Elawyers Elawyers
Washington| Change
Find Similar Cases by Filters
You can browse Case Laws by Courts, or by your need.
Find 49 similar cases
THOMAS V. INFANTINO, FRANCES INFANTINO, ET AL. vs. ISLAND VILLAGE CONDOMINIUMS AND DEPARTMENT OF ENVIRONMENTAL REGULATION, 81-002407 (1981)
Division of Administrative Hearings, Florida Number: 81-002407 Latest Update: Apr. 08, 1982

Findings Of Fact The applicant, Island Village Condominiums, prepared and submitted to the Department of Environmental Regulation a completed application for construction of its extended aeration sewage treatment plant. The relative distance and direction from the proposed treatment plant to major bodies of surrounding surface water are depicted in an aerial photograph which accompanied the application. The elevation of the surrounding waters in all directions is 39 feet. When the treatment plant is operated in compliance with its design features, the effluent from the plant will exceed the Department's standards for effluent discharge. The zone of discharge will be confined to the owners' property. Surface waters will not be involved in discharge. There will be no adverse impact upon ground waters. The treatment plant would not create a hazzard to the deep water wells of Point O' Woods Utilities, Inc. The treatment plant, as designed, meets or exceeds the engineering standards established by the Department. The likelihood of geologic subsurface failure is remote. Ground water levels are included on the schematic plan which accompanied the application to the Department. The tops of the holding ponds are above the 100-year flood level. The treatment plant will produce no noticeable odor. No exterior lights are to be used with the plant. The noise from the plant's operation would not travel more than 200 feet. The holding ponds would be more than 120 feet from the nearest surface water. The estimate of the cost is accurate at $98,000. Martin I. Gunn, Inc., is the developer of the property, which is also owned by the corporation, Island Village Condominiums, also known as Island Village of Inverness. The treatment plant will become the property of the home owners association and will be operated by the association from maintenance fees paid by the home owners. Martin I. Gunn/Island Village is not a public utility.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, the Hearing Officer recommends that the permit for the construction and operation of an extended aeration sewage treatment plant be issued to Island Village Condominiums subject to the general and specific conditions stated in the Department's original notice. DONE and ORDERED this 19th day of February, 1982, in Tallahassee, Leon County, Florida. STEPHEN F. DEAN, Hearing Officer Division of Administrative Hearings The Oakland Building 2009 Apalachee Parkway Tallahassee, Florida 32301 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 19th day of February, 1982. COPIES FURNISHED: Thomas V. Infantino, Esquire Post Office Drawer. B Winter Park, Florida 32790 Donald F. Perrin, Esquire New Bank of Inverness Building Highway 41, South Post Office Box 1533 Inverness, Florida 32650 William W. Deane, Esquire Department of Environmental Regulation Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32301 Victoria J. Tschinkel, Secretary Department of Environmental Regulation Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32301

Florida Laws (5) 120.57367.021367.022403.086403.0876
# 1
ORANGE BLOSSOM BAPTIST ASSOCIATION vs DEPARTMENT OF ENVIRONMENTAL REGULATION, 92-000944 (1992)
Division of Administrative Hearings, Florida Filed:Lake Wales, Florida Feb. 12, 1992 Number: 92-000944 Latest Update: Jun. 01, 1992

The Issue Whether Petitioner was wrongfully denied general permits to construct an extension to a public water supply distribution system and to construct a waste water treatment system at a camp being constructed by Petitioner.

Findings Of Fact On December 11, 1991, the Department of Environmental Regulation (DER), Ft. Myers office, received applications from the Orange Blossom Baptist Association, Petitioner, submitted by its project engineer, for general permits to install an extension to provide water to, and construct a waste water treatment facility for, a camp being built by Petitioner. These applications were reviewed by the Respondent, and on January 2, 1992, James Oni telephoned Petitioner's engineer to tell him the applications were incomplete and additional information was required. Some of this additional information was submitted by Petitioner on January 7, 1992, but the word "vertical" was left out of the application to indicate what the 18 inch separation of the water and sewer lines represented; no pump out was provided for the lift station; the flotation formula as submitted contained a typographical error where an "s" was substituted for a "5", leaving the calculation of storage capacity of the system indeterminable; the lift station was only 4.5 feet deep and should normally be 10 feet; the configuration of the sump to insure solids would settle to the bottom was not provided, nor was the amount of concrete to be used to obtain this configuration shown; and the type of equipment to be used was not clearly shown. In summary, when submitted the application was not technically correct, and it remained technically incorrect after the additional information was submitted by the applicant. General permits are required to be processed by DER within 30 days of their receipt, and if not denied within that 30 day period they must be approved regardless of their compliance with the statutes and regulations.

Recommendation It is recommended that a Final Order be entered denying Orange Blossom Baptist Association general permits to install a waste water treatment facility and to construct an extension to a public water supply distribution system in Highlands County, Florida. ORDERED this 6th day of May, 1992, in Tallahassee, Florida. K. N. AYERS Hearing Officer Division of Administrative Hearings The Desoto Building 1230 Apalachee Parkway Tallahassee, FL 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 6th day of May, 1992. COPIES FURNISHED: William N. Clark, P.E. 233 E. Park Avenue Lake Wales, FL 33853 Francine M. Ffolkes, Esquire Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, FL 32399-2400 Daniel H. Thompson General Counsel Department of Environmental Regulation Twin Towers Office Building 2600 Blair Stone Road Tallahassee, FL 32399-2400 Carol Browner Secretary Department of Environmental Regulation Twin Towers Office Building 2600 Blair Stone Road Tallahassee, FL 32399-2400

# 2
SAVE OUR BAYS, AIR AND CANALS, INC. vs TAMPA BAY DESAL AND DEPARTMENT OF ENVIRONMENTAL PROTECTION, 01-001949 (2001)
Division of Administrative Hearings, Florida Filed:Tampa, Florida May 18, 2001 Number: 01-001949 Latest Update: Nov. 26, 2001

The Issue There are two issues in these cases: (1) whether Tampa Bay Desal, LLC ("TBD") provided reasonable assurances that its permit application to discharge wastewater from a proposed seawater desalination plant, National Pollutant Discharge Elimination System ("NPDES") Permit Application No. FL0186813- 001-IWIS, meets all applicable state permitting standards for industrial wastewater facilities; and (2) whether Tampa Electric Company, Inc. (TEC) provided reasonable assurances that its proposed modification to an existing industrial wastewater facility permit, NPDES Permit Modification No. FL0000817-003-IWIS, meets all applicable state permitting standards.

Findings Of Fact Parties other than SOBAC Poseidon Resources, LLC wholly owns TBD as one of Poseidon Resources' subsidiaries. Poseidon Resources formed TBD, the successor to S&W Water, LLC, as a special purpose project company to properly staff and finance the desalination project. TBW entered into a 30-year purchase agreement with TBD (then known as S & W Water, LLC) in 1999 to build, own and operate the desalination facility. Poseidon Resources operates as a privately-held company and all stockholders are major corporations. Poseidon Resources opened for business in 1995 and has over $300 million in water processing assets under management. DEP is an agency of the State of Florida. The United States Environmental Protection Agency ("EPA") delegated its NPDES permitting program to the State of Florida and is run by DEP. TEC is an investor-owned electric utility serving Hillsborough, Polk, Pasco, and Pinellas Counties. TEC owns and operates the Big Bend generating station, an electric plant consisting of four coal-fired steam units having a combined capacity of approximately 1800 megawatts. SWFWMD is a water management district in the State of Florida. SWFWMD reviews and acts upon water use permit applications and protects and manages the water and water- related resources within its boundaries. TBW and all of its Member Governments are within the geographical and legal jurisdiction of SWFWMD. Pasco County is a political subdivision of the State of Florida, a member government of TBW, and is located within the jurisdiction of SWFWMD. Pasco County is a major source of the groundwater used by TBW. TBW is a regional public water supply authority. TBW is the sole and exclusive wholesale supplier of potable water for all its member governments of TBW, which are Hillsborough County, Pasco County, Pinellas County, the City of New Port Richey, the City of St. Petersburg, and the City of Tampa. TBW serves approximately 2 million customers. SOBAC SOBAC was incorporated as a Florida not-for-profit corporation in February 2000. The stated mission of SOBAC is to protect the environmental quality of the bays, canals, and waterways of the Tampa Bay area, and to ensure drinking water for SOBAC members in the Tampa Bay area. SOBAC was formed by a group of people residing primarily in the area of Apollo Beach. Apollo Beach is a waterfront residential community that was created by dredge and fill of wetlands, estuary, and bay bottom bordering the "Big Bend" area of Tampa Bay, where the community terminates in a "hammerhead" of fill over what was once a seagrass bed. Across the North Apollo Beach "Embayment," formed by the "hammerhead," is the discharge canal of TEC's Big Bend power plant. A corrugated metal barrier partially separates the embayment from the discharge canal. This discharge canal also will receive TBD's discharge after re-mixing with TEC's discharge. SOBAC initially was formed out of concern for the environment in the Big Bend area of Tampa Bay. However, there is no requirement that SOBAC members live in the Apollo Beach area, or even in the vicinity of Tampa Bay, and SOBAC's geographic area of concern has broadened somewhat beyond the Apollo Beach area. In order to become a member of SOBAC, one need only sign a card. Prospective members are asked to donate $5 on signing up. Most members donate $5 or more. However, the donation is not mandatory. There is no requirement that members attend any meetings, or participate in any SOBAC activities. Section 3.1 of SOBAC's Constitution and Corporate By-Laws makes "active" membership contingent on payment of "the prescribed [annual] dues." Section 3.2 of SOBAC's Constitution and Corporate By- Laws requires SOBAC to establish annual dues, but no annual dues have been paid because no annual dues structure has ever been established. As a result, no annual dues have been "prescribed," and "active" membership does not require payment of annual dues. SOBAC claims to have approximately 1,000 members. These include all those who have ever become members. Approximately 700 live in the Appollo Beach area; approximately 50-75 of these members form the "core" of active members. Approximately 50-100 members live outside the Tampa Bay area; some of these outsiders probably are among the approximately 100 who are members by virtue of SOBAC's reciprocity agreement with another association called "Friends of the River." SOBAC has never surveyed its membership to determine how its members actually use Tampa Bay. However, the evidence was sufficient to prove that a substantial number of its members, especially among those who reside in the Apollo Beach area, enjoy use of the waters and wetlands of the Big Bend area for recreational activities such as boating and fishing. For that reason, if the activities to be permitted by DEP in these proceedings were to cause environmental damage, a substantial number of SOBAC's members would be affected substantially and more than most residents of distant reaches of the Tampa Bay area. Background of Desalination Project In 1998, the predecessor agency to TBW (the West Coast Regional Water Supply Authority), the six Member Governments and SWFWMD entered into an agreement specifically addressing impacts to natural systems through the development of new, non- groundwater sources, and the reduction of permitted groundwater withdrawal capacity from TBW's eleven existing wellfields from the then permitted capacity of 192 million gallons per day (mgd) to 121 mgd by December 31, 2002 (the "Partnership Agreement"). Pursuant to the Partnership Agreement, the existing water use permits for TBW's 11 specified wellfields were consolidated into a single permit under which TBW is the sole permittee. Prior to execution of the Partnership Agreement, the existing permits for these 11 wellfields allowed for cumulative withdrawals totaling approximately 192 mgd. Upon execution of the Partnership Agreement, the consolidated permit immediately reduced allowed withdrawals to no more than 158 mgd and required that wellfield pumping from the 11 wellfields be further reduced to no more than 121 mgd by December 31, 2002, and then to no more than 90 mgd by December 31, 2007. These withdrawal reductions are necessary to reduce the adverse environmental impacts caused by excessive withdrawals from the 11 wellfields, the majority of which are located in Pasco County. In order to replace the reduction of groundwater withdrawals, TBW adopted a Master Water Plan that provides for the development of specified new, alternative sources of potable water. The seawater desalination facility ("Desal Facility") is one of the cornerstone components of the Master Water Plan. This Facility will furnish 25 mgd of new water resources for the Tampa Bay area and must be in service by December 31, 2002, in order to meet the potable water needs of the residents of the Tampa Bay area. In exchange for the groundwater withdrawal reductions, SWFWMD agreed to contribute up to $183 million towards the development of new water sources that are diverse, reliable and cost-effective. SWFWMD has agreed to co-fund up to 90 percent of the capital cost of the Desal Facility. To comply with the terms and conditions of water use permits it has received from SWFWMD for other water withdrawals in the region, TBW must increase the water sources from which it withdraws water for distribution to its Member Governments in a timely manner. The Desal Facility is the essential means by which these permitting requirements can be met. For the past two years, the Tampa Bay area has been experiencing historic low rainfall and drought conditions. The Desal Facility is supported not only by TBW and its Member Governments, but also by SWFWMD since it is a drought-proof source of supply which has the greatest ability of any new water supply source to allow TBW to meet its members' potable water supply needs while also reducing pumpage from the existing 11 wellfields. In addition to its being a drought-proof source of potable water supply, the Facility will also provide diversity and reliability for TBW's sources of supply, and is a source that is easily expandable to provide additional potable supply that may be necessary in the future. Prior to deciding to proceed with a desalination project, TBW conducted four separate studies to look at the potential individual and cumulative impacts of a desalination facility on Tampa Bay and the surrounding areas, and in particular to evaluate the changes in baywide salinity due to the desalination discharge alone and in combination with the river withdrawals occasioned by other projects. Commencing in 1997, TBW conducted a procurement process that culminated in the award in July 1999 of a contract to S & W Water, LLC, now known as Tampa Bay Desal, LLC, to design, build, own, operate, and eventually transfer to TBW a seawater desalination plant to provide potable water to Hillsborough, Pinellas, and Pasco Counties and to the Cities of Tampa and St. Petersburg for 30 years. TBD's Desal Facility is co-located with the Big Bend Power Station owned and operated by TEC on the northeast side of Hillsborough Bay, in Hillsborough County, Florida. By discharging the concentrate from the Desal Facility to the power plant cooling water prior to its discharge to the power plant discharge canal, environmental impacts from the concentrate are minimized, and disturbance of the discharge canal is avoided. The costs avoided by utilizing the existing intake and outflow from the TEC power plant are reflected in the lower cost of the water to Tampa Bay Water, and ultimately its Member Governments. TBW is contractually bound to TBD to purchase all of the potable water that is produced by the Desal Facility for distribution to its Member Governments and to purchase the entire Facility in the future. With the exception of the NPDES permit at issue, TBD has obtained all of the over 20 other permits which are required for the construction and operation of the desalination facility. TBD has already invested approximately $20 million in this project. The total estimated capital cost of the desalination facility is $110 million. TBD has obtained financing of $42 million and expects to acquire permanent financing in the month of October 2001. SWFWMD agreed to subsidize up to 90 percent of the capital cost of the desalination facility payable to TBW over the term of agreement with TBD. TBD is contractually bound to TBW to complete and fully operate the desalination facility by December 2002. TBD Desalination Process Overview of Process In the instant case, desalination is performed through reverse osmosis ("RO"), a mechanical process wherein pretreated water under very high pressure is pressed against a very fine membrane such that only pure water can pass through it. The vast majority of salt molecules and other substance are eliminated from the water. The RO process is not heat or chemical driven. No additional heat load is being added as a result of the desalination discharge, and the desalination plant will actually result in a reduced heat load to the bay. The desalination facility will withdraw approximately 44.5 mgd of raw water from Units 3 and 4 of TEC's Big Bend cooling water system, produce approximately 25 mgd of product water for transmission to the regional water supply system, and discharge approximately 19.5 mgd of clarified backwash and concentrate water equally into each of the power plant cooling water tunnels for dilution and release into the discharge canal. During abnormal power plant operations including times when Units 3 or 4 are not in operation and during the summer months when the normal supply water intake temperature exceeds the operating temperature range of the RO membranes, a portion of the source water will be withdrawn from an auxiliary supply water system. The auxiliary supply water system consists of a supply pump and pipeline that withdraws water from a location downstream of the fine-mesh screens for Units 3 and 4. The total combined bay withdrawal flow for the power plant and the desalination facility cannot exceed 1.40 billion gallons per day ("bgd"). This limitation ensures that entrainment does not exceed the levels previously permitted for the site, and a new entrainment study pursuant to Section 316(b) of the Clean Water Act is not required. Pretreatment Process The desalination intake water is pretreated in a two- stage gravity filtration process with chemical additives. During pretreatment, ferric sulfates will be added to the desalination intake water to coagulate and capture suspended solids, organic material, and metals that exist in the raw water supply. In this first stage of the pretreatment process, the intake water runs through an aerated course sand filter. Aeration enhances the coagulative process and assists in the capture of organics, suspended solids, and metals. Aeration also occurs in stage two, which uses a fine sand filter pretreatment process. The backwash water from stage two recirculates to the stage one treatment process. The pretreated waters exits through a five micron cartridge filtration prior to entering the RO process. The aerated pretreatment filter backwash water from the pretreatment stage one pretreatment will be sent to a discharge sump for initial settling and then to a clarifier and filter press to remove excess water. Approximately 14 wet tons a day which includes organics, suspended solids, and metals that are removed through the coagulative process and captured from the gravity filters are removed off-site to a landfill. The desal concentrate and clarified backwash water will be combined in a discharge sump or wet well prior to entering into a discharge line manifolded to equally distribute the concentrate discharge into all of the available cooling water outflow tunnels or conduits of the power plant discharge. Reverse Osmosis Membrane Treatment The RO desalination process consists of a two-stage pass of the pretreated water through the reverse osmosis membranes. The RO pumps will force the water through the RO membranes at pressures ranging from 600 to 1000 pounds per square inch (psi). As a result of the RO process, approximately 25 mgd of purified water, also known as permeate, will be produced for delivery to TBW. TBD anticipates cleaning its membranes twice per year, perhaps less, due to the high level of pretreatment. Periodic cleaning removes silt and scale from the membrane surface. Dilute solutions of citric acid, sodium hydroxide, sulfuric acid, sodium tripolyphosphate, or sodium dodecyclbenzene compromise the constituents of various cleaning solutions, with the actual cleaning solution used dependent upon the actual performance of the system once it is placed in operation. Once the cleaning cycle is complete, the spent cleaning solution will be purged from the feed tank, membrane vessels, and piping and diverted into a scavenger tank for off- site disposal. Clean product water (permeate) will be fed to the feed tank and pumped into the RO membrane vessels. This process will continue until the pH of the purge water meets the Class III marine water quality criteria. The membranes will be rinsed with brine concentrate and permeate, and the rinse water will be directed to the wet well for discharge, with the concentrate into the TEC cooling water stream. TBD determined the chemical characterization of the membrane cleaning solution discharge. Cleaning solutions are not discharged in detectable concentrations. As further assurance, the permit requires toxicity testing immediately after membrane cleaning. Dilution of Discharge Water Co-locating the desalination facility with TEC's Big Bend power station allows the desalination concentrate to be diluted with TEC's cooling water prior to discharge into Tampa Bay. The point of injection of the desalination discharge will be located approximately 72 feet upstream of the point of discharge to the discharge canal to ensure complete mixing of the desalination concentrate with TEC's cooling water. This provides reasonable assurance that the desalination discharge will be completely mixed within the cooling water conduits. If all four TEC units are in operation and TBD is producing 25 mgd of finished water, the approximate dilution ratio of the desalination concentrate with TEC cooling water is 70:1. Historical TEC data indicates that a dilution ration of greater than 20:1 will occur more than 99.6 percent of the time, and a dilution ration of greater than 28:1 will occur more than 95 percent of the time. The dilution limitations in the proposed permit are more stringent than those required in Rule 62-302.530(18). The permitted dilution ratio complies with Rule 62- 660.400(2)(d) because it takes into account the nature, volume, and frequency of the proposed discharge, including any possible synergistic effects with other pollutants which may be present in the receiving water body. Comparisons of the Antigua, Key West, and Cyprus facilities are not applicable because those desalination facilities lack the initial dilution that will exist at TEC's Big Bend site. The proposed permit requires a 20:1 minimum dilution ratio at any given time, which may occur for no more than 384 hours per calendar year, and with the further limitation that the discharge at the 20:1 minimum dilution ratio shall not exceed 384 hours in any given 60-day period. At all other times, a minimum dilution ratio of 28:1 must be maintained. To ensure proper dilution and system operation, computer instrumentation in the desal facility will interface with TEC to continuously monitor the operations of TEC's four cooling tower condenser units. If any of the pumps shut down, an alarm will sound at the desalination facility and the computer system will automatically shut down the concentrate discharge to that specific condenser unit discharge tunnel. Further, the desalination plant will employ approximately 12 employees, with a minimum of two employees on duty at all times. TEC Permit Modification Big Bend power station has four coal-fired steam electric generating units. The power station is cooled by water that is taken in from Tampa Bay through two intake structures which are located along TEC's intake canal. One intake structure feeds cooling water to electrical power units 1 and 2 and the other feeds units 3 and 4. After flowing through the condensers, the cooling flows are combined into four separate discharge tunnels which outfall into TEC's discharge canal. The intake structure for Units 3 and 4 is equipped with fine-mesh screens and an organismal collection and return system that has been approved for use by DEP. The purpose of TEC's permit modification is to alter the internal piping in the facility to accommodate the desalination plant at the Big Bend site. TEC's permit modification allows for placement of an intake pipe from TEC's cooling water pipes to the desalination plant and a return pipe downstream from the intake pipe for the return of the desalination concentrate to TEC's cooling water discharge tunnels prior to outfall in the discharge canal. TEC's permit modification also allows for the placement of an auxiliary intake line by TBD to take additional water from behind the intake of units 3 and 4 up to TEC's maximum permitted limit of 1.4 billion gallons a day. The TEC proposed permit is conditioned to require TEC to maintain the structural integrity of both the steel sheet pile wall on the discharge canal and the breakwater barrier North of the discharge canal. TEC's permit modification does not request any changes to the operations of the Big Bend Generating Station. SOBAC Issues and Concerns SOBAC raised numerous issues and concerns in its petitions in these cases and in the Pre-Hearing Stipulation. However, some issues were elimination by rulings adverse to SOBAC during prehearing proceedings and final hearing. Based on the evidence SOBAC sought to elicit at final hearing and issues raised in its Proposed Recommended Order, other, earlier SOBAC issues and concerns appear to have been dropped. Remaining are essentially the following: increased salinity due to TBD discharge; alleged decreased dissolved oxygen (DO) from higher salinity; impacts of higher salinity and alleged decreased DO on marine plants and animals; alleged release of metals from sediments due to higher salinity and alleged lower DO, and effects on marine plants and animals; alleged monitoring deficiencies; alleged failure to utilize available technologies to lower salinity and raise DO; alleged deficient financial assurances; and various alleged resulting DEP rule violations. Description of Tampa Bay: Physical Properties The portion of Tampa Bay and Hillsborough Bay near the Big Bend facility is classified a Class III water body. Tampa Bay is a naturally drowned river valley, meaning that a deep channel exists as a result of natural forces. However, the channel has been deepened to 45 feet or greater to allow large ships to navigate the bay. This deepening of the channel increases the water flow of the head of the bay with the open gulf waters and allows this residual circulation to move more new water from the open Gulf of Mexico up into the bay. Ordinarily, circulation moves salt water up Tampa Bay and spreads it out onto the flanks of the bay where it then mixes with the freshwater. To complete this circulation, the water then flows back out towards the mouth of the bay, primarily along its flanks and shallower parts in the upper part of the water column. The water in Tampa Bay tends to flow faster in its deeper parts, both coming in and going out, and relatively slower in the shallow areas. The majority of flow of freshwater inflow occurs at the bay's flanks as can be seen very clearly in the salinity distributions. Mixing and Stratification Since the development of Tampa Bay from the 1880 condition to the 1972 and 1985 conditions, there is more mixing and exchange of water. Due to shoreline fills for development, such as Apollo Beach, there is less water that now comes in the bay than in the predevelopment condition. Tampa Bay is a fairly well mixed system from top to bottom. This is because the action of the tides basically acts like a big mix master. The bay is fairly shallow, less than four meters in depth on average. The tidal velocities can be as strong as two knots or about a meter per second. When the strong velocity pushes through shallow water, there is extensive overturning, where the bottom water is churned to the top and gets mixed very efficiently. That is very well seen in the observations during dry periods. Over 100 points in Tampa Bay were measured for temperature and salinity top, middle and bottom, and showed that they were very uniform throughout the bay. During periods of large volumes of freshwater input into Tampa Bay, freshwater is pumping into the bay faster than the tidal mixing can mix it from top to bottom. Therefore, in parts of Tampa Bay significant stratification is seen during many times in the wet season. During those times when rainfall is not as prevalent, tidal mixing once again dominates and the bay returns to a more well mixed system. The average tidal fluctuation for Tampa Bay is a range of two to three feet. Salinity As the tide in Tampa Bay comes in, it brings saltier water from the mouth of the bay toward the head of the bay, causing salinities to rise. As the tide recedes, bringing out fresher water from farther up the bay, salinities decrease. Over an individual tidal cycle, particularly during the wet season, a four or five part per thousand ("ppt") change in salinity will occur between a rising tide and a falling tide. During the dry season, tidal flushing is not as significant to salinity levels because not much difference exists in salinity from the head of the bay to the mouth of the bay. Even during the dry season, there is a one to two ppt change over a six to twelve-hour period in any given day. During the dry periods in 1990, salinities elevated up to about 33 ppt, with very little stratification. During the rainy periods, in June and July, salinities dropped rather drastically. In some areas, salinity dropped as low as to 20 to 22 ppt. However, in spite of these drastic seasonal differences, significant variation in salinity occurs as a result of tidal exchange. The Big Bend area is split by the dividing line between Hillsborough Bay and what has been classified Middle Tampa Bay. The salinity for Hillsborough Bay from 1974 through June 2001 at the surface ranges from 0.4 ppt to 38.2 ppt. The middle portion of the same water column contained a range from 2.5 ppt to 39.2 ppt, and the bottom portion showed a range from 3.9 ppt to 37.2 ppt. The average salinities during this time frame were as follows: top 24.2 ppt, middle 24.3 ppt and bottom 25.3 ppt. In the portion of Tampa Bay called Middle Tampa Bay, the surface level salinity ranged from 6.8 ppt to 38.2 ppt. At middle depth, salinities ranged from 7.4 ppt to 38.8 ppt. The bottom level salinities ranged from 11.9 ppt to 39.6 ppt. This is a large range of salinities. Tampa Bay near the Big Bend Area In the area near the Big Bend facility, the Mote Marine Laboratory survey data reflects that the salinity during May and June 2000 reached 33.4 ppt. Further, Mote Marine Laboratory data showed that the North Apollo Embayment area salinities were well mixed vertically throughout the system. The total volume of water exchanged into the North Apollo Embayment and associated canals during a mean tide is approximately 35 percent of the total volume of all water contained in that area. This tidal exchange occurs twice per day. The double diffusion process does not create high salinity in the bottom of the water column in the North Apollo Embayment. The double diffusion process, without any external influence, would lead to both surface and bottom layers of the water column reaching salinity equilibrium. Further, the turbulent mixing that occurs due to tidal processes and wind- induced mixing dominates over the double diffusion process. The Mote Marine Laboratory study conducted between May and early June 2000 did not detect any significant salinity stratification in the area near the Big Bend facility. Vertical stratification of salinity does occur but typically only during the periods of significant freshwater inflow and not in extreme drought or dry conditions. None of the Mote Marine Laboratory data detected any pockets of high salinity water or significant density stratification in the North Apollo Embayment. Estuarine Characteristics Tampa Bay is an estuary. Estuaries are semi-enclosed bodies of saltwater that receive freshwater runoff from drainage or riverine inflow, which measurably dilutes the salinity levels in the estuary. As a result, salinity levels in estuaries typically are highly variable, ranging from 0 ppt where rivers flow into estuaries, to as high as 40 ppt under conditions of low freshwater input or at estuarine mouths where they connect to the sea. There are naturally occurring dissolved oxygen levels below 4.0 mg/l in parts of Tampa Bay, including at Hillsborough County Environmental Protection Commission ("EPC") monitoring stations 9, 80, and 81, which are the closest stations to the proposed discharge. Dissolved oxygen in the bay decreases at night because photosynthesis ceases and respiration exceeds production. Other environmental parameters are also highly variable in estuaries. Therefore, the organisms that inhabit estuaries have adapted to tolerate these highly variable conditions. Estuarine organisms have adaptive means for tolerating changing salinity levels, either by conforming their internal salinity levels to the ambient salinity levels, or by actively regulating their internal salinity levels by intake or excretion of salt. Organisms that are adapted to tolerate a wide range of salinities within the estuary are termed euryhaline organisms. Essentially all of the common organisms in estuaries, including the Tampa Bay estuary, are euryhaline organisms, and therefore are capable of tolerating and living in a wide range of salinities and salinity changes that occur due to tidal, meteorological, and other natural forces in the estuarine environment. Extensive baseline biological studies performed on Tampa Bay reveal that the most common species in the Tampa Bay estuary tolerate salinity levels ranging from 5 ppt to 40 ppt. Seagrasses Five species of seagrass inhabit Tampa Bay. Seagrasses are photosynthetic underwater flowering plants that are typically limited in occurrence and distribution by the water clarity. This limits the depth at which seagrasses can grow. In Tampa Bay, seagrasses are limited to the fringes of the Bay, and are largely limited to depths of approximately three feet, although they can live in depths of up to six feet in clearer parts of the Bay. Seagrasses are very sensitive to increases in nutrients, like nitrogen and phosphorus. These nutrients encourage algae growth, resulting in competitive stress in seagrasses. Due to poor water quality caused by sewage discharge, dredging and filling, and other activities in the Bay, seagrass distribution in Tampa Bay decreased from an historic coverage of approximately 80,000 acres in 1950 to approximately 20,000 acres by 1982. Improvements in water quality, largely due to sewage treatment improvements, have allowed seagrasses to naturally recolonize to approximately 27,000 acres coverage, as of 1994. Wave energy affects seagrass distribution. Seagrasses cannot colonize and survive in areas subject to significant wave energy. For example, the portion of Tampa Bay dredged and filled to create the Apollo Beach "hammerhead" area was once comprised of a broad shallow-water shelf that diminished wave energy, allowing dense seagrass flats to cover the shelf area. Destruction of the broad shallow-water shelf with fill to create the Apollo Beach hammerhead has converted the area to a high wave energy system that is unsuitable for seagrass colonization and growth. Consequently, the only seagrasses inhabiting the Big Bend area are found approximately one kilometer north of the Big Bend power plant, in an area known as "The Kitchen," and approximately one kilometer south of the Apollo Beach hammerhead area. Additionally, there are ephemeral patches of seagrass inhabiting some limited areas of the North Apollo Embayment. Seagrasses are adapted to tolerate a wide range of salinities. They have specialized cells that enable them to deal with salt stress and with broad ranges of and fluctuations in salinity. These adaptations enable them to survive and thrive in estuarine environments. Of the seagrass species that live in Tampa Bay, one species, Ruppia maritima (widgeon grass), occurs in salinity ranges from zero to 40 ppt. Manatee grass, Syringodium filiforme, is most productive in salinities between 5 ppt and 45 ppt. The other three species, Halodule wrightii (shoal grass), Halophila engelmannii (star grass), and Thalassia testudinum (turtle grass), tolerate salinity ranges from approximately 5 ppt to 60 ppt. Seagrasses better tolerate higher salinity levels than lower salinity levels. Lower salinity levels are usually indicative of increased stream and land freshwater runoff, which usually is accompanied by increased turbidity and lower water clarity. Four of the five seagrass species that inhabit Tampa Bay typically reproduce asexually by producing rhizomes, rather than by flowering and producing seeds. It is not completely clear why seagrasses in Tampa Bay reproduce asexually rather than by flowering and seed production. However, recent research indicates that climatic temperature is the controlling factor for flower and seed production. In South Florida, where the climate is warmer, seagrasses reproduce by flowering and seed production. In Tampa Bay, the lower winter temperatures appear to be the limiting factor with respect to successful flower and seed production in seagrasses. Recent studies by the University of South Florida ("USF") marine laboratory indicate that naturally occurring fungal diseases may also limit successful flowering and seed production in seagrasses in Tampa Bay. Since most seagrass species that live in Tampa Bay tolerate and thrive in salinities of up to 60 ppt, the higher salinity levels in the estuary do not appear to adversely affect the ability of seagrasses to reproduce. In fact, the lower salinity levels, below 5 ppt, stress seagrasses and are more likely to adversely affect reproduction than do higher salinity levels. Mangroves Three major species of mangrove inhabit the Tampa Bay area: the red mangrove, black mangrove, and white mangrove. Mangroves inhabit the intertidal area, so they are subjected to daily tidal flooding and drying. Consequently, they must tolerate a wide range of variability in salinity levels and in water availability. Most mangroves tolerate soil salinity levels up to 60 ppt, close to twice the salinity of Tampa Bay. Mangrove mortality due to salinity does not occur until soil levels approach and exceed 70 ppt salinity. Mangroves are also adaptable to, and inhabit, freshwater environments. Phytoplankton and Zooplankton Plankton are life stages or forms of larger organisms, or organisms that have no ability for major locomotion, so they spend their entire life spans floating and drifting with the currents. Plankton are extremely productive in that they reproduce in very large numbers within very short life spans. Holoplankton are planktonic organisms that spend their entire lives in planktonic form. Examples include diatoms, which are a type of phytoplankton, and copepods, which are a type of zooplankton. Meroplankton are "temporary" plankton that drift with the currents in juvenile or larval stages, then either settle out of the water column and metamorphose into an attached form (such as barnacles) or metamorphose into mobile life forms (such as crabs, shrimp, and fish species). Phytoplankton are planktonic plant species and life forms. Zooplankton are planktonic animal species and life forms. Zooplankton feed on phytoplankton. There are approximately 300 species of phytoplankton, and numerous species and forms of zooplankton, found in Tampa Bay. Most phytoplanktonic and zooplanktonic species inhabiting Tampa Bay are euryhaline species capable of tolerating the wide range of salinity levels and abrupt salinity changes that occur naturally in the estuarine system. Most phytoplanktonic and zooplanktonic species and life forms in Tampa Bay tolerate salinity levels ranging from zero to 40 ppt. They appear to be more tolerant of the higher end than the lower end of this salinity range. Manatee The manatee is the only endangered or threatened species identified by the Florida Natural Areas Inventory as inhabiting the area where the desalination plant is proposed to be located. Manatees congregate at the Big Bend Power Station during colder months because they are attracted to the power plant's warmer water discharge. Manatees are considered to be estuarine species, but they have very broad salinity tolerance ranges. They migrate into and out of freshwater springs, through estuaries, into the Gulf of Mexico, and down to the Ten Thousand Islands, where hypersaline conditions frequently exist. Manatees routinely expose themselves to and tolerate salinities ranging from zero to more than 40 ppt. Fish The fish populations in Tampa Bay are comprised of a large number of marine euryhaline species. Due to their ability to osmoregulate their internal salinity levels, these fish species can inhabit salinity ranges from 5 ppt to as high as 40 ppt. Extremely extensive monitoring and sampling programs are currently being conducted in Tampa Bay and specifically in the vicinity of the Big Bend Power Station. The Hillsborough County EPC, SWFWMD, TBW, the United States Geological Survey ("USGS"), the Florida Marine Research Institute, USF, and Mote Marine Laboratory conduct separate biological monitoring programs that sample and monitor numerous biological parameters, including invertebrate infaunal and epifaunal species composition, abundance, and distribution; zooplankton and phytoplankton species composition, abundance, and distribution; emergent and submerged vegetation species composition, abundance, and distribution; and fish species composition, abundance, and distribution. These monitoring programs, which collect and analyze biological data from many areas in the Tampa Bay estuarine system, extensively monitor numerous biological parameters in the Big Bend area. Testing and Modeling Pilot Plant Although DEP's rules do not require the use of a pilot plant to demonstrate reasonable assurances, TBD installed a desalination pilot plant at the Big Bend site in November 1999. The pilot plant matched the hydraulics and configuration of the full-scale facility on a 1/1000 scale. The pilot plant used water from the Big Bend power plant discharge as its source water. The purpose of the pilot plant was to confirm design requirements for the desalination facility and to provide samples of intake water, filtered water, pretreated water, concentrate, and finished water to use for chemical characterization and analysis. Using a pilot plant is superior to using data from engineering projections or data from a different desalination facility because the pilot plant provides data specific to the Big Bend site. Data from the pilot plant were used to establish various effluent and other limits in the permit. Chemical Characterization Intake water, filtered water, pretreated water, concentrate, and finished water from the pilot plant were analyzed for over 350 parameters chosen by DEP to determine chemical characterizations and water quality. The pilot plant operation provides extensive chemical characterization of intake and discharge water composition and mass loading. This information was key in providing accurate information on the chemical composition and mass loading of the desalination discharge concentrate. With this accurate information on the components in the discharge water, DEP was provided more than sufficient reasonable assurance on the potential effect of the chemical components of the discharge. TBD tested the pilot plant discharge water for copper, nickel, other heavy metals, and those chemical constituents specified on the DEP chemical characterization form. The chemical characterization tested for concentrations of constituents based on a 12.8 to 1 dilution ratio, and even at that dilution ratio, did not exceed any of the state water quality parameters. However, to provide additional assurance that there will not be an exceedance of state water quality standards, the permit requires a minimum 20 to 1 dilution ratio. Dissolved Oxygen Saturation Testing Temperature and salinity affect the saturation point of dissolved oxygen ("DO") which is lowest when temperature and salinity are highest. DO saturation charts, which are typically used to determine DO saturation points, are not applicable because those charts do not contain the saturation point of DO at a temperature of 109 degrees Fahrenheit and a salinity of 79 ppt, which represents the worst case conditions for the proposed desalination facility. Bench-scale testing was performed on the undiluted desalination discharge from the pilot plant by heating discharge concentrate samples to 109 degrees Fahrenheit and aerating the samples until the DO stabilized and reached saturation point. The pilot plant bench-scale testing determined that the saturation point of DO in the worst case desalination concentrate using a temperature of 109 degrees Fahrenheit and salinity of 79 ppt was 5.7 mg/l. Toxicity Testing TBD conducted acute toxicity testing using a worst case scenario assuming a diluted effluent of one part desalination concentrate to 12.8 parts of power plant cooling water. Acute toxicity testing evidenced no mortalities, showing that the proposed discharge will not be a source of acute toxicity. TBD conducted chronic toxicity testing on raw concentrate from the pilot plant using a worst case scenario diluted effluent of one part desalination concentrate to 12.8 parts of power plant cooling water. The No Observed Effect Concentration (NOEC) for raw concentrate was determined to be 100 percent and the NOEC for diluted effluent was determined to be greater than 100 percent. The evidence did not explain these concepts, but it was clear from the tests that the proposed discharge will not be a source of chronic toxicity. TBD conducted its acute and chronic toxicity testing using protocols reviewed and approved by DEP. TBD's toxicity testing was also consistent with accepted EPA standards. Assessment of Potential Environmental Impacts TBD prepared an Assessment of Potential Environmental Impacts and Appendices ("Assessment") to analyze the potential biological impacts of the desalination plant discharge into the Tampa Bay estuary. The Assessment examined numerous physical parameters to determine the baseline environmental conditions in the portion of Tampa Bay proximate to the proposed desalination plant site. Among the physical parameters examined in determining the baseline environmental conditions were: salinity; sediment size and composition; metal content in sediments; and numerous water quality parameters such as transparency, biochemical oxygen demand, pesticides, dissolved metals, and pH. Consistency with SWIM Plan As part of the permitting process, TBD was required to demonstrate consistency of the proposed desalination discharge with the SWFWMD's Surface Water Improvement and Management (SWIM) plan, pursuant to Rule 62-4.242. TBD submitted an extensive SWIM consistency analysis, which is sufficient to meet the consistency requirement. Water Quality Based Effluent Limitation Level II Study TBD performed a Water Quality Based Effluent Limitation (WQBEL) Level II study pursuant to Rule Chapter 62- 650 for the purpose of determining the effect of the desalination plant discharge on salinity levels in the vicinity of the desalination plant discharge. TBD had the Danish Hydrologic Institute ("DHI") use the data collected through the WQBEL Level II study in its near-field model of the Big Bend area. See Findings 105-117, infra. DEP also used the data and the DHI model results to establish the salinity and chloride effluent limitations in the permit. The USF Far-Field Model The far-field model was prepared utilizing the Princeton model code. The Princeton model is well recognized and is generally accepted in the scientific community. The goals of the TBD far-field model performed through USF by Dr. Luther and his team were to evaluate the change in bay-wide salinity due to the desalination plant discharge, both alone and in combination with changes in salinity due to enhanced surface water system withdrawals under new consumptive water use permits issued to TBW by SWFWMD to provide other, additional sources of needed potable water supply. The primary goal was to provide DEP with the best science possible of the potential real effects of this desalination discharge into Tampa Bay. The modeling system of Tampa Bay utilized in this analysis was developed beginning in 1989. Dr. Luther and his team have continued to make refinements to the model over the last 12 years. Dr. Luther took the modeling system he had developed over the years for Tampa Bay and did three primary model scenarios. The baseline case reproduced the observed conditions during the 1990 and 1991 years--a very dry period in 1990 and a fairly wet period for 1991--as accurately as possible with all the boundary conditions estimated from observations. This was to capture an entire range of conditions in Tampa Bay. The baseline was then compared with validation data and other observations to ensure it was approximating reality. The second simulated scenario included the same effects as the baseline with the added effect of the desalination intake and discharge at the Big Bend facility. The third case approximated cumulative effects from the TBW enhanced surface water system river withdrawals according to the proposed permit withdrawal schedules. For each test case, it was assumed that only two of the four cooling units at the TEC Big Bend plant were in operation for an entire two-year period, a worst-case scenario expected to occur less than four percent of the time in any given year. The model included data on water levels, temperature, and salinity throughout Tampa Bay. In addition, it takes into account wind blowing across the surface of Tampa Bay, rainfall, freshwater inflow from rivers, and other surface water and groundwater sources. The model was calibrated and validated against actual data to verify simulation of reality as closely as possible. The model was calibrated and validated utilizing Hillsborough County EPC and Tampa Oceanographic Project ("TOP") salinity data. Physical Oceanographic Real Time System ("PORTS") and TOP data on current flow velocity and water levels were utilized to calibrate and validate water levels and current. The acoustic doppler current profilers used in the model study are able to measure the speed at which the water is traveling and the direction at various levels above the bottom within the water column. The TBD far-field model very accurately reproduces the observed tidal residual velocities observed with the acoustic doppler current profilers. The far-field model reflects any stratification that would occur during the model simulations. The far-field model simulates recirculation that occurs between the discharge and intake water. Recirculation is small due to the model's use of the actual bathymetry of Tampa Bay. There are significant shoals and other features that separate the water from the discharge and the intake canal that preclude significant recirculation most of the time. After submitting the far-field model report to DEP, further study was performed on the far-field model that calculated residence time for Tampa Bay. One study dealt with "residence" or "flushing" time. The concept of "residence time" is not well-defined; put another way, there are many different accepted ways of defining it. It may be defined in a simplified manner as the time it takes a patch of dye to flush out of the bay. However, for purposes of the studies performed on the far-field model, theoretical "particles" in model grids were tracked, and "residence time" was defined as the time it would take for the number of particles initially in a grid cell to decrease to 34 percent of the initial number. Using this approach and definition, residence time in the vicinity of the Big Bend facility on the south side where the discharge canal is located was less than 30 days. Immediately offshore of the area of the discharge, the residence time reduced to less than 15 days. The study indicated that the area of the Big Bend facility has a relatively low residence time. In the model's baseline run (for the desalination plant impacts only), maximum differences in salinity occurred during the month of April 1991. Throughout the two-year time period, the maximum concentration of salinities did not increase from this point, and in fact decreased. The maximum average value for salinity difference is 1.3 ppt at the grid cell located directly at the mouth of the TEC Big Bend discharge canal. More than two grid boxes away in any direction and the value falls to less than 0.5 ppt increase in salinity. The maximum salinity of any given day for the far- field model was in the range of 2.1 to 2.2 ppt, which compares favorably with the DHI near-field model which showed an increase of 2.5 ppt. The salinity changes caused by the cumulative effects scenario are smaller than the natural variability during the wetter months in Hillsborough Bay in cells immediately adjacent to the concentrate discharge. Increases in salinity will occur in the vicinity of the discharge canal but will be very localized and small relative to the natural variability in salinity observed in Tampa Bay. At a distance of more than a few hundred meters from the mouth of the discharge canal, it would be difficult (if not impossible) to determine statistically that there would be any increase in salinity from the desalination concentrate discharge. Over the two years modeled, there is no trend of increasing salinity. No long-term accumulation of salt is evidenced within the model. Further, no physical mechanism exists within the real world that would allow for such a long- term accumulation of salinity in Tampa Bay. Dr. Blumberg's independent work verified the conclusions in the far-field model constructed by USF. Dr. Blumberg's estimated flushing times are consistent with those found in the far-field model. DHI Near-Field Model The TBD near-field model was prepared by DHI. DHI prepared a three-dimensional near-field model to describe the potential salinity impacts from the discharge of the proposed desalination plant. The DHI model is a state-of-the-art model whose physics are well documented. By model standards, the DHI near-field model is a high resolution model. The DHI model essentially "nests" within TBD's far-field model. The near-field area includes those areas that would be directly influenced by the combined power and desalination discharges, the North Apollo Embayment and the residential canal system adjacent to the discharge canal. The near-field model was designed to determine whether or not the desalination plant would cause continuous increases in salinity and to predict any increase in salinity in the North Apollo Embayment and the associated canal system. In addition, DHI evaluated the potential for saline recirculation between the discharge and the intake via short circuiting due to overtopping of the existing break water. In order to construct the near-field model, existing data on bathymetry, wind sources, meteorology and other parameters were examined and analyzed. In addition, the information from an intensive data collection effort by Mote Marine Laboratories on current velocities, temperatures, and salinities was incorporated into the model. TBD conducted bathymetric surveys in the residential canal areas, the North Apollo Embayment, and the area between the discharge canal and the intake canal. The model has a vertical structure of six grids and reflects vertical stratification that would occur in the system being modeled. The vertical grids in the model can detect a thermal plume one meter in depth (the size of the thermal plume from TEC's discharge). Information about the TEC thermal plume was incorporated into the model and utilized to calibrate the model's predictive capabilities. The model took into account interactions between the temperature plume and the salinity plume. The model predictions matched the measured temperature plume created by the TEC discharges quite well. The near-field model conservatively assumed a scenario in which only the two TEC units with the smallest total through-flow of 691.2 million gallons a day cooling water were active. DHI then assumed production of a maximum 29 mgd in product water. A salinity level of 32.3 ppt at the intake was utilized in the simulation. The model assumed a conservative wind condition which results in less mixing and dispersion of the plume. Further, wind direction tended to be from the southwest or west during the simulation, which tends to push the plume against the TEC break water which tends to reinforce recirculation. SOBAC witness Dr. Parsons agreed that these simulations for April and May 2000 constituted extreme conditions. DHI ran its model for a total time period of six weeks. The "warm up" for the simulation took place from April 15 to May 7, followed by the "calibration" simulation from May 8 to May 22. An additional validation sequence was run from May 25 to June 8. The production run was defined as the three weeks from May 8 to May 29, 2000. The intensity of the calculations performed in the near-field model due to its high spacial resolution and numeric restrictions make it computationally demanding. The calibration runs took approximately a week to 10 days to run on a state-of-the-art computer. From a computational standpoint, it is not practical to run the near-field model for a two-year time period. The model shows good agreement between its water levels and current velocity to observed data. The model reflects the recirculation of the discharge water that would occur in the system. The maximum salinity for the extreme case scenario in the near-field model is an increase in salinity of 2.5 ppt. With three condensers running, under the modeling scenario comparing the base condition to the desal discharge, there is a maximum difference of only 2.0 ppt. Further, there is no indication of any continuous build up of salinity in the near- field area due to the desalination plant discharge. DHI performed many sensitivity runs on the model, including one which examined rainfall conditions. The results of a two-inch rainfall analysis show that rainfall profoundly freshens the water in the near-field area. Since the modeling was done in a time period of extreme drought, with no freshwater inputs, the ambient or background salinity trended up over the time frame of May through June. As with any estuary, if freshwater inflow is removed, the estuary will get saltier until freshening occurs. Even with the model simulation period extended an additional 10 days beyond that reflected in TBD Ex. 1-O, the model results did not show any increase of salinity differences caused by the desal facility above 2.5 ppt. Based on data from field collections, the operation of the desal plant under worst case conditions did not exceed the assimilative capacity of the near-field environment. A 10 percent salinity change (3.23 ppt) was not reached in any grid cell. The Blumberg Study The "Environmental Impact Assessment for a Seawater Desalination Facility Proposed for Co-Location with the Tampa Electric Company Big Bend Power Generation Facility Located on Tampa Bay, Florida" authored by Norman Blake and Alan F. Blumberg ("Blumberg Study") is a hydrodynamic model study combined with an analysis of potential biological effects. The Blumberg Study was performed at the request of and presented to the Board of County Commissioners of Hillsborough County, Florida. Dr. Blumberg's model used 1998 and 1999 as its baseline, which consisted of an extremely wet year followed by an extremely dry year. The model assumed a scenario of two cooling units in operation pumping 656 mgd of discharge flow. The results of the Blumberg Study are very similar to the results of TBD's far-field model. In addition, the model ran for a 9-year period without any sign of ongoing build-up of salinity. After the two-year model run, the second year ran for an additional 7 simulated years for total model simulation period of 9 years. The Blumberg Study found salinity only increased by 1.4 ppt in the North Apollo Beach Embayment. In fact, the Blumberg Study showed no salinity build-up after the second year of the 7-year portion of the model simulation. The Blumberg Study found that the flushing time for the area near the Big Bend facility ranges from 4 to 10 days. The Blumberg Study applied a formula to predict potential DO saturation level changes. The analysis concluded a small change to DO saturation assuming full saturation on average of 7 mg/l. The Blumberg Study predicted that the desalination discharge would not lower actual DO levels below 5 mg/l. The Blumberg Study concluded that the marine ecology will not be affected by the desalination facility operation. Older Two-Dimensional Models of Tampa Bay Significant strides have been made in hydrodynamic modeling over the last 10 years, with the standard changing from two-dimensional models to three-dimensional models. Three-dimensional models provide more complete results than two-dimensional models. In the late 1970's through the late 1980's, modeling was constrained by the computing limitations of the time and could not examine the difference in water layers in a bay and potentials for currents going in different directions or speeds in different layers of the bay, as now done by state-of-the-art three-dimensional models. A two-dimensional model cannot accurately represent the tidal residual circulation in an estuary such as Tampa Bay, because it omits some of the critical physical forces that drive this type of flow. As the acoustic doppler current profiler showed, water flows in the top of the water column in one direction and flows in the bottom of the water column in a different direction. A two-dimensional model would average these flows over the entire vertical water column. In doing so, it would show much slower residual flow (and, therefore, longer residence time and a longer time to flush the system). SOBAC offered the testimony of Dr. Carl Goodwin, a civil engineer with the USGS. Dr. Goodwin provided testimony on two-dimensional model studies he did for the USGS in the late 1980's to assess the effects of dredging the shipping channel in Tampa Bay. Dr. Goodwin's studies, contained in SOBAC Exs. 69 and 70, suggested the existence of "gyres" in Tampa Bay. But no "gyres" have been observed, and it now appears that these gyres actually do not exist but are two- dimensional modeling artifacts, as shown by state-of-the-art three-dimensional modeling of Tampa Bay. In an earlier version of Dr. Luther's Tampa Bay model, an experiment was performed running the model in a vertically average mode to mimic the two-dimensional model. In this mode, the model was able to reproduce the "gyres" that Dr. Goodwin observed in his two- dimensional model. When the physical equations that related to pressure forces (baroclines) were reactivated in the three- dimensional model, the "gyres" disappeared. In addition, this experiment showed that the two- dimensional model simulation showed residence times an order of magnitude longer as compared to the full three-dimensional simulation. This means that residence time would be 10 times longer in the two-dimensional model than in the three- dimensional model, which takes into account baroclinic forces. Subsequent to the publication of his modeling studies (SOBAC Exs. 69 and 70), Dr. Goodwin found that it would take approximately 110 days for water to travel from the mouth of the Hillsborough Bay to the mouth of Tampa Bay in 1985. This calculation by Dr. Goodwin was not subjected to peer review or the USGS process. However, dividing the 110-day time period with correction factor of 10 discussed above, Dr. Goodwin's corrected estimate would predict an 11-day period for transport of water from Hillsborough Bay to the mouth of Tampa Bay--similar to the Blumberg Study and far-field model results. Opinions of Other SOBAC Experts Besides Dr. Goodwin, SOBAC also elicited some general opinions regarding the combined thermal and salinity plume from Dr. Mike Champ, called as an expert in the areas of environmental biology and chemistry, and from Dr. Wayne Isphording, called as an expert in sedimentology and geochemistry. In part, Dr. Champ based his opinion on a misunderstanding that Tampa Bay is not well-mixed or well- circulated at the location of the Big Bend power plant. In this respect, Dr. Champ's testimony was contrary to all the evidence. Even the "gyres" suggested by Dr. Goodwin's two- dimensional model studies would suggest a great deal of mixing in Middle Tampa Bay in the vicinity of the Big Bend plant. To the extent that the opinions of Dr. Champ and Dr. Isphording differed from the modeling results, they are rejected as being far less persuasive than the expert opinions of the modelers called by TBD, who spent far more time and effort studying the issue. Compliance with Dissolved Oxygen Standard Oxygen is a gas which can dissolve in water to some degree. There are two measurements of DO in water: saturation point and actual level. The saturation point of DO in water equates to the maximum amount of DO that water will hold. The actual level of DO is a measurement of the oxygen in the water. Since the saturation point is the maximum amount of DO that water will hold in equilibrium, the actual level of DO in water is typically equal to or lower than the saturation point. Desalination will affect the saturation point of DO to the extent that it increases salinity. Increased salinity decreases the saturation point of DO because it lowers the potential for water to hold oxygen. But desalination would not affect the actual level of DO in the water if the saturation point remains above the actual level of DO in the water. TBD determined that in the worst case scenario using undiluted desalination discharge, the lowest possible saturation point of DO would be 5.7 mg/l. If the actual level of DO is above 5.7 mg/l, desalination may lower that actual level of DO to 5.7 mg/l. If the actual level of DO is below 5.7 mg/l, desalination will not lower the DO. Since TBD will aerate the water in the pretreatment process, if the actual level of DO is below 5.7 mg/l, the actual level of DO in the discharge water will be increased. The permit DEP proposes to issue to TBD requires that DO at the point of discharge from the RO plant meet the following: that instantaneous DO readings not depress the intake DO when intake DO is at or below 4.0 mg/l, and that they be greater than or equal to 4.0 mg/l when intake DO is greater than 4.0 mg/l; that 24-hour average readings not depress the 24-hour average intake DO when the 24-hour average intake DO is at or below 5.0 mg/l, and that they be greater than or equal to 5.0 mg/l when the 24-hour average intake DO is greater than 5.0 mg/l. The evidentiary basis for SOBAC's argument that the proposed permit's DO limitation allowed violations of state water quality standards was the testimony of Dr. Champ. But it was evident from his testimony that Dr. Champ was not even aware of the effluent limitations until they were pointed out to him at final hearing. Nonetheless, and although Dr. Champ barely had time to read the DO limitations, Dr. Champ immediately opined that the proposed DO limitations virtually invited water quality violations. He dismissed the permit language out-of-hand as being "loosey-goosey," "fuzzy-wuzzy," and "weasel-like." Actually, there is no conflict between the proposed permit's DO limitations and the water quality standards and water quality criteria in DEP's rules. Other witnesses, particularly Tim Parker of DEP, properly compared the language in the permit with DEP's rules containing water quality standards and water quality criteria. Mr. Parker pointed out that the rules must be read in harmony with each other. Rule 62-302.530(31) contains DO water quality criteria and requires that the "actual DO shall not average less than 5.0 in a 24 hour period and shall never be less than 4.0." Rule 62-302.300(15), a water quality standard, states: Pollution which causes or contributes to new violations of water quality standards or to continuation of existing violations is harmful to the waters of this State and shall not be allowed. Waters having a water quality below the criteria established for them shall be protected and enhanced. However, the Department shall not strive to abate natural conditions. Mr. Parker testified that the "natural conditions" referred to in Rule 62-302.300(15) are those found in the intake water to the desalination facility. TBD will not violate either the water quality criteria or the water quality standard for DO. If the actual level of DO in the intake water is less than 5.0 mg/l, TBD will not decrease the actual level of DO in the water below 5.0 mg/l because the actual level of DO is below the worst case saturation point of 5.7 mg/l. The water quality standard in Rule 62-302.300(15) does not prohibit discharges having DO levels below 4.0 mg/l when that discharge does not cause or contribute to existing DO violations. TBD will not cause or contribute to existing DO violations because if the level of DO in the intake water which is the natural condition is less than 4.0 mg/l, TBD will not decrease the actual level of DO in the water. To the contrary, the desalination process will increase the actual level of DO whenever it is below 5.0 mg/l. TBD has provided reasonable assurance that the proposed desalination discharge will not violate the DO water quality standards and criteria in Rules 62-302.530(31) and 62- 302.300(15) because the desalination process will not decrease the actual level of DO below 5.0 mg/l. SOBAC argued that DO levels will drop between intake and discharge as a result of desalination. Some of this argument was based on the testimony of Dr. Mike Champ, one of SOBAC's expert witnesses. But Dr. Champ's testimony on this point (and several others) is rejected as being far less persuasive than the testimony of the expert witnesses for TBD and the other parties. See Finding 196, infra. SOBAC's argument apparently also was based on a fundamental misapprehension of the results of the Blumberg Study, which SOBAC cited as additional support for its argument that desalination will decrease DO at the discharge point. The Blumberg Study only spoke to desalination's effect on DO saturation concentrations, not to its effect on actual DO levels. (In addition, contrary to SOBAC's assertions, the Blumberg Study did not model DO saturation concentrations but only inferred them.) pH The pilot plant measured and analyzed the potential for pH changes in the desalination process and demonstrated that the desalination process reduced pH by no more than a tenth of a pH unit. pH ranges in natural seawater from top to bottom change over one full pH unit; a tenth of a pH unit change would be well within the natural variation of the system. TBD has provided reasonable assurances that the proposed desalination discharge will not violate Rule 62- 302.530(52)(c), which requires that pH shall not vary more than one unit above or below natural background of coastal waters, provided that the pH is not lowered to less than 6.5 units or raised above 8.5 units. Limitations for pH in the permit ensure compliance with Rule 62-302.530(52)(c) at the point of discharge to waters of the state. Temperature Nothing in the desalination process adds heat to the discharged water. To the contrary, the desalination process may dissipate heat due to the interface of the intake water with the air surface in the pretreatment process. Further, the effect of removing 25 mgd of heated cooling water as desal product water reduces the heat load coming out of the TEC plant cooling water discharge by that same 25 mgd. Temperature readings taken as part of the pilot plant study confirm a slight decrease in temperature across the desalination process. Metals The pretreatment process employed by TBD will result in a reduction in metals in the treated water. Ferric sulfate is added to the intake water upstream of the sand filters in the pretreatment process to precipitate metals into solid material which can be captured by the sand filters. Adding ferric sulfate in the pretreatment process results in a net reduction in the total mass load of metals in the discharge water. Initial calculations in the permit application that 104 pounds of ferric sulfate were being discharged in the desalination concentrate were based on using 20 mg/l of ferric sulfate and a conservative estimate of 95 percent settling of solids, with 5 percent of the ferric sulfate being discharged in the desalination concentrate. Further testing through the pilot plant revealed that coagulation optimizes at 9 to 14 mg/l of ferric sulfate with 97.5 percent of the solids settling, resulting in only 2.5 percent (52 pounds) of the ferric sulfate being discharged per day. The desal facility discharge of iron is minute in comparison to naturally occurring metals within the surface water flowing into Tampa Bay from the Hillsborough and Alafia Rivers. Increases in iron due to ferric sulfate addition are predicted to result in a diluted discharge in which the iron level is still below Class III marine surface water limitation of 0.30 mg/l. Even SOBAC witness Dr. Isphording confirmed that there are no concerns caused by metals that TBD is adding during the process. Discharge Effect on Metal Absorption/Desorption Dr. Isphording limited his concerns to the reaction of higher salinity, DO, and redox to the sediments already contained within the area beyond the discharge point. Dr. Isphording admits that he cannot quantify what the potential release of heavy metals would be due to these factors. Absorption of metals occurs when an organic or clay particle attracts to its surface a metal. Biota do not obtain metals if the metal is held in sand or silt size particles. Biota, be they plant or animal, in most cases obtain the metals they receive from tiny particles that are suspended in the water called microparticulate material. Microparticulate material is generally referred to as colloidal phase. Typically, this phase is on the order of a tenth of a micron in size. Biota obtain metals only if they are present at clay- size particles. Only 10 percent of the quantity of metals that are theoretically available to the biota in a given environment is actually absorbed in tissues. Salinity Has Little Effect on Metals Salinity does not exert a controlling influence on absorption/desorption reactions except at very low salinities. If the salinity is zero, which is essentially a pure freshwater environment, and the salinity level then rises 3 ppt, there would be profound changes in the metal loads, for example, where rivers meet estuaries or seawater. When salinity levels in the water are on the order of 25 ppt, small salinity perturbations such as 2.5 ppt will have a very small effect on absorption/desorption reactions. In fact, the influence can be either positive or negative, but in general they are going to be quite small. Potential releases or gains of metal from salinity changes of 2.5 ppt, at the area of the discharge canal, would be difficult to predict, and it is uncertain whether the change would be positive or negative. pH Will Have Virtually No Effect on Metals Although SOBAC witness Dr. Isphording knew of no change to pH caused by the desalination process, he testified to the alleged effect of lowered pH on the metal in the sediments and water column. Only large pH differences can have a significant influence on absorption or desorption of metals. Any effect on absorption from a decrease in pH on the order of a tenth of a pH unit will be hidden within the natural variations of the estuarine system. See Finding 140, supra. Effect of Lower Oxygen Levels on Metals Redox is basically an oxidation-reduction phenomenon. In order for the low levels of oxygen to have a reducing effect resulting in a release of metals from sediments, virtually all of the oxygen would have to be removed from the water. Basically, the environment would have to reach anoxic conditions. Even then, some metals such as copper would remain within the sediments. In an oxygen-buffered system, redox perturbations will not significantly or measurably mobilize metals. Sediments can be oxidizing in the upper part and then generally become more reducing at depth. The area near the desal discharge does not have organic-rich deep sediment. Proposed Discharge Effect on Bioavailability of Metals The proposed desalination plant's discharge will not increase the bioavailability on metals above that of natural variations and any changes would be hard to discern or measure. Nor will there be any appreciable accumulation of metals in sediments in the receiving water resulting from the proposed desalination discharge. DEP has not established any sediment quality standard and monitoring of sediments is not a NPDES requirement. The desalination plant does not result in violations of Class III marine surface water criteria and standards. No Synergistic Effects Caused by Discharge There are no synergistic effects from the proposed discharge wherein the combination of two elements such as temperature and salinity together would create a new effect. Instead, pH, redox, salinity, and temperature may have small, immeasurable effects that may offset each other. No Adverse Impacts to Biota Comprehensive species lists of phytoplankton, zooplankton, benthic macroinvertebrates, fish, aquatic flora (including seagrasses and mangrove species), and threatened or endangered species inhabiting the area were prepared based on extensive review of applicable scientific literature on Tampa Bay. The salinity tolerance ranges of these species were determined through extensive review of information on salinity ranges associated with species capture, laboratory studies, review of studies addressing species types and salinity tolerances in hypersaline estuaries, and species salinity tolerances determined for other desalination projects. When background salinity is above 10 ppt, changes in salinity of a few ppt have no effect on most organisms. Lower salinities are more detrimental than high salinities to most marine organisms, as long as the upper limit does not exceed a value of approximately 40 ppt salinity. Most planktonic species and life forms can tolerate salinities of up to 40 ppt. Mangrove and seagrass species living in the area can tolerate salinity levels as high as 60 ppt. Benthic macroinvertebrates in the area routinely experience, tolerate and survive in salinity levels ranging from approximately 6 ppt to over 39 ppt under natural environmental conditions. Fish species in the area routinely experience and tolerate salinity levels as high as 39 to 40 ppt under natural environmental conditions. Estuaries serve as fish nurseries because fish species lay their eggs in estuaries, and the larval and juvenile life stages live and mature in estuaries. Due to extreme range of conditions that naturally occur in estuaries, fish reproductive strategies have adapted to enable fish eggs and larval and juvenile life stages to tolerate the wide range of natural conditions, including ranges in salinity levels, that are endemic to estuaries. Egg, larval, and juvenile fish stages may be better able to tolerate extreme range of salinities than adults life stages. A 2.5 ppt increase in salinity and the permitted maximum increase of 10 percent above the intake chloride level is within the range of tolerance and variability that seagrasses, mangrove species, benthic macroinvertebrates, biota, fishes, manatees, zooplanktonic and phytoplanktonic species, and other organisms and life forms living in Tampa Bay routinely encounter and tolerate in the natural environment. A 2.5 ppt increase in salinity with the maximum permitted salinity discharge limit of 35.8 ppt of salinity and the permitted maximum increase of 10 percent above the intake chloride level will not adversely affect the survival or propagation of seagrasses, mangroves, benthic macroinvertebrates, biota, zooplankton, phytoplankton, fish, fish eggs, or juvenile life stages of fish species, or other organisms or life forms in Tampa Bay, and specifically the portion of Tampa Bay in the vicinity of the desalination plant discharge. The Shannon-Weiner Index, which is a biological integrity index codified at Rule 62-302.530(11), requires that the index for benthic macroinvertebrates not be reduced to less than 75 percent of established background levels. Since there will be no adverse impacts to benthic macroinvertebrates due to the desalination discharge and since the level of salinity increases anticipated will tend to benefit benthic macroinvertebrates population, TBD has met the criterion in Rule 62-302.530(11). The Mote Marine Laboratory data showed that Tampa Bay experienced a 2.0 ppt change in salinity over the course of one month. No fish kill or observable die-offs of species were observed or reported from this natural occurrence of elevated salinity. The desalination discharge will (1) not adversely affect the conservation of fish and wildlife, including endangered species, or their habitats, (2) not adversely affect fishing or water-based recreational values or marine productivity in the vicinity of the proposed discharge, (3) not violate any Class III marine water quality standards, and (4) maintain water quality for the propagation or wildlife, fish, and other aquatic life. The desalination discharge meets the antidegradation standards and policy set forth in Rules 62-4.242 and 62- 302.300. Discharge Disposal Options Analyzed As part of the permitting process, TBD demonstrated that the use of land application of the discharge, other discharge locations, or reuse of the discharge was not economically and technologically reasonable, pursuant to Rule 62-4.242. TBD submitted a sufficient analysis of these options as part of its Antidegradation Analysis. (TBD Ex. 1G; TBD Ex. 200, Fact Sheet, p. 16). Further Protection in the Permit The permit review of the desalination permit application is one of the most thorough ever conducted by DEP. The proposed permit has conditions which create and provide a wide margin of environmental protection. The permit sets effluent limitations of various constituents which are reasonably expected to be in the desal facility discharge and provides for monitoring programs to ensure compliance with those effluent limitations. The monitoring requirements of the proposed permit exceed the monitoring requirement imposed on other facilities in the Tampa Bay area. Effluent Limitations DEP established effluent limitations using the Class III marine state water quality standards, data provided from the pilot plant regarding the chemical characterization, the modeling conducted by DHI and the University of South Florida, and the water quality data collection by Mote Marine Laboratory in connection with the establishment of the WQBEL. The effluent limitations contained in the permit are consistent with DEP rules. The proposed permit restricts TBD to the lesser of either the chloride limit of 10 percent above intake or the salinity limit of 35.8 ppt. There is no state water quality standard for salinity. The permit limit for chlorides complies with Rule 62- 302.530(18). The permit's additional requirement of a minimum dilution ratio has the effect of limiting chlorides to 7 percent above intake for 384 hours per year and 5 percent above intake for the remainder of the year and thus provides extraordinary assurance that the state water quality standard for chlorides will be met. Dr. Champ was SOBAC's primary witness in support of its argument that the proposed permit allows a discharge with excessive salinity. But it was apparent from his testimony that Dr. Champ misinterpreted the permit limitations for salinity. See Finding 196, infra. Dr. Champ conceded that the chloride limit of 10 percent above intake was appropriate but focused on the 35.8 ppt maximum, as if it overrode the chloride limitation. As found, the opposite is true. TBD will be limited to 10 percent above intake for chlorides even if the result is salinity far less than the daily maximum of 35.8 ppt. Dr. Champ also had concerns about comparing the discharge to intake chloride levels as not being representative of "normal background." He argued (as does SOBAC) for comparing discharge to chloride levels somewhere else in Middle Tampa Bay, nearby but far enough away to insure no influence from the discharge. But the modeling evidence provided reasonable assurance that there will not be a great deal of recirculation of discharge to intake and that the recirculation expected will not cause salinity to build-up continuously over time. The modeling evidence is accepted as far more persuasive than Dr. Champ's testimony. See Finding 196, infra. The only metals for which effluent limitations were established in the permit are copper, nickel, and iron because these were the only metals determined to be close to the state water quality standard levels by the pilot plant studies. The actual levels of such metals in the desalination discharge will be less than those in the pilot plant testing because the dilution ratio (12.8 to 1) used in the pilot testing is much higher than the minimum dilution ratio required by the permit (20 to 1). The permit effluent limitations for copper, nickel, and iron are based on, and comply with, DEP Rules 62- 302.500(2)(d) and 62-302.530(24), (39) and (45). The permit effluent limitations for Gross Alpha are based on and comply with the requirements in Rule 62- 302.530(58). Biological treatment of the desalination plant discharge concentrate is not required because it consists of seawater. Monitoring for Effluent Limitations DEP is able to separately determine TEC's compliance with its permit from TBD's compliance with the effluent limitations in the proposed desalination permit because of how the facility is designed and the monitoring is constructed. Monitoring requirements in the proposed permit were determined with reference to the probability of desal facility discharge exceeding specific water quality standards. DEP rules do not require monitoring for each and every constituent detected above background concentrations, only those which would probably exceed state water quality standards. The permit requires monitoring of effluent limitations at the intake to and discharge from the desalination facility and the calculation of the diluted effluent levels in the co-mingled discharge water. In order to calculate the effluent components in the diluted discharge water, continuous monitoring is performed on the TEC cooling water discharge rate of flow. Parameters of DO, conductivity, salinity, chlorides, copper, iron, nickel, radium, gross alpha, and effluent toxicity are measured at both intake and discharge pursuant to proposed permit. Monitoring of Intake Monitoring of the intake will be located, after interception off TEC Units 3 and 4, prior to entering the desalination plant. Using a sampling location of the intake to the desalination facility prior to filtering or chemical addition for background samples is consistent with the definition of "background" in DEP Rule 62-302.200(3). EPC Stations 11, 80, 81, 13, and 14 are not proper locations for background samples because salinity varies with tides and depth and those stations are too distant from the actual intake point. EPC station 9 is not a good location because it is closer to the discharge than the permit sample point. Monitoring of Discharge Monitoring of the discharge will take place in the wet well prior to discharge into TEC's cooling water discharge tunnels. This monitoring location is in compliance with Rule 62-620.620(2)(i) which provides for monitoring of effluent limitations in internal waste streams. Monitoring of the desal facility discharge concentrate in each of the four cooling water discharge tunnels is impractical due to the high volume of dilution and addition of four potential discharge locations. Once the desal facility concentrate is diluted by the TEC cooling water discharge, it is much more difficult to obtain accurate water quality testing for constituents at such minute levels. Monitoring of the Combined Discharge Concentrations Calculations determine the mixing ratios of the desalination concentrate with TEC's cooling water. Using the flow data from TEC, the calculations will accurately determine the water quality of the co-mingled discharge water. Compliance with Permit Effluent Limitations The proposed permit requires TBD to monitor constituents for which there are effluent limitations on either a daily, weekly or monthly basis, depending on the constituent. The frequency of monitoring for each constituent is based on comparing the expected levels of the constituent to the water quality standard and analyzing the probability of the desal facility discharge exceeding that standard. The monitoring provides additional assurances beyond the pilot plant studies, testing and modeling that no water quality standard will be violated. Continuous monitoring is not necessary to successfully monitor discharges. Monthly measurements are sufficient to determine compliance even for a daily permit level because the chemical characterization studies provide reasonable assurances that the desalination concentrate will not exceed the effluent limitations. Monthly monitoring provides further checks and balances to assure that the desalination discharge is in conformance with the effluent limitations and DEP rules. The EPA only requires that monitoring occur at least once a year. Conductivity provides a direct correlation to salinity and chlorides. Measuring conductivity provides salinity and chloride levels by basis of calculations and is typically used as a surrogate for monitoring chloride and salinity continuously. Salinity and chloride cannot themselves be measured continuously because they are measured by lab tests. The permit requires conductivity to be monitored continuously, not because DEP believed the desalination discharge would be near the chloride limitation, but rather to be extremely conservative. The permit conditions treat an exceedance of salinity or chlorides based on conductivity readings to be a violation of the permit effluent limitations for salinity and chlorides. TBD provided reasonable assurance to DEP that the proposed desalination discharge would not violate the DO water quality standards and criteria in Rules 62-302.530(31) and 62- 302.300(15). The permit condition requiring monitoring of DO provides verification that desal facility discharge will meet the DO water quality standards. Even SOBAC's witness Dr. Champ admitted that a continuous measurement for DO is not as valuable as random weekly samples. External Monitoring Programs The proposed permit requires TBD to develop and submit to DEP a Biological Monitoring Program to monitor seagrasses, benthic macroninvertebrates and fish populations to be consistent with existing Tampa Bay monitoring programs. This program will provide an effective means of monitoring the potential impacts of the desalination discharge. The proposed permit also requires TBD to implement a Water Quality Monitoring Program for three monitoring stations located proximal to the intake, the discharge and the North Apollo Beach Embayment which will monitor conductivity, salinity, DO and temperature continuously. These monitoring programs will provide additional ambient data to DEP. If the data indicate an exceedance or reasonable potential for an exceedance of water quality standards, DEP may reopen the permit in accordance with the reopener clause contained in the permit. These monitoring programs go beyond the requirements in DEP rules. Additionally, DEP does independent monitoring of NPDES discharges without notice and on a purposely unpredictable basis. Proof of Financial Responsibility Rule 62-620.301(6) addresses when DEP may require a permit applicant to submit proof of financial responsibility to guarantee compliance with Chapter 403, Florida Statutes. TBD's compliance history was taken into consideration during the permitting process. Adequate financial assurance were provided in the permit application. (TBD Ex. 1I). Further, the permit conditions added by the settlement agreement (TBD Ex. 470) provide for additional financial assurance beyond those that can be required by the NPDES program and DEP rules. Additional Comment on SOBAC's Evidence As already indicated, SOBAC elicited the testimony of several expert witnesses at final hearing to support its contentions. But none of SOBAC's experts spent a great deal of time studying TBD's desal project, especially compared to witnesses for the other parties. Mostly, SOBAC experts expressed general scientific principles that were not directly tied to specifics of the desal project or were very general expressions of concern. Often, SOBAC's experts were not familiar with all the efforts of experts offered by the other parties to address those very concerns. Except for Dr. Champ, no SOBAC expert opined that the proposed permits would result in violations of DEP statutes and rules. Some SOBAC experts expressed opinions that only would be relevant if there were insufficient assurances in proposed permits that DEP statutes and rules would not be violated. Statistical evidence presented was not particularly relevant. Dr. Goodwin As previously mentioned, Dr. Carl Goodwin was willing to provide testimony on work he did for the USGS, but he gave no expert opinions on the permits which are the subject of these proceedings. As also previously discussed, his two- dimensional model studies were constrained by computational limitations. Even so, his studies indicated that flushing in Tampa Bay was becoming more rapid in recent years. In addition, even if the "gyres" suggested by his two-dimensional studies actually existed, they would tend to promote mixing in Tampa Bay in area of the Big Bend power plant. Dr. Champ Dr. Champ's first opinion was that 35.8 ppt is too high a salinity limit and would result in "oceanic" conditions. He attempted to compare this result to results of diversion of substantial amounts of freshwater inputs to the Black Sea for agricultural purposes--a totally different situation not suitable for comparison to Tampa Bay. Initially, Dr. Champ suggested a limitation of a 10 percent increase above "background" or "ambient" conditions; it was apparent that initially Dr. Champ was not cognizant of the 10 percent over intake chloride limitation in the proposed permit. When he was made aware of the chloride limit, he misinterpreted the two limits, saying that TBD would not be limited to the lower of the two. When it was suggested that he might have misinterpreted the two salinity limits, Dr. Champ testified that chlorides should be compared to a "natural" or "environmental" control site somewhere nearby but outside the influence of the combined TEC/TBD discharge; he said it was a "farce" to compare chlorides to a control site "inside the plant." In so doing, he seemed not to recognize the purpose of the comparison made in the proposed permit--to isolate and identify the impacts of TBD's desal process. In addition, dismissing without much consideration the contrary results of extensive and sophisticated modeling, Dr. Champ opined off- handedly that DO would decrease due to higher salinity that would recirculate and build-up over time. In part, Dr. Champ based this opinion on his misunderstanding that Tampa Bay is not well-mixed or well-circulated at the location of the Big Bend power plant. This was contrary to all the evidence; even if the "gyres" predicted by Dr. Goodwin's two-dimensional model existed, they would suggest a great deal of mixing in Middle Tampa Bay in the vicinity of the Big Bend plant. Dr. Champ next misinterpreted the DO limits in the proposed permit. See Finding 133, supra. Dr. Champ then predicted a decrease in species diversity as a result of higher salinity and lower DO. (To the contrary, salinity increases in the amounts predicted by the far greater weight of the evidence probably would result in somewhat of an increase in species diversity.) Ultimately, Dr. Champ testified that consequences to marine organisms would be dire, even if salinity increased only by 2.5 ppt, because a "salinity barrier" would form across Middle Tampa Bay in contrast to more gradual natural changes in salinity. The far greater weight of the evidence was to the contrary. Dr. Champ made several suggestions to avoid the calamitous results he predicted: require use of a cooling tower to reduce the temperature of the combined TEC/TBD discharge; collect the desal brine concentrate and barge it to the Gulf of Mexico; require intake and discharge pipes extending into the shipping channel in Middle Tampa Bay. But Dr. Champ did not study or give a great deal of thought to implementation of these suggestions. Besides, the other parties proved that these measures were not needed for reasonable assurances. In an attempt to buttress his opinion testimony, Dr. Champ also testified (along with SOBAC's President, B.J. Lower) that the TEC intake canal is virtually devoid of life and that biodiversity in the discharge canal is very low. This testimony was conclusively refuted by the rebuttal testimony of Charles Courtney, who made a site visit after SOBAC's testimony and described in detail a significant number of healthy species in the intake canal, including oyster communities, xanthid crabs, porcellanid crabs, snook, anemones, bivalves, polychaete, and mangroves with seedlings. Of the one and one- half pounds of oysters that Mr. Courtney sampled, he estimated that approximately fifty percent of those oysters were living, which represents a very healthy community. Mr. Courtney further noted that some of the crabs were carrying eggs, which indicates an active life cycle for those species. As to the TEC permit modification, Dr. Champ testified that it was “in-house stuff” which would not affect the environment outside the TEC plant. No other SOBAC witness addressed the TEC permit modification. Dr. Isphording SOBAC called Dr. Wayne Isphording as an expert in sedimentology and geochemistry. Dr. Isphording expressed no concern that the desal process would add metals to Tampa Bay. Essentially, he gave opinion testimony concerning general principles of sedimentology and geochemistry. He testified that heavy metals bound in sediments are released naturally with increases in salinity, but that salinity levels would have to be extreme to result in the release of abnormal quantities of such metals. He admitted that he had performed no studies of sediments in Tampa Bay and declined to offer specific opinions that metals in fact would be released as a result of predicted salinity increases. Dr. Isphording admitted that he knew of no condition in the proposed Desal Facility permit which would cause or allow a violation of state water quality standards. He was aware of no statute or rule requiring more monitoring and testing than is required in the proposed permit. Dr. Parsons SOBAC offered the testimony of Dr. Arthur Rost Parsons, an assistant professor of oceanography at the Naval Postgraduate School, in an attempt to raise questions regarding the near-field and far-field modeling which were provided by TBD to DEP during the course of the permitting process. However, not only had Dr. Parsons not done any modeling in Tampa Bay himself, he was not provided numerous reports and clarifications relating to the studies he was called to critique. He only reviewed an interim report dated November 1, 2000, regarding the near-field model. Dr. Parsons testified that the DHI model used for the near-field study was an excellent shallow water model. He found nothing scientifically wrong with it and testified that the "physics and the model itself is . . . well–documented." Dr. Parsons also did not contradict the results of the DHI model. Instead, he noted that the modeling task was difficult and complex, he described some of the model's limitations, and he testified to things that could have been done to increase his confidence in the model results. One of Dr. Parson's suggestions was to run the model longer. But the evidence was that, due to the model's complexity and high computational demands, it would have been extremely expensive to run the model for longer periods of time. Another of Dr. Parson's suggestions was to use salinity data would be to use the information that the model itself generated with regard to salinity distributions instead of a homogeneous set of salinity data. Dr. Parsons was concerned that use of homogeneous salinity data would not reflect the effect of "double diffusion" of heat and salinity, which would result in sinking of the combined heat. But engineer Andrew Driscoll testified in rebuttal that the effects of "double diffusion" would cease once equilibrium was reached and would not result in a hypersaline plum sinking to the bottom. In addition, he testified that turbulent mixing from tide and wind would dominate over the effect of "double diffusion" at the molecular level so as to thoroughly mix the water, especially in the shallow North Apollo Beach Embayment. Dr. Parsons also suggested that the model be run for rainy season conditions to see if the effects of vertical stratification would increase. But even if vertical stratification increased as a result of rain, salinity also would be expected to decrease. The scenario modeled was "worst case." Dr. Parsons also suggested the use of a range of temperatures for the combined heat/salinity plume instead of an average temperature. However, he conceded that it was not inappropriate to use average temperature. Instead, he would have liked to have seen the model run for a range of temperatures to see if the model was sensitive to temperature differences so as to increase his confidence in the results. Dr. Parson's testimony focused on the near-field model. His only comment on the far-field model was that he thought it should have used the out-puts from the near-field model (as the near-field used the outputs). Scott Herber SOBAC offered no direct testimony on the impact of the Desal Facility discharge on seagrasses in Tampa Bay. The testimony of Steve Herber, a doctoral student at the Florida Institute of Technology, related to the vulnerability of seagrasses, in general, to changes in salinity. However, Mr. Herber had no specific knowledge of the seagrasses present in Tampa Bay and had not performed or reviewed any scientific studies upon which his opinion could be based. He reached no conclusions about the specific permits at issue in this proceeding, nor about the effect of the Desal Facility on seagrasses in Tampa Bay. In contrast to Mr. Herber, the testimony of TBD's expert, Robin Lewis, and SWFWMD's expert, Dr. David Tomasko, provided detailed information about the seagrasses located in Tampa Bay. Both have studied seagrasses in Tampa Bay for many years and have been involved in mapping seagrass distribution in a variety of bays and estuaries along the west coast of Florida. Dr. Tomasko criticized witnesses for SOBAC who attempted to draw conclusions about Tampa Bay based on studies of other bays and estuaries because each bay has unique characteristics that cannot be extrapolated from studies of other bays. Dr. Tomasko and Lewis testified that seagrasses in Tampa Bay are becoming more abundant, that dissolved oxygen levels are increasing, and that water clarity in Tampa Bay is also improving. Dr. Mishra Dr. Satya Mishra was called by SOBAC as an expert in statistics. He is not an expert in the discrete field of environmental statistics. He has never been involved in the development of a biological monitoring program and could not provide an opinion regarding what would be an adequate sample size for this permit. He essentially expressed the general opinions that for purposes of predictive statistical analysis: random sampling is preferred; statistical reliability increases with the number of samples; and 95 percent reliability is acceptable. Dr. Mishra performed no statistical analysis in this case and could not conclude that the sampling provided in the proposed permit would not be random. Ron Chandler Ron Chandler, a marketing representative for Yellow Springs Instrument Corporation (YSI), simply testified for SOBAC regarding the availability of certain types of continuous monitoring devices. He did not offer any opinions regarding whether or not reasonable assurance required continuous monitoring of any specific parameter or any monitoring different from or in addition to what is proposed in TBD's proposed permit. John Yoho SOBAC called John Yoho as a financial and insurance expert to criticize the terms of an agreement by TBD, TBW, and DEP to settle Hillsborough County's request for an administrative hearing (DOAH Case No. 01-1950). This agreement is contained in TBD Ex. 470. But Yoho admitted that he had no knowledge regarding what is required to obtain an NPDES permit in terms of financial assurances. He also indicated that none of his testimony should be understood as relating in any way to financial assurances required for such a permit to be issued. Alleged Improper Purpose The evidence did not prove that SOBAC participated in DOAH Case No. 01-2720 for an improper purpose--i.e., primarily to harass or to cause unnecessary delay or for frivolous purpose or to needlessly increase the cost of licensing or securing the approval of TEC's permit modification applications. To the contrary, the evidence was that SOBAC participated in this proceeding in an attempt to raise justifiable issues arising from the peculiarities of the relationship of TEC's permit modification application to TBD's permit application. Although SOBAC suffered adverse legal rulings that prevented it from pursuing many of the issues it sought to have adjudicated on TEC's permit modification application, it continued to pursue issues as to the TBD permit application which, if successful, could require action to be taken on property controlled by TEC and, arguably, could require further modification of TEC's permit.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the Florida Department of Environmental Protection enter a final order: (1) issuing the proposed permit number FL0186813-001-IWIS, as set forth in TBD Ex. 203 with the addition of the two permit conditions specified in TBD Ex. 470; (2) issuing proposed permit modification number FL0000817-003-IWIS, as set forth in TBD Ex. 225; and (3) denying TEC's request for attorney's fees and costs from SOBAC under Section 120.595(1). Jurisdiction is reserved to enter an order on TBD's Motion for Sanctions filed on August 13, 2001, regarding SOBAC expert Ralph Huddleston. DONE AND ENTERED this 17th day of October, 2001, in Tallahassee, Leon County, Florida. __________________________________ J. LAWRENCE JOHNSTON Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 17th day of October, 2001. COPIES FURNISHED: W. Douglas Beason, Esquire Department of Environmental Protection 3900 Commonwealth Boulevard The Douglas Building, Mail Station 35 Tallahassee, Florida 32399-3000 William S. Bilenky, Esquire Southwest Florida Water Management District 2379 Broad Street Brooksville, Florida 34604 Ralf G. Brookes, Esquire Morgan & Hendrick 1217 East Cape Coral Parkway Suite 107 Cape Coral, Florida 33904-9604 Donald D. Conn, General Counsel Tampa Bay Water 2535 Landmark Drive, Suite 211 Clearwater, Florida 33761-3930 Lawrence N. Curtin, Esquire Holland & Knight, LLP 315 South Calhoun Street, Suite 600 Post Office Box 810 Tallahassee, Florida 32302-0810 Douglas P. Manson, Esquire Carey, O'Malley, Whitaker & Manson, P.A. 712 South Oregon Avenue Tampa, Florida 33606-2543 E. A. Seth Mills, Jr., Esquire Fowler, White, Gillen, Boggs, Villareal & Banker, P.A. 501 East Kennedy Boulevard, Suite 1700 Post Office Box 1438 Tampa, Florida 33601-1438 Joseph D. Richards, Esquire Pasco County Attorney's Office 7530 Little Road, Suite 340 New Port Richey, Florida 34654-5598 Cathy M. Sellers, Esquire Moyle, Flanigan, Katz, Raymond & Sheehan, P.A. 118 North Gadsden Street Tallahassee, Florida 32301-1508 Linda Loomis Shelley, Esquire Fowler, White, Gillen, Boggs, Villareal & Banker, P.A. Post Office Box 11240 Tallahassee, Florida 32302 Kathy C. Carter, Agency Clerk Office of General Counsel Department of Environmental Protection 3900 Commonwealth Boulevard, Mail Station 35 Tallahassee, Florida 32399-3000 Teri L. Donaldson, General Counsel Department of Environmental Protection 3900 Commonwealth Boulevard, Mail Station 35 Tallahassee, Florida 32399-3000 David B. Struhs, Secretary Department of Environmental Protection 3900 Commonwealth Boulevard The Douglas Building Tallahassee, Florida 32399-3000

USC (3) 33 U.S.C 131133 U.S.C 134233 USC 1342 Florida Laws (7) 120.52120.569120.57120.595403.088403.0885403.412
# 3
JEFFERY BENEFIELD vs DEPARTMENT OF HEALTH, 04-001758 (2004)
Division of Administrative Hearings, Florida Filed:Tavares, Florida May 18, 2004 Number: 04-001758 Latest Update: May 24, 2005

The Issue The issue in this case is whether the Department of Health (Department or DOH) should fine the Petitioner, Jeffery Benefield, $500 and require him to move the drainfield of his onsite sewage disposal system so that no part of it is within ten feet of the potable water line of his neighbors, the Intervenors, Robert and Wanda Schweigel.

Findings Of Fact The Petitioner's home at 10920 Lake Minneola Shores Road (Lake County Road 561-A) was built in 1977. It included an onsite septic tank and drainfield sewage disposal system. On March 31, 2003, the Petitioner personally applied for a permit to repair his existing sewage disposal system by replacing the drainfield. His application did not identify any potable water lines. Department personnel evaluated the site and calculated system specifications, and the Department issued a construction permit on April 3, 2003, based on the estimated size of the existing system. To replace the existing drainfield and meet specifications, 375 square feet of drainfield was required. However, the Petitioner wanted to add 125 square feet to what was required by the specifications, which is acceptable so long as required setbacks are maintained. The Petitioner's drainfield was replaced by a licensed contractor on April 29, 2003. Some work may have been done the following day to complete the job, but it appears that the contractor called for the final inspection on April 29, 2003. On inspection, it was clear that the new drain line closest and (like the other three) parallel to the property line was less than ten feet from a water line, riser, and spigot on the neighboring property, which was owned by Robert and Wanda Schweigel. Specifically, the closest of the new drain lines was estimated to be just five feet from the Schweigels' water line, riser, and spigot. (The next closest was just under ten feet from the Schweigels' water line, riser, and spigot.) As a result, the Department disapproved the installation. The Petitioner disputed the disapproval, initially contending that the Schweigels' water line, riser, and spigot did not convey potable water. It was decided that the new drainfield should be covered while pending a decision as to whether the water line was potable. By the end of July 2003, the Department decided that the Schweigels' water line was indeed potable. In that approximate time frame, the Petitioner's contractor offered to pay to have the Schweigels' water line "sleeved" to a distance at least ten feet from the nearest portion of the Petitioner's drainfield.2 He believed that solution would be much simpler and less costly than moving the Petitioner's drainfield to a distance at least ten feet from any part of the Schweigels' potable water line. This alternative was presented to the Schweigels in that approximate timeframe, but they refused (and continue to refuse.) In August 2003, the Petitioner took the position that, regardless whether the Schweigels' water line was potable, the Petitioner's new drainfield was in the same location as the existing drainfield, and the part of the water line closest to the new drainfield (i.e., the part including the riser and spigot) was not there until after the middle of April 2003 and was recently installed either just before or while the Petitioner's new drainfield was being installed. The evidence was not clear as to the configuration and precise location of the drain lines in the Petitioner's original drainfield. However, it appears to have had three drain lines emanating from the septic tank, starting in the direction of the Schweigels' property and then curving away in the direction of Lake Minneola, which is behind the Petitioner's and the Schweigels' properties, before terminating. The replacement drainfield had pipe emanating from the septic tank and running towards the Schweigels' property line before making a 90-degree turn towards the lake before connecting to the middle of a header pipe. Connecting to the header pipe are four equally-spaced drain lines, one on either end of the header pipe and two in between, that are perpendicular to the header pipe and parallel to each other and to the Schweigels' property line (and potable water line) and run towards the lake. As indicated, it was not clear from the evidence precisely where all of the old drain lines were located, or how close they got to the Schweigels' property (and potable water line.) However, it does not appear that they got as close as two of the four new drain lines in the replacement system. See Petitioner's Exhibits 13 and 21. There was conflicting evidence as to when the Schweigels' potable water line was installed. It is clear from the evidence that there are now three "T's" off the water line from the potable water source near the street. One "T- off" leads to near the front corner of the house, one leads to the middle of the side of the house, and one leads to near the rear corner of the house. The line then extends past the last "T" to the location of the water riser and spigot. The Petitioner's evidence proved that the water line riser and spigot now within ten feet of the Petitioner's drainfield were not there either in May 1999 or on April 14, 2003. But the Schweigels maintained, and the evidence as a whole was persuasive, that the potable water lines currently in place were installed in 1996 or 1997, but were cut and moved to enable the Schweigels to install footers for construction of a concrete privacy wall in approximately 1999. After installation of the footers, the water line had to be moved several inches closer to the Schweigels' house when replaced, and the "T's" were reconnected to the line. In approximately April 2003, the water line riser and spigot were damaged (the evidence was not clear how) and had to be replaced. The evidence was that the Schweigels got a permit to build their privacy wall but did not get a permit for the plumbing work that was necessary in conjunction with the installation of the footers for the wall. Although it appears from the evidence that a plumbing permit was required, the Schweigels did not think a separate plumbing permit was necessary. It is not found that the Petitioner participated in this proceeding for an "improper purpose"--i.e., "primarily to harass or to cause unnecessary delay or for frivolous purpose or to needlessly increase the cost of litigation, licensing, or securing the approval of an activity."

Recommendation Based upon the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the Department of Health enter a final order that the Petitioner pay a $500 fine and either: (1) pay the reasonable cost of having the Schweigels' potable water line "sealed with a water proof sealant within a sleeve of similar material pipe to a distance of at least 10 feet from the nearest portion of the system," so long as no portion of the Schweigels' potable water line "within 5 feet of the drainfield shall be located at an elevation lower than the drainfield absorption surface"; or (2) move or relocate his drainfield to meet the setback requirements of the current Rule 64E-6.005(2)(b). DONE AND ENTERED this 15th day of February, 2005, in Tallahassee, Leon County, Florida. S J. LAWRENCE JOHNSTON Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 15th day of February, 2005.

Florida Laws (8) 120.536120.54120.569120.57120.595381.0065381.006757.105
# 4
CITY OF BARTOW vs. DEPARTMENT OF ENVIRONMENTAL REGULATION, 77-001062 (1977)
Division of Administrative Hearings, Florida Number: 77-001062 Latest Update: Oct. 27, 1978

The Issue The issue presented for determination in this proceeding is whether the City of Bartow is entitled to a renewal of its operating permit to discharge into the Peace River effluent from its sewage treatment plant at the design capacity of 2.75 million gallons per day.

Findings Of Fact Upon consideration of the oral and documentary evidence adduced at the hearing, the following facts are found: Petitioner owns and operates a sewage treatment plant located at 2505 East Wabash Avenue in Bartow, which discharges effluent into the Peace River. On April 13, 1977, petitioner applied to respondent for a renewal of its operating permit, with the plant designed to treat and discharge a maximum of 2.75 million gallons of wastewater per day. By letter dated May 11, 1977, respondent notified petitioner of its intent to enter a final order denying the permit application for the reason that petitioner's proposed discharge at design capacity (2.75 mgd) would reduce the quality of the Peace River below its established classification. The respondent was specifically concerned with the deleterious impact which operation of petitioner's plant at design flow would have upon the level of dissolved oxygen in the Peace River. The May 11, 1977, letter also set a wasteload allocation which would have to be met by petitioner's plant in order not to depress the water quality of the Peace River below established levels. The allocations were later revised to provide for secondary treatment with nitrification. As noted above, these allocations were challenged in a Section 120.56, Florida Statutes, proceeding. By final order entered on September 14, 1978, it was held that said wasteload allocations did not constitute a rule within the meaning of Chapter 120 and thus were not subject to an attack of invalidity on the ground that they were not adopted pursuant to the rulemaking requirements of Section 120.54, Florida Statutes. The Peace River is classified as a Class III water body. This classification contains criteria designed to promote the use of the water for recreational purposes, including swimming, and for the maintenance of a well- balanced fish and wildlife population. Rule 17-3.09, Florida Administrative Code. In Class III waters, the concentration of dissolved oxygen is not to average less than 5 milligrams per liter (mg/l) in a 24 hour period and should never be less than 4 mg/l. Water quality problems exist in the Peace River even where no sewage treatment plants are discharging, and the River does not consistently meet the dissolved oxygen standards for Class III waters. At low flow conditions, the dissolved oxygen content in the River ranges from two to three mg/l up to six to seven mg/l. Sewage treatment plant effluent contains components known as total Kjeldahl nitrogen (TKN) and biochemical oxygen demand (BOD5). When these components decay they use up free dissolved oxygen, thereby depressing dissolved oxygen levels. In order to maintain the desirable dissolved oxygen (DO) level, it is necessary to control the amount of oxygen demanding substances such as TKN and BOD5 entering the receiving waters. The limitation on the concentration of such effluent components which must be met to assure that water quality standards will not be depressed below the level set for a given classification are known as wasteload allocations. Wasteload allocations are calculated by the respondent for each sewage treatment plant and industrial discharger which discharge effluent into the surface waters of the state. They are determined by use of a mathematical computer model based upon the physical, biological and chemical characteristics of the receiving body of water. In this case, the water system modeled was a segment of the Peace River extending from approximately 1.4 miles above petitioner's discharge point to approximately 46 miles downstream. The respondent conducted two surveys during low flow conditions in November of 1976. During low flow conditions, tributary input is minimal and nonpoint contributions are almost negligible. Point source contributions such as sewage treatment plants and industrial dischargers have their greatest impact during low flow conditions. Based upon the model run by respondent, respondent predicted that the operation of petitioner's plant at design capacity (2.75 mgd) would have a significant deleterious impact upon dissolved oxygen during low flow conditions. Specifically, respondent found that petitioner's discharge causes a DO drop of one milligram per liter at a point less than five miles from the petitioner's point of discharge and a drop from 2 1/2 mg/l to zero from mile ten through fifteen. Much of the testimony presented by the petitioner at the hearing was directed to the reliability of the data used by respondent in its model. Petitioner presented evidence tending to illustrate that nonpoint sources in the River's tributaries are the cause of the depressed DO in the Peace River. However, as noted above, the respondent's model utilized low flow conditions wherein such sources are almost nonexistent. The evidence further tends to illustrate that several coefficient values utilized by the respondent in its model resulted in a less restrictive allocation for petitioner. Even on the date of the hearing, Respondent's witnesses were satisfied and confident that there were no technical inaccuracies in the model used to develop the wasteload allocations for petitioner's plant. Petitioner adduced no conclusive evidence that any of the data or assumptions made by the respondent were erroneous. The petitioner's plant presently discharges about 1.44 million gallons of wastewater per day. This meant that Bartow is presently operating at approximately 50 percent of its capacity. On a monthly average, petitioner's treatment level is well in excess of ninety percent. Five years from now, in 1983, petitioner projects that its flow will approximate 1.7 million gallons per day. It is predicted that petitioner will not reach its design capacity of 2.75 million gallons per day for twenty years. As, noted above, the respondent's model predicted dissolved oxygen violations based upon the design capacity of 2.75 mgd, for which the petitioner applied. The respondent ran no intermediate low alternatives to predict how close to design capacity the petitioner could come before a violation occurred. Nor did respondent find present DO violations directly attributable to petitioner's discharge. In order to meet the wasteload allocations calculated by the respondent, it will be necessary for petitioner to make capital expenditures approximating $1,676,400.00. This figure is for a discharge of about 1.9 mgd. Such an expenditure would result in an increase to consumers of about 50 percent per month. The least expensive means of disposing of effluent would be for petitioner to recycle it to area phosphate mining companies, and not to discharge into the Peace River at all.

Recommendation Based upon the findings of fact and conclusions of law recited herein, it is recommended that the application of the petitioner to discharge effluent into the Peace River at design capacity (2.75 million gallons per day) be denied. It is further recommended that petitioner submit to the respondent a revised application which clearly indicates the amount of discharge expected for the permit period, and that respondent review said application anew. Respectfully submitted and entered this 4th day of October, 1978, in Tallahassee, Florida. DIANE D. TREMOR, Hearing Officer Division of Administrative Hearings Room 530, Carlton Building Tallahassee, Florida 32304 (904) 488-9675 COPIES FURNISHED: William S. Blakeman Campbell, Dunlap, Coward and Blakeman Post Office Box 916 Lakeland, Florida 33802 Louis F. Hubener Twin Towers Office Bldg. 2600 Blair Stone Road Tallahassee, Florida 32301 Mr. Jay W. Landers Secretary, Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32301

Florida Laws (5) 120.54120.56120.57403.021403.088
# 5
THE SANTA FE LAKE ASSOCIATION, INC. vs. SANTA FE PASS, INC., AND DEPARTMENT OF ENVIRONMENTAL REGULATION, 85-004446 (1985)
Division of Administrative Hearings, Florida Number: 85-004446 Latest Update: Apr. 08, 1987

The Issue Whether SFP's revised application for a permit to construct a sewage treatment plant with percolation ponds should be granted or, for failure of SFP to give reasonable assurances that the plant will not cause pollution significantly degrading the waters of Gator Cove, be denied?

Findings Of Fact About 1,500 feet from Santa Fe Lake's Gator Cove, SFP proposes to build an extended aeration package sewage treatment plant to serve a "private club with restaurant and overnight accommodations," SFP's Exhibit No. l, to be built between the plant and the lake, on the western shore of Santa Fe Lake, just south of the strait or pass connecting Santa Fe Lake and Little Santa Fe Lake. The site proposed for the waste water treatment plant lies at approximately 177 or 178 feet above sea level, north of Earleton on county road N.E. 28 near State Road 200A, some three miles north of State Road 26, in unincorporated Alachua County, Section 33, Township 8 South, Range 22 East. SFP's Exhibit No. 1. Santa Fe Lake, also called Lake Santa Fe, and Little Santa Fe Lake, also called Little Lake Santa Fe, are designated outstanding Florida waters by rule. Rule 17-3.041(4)(i), Florida Administrative Code. Lake Santa Fe "is . . . the sixth largest non-eutrophic lake in the State of Florida . . . [and] the last remaining large non-eutrophic lake in Alachua County." (0.367). Recreation is a "beneficial use" of these waters. The Lakes Santa Fe are at an elevation of approximately 140 feet above sea level, and their level varies within a range of four feet. Input The proposed plant is to treat sewage generated by staff, by diners at a 150-seat restaurant, and by inhabitants of 150 lodge or motel rooms, comprising 100 distinct units. On the assumptions that 150 rooms could house 275 persons who would generate 75 gallons of sewage a day for a daily aggregate of 20,625 gallons, and that a 150-seat restaurant would generate 50 gallons of sewage per seat per day, full occupancy is projected to engender 28,125 gallons of sewage per day. This projection is based on unspecified "D.E.R. criteria; (5.35) which the evidence did not show to be unreasonable. Full occupancy is not foreseen except around the Fourth of July, Labor Day and on other special occasions. An annual average flow of between 15 and 20,000 or perhaps as low as 13,000 gallons per day is envisioned. (S.38) The proposed plant is sized at 30,000 gallons per day in order to treat the peak flow forecast and because package plants are designed in 5,000 gallon increments. Sluice-gate valves and baffling are to permit bypassing one or more 5,000 gallon aeration units so plant capacity can be matched to flow. The composition of the sewage would not be unusual for facilities of the kind planned. As far as the evidence showed, there are no plans for a laundry, as such, and "very little laundry" (S.37) is contemplated. The health department would require grease traps to be installed in any restaurant that is built. Gravity would collect sewage introduced into 2,000 feet of pipe connecting lodging, restaurant and a lift station planned (but not yet designed) for construction at a site downhill from the site proposed for the water treatment plant. All sewage reaching the proposed treatment plant would be pumped 3,000 feet from the lift station through a four-inch force main. Influent flow to the treatment plant could be calculated by timing how long the pump was in operation, since it would "pump a relatively constant rate of flow." (S.39) Treatment Wastewater entering the plant would go into aeration units where microorganisms would "convert and dispose of most of the incoming pollutants and organic matter." (S.40) The plant would employ "a bubbler process and not any kind of stirring-type motion . . . [so] there should be very little:; aerosol leaving the plant," (S.42) which is to be encircled by a solid fence. Electric air blowers equipped with mufflers would be the only significant source of noise at the proposed plant, which would ordinarily be unmanned. If one blower failed, the other could run the plant itself. A certified waste water treatment plant operator would be on site a half-hour each week day and for one hour each weekend. SFP has agreed to post a bond to guarantee maintenance of the plant for the six months' operation period a construction permit would authorize. (0.63) The proposed plant would not "create a lot of odor if it's properly maintained." Id. The specifications call for a connection for an emergency portable generator and require that such a generator be "provide[d] for this plant. . . ." (S. 43). The switch to emergency power would not be automatic, however. A settling process is to follow extended aeration, yielding a clear water effluent and sludge. Licensed haulers would truck the sludge elsewhere for disposal. One byproduct of extended aeration is nitrate, which might exceed 12 milligrams per liter of effluent, if not treated, so an anoxic denitrification section has been specified which would reduce nitrate concentrations to below 12 milligrams per liter, possibly to as low as 4 or 5 milligrams per liter. Before leaving the plant, water would be chlorinated with a chlorinator designed to use a powder, calcium hypochlorite, and to provide one half part per million chlorine residual in the effluent entering the percolation ponds. A spare chlorine pump is to be on site. The effluent would meet primary and secondary drinking water standards, would have 20 milligrams or less per liter of biochemical oxygen demand or, if more, no more than ten percent of the influent's biochemical oxygen demand, and total suspended solids would amount to 20 milligrams or less per liter. (5.294- 295). Half the phosphorous entering the plant would become part of the sludge and half would leave in the effluent. Something like ten milligrams per liter of phosphorous would remain in the effluent discharged from the plant into the percolation ponds. (5.202). Although technology for removing more phosphorous is available (S.298, 0.170-171), SFP does not propose to employ it. Allen flocculation treatment followed by filtration could reduce phosphorous in the effluent to .4 milligrams per liter, but this would increase the cost of building the treatment plant by 30 to 40 percent; and operational costs would probably increase, as well, since it would be necessary to dispose of more sludge. (0.170-172). SFP did agree to accept a permit condition requiring it to monitor phosphorous levels in groundwater adjacent to the proposed plant. (0.63). Land Application Three percolation ponds are planned with an aggregate area of 30,000 square feet. At capacity, the plant would be producing a gallon and a half of effluent a day for each square foot of pond bottom in use. The ponds are designed in hopes that any two of them could handle the output of effluent, even with the plant at full capacity, leaving the third free for maintenance. The percolation ponds would stand in the lakes' watershed, in an area "of minimal flooding, (S.30) albeit outside the 100-year flood plain. Santa Fe Lake, including Gator Cove, and Little Santa Fe Lake are fed by groundwater from the surficial aquifer. All effluent not percolating down to levels below the surficial aquifer or entering the atmosphere by evapotranspiration would reach the lake water one way or another sooner or later. If percolation through the soils underneath the percolation ponds can occur at the rate SFP's application assumes, effluent would not travel overland into Lake Santa Fe except under unusually rainy conditions, which would dilute the effluent. Whether the planned percolation ponds would function as intended during ordinary weather conditions was not clear from the evidence, however. In the event the ponds overflowed, which, on SFP's assumptions, could be expected to happen, if peak sewage flaw coincided with weather more severe than a 25-year rainfall, effluent augmented by rainwater would rise to 179.87 NGVD (S.34), then overflow a series of emergency weirs connecting the ponds, flow through an outfall ditch, drain into a depression west of the ponds, enter a grassed roadside ditch, and eventually reach Lake Santa Fe after about a half a mile or so of grass swales. (5.69). Sheet flow and flow through an ungrassed gulley in the direction of Gator Cove (0.154) are other possible routes by which overflowing waters might reach the lake. (0.263). Since the facilities the plant is designed to serve are recreational, wet weather would discourage full use of the facilities and therefore full use of the water treatment system. Effluent traveling over the surface into Gator Cove would wash over vegetation of various kinds. Plants, of course, do take up phosphorous, but they don't do it forever, and if you leave a plant system alone, it will come to a steady state in which there is no net storage of phosphorous in the plant material. (0.166) Whether by sheet flow or by traversing swales, overland flow would reach Gator Cove within hours. Effluent traveling through the surficial aquifer would not reach the lake for at least five years. (S.238-9). It could take as long as 45 years. (0.316). In the course of the effluent's subterranean passage, the soil would take up or adsorb phosphorous until its capacity to do so had been exhausted. In addition, interaction with certain chemicals found in the soil, primarily calcium, precipitates phosphorous dissolved in groundwater. As between adsorption and precipitation, the former is much more significant: "[W]ith a three-meter distance you can expect at least 70 to 80 percent removal of phosphorous just by a a[d] sorption alone." (0.21). Precipitated phosphorous does not return to solution, unless the soil chemistry changes. (0.19) Adsorption, however, is reversible, although not entirely, because of the "hysteresis phenomenon." (0.19) Eventually, a kind of dynamic equilibrium obtains to do with the binding of the phosphorous to soil constituents, binding or precipitation of phosphorous. At some point . all of the binding sites become saturated . [and] the amount of phosphorous leaving, into the lake really, will be equal to the amount of phosphorous going into the the system. When there is no more place to store the phosphorous in the ground, then the output is equal to the input and that is called the steady state. (0.161) Although precipitation of phosphorous would not reach steady state under "conditions that render the phosphorous-containing compound insolu[]ble," (0.168) these conditions were not shown to exist now "much less . . . on into perpetuity." Id. Spring Seep A third possible route by which the effluent might reach lake waters would begin with percolation through the sand, which is to be placed on grade and on top of which the percolation ponds are to be constructed. Underground, the effluent would move along the hydraulic gradient toward the lake unless an impeding geological formation (an aquiclude or aquitard) forced it above ground lakeward of the percolationi ponds. In this event, the effluent would emerge as a man-made spring and complete its trip to Gator Cove, or directly to the lake, overland. The evidence demonstrated that a spring seep of this kind was not unlikely. Relatively impermeable clayey soils occur in the vicinity. A more or less horizontal aquitard lies no deeper than four or five feet below the site proposed for the percolation ponds. Conditions short of an actual outcropping of clayey sand could cause effluent mounding underground to reach the surface. Nor did the evidence show that an actual intersection between horizontal aquitard and sloping ground surface was unlikely. Such a geological impediment in the effluent's path would almost surely give rise to a spring seep between the pond site and the lakes. In the case of the other percolation ponds in this part of the state that do not function properly, the problem is n [U] sually an impermeable layer much too close to the bottom of the pond," (S.179), according to Mr. Frey, manager of DER's Northeast District. Phosphorous in effluent travelling by such a mixed route would be subject to biological uptake as well as adsorption and precipitation, but again a "steady state" would eventually occur. On Dr. Bothcher's assumptions about the conductivity of the clayey sand (or sandy clay) lying underneath the topsoil, the effluent would accumulate as a mound of groundwater atop the clay unit, and seep to the surface in short order; and "after a matter of probably weeks and maybe months, it would be basically of the quality of the water inside of the percolation pond." (0.278). More Phosphorous in Gator Cove The total annual phosphorous load from all existing sources "to the lake" has been estimated at 2,942 kilograms. Assuming an average effluent flow of 17,000 gallons per day from the proposed plant, "the total phosphorous load [from the proposed plant] will be 235 kilograms per annum," (0.16), according to Dr. Pollman, called by SFP as an expert in aquatic chemistry. Even before any steady state condition was reached, 20.75 to 41.5 kilograms of phosphorous, or approximately one percent of the existing total, would reach the lake annually from the proposed plant, on the assumptions stated by Dr. Pollman at 0.22-23 (90 to 95 percent removal of phosphorous in the soils and average daily flow of 30,000 gallons). Santa Fe Lake is more than two miles across and two miles long, and Little Santa Fe Lake, which may be viewed as an arm of Santa Fe Lake, is itself sizeable, with a shoreline exceeding two miles. But Gator Cove is approximately 200 yards by 100 yards with an opening into Santa Fe Lake only some 50 to 75 yards wide. (0.154). On a site visit, Dr. Parks observed "luxuriant growth of submerged plants" (0.154), including hydrilla, in Gator Cove. If a one percent increase in phosphorous were diffused evenly throughout the more than eight square miles Santa Fe Lake covers, there is no reason to believe that it would effect measurable degradation of the quality of the water. Some nutrients are beneficial, and the purpose of classifying a lake is to maintain a healthy, well-balanced population of fish and wildlife. It's hard to see how 1.4 percent increase would lower the ambient quality. But . . . seepage into Gator Cove, which is a much more confined place [100 by 200 yardsj [would make it] quite probable that there would be a lowering of ambient water quality in the site . R] educed dispersion . . . in this cove would allow . . . phosphorous to build up. (0.156) Overland effluent flow to Gator Cove would increase concentrations of phosphorus there, with a consequent increase in the growth of aquatic plants, and the likely degradation of waters in the Cove, unless rapid and regular exchange of lake and cove waters dispersed the phosphorous widely, promptly upon its introduction Except for testimony that wind-driven waves sometimes stir up phosphorous laden sediments on the bottom, the record is silent on the movement of waters within and between Lake Santa Fe and Gator Cove. The record supports no inference that phosporous reaching Gator Cove would be dispersed without causing eutrophic conditions significantly degrading the water in the Cove. Neither does the record support the inference, however, that effluent moving underground into the lakes would enter Gator Cove. On this point, Dr. Bottcher testified: [T]he further away from the lake that you recharge water the further out under a lake that the water will be recharging into the lake; gives it a longer flow . . . it's going to migrate and come up somewhat out into the lake. (0.281-2) Phosphorous in the quantities the treatment plant would produce, if introduced "somewhat out into the lake" would probably not degrade water quality significantly, notwithstanding testimony to the contrary. (0.349, 354). Sands and Clays DER gave notice of its intent to deny SFP's original application because SFP proposed to place the pond bottoms approximately two and a half feet above an observed groundwater table. Placement in such proximity to groundwater raised questions about the capacity of the ground to accept the effluent. In its revised application, SFP proposes to place sand on the existing grade and construct percolation ponds on top of the sand. By elevating the pond bottoms, SFP would increase the distance between the observed groundwater table and pond bottoms to 5.2 feet. (S.256, 257). This perched water table, which is seasonal, is attributable to clayey sand or sandy clay underlying the site proposed for the percolation ponds. Between January 9, 1985, and January 17, 1985, "following a fairly dry antecedent period," (S.229) Douglas F. Smith, the professional consulting engineer SFP retained to prepare the engineering report submitted in support of SFP's permit applications, conducted six soil borings in the vicinity of the site proposed for the plant. One of the borings (TB 5) is in or on the edge of a proposed percolation pond and another (TB 4) is slightly to the north of the proposed pond site. Three (TB 1, 2 and 3) are east of the proposed pond site at distances ranging up to no more than 250 feet. The sixth is west of the proposed site in a natural depression. Mr. Smith conducted a seventh test boring under wetter conditions more than a year later a few feet north of TB 4. Finally, on September 5, 1986, during the interim between hearing days, Mr. Smith used a Shelby tube to obtain a soil sample four to six feet below grade midway between TB 4 and TB 5. 1/ The sites at which samples were taken are at ground elevations ranging from 173 to 178 feet above sea level. From the original borings and by resort to reference works, Mr. Smith reached certain general conclusions: The top four feet or so at the proposed pond site consists of silty sand, 17 percent silt and 83 percent quartz sand. This topsoil lies above a two-foot layer of clayey sand, 20 percent clay, 6 percent silt and 74 percent sand. Below the clayey sand lies a layer some eight feet thick of dense, silty sand, 23 percent silt, 7 percent clay and 70 percent sand, atop a one and one-half foot layer of clayey sand, separating loose, quartz sands going down 40 feet beneath the surface from what is above. These formations "are very heterogeneous, in the sense of the position and occurrence of the clay layers or the sandy layers . . .," (0.230) and all occur within the surficial aquifer. "There are layers of clay within it, and so perched water tables are rather common." (0.225). In March of 1986, the regional water table was some 17 feet down. SFP Exhibit 1B. Below the surficial aquifer lie the Hawthorne formation and, at a depth of 110 feet, the limestone of the Floridan aquifer. The soils above the Hawthorne formation are not consolidated. (S.254, 255). Conductivity Measurements The applicant offered no test results indicating the composition or conductivity of soils lying between the easternmost test boring and Gator Cove, some 1,200 feet distant. No tests were done to determine the conductivity of the deeper layer of clayey sand beneath the site proposed for the ponds. Tests of a sample of the topsoil in TB 7 indicated horizontal permeability of 38.7 feet per day and vertical permeability of six feet per day. On the basis of an earlier test of topsoil in TB 3, "hydraulic conductivity of the surface soils was measured to be 8.2 feet per day. . . ." SFP's Exhibit No. 1B. From this measurement, vertical hydraulic conductivity was conservatively estimated at .82 feet (9.84 inches) per day. Id. The design application rate, 2.41 inches per day, is approximately 25 percent of 9.84 inches per day. Id. The initial test done on a sample of the clayey sand, which lay beneath the topsoil at depths of 3.5 to 5.5 feet, indicated a permeability of 0.0001 feet per day. Thereafter, Mr. Smith did other testing and "made some general assumptions" (S. 235) and concluded that "an area-wide permeability of this clayey sand would be more on the order of 0.0144 feet per day." (S. 234). Still later a test of the sample taken during the hearing recess indicated hydraulic conductivity of 0.11 feet per day. SFP's Exhibit No. 10. The more than thousandfold increase in measured conductivity between the first laboratory analysis and the second is attributable in some degree to the different proportions of fines found in the two samples. The soil conductivity test results depend not only on the composition of the sample, but also on how wet the sample was before testing began. Vertical Conductivity Inferred On March 6, 1986, ground water was observed on the site about two and a half feet below the surface. SFP's expert, Mr. Smith, concluded that it was "essentially a 1.5 foot water table, perched water table over the clay." (0.422). There was, however, groundwater below, as well as above, the clay. On March 12, 1986, the water table at this point had fallen six inches. In the preceding month rainfall of 5.9 inches had been measured in the vicinity, after 5.1 inches had been measured in January of 1986, but in November and December of 1985 "there was a total of 0.6 inches of rainfall." (0.421). Later in the year, notwithstanding typically wet summer weather, no water table was measured at this point. From this Mr. Smith concluded that, once the clayey sand layer is wetted to the point of saturation, conductivity increases dramatically. If that were the case, a more or less steady stream of effluent could serve to keep the clayey sand wetted and percolation at design rates should not be a problem. But Dr. Bottcher, the hydrologist and soil physicist called as a witness for the Association, testified that the six- inch drop over six days could be attributed, in large part, to evapotranspiration. He rejected the hypothesis that the clayey sand's conductivity increased dramatically with saturation, since "the actual water table was observed . about three weeks after the very heavy rainfall had stopped" (0.290) and had probably been present for at least a month; and because the soil survey for Alachua County reports that perched water tables ordinarily persist for two months (0.227) in this type of soil. Certain soils' hydraulic conductivity does diminish with dessication, but such soils usually regain their accustomed conductivity within hours of rewetting. Dr. Bottcher rejected as unrealistically optimistic the assumption SFP's expert made about the conductivity of the clayey sand on grounds that "the conductivity that . . . [SFP] used, if you went out there you couldn't perch a water table for a month." (0.277). In these respects, Dr. Bottcher's testimony at hearing has been credited. In the opinion of the geologist who testified on behalf of the Association, Dr. Randazzo, a minimum of seven or eight additional augur borings in "definitive patterns to the northeast and to the northwest" (0.240) to depths of 15 to 20 feet, with measurements within each augur boring every two feet, are necessary to determine "how permeable the soils are and how fast the waters would move through them." (0.240). This testimony and the testimony of the soil physicist and others to the same general effect have been credited, and Mr. Smith's testimony that no further testing is indicated has been rejected. Wet Ground In the expert opinion of a geologist who testified at hearing, "it is reasonable to assume that saturation conditions of the surficial aquifer in this area can be achieved," (0.238) even without adding effluent from a wastewater treatment plant. The evidence that soils in the vicinity of the site have a limited capacity to percolate .water came not only from engineers and scientists. Charles S. Humphries, the owner of the property 150 feet from the proposed percolation site, "put a fence post line . . . every ten feet, and every ten feet [he] hit clay." (0.372). Three quarters of an inch of rain results in waters standing overnight in neighboring pastures. In parts of the same pastures, rain from a front moving through "will stay for a week or so." (0.373). It is apparent that the area cannot percolate all the rainfall it receives. This is the explanation for the gully leading down toward Gator Cove. Six-feet deep (0.377), "the gully is a result of natural surface runoff." (0.263).

Florida Laws (1) 403.087
# 6
FLORIDA ATLANTIC DEVELOPMENT CORPORATION vs. DEPARTMENT OF ENVIRONMENTAL REGULATION, 78-000175 (1978)
Division of Administrative Hearings, Florida Number: 78-000175 Latest Update: Apr. 30, 1979

Findings Of Fact Petitioner represents the owner of the property here involved, St. John's Riverside Estates, and was authorized by the owner to prosecute this appeal (Exhibit 19). Some years ago, circa 1960, the owner of the property dredged canals in each of the two parcels here involved, but the plug between the canals and the St. Johns River was not removed. Petitioner now proposes to remove these plugs and maintenance dredge a channel from the location of the removed plug to the St. Johns River. Spoil from the maintenance dredging will be deposited on lands owned by Petitioner. The existing canals are typical dead-end canals which are stagnant at present. By removing the plugs and opening the canals to the St. Johns River, Petitioner will improve the water quality of these canals. Developing the property along the canals as residential homesites will result in additional nutrients and pollutants entering the canals from surface water runoff. Petitioner proposes to use surface water runoff as one method of flushing the canals. Other flushing action would come from tidal flow in the St. Johns River. Although there was some conflict in the testimony regarding the propriety of using the rainfall from a twenty-five year storm event in lieu of of a one-year storm event to calculate the flushing action of the canals by rainfall, use of surface water to flush the canal appears to violate the provisions of Chapter 403, Florida Statutes, respecting water quality. As a condition to the development of the property, Respondent could require Petitioner to hold the surface water runoff in retention ponds to reduce the entry of pollutants into the river. If this was done, percolation and evaporation would further create a substantial reduction in flushing from this source. The St. Johns River is a Class III water body of the state. The water quality of the canals here under consideration are below the state water quality standards with respect to dissolved oxygen levels even using the samples taken during the winter months when dissolved oxygen levels are high. (Exhibits 1, 2 and 3). Generally, dissolved oxygen levels are lower at the bottom of such canals than at the surface. If the samples taken at the surface and bottom during the winter months are averaged for dissolved oxygen content, the result will be above the state minimum water quality standards. However, the dissolved oxygen of samples taken from the canals on May 5 and October 4, 1978, are predominately below the level of 5 mg/l prescribed as the minimum state standard. Removing the plugs would not result in satisfactory flushing of these canals by tidal action. Under the best assumed conditions, it would require 18 tidal cycles or 9 bays to flush 90 percent of the water from these canals by tidal action. An acceptable flushing rate is 2 to 3 days. These canals contain water hyacinths and grasses which increase the biochemical oxygen demand (BOD) which reduces the dissolved oxygen level. Not only do these vegetations reduce photosynthesis by shading the water from sunlight, but also when they die and fall to the bottom, they create a high BOD. Considerable evidence was presented depicting the area, the flora and fauna of the area and the present condition of the water quality of these canals. No evidence was presented to the effect that removing the plugs and allowing interchange between the low quality waters of the canals and the higher quality waters of the St. Johns River would not degrade the water quality of the St. Johns River. Also, no evidence was presented that the residential development of the area as proposed would not increase the coliform count, detergent level, or heavy metals content of the waters of the canals which would further cause a degradation of the river water if the plugs are removed and the waters of the river and canals are interchanged.

Florida Laws (1) 403.088
# 7
GLENN E. WOODARD vs DEPARTMENT OF HEALTH, 98-001003 (1998)
Division of Administrative Hearings, Florida Filed:Lakeland, Florida Mar. 03, 1998 Number: 98-001003 Latest Update: Nov. 06, 1998

The Issue Did Petitioner violate Section 386.041 and Section 381.0065, Florida Statutes, as alleged in the Citation for Violation Onsite Sewage Program/Sanitary Nuisance?

Findings Of Fact Upon consideration of the oral and documentary evidence adduced at the hearing, the following relevant findings of fact are made: At all times pertinent to this proceeding, the Department, through the Polk County Health Department, was the agency of the State of Florida charged with the responsibility of issuing permits for the construction, installation, modification, abandonment, or repair of onsite sewage treatment and disposal systems. The property in question is a duplex apartment building owned by Respondent and located at 1101-1103 Old South Drive, Lakeland, Florida. The two apartments in the duplex are serviced by a single septic tank and drainfield. In the summer of 1997, Petitioner determined that the drainfield needed repair and engaged the services of an individual who was not licensed to repair drainfields. Additionally, Petitioner did not obtain a permit for the repair to the drainfield. During the fall of 1997, Petitioner continued to experience trouble with the drainfield. Thereafter, on two separate occasions, Petitioner engaged the services of Burns Septic Tank Company (Burns) and Central Fla. Septic Tank Co. (Central) to pump-out the septic tank. Both Burns and Central indicated on their invoices for pumping out the septic tank that the drainfield was in need of repair. On December 9, 1997, after receiving a complaint from one of Petitioner’s tenants, the Department’s Environmental Specialist, Wade Schulz, made an inspection of the septic tank and drainfield at 1101-1103 Old South Drive, Lakeland, Florida. Schulz’s inspection revealed that the septic tank was backing up at the duplex apartments and that the septic tank D-box, old rock, and the drainfield pipe were exposed to the ground. Additionally, it was discovered that septage was flowing directly from the system to a wet drainage ditch. On December 9, 1997, Schulz verbally notified Petitioner that the system was in violation of: (a) Section 386.041, Florida Statutes (Nuisance injurious to health); (b) Section 381.0065, Florida Statutes (Prior approved system shall remain in operating condition); and (c) Section 381.0065, Florida Statutes (No person shall repair without permit). A written copy of the Citation for Violation Onsite Sewage Program/Sanitary Nuisance (Citation) was mailed to Petitioner but was returned as undeliverable. A copy of the Citation was personally served on Petitioner on January 23, 1998. After receiving the verbal citation from Schulz, Petitioner engaged Robby’s Septic Tank Service and had the septic tank pumped out. Other than pumping out the septic tank, Petitioner has made no other effort to correct the problem. After receiving the Citation, Petitioner met with the Department’s representative in an attempt to work out a solution. However, Petitioner contended that there was nothing wrong with the drainfield and refused to pay any fine. On July 9, 1998, the Department visited the site again and found that nothing had been done to correct the problem. Furthermore, the Department found that the system was still being improperly maintained. It was the opinion of both Schulz and Tony Warr, the Department’s Environmental Supervisor, that the only way to correct the problem was to completely repair the drainfield. It was Petitioner’s contention that the drainage ditch was clogged up resulting in a high water table around the drainfield and that if Polk County cleaned out the drainage ditch, allowing the water to flow off, it would resolve the problem of the drainfield. While the drainage ditch may be a problem, there was insufficient evidence to show that unclogging the drainage ditch would resolve the problem of the drainfield. It is clear that Petitioner’s drainfield is not operating properly and is in need of repair.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is recommended that the Department enter a final order finding the Petitioner guilty of the violations as charged and requiring Petitioner to pay a fine in the amount of $1,500.00 as set forth in the Citation for Violation Onsite Sewage Program/Sanitary Nuisance, Part 6. DONE AND ENTERED this 11th day of August, 1998, in Tallahassee, Leon County, Florida. WILLIAM R. CAVE Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6947 Filed with the Clerk of the Division of Administrative Hearings this 11th day of August, 1998. COPIES FURNISHED: Angela T. Hall, Agency Clerk Department of Health Bin AO2 2020 Capital Circle, Southeast Tallahassee, Florida 32399-1703 Dr. James Howell, Secretary Department of Health 1317 Winewood Boulevard Building 6 Room 306 Tallahassee, Florida 32399-0700 Glenn E. Woodard, pro se Post Office Box 2000 Eaton Park, Florida 33801 Roland Reis, Esquire Department of Health 1290 Golfview Avenue, Fourth Floor Bartow, Florida 33830

Florida Laws (3) 120.57381.0065386.041
# 8
MORRIS KRAMER vs. WILLIAM SPIKOWSKI ET AL., 81-001494 (1981)
Division of Administrative Hearings, Florida Number: 81-001494 Latest Update: Nov. 01, 1991

Findings Of Fact The proposed wastewater treatment and disposal system is a stationary installation which may reasonably be expected to be a source of pollution. It will consist of a secondary treatment plant employing an aerobic process, and tertiary treatment utilizing a polishing filter. The effluent produced by these processes will be routed through a disposal field of 2,500 square feet in area, which is of adequate size and construction to handle peak loading. Effluent will be discharged into the disposal field through a distribution box and thereafter percolate through the soil. It will then mix with the groundwater and move toward Jug Creek, eventually flowing into Charlotte Harbor, a Class II waterbody (See Section 17- 3.051, F.A.C.). The efficiency of the system in removing five-day biochemical oxygen demand (BOD) and suspended solids will exceed 90 percent. The aerobic process will remove 10 to 15 percent of the nitrates and phosphates in the effluent. Further removal of these nutrients will occur through percolation and the planned vegetative ground cover. As a result, the groundwater will not contain significant quantities of these nutrients when it reaches the surface waters. Groundwater at this site is subject to tidal action and to occasional tidal flooding. In circumstances where unusually high tides result in a high water table, the expected nutrient removal by soil and vegetation may not take place. Similarly, hurricane flooding could cause effluent which is not fully treated to reach surface waters. The engineers employed by the applicant and the Department of Environmental Regulation have made on-site inspections to determine the level of the water table and soil conditions. They analyzed health department information on fecal coliform and the experience with septic tanks and other disposal plants located in this area. These findings have been incorporated into the system design and proposed location of the polishing pond. The Department requested relocation of the latter facility so as to provide 100 feet separation from the nearest surface waters, and thereafter issued its notice of intent to approve the application.

Recommendation Based on the foregoing, it is RECOMMENDED: That a Final Order be entered by the State of Florida Department of Environmental Regulation granting the applicant, Morris Kramer, a permit to construct a sewage treatment and disposal facility with a design hydraulic capacity of 7,500 gallons. DONE AND ENTERED this 4th day of November, 1981, in Tallahassee, Florida. R. T. CARPENTER, Hearing Officer Division of Administrative Hearings The Oakland Building 2009 Apalachee Parkway Tallahassee, Florida 32301 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 4th day of November, 1981. COPIES FURNISHED: Paul R. Ezatoff, Jr., Esquire Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32301 James H. Seals, Esquire Post Office Box 2040 Fort Myers, Florida 33902 William H. Grace, Esquire Post Office Box 1480 Fort Myers, Florida 33902

Florida Laws (3) 120.57403.086403.0876
# 9
PEACE RIVER CAMPGROUND, D/B/A GEORGE LEMPENAU vs DEPARTMENT OF HEALTH, 97-001713 (1997)
Division of Administrative Hearings, Florida Filed:Arcadia, Florida Apr. 07, 1997 Number: 97-001713 Latest Update: Nov. 24, 1997

The Issue Are Petitioner’s outside water supply connections in violation of Rule 10D-26.120(2) and (3)(a), Florida Administrative Code, and, if so, should Petitioner be assessed an administrative fine for such violation?

Findings Of Fact Upon consideration of the oral and documentary evidence adduced at the hearing, the following relevant findings of fact are made: Petitioner is permitted by the Department in accordance with Chapter 513, Florida Statutes, to operate the Peace River Campground, (Campground) which is a Recreational Vehicle (RV) Park (182 spaces) and a Mobile Home (MH) Park (15 spaces), annual permit number 14-010-97. The Campground’s water is supplied by a community public water utility company. Each RV and MH space has an outside water tap as required by Chapter 10D-26, Florida Administrative Code. Many of the outside water taps do not have a backflow or back-siphonage prevention device installed on them. On February 6, 1997, the Department conducted a routine inspection of the campground and determined that the campground was in violation of Rule 10D-26.120(2) and (3)(a), Florida Administrative Code, for failing to have the required backflow or back-siphonage prevention. The citation required Petitioner to install backflow or back-siphonage prevention by February 28, 1997, the next scheduled inspection date. On February 28, 1997, the Department conducted a follow-up inspection of the Campground’s water system and determined that the alleged violation had not been corrected. Petitioner disagreed with the Department’s determination that the Campground’s water system was not in compliance with Rule 10D-26.120(2) and (3)(a), Florida Administrative Code, for failing to have the Campground’s water system designed or constructed to prevent backflow or back-siphonage. On February 28, 1997, the Department issued a citation of violation (citation) to Petitioner alleging a violation of Rule 10D-26.120(2) and (3)(a), Florida Administrative Code, for failing to have the Campground’s water supply connection designed or constructed to prevent backflow or back-siphonage. The Campground’s water connections at each RV and MH site have water taps which are above ground and have standard water shut-off valves. The Campground’s water system has good water pressure of approximate 70-100 pounds pressure per square inch (psi). The Campground’s outside water taps are neither constructed nor designed to prevent backflow or back-siphonage in the event the water pressure drops to a point which would allow backflow or back-siphonage, such as if the water main feeding the Campground’s water system broke. If the water pressure in the Campground’s water system should drop allowing backflow or back-siphonage, hazardous material could possible be injected in the water system. Although there has never been a recorded incident of backflow or back-siphonage into the Campground’s water system, without the some type of backflow or back-siphonage preventer being installed there remains a potential for this to happen. The Campground’s outside water connections would not prevent backflow or back-siphonage under certain conditions and are not in compliance with Rule 10D-26.120(2) and (3)(a), Florida Administrative Code. There are six basic types of devices that are recognized by the Environmental Protection Agency and the engineering profession which prevent backflow and back-siphonage. These devices are: (a) air gaps; (b) barometric loops; (c) vacuum breakers--both atmospheric and pressure type; (d) double check with intermediate atmospheric vent; (e) double check valve assembler; and (f) reduced pressure principle devices. The Department does not mandate which device the Petitioner must install, only that a proper device be installed which will prevent backflow or back-siphonage. A hose bib vacuum breaker such as Department’s Exhibit 3 provide the minimum protection against backflow or back-siphonage and is considered acceptable for compliance with Rule 10D- 26.120(2) and (3)(a), Florida Administrative Code.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is recommended that the Department enter a Final Order assessing an administrative fine in the amount of $150.00. DONE AND ENTERED this 27th day of August, 1997, in Tallahassee, Leon County, Florida. _ WILLIAM R. CAVE Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (904) 488-9675 SUNCOM 278-9675 Fax Filing (904) 921-6947 Filed with the Clerk of the Division of Administrative Hearings this 27th day of August, 1997. COPIES FURNISHED: Susan Martin Scott, Esquire Department of Health Post Office Box 60085 Fort Myers, Florida 33906 George Lempenau, pro se Peace River Campground 2998 Northwest Highway 70 Arcadia, Florida 34266 Angela T. Hall, Agency Clerk Department of Health 1317 Winewood Boulevard Building 6 Tallahassee, Florida 32399-0700

Florida Laws (3) 120.57513.055513.065
# 10

Can't find what you're looking for?

Post a free question on our public forum.
Ask a Question
Search for lawyers by practice areas.
Find a Lawyer