnormal in organisms such as reduced locomotion and reproduction or increase susceptibility to diseases to include ulceration and increased mortality. Treatment contemplated and provision of a mixing zone will allow compliance with the standards related to cadmium. Reference has been made to a development known as St. Johns Harbor which is in the vicinity of the proposed discharge and can be expected to promote some pollution in Palmo Cove and the St. Johns River. Although St. Johns Harbor development is proceeding through stages of permit review, it does not appear that it has reached a place in which exact information about its implications as a pollution source can be set out. In discussing the St. Johns Harbor Development, Petitioners emphasized that this eventuality and other matters which deal with cumulative impact have not been satisfactorily addressed. There is no indication than any other substantial development or activity other that St. Johns Harbor is contemplated in this area associated with the permit review at hand. St. Johns Harbor eventually hopes to develop 3000 residential units. It has received the approval of the Northeast Florida Regional Planning Council for the initial phase of development. It has been reviewed by the Florida Fresh Water Game and Fish Commission. The developers are proceeding with the project to include the sale of lots. Nonetheless, that development has not reached the phase where its implications would form the basis of a denial of this project based upon the theory of cumulative impact. While Petitioners contend that stormwater runoff from the St. Johns Harbor project will be a problem, assuming an inadequacy in the design which that developer employs to deal with that matter, this eventuality is not expected based on a review on the facts presented. Reference is made to the Ulcer Disease Syndrome which fish in the St. Johns have suffered from. The principal area in which this event has occurred is north of the area expected to be influenced by this discharge. Nonetheless, diseased fish have been found in Palmo Cove. This Ulcer Disease Syndrome is caused by heavy metals and hydrocarbons, and these materials act in league. The advent of additional heavy metals and other pollutants, such as those being discharged from the Applicant's plant could cause further deterioration in the condition of fish suffering from Ulcer Disease Syndrome. Having considered the facts, this outcome is not expected. Ambient levels of 18 other pertinent pollution constituents in the vicinity of the point of discharge were ascertained by the Applicant's consultants on the basis of field observations and historical United States Geological Survey and Florida Game and Fresh Water Fish Commission data. This formed a basis of an assessment of average and worst case values. This information indicates compliance with those parameters for purposes of water quality standards at the point of discharge. Implementation of Construction Permit Permit Conditions Applicant's Exhibit A-10 is a copy of the DER intent to issue the construction permit. It sets forth seventeen specific permit conditions, and these conditions should be imposed in the permit. The following are additional conditions that should be set forth in the construction permit: The operation and maintenance manual required by original Condition 10 shall provide that the DAF treatment system be cleaned regularly with a mild chlorine solution and that the wastewater from this maintenance be placed in a vehicle and carried off the premises for disposal at an appropriate location. This wastewater from the cleanup shall not be discharged from the plant into state waters. The operation and maintenance manual shall provide that a dosage level of chlorine to clean the pipeline that will result in comp- liance with all water quality standards at the end of the pipeline be added to a fraction of fresh water used to flush the system at the cessation of discharges each day. DER must approve this dosage amount before it becomes part of the operation and maintenance manual. The operation and maintenance manual shall set forth a regular schedule for pumping the accumulated sludge or solid materials from the sump pit. The operation and maintenance manual shall provide that as much as 50 gallons per minute of fresh tapwater may be added to recycled wastewater for pressurization. Any discharge created with this addition may not exceed 250 gallons per minute. Any discharge created above 200 gallons per minute shall be consti- tuted only of tap water. Two machine scallop processing operations at the plant will be limited to an average of 18 hours per day and no more than 90 hours in a week. Monitoring in Trout Creek shall continue as specified in paragraph 17(E) of the Consent Order as long as discharges into Trout Creek continue. On each occasion when the DAF treatment system is in operation, the Applicant shall have a fully trained operator on site. The terms of the construction permit shall expire on December 31, 1986. The constructed pipeline shall be leak tested once a month from June to September and every other month during other months of the year. If a leak in the pipeline is detected it shall be repaired within 20 days and retested for leaks within 15 days thereafter. The carrying out of any leak testing and repairs shall hereunder shall be certified by a professional engineer. Pre-pipeline Operations Petitioners have pointed out the fact that when two or more pollutants are present, as in the instance of the effluent discharged by the Applicant's plant, those pollutants tend to act in a synergistio manner. That can exacerbate the circumstance where you find low dissolved oxygen. This is particularly a matter of concern when discussing Trout Creek. This is unlike the impacts of the discharge into the St. Johns River which are not expected to exceed standards or promote adverse effects. The implications of operation within Trout Creek to allow necessary permit review by DER and the State of Florida, Department of Natural Resources can be overcome once the discharge is withdrawn from Trout Creek and may be addressed by DER more immediately if the dissolved air flotation unit, after a reasonable period of adjustment, does not perform in the fashion that it appears to be capable of. In the instance of discharge into Trout Creek, the material discharged tends to remain in that area for a relatively long period in that the creek is small and has very little flow and poor flushing characteristics. DO levels will be depressed, the presence of a deficit in dissolved oxygen caused by the discharge from the DAF unit would increase the probability of fish kills when contrasted with a circumstance where there is no further deficit of dissolved oxygen. Given the explanation of why a fish kill occurred based upon the past use of fly bait by the Applicant and the fact that there is no indication of fly bait in the present plans, a fish kill in Trout Creek in the time of interim discharged does not seem probable. With the advent of discharge into Trout Creek, the possibility is enhanced for algae blooms and increased eutrophication. There would also be some accumulation of toxic substances. Additionally, there would be some influence on juvenile fish which are more sensitive to pollutants and the possibility exists that it could reach levels that are lethal to bass larvae and juvenile sports fish. The creek would lose some of its viability as a nursery and some fish would leave the creek. These events are not irreversible and can be reasonably remedied with the cessation of discharge into the creek. Moreover, as in the instance with the problem with fish kills, if some set of circumstances attributable to the discharge were to occur in such dimensions as to cause long term impacts in Trout Creek, DER could take action against the construction permit. Dissolved oxygen in Trout Creek can be below the 5 mg/L standard. Data of the E.S.E. group showed that at Highway 13 bridge, approximately fifty yards from the plant in December 1984 and January 1985, values were as low as 0.1 and 0.2 mg/L, and readings could be frequently below 2 mg/L at Highway 13. In April through June 1985, periodic surface dissolved oxygen concentrations were in the range of 3 mg/L and as low as 2.4 mg/L. DO concentrations generally found at the bottom of Trout Creek could be as little or lower than 1 mg/L at times. In July 24, 1985, at the time when the plant had not been operating for approximately a month, the DO concentrations were 2.9 mg/L at mid-depth and 0.8 mg at the bottom. Within Trout Creek in the area of the Pacetti marina, Consultant White measured DO concentrations in the range 1-3 mg/L. On August 10, 1985, six weeks after operations had stopped at the Smith facility, DO concentrations were found to be 3 mg at the surface, less at mid-depth and 0 near the bottom. Computer modeling was not done to ascertain the impacts of a discharge directly into Trout Creek from the DAF unit. The modeling done by the Petitioner's consultant, Parks, using some of the concepts considered in the Applicant's modeling for the St. Johns River is inapplicable to the circumstances in Trout Creek. Trout Creek has also served as a nursing ground for reproduction and habitat for young fish. During the course of the operations by the Applicant in the discharge of essentially untreated effluent, the beds of bass and sun fish have not been seen within the creek. Water quality improves with the DAF unit and sediment loading by heavy metals decreases. Trout Creek is a stressed system at present. It has low levels of dissolved oxygen, high nutrient concentrations and the presence of heavy metals in undesirable amounts. The low numbers of pytoplankton species give some indication of a highly stressed ecosystem. The present officials of DER, Palmer, Owen and Fox, expressed their concerns about dissolved oxygen in those instances where there would be a decrease in ambient DO concentrations. This has particular importance in discussing the problems associated with the discharge into Trout Creek, as opposed to the point of discharge contemplated in the St. Johns River, which risk is minimized given the characteristics of that area and the higher readings of ambient dissolved oxygen in that water, as contrasted with low readings within Trout Creek. A literal interpretation of the position of the agency officials would lead to the conclusion suggested by the Petitioners that no discharge should be allowed into Trout Creek, even on an interim basis. However, such a position would be inherently unfair considering the fact that some discharge would occur into the creek before the installation of the pipeline, whether based upon simultaneous permit review by DER and the State of Florida, Department of Natural Resources in the easement case or sequential review as is contemplated in this instance. Admittedly, the amount of time involved in the discharge into Trout Creek increases in view of the severance of the easement case from the present proceedings. This circumstance occurred in view of the desire on the part of the DNR to see the actual treatment efficiencies involved with the dissolved air flotation unit as opposed to the theoretical possibilities of that equipment. In the present situation, it would be a reasonable policy choice for DER to allow an interim discharge into Trout Creek pending the opportunity for DNR to monitor the quality of the effluent produced by the DAF unit and make a decision about the easement, thus allowing installation of the pipeline if the easement is granted. This arrangement contemplates that DER should closely monitor the quality of the effluent produced by the DAF unit, to make certain, after the Applicant has been given the opportunity to make necessary adjustments to that unit, that the Applicant is not allowed to continue to discharge into Trout Creek following this period of adjustment, when it is shown that the Applicant's equipment is not performing as expected. In any event, the discharge of effluent into Trout Creek will continue over a limited period of time and the system can be expected to quickly return to its healthier state after the removal of the discharge from Trout Creek. This has occurred in the past when the operations of the plant ceased and occurred at a time when the wastewater was of a more damaging quality than contemplated by that associated with the DAF unit. In summary, it would be a reasonable policy choice to allow the interim discharge into Trout Creek on this occasion. Dredge and Fill Permit Characteristics of Pipeline Corridor The pipeline corridor encompasses portions of Trout Creek, Palmo Cove and the St. Johns River. The bottom sediments where the pipeline is to be installed are constituted of soft, and sometimes extremely soft, flocculent silt. Although these sediments are easily resuspended, dispersement of these sediments will only occur while the pipeline is being installed. In placing the pipeline, it is the intention of the Applicant to simply allow the pipe to sink into the sediment. The soft substrate is several feet deep in some places within the proposed corridor. Nonetheless, the pipe is expected to stabilize as it sinks into the material. There are places within the corridor where a crusty material may be found on the surface of or just beneath the substrate. These are locations where jetting or mechanical excavation may be necessary. Jetting may also be necessary along the approximately 155 foot stretch of the corridor that crosses the State of Florida, Department of Transportation right-of-way. This requirement would occur in view of the fact that the Department of Transportation mandates that the pipeline be at a minimum of 30 inches below the creek bottom. In those instances where jetting or other mechanical excavation might be utilized, silt screens would be used to control the short term turbidity. In the areas within the pipeline corridor where tree trunks and branches have been found, these obstructions can be removed without incident. Taking into account the nature of the substrate, at the location where the diffuser will be placed at the end of the pipeline, special attention will be given to that installation to avoid having the diffuser settle into the soft silty material. Given the fact that the silty material is several feet deep and the related fact that the Applicant has not done specific testing of the depth, density and compressibility of this silty material, careful attention should be given to anchoring the diffuser and making certain that the exhaust ports within that device are correctly positioned. The need for this close attention is borne out by the fact that a test pipe which was placed in the silty material settled approximately two and a half feet within several weeks. The matter of the security of the diffuser is also critical, given the fact that the diffuser will be located within one foot of the bottom. Through proper installation, the Applicant can avoid having the diffuser settle into the silty material over time. The installation techniques satisfactorily address the potential problems. Projected Impacts (1) Environmental The icthyological and macroinvertebrate communities within the pipeline corridor have been examined by the Applicant in the person of his consultants. It was found that there are a variety of freshwater fishes within Trout Creek, such as large-mouth bass and sun fish, and a moderate density of macroinvertebrates. The St. Johns River proper is dominated by estuarine and marine aquatic organisms. Infaunal macroinvertebrate densities in the area of the pipeline corridor in the St. Johns River are not high. In placing the pipeline, the effects on aquatic and benthic communities within the corridor or upon water quality do not pose a threat to those communities or to water quality. During the installation of the pipeline, some disturbance of the benthic organisms can be expected; however, those organisms will be able to recolonize quickly. The mere presence of the pipeline is not expected to cause long-term impacts on biological resources or water quality. (b) Navigation In the area of the intended placement of the pipeline related to Trout Creek, boating clubs utilize that vicinity for purposes of anchorage. Those clubs have as many as twenty to thirty boats whose size varies from twenty to fifty-five feet in length. Some of those boats carry anchors which can weigh forty-five pounds or more. Typically, in anchoring one of these craft, the anchor rope is tied down and the engines reversed to set the anchor. Although testimony was given to the effect that the anchors being set might puncture the pipeline, given the explanation about the placement of the pipeline and the nature of the pipe itself, problems with puncturing the pipeline as it might interfere with navigation or environmental concerns such as turbidity plumes due to a puncture of the pipeline are not expected. Nor are the activities associated with retrieval of the anchors via the use of electric winches or hoists seen to be a problem in the sense of snagging the pipeline and rupturing the pipeline when the anchors are brought aboard the vessels. In summary, the pipeline will not be an interference to navigation in the sense of boat anchorage or other aspects of navigation associated with boating. Moreover, the Applicant is willing to indicate the location of the pipeline on navigational charts to assist boaters in avoiding potential problems with anchorage. This is a desirable arrangement and should be done. Comparison of Projected Impacts with Statutory and Regulatory Criteria The dredge and fill activities associated with the pipeline are not expected to cause long-term or short-term adverse impact on biological resources or water quality, or are they expected to interfere with the conservation of natural resources or marine productivity or interfere with navigation to such an extent to be contrary to public interest. The placement of the pipeline will not promote unacceptable interference with fish and other natural resources or destroy clam beds or grass flats, such as would be contrary to the public interest. Permit Conditions Appropriate permit conditions are as follows: Installation of the pipeline shall be conducted within Trout Creek only during weekdays. Pipeline installation activities within Trout Creek shall not block navigation. The pipeline shall be constructed within 60 days following the receipt of all necessary approval, to include the grant of an easement by the State of Florida, Department of Natural Resources for the placement of the pipeline over submerged sovereignty lands. All conditions set forth in the DER draft permit. See Applicant's Exhibit A-57.

Florida Laws (5) 120.57403.061403.085403.087403.088
# 7
ARLINGTON EAST CIVIC ASSOCIATION, ET AL. vs. JACKSONVILLE TRANSPORTATION AUTHORITY AND DEPARTMENT OF ENVIRONMENTAL REGULATION, 78-001875 (1978)
Division of Administrative Hearings, Florida Number: 78-001875 Latest Update: May 14, 1979

Findings Of Fact The proposed project is a six-lane, combination low and high level bridge crossing Mill Cove and the St. John's River in Duval County, Florida. The project entails construction of approximately 6,000 feet of low level trestle-type bridge structure and approach spans beginning on the south side of Mill Cove and extending across the Cove to the northern edge of Quarantine Island, an artificial spoil island; 3,000 feet of high level bridge crossing the main channel of the St. John's River; and northern approach spans touching down on Dame Point on the northern shore of the St. John's River. In order to construct the proposed project, JTA is required to obtain a water quality permit and certification from DER. JTA filed its application with DER, accompanied by supporting data, including several studies performed by professional consultants. After review of the application, DHR filed notice of its intent to issue the requested water quality permit and certification, and Petitioners filed a timely request for a hearing pursuant to Section 120.57(1) Florida Statutes, to oppose the issuance of the permit and certification. Petitioners are various groups and individuals concerned about water quality in the St. John's River and the Jacksonville area. Petitioners' standing to seek relief in this proceeding was stipulated by all parties. Construction of the project will result in: filling of approximately .07 acres of wetlands to construct the south abutment on the shore of Mill Cove; dredging of approximately 185,000 cubic yards of material from Mill Cove to create a 4,400 foot long, 190 foot wide barge access channel, with a five foot navigation control depth parallel to the low level portion of the project; temporary filling of approximately .3 acres of wetlands above mean high water on the south shore of Quarantine Island to provide construction access to the island, which area is to be restored upon completion of construction; construction of a diked upland spoil containment site approximately 31 acres in size above mean high water on Quarantine Island to retain all dredge spoil associated with the project; construction of a temporary dock at the northern end of Quarantine Island for access and staging purposes, which is to be removed on project completion; and filling of approximately 16,000 cubic feet of material waterward of mean high water for rip-rap protection around main piers in the St. John's River. Dredged materials will be removed by hydraulic dredges. The St. John's River and its tributaries have been designated Class III waters by DER in the project area. The project involves dredging below mean high water and filling above mean high water, and is a dredge-and-fill project for purposes of Chapters 403 and 253, Florida Statutes, and Chapters 17-3 and 17-4, Florida Administrative Code, and is regulated by DER. The project is an element in a proposed eastern bypass around the City of Jacksonville. It is expected that, as a result of the project, existing area industry will receive more efficient transportation service, commuter trip miles from southeastern Jacksonville to northern Jacksonville will be reduced, transportation routes to education facilities will be improved, and tourist traffic will be routed around downtown Jacksonville, reducing miles traveled to nearby beach resorts and thereby relieving downtown congestion. The benefits to costs ratio of the project appears positive and beneficial to Duval County and Jacksonville, in that for every dollar spent to construct the project, $2.80 could be returned to the community in the form of increased economic activity and more efficient transportation. Testimony clearly established that the state waters in the project area are currently severely degraded and are not likely to meet Class III water quality standards. Violations of Class III standards for dissolved oxygen and some heavy metals, such as mercury, presently exist as background conditions in the St. John's River and Mill Cove. Further, a water quality analysis performed by DER in the project area indicates high background concentrations of heavy metals and PCB's in both the water column and sediments in the project area. When the pro posed project is analyzed within the context of these existing background water quality conditions, it appears highly unlikely that any impact from the project will further degrade existing conditions. The project as currently designed includes plans for total containment of spoil material resulting from dredging activity on the upland portions of Quarantine Island. There will be no direct discharge of dredge $materials from this containment area into the receiving waters of the state. JTA performed a water and sediment analysis of the project area, the purpose of which was to determine the existence and concentrations of specific pollutants that could adversely impact Class III waters if reintroduced into the aquatic system. JTA employed a consultant whose analytical program was designed in consultation with DER and complied with all standard testing procedures required by Rule 17-3.03, Florida Administrative Code. This analysis identified three primary-project activities where control of toxic and deleterious materials was critical: turbidity control; upland spoil containment; and direct discharge of spoil water to state waters. Sediments in the Mill Cove area are extremely fine and may be resuspended in the water column in quantities that could violate state water quality standards if dredging is done improperly. It appears from the evidence that any turbidity problem can be avoided by employing silt curtains and hydraulic dredging during channel excavation. Silt curtains should adequately retain turbidity below levels which would violate state water quality standards, in view of the fact that the JTA study hypothesized a "worst-case" condition for projecting turbidity and pollutant concentration by assuming no upland spoil containment, silt curtains or reasonable mixing zone. Although use of silt curtains and hydraulic dredging cannot absolutely guarantee zero-discharge of suspended sediments from the dredging area, the proposed system of turbidity control is adequate to provide reasonable assurance of non-violation of state water quality standards. Due to the existing toxic background conditions in Mill Cove, DER imposed a permit condition requiring spoil from dredging activities to be completely contained in an upland landfill-type site, with no overflow that could allow effluent to return to waters of the state. The upland dike system proposed in the project application is designed to retain all spoil material and water without direct discharge into state waters. Testimony established that the proposed dike system is designed to hold far more spoil material than the proposed project will generate. Although the dike system is to be constructed from dredged material previously deposited on Quarantine Island, it appears from the testimony that these materials were dredged from the main channel of the St. John's River and are cleaner and sandier in character than sediments in the Mill Cove area. The dike system, in conjunction with natural percolation and evaporation, is adequately designed to retain dredge spoil on the upland portion of Quarantine Island, and can reasonably be expected not to release toxic and deleterious substances into receiving waters of the state. It is also significant that a condition of the requested permit requires project water quality monitoring to afford continuing assurance that the project will not violate standards contained in Chapter 17-3, Florida Administrative Code. These standards and the conditions required to achieve them have been included in DER's letter of intent to issue the permit for this project. It is specifically concluded from the evidence that project dredging will not release toxic and deleterious substances into Class III waters in violation of state water quality standards, and that project dredging in Mill Cove incorporates reasonable safeguards for spoil disposal and turbidity control so as to assure non-violation of state water quality standards. JTA plans to use a direct discharge method to dispose of storm water from the bridge. Storm water will fall through 4-inch screened holes called "scuppers" placed at regular intervals along the bridge surface directly into either Mill Cove or the St. John's River. JTA was required to provide in its application reasonable assurance that storm water runoff from the Project would not exceed applicable state standards for turbidity, BOD, dissolved solids, zinc, polychlorinated biphenols, lead1 iron, oils or grease, mercury, cadmium and coliform. To this end, JTA submitted a study entitled Effect of Rainfall Runoff from Proposed Dame Point Bridge on Water Quality of St. John's River. This study analyzed the chemical composition of storm water runoff from an existing bridge, comparable in both size and design, to the proposed project, which crosses the St. John's River south of the City of Jacksonville. This study adequately established that storm water runoff into the St. John's River across the length of the proposed bridge will not degrade the water quality of the St. John's River below current water quality standards. All but three of the parameters tested in the study were within standards contained in Chapter 17-3, Florida Administrative Code. The remaining three pollutants were either not automobile-related, or would not violate applicable water quality standards after a reasonable opportunity" for mixing with receiving waters. One of these pollutants, mercury, is not automobile-related, and the concentration of mercury discovered in bridge runoff test samples was essentially the same as that measured in rainfall samples. The sampling for mercury was performed using the ultrasensitive "atomic absorption" method, which is capable of measuring tenths of a part per billion of mercury. Another method, the "Dithizone" method, is a technique recognized as effective by DER, and would have, if utilized, yielded a result within the "none detectable" standard contained in Rule 17-3.05(2) , Florida Administrative Code. As to the remaining two pollutants, coliform and lead, testimony established that a dilution rate of 400 to 1, after mixing with receiving waters, would not result in violation of applicable Class III water standards. Testimony also clearly established that water circulation in the project area would result in the requisite dilution ratio of approximately 400 to 1. The storm water runoff study was performed on a bridge similar in all important characteristics to the proposed project, and therefore validates the scientific methodology utilized to determine the expected impact of runoff from the proposed project on water quality in the St. John's River. The applicant has provided in its permit application the best practicable treatment available to protect state waters in the design of both the low and high level portions of the proposed bridge. Extensive research and analysis of design alternatives for both the low and high level portions of the bridge were undertaken by JTA and its consultants prior to selecting the proposed design for the bridge. JTA prepared and submitted to DER, as part of the application process, a document entitled Summary of Construction Techniques in Mill Cove, Dame Point Expressway. This document analyzed and summarized the available construction and design alternatives for the low level trestle portions of the project. The analysis included consideration of overhead construction, construction from a temporary wooden structure parallel to the project, and construction from barges using a shallow channel parallel to the project. The design chosen will cost more than one million dollars less than the next alternative, and will cut construction time by two years over the next alternative design. Given the demonstrated need for the proposed project, the already degraded water quality in the project area, the safeguards for water quality contained-in the project design, and the savings to be realized in both cost and time of construction, the design presently contained in the application is the best practicable. Both Petitioners and JTA have submitted proposed findings of fact. Petitioners' Proposed Findings of Fact numbered 1 through 4 have been substantially adopted herein. JTA's Proposed Findings of Fact numbered 1 through 7 have also been substantially adopted. To the extent that proposed findings of fact submitted by either Petitioners or JTA are not adopted in the Recommended Order, they have been specifically rejected as being either irrelevant to the issues in this cause, or as not having been supported by the evidence.

Florida Laws (5) 120.54120.57403.021403.061403.087
# 8
GEORGE HALLORAN vs SOUTH FLORIDA WATER MANAGEMENT DISTRICT, 92-006254 (1992)
Division of Administrative Hearings, Florida Filed:Key West, Florida Oct. 19, 1992 Number: 92-006254 Latest Update: Oct. 05, 1993

Findings Of Fact Based upon the oral and documentary evidence adduced at the final hearing and the entire record in this proceeding, the following findings of fact are made: The SFWMD is a public corporation in the state of Florida existing by virtue of Chapter 25270, Laws of Florida, 1949, and operating pursuant to Chapter 573, Fla. Stat., and Title 40E, Fla. Admin. Code, as a multi-purpose water management district, with its principal office in West Palm Beach, Florida. The Navy has proposed construction of a naval housing facility on the Peary Court site (the "Site") in Key West, Florida. The Site is approximately 25.89 acres and will provide 160 housing units for junior enlisted Navy and Air Force personnel and their families. The Site is the center of a larger, 37 acre drainage basin. The Site was formerly the location of military housing. However, for the past 18 years, the Site had been used by the City of Key West, with the assent of the Navy, for active and passive recreation for city residents. The Site contains a cemetery of historic value and a former military housing structure now being used by the Navy Key West Federal Credit Union with an associated parking area of paved asphalt. On February 6, 1992, the Navy submitted an application for a Surface Water Management District General Permit for the Project. The proposed surface water management system (the "System") was designed by Rice Creekmore, a registered professional engineer, and his company Johnson, Creekmore, and Fabray. The proposed System utilizes the existing topography and incorporates a number of drainage control mechanisms to manage the run-off from the Site. The System employs inlets, swales and culverts to direct stormwater run-off into dry detention areas (ponds) for pretreatment prior to discharging into seven 24-inch Class V injection wells (drainage wells). As discussed below, these injection wells must be permitted by the Florida Department of Environmental Regulation ("FDER"). The dry pond areas utilize key ditches, bottom elevation 1.0' NGVD, in order to hydraulically connect all of the dry pond areas together into one dry system prior to overflowing into the drainage wells beginning at elevation 1.5' NGVD. In other words, the detention ponds are interconnected with pipes. The design includes only one point where run-off would be discharged from the Site during any storm equal to a 25 year, three day storm event. That discharge would occur at the lowest point of the Site at the corner of Eisenhower and Palm. The water would be discharged through a V notch weir (the "Weir") into the City's stormwater system. An existing 12" storm drain line at the discharge point will be replaced by a 13.5" by 22.0" Reinforced Concrete Elliptical Pipe culvert. As discussed in more detail below, the System is designed so as to detain 1" of run-off within the dry detention ponds prior to any discharge through the Weir. After review of the application and submittals, the SFWMD issued a Notice of Intent to issue General Permit and Stormwater Discharge Certification No. 44-00178-S (the "Permit") on September 29, 1992. Petitioner and Intervenor timely petitioned for an administrative hearing challenging the SFWMD decision to award the Permit. There is no dispute as to the standing of either Petitioner or Intervenor. The SFWMD has adopted rules that set forth the criteria which an applicant must satisfy in order for a surface water management permit to issue. The criteria are set forth in Rule 40E-4, Florida Administrative Code. Rule 40E-4.301(1)(m) and 40E-4.091(1)(a) incorporate by reference The Basis of Review for Surface Water Management Permit Applications within South Florida Water Management District - April, 1987, ("The Basis for Review"). The Basis for Review explicates certain procedures and information used by the SFWMD staff in reviewing a surface water management permit application. The SFWMD issues general permits for projects of 40 acres or less that meet specific criteria. All other projects must obtain individual permits which are reviewed by the District Board. The specific rules relating only to general permits are set forth in Rule 40E-40. In addition, the Basis for Review sets forth certain technical requirements which must be met for the issuance of a general permit including general construction requirements and special requirements for wetlands. The Basis for Review also sets forth criteria for how a proposed system should address water quantity and water quality issues. The SFWMD assumes that water quantity and water quality standards will be met if a system satisfies the criteria set forth in the Basis for Review. Water Quantity Criteria Rule 40E-4.301(a), Florida Administrative Code, requires an applicant to provide reasonable assurances that a surface water management system will provide adequate flood protection and drainage. The purpose of the water quantity criteria is to insure that pre- development flows and post-development flows are equal. The SFWMD requires calculations of a project's projected post-development flow to guarantee that the post-development discharge rate will not be in excess of the pre-development discharge rate. These calculations are based on a 25 year, 3 day storm event. There is no stormwater management system in place at the Project Site. The pre-development topography results in a pre-development discharge point from the Site at the corner of Eisenhower Drive and Palm Avenue. At this point, a discharge or outfall pipe leads into the City of Key West's stormwater management system. The City's system ultimately discharge into Garrison Bight, a nearly waterbody which is discussed in more detail below. At the time the Navy began planning for the Project, the Navy was told that the discharge pipe had a capacity of accepting water at a rate of 40 cubic feet per second ("CFS"). The Navy initially designed a system to utilize this capacity. Subsequently, it was discovered that, due to the size of the pipe at the discharge point and the capacity of the pipes downstream in the City of Key West's stormwater management system, the City would not allow or accommodate a discharge of more than 11 CFS from the Site. Thus, the System had to be redesigned so that the discharge to the City's system would not exceed 11 CFS. The system was redesigned to incorporate the seven (7) Class V injection wells. The injection wells are intended to insure that discharge from the Project into the City stormwater system through the surface water discharge pipe at Eisenhower Drive and Palm Avenue will not exceed 11 CFS. The injection wells introduce treated stormwater into the ground before it reaches the discharge point. The pre-development rate of surface water discharge from Peary Court in a 25 year, 72 hour storm event was 55 CFS. This rate was calculated based upon a site survey, a determination of the existing amount of pervious versus impervious surface area, and a calculation made through a generally accepted civil-engineering computer program. 1/ This predevelopment discharge is the amount of water which would be expected to discharge off-site after percolation occurs. The number and size of the injection wells for the proposed system were determined based upon tests of an on-site twelve-inch fire well. The results of the tests revealed that the on-site test well could manage in excess of 2 CFS. Due to test limitations, the exact capacity could not be measured, but the capacity was clearly more than 2 CFS. These results were then compared with data obtained from the engineering firm of Post, Buckeley, Schuh & Jernigan for installed wells in the Florida Keys of a similar nature and size to the wells in the proposed surface water management system. The Post, Buckeley test results indicated that 24-inch wells had a capacity of 31 CFS. In addition, the design engineer consulted with South Florida Well Drillers, who have drilled other wells in the Florida Keys including 24-inch wells at the Key West airport which were completed shortly before the application for this Project. South Florida Well drillers found the capacity of 24-inch wells in Key West to be in the 25 to 30 CFS range. Based upon the results of the test well and the related reports described above, the project engineer based his design of the surface water management system on an estimated well capacity of 8.4 CFS for each well. These estimates were submitted by the Navy in its application and were appropriately determined to be reasonable by the SFWMD staff. Indeed, the evidence established that 8.4 CFS was a conservative estimate. The seven injection wells, at an estimated capacity of approximately 8.4 CFS each, provide in excess of 56 CFS of well discharge capacity, which is beyond the necessary discharge volume for the Project. Limiting Condition No. 13 of the Permit requires the Navy to obtain a well capacity test from a Florida Registered Professional Engineer or Professional Geologist following the installation of the first Class V injection well at the Site. If the results of this test indicate that the capacity of the well is different than that submitted by the Navy in its application, the Navy must apply for a permit modification to provide a design which incorporates a representative injection well flow-rate and an appropriate number of wells for the Site. In view of the reasonableness of the capacity rates utilized for the wells, it is unlikely that the results of the capacity test will result in any major design change in the proposed surface water management system. The use of the injection wells in the proposed surface water management system will significantly reduce the amount of run-off which would otherwise reach Garrison Bight from the Site. After the System is completed, it is expected that the amount of run-off from the Site that will reach Garrison Bight will be only 20 percent of the predevelopment amount. In addition, because there has previously been no management of the run-off from the Site and surrounding areas, there has been a frequent flooding problem at the corner of Eisenhower Drive and Palm Avenue after heavy rain storms. The proposed surface water management system will accommodate the overflow of water which historically occurred when discharges from Peary Court and the surrounding areas could not be accommodated by the Key West storm water management system. Petitioner and Intervenor suggest that the effect of tidal flow on the capacity of the wells was not fully considered. The evidence established that the design engineer considered normal high tides in calculating groundwater elevations. Respondent's engineering experts have concluded that the proposed surface water management system is effectively designed to accommodate the Florida Keys' tidal flows. Petitioner and Intervenor offered no expert testimony to refute this conclusion and/or to establish that the tides would impact the effectiveness of the proposed surface water management system. In the event that an extremely high tide occurs at the time of a storm, the detention ponds may hold standing water for a short time. This water would not be discharged off-site. There is no evidence that tidal influences would in any way adversely affect the System's ability to uptake pollutants in the "first- flush". The Class V shallow injection wells are an integral part of the proposed Peary Court surface water management system. Without the injection wells it is not clear whether the Project could meet the SFWMD water quantity criteria. The SFWMD does not have authority to permit Class V injection wells. FDER must permit those wells. The Peary Court site is not the first Florida Keys' project permitted by the SFWMD which utilizes injection wells. The surface water management permits for the other projects were issued contingent upon obtaining the necessary permits for the injection wells. Special Condition No. 14 of the Permit provides that the Permit is conditioned on the Applicant obtaining the applicable permits from FDER for the injection wells. During the interim while the Navy is seeking the FDER permits, it should be required to retain all run-off on-site. If the Navy is not able to obtain the necessary FDER permits for the injection wells, the Navy should be required to either retain all run-off on-site or propose an alternate design to meet the SFWMD's water quantity requirements. A modified permit application with a new Notice of Intent should be required for any alternate design. The following Special Condition Number 14 was offered by the SFWMD at the hearing (language revised from original condition is highlighted and underlined): THIS PERMIT IS ISSUED BASED ON THE APPLICANT OBTAINING THE NECESSARY CLASS V INJECTION WELL PERMITS FROM THE FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION (FDER). THE PERMITTEE SHALL SUBMIT AN APPROVED CLASS V DRAINAGE WELL PERMIT FROM FDER PRIOR TO OPERATION OF THE SURFACE WATER MANAGEMENT SYSTEM. IN THE INTERIM, THE PERMITTEE SHALL CERTIFY TO THE DISTRICT THAT NO OFF-SITE DISCHARGE WILL OCCUR UNTIL THE APPROVED CLASS V DRAINAGE WELLS ARE IN OPERATION. IF THE SURFACE WATER MANAGEMENT SYSTEM DESIGN MUST BE MODIFIED AS A RESULT OF FDER REQUIREMENTS OR IF THE CLASS V INJECTION WELL PERMITS ARE NOT ISSUED, THE APPLICANT SHALL APPLY FOR A PERMIT MODIFICATION TO PROVIDE A SURFACE WATER MANAGEMENT SYSTEM DESIGN WHICH SHALL MEET DISTRICT CRITERIA IN EFFECT AT THAT TIME. The proposed additional language requires the Navy to certify that no off-site discharges will occur until the injection wells are permitted and are operating. This revised language should be added to Special Condition No. 14 to clarify that the injection wells must be in operation prior to any off-site discharge from the surface water management system. Maintenance of the surface water management system entails upkeep of the dry detention areas and routine grass cutting, as well as inspection of the injection wells on a periodic basis to guard against clogging and reduced capacity. The system is essentially designed to operate without direct surveillance or intervention. Injection wells do not require any additional maintenance over and above that which is routinely required for other types of surface water management systems. The injection wells will require routine maintenance to ensure that manholes and inlets do not become clogged. Limiting Condition No. 8 of the Permit requires that the surface water management system, including the injection wells, be maintained. At the hearing, the SFWMD proposed that a condition be added to the Permit to further clarify the maintenance requirements. A condition requiring long-term maintenance would be desirable and reasonable. A new special condition should be added to the Permit requiring long-term maintenance of grass swales and inspections of injection wells for clogging. Acceptable language for such a condition would be: SPECIAL CONDITION NO. 15 The permittee shall provide long-term maintenance of the surface water management system, encompassing the injection wells, including, but not limited to, (a) maintenance of the vegetation in the grass swales and detention ponds and (b) routine inspections of wells and discharge structures for clogging. Water Quality Criteria As noted above, there is no designed system for surface water management and/or water quality pretreatment at the Site in its undeveloped state. Surface water run-off that can not be managed by the City of Key West's storm water management system collects in roads adjacent to the Site, resulting in adverse water quality and quantity impacts to adjacent land and receiving waters. The applicable water quality criteria, contained in Rule 40E-4.301, Florida Administrative Code, require an applicant to provide reasonable assurances that a surface water management system will not cause adverse water quality impacts to receiving waters and adjacent lands, and will not cause discharge which results in any violation of the standards and criteria of Chapter 17-302 for surface waters of the state. Rule 40E-4.301 provides that: In order to obtain a permit under this chapter, an applicant must give reasonable assurances that the surface water management system is consistent with the State Water Policy as set forth in Chapter 17-40, Florida Administrative Code (40E-4.301(1)(h), Florida Administrative Code. Rule 17-40.420 provides in pertinent part: Minimum Stormwater Treatment Performance Standards. When a stormwater management system complies with rules establishing the design and performance criteria for stormwater management systems, there shall be a rebuttable presumption that such systems will comply with state water quality standards. The Department and the Districts, pursuant to Section 373.436, Florida Statutes, shall adopt rules that specify design and performance criteria for new stormwater management systems which: 1. Shall be designed to achieve at least 80 percent reduction of the average annual load of pollutants that would cause or contribute to violations of state water quality standards. The Basis for Review, which is incorporated into Title 40E, Florida Administrative Code, by reference, further delineates the applicable water quality permit criteria for surface water management systems. Regarding water quality criteria, the Basis for Review provides: 3.2.2.1 State standards - Projects shall be designed so that discharges will meet state water quality standards, as set forth in Chapter 17-3 [revised to 17-302], Florida Administrative Code. The SFWMD's water quality criteria do not require chemical testing of stormwater for residential projects. The SFWMD's water quality criteria require that the design of a surface water management system meet applicable design/technology based criteria. Section 3.2.2.2 of the Basis for Review contains the specific water quality criteria for the design of a surface water management system. The SFWMD allows applicants to design their surface water management system using either dry or wet detention or dry or wet retention, so long as the treatment provided by the system meets water quality and quantity criteria. Dry detention consists of a system of grass swales and vegetative- covered ponds which detain water at a predetermined rate prior to off-site discharge. Wet retention can contain canals, ditches, lakes or ponds to retain water on-site. If a system is designed to meet the criteria specified in 3.2.2.2(a) of the Basis for Review and incorporates Best Management Practices ("BMP's") for the type of system proposed, the SFWMD presumes that water quality standards will not be violated. In determining which system is appropriate for a particular site, water quantity (flooding impacts) and water quality impacts must be balanced. In some cases, water quantity concerns may preclude certain types of water quality treatment methods. At the hearing in this case, Petitioner and Intervenor suggested that retention is superior to detention in designing surface water management systems. The evidence presented in this case was insufficient to support this conclusion. In any event, this contention focuses only on water quality considerations. One drawback to retention is that it may have on-site flooding impacts. With respect to this Project, the evidence indicates that retention may not have been an acceptable alternative because of possible adverse water quantity impacts. The Navy's proposed surface water management system was designed to utilize dry detention with filtration for treatment of surface water prior to discharge into the injection wells and/or off-site. The design uses a system of grass swales and grass-covered detention ponds to detain and filter pollutants from the surface water as it makes its way through the dry detention system. The System is designed to utilize as many grass swale areas as possible to filter or treat the surface water before it reaches the detention ponds which provide further treatment. The swales restrict the flow of water to approxmiately one half to one foot per second which allows for percolation and a tremendous amount of filtration. The System utilizes the natural topography of the Site to direct water through the dry detention system to the lowest point of the Site at the corner of Eisenhower Drive and Palm Avenue. Any water which makes it to this last detention pond and is not drained into one of the injection wells can flow through the discharge structure (the Weir) at 11 CFS and ultimately make it into Garrison Bight. Petitioner and Intervenor have suggested that the design of the proposed System is defective because water discharged from the cul-de-sacs in the Project design will flow directly into detention ponds without passing over any of the grass swales. The permit criteria do not specify that all surface water must contact grass swales prior to reaching a detention pond. While greater filtration is achieved the longer the run-off remains in the system, the evidence established that the detention ponds by themselves provide sufficient water quality treatment. With respect to all but one of the cul-de-sacs, the water must pass through at least two detention ponds before it is discharged. Run-off from the cul-de-sac closest to the Weir will receive treatment only in the last discharge pond. Petitioner and Intervenor questioned whether the run- off from this last cul-de-sac will receive adequate treatment, in other words, whether the "first flush" will be adequately detained prior to discharge, especially in circumstances when the detention pond is already wet. However, the evidence was insufficient to establish that their concerns are justified and/or that this situation would constitute a violation of water quality standards. This cul-de-sac is only 100 ft in diameter and accounts for no more than 8 percent of the total run-off from the Site. After considering all of the evidence, it is concluded that the water from the cul-de-sacs will be adequately treated in accordance with the permit criteria prior to any discharge. In assessing the Navy's proposed surface water management system the following criteria from the Basis for Review are pertinent in determining whether the proposed System will provide appropriate water quality treatment: 3.2.2.2 Retention and/or detention in the overall system, including swales, lakes, canals, greenways, etc., shall be provided for one of the three following criteria or equivalent combinations thereof. . .: Wet detention volume shall be provided for the first inch of run-off from the developed project, or the total run-off of 2.5 inches times the percentage of imperviousness, whichever is greater. Dry detention volume shall be provided equal to 75 percent of the above amounts computed for wet detention. If the receiving waterbody, is a "sensitive receiving water," which would include an Outstanding Florida Water, the following additional criteria regarding direct discharges are applicable: 3.2.2.2 d. Projects having greater than 40 percent impervious area and which discharge directly to sensitive receiving waters shall provide at least one half inch of dry detention or retention pretreatment as part of the required retention/detention. The SFWMD interprets the permitting criteria as creating a rebuttable presumption that a surface water management system that provides detention in accordance with BMP's of the first inch (1") of run-off from a Site, commonly referred to as the "first-flush", will meet state water quality standards. The "first-flush" occurs at the onset of a rainfall when most pollutants run off paved areas and percolate into the grass swales. It is an accepted design parameter that the "first flush" contains 90 percent of the pollutants which will be collected in the run-off. The 90 percent of the pollutants in the first flush are consequently retained on-site through pure percolation and never reach the discharge facility. Although Petitioner and Intervenor suggest that dry detention does not provide this degree of filtration, the evidence was insufficient to support this contention. The proposed System for this Project provides treatment for the first one inch (1") of run-off from the developed Project, thereby meeting the permitting criteria for sensitive receiving waters. Intervenor and Petitioner contend that the development of this Project will necessarily result in a larger amount of pollutants in the run-off from the Site. They argue that the Applicant has not provided reasonable assurances that capturing 90 percent of the increased level of pollutants in the first flush will meet water quality standards. As noted above, compliance with the permit criteria creates a rebuttable presumption that water quality standards will be met. Insufficient evidence was presented to overcome this rebuttable presumption. In calculating the appropriate volume for the dry detention ponds, the Project engineer used the Site's percentage of impervious area. The percentage of impervious area was determined in accordance with SFWMD criteria. The calculations do not account for any percolation from the impervious areas even though much of that run-off will pass through swales and other grassy areas of the Site. In addition, there is a built-in buffer between the berm elevation around the ponds and the expected water level in the ponds. These factors confirm that there is significant additional capacity in the ponds which is an overage or safety net. In sizing the detention ponds, the project engineer also factored in additional off-site water that will be coming on-site from Palm Avenue. This water currently ponds on Palm Avenue contributing to a recurring flooding problem in the area. This off-site water will be routed through an inlet and pumped directly into on-site detention areas thereby reducing flooding on Palm Avenue and providing some treatment for off-site run-off that was not previously treated before entering the City's stormwater system. As noted above, additional water quality criteria requirements apply to projects which discharge to an Outstanding Florida Water. These additional criteria are set forth in paragraph 40 above. Outstanding Florida Water or OFW is the designation given exclusively by the FDER to certain waterbodies in Florida which have special significance, either for ecological or recreational reasons. Outstanding Florida Waters are afforded the highest degree of water quality protection. The criteria for designation of waters as Outstanding Florida Waters is found in Chapter 17-302, Florida Administrative Code. When the SFWMD initially reviewed the Permit application for this Project, it erroneously assumed that Garrison Bight, the ultimate receiving body for the waters discharged from the project through the City stormwater system, was an OFW. Although the SFWMD applied water quality criteria for OFW's when it reviewed the subject permit application, the evidence at the hearing in this case established that Garrison Bight is not an Outstanding Florida Water. A FDER representative, qualified as an expert in the designation of Outstanding Florida Waters, testified that the Outstanding Florida Water designation does not apply to certain waterbodies that were degraded at the time of designation or did not have the significance or pristine water quality that merit special protection. The designation also does not apply to artificial waterbodies. Artificial waterbodies are defined in Rule 17-302.700(9)(i), Florida Administrative Code, as a waterbody created by dredging or excavation or by the filing in of its boundaries on at least two sides. The FDER has formally determined that Garrison Bight is not an Outstanding Florida Water because Garrison Bight is an artificial waterbody in accordance with the definition. Furthermore, Garrison Bight is the site of extensive boating and marina activities. The water quality of Garrison Bight is currently degraded in comparison to ambient conditions and offshore/unconfined water. In sum, the evidence established that proposed surface water management system meets or exceeds the current permit criteria. Consequently, the water flowing into Garrison Bight from the Site will be significantly less and much cleaner after the proposed surface water management system is installed than it currently is without a designed surface water management system.

Recommendation Based upon the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that a Final Order be entered approving the issuance of Surface Water Management General Permit No. 44-01785 in accordance with the Notice of Intent dated September 29, 1992 and the additional conditions noted in this Recommended Order. DONE AND ENTERED this 14th day of May, 1993, at Tallahassee, Florida. J. STEPHEN MENTON Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 14th day of May, 1993.

Florida Laws (9) 120.56120.57120.68373.114373.403373.413373.436373.617403.021 Florida Administrative Code (2) 40E-4.09140E-4.301
# 9
THE SIERRA CLUB vs ST. JOHNS RIVER WATER MANAGEMENT DISTRICT AND HINES INTERESTS LIMITED PARTNERSHIP, 00-002231 (2000)
Division of Administrative Hearings, Florida Filed:St. Augustine, Florida May 26, 2000 Number: 00-002231 Latest Update: Jul. 12, 2004

The Issue The issues to be resolved in this proceedings concern whether Environmental Resource Permit (ERP) No. 4-109-0216-ERP, should be modified to allow construction and operation of a surface water management system (project) related to the construction and operation of single-family homes on "Marshall Creek" (Parcel D) in a manner consistent with the standards for issuance of an ERP in accordance with Rules 40C-4.301 and 40C-4.302, Florida Administrative Code.

Findings Of Fact The Project The project is a 29.9-acre residential development and associated stormwater system in a wetland mitigation area known as "Parcel D." It lies within the much larger Marshall Creek DRI in St. Johns County, Florida, bounded on the northeast by Marshall Creek, on the south and southeast by a previously permitted golf course holes sixteen and seventeen, and on the north by the "Loop Road." The project consists of thirty residential lots of approximately one-half acre in size; a short segment of Loop Road to access Parcel D; an internal road system; expansion of previously permitted Pond N, a wet detention stormwater management pond lying north of the Loop Road and wetland mitigation areas. Approximately 1.15 acres of wetlands are located on the Parcel D site. The project plan calls for filling 0.63 acres of the wetlands for purposes of constructing a road and residential lots for Parcel D. Part of that 0.63-acre impact area, 0.11 acres, is comprised of a 760-foot-long, narrow drainageway, with 0.52 acres of adjacent wetland. Downstream of the fill area, 0.52 acres of higher quality wetland is to be preserved. Hines proposes to preserve 4.5 acres of existing wetland and 2.49 acres of upland, as well as to create .82 acres of forested wetland as mitigation for the proposed impact of the project. Additionally, as part of the project, Hines will implement a nutrient and pesticide management plan. The only pesticides to be used at the project will be approved by the Department of Agriculture for use with soil types prevailing at the site and only pesticides approved by the Environmental Protection Agency may be used on the site. All pesticides to be used on the project site must be selected to minimize impacts to ground and surface water, including having a maximum 70-day half-life. Stormwater Management System The majority of surface runoff from Parcel D will be diverted to a stormwater collection system and thence through drainage pipes and a swale into Phase I of Pond N. After treatment in Pond N, the water will discharge to an upland area adjacent to wetlands associated with Marshall Creek and then flow into Marshall Creek. The system will discharge to Marshall Creek. In addition to the area served by Pond N, a portion of lots fourteen though twenty drain through a vegetated, natural buffer zone and ultimately through the soil into Marshall Creek. Water quality treatment for that stormwater runoff will be achieved by percolating water into the ground and allowing natural soil treatment. The fifty-foot, vegetated, natural buffer is adequate to treat the stormwater runoff to water quality standards for Lots 14, 15 and 20. Lots 16, 17, 18 and 19, will have only a twenty-five foot buffer, so additional measures must be adopted for those lots to require either that the owners of them direct all runoff from the roofs and driveways of houses to be constructed on those lots to the collection system for Pond N or placement of an additional twenty-five foot barrier of xeriscape plants, with all non- vegetated areas being mulched, with no pesticide or fertilizer use. An additional mandatory permit condition, specifying that either of these measures must be employed for Lots 16, 17, 18 and 19, is necessary to ensure that water quality standards will be met. Pond N is a wet detention-type stormwater pond. Wet detention systems function similarly to natural lakes and are permanently wet, with a depth of six to twelve feet. When stormwater enters a wet detention pond it mixes with existing water and physical, chemical and biological processes work to remove the pollutants from the stormwater. Pond N is designed for a twenty-five year, twenty-four- hour storm event (design storm). The pre-development peak rate of discharge from the Pond N drainage area for the design storm event is forty cubic feet per second. The post-development peak rate of discharge for the design storm event will be approximately twenty-eight cubic feet per second. The discharge rate for the less severe, "mean annual storm" would be approximately eleven cubic feet per second, pre-development peak rate and the post-development peak rate of discharge would be approximately five cubic feet per second. Consequently, the post-development peak rate of discharge does not exceed the pre- development peak rate of discharge. Pond N is designed to meet the engineering requirements of Rule 40C-42.026(4), Florida Administrative Code. Because the pond is not designed with a littoral zone, the permanent pool volume has been increased by fifty-percent. Additionally, because Pond N discharges to the Class II waters of Marshall Creek, an additional fifty-percent of treatment volume is included in the pond design. The system design addresses surface water velocity and erosion issues through incorporation of best management practices promulgated by the District to prevent erosion and sedimentation, including; designing side slopes of 4:1; siding and seeding disturbed areas to stabilize soil; and the use of riprap at the outfall from Pond N. During construction, short- term water quality impacts will be addressed through installation of silt fences and hay bales. The majority of the eighteen-acre drainage basin which flows into the Parcel D wetland lies to the south and southwest of Parcel D. In accordance with the prior permit, water from those off-site acres will be intercepted and routed to stormwater ponds serving golf course holes sixteen and seventeen. The system design will prevent adverse impacts to the hydroperiod of remaining on-site and off-site wetlands. The remaining wetlands will be hydrated through groundwater flow. Surface waters will continue to flow to the wetlands adjacent to lots fourteen through twenty because drainage from those lots will be directed across a vegetated, natural buffer to those wetlands. There is no diversion of water from the natural drainage basin, because Pond N discharges to a wetland adjacent to Marshall Creek, slightly upstream from the current discharge point for the wetland which is to be impacted. This ensures that Marshall Creek will continue to receive that fresh-water source. An underground "PVC cut-off wall" will be installed around Pond N to ensure that the pond will not draw down the water table below the wetlands near the pond. Pond N has been designed to treat stormwater prior to discharge, in part to remove turbidity and sedimentation. This means that discharge from the pond will not carry sediment and that the system will not result in shoaling. There will be no septic tanks in the project. The system is a gravity flow system with no mechanical or moving parts. It will be constructed in accordance with standard industry materials readily available and there will be nothing extraordinary about its design or operation. The system is capable of being effectively operated and maintained and the owner of the system will be the Marshall Creek Community Development District (CDD). Water Quality Water entering Pond N will have a residence time of approximately 200 days or about fifteen times higher than the design criteria listed in the below-cited rule. During that time, the treatment and removal process described herein will occur, removing most of the pollutants. Discharge from the pond will enter Marshall Creek, a Class II water body. The discharges must therefore meet Class II water quality numerical and anti-degradation standards. The design for the pond complies with the design criteria for wet detention systems listed in Rule 40C-42.026(4), Florida Administrative Code. In addition to meeting applicable design criteria, the potential discharge will meet water quality standards. The pond will have low levels of nitrogen and phosphorous resulting in low algae production in the pond. The long residence time of the water in the pond will provide an adequate amount of time for pesticides to volatilize or degrade, minimizing the potential for pesticide discharge. Due to the clear characteristics of the water column, neither thermal stratification nor chemical stratification are expected. Periodically, fecal coliform and total coliform levels are exceeded under current, pre-development conditions. These are common natural background conditions. Because the detention time in the pond will be an average of 200 days, and because the life span of fecal coliform bacteria is approximately seven to fourteen days the levels for coliforms in the pond will be very low. Discharges from the pond will enhance water quality of the Class II receiving waters because the levels of fecal coliform and total coliform will be reduced. The discharge will be characterized by approximately 100 micrograms per liter total nitrogen, compared with a background of 250 micrograms per liter presently existing in the receiving waters of Marshall Creek. The discharge will contain approximately three micrograms per liter of phosphorous, compared with sixty-three micrograms per liter presently existing in Marshall Creek. Total suspended solids in the discharge will be less than one-milligram per liter compared with seventy-two milligrams per liter in the present waters of Marshall Creek. Biochemical oxygen demand will be approximately a 0.3 level in the discharge, compared with a level of 2.4 in Marshall Creek. Consequently, the water quality discharging from the pond will be of better quality than the water in Marshall Creek or the water discharging from the wetland today. The pollutant loading in the discharge from the stormwater management system will have water quality values several times lower than pre-development discharges from the same site. Comparison of pre-development and post-development mass loadings of pollutants demonstrates that post-development discharges will be substantially lower than pre-development discharges. Currently, Marshall Creek periodically does not meet Class II water quality standards for dissolved oxygen. Construction and operation of the project will improve water quality in the creek concerning dissolved oxygen values because discharges from Pond N will be subjected to additional aeration. This results from design features such as discharge from the surface of the system, where the highest level of dissolved oxygen exists, and the discharge water draining through an orifice and then free falling to a stormwater structure, providing additional aeration. Discharges from the system will maintain existing uses of the Class II waters of Marshall Creek because there will be no degradation of water quality. Discharges will not cause new violations or contribute to existing violations because the discharge from the system will contain less pollutant loading for coliform and will be at a higher quality or value for dissolved oxygen. Discharges from the system as to water quality will not adversely affect marine fisheries or marine productivity because the water will be clear so there will be no potential for thermal stratification; the post-development discharges will remain freshwater so there will be no change to the salinity regime; and the gradual pre-development discharges will be replicated in post-development discharges. Several factors minimize potential for discharge of pesticide related pollutants: (1) only EPA-approved pesticides can be used; (2) only pesticides approved for site-specific soils can be used; (3) pesticides must be selected so as to minimize impacts on surface and groundwater; (4) pesticides must have a maximum half-life of 70 days; and (5) the system design will maximize such pollutant removal. Archaeological Resources The applicant conducted an archaeological resource assessment of the project and area. This was intended to locate and define the boundaries of any historical or archaeological sites and to assess any site, if such exists, as to its potential eligibility for listing in the National Register of Historic Places (National Register). Only a portion of one archaeological site was located on the project tract. Site 8SJ3473, according to witness Anne Stokes, an expert in the field of archaeological assessment, contains trace artifacts dating to the so-called "Orange Period," a time horizon for human archaeological pre-history in Florida dating to approximately 2,300 B.C. The site may have been only a small campsite, however, since only five pottery fragments and two chert flakes, residuals from tool-making were found. Moreover, there is little possibility that the site would add to knowledge concerning the Orange Period or pre-history because it is a very common type of site for northeast Florida and is not an extensive village site. There are likely other campsites around and very few artifacts were found. No artifacts were found which would associate the site with historic events or persons. The applicant provided the findings of its cultural resource assessment, made by Dr. Stokes, to the Florida Division of Historical Resources. That agency is charged with the responsibility of reviewing cultural resource assessments to determine if significant historic or archaeological resources will be impacted. The division reviewed the survey techniques used by Dr. Stokes, including shovel testing, sub-surface testing and pedestrian walk-over and investigation. The division determined that the site in question is not of a significant historical or archaeological nature as a resource because it does not meet any of the four criteria for inclusion in the National Register.1 Thus the referenced agency determined that the site in question is not a significant historical or archaeological resource and that construction may proceed in that area without further investigation, insofar as its regulatory jurisdiction is concerned. Wetlands The wetlands to be impacted by the project consist of a 1,000 foot drainage-way made up of a 0.11 acre open-water channel, approximately four feet wide, and an adjacent vegetated wetland area of approximately 0.52 acres containing fewer than 30 trees. The open-water channel is intermittent in that it flows during periods of heavy rainfall and recedes to a series of small, standing pools of water during drier periods. The Parcel D wetland is hydrologically connected to Marshall Creek, although its ephemeral nature means that the connection does not always flow. The wetland at times consists only of isolated pools that do not connect it to Marshall Creek. Although it provides detrital material export, that function is negligible because the productivity of the adjacent marsh is so much greater than that of the wetland with its very small drainage area. Because of the intermittent flow in the wetland, base flow maintenance and nursery habitat functions are not attributed to the wetland. The Parcel D wetland is not unique. The predominant tree species and the small amount of vegetated wetland are water oak and swamp bay. Faunal utilization of the wetland is negligible. The wetland drainage-way functions like a ditch because it lacks the typical characteristics of a creek, such as a swampy, hardwood floodplain headwater system that channelizes and contains adjacent hardwood floodplains. The location of the wetland is an area designated by the St. Johns County comprehensive plan as a development parcel. The Florida Natural Areas Inventories maps indicate that the wetland is not within any unique wildlife or vegetative habitats. The wetland is to be impacted as a freshwater system and is not located in a lagoon or estuary. It contains no vegetation that is consistent with a saltwater wetland. The retaining wall at the end of the impact area is located 1.7 feet above the mean high water line. Wetland Impacts The proposed 0.63 acre wetland impact area will run approximately 760 linear feet from the existing trail road to the proposed retaining wall. If the wetland were preserved, development would surround the wetland, adversely affecting its long-term functions. Mitigation of the wetland functions is proposed, which will provide greater long-term ecological value than the wetland to be adversely affected. The wetland to be impacted does not provide a unique or special wetland function or good habitat source for fish or wildlife. The wetland does not provide the thick cover that would make it valuable as Black Bear habitat and is so narrow and ephemeral that it would not provide good habitat for aquatic-dependent and wetland-dependent species. Its does not, for instance, provide good habitat for woodstorks due to the lack of a fish population and its closed- in tree canopy. Minnow sized fish (Gambusia) and crabs were seen in portions of the wetland, but those areas are downstream of the proposed area of impact. Mitigation Mitigation is offered as compensation for any wetland impacts as part of an overall mitigation plan for the Marshall Creek DRI. The overall mitigation plan is described in the development order, the mitigation offered for the subject permit and mitigation required by prior permits. A total of 27 acres of the more than 287 acres of wetlands in the total 1,300-acre DRI tract are anticipated to be impacted by the DRI. Approximately 14.5 acres of impacted area out of that 27 acres has already been previously authorized by prior permits. The overall mitigation plan for the DRI as a whole will preserve all of the remaining wetlands in the DRI after development occurs. Approximately one-half of that preserved area already has been committed to preservation as a condition of prior permits not at issue in this case. Also, as part of prior permitting, wetland creation areas have been required, as well as preserved upland buffers which further protect the preserved wetlands. The mitigation area for the project lies within the Tolomato River Basin. The development order governing the total DRI requires that 66 acres of uplands must also be preserved adjacent to preserved wetlands. The overall mitigation plan for the DRI preserves or enhances approximately 260 acres of wetlands; preserves a minimum of 66 acres of uplands and creates enhancement or restores additional wetlands to offset wetland impacts. The preserved wetlands and uplands constitute the majority of Marshall Creek, and Stokes Creek which are tributaries of the Tolomato River Basin, a designated Outstanding Florida Water (OFW). Preservation of these areas prevents them from being timbered and ensures that they will not be developed in the future. The overall DRI mitigation plan provides regional ecological value because it encompasses wetlands and uplands they are adjacent to and in close proximity to the following regionally significant resources: (1) the 55,000 acre Guana- Tolomato-Matanzas National Estuarine Research Reserve; (2) the Guana River State Park; (3) the Guana Wildlife Management Area; (4) an aquatic preserve; (5) an OFW; and (6) the 22,000 acre Cummer Tract Preserve. The mitigation plan will provide for a wildlife corridor between these resources, preserve their habitat and insure protection of the water quality for these regionally significant resources. The mitigation offered to offset wetland impacts associated with Parcel D includes: (1) wetland preservation of 0.52 acres of bottom land forest along the northeast property boundary (wetland EP); (2) wetland preservation of 3.98 acres of bottom land forest on a tributary of Marshall Creek contained in the DRI boundaries (Wetlands EEE and HHH); (3) upland preservation of 2.49 acres, including a 25-foot buffer along the preserved Wetlands EEE and HHH and a 50-foot buffer adjacent to Marshall Creek and preserved Wetland EP; (4) a wetland creation area of 0.82 acres, contiguous with the wetland preservation area; and (5) an upland buffer located adjacent to the wetland creation area. The wetland creation area will be graded to match the grades of the adjacent bottomland swamp and planted with wetland tree species. Small ponds of varying depths will be constructed in the wetland creation area to provide varying hydrologic conditions similar to those of the wetland to be impacted. The wetland creation area is designed so as to not de-water the adjacent wetlands. All of the mitigation lands will be encumbered with a conservation easement consistent with the requirements of Section 704.06, Florida Statutes. The proposed mitigation will offset the wetland functions and values lost through the wetland impact on Parcel D. The wetland creation is designed to mimic the functions of the impact area, but is located within a larger ecological system that includes hardwood wetland headwaters. The long-term ecological value of the mitigation area will be greater than the long-term value of the wetland to be impacted because; (1) the mitigation area is part of a larger ecological system; (2) the mitigation area is part of an intact wetland system; (3) the wetland to be impacted will be unlikely to maintain its functions in the long-term; and (4) the mitigation area provides additional habitat for animal species not present in the wetland to be impacted. Certain features will prevent adverse secondary impacts in the vicinity of the roadway such as: (1) a retaining wall which would prevent migration of wetland animals onto the road; (2) a guard rail to prevent people from moving from the uplands into wetlands; and (3) a vegetated hedge to prevent intrusion of light and noise caused by automotive use of the roadway.

Recommendation Having considered the foregoing Findings of Fact and Conclusions of Law, the evidence of record, the candor and demeanor of the witnesses and the pleadings and arguments of the parties, it is RECOMMENDED: That a final order be entered granting the subject application for modification of Permit 4-109-0216A-ERP so as to allow construction and operation of the Parcel D project at issue, with the addition of the inclusion of a supplemental permit condition regarding the vegetated natural buffers for Lots 16 through 19 described and determined above. DONE AND ENTERED this 9th day of April, 2001, in Tallahassee, Leon County, Florida. P. MICHAEL RUFF Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 9th day of April, 2001.

Florida Laws (5) 120.57267.061373.086373.414704.06 Florida Administrative Code (5) 40C-4.09140C-4.30140C-4.30240C-42.02340C-42.026
# 10

Can't find what you're looking for?

Post a free question on our public forum.
Ask a Question
Search for lawyers by practice areas.
Find a Lawyer