Findings Of Fact Background On January 29, 1981 respondent/applicant, George H. Hodges, Jr. (applicant or Hodges), filed application number 16 39644 with respondent, Department of Environmenta1 Regulation_ (DER), seeking a dredge and fill permit to generally authorize the excavation of 26,000 cubic yards of material from a 3,700 foot portion of an existing channel (Old Pablo Creek) just west of the Intracoastal Waterway (ICW) in Jacksonville, Florida. The channel then proposed was a straight channel along the northern boundary of his property. Hodges also sought to construct two boat slips, three floating docks, an 850 foot vertical bulkhead adjacent to the docks, and to dispose of all dredged material in a diked upland site. Thereafter, DER informally advised applicant that it intended to deny the application for various reasons, including the fact that the dredging would eliminate .75 acres of marsh and wetlands. After receiving this advice, Hodges proposed a series of amendments to his application in 1984 and 1985 in an effort to counter and satisfy DER's objections. The final amendment was made on September 10, 1985. As finally amended, Hodges proposed to confine all dredging to existing salt channels, thereby eliminating the objection that adjacent marshes would be destroyed. Applicant also proposed to restrict his dredging to only 2,250 feet along the northern portion of Old Pablo Creek and to remove 29,250 cubic yards of fill (silt) and sand and place the same in a 12.5 acre upland spoil site. By proposed agency action issued on February 28, 1985, DER announced it intended to issue the requested permit. This prompted a protest and request for hearing from petitioner, Jacksonville Shipyards, Inc. (JSI), which owns and operates a ship repair facility on the ICW just south of the proposed project. In its petition, JSI generally alleged that (a) Hodges had failed to give reasonable assurances that water quality standards would not be violated, (b) the project would adversely affect its property, (c) the project would have an adverse effect on the conservation of fish and wildlife, (d) the project would cause harmful erosion or shoaling, (e) DER failed to consider the long-term effect of the project on marine productivity and the cumulative impact of the project, and (f) the proposed vertical bulkhead did not meet statutory requirements. The Project The project site is a shallow horseshoe shaped creek approximately 3,700 feet in length which meanders through a vegetated salt marsh just west of the ICW in Duval County, Florida. Both ends of the creek connect into the ICW. The site is approximately one-half mile north of the bridge on Atlantic Boulevard which crosses the ICW. The ICW is a man-made channel constructed by the U. S. Corps of Engineers which runs in a north-south direction just east of the project site. It is commonly referred to as Pablo Creek. The channel or creek in which the dredging will occur is known as Old Pablo Creek (creek). An excellent aerial view of the entire area is shown in petitioner's exhibit 4 received in evidence. The creek is a predominately marine water classified as a Class III water of the State. Accordingly, it is subject to DER's regulatory jurisdiction. For purposes of this hearing, the parties have referred to the upper and lower portions of the creek as the northern and southern portions, respectively. Hodges intends to dredge the northern portion of the creek, which measures approximately 2250 feet in length from the ICW to a bend at its western end which crosses Hodges' property and where a residential site is located. According to Hodge's affidavit of ownership, he is the "fee interest owner of adjoining lands except for the dredge channel which is owned by the State of Florida". He acknowledged, however, that the residential site is owned by his superintendent, and that the marshes adjoining the most southern bend in the northern portion of the creek, and the southern portion of the creek, are owned by JSI. Except for the cleared residential site at its western end, the creek is surrounded by vegetation and salt marshes. The vegetated portion of the marsh is marked by a clearly delineated edge which separates it from the creek bottom. The dominant species of vegetation in the marsh are Juncus and Spartina. The marsh serves as a habitat and breeding ground for numerous species, including fiddler crabs, mussels, barnacles, mollusks, faunal communities and gastropods. In addition, the marsh is beneficial because of its biotic productivity and entrapment of nutrients and sediments. For this reason, the habitat should be maintained. Some forty years ago, the portion of the creek that Hodges intends to dredge was eight to twelve feet deep. However, dredging of the ICW by the Corps of Engineers and the placement of fill at the site of the Atlantic Boulevard Bridge have contributed to the shallowing of the creek over time. Today, portions of the creek are exposed and impassable under low tide conditions. Indeed, many parts of the creek are dry during the low tide phase of the ICW. At high tide, the creek is flooded to an approximate depth of four feet. Hodges proposes to dredge the creek channel to a uniform depth of five feet below mean low water (MLW) with side slopes at a 3:1 ratio to restore navigational access from his upland property to the ICW. He has represented that his use of the channel will be restricted to one, or possibly two, small boats for personal use and enjoyment. When completed, the creek channel will have a depth of nine feet at high tide, or an average depth of seven feet over a diurnal cycle. In his amended application, Hodges proposed to confine his dredging to existing creek channels, and to not disturb the actual body of the salt marsh or the vegetation bordering the creek. It is noted that there is no vegetation growing in the existing creek bottom. However, at hearing he conceded that dredging "may include some minor removal of isolated patches of grass growing in the creek channel". One such patch of grass lies in the elbow of the canal which reaches south of Hodges' property, a patch separated from the main body of the marsh by a five foot wide slough deep enough to be navigated at high tide. Hodges estimates this patch of grass to be less than 1/100 of an acre in size (10' x 40') and maintains the effect of its removal would be negligible. The excavation will be effected by means of a Mud Cat hydraulic dredge which operates by suctioning the sediment and water into a pipe. The dredge material (sediment/water mixture) will then be pumped into a series of containment cells on a 12.5 acre upland spoil site that lies approximately one-half mile northeast of the project. Any discharge from the spoil site will be to Greenfield Creek, a tidally influenced creek connected to the St. Johns River. The natural grade of the existing creek bottom is at or below the mean low water datum. At high tide the existing creek is 4.3 feet deep at its deepest point and gradually slopes upward to a depth of 2.4 feet near the marsh. The elevation of the creek where it meets the marsh is close to mean high water. Even so, the channel width does not always correspond with the mean high water line boundaries of the creek, and creek waters sometimes inundate and extend back into the marsh at high tide. Because Old Pablo Creek is tidally influenced, any water quality violations in the northern portion of the creek can be expected to also have an adverse effect in the southern portion as well. Creek Width Petitioner has raised the issue of whether the creek is as wide as Hodges represents it to be on the drawings attached to the amended application. This is significant since (a) the engineering plans are based upon the assumption that the measurements in the application are correct, (b) the proposed dimensions (depth and side slopes) of the new channel are dependent upon the existing creek having a minimum width of from sixty to eighty feet, as represented by Hodges, and (c) any excavation outside of the existing channel will result in the removal (destruction) of vegetation and marsh. In his application, Hodges reflects the top width of the creek to be sixty to eighty feet, which width will enable him to dredge the channel to an average depth of five feet below MLW, and maintain a side slope ratio of 3:1. This ratio is necessary because of the composition of the sediment in the creek. The minimum top width required to excavate a channel with 3:1 side slopes to a depth of five feet below MLW is fifty- four feet. Petitioner's exhibit 4 identifies five points along the eastern half of the northern portion which have been measured by the parties to determine the actual width of the creek. Although only five points were measured, it may be inferred that these distances are representative of the creek's width throughout its eastern half. At points five through eight, the widths are forty-nine, thirty-five, fifty and fifty feet, respectively, which are less than the measurements contained in the application. If the channel is constructed with the minimum top width (54 feet) required to have 3:1 side slopes, it will result in the elimination of 6 feet of marsh at point 5, 19.5 feet of marsh at point 6, and 4.1 feet of marsh at both points 7 and 8. This equates to the elimination of approximately .33 acres of marsh. Since the above measurements are representative of the eastern half of the northern portion, other areas of vegetation, albeit in unknown proportions, would also have to eliminated. If, for example, applicant attempts to construct a channel within the confines of the portion of the creek that has a top width of only thirty-five feet (point 6), the maximum channel that could be constructed would be V-shaped with a depth of one foot at low tide. Assuming the remaining part of the channel was excavated to -5' MLW, a stagnant area would develop in this portion of the channel and adversely affect water quality. However, to counter the problem at point 6, Hodges intends to remove one patch of grass 10' by 40' in size to achieve the desired width. Any adverse effects on the adjacent marsh at that particular point would be negligible. Because the estimated creek width is not accurate, even the agency now concedes the engineering plans are no longer useful. As a condition to the issuance of a permit, DER has suggested that Hodges be required to submit new certified engineering drawings depicting the proposed cross-section of the channel. It also suggests that the proposed cross-section comply with the top-widths depicted in applicant's exhibit 53, and depict side-slopes of three to one. It further suggests that a condition for the issuance of any permit be a requirement that the 3:1 ratio be maintained, and that other than point 6, no other grass be removed. Finally, the agency proposes that if the new plans and conditions do not permit a -5 MLW depth, the proposed depth be reduced accordingly. However, the evidence supports a finding that either vegetation must be removed at various points along the eastern half of the creek in order to maintain a 3:1 ratio for side slopes, or the depth must be reduced. By reducing the depth at certain points, stagnant areas in the creek will develop, thereby adversely affecting the quality of the water. Further, as noted hereinafter, the validity of the flushing analysis performed by applicant's experts rests upon the assumption that a -5' MLW uniform depth will be used. Finally, the applicant has not given reasonable assurance that the marsh and habitat will not be adversely affected by the elimination of the vegetation which is necessary to achieve the desired depth and concomitant 3:1 ratio. Therefore, the alternative conditions suggested by DER are neither reasonable or appropriate. The Spoil Area The spoil area to be used by applicant is a 12.5 acre upland disposal site approximately one-half mile northeast of Hodges' property. Applicant does not own the upland spoil site but has obtained easements from the owner which expire in March, 1987. In other words, he must complete all work on the project by that date or lose access to the property. The proposed spoil site is completely diked, and is sectioned off into three sections by interior dikes with overflow pipes. Internal baffles and silt fences are also designed into the area. Uncontradicted testimony established that the spoil area is "unusually well designed". Any discharge from the spoil area will be to Greenfield Creek, a tidally influenced creek connected to the St. Johns River. Discharge, if any, will be outfall from an overflow structure in the third section of the spoil area to a dump area land then by sheet flow to salt marshes adjacent to Greenfield Creek. The vegetation in Greenfield Creek consists of a salt marsh expanse of Spartina alterniTlora and Juncus roemerianus. Both species survive in and are indicative of regular introduction of saline waters, and show high tolerance to varying salinity levels. If saline waters from Old Pablo Creek were introduced into Greenfield Creek, it would have no adverse impact on the Greenfield Creek ecosystem. The size of the site was originally designed for a project of 100,000 cubic yards. The site will retain all |effluent from the dredging. The expected total effluent, both sediment and water, is roughly 5.3 million cubic feet of material, assuming a ratio of 6.7 cubic feet of water for each |cubic foot of sediment dredged. This is slightly lower than the 5.4 million cubic feet total capacity of the site. The supernatant from the discharge being deposited into the first cell of the spoil area will only flow into the next cell when the first cell fills and the level of the supernatant rises above the top of the vertical drain pipe overflow structure. If rainfall events cause the cells to fill with water during dredging and discharge operations, the discharge to the next cell or to Greenfield Creek will be primarily fresh water. This will occur because introduction of fresh rainwater into the brackish water from the dredge area will cause stratification, and the fresh rainwater will form a layer on top that will flow into the overflow structure. Turbidity Effects In removing the mud bottom from the creek to a depth of -5' MLW, some turbidity will occur. This is a natural by- product of using the hydraulic dredge. However, the amount of turbidity, and its effect on the waters at the dredge site and discharge point, are in issue. State water quality standards prohibit the discharge of water with a turbidity level greater than twenty-nine nephelometric units (NTU's) above the background levels of the receiving waters. The evidence indicates that the background turbidity levels at the creek are now in the range of ten to twenty NTV's. Excessive levels can result in adverse effects on local biota such as decreasing productivity by reducing light penetration. Excessive turbidity can also be expected to suffocate organisms. The area to be dredged contains sediment deposited from the surrounding salt marsh and carried in from the ICW. The sediment is composed of 14% clay, with the remainder being sand and silt. This was confirmed by a laboratory analysis conducted by JSI. As a general rule, the coarser the material, the faster it tends to settle out thereby creating less turbidity problems. Therefore, sand, which is of a grain size, can be expected to settle out quickly while silt takes somewhat longer. However, clay size particles are much smaller than silt and do not settle out as easily. Applicant made no laboratory analysis of sediment and consequently he erroneously assumed the mud to be sand and silt, and did not take the clay particles into account. The dredging in the creek will cause the turbidity levels to rise to 150 NTU's. However, the placement of a turbidity screen at the entrance to the ICW will prevent the release of this turbidity into that water body. Therefore, if a permit is issued, such screens should be used by Hodges at the dredge site. At the spoil site, clay size particles will also be included in the matter pumped for discharge. If these particles do not settle out, or are not treated, their discharge into Greenfield Creek (a jurisdictional water) will cause violations of the turbidity standards. To counter their effects, flocculants (chemicals) should be added when necessary to the confined material to aid the particles in settling. If a permit is issued, this should be made a condition in the permit. Dissolved Oxygen Impacts The dissolved oxygen (DO) levels in the creek fluctuate on a daily and seasonal basis. As a general rule, DO levels tend to be lower in warmer weather and during the early morning hours. Therefore, a "worst case" situation will generally occur in the summer months in the early part of the day. State water quality standards contained in Rule 17- 3.121(13), F.A.C., provide that in predominately marine waters, the concentrations of DO "shall not average less than 5 milligrams per liter in a 24-hour period and shall never be less than 4 milligrams per liter." Sampling conducted by petitioner at 5:00 a.m. in early July, 1986 during high tide revealed readings ranging from 3.06 mg/1 in the western portion of the creek to 4.59 mg/1 at the mouth of the creek. Dissolved oxygen levels in the ICW ranged from 3.94 to 4.68 mg/1. Hodges also sampled the creek and ICW in the late morning or early afternoon on August 6,1986 and determined DO levels to be 4.8 mg/1 in the creek and 5.8 mg/1 in the ICW. Testing at that hour of the day produced higher values than those found by JSI. The readings collectively confirm that DO levels in the creek are approximately 1.0 mg/1 less than the DO levels in the ICW. This deficit is primarily caused by the high oxygen demand exerted by the adjacent marsh and muds in the creek. This situation will not be changed by the dredging. The flushing time of the creek channel is an important factor in predicting post-dredging impacts on water quality. Flushing time determines how rapidly waters of the ICW will exchange and mix with the water in the creek channel. Both Hodges and JSI conducted tidal prism studies to determine how many tidal cycles would be required to flush a hypothetical pollutant to 10% of its initial concentration. Under worst case conditions, the channel is expected after dredging to flush every 3 to 4 tidal cycles or 1.6 days. Under more favorable conditions, the creek is expected to flush every 2 to 3 tidal cycles. This compares with the current system which flushes almost 100% every tidal cycle or once every twelve hours. The increased flushing time is due to the significantly greater volume of water that will enter the creek channel after dredging. Because of increased channel depths, the water will move at a slower velocity. Therefore, the oxygen consuming components have a longer period of time to react in the water column. This in turn will cause reductions in DO levels of between .7 mg/l and 1.5 mg/l in the creek. This was confirmed through tidal prism modeling performed by JSI. In this regard, it is noted that JSI's modeling was more sophisticated, better calibrated, and its assumptions were more accurate and reasonable. Consequently, its testing results are considered to be more reliable and persuasive than that of applicant. It must also be recognized that the deepening of those areas that are currently exposed at low tide will allow water to move more easily through the channel and remove some oxygen demanding sediments that now draw from a shallow water column. This will tend to have a beneficial effect on water quality. However, the overall impact of these beneficial effects is unknown, and it was not demonstrated that the otherwise adverse effect on DO will be offset or minimized by the unmeasured impact of deepening the shallow areas. Therefore, applicant has not given reasonable assurance that water quality standards will not be violated by the project. At the same time, it must be further noted that a reduction in the channel depth due to the smaller width of the creek will alter the results of the tidal prism studies, as well as negate some of the beneficial effects caused by deepening the shallow portions of the channel. To what extent the studies are changed, or benefits will be reduced, is not of record. Other Effects of Project As noted earlier, Hodges intends to use one or two boats on the deepened channel. The use of the boats will not introduce pollutants in any significant quantity. Hodges proposes to construct his docks and place rip- rap on the northern side of the widest portion of the creek channel. Little, if any, vegetation will be eliminated by these activities. The use of rip-rap for the construction of the bulkhead is the most environmentally sound means of bulkheading, and will stabilize the shoreline as well as provide habitat for aquatic organisms. The dredging of the creek channel will improve the navigability of the creek, and permit the use of boats in areas where access is now impossible under low-tide conditions. In addition, the sharp bends in the creek will prevent the operation of boats at high speeds. JSI's concern that boats may run aground once they leave the northern portion and enter the southern portion is not meritorious since few, if any, are expected to use the latter part of the creek, and the sharp bends will force boaters to operate at low speeds. Shoaling or erosion of the southern portion will not result from the proposed activities. Indeed, an increased flushing and introduction of new flow into the system may benefit the northern portion. Any situation occurring in that part of the creek should not exceed the rate of siltation occurring under current conditions. The benthic organisms which populate the bottom of Old Pablo Creek include crabs, mussels, barnacles and other species normally associated with estuarine systems. The removal of the mud bottom in the dredging operation may remove some of these organisms. However, this should not significantly change the habitat of these benthic organisms. Rapid recolonization by these species would be expected with recolonization substantially underway within forty-eight hours
Recommendation Based on the foregoing findings of fact and conclusions of law, it is RECOMMENDED that application number 16-39644 of George H. Hodges, Jr. for a dredge and fill permit be DENIED. DONE and ORDERED this 2nd day of December, 1986 in Tallahassee, Florida. DONALD R. ALEXANDER, Hearing Officer Division of Administrative Hearings The Oakland Building 2009 Apalachee Parkway Tallahassee, Florida 32399 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 2nd day of December, 1986.
The Issue The issue in this case was whether the Respondent, City of Cape Coral (City), was entitled to an Individual Environmental Resource Permit (Permit) that would allow removal of the Chiquita Boat Lock (Lock) and associated uplands, and installation of a 165-foot linear seawall in the South Spreader Waterway in Cape Coral, Florida.
Findings Of Fact Based on the parties' stipulations and the evidence adduced at the final hearing, the following findings of fact are made: The Parties The Department is the administrative agency of the State of Florida statutorily charged with, among other things, protecting Florida's water resources. As part of the Department's performance of these duties, it administers and enforces the provisions of chapter 373, part IV, Florida Statutes, and the rules promulgated thereunder in the Florida Administrative Code. Pursuant to that authority, the Department determines whether to issue or deny applications for environmental resource permits. The City is a Florida municipality in Lee County. The City is the applicant for the Permit allowing the removal of the Lock and installation of a seawall (Project). The Project is located within the geographic boundary of the City. The South Spreader Waterway is a perimeter canal separating the City's canal system from shoreline wetlands to the west and south, which run the length of Matlacha Pass to the mouth of the Caloosahatchee River at San Carlos Bay.1/ The Association is a Florida non-profit corporation that was created in 1981. The Association was created to safeguard the interests of its members. The Association has approximately 150 members who reside in Matlacha and Matlacha Isles, Florida. A substantial number of its members have substantial interests in the use and enjoyment of waters adjacent to and surrounding Matlacha. The Association's members were particularly interested in protecting the water quality of the surface waters in the area. Matlacha is an island community located to the northwest of Cape Coral, the South Spreader Waterway, and the Lock. Matlacha is located within Matlacha Pass Aquatic Preserve. Matlacha Pass is classified as a Class II waterbody designated for shellfish propagation or harvesting, and is an Outstanding Florida Water (OFW). See Fla. Admin. Code R. 62-02.400(17)(b)36; 62-302.700(9)(h). Petitioner, Karl Deigert, is a resident and property owner in Matlacha. Mr. Deigert is the president of the Association. Mr. Deigert’s house in Matlacha is waterfront. He holds a captain’s license and has a business in which he gives sightseeing and ecological tours by boat of the waters around Matlacha. He fishes in the waters around his property and enjoys the current water quality in the area. He is concerned that removal of the Lock would have negative effects on water quality and would negatively impact the viability of his business and his enjoyment of the waters surrounding Matlacha. Petitioner, Melanie Hoff, is a resident and property owner in St. James City. St. James City is located to the southwest of Cape Coral. Ms. Hoff’s property is located within five nautical miles of the Lock. Ms. Hoff engages in various water sports and fishes in the waters around her property. She moved to the area, in part, for the favorable water quality. She is concerned that removal of the Lock would negatively impact water quality and her ability to use and enjoy waters in the area. Petitioner, Robert S. Zarranz, is a resident and property owner in Cape Coral. Mr. Zarranz’s house in Cape Coral is waterfront. He is an avid fisherman and boater. He is concerned that removal of the Lock would negatively impact water quality, and that the quality of fishing in the area would decline as a result. Petitioner, Yolanda Olsen, is a resident and property owner in Cape Coral. Ms. Olsen’s house in Cape Coral is waterfront. She enjoys watersports and birdwatching in the areas around her property. She is concerned that removal of the Lock would negatively impact water quality, and that her ability to enjoy her property and the surrounding waters would suffer as a result. Petitioner, Jessica Blanks, is a resident and property owner in Cape Coral. Ms. Blanks’ house in Cape Coral is waterfront. She is concerned that removal of the Lock would negatively impact water quality, and that her ability to enjoy her property and the surrounding waters would suffer as a result. Petitioner, Joseph Michael Hannon, is a resident and property owner in Matlacha. Mr. Hannon is a member of the Association. He enjoys boating, fishing, and kayaking in the waters surrounding Matlacha. He is concerned that removal of the Lock would negatively impact water quality, and that his ability to enjoy his property and the surrounding waters would suffer as a result. Petitioner, Debra Hall, did not appear at the final hearing and no testimony was offered regarding her standing. The Project and Vicinity The Project site is 0.47 acres. At the Lock location, the South Spreader Waterway is 200 feet wide, and includes a 125-foot wide upland area secured by two seawalls, the 20-foot wide Lock, a 32-foot wide upland area secured by one seawall, and 23 feet of mangrove wetlands. The Lock is bordered to the north by property owned by Cape Harbour Marina, LLC, and bordered to the south by mangrove wetlands owned by the state of Florida. The 125-foot wide upland area and the 20-foot wide Lock form a barrier separating the South Spreader Waterway from the Caloosahatchee River. The preponderance of the competent substantial evidence established that the South Spreader Waterway behind the Lock is not tidally influenced, but would become tidally influenced upon removal of the Lock. Joint Exhibit 1 at p. 46. The City proposes to remove the Lock and one of the seawalls, reducing the 125-foot upland area to 20 feet. The proposed future condition of the area would include 125 feet of open canal directly connecting the South Spreader Waterway with the Caloosahatchee River. Joint Exhibit 1 at p. 47. The primary purpose of the Lock's removal is to alleviate safety concerns related to boater navigation. The Project's in-water construction includes demolition and removal of the existing Lock, removal of existing fill in the 125-foot upland area, removal of existing seawalls, and construction of replacement seawalls. The City would employ Best Management Practices (BMPs) throughout the course of the Project, including sediment and erosion controls such as turbidity barriers. The turbidity barriers would be made of a material in which manatees could not become entangled. All personnel involved with the Project would be instructed about the presence of manatees. Also, temporary signs concerning manatees would be posted prior to and during all in-water project activities. History of the South Spreader Waterway In the mid-1970's, the co-trustees of Gulf American Corporation, GAC Properties Credit, Inc., and GAC Properties, Inc., (collectively GAC) filed for after-the-fact permits from the Department's predecessor agency (DER), for the large dredge and fill work project that created the canal system in Cape Coral. In 1977, DER entered into CO 15 with GAC to create the North and South Spreader Waterways and retention control systems, including barriers. The Lock was one of the barriers created in response to CO 15. The Spreader Waterways were created to restore the natural hydrology of the area affected by GAC's unauthorized dredging and filling activity. The Spreader Waterways collected and retained surface runoff waters originating from the interior of Cape Coral's canal system. The South Spreader Waterway was not designed to meet water quality standards, but instead to collect surface runoff, then allow discharge of the excess waters collected over and through the mangrove wetlands located on the western and southern borders of the South Spreader Waterway. This fresh water flow was designed to mimic the historic sheet flow through the coastal fringe of mangroves and salt marshes of the Caloosahatchee River and Matlacha Pass estuaries. The fresh water slowly discharged over the coastal fringe until it finally mixed with the more saline waters of the estuaries. The estuarine environments located west and south of the Lock require certain levels of salinity to remain healthy ecosystems. Restoring and achieving certain salinity ranges was important to restoring and preserving the coastal fringe. In 1977 GAC finalized bankruptcy proceedings and executed CO 15. CO 15 required GAC to relinquish to the state of Florida the mangrove wetlands it owned on the western and southern borders of the South Spreader Waterway. This land grant was dedicated by a warranty deed executed in 1977 between GAC and the state of Florida. The Petitioners' expert, Kevin Erwin, worked as an environmental specialist for DER prior to and during the construction of the Spreader Waterways. Mr. Erwin was DER's main representative who worked with the GAC co-trustees to resolve the massive dredge and fill violation and design a system to restore the natural hydrology of the area. Mr. Erwin testified that the Lock was designed to assist in retention of fresh water in the South Spreader Waterway. The fresh water would be retained, slowed down, and allowed to slowly sheet flow over and through the coastal fringe. Mr. Erwin also testified that the South Spreader Waterway was not designed to allow direct tidal exchange with the Caloosahatchee River. In Mr. Erwin's opinion, the South Spreader Waterway appeared to be functioning today in the same manner as originally intended. Breaches and Exchange of Waters The Department's second amended notice of intent for the Project, stated that the Project was not expected to contribute to current water quality violations, because water in the South Spreader Waterway was already being exchanged with Matlacha Pass and the Caloosahatchee River through breaches and direct tidal flow. This second amended notice of intent removed all references to mitigation projects that would provide a net improvement in water quality as part of the regulatory basis for issuance of the permit. See Joint Exhibit 1 at pp. 326-333. The Department's witnesses testified that waters within the South Spreader Waterway currently mix with waters of the Caloosahatchee River when the Lock remains open during incoming and slack tides. A Department permit allowed the Lock to remain open during incoming and slack tides. Department witness, Megan Mills, the permitting program administrator, testified that she could not remember the exact date that permit was issued, but that it had been "a couple years." The location of breaches in the western and southern banks of the South Spreader Waterway was documented on another permit's drawings and pictures for a project titled "Cape Coral Spreader Waterway Restoration." See Cape Coral Ex. 9. Those documents located three breaches for repair and restoration identified as Breach 16A, Breach 16B, and Breach 20. The modeling reports and discussion that support the City's application showed these three breaches connect to Matlacha Pass Aquatic Preserve. Breach 20 was described as a connected tidal creek. Breach 16A and 16B were described as allowing water movement between Matlacha Pass and the South Spreader Waterway only when relatively high water elevations occurred in Matlacha Pass or in the South Spreader Waterway. The Department's water quality explanation of "mixing," was rather simplistic, and did not consider that the waterbody in which the Project would occur has three direct connections with an OFW that is a Class II waters designated for shellfish propagation or harvesting. Such a consideration would require the Department to determine whether to apply the OFW permitting standards, and the Class II waters permitting criteria in section 10.2.5 of the Environmental Resource Permit Applicant's Handbook, Volume I. See Fla. Admin Code R. 62-330.302(1)(a); 62-4.242(2); and 62-302.400(17)(b)36. The Caloosahatchee River, at its entrance to the South Spreader Waterway, is a Class III waters restricted for shellfish harvesting. The mouth of the Caloosahatchee River is San Carlos Bay, which is a Class II waters restricted for shellfish harvesting. There was no evidence that the Department's regulatory analysis considered that the waterbody in which the Project would occur directly connects to Class III waters that are restricted for shellfish harvesting, and is in close proximity to Class II waters that are restricted for shellfish harvesting. See Fla. Admin. Code R. 62-302.400(17)(b)36. and 62-330.302(1)(c).2/ Total Nitrogen The City's expert, Anthony Janicki, Ph.D., testified that nitrogen concentrations in the Caloosahatchee River were higher than in the South Spreader Waterway in the years 2017 and 2018. Thus, he opined that if the Lock is removed, water from the South Spreader Waterway would not negatively impact the Caloosahatchee River. However, the City's application was supported by an analysis, with more than a decade of monitoring data, which showed nitrogen concentration values were comparable inside the South Spreader Waterway and in the Caloosahatchee River. Dr. Janicki also used the Department's Hydrologic Simulation Program – FORTRAN (HSPF) watershed model to estimate the Total Nitrogen (TN) loading that would enter the Caloosahatchee River through the Chiquita Lock. Dr. Janicki estimated that TN loading to the Caloosahatchee River, after removal of the Chiquita Lock, would amount to 30,746 pounds per year. The Caloosahatchee River is listed as impaired for nutrients and has a TN Total Maximum Daily Load (TMDL) that was set by the Department in 2009. Dr. Janicki opined that removing the Lock would not result in adverse impacts to the surrounding environment. But the Petitioners obtained his concession that his opinion was dependent on the City's completion of additional water quality enhancement projects in the future as part of its obligations under the Caloosahatchee Estuary Basin Management Action Plan (BMAP) for achieving the TN TMDL. Dr. Janicki additionally testified that the potential TN loading to the Caloosahatchee River did not anticipate an actual impact to the River's water quality because the TN loads from the South Spreader Waterway were already factored into the 2009 TMDL. He essentially testified that the Lock's removal was anticipated and was factored into the model when the TMDL was established in 2009. Thus, the Petitioners proved by a preponderance of the competent and substantial evidence that the Department and the City were not aligned regarding how the City's application would provide reasonable assurances of meeting applicable water quality standards. The Petitioners proved by a preponderance of the competent and substantial evidence that the City relied on future projects to provide reasonable assurance that the removal of the Lock would not cause or contribute to violations of water quality standards in the Caloosahatchee River and the Matlacha Pass Aquatic Preserve. The Petitioners proved by a preponderance of the competent and substantial evidence that the Department relied on a simplistic exchange of waters to determine that removal of the Lock would not cause or contribute to violations of water quality standards in the Caloosahatchee River and the Matlacha Pass Aquatic Preserve. Water Quantity and Salinity The engineering report that supports the City's application stated that when the Lock is removed, the South Spreader Waterway behind the Lock will become tidally influenced. With the Lock removed, the volume of daily water fluxes for the South Spreader Waterway would increase from zero cubic meters per day to 63,645 cubic meters per day. At the location of Breach 20, with the Lock removed, the volume of daily water fluxes would drastically decrease from 49,644 cubic meters per day to eight cubic meters per day. Dr. Janicki testified that Breach 20 was connected to a remnant tidal creek that meanders and eventually empties into an embayment. The evidence demonstrated that the embayment is Punta Blanca Bay, which is part of the Matlacha Pass Aquatic Preserve. Dr. Janicki opined that Breach 20 was an area of erosion risk and sediment transport into downstream mangroves that would be significantly reduced by removing the Lock. He explained that the reductions in flow would result in reductions in velocities through Breach 20 and in the South Spreader Waterway itself. Mr. Erwin testified that Breach 20 was not a "breach."3/ He described it as the location of a perpendicular intersection of the South Spreader Waterway with a small tidal creek, which connected to a tidal pond further back in the mangroves. Mr. Erwin testified that an "engineered sandbag concrete structure" was built at the shallow opening to limit the amount of flow into and out of this tidal creek system. But it was also designed to make sure that the tidal creek system "continued to get some amount of water." As found above, Lock removal would drastically reduce the volume of daily water fluxes into and out of Breach 20's tidal creek system. Mr. Erwin also testified that any issues with velocities or erosion would be exemplified by bed lowering, siltation, and stressed mangroves. He persuasively testified, however, that there was no such evidence of erosion and there were "a lot of real healthy mangroves." Mr. Erwin opined that removal of the Lock would cause the South Spreader Waterway to go from a closed, mostly fresh water system, to a tidal saline system. He described the current salinity level in the South Spreader Waterway to be low enough to support low salinity vegetation and not high enough to support marine organisms like barnacles and oysters. The City's application actually supports this opinion. Using the Environmental Fluid Dynamics Code (EFDC) model developed by Dr. Janicki for this Lock removal project, comparisons were made describing the salinity distribution within the South Spreader Waterway. The model was run with and without the Lock, for both a wet and dry year. Dr. Janicki testified, and the model showed, that removal of the Lock would result in increased salinity above the Lock and decreased salinity downstream of the Lock. However, he generally opined that the distribution of salinities was well within the normal ranges seen in this area. The City's application also concluded that the resultant salinities did not fall outside the preferred salinity ranges for seagrasses, oysters, and a wide variety of fish taxa. However, Dr. Janicki did not address specific changes in vegetation and encroachment of marine organisms that would occur with the increase in salinity within the South Spreader Waterway. Secondary Impacts to the Mangrove Wetlands Mr. Erwin testified that the mangroves located on the western and southern borders of the South Spreader Waterway are currently in very good health. He additionally testified that loss of the current fresh water hydraulic head and an increase in salinity within the South Spreader Waterway would negatively impact the health of the mangrove wetlands. In addition, the City's application stated that removing the Lock would result in a drop in the water level of one to one and a half feet within the South Spreader Waterway. Mr. Erwin credibly and persuasively testified that a drop in water level of only a few inches would have negative effects on the health of mangroves, and that a drop of a foot could result in substantial mangrove die-off. Mr. Erwin testified that the mangrove wetlands adjacent to the South Spreader Waterway consist of a variety of plants and algae in addition to mangroves. He described the wetlands as a mangrove community made up of different types of mangroves, and epiphytic vegetation such as marine algae. This mangrove community provides habitat for a "wide range of invertebrates." He further testified that these plants and algae uptake and transform the nutrients that flow over and through the mangrove wetlands before they reach the receiving waters. Thus, the mangrove wetlands on the western and southern borders of the South Spreader Waterway serve to filter nutrients out of the water discharged from the Waterway before it reaches Matlacha Pass and the Caloosahatchee River. Mr. Erwin's credible and persuasive testimony was contrary to the City's contention that Lock removal would not result in adverse impacts to the mangrove wetlands adjacent to the South Spreader Waterway. The City and the Department failed to provide reasonable assurances that removing the Lock would not have adverse secondary impacts to the health of the mangrove wetlands community adjacent to the South Spreader Waterway. Impacts to Fish and Wildlife, Including Endangered and Threatened Species The Florida Fish and Wildlife Conservation Commission (FWC) reviewed the City's application and determined that if BMPs for in-water work were employed during construction, no significant adverse impacts on fish and wildlife were expected. For example, temporary signs concerning manatees would be posted prior to and during all in-water project activities, and all personnel would be instructed about the presence of manatees. The FWC determination only addressed direct impacts during in-water construction work. The City's application contained supporting material that identified the major change resulting from removal of the Lock that may influence fish and wildlife in the vicinity of the Project, was the opportunity for movement to or from the South Spreader Waterway canal system. Threatened and endangered species of concern in the area included the Florida manatee and the smalltooth sawfish. The City's application stated that literature review showed the smalltooth sawfish and the Florida manatee utilized non-main-stem habitats, such as sea-wall lined canals, off the Caloosahatchee River. The City cited studies from 2011 and 2013, which showed that non-main-stem habitats were important thermal refuges during the winter, and part of the overall nursery area for smalltooth sawfish. The City concluded that removal of the Lock "would not be adverse, and would instead result in increased areas of useable habitat by the species." However, the Petitioner's expert witness, John Cassani, who is the Calusa Waterkeeper, testified that there is a smalltooth sawfish exclusion zone downstream of the Lock. He testified that the exclusion zone is a pupping area for smalltooth sawfish, and that rapid salinity fluctuations could negatively impact their habitat. The City also concluded that any impacts to the Florida manatee would not be adverse, "and would instead result in increased areas of useable habitat by the species, as well as a reduction in risk of entrapment or crushing in a canal lock system." At the same time, the City acknowledged that "watercraft collision is a primary anthropogenic threat to manatees." The City's literature review included a regional assessment by FWC's Fish and Wildlife Research Institute (FWRI) from 2006. Overall, the FWRI report concluded that the mouth of the Caloosahatchee River, at San Carlos Bay, was a "hot spot" for boat traffic coinciding with the shift and dispersal of manatees from winter refugia. The result was a "high risk of manatee- motorboat collisions." In addition, testimony adduced at the hearing from an 18-year employee of Cape Harbour Marina, Mr. Frank Muto, was that Lock removal would result in novice boaters increasing their speed, ignoring the no-wake and slow-speed zones, and presenting "a bigger hazard than the [L]ock ever has." Boater Navigation Concerns Oliver Clarke was the City’s principal engineer during the application process, and signed the application as the City's authorized agent. Mr. Clarke testified that he has witnessed boater congestion at the Lock. He also testified that lack of boating experience and weather concerns can exacerbate the boater congestion issues at the Lock. Petitioners presented the testimony of Mr. Frank Muto, the general manager of Cape Harbour Marina. Mr. Muto has been at the Cape Harbour Marina for 18 years. The marina has 78 docks on three finger piers along with transient spots. The marina is not currently subject to tidal flows and its water depth is between six and a half and seven and a half feet. He testified that they currently have at least 28 boats that maintain a draft of between four and a half and six feet of water. If the water depth got below four feet, those customers would not want to remain at the marina. Mr. Muto further testified that the Lock was in place when the marina was built, and the marina and docks were designed for an area with no tidal flow. Mr. Muto also testified that he has witnessed several boating safety incidents in and around the Lock. He testified that he would attribute almost all of those incidents to novice boaters who lack knowledge of proper boating operations and locking procedures. Mr. Muto additionally testified that there is law enforcement presence at the Lock twenty-four hours a day, including FWC marine patrol and the City's marine patrol.
Conclusions For Petitioners: J. Michael Hannon, Qualified Representative 2721 Clyde Street Matlacha, Florida 33993 John S. Turner, Esquire Peterson Law Group Post Office Box 670 Fort Myers, Florida 33902 For Respondent City of Cape Coral: Craig D. Varn, Esquire Amy Wells Brennan, Esquire Manson Bolves Donaldson Varn, P.A. 106 East College Avenue, Suite 820 Tallahassee, Florida 32301 Steven D. Griffin City of Cape Coral Assistant City Attorney Post Office Box 150027 Cape Coral, Florida 33915-0027 For Respondent Department of Environmental Protection: Kirk Sanders White, Esquire Department of Environmental Protection Mail Station 35 3900 Commonwealth Boulevard, Tallahassee, Florida 32399-3000
Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is, RECOMMENDED that: The Department of Environmental Protection enter a final order denying Individual Environmental Resource Permit Number 244816-005 to the City of Cape Coral for removal of the Chiquita Boat Lock. The final order deny Petitioners' request for an award of attorney's fees and costs. DONE AND ENTERED this 12th day of December, 2019, in Tallahassee, Leon County, Florida. S FRANCINE M. FFOLKES Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 12th day of December, 2019.
Findings Of Fact Petitioner owns approximately five and three quarters acres of land adjacent to the St. Johns River in Putnam County, Georgetown, Florida. He has 198 ft. frontage on the river. He purchased the land in 1973 and since that time, periodic storms have caused his shoreline to erode in a half-circle configuration for a distance of about 15 to 20 feet landward to a depth of about 2 feet. To the south of his property is a boat marina. Boats utilizing that facility created debris which washed upon his land creating an unsightly condition. Additionally, wave action from the presence of numerous small craft contributed somewhat to the erosion problem. (Testimony of Petitioner, Petitioner's Exhibit 1) Noting that both landowners to the north and south of his property had in existence previously-constructed bulkheads, petitioner determined that he would construct a similar bulkhead or seawall along his former shoreline and then reclaim the land that had been eroded by sand fill. He therefore contacted a contractor to obtain an estimate of the cost of construction. Petitioner denies requesting a pre-inspection of the proposed work by the Army Corp of Engineers and respondent, but the latter's records reveal that such an inspection was made late in 1974. At that time, Petitioner was informed that a permit would be needed to construct the bulkhead, but that his proposed position for it was excessively far waterward of the mean high water line and therefore would be objectionable. Although petitioner specifically denies ever having been told that he needed a permit, it is found that he was so informed by respondent's representative, (Testimony of Petitioner, Scott, Respondent's Exhibit 3) Petitioner proceeded to construct a wooden bulkhead approximately 180 feet long and extending approximately 15 feet waterward of the mean high water line. The fact of construction was noted by respondent's inspector on April 24, 1975, and thereafter on May 12, respondent informed petitioner that he should either apply for a permit or remove all portions of the bulkhead from below the high water line. On November 25,1975, petitioner obtained the conditional approval of the Board of County Commissioners, Putnam County, Florida, for a fill and bulkhead permit, subject to approval of an issuance of permits by the Army Corp of Engineers and the Board of Trustees, Internal Improvement Trust Fund. He thereafter on March 29, 1976, filed his application with respondent for a permit to construct a seawall and fill below the mean high water line with approximately 550 cubic yards of material. (Testimony of Scott, Petitioner's Exhibit 1, Respondent's Exhibit 2,3) Respondent's inspector evaluated the application and submitted his report on March 31, 1976, recommending denial on the basis of significant adverse impacts associated with the project. However, the report stated that the construction of a rip-rap wall conforming to contour of the mean high water line would stabilize the water line and eliminate objections to the project. Specifically, the adverse impacts mentioned in the report were that backfill of the submerged area landward of the existing bulkhead would eliminate a portion of the littoral zone which is a site for nutrient transformation and stabilization. The elimination of the natural shore zone accelerates entrophication rates in the water body and resulting degradation of fish and wildlife resources. (Respondent's Exhibit 1) Respondent's field inspector supervisor informed petitioner of the adverse report and suggested that the bulkhead be removed and rebuilt following the suggestion in the inspector's report. Petitioner did not agree to this proposition and therefore, on October 27, 1976, he was advised of respondent's intent to deny his application. The grounds for denial were that the seawall and proposed backfill would eliminate a tract of submerged land that stabilized sediments, functions in nutrient cycles and helps maintain water quality. Further, it was stated that destruction of this community would impair the ability of the affected submerged habitat to support fish and wildlife. It was further noted that the seawall would create an abrupt discontinuity in the existing shoreline and cause scouring of the littoral community. (Testimony of Scott, Petitioner's Exhibit 3)
Recommendation That the application of petitioner Joseph J. DeMuch be denied. DONE and ENTERED this 2nd day of June, 1977, in Tallahassee, Florida. THOMAS C. OLDHAM Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 2nd day of June, 1977. COPIES FURNISHED: Vance W. Kidder, Esquire Department of Environmental Regulation 2562 Executive Center Circle, East Montgomery Building Tallahassee, Florida 32301 Joseph J. DeMuch Post Office Box 447 Georgetown, Florida 32039
Findings Of Fact Petitioner James C. Dougherty owns property known as Buccaneer Point, which is a peninsula on the western side of Key Largo, Florida. This property is also known as Buccaneer Point Estates, and is a residential subdivision. On June 26, 1979, the Petitioner individually and as a trustee, applied to the Respondent for a permit to conduct dredging and filling activities at the aforementioned property, in particular, the project contemplated dredging access channels in Florida Bay and Buttonwood Sound and the connection of two existing inland lakes on the property site to those water bodies. After review, the Respondent denied the permit request and asserted permit jurisdiction in keeping with Chapters 253 and 403, Florida Statutes, and associated regulatory provisions found in the Florida Administrative Code. Having been denied the permit, the Petitioner requested a formal hearing to consider the matters in dispute and a hearing was conducted on the dates alluded to in this Recommended Order. The hearing was conducted in keeping with Subsection 120.57(1), Florida Statutes. The denial of the permit request was in the form of a letter of intent to deny dated May 27, 1980. See Petitioner's Exhibit No. 4, admitted into evidence. Following the receipt of the letter of intent to deny, the Petitioner commenced a series of revisions to the project leading to the present permit request which is generally described in Petitioner's Exhibit No. 6, admitted into evidence. If the project were allowed, it would call for the dredging of access channels in Florida Bay and Buttonwood Sound, those channels to be 75 feet long and -5 feet N.G.V.D., with side slopes of 1:3. Additional inland canals would be dredged to connect the access channels with the interior lakes, the north channel being 100 feet wide -6 feet N.G.V.D. and 400 feet long, and the south canal being 62 feet wide -6 feet N.G.V.D., and 225 feet long. Side slopes of the canals would be 1:3. The project also intends the connection of the two interior lakes by the excavation of a 162-foot long by 50-foot wide connection or plug at a depth of -5 feet N.G.V.D. The material from this excavation of the plug would be used as ton soil on the uplands. Finally, the permit proposes the shoaling of the North Lake on the property to -15 feet N.G.V.D. by the use of clean limerock fill. Through its opposition to the project, the Respondent has indicated concerns that bay grass beds would be damaged over the long term by boats as a result of the dredging of proposed channels and canals; a concern about increased BOD demands which would lower water quality following the long-term accumulation of organic materials in the channels. The Department also contends that construction of the south channel would destroy productive grass beds and "vegetated littoral shallows," which now serve as a nursery and feeding ground for numerous invertebrates. Respondent believes that the north channel would eliminate an area of mangrove wetlands which filters nutrients and toxic materials and serves as a nursery and feeding ground for estuarine organisms and wading birds. The Respondent also feels that the north channel would disturb a stable mangrove humus peat band, which now supports large numbers of invertebrates and which band extends along the northern shoreline of Buccaneer Point. The Department, in discussing the acceptability of the permit, has expressed concern that bottoms adjacent to the north channel would be harmed by increased erosion and sedimentation of the disturbed mangrove peat. Respondent has further stated that water in both interior lakes is now in violation of water quality standards and that water quality data shows high oxygen demands. The Respondent has put at issue the Petitioner's hydrographic report on the flow-through lake system, citing what it believes to be errors in the report. The Respondent has expressed specific concern about water quality standards as set forth in the following rules: Rule 17-3.121(5), Florida Administrative Code, Bacteriological Quality; Rule 17-3.121(7), Florida Administrative Code, Biological Integrity; Rule 17-3.061(2)(b) Florida Administrative Code, BOD; Rule 17-3.121(14), Florida Administrative Code, Dissolved Oxygen; Rule 17-3.121(20), Florida Administrative Code, Nutrients; Rule 17-3.061(2)(j) Florida Administrative Code, Oils and Greases; Rule 17- 3.061(2)(1), Florida Administrative Code, Phenolic Compounds; Rule 17-3.121(28), Florida Administrative Code, Transparency; and Rule 17-3.061(2)(a), Florida Administrative Code, Substances. The Respondent indicated that it felt the project would be adverse to the public interest because it would cause erosion, shoaling, or creation of stagnated areas of water, would interfere with the conservation of fish, marine life and wildlife or other natural resources, and would result in the destruction of oyster beds, clam beds or marine productivity, including destruction of natural marine habitats or grass flats suitable as nurseries or feeding grounds for marine life, including established marine soils which are suitable for producing plant growth of a type useful as nursery or feeding grounds for marine life. The project was also thought by the Department to be not in the public interest because it would reduce the capability of the habitat to support a well-balanced fish and wildlife population because it would impair the management or feasibility of management of fish and wildlife resources. The Petitioner has employed hydrographic engineers to conduct a study of the flushing characteristics of the system, should the access channels, canals and interior connections be allowed. It is an undertaking on the part of the Petitioner dealing with physical characteristics of the waterway and the forcing conditions in and around the site, which include tidal flow, wind-driven flow and mean sea level changes. The two State water bodies at the site, Buttonwood Sound and Florida Bay, are separated by the project site and other islands at the northern tip of the project. The effects of this separation changes the arrival time of high tide at the northern and southern extremities of the project site promoting a mean sea level surface difference between Buttonwood Sound and Florida Bay. The sea level difference or "head" assists in generating flow in the sense of moving the water from the high to the low elevation. To gain an exact measure of the hydraulic head, tidal gauges were placed at the northern entrance channel and in the southern entrance channel. The use of these gauges over a period of time allowed the determination of the spring and neap tide conditions. The "head" differences finally arrived at by calculations by the Petitioner's experts assisted in the creation of a mathematical model to determine flows in the water system. This lead to an estimate of flushing time of 2 1/2 days. See Petitioner's Exhibits 7-9,admitted into evidence. In turn, an estimation was made that approximately half of the flow which presently flows through Baker Cut, at the project site, would be diverted to the waterway system if constructed and this in conjunction with other calculations led to the conclusion that the flushing time was 3 to 4 days as opposed to the 2 1/2 days arrived at by the mathematical system. See Petitioner's Exhibit 10, admitted into evidence. The estimate of 3 to 4 days was the more current study and was premised upon conditions of an adverse south, southeast wind which would cause the water to move north, absent current conditions, as opposed to this south direction which was the normal direction of movement. The Petitioner also examined the flushing characteristics of similar projects which were not as favorable because of a lack of "head" differences which assisted in the flow of the water. Based upon the results of the studies conducted by Petitioner's experts, the flushing time of the system is found to be 3 to 4 days. While there is some correlation between a short flushing time for a water system and the water quality within that system, examination of other channel systems in the Florida Keys indicates that short flushing times do not always cause the waters to meet State water quality standards. For that reason, water quality considerations must be dealt with bearing in mind the physical characteristics of the system extant and as proposed using flushing time as a part of the equation. Those specific water quality criteria will be addressed in subsequent portions of these findings. Tests conducted by the parties dealt with the amount of dissolved oxygen in waters at the project site, and revealed dissolved oxygen levels of less than 4 parts per million, even when testing at depths less than 15 feet. This condition is one which is not unusual for natural water systems which have remarkable stability and are not the subject of flow or flushing, as example in mangrove forests. If the system were open, dissolved oxygen levels in the interior lakes would improve, though not necessarily to a level which no longer violates State water quality considerations related to dissolved oxygen levels. On the related subject of BOD or biochemical oxygen demand, that demand placed on oxygen in the water biochemicals or organic materials, the system as it exists and as proposed does not appear to cause excessive BOD, notwithstanding an 8 to 12 foot wide band of peat substrate in the area of the North Lake wall. Although the biochemical oxygen demand related to the layer of peat in the lake's system in its present state presents no difficulty, if the water system were open this peat layer would cause a significant amount of loading of biochemical oxygen demand in the lake system and eventually the surrounding water bodies. On the question of nutrients in the marine system, reflected by levels of phosphorus and nitrogen or variations impact the compensation point for the North Lake. In fact, there would be improvement in transparency or clarity for both lakes. Nonetheless, in the short run, the turbidity problems associated with the placement of clean limerock fill over the flocculent peat material would violate the transparency standard in that location. On the subject of toxic substances, meaning synthetic organics or heavy metals in sea water, tests by the Petitioner at the project site and comparison site demonstrated that those substances would not exceed the criterion related to those materials. On the subject of fecal coliform bacteria, water quality samples were taken at the project site and a comparison site. The residences now at the project site and those at a development known as Private Park use septic tanks. In view of the porous nature of the limerock foundation upon which the residences are built and in which the septic tanks are placed, the possibility exists for horizontal movement of the leachate into surrounding waters of the project site and the landlocked lakes; however, this movement is not dependent upon the opening of a flow-through system at the project site. Moreover, tests that were conducted in the comparison site and project site reveal less than one fecal coliform bacterium per 100 milliliters and if the system were open, the circulation in the lakes would lower the residence time of leachate. In describing the habitat afforded by the interior lakes as they now exist, the North Lake does not afford animals or fish the opportunity to colonize, because there are no areas where they may disappear into the lake. This limits the opportunity for habitat to those animals who have their entire life cycle in a landlocked system, and necessarily of those substances in the water, water quality standards for nutrients will not be substantially altered by the proposed project. In other words, the project will not cause an imbalance in natural aquatic flora or fauna population, by way of advent of phytoplankton bloom leading to eutrophy. The nutrient samples taken in the interior lakes demonstrate normal sea water levels and those levels outside the lake were low and the flow-through system is not expected to raise nutrient levels. Sampling for oils and greases in the comparison waterways where residential development had occurred in the lakes and ambient waters at the site, did not indicate problems with those substances in the sense of violation of State water quality standards. Sampling for phenolic compounds at the comparison sites and at the lakes and ambient waters at the project site showed less than .001 micrograms per liter in each instance of the sample. There are no sources or potential sources of phenols at the site. On the question of the State water quality dealing with transparency, that standard requires that the level of the compensation point for photosynthetic activity shall not be reduced by more than ten percent (10 percent) compared to natural background levels. The compensation point for photosynthetic activity is the level at which plant and animal respiration and photosynthetic activity are equal. In static state, the Petitioner's analysis of this criterion revealed that the North Lake compensation point would be below 15 feet and the South Lake would have no compensation point, due to its shallow nature. In the long run, the opening of the proposed connections in the planned development together with the shoaling, would not negatively excludes animals with a long larva stage. Examination of comparison sites pointed out the possibility for colonization at the project site should the waterways be opened. Specific testing that was done related to colonization by fishes, in particular sport and commercial fishes, demonstrated that those species increased in richness, density and diversity if a system was opened by channels and canals. In addition, the comparison of this project site and systems similar to that contemplated by the open waterway indicated that sea grasses would increase after a period of years if the system were open. Sampling was conducted in substrates to gain some understanding of the effect of the proposed project on the Shannon Weaver Index, i.e., whether there would be a reduction by less than 75 percent of established background levels. Although there would be no problem with the biological integrity standard related to South Lake and its waterway, the North Lake and waterway system could be expected to be in violation of that index due to the present circumstance as contrasted with that circumstance at the point when water flowed through. If the waters were opened to the project site, marine biological systems on the outside of the interior lakes would be given an opportunity to use those lakes as a nursery ground or spawning site for fishes, a refuge in cold weather conditions and a site for predators to find prey. If the lakes were opened to the outlying areas, alga, grass populations, mobile invertebra, plankton and other forms of life could utilize the interior lakes. In the area where the north canal or inland canal would be placed are found red mangroves (Rhizophora mangle) and black mangroves (Avicennia germinas) . The mangroves are frequently inundated by tidal waters and are the most mature and productive of the mangroves which are found at the property site. Some of those mangroves are located waterward of the line of mean high water and would be removed if the project is permitted. The mangroves at the project site provide filtration of sediments and nutrients contained in stormwater runoff from adjacent upland areas, as well as from tidal flows. This filtering process is an essential part of the maintenance of water quality in the adjacent open bay estuarine or marine system. Nutrients in the tidal waters, as well as runoff waters, are settled out and in the sediments retained by the mangrove roots and are transformed into vegetative leaf matter by the mangroves as they live and grow. The root systems of the mangroves and their associated vegetation provide stabilization of estuarine shoreline sediments and attenuation of storm-generated tides. These mangrove wetlands provide unique and irreplaceable habitats for a wide variety of marine as well as upland wildlife species. The mangroves also contribute leaf or detrital matter to the surrounding State waters and estuarine system in the form of decayed leaf litter. This organic component forms the basis of the marine food chain and is used directly for food by a variety of marine organisms, including small fish. Commercial and sports fish species feed directly on the mangrove detritous or on the fish or other forms of marine life that feed on that detrital matter. In removing the mangroves, the applicant causes a loss of the function which those plants provide in the way of filtration and the promotion of higher water quality and causes biological impact on marine organisms, to include sports and commercial fishes. In the area of the north access channel, there exists a band of stable mangrove peat which is 50 to 75 feet wide and one to two feet thick. Waterward of this expanse of humus is located a sandy bottom vegetated by turtle grass and other sea grasses and alga. The turtle grass in the area of the proposed north channel serves as a nursery and feeding ground for a rich and diverse aquatic community, including species of oysters, clams and other mollusks, as well as commercial and sports fish. This grass also filters and assimilates contaminants in the water column and serves to stabilize sediments to prevent turbidity. Dredging would destroy the turtle grass beds and their functions. These impacts on mangroves and sea grasses are significant matters, notwithstanding the fact that the possibility exists that mangroves would repopulate in the area of the north channel and North Lake, together with the repopulation of sea grasses in that area after a period of years. The south waterway would cause the removal of certain sea grasses, which could be expected to revegetate. Moreover, at present, the sea grasses in this area are sparse due to the shallow waters in that area, which waters are too warm for sea grasses to thrive. Construction of the access channel would result in increased erosion and sedimentation based upon boat wake wash and in turn allow for adverse impact on the biologically productive bay bottom. Water quality degradation can be anticipated because of the erosion and leaching of dissolved particulate material from the disturbed peat band at the shoreline and into shallow waters in the bay and into the North Lake. Transition from the inland channels to the bay side access channels at the north and south will be box cut at the mean high water line and in view of the fact that the inland channels are 100 feet wide and the bay side access channels are only 50 feet wide, erosion can be expected, causing turbidity.
The Issue The issue for determination in this proceeding is whether Respondent, E. Speer and Associates, Inc. (the "Applicant"), should be granted a permit for the construction of a permanent docking facility pursuant to Sections 403.91-403.929, Florida Statutes, and Florida Administrative Code Chapter 17.
Findings Of Fact Whether Quantified Hydrographic Studies Are Necessary For All Marina Applications To Provide Reasonable Assurance That Flushing Is Adequate To Prevent Violations of Water Quality Standards Speer's Exceptions Nos. 1, 4, 5, 6, 7 and 8 in whole or in part take exception to the Hearing Officer's conclusion (stated as a finding of fact) that it is not possible to demonstrate adequate flushing without "quantifying flushing rates and pollutant dispersal rates using objective methods and appropriate hydrodynamic data." (R.O. at 20, 22-24, 47, 49-50, 54, 57-58; F.O.F. Nos. 33, 35, 38-39, 40, 43-45, 64, 66, and 69) It is clear from the tenor of the entire recommended order that the Hearing Officer believes that as a matter of law an expert's opinion is not sufficient to provide reasonable assurances that flushing will be adequate to prevent violations of water quality standards unless that opinion is based on quantified conclusions generated by objective methods and appropriate hydrodynamic data. (R.O. at 47, 49-50, 57-58) Thus, for example, the Hearing Officer opines that quantification of flushing rates and pollutant dispersal rates using objective measurements of appropriate hydrodynamic data is an essential element of the prima facie showing required to be made by the applicant. (R.O. at 47; C.O.L. No. 11) The Hearing Officer places great significance an the following excerpt from the opinion in 1800 Atlantic Developers v. Department of Environmental Reculation, 552 So.2d 946 (Fla. 1st DCA 1989), rev. den., 562 So.2d 345 (Fla. 1990): 1800 Atlantic filed 34 exceptions to the recommended order, most of which were denied in the Department's final order . . . . The final order approved and adopted most of the findings of fact and conclusions of law in the recommended order and denied the permit. The following stated rulings and reasons there for are significant to the issues on this appeal. (emphasis added) We must note at this point that there is no finding of fact in the hearing officer's recommended order that quantifies how productive the marine habitat may be in this case, and no record support for the suggestion that there would be some quantifiable diminution in the quality of the marine habitat attributable to this project [footnote omitted]. (emphasis added) Exception 23 filed by 1800 Atlantic challenged the hearing officer's finding that the project will adversely affect the conservation of fish and wildlife, fishing or recreational values, and marine productivity in the vicinity . . . The Department rejected this exception based upon the hearing officer's general statements, without any quantification whatsoever, of adverse effects upon these matters . . . (emphasis added) 1800 Atlantic, 552 So.2d at 951-952. I do not concur that 1800 Atlantic stands for the proposition that quantified hydrographic measurement of flushing is in all cases an essential element of a prima facie showing that a marina project will not cause violations of water quality standards. Notwithstanding the above noted statement of the court in 1800 Atlantic that "there is no finding of fact . . . that quantifies 'how productive the marine habitat may be' . and no record support . . . that there would be some quantifiable diminution in the quality of marine habitat attributable to [the] project," 552 So.2d 951, the court did not reject the finding that the project adversely affected the conservation of fish and wildlife, fishing or recreation values, and marine productivity. Indeed, had the court rejected the above finding due to lack of quantified findings the court would never have gone on to reach the issue of mitigation because in 1800 Atlantic mitigation could only become relevant if the applicant was unable to provide reasonable assurance that the project satisfies the public interest criteria of Section 403.918(2) (a), Florida Statutes. See Section 403.918(2)(b), Florida Statutes. I do agree that in some cases quantified hydrographic studies of flushing may be required in order to provide reasonable assurances. Thus, in Rudloe v. Dickerson Bavshore, Inc., 10 FALR 3426 (DER Case No. 87-0816, June 9, 1988), my predecessor held that a dye tracer study was necessary to provide quantitative information about dilution rates and directions on dispersion of pollutants emanating from a proposed marina site which was in "close proximity" to Class II waters approved for shellfish harvesting. 10 FALR at 3447-48. However, the need for such quantified studies must be determined on a case by case basis and is not required as a matter of law for all marinas. 5/ Far me to determine as a matter of law that experts may establish a fact only by certain types of evidence would be an unwarranted and unwise intrusion into the scientific domain of the expert. Thus, in Kralik v. Ponce Marine, Inc., 11 FALR 669, 671 (DER Final Order, Jan. 11, 1989), my predecessor held that expert testimony with regard to flushing does not lack credibility just because a hydrographic study had not been conducted. Of course, the finder of fact has the ultimate say on how much weight an expert opinion should be given if it is not based on a quantified study. Thus, whether an expert testifying on adequacy of flushing has conducted a quantifiable hydrographic study merely goes to the weight of the evidence. Kralik, 11 FALR at 671. I only conclude that a quantified hydrographic study for a proposed marina is not in all cases essential for a showing of reasonable assurances that water quality standards will not be violated. Accordingly, to the extent that the Hearing Officer's findings of fact state that a quantified hydrographic study is required in all cases as a prima facie element of a showing of reasonable assurance that a project will not violate water quality standards, I reject such statement as a mislabled and incorrect conclusion of law. Reasonable Assurance That Flushing Is Adequate To Prevent Violations of Water Quality Standards I read Speer's Exceptions Nos. 1, 3, 4, 5, 6, 7 and 8 in whole or in part as taking exception to the Hearing Officer's finding that under the facts of this case a quantified hydrographic study was needed in order to provide reasonable assurance that the project would not cause violations of water quality standards, and that because such a quantified hydrographic study had not been conducted, reasonable assurances had not been provided. (F.O.F. Nos. 33, 35, 38- 39, 40, 43-45, 64, 66 and 69) As noted by the Hearing Officer, the applicant's expert testimony concerning the adequacy of the flushing consisted of general statements describing visual observations of river and tidal flows which, together with past experience and knowledge of the general area of the project, formed the basis for the experts' opinions that a quantified hydrographic study was not necessary for this project. (R.O. at 22-23) Thus, far example, Mr. Charles C. Isiminger, accepted as an expert in marina design and hydrographic engineering testified that based on his knowledge of the area, its riverine and tidal flows, a hydrographic documentation was not needed to provide reasonable assurance that the project would not cause water quality violations. Mr. Isiminger also testified that any pollutants entering the water from the marina would be flushed out of the area within one tidal cycle. (Tr. at 65-66, 70, 77- 79, 93, 110, 125, 128, 134) Mr. Thomas Franklin, an environmental supervisor from the Department testified that: the hydrographic survey was not really necessary due to the location of the project being in open waters and in close vicinity to the Inlet with a large volume of tidal waters moving in this area, plus the fact that it was further enhanced by flushing due to the St. Lucie River being -- basically coming around Hell Gate point [sic] and funneling out into this estuary. (emphasis added) TR at 437. Other experts also testified that the area was well flushed and that a quantified hydrographic study was not needed in this case. (Jacqueline Kelly, Tr. at 187; John Meyer, Tr. at 319, 322, 341; Gerald Ward, Tr. at 44749) 6/ Speer asserts that the Hearing Officer's finding that a quantified hydrographic study is required in this case cannot stand in light of the unrebutted expert testimony that the marina site will be well flushed and that the rate of flushing provides reasonable assurances the water quality standards will not be violated. I have found no competent substantial evidence in the record which would support a finding that under the facts of this case a quantified hydrographic study is required. I did note that in Footnote 21 of the Recommended Order (R.O. at 20) the Hearing Officer states: Tidal range is only one of the types of data used to quantify flushing rates and pollutant dispersal rates. See TR at 78. Other appropriate data include: overall flow rates, mid tide flow, flow amplitude (the magnitude of the flow without regard to direction, i.e., speed as opposed to velocity), horizontal current distribution, downstream plume characteristics, and field verification using a dye tracer. All of this data is needed to fully describe and quantify flushing rates and pollutant dispersal rates. (citing testimony of Mr. Isiminger at Tr. 88-94) At first blush this may appear to be competent substantial evidence supporting a finding that a quantified hydrographic study is necessary in this case. However, when the testimony is read in its complete context, it is clear that Mr. Isiminger is testifying as to what is necessary to do a hydrographic study when one is needed, and is not testifying that such a study is needed in this case. (Tr. 88-94). I also note that the record contains a memo written by Dr. Kenneth Echternacht, a hydrographic engineer employed by the Department. (Tr. at 67-70) This memo was admitted without objection. (Tr. at 23) The memo states in part that "without . . . hydrographic documentation, reasonable assurance cannot be given that the project will not cause problems." (Tr. at 70; Pet. Exh. No. 10) 7/ Dr. Echternacht was not called as a witness at the hearing and the letter was not offered as evidence of the opinion of Dr. Echternacht or the Department at the time of the de novo hearing. To the contrary, the above noted testimony of Mr. Franklin and the testimony of Jacqueline D. Kelly, an environmental specialist of the Department accepted as an expert in evaluating impacts of environmental dredge and fill projects (Tr. at 187, 195; R.O. at 3), clearly establish that at the time of the de novo hearing the Department was of the opinion that further hydrographic documentation was not needed. The Hearing Officer noted that Mr. Meyer testified that the flushing is a "very, very complicated dynamic situation." (Tr. at 320). The testimony was as follows: Q. So you don't know for sure whether the currents here impact this at all or stay offshore from it? A. Oh, the currents definitelv affect it, and you do have interchange -- as I mentioned before, a very high rate of interchange on a daily basis on every tide. Q. Are you saying that the current that flows through here every day flows right through the site? A. We're dealing with two different things here. We're dealing with your currents, your general migration of waters from the estuary from the inland areas down. You're also dealing with tidal effects coming in and out, and it's a very, very complicated dynamic situation. For me to try to tell you exactly how these things work would be impossible without having a very, very long drawn-out expensive study done on the entire area, and I have not reviewed any studies like that. Tr. at 319-20 (emphasis added) When taken in its context it is clear that Mr. Meyer is testifying that there is a very high rate of exchange on a daily basis on every tide. The fact that he viewed the exact details of the flushing as very complicated in no way retracted his statement that there was a very high rate of exchange on every tide. My review of the record leads me to concur with Speer that no testimony, either on direct, cross-examination, or examination by the Hearing Officer, nor any other evidence was introduced to rebut the expert testimony presented by Speer and the Department that flushing on the site was adequate to provide reasonable assurance that water quality standards will not be violated. 8/ As a general rule, the trier of fact may not arbitrarily reject uncontroverted evidence as proof of a contested fact. Merrill Stevens Dry Dock Co. v. G. & J. Investments, 506 So.2d 30 (Fla. 3d DCA 1987), rev. den., 515 So.2d 229 (Fla. 1987); City of St. Petersburg v. Vinoy Park Hotel, 352 So.2d 149 (Fla. 2d DCA 1977); In Re: Estate of Hannon, 447 So.2d 1027 (Fla. 4th DCA 1984). This does not mean that a mere scintilla of unrebutted evidence is sufficient to establish a contested fact in an administrative hearing. At least in the context of administrative proceedings, the unrebutted evidence still must be competent substantial evidence to support a finding of fact. 9/ There is no suggestion that the Hearing Officer rejected the unrebutted testimony of the experts of Speer and the Department as not being competent substantial evidence. In fact, in the light of the testimony of Mr. Isiminger (Tr. at 65- 66), Mr. Ward ( Tr. at 447-449), Mr. Meyer (Tr. at 238- 239), and Mr. Franklin (Tr. at 345-350), it is beyond peradventure that there is competent substantial evidence to support a finding that flushing is adequate to provide reasonable assurance that the marina will not cause violations of water quality standards. It is clear from the context of the Recommended Order that the Hearing Officer believed that reasonable assurance had not been provided only because he believed that a quantified hydrographic study was required as a matter of law. Although I reject the Hearing Officer's conclusion that a quantified hydrographic study must be conducted as a matter of law for all marina applications, I must still determine whether a quantified hydrographic analysis is required under the facts of this case. In Rudloe v. Dickerson Bayshore, 10 FALR 3426 (DER Final Order, June 9, 1988) it was held that a hydrographic study was not adequate because it did not include a quantified dye tracer study. Id., 10 FALR at 3448. In Rudloe, as in this case, the marina was located in Class III waters, but near Class II waters. However, in Rudloe, the marina site was much closer to the Class II waters (approximately 1,700 feet in Rudloe (10 FAIR at 3430) as compared to approximately 8,000 feet in this case). (R.O. at 16, F.O.F. No. 26) Also, the Rudloe case is significantly different from this case in that competent substantial expert opinion was presented in Rudloe that the marina would adversely impact the Class II shellfish harvesting area. See Rudloe, 10 FALR at 3433-35, 3437-38 (testimony of DNR expert that operation of marina would result in closure of waters to the harvest of shellfish; testimony of Dr. Robert Livingston that the hydrographic drogue studies conducted were inadequate.) In this case, neither expert nor lay testimony was offered by Barringer to show that operation of the marina would result in violation of water quality standards or have any adverse impact on the Class II shellfish waters. 10/ I conclude that the facts of this case as found by the Hearing Officer are not sufficiently similar to the facts of Rudloe so as to justify holding as a matter of law a quantified hydrographic study is necessary to establish the required reasonable assurances. Since the record contains competent substantial evidence that flushing is adequate to provide reasonable assurance that the marina will not cause water quality violations, and since there is no competent substantial evidence in the record to support the Hearing Officer's contrary finding, I must accept the exception of Speer and reject the Hearing Officer's findings of fact to the contrary. In this case I note that I am not so much rejecting findings of fact as rejecting a conclusion of law. As I noted, the Hearing Officer's finding is really based on a conclusion of law which I reject. This leaves only unrebutted competent substantial evidence that there will be adequate flushing to provide reasonable assurance that the operation of the marina will not result in water quality violations. There is no rational basis to reject this unrebutted competent substantial evidence. Therefore, I must accept as proven that the applicant has provided the reasonable assurances that operation of the marina will not result in water quality violations. Merrill Stevens Dry Dock; City of St. Petersburg; Estate of Hannon; supra, Effect On Class II Waters Speer's Exceptions Nos. 7 and 8 take exception to the Hearing Officer's finding that Speer failed to provide reasonable assurance that the marina would not have a "negative effect" an the Class II waters of the St. Lucie Inlet and the Great Pocket. (F.O.F. No. 43) Rule 17-312.080(6)(b), Fla. Admin. Code provides: The Department also shall deny a permit for dredging and filling in any class of waters where the location of the project is adjacent or in close proximity to Class II waters, unless the applicant submits a plan or proposes a procedure which demonstrates that the dredging or filling will not have a negative effect on the Class II waters and will not result in violations of water quality standards in the Class II waters. In this case expert testimony was presented by Speer and the Department that due to the distance of the marina site from the Class II waters (8,000 feet) the marina site was not in close proximity to the Class II waters, and due to the rapid flushing of the area, the construction and operation of the marina would neither have a negative effect nor would result in violations of water quality standards in the Class II waters of St. Lucie Inlet and the Great Pocket. (Isiminger, Tr. at 96, 126-27; Meyer, Tr. at 254-55) I find that the record contains no competent substantial evidence to rebut the evidence introduced by Speer and the Department that the marina will have no negative effect on Class II waters and will not result in violation of water quality standards in Class II waters. Accordingly, I must accept Speer's exception and reject the Hearing Officer's finding. Merrill Stevens Dry Dock; City of St. Petersburg; In Re: Estate of Hannon; supra. Reasonable Assurance That Operation Of The Marina Will Not Result In Prop Dredging Or Violations Of The State Water Quality Criterion For Turbidity Speer's Exceptions Nos. 1, 2, 9-12, and 16 in whole or in part take exception to the Hearing Officer's finding that Speer failed to provide reasonable assurance that the boat traffic from operation of the marina would not cause prop dredging or violations of the water quality criterion for turbidity. (F.O.F. Nos. 33-34, 45, 48, 52-53, 64, and 67) 11/ On one hand, there was testimony that the depths of the marina, in combination with the size of boats allowed in the various slips, would allow for a one foot clearance from the bottom of the boats to the bottom of the marina, and that this clearance, in combination with speed limits in the marina, would provide reasonable assurance that operation of the marina would not result in prop dredging or turbidity violations. (Isiminger, Tr. at 104-107, 118; Meyer Tr. at 263-65, 299, 304- 305; Kelly, Tr. at 189-190; Ward, Tr. at 460) On the other hand, Bruce Graham, admitted as an expert in marine biology testified that: "A large boat, three feet from the bottom, I think would resuspend sediment." (Graham, Tr. at 378). The Hearing Officer, noting that when asked if one foot clearance is sufficient to prevent prop dredging and resultant turbidity violations, a Department witness, testified: I would have to say that we simply don't have enough documentation to know this for a fact. We know that a foot gives us a degree of comfort that there will not be prop wash. In certain instances -- a tug boat, for instance, you know, with huge engines, you're going to have prop wash over a much -- over a large area and with probably much more than a foot of clearance. But for the normal, typical marina a foot, as I say, gives us a degree of comfort that we have settled on. Neyer, Tr. at 264. The Hearing Officer concluded that the witnesses of Speer and the Department could not explain the reasons or efficacy of the "one foot policy" except to say that in their experience the one foot policy was adequate to prevent prop dredging and turbidity violations. (R.O. at 28 n.35)0 The Hearing Officer thus found that Speer and the Department failed to "prove up" the one foot policy -- i.e., failed to elucidate and explicate the reason for the policy. 12/ Clearly the Hearing Officer placed more weight on the testimony of Mr. Bruce Graham than that of Isiminger, Meyer, Kelly and Ward. Since I cannot say that the testimony of Graham was not competent substantial evidence, I am not at liberty to reweigh the evidence or reject the Hearing Officer's finding of fact. See, Florida Dept. of Corrections v. Bradley, 510 So.2d 1122 (Fla. 1st DCA 1987); Heifetz v. Department of Business Regulation, 475 So.2d 1277, 1281 (Fla. 1st DCA 1985); Sections 120.57(1)(b)10., and 120.68(10), Florida Statutes. Speer contends that Barringer presented no evidence that prop dredging will cause sufficient turbidity to violate the state water quality turbidity criterion of 29 NTUs. 13/ That contention misses the point. The burden is on Speer to establish by the preponderance of evidence that reasonable assurance has been provided that operation of the marina will not result in violations of the water quality criterion for turbidity. Florida Department of Transportation v. J.W.C., Co., 396 So.2d 778 (Fla. 1st DCA 1981). The Hearing Officer, as the finder of fact, concluded that Speer failed to do so. Accordingly, I reject the exception of Speer and accept the Hearing Officer's finding of fact that Speer failed to provide reasonable assurance that operation of the marina would not cause prop dredging or violations of the state water quality criterion for turbidity. Manatee Impacts and the Public Interest Test Speer's Exceptions Nos. 13 and 17 take exception to the Hearing Officer's finding that Speer failed to do a quantified study of impacts to manatees and therefore failed to provide reasonable assurance that the marina will not have an adverse impact on manatees, their migratory patterns, and their habitat. (F.O.F. Nos. 61, 64 and 68) The Hearing Officer reasoned as follows: Instead of a traffic study, the Applicant and DER presented evidence in the form of general statements that manatees need not migrate north and south through the approach channel. According to the Applicant and DER, manatees can migrate across the project site by one of two alternative routes. They can migrate in one or two feet of water under moored boats and then under wave breaks on the north and east piers, or they can migrate in the shallow water landward of the west boundary of the project. That evidence was not persuasive and was controverted by competent, substantial, and persuasive evidence that manatees would be deterred from migrating under the project footprint by substantial obstacles in their path. Manatees migrating under the project footprint would be exposed to 86 or more moving boats with powerful engines and drafts of four to five feet in waters covering approximately 20,800 square feet. It could be argued, or course, that 86 or more boats would not be moving in and out of the marina at one time. However, it is impossible to estimate occupancy rates, length of stay, and frequency of boat trips without a traffic study. (R.O. at 35, n. 51) As Speer's exception notes, there was testimony that because of the width of the river and boat speed restrictions in the project area, there would be no adverse impacts an the manatee from the marina. (Kelly, Tr. at 162; Meyer, Tr. at 255-56, 331- 32; Isiminger, Tr. at 130) The St. Lucie/Jupiter/Hobe Sound waterways are a major travel corridor for manatees. (DER Exh. No. 4) Between 1974 and December 1990, there were ten water craft related manatee fatalities within the boating sphere of influence of the project. (DER Exh. No. 4) In order to reduce impacts on the manatees, the proposed permit contains the following specific conditions: S.C. No. 13: The permittee agrees to install and maintain a minimum of one manatee education/display on the main access pier during and after construction. S.C. No. 15: The permittee agrees that any collision with a manatee shall be reported immediately [to DNR and U.S. Fish and wildlife Service]. S.C. No. 18: The permittee shall post four (4) manatee area/slow speed signs, two of which would be spaced along the perimeter pier and two of which would be located on the outside of the marina for all boating traffic to observe within the marina facility. (DER Exh. No. 3) 14/ There was testimony that the piers, once constructed, would not impair the passage of manatees. (Isiminger, Tr. at 114- 115) On the other hand, there was some testimony that manatees may have to go around the project rather than through it. (Meyer, Tr. at 311) The existing boat traffic past the site of the project to the Inlet was "rough1y estimated" at 50 to 100 boats a day. (Meyer, Tr. at 337) The U.S. Fish and Wildlife Service determined that "while [the project] may negatively affect, it is not likely to jeopardize the continued existence of the West Indian Manatee." (Tr. at 120-21) The Hearing Officer concluded that reasonable assurance as to adverse impacts on manatees could not be provided absent a quantified traffic study. (R.O. at 35, n. 51) In Coscan Florida, Inc. v. Department of Environmental Regulation, 12 FAIR 1359 (DER Final Order March 9, 1990), the Department held that the information needed to determine a marina's impact on manatees and the necessary actions to mitigate such impacts must be decided an a case by case basis. For example, in Sheridan v. Deep Lagoon Marina, 11 FALR 4710 (DER Final Order, Aug. 24, 1989), 15/ a marina sought to expand by adding 113 new wet slips. The marina was required to develop a manatee protection plan far the surrounding portions of the Caloosahatchee River, all new slips were limited to sail boats until the manatee protection plan was implemented and enforced, and power boat occupancy was limited to 75% of the total 174 wetslips in any event. The marina also made available a wet slip for use by the Florida Marine Patrol. In this case there is evidence of significant boat related manatee fatalities in the boating sphere of influence of the proposed marina. There is also evidence of existing traffic of 50-100 boats per day past the project site. In view of the fact that this project would add 86 slips and a public fueling facility, it seems likely that that the project will significantly increase both boat traffic and the threat of manatee collisions. Accordingly, I concur with the Hearing Officer that there is competent substantial evidence to support a finding that further studies are needed to determine what, if any, additional manatee protection conditions are needed to provide reasonable assurance that manatees will not be adversely affected. I conclude that the applicant did not provide reasonable assurance that the operation of the marina will not have an adverse impact on manatees, their migratory patterns, and their habitat, and therefore failed to provide reasonable assurance that the project is not contrary to the public interest. Therefore, I reject the exception of Speer. Cumulative and Secondary Impacts Speer's Exception No. 15 takes exception to the Hearing Officer's finding that the applicant failed to provide reasonable assurance that there will be no adverse cumulative pacts created either by the cumulative effects of the object and existing similar projects, or by secondary pacts of the project itself. (F.O.F. No. 66) 16/ Cumulative impact analysis takes into consideration the cumulative impacts of similar projects which are existing, under construction, or reasonably expected in the future. Conservancy v. A. Vernon Allen Builder, supra; Section 403.919, Florida Statutes. Secondary impact analysis considers the impact of the project itself and of any other relevant activities that are very closely linked or causally related to the permitted project. Conservancy, 580 So.2d at 778; J.T. McCormick v. City of Jacksonville, 12 FALR 960, 980. 17/ Thus, in Conservancy the secondary impact analysis was required to consider the environmental impacts of development of 75 estate homes on an island where the development would be reasonably expected as a result of the permitted laying of a subaqueous sewer line. Similarly, in del Campo v. Department of Environmental Regulation, 452 So.2d 1004 (Fla. 1st DCA 1984), the Department was required to consider the environmental impacts of the foreseeable development of an island facilitated by the permitted building of a bridge to the island. In this case there is competent substantial evidence that there are other marinas located 1,750 feet downstream in Willoughby Creek, and 5,000 feet downstream in Manatee Pocket. (R.O. F.O.F. 31; Isiminger, Tr. at 112; Meyer, Tr. at 261) The record contains competent substantial evidence that the cumulative impact of the project and the existing marinas in Willoughby Creek and Manatee Pocket will not result in violations of state water policy. (Isiminger, Tr. at 125; Kelly, Tr. at 167) I cannot say that the testimony of Isiminger and Kelly on cumulative impacts is not competent, substantial evidence. In light of the fact that there is no competent substantial evidence to indicate that cumulative impacts would result in water quality violations, I must accept Speer's exception and reject the Hearing Officer's finding. Merrill Stevens Dry Dock; City of St. Petersbur; In re: Estate of Hannon; supra. As to secondary impacts, the Hearing Officer pointed out that Speer did not introduce any evidence as to whether there would be secondary impacts to water quality as the result of further development or increased utilization of the uplands facilities. (See F.O.F. 66, n.59, R.O. at 39) Such further development or increased utilization of upland facilities is reasonably foreseeable and would be very closely linked or causally related to the building of an 86 slip marina with public fuel services. As noted above, the applicant has the burden of providing reasonable assurances as to cumulative and secondary impacts. Brown v. DER, supra; Conservancy, supra. However, neither the pleadings nor the pre-hearing stipulation raised the issue of the adequacy of the secondary impact analysis. In a case such as this where the Department's notice of intent to issue a permit has been challenged by a third party, the applicant's prima facie case need only include the application and the accompanying documentation and information relied on by the Department as the basis of its intent to issue. Florida Department of Transportation v. J.W.C., 396 So.2d 778, 788 (Fla. 1st DCA 1981). The petitioner challenging the permit must identify the areas of controversy and allege a factual basis for its contentions that the applicant did not provide the necessary reasonable assurances. J.W.C., 396 So.2d at 789. See also Woodholly Assoc. v. Department of Natural Resources, 451 So.2d 1002, 1004 (Fla. 1st DCA 1984). Since Barringer did not identify this issue and did not allege any factual basis for a contention that the secondary impact analysis was inadequate or incorrect, I may not rule on the issue in this order. Miscellaneous Exceptions To Findings of Fact Speer's Exception No. 14 takes exception to the Hearing Officer's finding that Speer failed to provide reasonable assurance that the project will have no adverse impact on (1) the relative value of functions being performed by areas affected by the project, including seagrasses, shell fish, and fin-fish, and (2) recreational and commercial values in the vicinity. (F.O.F. No. 64) Speer contends that this finding is not supported in the record by competent substantial evidence and is contrary to unrebutted testimony of Ms. Kelly and Mr. Isiminger. (Kelly, Tr. at 159, 161-62, 165-67; Isiminger, Tr. at 73) I cannot say that the testimony of Isiminger and Kelly is not competent, substantial evidence, and I find no evidence in the record to rebut the testimony of Kelly and Isiminger. Therefore, I must accept Speer's exception and reject the Hearing Officer's finding. Merrill Stevens Dry Dock; City of St. Petersburg; In re: Estate of Hannon; supra. Speer's Exception No. 3 takes exception to the Hearing Officer's finding that Speer failed to provide a current water quality analysis. (F.O.F. No. 35) A water quality analysis was submitted in April of 1990, shortly after the permit application was filed. (R.O. at 2, 19; F.O.F. No. 34) I find no competent substantial evidence in the record to suggest any reason for believing that the water quality has changed since April of 1990. I agree with Speer that, absent some specific reason for believing that the water quality has changed since the date of a study conducted contemporaneously with the permit application, there is no requirement to provide an updated water quality analysis. RULINGS ON EXCEPTIONS TO CONCLUSIONS OF LAW Need For Quantified Hydrographic Study Speer's Exceptions Nos. 1, 7 and 9, in whole or in part, take exception to the Hearing Officer's conclusions of law that a quantified hydrographic study was needed to provide reasonable assurances that the operation of the marina would not result in violations of water quality standards and would would not have a negative effect on Class II waters. For the reasons stated in Parts III(1), (2) and (3) above, I accept this exception and reject the above noted conclusions of law. Introduction Of Issues Not Set Forth In Pleadings Or Pre-Hearing Stipulations Speer's Exceptions Nos. 1, 2, 3, and 5, in whole or in part, take exception to the Hearing Officer's consideration of issues of (1) the need for a quantified hydrographic study, (2) the proximity of the site to Class II waters, (3) turbidity and prop dredging, (4) cumulative impacts, and (5) the need for a quantified study on manatee impacts. For the reasons set forth in Part 111(6) above, I agree that, absent waiver, a petitioner challenging an intent to issue a permit may not raise issues at the hearing which were not raised in the pleadings or pre-hearing stipulations. However, in this case the issue of manatee impacts was raised in the pleadings, and Speer was on notice that it had the burden of proof on that issue. As to the other issues, even if I accepted far the sake of argument that they were not raised in the pleadings or pre-hearing stipulations, Speer failed to timely object to the raising of these issues at the hearing and therefore waived any objection. See Sarasota County and Midnight Pass Society v. Department of Environmental Regulation, 13 FAIR 1727 (DER Final Order, April 4, 1991). Therefore, I reject the above exceptions. Proximity To Class II Waters Speer's Exception No. 2 takes exception to the Hearing Officer's conclusion of law that Speer was required to submit a plan which demonstrated that the marina would not have a negative effect on Class II waters. (C.O.L. Nos. 12 and 13) I do not agree that where a proposed marina site is 8,000 feet from Class II waters and where the site is rapidly flushed as noted in Parts 111(1), (2) and (3) above, that the site is in close proximity with the Class II waters within the meaning of Rule 17-312.080(6), Fla. Admin. Code. Accordingly, I accept this exception and reject the above note conclusion of law. Public Interest Test Speer's Exception No. 4 takes exception to the Hearing Officer's conclusion of law that Speer failed to provide reasonable assurance that the project was not contrary to the public interest. (C.O.L. Nos. 17 and 20) For the reasons set forth in Parts III(4) and (5) above, I reject this exception. Cumulative Impacts Speer's Exception No. 5 takes exception to the Hearing Officer's conclusion of law that Speer failed to provide reasonable assurances that cumulative impacts would not result in water quality violations, and that such assurances could only be provided by a quantified study. For the reasons set forth in Parts III (1), (2), (3) and (6) above, I accept this exception and reject the above noted conclusions of law. Modification Of Permit Conditions Speer's Exception No. 6 takes Exception to the Hearing Officer's conclusions of law Nos. 24-34. These conclusions of law concern questions of the authority of the Hearing Officer and me to modify the conditions of the permit. I agree with Speer that since none of the parties have requested any modifications, these conclusions of law are irrelevant. 18/ Therefore I accept the exception and reject the above noted conclusions of law as irrelevant. Miscellaneous Speer's Exception No. 8 in part takes exception to the Hearing Officer's conclusion that Speer and the Department failed to provide reasonable assurance as to prop dredging and turbidity violations because neither Speer nor the Department sufficiently proved the basis for the one-foot clearance policy. For the reasons set forth in Part III(4) above, I reject this exception. Speer's Exception No. 8 in part takes exception to the Hearing Officer's conclusion that the question of whether mitigation is adequate is a question of law. I agree with the Hearing Officer and reject this exception. See 1800 Atlantic Developers v. Department of Environmental Regulation, 552 So.2d 946, 955 (Fla. 1st DCA 1989).
Recommendation Based upon the foregoing Findings of Fact and Conclusions of Law, it is recommended that Respondent, Department of Environmental Regulation, enter a Final Order denying the application for a permit to construct the proposed project and denying the request for determination of improper purposes. RECOMMENDED in Tallahassee, Leon County, Florida, this 16th day of June, 1992. DANIEL MANRY Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399 1550 (904) 488 Filed with the Clerk of the Division of Administrative Hearings this 16th day of June, 1992.
The Issue Respondent Jacksonville Shipyards, Inc. (JSI) filed a permit application with the State of Florida, Department of Environmental Regulation, (DER), for permission to conduct maintenance dredging in a basin associated with its shipyard operation. This permit application was made in accordance with Chapter 403, Florida Statutes, and Chapter 17, Florida Administrative Code. In the face of DER's statement of intent to grant this permit, George H. Hodges, Jr., (Petitioner), has petitioned in protest. Therefore, the issues to be considered in this dispute concern the entitlement of JSI to the grant of an environmental permit for maintenance dredging of its shipyard basin.
Findings Of Fact DER is an agency of the State of Florida charged with the environmental protection of waters within Florida. Its authority includes regulatory powers announced in Chapter 403, Florida Statutes, and Chapter 17, Florida Administrative Code. Certain activities involving state waters require permission from DER before they be lawfully undertaken. Among those activities are dredge projects such as contemplated by JSI in its pending request to be allowed to maintenance dredge as much as 66,000 cubic yards of material per year from its shipyard basin located in Jacksonville, Duval County, Florida. This is an undertaking which is envisioned by Chapter 403, Florida Statutes, related to the permit responsibility of DER. It is specifically addressed by Rule 17-4.28, Florida Administrative Code, in which is found the statement of permit requirements for dredge and fill activities. JSI, the applicant, operates a facility known as Bellinger Shipyard, which is engaged in the repair and maintenance of commercial and naval vessels. This enterprise includes the drydocking of vessels upon which repairs are effected, through the use of several drydock chambers in shipyard basin. In the course of the maintenance, a technique known as "gritblasting" is employed. The purpose of this "gritblasting" is to clean the ships in anticipation of repainting. On occasion the "gritblasting" would remove all coats of paint down to the metal finish of the ship. The paints being removed contain antifouling and anticorrosive materials. Those materials have, among other properties, the ability to repel marine organisms, causing their mortality. The "gritblasting" process utilizes a material known as "black beauty." This is a waste product from firing power plant boilers and it contains iron, silica, aluminum, titanium, magnesium, lime, penta oxide (P2O5), sodium oxide, sulfur trioxide and potassium oxide. The "black beauty" is applied through the use of a pressurized system which forces the material onto the treated surface under pressure of 70 to 85 pounds per square inch. After the preparation is made, vessels under repair are repainted, and similar paint with antifouling and anticorrosive properties is reapplied. During the "gritblasting" process, dust is generated and a portion of that material finds its way into the water within the basin. Other particles being removed drop to the deck surface of the drydock. When paint is reapplied to the surface of a vessel undergoing repair, it is given the opportunity to dry and the vessel is then refloated and removed from the drydock. To do this, the drydock itself is submerged. When the vessel has exited the drydock facility, the drydock resurfaces and is allowed to dry out. The material which has been removed from the surface of the repaired vessel is then shoveled into containers and transported to an offsite sanitary landfill for disposal. This material removed includes the "gritblasting" compound and paint which has been stripped from the surface of the vessel. When the drydock is submerged following vessel servicing, the inference can be drawn that a certain amount of the materials on the drydock deck surface will be introduced into the water within the basic before the drydock is resurfaced. The arrangement for refloating the vessel is the reverse of the technique employed in lifting the vessel out of the water for maintenance. When the vessel is brought in for service, it is guided into a submerged drydock. Water is then pumped out of the hollow drydock walls and deck to raise the vessel out of the water, allowing access to the vessel, which is completely above the water surface, as is the drydock work deck. The basin in which the business activities of JSI take place is located on the western shore of the Intercoastal Waterway. The Waterway and basin are part of an estuarine system, as these water bodies are tidally influenced. The basin and the Intercoastal Waterway constitute Class III waters of Florida. The configuration of the basin is as found in JSI Exhibit 16, an aerial photograph of the site. Moving from east to west within the basin, it is approximately one thousand feet from the Intercoastal Waterway to the back of the basin in its western-most extremity. In the back area of the basin the north- south axis is 250 feet. The interface between the basin and the Intercoastal Waterway on the eastern reach north-south axis is approximately 625 feet. There are no obstructions to the confluence of the Intercoastal Waterway and the eastern side of the repair basin. The southern-most reach of the basin is approximately 350 feet in length running east to west. On the eastern side of the basin there is a pier area which is roughly 360 feet north-south by 60 feet east-west. As described before, the pier is not a solid structure extending to the bottom of the water. Thus, water can be exchanged between the basin and the Intercoastal Waterway beneath the pier. JSI had acquired the Bellinger Shipyard in 1974. At that time environmental permits had been issued allowing for the maintenance dredging of the basin. These permits were valid through 1975. In 1975, JSI obtained a dredge and fill permit from the Florida Board of Trustees of the Internal Improvement Trust Fund, as well as a dredge and fill permit from the United States Corps of Engineers. These permits were for a ten-year period. They allowed maintenance dredging in the amount of 66,000 cubic yards per annum and for the disposal of the dredged material in an EPA-approved offshore site. In 1980 DER confirmed the dredge and fill permit that had been obtained from the Florida Board of Trustees. This permit by DER required JSI to conduct monitoring of turbidity during dredging, but did not require employment of turbidity screens. In 1979 the Army Corps had required JSI to conduct bioassay analysis in furtherance of the federal dredge and fill permit. In the face of the results obtained in that bioassay analysis, the Army Corps continued the dredge and fill permit to JSI dating from August 14, 1980. A subsequent extension of the federal permit was given through August 14, 1986. Contemporaneous with the present permit application before DER, JSI has requested further permission from the Army Corps related to the ability to excavate as much as 66,000 cubic yards of material on an annual basis. JSI has not been cited by any regulatory agency related to water quality violations associated with its dredging activity. The present DER permit application is for renewal of the 1980 Permit No. 16-21380 and is being processed under the DER File No. 161071139. This application for permit renewal was submitted on July 16, 1985. The application requests permission to maintenance dredge for a period of ten years. If granted, it is the intention of the applicant to use a closed clam shell bucket to excavate the material in the basin. This choice is in furtherance of the suggestion of DER and is a departure from the applicant's initial intention to use an open bucket to excavate. JSI also intends to employ turbidity curtains during the dredge activities. The applicant intends to transport the dredged material to the aforementioned EPA disposal site which is at sea. In doing so, a hopper barge is propelled by a towing vessel. Both the barge and towing vessel are inspected and certified by the United States Coast Guard. The crews involved in the transport of the material are qualified and licensed. In the past, transport of the material has been done under fair weather and smooth sea conditions, and it is intended that the transportation be done in that same setting if the permit is granted. The barge would not be loaded fully, thereby minimizing spillage. This was the arrangement in the past. The United States Coast Guard will be apprised of the departure time of the voyage in transport of the material, certain activities within that transport and upon return. The hopper barge has a bottom dump which is closed during transport and is opened at the bottom in disposing the dredge material. After satisfying DER about its proposal, JSI was informed that DER intended to grant the dredge permit requested. When Petitioner, George H. Hodges, Jr., the owner of real property adjacent to the site of the project, learned of the stated intention to grant the maintenance dredging permit, he offered a timely petition in opposition to the proposed agency action. This property of Petitioner is in Jacksonville, Duval County, Florida. It is located north of the JSI property at issue. Petitioner's real property is connected to the Intercoastal Waterway. Petitioner has filed this action in opposition to the grant of the permit upon the expressed belief that the dredging activity will cause pollution at his property. In particular, it is JSI's intention at various times in the calendar year to do maintenance dredging in the entire basin. In addition to using a closed clam shell bucket, a system of turbidity barriers or curtains will be employed in segmented dredge areas. Those several locations within the basin which are cordoned off with the turbidity curtains are as depicted in JSI's Exhibit 9 admitted into evidence. The design maintenance depths for the dredging project are set forth in JSI's Exhibit 4 admitted into evidence. They vary from -17 to -37.5 feet, with the greatest depth being contemplated under drydock number 1 in the northwestern corner of the basin. Near the Intercoastal Waterways the depth sought is -17 feet, transitioning to -21.5 feet moving toward the back of the basin at the western extreme and outside of the area dredged beneath drydock number 1. The depths sought under drydock numbers 2 and 3 are -26.5 feet and -20 feet respectively. These desired elevations correspond to conditions at mean low water. The tidal range in the Intercoastal Waterway adjacent to the basin, which would promote an influence in the basin proper, is in the neighborhood of 4-foot intervals, with two tidal cycles a day. This would mean, as example, that at the high tide range, the shallowest design depths for dredging of -17 feet become -21 feet in the transition from mean low water to mean high water. Those 4-foot variations would pertain to the other design depths contemplated in the dredging as described in the preceding paragraph as well. The turbidity barriers contemplated for use will extend from the surface through the water column to depths near the bottom. See JSI Exhibits 4 and 9. It is desirable, according to Dr. Gregory Powell, witness for JSI, a reliable expert in describing the effectiveness and use of turbidity curtains, to have those curtains extend to an area just above the bottom. Dr. Powell's education includes a Masters Degree in coastal and oceanographic engineering and a Ph.D. Degree in engineering mechanics, with emphasis on coastal and oceanographic engineering. In consideration of his remarks, under the influence of high tide there could be as much as a 4 foot gap between the curtain and the bottom. Powell and other experts who offered testimony agreed that turbidity screens can have effectiveness in areas of low current velocity, assuming the proper installation, maintenance and extension to a location near the bottom of the water body. If mismanaged, turbidity screens are not effective in controlling turbidity. Moreover, they are less effective in areas where significant current velocities are experienced. This would include the circumstance in which a foot and a half or more per second of flow was being experienced, according to Dr. Powell, whose opinion is accepted on this point. He also indicated that the quiescent areas in the basin, toward the back of the basin or western dimension of the basin, would show a flow regime in a rate of one centimeter per second. This expression is credited. Although, as described by Dr. Powell, the currents in the Intercoastal Waterway are moving at a rate approximating nine feet per second on ebb time at the bridge located on the Intercoastal Waterway to the south of the project site, these current velocities are not expected in the area where the dredging is occurring. Dr. Powell is correct in this assessment. As he describes, and in acceptance of that testimony, eddies from the current from the Intercoastal Waterway at peak flood tide could come into the basin and temporarily show velocities of one foot per second; however, these velocities are within the acceptable range of performance of the turbidity barrier. Dr. Powell's conclusion that wind would have no significant effect on the current velocity, given the depth of this basin, is also accepted. The remaining flow regime in the basin is not found to be a detriment to the function of the turbidity barriers. The use of turbidity curtains in this project is not found to be a "placebo" to placate DER as suggested by Erik J. Olson, engineering expert who testified in behalf of the Petitioner The monitoring that is intended in the course of the dredging activities would call for examination of background turbidity levels at three sites in the Intercoastal Waterway prior to commencing of dredging and twice daily at each of these sites during dredging. Should a violation of state water quality standards for turbidity be detected, dredging will cease until the problem with turbidity can be rectified. To provide ongoing assurances of compliance with water quality standards, JSI will analyze the sediment in the basin for the parameters of cadmium, copper, aluminum, lead, mercury, oil and grease every two years. Dr. Powell, expert in engineering and recognized as an expert in the matter of transport of the resuspended sediment associated with the dredging, as well as David Bickner, the project review specialist for DER, believe that the use of the closed clam shell bucket technique and employment of siltation screens or barriers, together with turbidity monitoring, will effectively protect against turbidity violations in the Intercoastal Waterway adjacent to the basin. This opinion is accepted. Bickner brings to his employment a Bachelor of Science degree in biology and a Master of Science degree in ecology. Bickner identified the principal concern of DER related to this project as the possibility of release of resuspended sediments into the Intercoastal Waterway. With the advent of the techniques described in the previous paragraph, only minimal changes in background conditions related to turbidity are expected. Although there would be turbidity violations within the confines of the areas where the dredging occurs, the principal influence of that turbidity will be confined in those regions. This speaks to dredge areas I, 2 and 3. According to Bickner, whose opinion is accepted, the turbidity changes within the dredge areas in relationship to background conditions do not require a mixing zone permit, nor do they constitute a basis for denial of the permit. As alluded to before, and as described by Dr. Powell, the basic nature of the basin in question is one of quiescent conditions with low current velocity. He points out that the layout of the basin is such that it is a sediment trap allowing the deposit of silt, in particular in the deeper sections of the basin near the western side. The greatest influence by resuspension of sediment in the dredging activities can be expected in the back portions of the basin and it is in this area that the silt barrier can be expected to be most efficient, based upon Powell's remarks. Dr. Powell indicated that there is the expectation of increased efficiency in turbidity control when a closed clam shell bucket is used, as opposed to the open style of clam shell bucket. Those efficiencies range from 30 to 70 per cent. There is some risk of increased turbidity near the bottom of the water column in the use of a closed clam shell bucket, and for that reason the applicant should monitor the activities of the operator of the excavation machinery to guard against inordinate disturbance of the area being excavated. On balance, the closed clam shell bucket is a superior technique to the open style of clam shell bucket excavation when those alternatives are compared. As Dr. Powell explained, the segmentation of the dredge area allows the resuspended sediment to be confined in more discrete circumstances and to be controlled. The location of the silt barriers behind the pier structure guard against the effects of eddying. The silt barriers can be properly anchored and will not be unduly influenced by current velocity. Dr. Powell believes that the use of silt barriers, taking into account a low velocity of current in the basin, and the proper deployment of the siltation screen could bring about a reduction of the resuspended solids by 80 to 90 per cent on the outside of the barrier. To calculate the influence or the environmental significance of that remaining 10 to 20 per cent of resuspended solids at the Intercoastal Waterway, Dr. Powell testified that the suspended load behind the silt curtain resulting from the dredging is expected to average from 100 milligrams per liter to a peak amount of 500 milligrams per liter. He believes that, depending on which methods of calculation is used, the dilution factor in the Intercoastal Waterway ranges from 330:1 to 600:1. In using an environmentally conservative assessment, that is 80 per cent effectiveness of the silt curtain with a 330:1 ratio, Powell calculated that the release of resuspended materials into the Intercoastal Waterway would be approximately .3 to 1.5 milligrams per liter. This translates to less than 1 NTU against background conditions. This result would not exceed the 29 NTU limit against background that is described as the standard for turbidity control. Dr. Powell's opinion of turbidity results based upon the dredge activity is accepted. There is exchange of water between the basin and the Intercoastal Waterway and to accommodate this influence, the turbidity curtains would be placed in such a fashion that they would not compete with the ebb and flow of the tide. Dr. Powell's assessment of the circumstance in describing the effectiveness of turbidity barriers takes into account the tidal conditions and the inappropriateness of trying to have the silt curtains prohibit the flow conditions during these tidal changes. In order to promote maximum effectiveness of the turbidity barriers during the entire course of excavation of materials, the length of, the silt screen must be adjusted as desired elevations are approached. Erik J. Olson is an expert in civil engineering with an emphasis on hydraulics and the holder of a Masters Degree in coastal and oceanographic engineering. As alluded to before, he questions the validity of the use of siltation barriers as an effective protection against the implications of turbidity. He properly points out that the curtains will not extend to the region of the interface of the basin and the water column at all times. He describes the exchange of water between the basin and the Intercoastal Waterway, to include the unrestricted sediment transport beneath the turbidity curtain. He believes that wind can cause changes in current velocity as great as .2 foot per second, activities within the basin an additional .3 foot per second, and eddying .3 foot per second. All of these taken together do not exceed the range of effective response of the turbidity barriers. On balance, Olson's criticism of the benefit of turbidity curtains is unconvincing. Arlynn Quinton White, Jr., who holds a Bachelor of Science Degree, a Master of Science Degree in biology and a Ph.D. in matters related to marine biology, offered his testimony in support of Petitioner. He believes that as much as 2 to 3 per cent of the resuspended sediment related to the dredging activities would reach the Intercoastal Waterway under the best of conditions. It is difficult to translate that testimony into a measurement of changes in turbidity levels against ambient conditions in the Intercoastal Waterway. In any event, as already indicated, the changes in turbidity levels are not expected to exceed 29 NTU against background. It is evident that the turbidity curtains are necessary and their proper use must be assured to protect against problems associated with turbidity and the implications of the constituents of the resuspended particulate matter related to possible toxicity. Therefore, the close monitoring suggested in the statement of intent to grant the dredge permit is viable. Another matter associated with the implications of turbidity pertains to the fact that when the dredge material has been resuspended, as much as two days could pass before the basin returns to background conditions, given the high content of silt with its attached metals. This becomes significant given the uncertainty of the location of the dredge equipment during the course of excavation, i.e., inside the barrier or outside the barrier. Final choice about the placement of the dredge equipment will have to be made at the time of the excavation. Should the dredge equipment be inside of the cordoned area while excavation is occurring, it would be necessary to allow turbidity conditions to achieve background levels before opening up the barrier for the exit of the hopper barge which contains the excavated material. Otherwise, the estimates as to the influence of the dredging activities in the Intercoastal Waterway are unduly optimistic. Likewise, if the excavation platform is placed outside of the work site, that is to say, on the outside of the siltation curtain, extreme caution must be used to avoid spillage of the excavated material when being loaded onto the hopper barge. The occasions in which the excavation is being made from this side of the barrier should be minimized. These safeguards are important because any changes in sediment loading within the Intercoastal Waterway promote an influence in the area immediately adjacent to the basin and other sites within the Intercoastal Waterway as well. The subject of the use of a hydraulic dredge as an alternative to excavation by use of a closed clam shell bucket was examined in remarks by the witnesses appearing at hearing. Olson believes that there are hydraulic dredges which can achieve the design depth contemplated by the project and which equipment could fit inside the basin area. This is contrary to the opinion of witnesses for the applicant and DER who do not believe that the hydraulic dredging equipment which would be necessary to achieve the design depths would fit into the basin area. On balance, the record does not establish that such equipment with the appropriate capability and size does exist. More importantly, the proposed method of excavation is environmentally acceptable when examined in the context of the permit sought in this case. Finally, it was not essential for the applicant to make a detailed investigation of availability of hydraulic dredging equipment and it is not determined that failure to make this investigation warrants the denial of the requested permit. Although an hydraulic dredge is more desirable from the standpoint that it causes less turbidity through resuspension of sediments, it is not the only plausible method of excavation in this instance. Raymond D. Schulze testified in behalf of JSI. He holds a Bachelor of Science Degree and a Master of Science Degree in environmental engineering sciences. In particular, he established the fact that the amount of resuspended solids that would be introduced into the Intercoastal Waterway associated with the dredging activity would not result in the smothering of organisms or to clogging of gills of fish. In addition to the possible problems with turbidity, there is the additional issue of violation of water quality standards in the several parameters associated with concentrations of metals in the water column within the basin and in the sediments or related parameters such as dissolved oxygen and biological integrity. Having considered the testimony, the facts do not point to water quality violations for any parameters occurring in the Intercoastal Waterway as a result of the dredging. To arrive at this factual impression, the testimony of Dr. Pollman and Schulze is relied upon. Water quality sampling done by JSI in locations within the basin and in the Intercoastal Waterway, that by Dr. Pollman and Schulze, supports their impression of the acceptability of the dredge activities. This water quality data was admitted as JSI's Exhibit 18. Additionally, the field conditions existing at the time of testing, to include water temperature, weather conditions, tidal cycle, ph and dissolved oxygen were also made known. This water quality data and other information examined by these witnesses points to the fact that no increases in concentrations of metals are occurring within the Intercoastal Waterway as a result of the business activities of the applicant, nor are they to be expected while dredging operations are under way. Dr. Pollman correctly identifies the fact that there will not be significant degradation of water quality, above DER's minimum standards, related to the Intercoastal Waterway based upon the dredging activities within the basin, dealing with the water quality parameters of mercury, zinc, cadmium, chromium, lead, aluminum, iron and copper, substances which are within the basin. Dr. Pollman also examined sediment data collected by DER, and that data tended to confirm his assessment of the influences of the dredging activity related to these parameters. Dr. Pollman does not believe that metal concentrations contained in the sediment of the basin are leaching into the water column in quantities sufficient to cause violation of water quality standards. His opinion is accepted. Pollman had collected water quality samples in the two locations where the greatest siltation rate was expected and as a consequence the greatest concentration of metals would be expected. The water quality samples were taken at several depths to reach an opinion as to the matter of leaching of metals into the water column and the possibility of those metals dissolving in the water column. If leaching had been occurring, a concentration of metals expressed as a gradient would be expected. The greatest concentration in this instance would be near the sediment interface with the water column. No such gradation was detected and the idea of leaching was ruled out. Bickner's testimony established that testing for the exact amount of iron present at the dredge site was not required, given the nature of the iron source being introduced into the water within the basin. Bickner did not find that type of iron to be toxic. As stated before, Pollman agrees that no violation of state water quality standards as a result of the presence of iron associated with the maintenance dredging should be expected. There is some data which shows water quality violation for mercury in the basin and the Intercoastal Waterway. Subsequent water samples collected by Schulze in the westerly portion of the basis did not show detectable levels of mercury. Moreover, data taken by Pollman and Schulze and compared with the DER sediment data shows that the concentration levels of mercury are greater in the Intercoastal Waterway than in the basin, thereby suggesting that there is no concentration gradient for mercury which would lead to the belief that the basin contributes to the amount of mercury found in the Intercoastal Waterway, nor is the mercury believed to be leaching into the water column in the basin. The explanation of the differences in measurements of the amount of mercury in the basin, depending upon the point in time at which analysis was made, may be attributable to a natural phenomenon, given numerous sources of mercury within the environment. Whatever the explanation of these changes, Dr. Pollman does not believe that the release of mercury associated with the resuspended sediments that may find their way into the Intercoastal Waterway would show a violation of the state water quality standard for mercury in that water body and his opinion is credited. Data collected by Pollman and Schulze did not show water quality violations for aluminum and the DER test data described before indicated aluminum levels lower in the basin than in the Intercoastal Waterway. Some data collected by Technical Services, Inc., an environmental consulting firm in Jacksonville, Florida, which was reviewed by Pollman, Schulze, and Bickner showed a substantial violation of the water quality standard related to aluminum in sediment sampling that was done. The origin of that amount of aluminum found on that occasion was not clear. It is possible, as described by Bickner, Pollman and Schulze, that the level detected In the Technical Service report could have occurred based upon natural phenomena such as storm water runoff from uplands. Bickner also questioned the findings of Technical Service and felt like the determination might be influenced by some intervening circumstance which would promote the need for re-analyzing that parameter. Whatever the explanation of the findings in the Technical Service report, it does not point to any water quality violation of the standard related to aluminum based upon the dredging activities, given the limited amount of total suspended solids that would be introduced into the Intercoastal Waterway. Schulze, in his assessment of the implications of metal concentrations in the sediment transported to the Intercoastal Waterway, did not find them to cause concern about toxicity to marine life in the Intercoastal Waterway. This point of view is accepted. In trying to understand the implications of metal concentrations, Schulze believed that the biologically available fractions of those metals in the sediment is not very high, and when the dilution of the sediments which occurs in these circumstances is examined, no toxicity is expected. Moreover, as Dr. Pollman described related to the parameter aluminum, it is not a toxic material at the ph levels found in the basin, and the resuspension during dredging will not cause it to gain toxicity. This opinion of Dr. Pollman is supported by Bickner and Schulze. The opinion of Dr. White that the amount of aluminum, copper and zinc within the sediment found in the basin would eventuate in the violation of water quality standards for those parameters when introduced into the Intercoastal Waterway is rejected. The information available to Pollman, Schulze and Bickner which describes their opinion about water quality standards was sufficient to reach an opinion, the position of Petitioner's witness Sanford Young, holder of a Bachelor of Science Degree in civil engineering and a Master of Science Degree in zoology notwithstanding. As Bickner indicated in his testimony, it is essential that an applicant give reasonable assurances of compliance with all parameters listed in Chapter 17-3, Florida Administrative Code, dealing with water quality. However, this does not mean that testing must be done for each parameter set forth in that chapter. Reasonable assurance has been given that water quality parameters as identified in that chapter will not be violated. Bickner indicates the biological integrity standard is not one of concern in that given the nature of business operations within the basin, there is no expectation of a stable benthic community which might be disturbed by dredging. From the remarks of Schulze, there is no prospect of danger to benthic communities within the Intercoastal Waterway. These impressions by Bickner and Schulze are accepted. Under the facts of the case, the failure of the DER permit appraisers to discover benthic organisms in the sample grabbed at the site is not unexpected. There is also some question about whether that sample is representative of the circumstance at the site, given the limited sampling. On the topic of normalization of the DER data which was described in the course of the hearing and is identified by Dr. Pollman, the value of that information is seen as establishing the relative quantities of certain metals within the basin as compared with other sites throughout the Intercoastal Waterway. Twenty-one different locations were involved in this analysis. Concentration ratios using aluminum to normalize the data are as reflected in JSI's Exhibit 17 admitted into evidence. The significance of this information as it grossly describes whether the basin routinely contributes to increases in the amounts of these metals within the Intercoastal Waterway. Overall, basin activities are not shown to have promoted such an outcome. This normalization comparison does not address the issue of site specific water quality violations; however, no such violations are expected associated with the dredging activities within the basin as it relates to violations in the adjacent Intercoastal Waterway. Schulze had made sampling related to dissolved oxygen within the basin and the Intercoastal Waterway. As Schulze describes, the levels of dissolved oxygen seem to be at their lowest point just prior to the dawn hours. Sampling which he did was done at 5:00 a.m. in order to obtain the lowest dissolved oxygen readings. Three sites were sampled within the basin and an additional site was sampled in the Intercoastal Waterway. Readings were taken at varying depths at each site to gain an impression of the overall water column. The mean reading for the circumstance was in excess of the required range for state water quality, that is 4.0 per million. Having considered the evidence, no problems with dissolved oxygen are expected in that deficit contribution is in the range of .1 milligram per liter, per Pollman. In addition, Dr. Powell, through modeling, examined the implications of long-term dredging activities on the topic of dissolved oxygen. He employed field data gathered by Schulze in this assessment. This modeling established that decreases in dissolved oxygen levels would range from .1 to .15 milligrams per liter. Given the average of 4.5 parts per million oxygen in the basin at present, the incremental decreases in dissolved oxygen levels related to the dredging would not pose a problems with state water quality standards for dissolved oxygen other than short-term effects in the immediate vicinity of the dredge area, which is an acceptable deviation. As the Petitioner urges in its fact proposal, a 1983 report of Technical Services, Inc., JSI Exhibit 4, and a 1985 report of that firm, JSI Exhibit 7, were made available as part of the application. Officials within Technical Services, Inc. did not appear at the hearing and offer testimony related to the specific findings found in those reports. This information was used by the experts who did testify on behalf of the applicant, in particular Dr. Pollman, as data to question, his assumptions made about the implications of the project in terms of water quality concerns. Pollman also utilized DER data taken from a source known as Storette, and this pertains to the 21 sampling stations involved in the preparation of JSI Exhibit 17, the graphing document related to concentrations of various metals. Again, this was in furtherance of the basic underlying opinion which Pollman had about the project. The Storette data as such was not offered into evidence. Witnesses for the Petitioner, namely Olson and White, were aware of the two reports of Technical Services, Inc. and the use of the DER Storette data and offered their criticism of the project taking into account this information. Petitioner points out that there is no indication as to how far below the sediment/water interface the Technical Services, Inc., and DER sediment samples related to reports of the consultant and the Storette information of DER were extracted. Therefore, it only reflected one portion of the sediment at a depth of extraction. A more complete understanding of the sediment characteristics would have been shown through a core sample, especially in the area to be dredged, but that understanding was not essential. The suggestion by the Petitioner that it was inappropriate to normalize data for purposes of describing the relative concentrations of the metals parameters is not accepted. The preparation of JSI's Exhibit 17 does not point to abnormally high amounts of aluminum, such that the use of aluminum as a known commodity in carrying out the normalization would be contraindicated. As identified by the petitioner in its proposal, sediment sizes within the strata found in the basin depicts higher percentage of silt and clay-size sediments in the back end of the basin with lesser amounts of the silt- and clay-size sediments in the southern reach of the basin and at the intersection of the basin with the Intercoastal Waterway. The smaller the particles, such as silt and clay, will remain suspended for a longer period of time and have a tendency to promote bonding with heavy metal. Nonetheless, this information does not change the impression that the turbidity barriers will be effective. The 1983 Technical Services, Inc., information related to the settling of resuspended sediment and similar information imparted in the 1985 report by that organization tend to confirm that approximately two days should be necessary to allow the area of excavation to return to background conditions related to turbidity. This is in corroboration of remarks by Dr. Powell. These time projections are not found to be inadequate when taking into account other factors such as tidal changes, boat traffic, other activities within the basin, wind and weather events. As White described, the antifouling properties of the paint involved in the business activity of the applicant can be expected to adversely impact any larval forms of marine organisms when introduced into the basin. Nonetheless, this toxicity is not expected to pose a danger to marine organisms in the Intercoastal Waterway given the percentage of resuspended sediment that will escape capture by the sediment barriers and the dilution factor before introduction of those resuspended sediments into the Intercoastal Waterway. Petitioner questions the acceptability of evidence of the findings set forth by E G & G Bionomics, a firm which performed an examination to determine existing diversity of benthic macroinvertebrates. Those results are reported in Petitioner's Exhibit 13, a 1980 report. They were not accepted as evidence of the specific findings within that report in that they were not the subject of discussion by persons who authored that report. The use was limited to corroboration of the opinion by Dr. Pollman and Schulze as to water quality considerations and they were not Crucial to their opinions. Moreover, it was not necessary for the applicant to perform a more recent bioassay in order to give reasonable assurance to DER concerning water quality matters or to establish the implications of the influence of contaminants within the sediment found in the basin related to benthic macroinvertebrates. The biological integrity of the basin area was at risk prior to the proposal for maintenance dredging. The relevant inquiry is the influence of the dredging activities on the biological integrity in the Intercoastal Waterway and those activities do not place organisms within the Intercoastal Waterway in peril. Any synergistic aspects of metals which act as toxins, for example, the increase in the aggregate value of the toxicity of zinc and cadmium, compared to their individual implications as toxins, will not present problems with water quality in the Intercoastal Waterway. Petitioner takes issue with the proposed disposition of the dredge material at an ocean site. While an appropriate upland disposal site would be preferred, it is not mandated. The approved EPA disposal site within federal jurisdiction is acceptable. Petitioner in its fact proposals found at paragraphs 36-39 (incorporated by this reference) points out violations of water quality standards for cadmium, mercury, and aluminum, and other possible violations of the standard for mercury. This information does not cause a change of opinion about the acceptability of the project in terms of reasonable assurances. There is no indication that oils and greases will present a problem related to water quality standards. The project is not contrary to public interest in that: (a) the project will not adversely affect the public health, safety, welfare or the property of others; (b) the project will not adversely affect the conservation of fish and wildlife, including endangered or threatened species, or their habitat; (c) the project will not adversely affect navigation or the flow of water or cause harmful erosion of shoaling; (d) the project will not adversely affect the fishing or recreational values or marine productivity in the vicinity of the project; (e) the project will be of a temporary nature; (f) the project will not adversely affect significant historical and archaeological resources under the provisions of s. 267.061; (g) the project is in no other way contrary to the public interest. The purpose of this fact finding does not include the issue of whether there are ongoing violations of state water quality standards associated with the business activity of the applicant, that not being the subject of the hearing. In any event, the testimony of Dr. Pollman established that the operations of JSI are not causing water quality problems associated with the parameters of cadmium, copper, aluminum, mercury, lead, chromium, tin, zinc or iron related to the Intercoastal Waterway. The influences of the business activities associated with those parameters within the basin are not understood when the evidence presented is examined but are not found to be essential to the resolution of this dispute.
Recommendation Having considered the facts, and the conclusions of law, it is, RECOMMENDED: That DER issue a final order which grants the requested maintenance dredging permit in keeping with the safeguards described in the fact finding of this recommended order. DONE AND ORDERED this 16th day of October 1986 at Tallahassee, Florida. CHARLES C. ADAMS, Hearing Officer Division of Administrative Hearings The Oakland Building 2009 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 16th day of October 1986. APPENDIX TO RECOMMENDED ORDER IN CASE NO. 86-0365 Having examined the proposed facts submitted by the parties, those proposals have been found as fact with the exception of the following which are distinguished: Petitioner's facts Paragraph 1: Subordinate to fact finding. Paragraph 2: The first sentence in this paragraph is rejected because the fact is not found within the indicated exhibits, nor can that fact be fairly inferred. Paragraphs 9, 10, 11, 14, and 15: Except for the last sentence in that latter paragraph are subordinate to facts found. Paragraph 15: The last sentence: Contrary to facts found. Paragraph 18: The last sentence: Subordinate to fact finding. Paragraphs 21, 22, 23, 24, 25 and 26: Subordinate to fact finding. Paragraph 27: Contrary to facts found. Paragraphs 28, 29, 30 and 31: Subordinate to fact finding. Paragraph 32: Not necessary to dispute resolution. Paragraphs 33 and 34: Subordinate to fact finding. Paragraph 35: Contrary to facts found. Paragraphs 40, 41 and 42: Subordinate to fact finding. Paragraphs 44, 45: Not necessary to dispute resolution. Paragraph 47: The first two sentences are information that is not sufficiently credible to allow application to the issues of the present case. Paragraphs 48, 49, 50 and 51: Not necessary to dispute resolution. Paragraph 52: Reject as fact. Paragraph 54: Contrary to facts found. Paragraph 55: Not necessary to dispute resolution. JSI and DER facts Paragraph 2: Pertaining to sentence 8 and the last phrase within sentence 11; Not necessary to dispute resolution. Paragraph 3: As to the first sentence, fourth sentence and seventh sentence; Not necessary to fact resolution. Paragraphs 4, 5 and 6 to the colon in paragraph 6: Not necessary to dispute resolution. The remaining portions of paragraph 6 are subordinate to fact finding. Paragraph 10: as to the last two sentences; Not necessary to dispute resolution. Paragraph 13: As to the next to the last sentence; Not necessary to dispute resolution. Paragraph 14: As to the fourth sentence and the last sentence; Not necessary to dispute resolution. Paragraphs 16, 17, 18 and 20: Subordinate to fact finding. Paragraph 21: Sentence 3 is subordinate to fact finding sentence 4 is not necessary to dispute resolution; sentences 5 and 6 are subordinate to fact finding. Paragraph 22: Next to the last sentence; Not necessary to dispute resolution. Paragraphs 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38 and 41: Subordinate to fact finding, except the comments in the last sentence of paragraph 41 related to the operations of JSI causing or contributing elevated concentrations of parameters within the basin which is not found as fact. Paragraphs 42, 43 and 44: Subordinate to fact finding. COPIES FURNISHED: Kenneth G. Oertel, Esquire Chris Bryant, Esquire OERTEL AND HOFFMAN, P.A. Post Office Box 6507 Tallahassee, Florida 32314-6507 Thomas M. Baumer, Esquire Deborah Barton, Esq. GALLAGHER, BAUMER, MIKALS, BRADFORD, CANNON AND WALTER, P.A. 252-5 Independent Square Jacksonville, Florida 32202 Bradford L. Thomas, Esquire Assistant General Counsel Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32301 Victoria Tschinkel, Secretary Department of Environmental Regulation Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32301
The Issue The issue for consideration at the hearing was whether the Respondent, Roger Harloff, should be issued a consumptive use permit to withdraw and use ground water from the wells on his property, and if so, in what amount and under what conditions.
Findings Of Fact Respondent, Roger Harloff, owns several farms in southeastern Manatee County, Florida which, taken together, make up an irregular 8,500 acre tract located approximately 2 1/2 miles north of the City of Sarasota's Verna Wellfield. Mr. Harloff grows vegetables on much of this tract, of which approximately 1,500 acres is devoted to tomatoes. This tomato crop is the prime crop produced by Mr. Harloff, and provides the raw material for the Harloff packing plant which is dependent upon the tomato crop in order to stay in business. Mr. Harloff also operates a plant nursery at which he produces many if not most of the seedling plants utilized in his vegetable growing operations. In order to be economically feasible and remain operative, Mr. Harloff must farm approximately 3,800 acres during the Spring growing season and approximately 3,000 acres during the Fall. These acres are made up of tomatoes and other vegetables. The packing plant and the plant nursery are dependent upon the farm operation and without adequate water, the farm operation cannot be successfully carried on. In September 1988, Mr. Harloff applied to the District for a consumptive use permit to withdraw water from twelve wells located on his property, requesting an annual average rate of 12,995,606 gpd, and a maximum daily rate of 47,520,000 gpd. The consumptive use permit application filed by Mr. Harloff was assigned District Number 204467.04. After evaluation of the application in conjunction with its needs and policies, the District issued a staff report and proposed agency action on the application which recommended issuance of the permit authorizing water to be drawn from the 12 wells at a rate approximating that requested in the application. Thereafter, the City of Sarasota, which operates the nearby Verna Wellfield, considering that the proposed withdrawal would have a substantial adverse impact on its wellfield operations, filed a Petition for Formal Administrative Hearing objecting to the issuance of the permit to Mr. Harloff. Though Mr. Harloff has owned much of the property which make up the 8,500 acre tract in question here, at the time of his application, he did not own, but had under contract, a substantial portion. He closed on the purchase of that remainder after he received notice of the District's intention to issue the permit in question but prior to the City's filing its Petition For Formal Hearing. The purchase price of the property in question was $9,000,000.00 which carries an interest payment on the financed portion of $52,000.00 per month. The wells pertinent to the issues in this proceeding are as follows: # Cons. Depth Cas. Lin. Diam. Cap. Loc. 1 1978 1185' 200' 220-490' 12" 2000 gpm SE 2. 1988 1320' 210' 210-480' 16" 3000 gpm SE 9. 1974 1130' 390' 16" 3000 gpm C 10. 1976 1232' 231' 283-400' 16" 3000 gpm NW 11. 1979 1120' 210' 260-480' 12" 2000 gpm NW 12. 1976 1180' 480' 12" 2000 gpm SW 3. 1989 1434' 460' 16" 3000 gpm SE 5. 1989 1374' 610' 16" 3000 gpm W 8. 1989 1292' 548' 16" 3000 gpm NW 13. 1989 1310' 635' 16" 2000 gpm NE Well No. 8 was used as the pump test well for the constant rate discharge test and Well No. 13 was the deep observation well for that test. Wells 1, 2, 9, 10, 11, and 12 have all been previously permitted by the District and No's 1, 2, 9 and 10 are currently permitted under two other permits, while 11 and 12 were permitted under a different permit. Wells No. 3, 5, 8 and 13 have been authorized for construction but not, as yet, to produce water. Wells 4, 6 and 7 have not yet been constructed. The intention is to drill them to a depth of 1,300 feet and case them to 600 feet. Each will have a pump capacity of 3,000 gpm. Number 4 will be in the southeast portion of the tract, number 6 in the central portion, and number 7 will be located just north of number 6. Wells 1, 2, 9, and 10 currently have a combined permitted maximum daily rate of 13,680,000 gallons under permits number 204467.03 for 1 and 2, and 204630 for 9 and 10. The former was issued on December 29, 1987 and will expire on December 29, 1993, and the latter, issued on October 7, 1981, will expire on that same day in 1991. The permit previously issued for wells 11 and 12 authorized withdrawal at a maximum daily rate of 2,160,000 gallons. That permit, number 204374, expired on September 9, 1986 and was not renewed. After the City filed its Petition challenging Mr. Harloff's proposed permit, Mr. Harloff, on June 26, 1989, filed an amended application to withdraw water at an average annual rate of 10.99 mgd and a maximum daily rate of 48.96 million gallons. This amended application refers to an additional proposed well, Number 13. The District, however, had previously approved wells 3 - 8 and 13, and pursuant to this authorization, wells 3, 5, 8, and 13 were built. Mr. Harloff submitted additional amendments to his application on August 7 and 9, 1989. The former requests a seasonal average daily rate of 25.34 mgd and a seasonal maximum daily rate of 32.79 mgd. The latter requests a seasonal average rate of 26.18 mgd, an annual average rate of 15.18 mgd, and a seasonal maximum rate of 31.56 mgd. In that regard, a seasonal rate is the same as an annual rate, (average or maximum) when applied to a growing season as opposed to a year. The additional amendments to the application were evaluated by District staff who, on August 18, 1989, issued a revised staff report and a proposal to issue to Mr. Harloff a consumptive use permit authorizing an average annual withdrawal of 11.1. mgd, an average seasonal withdrawal of 15.6 mgd, and a seasonal maximum withdrawal of 20.1 mgd. The proposed permit also contains terms and conditions which, the District contends, will, inter alia, permit Mr. Harloff to withdraw more water than he is currently authorized without additional adverse impact on the City's Verna Wellfield. It is to some of these terms and conditions that Mr. Harloff objects. Since the issuance of the revised staff report and intent to issue, the parties have negotiated on the various terms and conditions in question and have agreed to some and the amendment of others. Mr. Harloff has no objection to conditions number 1, 2, 3, 7 - 14, 23, 24, 26, 28 - 30, 32, and 34 & 35. The parties agree that other conditions, as indicated herein, should be amended as follows: Condition 19, on the third line, should be changed to read, " up to 20 inches tapering to 12 inches." Condition 22, on the second line, should be changed from "30 days" to "10 days". Condition 25, on the first line, should be changed from "within 60 days" to within 120 days". Condition 31, on the third line, starting with "following month" should be changed to "following months: January, April, July and October". Also, under Sampling Frequency, "Monthly" should be changed to "Quarterly". Condition 33, on the ninth line, insert the work "economically" before the word "feasible" in the phrase "specific operation and irrigation improvements are feasible". Mr. Harloff objects to conditions 4, 5, 15 - 17, 20 & 27. He does not object to the proposed new standards for new wells. Taken together, the parties then disagree only on the requirement for abandonment or refurbishment of existing wells and the quantities of water Mr. Harloff will be allowed to draw. The City supports the District's position on both issues. The City of Sarasota owns and operates a public water system to serve between 50 to 75 thousand people located in Sarasota County. The primary source of water for this system is the Verna Well field which is also owned by the City and which accounts for approximately 60 percent of the City's water needs. The City also operates a reverse osmosis, (R.O.) water desalinization facility, and has back-up wells at St. Armond Key and at the Bobby Jones Wellfield. The Verna Wellfield is located about 17 miles east of the Sarasota city limits on approximately 2,000 acres of land in northeastern Sarasota County. It consists of two tracts of land: Part "A", which is approximately 1/2 mile wide by 4 miles long; and Part "B", which is approximately 1 mile square located about 500 feet southeast of Part "A". The Verna Wellfield's permitted allocation is based on whether the R.O. facility is producing at capacity. If it is, the Verna daily allocation is 7 mgd, and if not, 9.5 mgd. The R.O. facility's capacity is 4.5 mgd and the backup wells have a capacity of 1.7 mgd. The wellfield contains 39 permitted production wells, 30 of which are in Part "A" and 9 of which are in Part "B." One of them, well 30, is currently inactive. The wellfield has been in operation as a part of the City's public water system since September 1966. When the Verna Wellfield was constructed in 1965-1966, its original design specified casing on most wells down to 140 feet with pump bowl settings at 125 feet. Each pump was to have a total dynamic head, (TDH) of 200 feet. Over the years, the City has decreased the TDH of the pumps at Verna from 200 feet to 175 feet. This has resulted in a reduction of the pumps' ability to produce water with sufficient pressure to carry it to the discharge point. This decline has been caused by an increase in withdrawal of water regionally, and not solely because of withdrawals from the Verna Well field. Verna is impacted by the use of water outside the boundaries of the wellfield. The City has an ongoing program calling for the refurbishment of 2 to 3 wells per year at the Verna Wellfield. It is the City's intent to convert the pumps to 200 feet TDH on all well refurbishments in the future. In August 1977, a program requiring permits for the consumptive use of water was implemented in both Sarasota and Manatee Counties. At that time, the Verna Wellfield had a production rate of 6.9 mgd annual average daily rate. On January 6, 1978, the City applied for a permit for Verna and on April 3, 1979, the District issued permit number 27804318 to allow the City to draw water from the Verna Wellfield. The City applied for a renewal of that permit in October 1983 and thereafter, in January 1985, the District authorized the continued withdrawal of water from Verna by the issuance of permit 204318 which, at Condition 18, placed limitations on the City's use of water from the wellfield. Specifically, the permit limited withdrawals from Verna to: ...6,000,000 gallons per day average and 7,000,000 gallons per day maximum, except during those times when ... [the R.O. process is reduced or to facilitate maintenance or repairs]. At such times, ... [withdrawals) may be increased to provide additional supplies not to exceed 8,000,000 gallons per day average annual and 9,500,000 gallons per day maximum. This condition clearly provides for additional supplies to be drawn to increase the Verna Well field production to a total of 8,000,000 and 9,500,000 mgd, respectively, not in addition to the regular permitted amount, by those quantities. The City's permit has been neither suspended nor revoked nor is any violation enforcement action currently under way. The current permit expires January 9, 1991. The water pumped from the Verna wells is held in a 1,000,000 gallon reservoir at the wellfield. This reservoir, which is topped at approximately 22 to 23 feet, electronically controls the pumping activity at the well field by turning on and shutting off pumps, in series, as the water level in the reservoir rises and falls. The water, when needed, is transmitted to another reservoir near the City's treatment plant in downtown Sarasota by gravity flow through a 30" diameter, 92,000 foot long pipe. The flow rate is approximately 5,000 gpm normally. When the treatment plant needs more water, a pump at the well field forces the flow at a rate of between 7,200 to 8,200 gpm, depending upon the level of water in the receiving reservoir. A flow of 8,200 gpm would draw 11.8 mgd from the wellfield. The operating capacity of the Verna Wellfield, in August 1988, was 17.9 mgd. Harloff's experts assert, and there is no concrete evidence to rebut it, that if all wells at Verna were pumping during a 24 hour period in May 1989, the reservoir could have been maintained at full level. However, though there is a manual override of the automatic reservoir/pump control system, it is unrealistic and unwise to expect full production on a 24 hour basis for any lengthy time period. Water under both Mr. Harloff's property and the Verna Well field is found at various levels known by different names. These include, in order of descent, the Surficial Aquifer, the Intermediate Aquifer, the Upper Floridan Aquifer, and the Lower Floridan Aquifer. The Surficial Aquifer extends from the surface down to between 20 and 60 feet below the surface. A 20 foot thick bed of clay separates the water in this aquifer from that in the aquifer immediately below it, the Intermediate Aquifer, which extends from approximately 80 feet down to approximately 420 feet below the surface. In the lower part of the Intermediate Aquifer, permeability decreases until a confining unit separating the bottom of the Intermediate Aquifer from the top of the Upper Floridan Aquifer is formed. There is such a confining unit between 420 and 500 feet. There is no well-defined confining unit between the Upper and Lower Floridan Aquifers. There is, however, a substantial difference in the transmissivity in each zone. "Transmissivity" is defined as the amount of water that will exist through a section of the aquifer that is the same width from the top to the bottom. The lower the transmissivity rate, the deeper the cone and the narrower the radius of effect. The higher the rate, the shallower the cone and the broader the radius. The Lower Floridan Aquifer has an extremely high transmissivity. Its top is found at a range of from 1,050 to 1,200 feet below the surface on Mr. Harloff's property. The water from the Upper Floridan Aquifer is of higher quality than that in the Lower. It is more readily usable for drinking than that in the Lower, but the Lower water is quite acceptable for agricultural purposes. What confining layer exists between the Upper and Lower Floridan Aquifers is made up of relatively impermeable anhydrides and gypsum. Because of this, there is little likelihood of the highly mineralized water from the Lower Floridan Aquifer rising into the better quality water in the Upper. If, therefore, water for agricultural purposes is drawn from the Lower Floridan Aquifer, with its high transmissivity and narrower cone radius, and if the wells utilized to procure this water are cased down to within the Lower aquifer, there is little chance of a negative impact on the better quality water, used for drinking by the City, within the Upper Floridan and Intermediate Aquifers. Mr. Hardin, an expert geologist and hydrogeologist testifying for Mr. Harloff, concluded, utilizing certain commonly accepted computer models, that Mr. Harloff's requested additional withdrawals would not have a significant effect on the Verna Wellfield's ability to produce water sufficient for the City's needs. This conclusion was based on 1989 seasonal use figures including an average rate of 21.95 mgd, a maximum rate of 27.04 mgd, and a maximum rate of 29 mgd under a "run time" calculation and the fact that during that period, the City was able to pump at least its permitted quantity from its wells at Verna. The City and the District do not accept this conclusion as reasonable, however, because, they claim, the withdrawal figures cited are not meter readouts but estimates based on the number of acres farmed and the number of pump operating hours during the period in question. The City's experts contend the data used by Hardin and Prochaska in their opinions is not that which other experts in the field would reasonably rely upon. They do not appear to be unrealistic, however, and, therefore, Mr. Hardin's opinion is accepted as but one factor to be considered. On the other hand, Mr. Anderson, also a Harloff expert hydrogeologist, claims the requested withdrawals would result in only an additional 1.7 foot drawdown in the Upper Floridan Aquifer underlying the Northeast corner of the Verna Well field. To be sure, this is only one small portion of the wellfield in issue. There has, however, been a continuing history of declining groundwater levels in this area over the past several years. After the 1975 drought, the City started to experience declining water levels at Verna which, because of the reduction in ability to produce water, required a lowering of the pump elements in some wells, and also caused the City to develop an R.O. facility in an effort to reduce dependence on well water. This drop in capability occurred again during the 1985 drought and this time the City modified the pump motors to shut off prior to cavitation and initiated a schedule of operating times for wells, so that water is drawn from different and geographically separated areas in a sequence designed to allow periodic regeneration of an area's supply. Nevertheless, water supply remains a concern at Verna, and the problems previously experienced continue to occur during periods of drought. In May 1989, the Verna Wellfield was periodically "unable" to meet it's short term peak demands at times even though all operating wells were pumping. This means that at the times in question, more water was being drawn from the Verna reservoir than could be replaced by pumping activities. It does not mean that the reservoir ran dry and water could not be furnished to the treatment plant. However, this condition is serious and indicative of a more serious shortage in the future unless appropriate safeguards are instituted. Mr. Balleau, the City's expert in hydrology and hydrogeology, and the District's experts all believe the Verna Wellfield is in trouble. It is operating well beyond its design range and the imposition of additional demands on it would seriously and adversely affect its ability to produce water. This position is supported by the facts and found to be accurate. There appear to be several options open to the City to contend with the Verna problem potential. These include: drill deeper wells at Verna to tap the Lower Floridan Aquifer. (This will produce the lower quality water found there and require additional treatment facilities. construct a linear wellfield along the pipeline from Verna to the treatment facility. (This will require additional permitting to draw the water, high construction and operating costs, and still result in low quality water requiring treatment. redevelop the downtown wells currently supplying the R.O. facility. (This will require satisfaction of regulatory issues, adversely impact on the users of the upper aquifers, possibly result in poor water quality and in contamination from nearby landfills.) develop a new well field southeast of Verna. (This will experience regulatory issues and high construction costs, with an unknown water quality result.) buy water from Manatee County. (This is expensive, may result in transmission and compatibility problems, and would be only a short term solution. lower pump assemblies; replace existing pumps and modify the pump circuits. (These are all unreliable, short term solutions of minimal benefit.) Mr. Harloff and the City/District disagree on the appropriate amount of water needed for the successful growing of the crops produced by his operations. Both agree, however, that the heaviest demands for water come in the spring growing season including April and May. Tomatoes require the most water. Peppers require nearly as much. This is because the short root systems require a higher water table in the soil to supply needed moisture. In its analysis of Mr. Harloff's application, the District, referring to tables developed for the purpose of allocation and relating to Harloff's watering history during the period from August 15, 1988 to June 7, 1989, subtracted the fall season recorded application of 20.7 acre-inches from the total 10 month figure of 50.92 acre-inches and concluded he would need 30.22 acre-inches for peppers during the spring, 1989 season. Unless shown to be totally unreasonable, however, (not the case here), the applicant's water need figures should be accepted. Mr. Harloff's operation constitutes an important part of Manatee County's agricultural economy, and agriculture utilizes 68.9 percent of the land in the county. Agricultural products sold in Manatee County in 1987 were valued at $145,655,000.00, which ranked Manatee County third among all Florida counties in vegetable production. Agriculture is the fourth largest employer in Manatee County, employing an average of 4,692 people per month. Through his farm operation alone, Harloff employes as many as 1,050 people, with 200 employed on a full-time basis. Experts estimate that the loss of the Harloff operation would cause a reduction of between 16 and 18 million dollars in agricultural sales in the county with an additional loss in jobs and income to his suppliers. This estimate is not at all unreasonable. Florida produces approximately 95 percent of all tomatoes grown in this country for the fresh tomato market during the winter growing season. Tomatoes are the single largest vegetable crop grown in the state and accounted for 39.7 percent of the total value of vegetables produced in Florida during the 1987-1988 growing season. Mr. Harloff produced 4.8 percent of the total shipment of tomatoes from this state during that period. Water, primarily through irrigation, is an indispensable portion of the farming operation for this crop. Mr. Harloff currently irrigates the majority of his non-citrus crops by use of a "semi-closed ditch irrigation system", as opposed to a "drip system." The drip system is considerably more efficient than the semi-closed system having an efficiency rating, (amount of water actually used by the plants) of between 80 to 90 percent, as opposed to 40 to 60 percent for the other. While Mr. Harloff could reduce his water needs considerably and achieve substantial savings on pump fuel by conversion to a drip system for all or a part of his crops, such an undertaking would be quite costly. One of the conditions proposed by the District for the approval of Harloff's permit, as amended, is the refurbishment of several of the existing wells utilized by Mr. Harloff to make them more efficient and to promote the withdrawal of water from the Lower Floridan Aquifer, in which there appears to be adequate water and from which the Verna Well field does not draw. Currently, Mr. Harloff has seven wells which do not meet the standards of this proposed condition. They are not drilled to 1,300 feet below mean sea level and are not cased to 600 feet. To bring these wells into compliance, they would have to be drilled to the 1,300 foot level, or to a level which has a specific capacity of 400 gpm, and the casings in each would have to be extended to 600 feet. Extending the casings would be a complicated procedure and Harloff's experts in the area cannot guarantee the procedure would successfully achieve the desired end. Assuming the retrofit was successful, the cost of the entire process would be approximately $15,000.00 to $16,000.00 per well. In addition, the process would, perforce, require reducing the diameter of the well from 10 to 8 inches, thereby necessitating increasing the pump capacity to produce sufficient water. The cost of this is substantial with an appropriate new pump costing somewhere between $10,000.00 and $15,000.00 each. Consequently, the anticipated cost of bringing the existing wells up to condition standards would be between $25,000.00 to $31,000.00 per well, while the cost of constructing a new well is between $40,000.00 and $50,000.00 per well. Mr. Harloff feels it would be more prudent for him to replace the existing wells rather than to retrofit them. This may be correct. Harloff experts also claim that extending the casings on the existing wells down to 600 feet would not provide a significant benefit to the aquifer nor cause any significant reduction in drawdown impact at Verna. The District and City experts disagree and, taken on balance, caution and the interests of the public indicate that a conservative approach is more appropriate. While Mr. Harloff proposes to convert the areas served by wells 1, 9, 11, and 12 to the growing of citrus which requires much less water than tomatoes, this would not be sufficient mitigation to offset the need for some modification if large amounts of water will still be drawn. The entire area under the District's jurisdiction has been experiencing a water shortage due to a lack of rainfall. As a result, in June 1989, the District adopted a resolution identifying an area, including the area in question here, as a "water use caution area." This was done because the Floridan Aquifer has been subjected to large seasonable drawdowns of the potientiometric surface, the level to which water in a confined aquifer can rise in a well which penetrates that acquifer. This drawdown is directly related to increased water use in the area, much of which is for agricultural purposes. As a result of the District's action, special conditions on well construction for consumptive use applicants have been imposed on a permit by permit basis to insure, as much as possible, that the applicant uses the lowest quality water appropriate for his intended purpose. These conditions are not unreasonable. While accepting the District's and City's conclusion that his wells, if permitted, would have some impact on the Verna Wellfield, Mr. Harloff does not concede that the impact is significant. Specifically, the difference in impact resulting from an increase from his currently permitted use of 13.68 mgd seasonal maximum and his requested use of 31.56 mgd seasonal maximum for wells 1, 2, 9, and 10 would be a maximum increased drawdown of 1.1 feet at the Intermediate aquifer and 1.8 feet at the Upper Floridan Aquifer. Both figures relate to that portion of the wellfield found in the northeast corner of Part A. If the anticipated usage for crops predicted by Mr. Harloff's experts for the spring of 1989 is accurate, the drawdown would be 0.2 feet for the intermediate aquifer and 0.4 feet for the Upper Floridan Aquifer measured at the northeast corner of Part B of the Verna We1lfield. Harloff's experts contend that additional impacts for the spring of 1989 included, the increased usage will not have a significant effect on Verna's ability to produce its permitted daily maximum withdrawal of 9.5 mgd. While this is an educated speculation, it should be noted that during May 1989, the Verna field was able to produce up to 8.3 mgd without using all wells during any 24 hour period. This does not consider, however, the problems encountered by the City as indicated by the wellfield personnel, and the fact that some of the City wells are not pumping water.
Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is, therefore: RECOMMENDED that Roger Harloff be issued a consumptive use permit, No. 204467.04, as modified, to reflect authorization to draw 15.18 mgd annual average, not to exceed 31.56 mgd seasonal maximum, conditioned upon compliance with the conditions found in the conditions portion of the permit, as modified to conform to the quantities as stated herein, and to include those requirements as to acre-inch and crop-acre limitations, well usage and abandonment schedules, well modification standards, and record keeping, as are contained therein. RECOMMENDED this 5th day of December, 1989, in Tallahassee, Florida. ARNOLD H. POLLOCK, Hearing officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 5th day of December, 1989. APPENDIX TO RECOMMENDED ORDER IN CASE No. 89-0574 The following constitutes my specific rulings pursuant to s. 120.59(2), Florida Statutes, on all of the proposed Findings of Fact submitted by the parties to this case. FOR THE PETITIONER: City of Sarasota, joined by the District 1 & 2. Accepted and incorporated herein. 3. Accepted and incorporated herein. 8-12. Accepted and incorporated herein. 13. Accepted and incorporated herein. 14-22. Accepted and incorporated herein. 23-25. Accepted and incorporated herein. 26. Accepted and incorporated herein. 27 & 28. Accepted and incorporated herein. 29-33. Accepted and incorporated herein. Not a Finding of Fact but a statement of party position. & 36. Accepted. 37. & 38. Accepted and incorporated herein. Accepted. Accepted and incorporated herein. Not a Finding of Fact but a comment on opponent's satisfaction of its burden of proof. 42-44. Accepted and incorporated herein. Accepted and incorporated herein. Rejected as a misstatement of fact. Water service was never interrupted. The deficiency was in the City's inability to keep its wellfield reservoir filled. 47-54. Accepted and incorporated herein. Accepted and incorporated herein. Rejected for the reasons outlined in 41. 57-62. Accepted and incorporated herein. 63. Rejected for the reasons outlined in 41. 64-66. Accepted and incorporated herein. Rejected for the reasons outlined in 41. Rejected. & 70. Accepted and incorporated herein. 71. & 72. Accepted and incorporated herein. 73. Accepted and incorporated herein. 74 & 75. Accepted and incorporated herein. Accepted. Not a Finding of Fact but a statement of party position. Rejected. Accepted. Irrelevant. 81-84. Rejected. 85. & 86. Accepted and incorporated herein. 87 & 88. Accepted and incorporated herein. 89. Accepted and incorporated herein. 90 & 91. Accepted and incorporated herein. 92. & 93. Accepted and incorporated herein. FOR THE RESPONDENT: Roger Harloff 1-9. Accepted and incorporated herein. 10-13. Accepted and incorporated herein. 14 & 15. Accepted and incorporated herein. 16-25. Accepted and incorporated herein. 26-28. Accepted and incorporated herein. 29 & 30. Accepted. Accepted and incorporated herein. Accepted. Accepted and incorporated herein. Not proven. 35 & 36. Accepted and incorporated herein. 37 & 38. Accepted and incorporated herein. 39-41. Accepted and incorporated herein. 42 & 43. Accepted and incorporated herein. 44. Accepted. 45 & 46. Accepted and incorporated herein. 47 & 48. Accepted and incorporated herein. 49. Accepted. 50 & 51. Accepted and incorporated herein. Accepted. Accepted. Accepted. & 56. Accepted and incorporated herein. 57. Accepted. 58-60. Accepted and incorporated herein. 61 & 62. Accepted and incorporated herein. Rejected as unproven. Accepted. Accepted and incorporated herein. Accepted. 67-68. Accepted. Not a Finding of Fact but an interpretation of party po Accepted. Rejected. 72 & 73. Accepted. COPIES FURNISHED: Edward P. de la Parte, Jr., Esquire de la Parte, Gilbert and Gramovot, P.A. 705 East Kennedy- Blvd. Tampa, Florida 33602 Edward B. Helvenston, Esquire SWFWMD 2379 Broad Street Brooksville, Florida 34609-6899 Douglas P. Manson, Esquire Blain & Cone, P.A. 202 Madison Street Tampa, Florida 33602 Peter G. Hubbell Executive Director SWFWMD 2379 Broad Street Brooksville, Florida 34609-6899
Findings Of Fact THE PARTIES The Respondent is the successor agency to the Florida Department of Environmental Regulation and has permitting authority over the subject project pursuant to Chapter 403, Florida Statutes. The Respondent's file number for this matter is 311765419. Petitioner, Alden Pond, Inc., is a subsidiary of First Union National Bank of Florida and is the successor in interest to Orchid Island Associates. John C. Kurtz is the designated property manager for this project and appeared at the formal hearing as Alden Pond's authorized agent. THE PROPERTY AND THE VICINITY Petitioner has record title to all of Government Lot 9 in Section 15, Township 31 South, Range 39 East, less the Jungle Trail Road right of way, and all of Government Lots 2, 3, 6, and 7, Section 22, Township 31 South, Range 39 East, less the road right of way for State Road 510. Petitioner does not own land below the mean high water line of the Indian River, which forms the western boundary of the property. Much of the property, approximately the northern half, abuts a part of the Indian River that has been leased by the State of Florida to the United States Fish and Wildlife Service as part of the Pelican Island National Wildlife Refuge. The Pelican Island National Wildlife Refuge was the first national wildlife refuge established in the United States and has been declared to be a water of international importance. Upland of the proposed project is a golf course and residential development. The Indian River at the project site is within the Indian River Aquatic Preserve, which is classified as Class II Outstanding Florida Waters. The Indian River in the vicinity of the project is part of the Intercoastal Waterway system, is navigable by large vessels, and is an important travel corridor for manatees. The Indian River in the vicinity of the project is a healthy estuarine system. Minor deviations from Respondent's dissolved oxygen standards have been recorded. These minor deviations are typical and represent natural conditions for this type of system. Water quality sampling from March 1994 yielded no samples in which deviations from Respondent's dissolved oxygen standards were observed. THE ORIGINAL PROJECT On February 21, 1990, Orchid Island Associates submitted to the Respondent an application for a wetland resource permit to construct a boat basin and canal on its property adjacent to the Indian River. The artificial waterway that Petitioner proposes to construct on its property will, for ease of reference, also be referred to as a canal. Petitioner proposes to dredge from the north terminus of the canal to the Intercoastal Waterway a channel, which will be referred to as the hydrological channel. Petitioner proposes to dredge from the south terminus of the canal to the Intercoastal Waterway a channel, which will be referred to as the access channel. The original project involved, among other features, a canal approximately 6,400 feet long, the dredging of the hydrological channel and the access channel, the construction of 44 docks to be located along the eastern side of the canal, and the dredging of an area adjacent to the canal for a 58 slip marina. The width of the canal was to range between 100 and 200 feet. The original project required the filling of 4.72 acres of wetlands and the dredging of 8.81 acres of wetlands for a direct impact on 13.53 acres of wetlands. On January 15, 1991, Respondent issued a preliminary evaluation letter pertaining to the initial application that contained the following conclusion: "the project cannot be recommended for approval." On September 12, 1991, Respondent issued a Notice of Permit Denial dated September 12, 1991, which stated that the application would be denied. This denial letter did not suggest any revisions that would make the project permittable and represented a strong position by the Respondent that the project as originally proposed should be denied. The September 12, 1991, Notice of Denial correctly described the project site and the initial proposal as follows: . . . The proposed project is located north of and adjacent to County Road 510, north and east of Wabasso Bridge and adjacent to the eastern shore of the Indian River. The Indian River at the project site is within the Indian River Aquatic Preserve, which is classified as Class II, Outstanding Florida Waters. The Pelican Island National Wildlife Refuge, also an aquatic preserve and an Outstanding Florida Water, is immediately west of the project site. Historically, the site of the marina and its associated upland development consisted of a wetland adjacent to the Indian River and a large citrus grove. Subsequently, the wetland was surrounded by a dike and impounded for mosquito control purposes. At some point in the past, a borrow pit 1/ was excavated within the landward (eastern) edge of the impounded wetland. Most of the citrus grove has been converted to a residential community associated with a golf course. * * * The proposed project included excavation of a 6,400 linear ft. canal along the upland/wetland edge between the impoundment and the adjacent upland, dredging the existing borrow pit to a depth of -8 ft. NGVD to create a boat basin that will connect it to the excavated canal, construction of 58 boat slips within the excavated boat basin, excavation of two flushing channels through a portion of the impoundment dike and wetlands within the impoundment to connect the excavated channel to the Indian River and a natural lake within the impoundment, excavation of a 700 ft. long access channel to connect the excavated canal to the Intercoastal Waterway through the seagrass beds along the southern boundary of the project site, filling of 4.72 ac. of wetlands at three locations within the impoundment to create uplands, and construction of a boardwalk along the southern edge of the excavated canal through the wetlands in the impoundment to provide access to the marina basin. To mitigate for the loss of wetlands, the applicant proposes to enhance 68 ac. of wetlands within the mosquito impoundment by returning the impoundment berm to grade and implementing a rotary ditching project and open marsh mosquito management to improve the hydrology of the wetlands in the impoundment, planting high marsh species, and donating the enhanced wetlands to the State of Florida for incorporation into the Pelican Island National Wildlife Refuge through a lease to the United States Fish and Wildlife Service. The September 12, 1991, Notice of Denial provided, in pertinent part, the following reasons for the denial of the project: The Department hereby denies the permit for the following reasons: Water quality data for the Indian River adjacent to the project site indicates that the dissolved oxygen (D.O.) standard is not currently being met. The proposed 8 ft. deep canal and marina basin to the Indian River would be expected to result in introduction of additional low D.O. waters into a system which already does not meet the D.O. standard, thereby resulting in further degradation of the water quality in the Indian River. In addition to the D.O. problem, the project would result in water quality degradation due to the pollutant loading of marina related pollutants from the boats docked at the 58 slips that are proposed as part of the project in the marina basin. Additional water quality degradation also may result from boats that are moored at docks that may be constructed at a later date by the owners of the 44 lots adjacent to the canal, pursuant to the exemption in Section 403.813(2)(b), Florida Statutes. This exemption provides that private docks in artificially constructed waters are exempt from dredge and fill permitting and may be constructed without a permit providing they meet the size criteria listed in the statute and provided they do not impede navigation, affect flood control, or cause water quality violations. The boats in the canal system and boat basin would be a chronic source of pollutants for the life of the facility. The proposed water depths and slip sizes will make the basin accessible for use by large boats which can be expected to have on-board sanitation devices. The hydrographic report submitted by the applicant indicates the proposed waters will flush with a 2.6 hr. duration. Although this flushing rate will prevent water quality pollutants from being concentrated in the waters of the basin, it also will have the effect of transporting boat related pollutants to the Indian River, thereby causing degradation of the Outstanding Florida Water. The project site is within Class II Waters, prohibited for shellfish harvesting, but is adjacent to Class II Waters, approved for shellfish harvesting. Discussion with the Department of Natural Resources, Bureau of Regulation and Development, indicates that the pollutant loading from the project would probably cause the adjacent waters to be reclassified as "prohibited for shellfish harvesting." The reclassification of the adjacent waters would lower the existing use of the waterbody. Rules 17-302.300(1), (4), , and (6), Florida Administrative Code, state that: Section 403.021, Florida Statutes, declares that the public policy of the State is to conserve the waters of the State to protect, maintain, and improve the quality thereof for public water supplies, for the propagation of wildlife, fish and other aquatic life, and for domestic, agricultural, industrial, recreational, and other beneficial uses. It also prohibits the discharge of wastes into Florida waters without treatment necessary to protect those beneficial uses of the waters. * * * Existing uses and the level of water quality necessary to protect the existing uses shall be fully maintained and protected. Such uses may be different or more extensive than the designated use. Pollution which causes or contributes to new violations of water quality standards or to continuation of existing violations is harmful to the waters of this State and shall not be allowed. Waters having water quality below the criteria established for them shall be protected and enhanced. However, the Department shall not strive to abate natural conditions. If the Department finds that a new or existing discharge will reduce the quality of the receiving waters below the classification established for them or violate any Department rule or standard, it shall refuse to permit the discharge. As a result of the above cited factors, degradation of water quality is expected. The applicant has not provided reasonable assurance that the immediate and long-term impacts of the project will not result in the degradation of existing water quality in an Outstanding Florida Water and the violation of water quality standards pursuant to Rules 17-312.080(1) and (3), Florida Administrative Code, and Rule 17-4.242(2)(a)2.b, Florida Administrative Code. Specific State Water Quality Standards in Rules 17-302.500, 17-302.510 and 17-302.550, Florida Administrative Code, affected by the completion of the project include the following: Bacteriological Quality - the median coliform MPN (Most Probable Number) of water shall not exceed seventy (70) per hundred (100) milliliters, and not more than ten percent (10 percent) of the samples shall exceed a MPN of two hundred and thirty (230) per one hundred (100) milliliters. The fecal coliform bacterial level shall not exceed a median value of 14 MPN per 100 milliliters with not more than ten percent (10 percent) of the samples exceeding 43 MPN per 100 milliliters. Dissolved Oxygen - the concentration in all waters shall not average less than 5 milligrams per liter in a 24-hour period and shall never be less than 4 milligrams per liter. Normal daily and seasonal fluctuations above these levels shall be maintained. Oils and Greases: Dissolved or emulsified oils and greases shall not exceed 5.0 milligrams per liter. No undissolved oil, or visible oil defined as iridescence, shall be present so as to cause taste or odor, or otherwise interfere with the beneficial use of waters. In addition the applicant has not provided reasonable assurance that ambient water quality in the OFW will not be degraded pursuant to Rule 17-4.242(2)(a)2.b, Florida Administrative Code. In addition, pursuant to Rule 17-312.080(6)(a), Florida Administrative Code, the Department shall deny a permit for dredging or filling in Class II waters which are not approved for shellfish harvesting unless the applicant submits a plan or proposes a procedure to protect those waters and waters in the vicinity. The plan or procedure shall detail the measures to be taken to prevent significant damage to the immediate project areas and to adjacent area and shall provide reasonable assurance that the standards for Class II waters will not be violated. In addition to impacts to water quality, the project is expected to adversely affect biological resources. A portion (estimated at between 0.4 and 0.5 ac.) of the access channel alignment is vegetated by seagrasses, the dominant species being Halodule wrightii (Cuban shoal weed). Seagrass beds provide important habitat and forage for a variety of wildlife species. The loss of seagrass beds will result in a loss of productivity to the entire system that would be difficult to replace. The 4.72 ac. of wetlands proposed to be filled and the excavation required for the proposed channels (approximately 38 ac.) are productive high marsh and mixed mangrove wetlands which are providing wildlife habitat and water quality benefits. These wetlands have been adversely impacted by the freeze of 1989, but they appear to be recovering well. The proposed mitigation would provide some benefits through exotic removal and increased hydrologic connection to the Indian River. However, these benefits would not be adequate to offset the adverse impacts of the proposed wetland losses for this project. The project site and the adjacent Pelican Island National Wildlife Refuge are used for nesting and foraging by a variety of species, including little blue heron (Egretta caerulea) (Species of Special Concern (SSC)--Florida Game and Fresh Water fish Commission (FGFWFC)), reddish egret (E. rufescens) (SSC-FGFWFC), snowy egrets (E. thula) (SSC-FGFWFC), tricolored herons (E. tricolor) (SSC-FGFWFC), brown pelicans (Pelecanus occidentalis) (SSC-FGFWFC), roseate spoonbills (Ajaja ajaja) (SSC-FGFWFC), least tern (Sterna antillarum) (threatened-FGFWFC), and wood storks (endangered-FGFWFC). The construction of the project and the increased boating activity due to the project would result in the disturbance of those species that use the wetlands in the project area. The Indian River adjacent to the project site is used by the West Indian Manatee (endangered-FGFWFC). The increased boat traffic would increase the chance of manatee deaths due to boat impact. In addition, the excavation of the access channel through the seagrass beds would decrease the available forage for manatees in the project area. For the above reasons, this project is also not clearly in the public interest, as required pursuant to Section 403.918(2), Florida Statutes, because it is expected to: adversely affect the conservation of fish and wildlife, including endangered or threatened species, or their habitats; adversely affect the fishing or recreational values or marine productivity in the vicinity of the project; be permanent in nature; diminish the current condition and relative value of functions being performed by areas affected by the proposed activity. The applicant has not provided reasonable assurance that the project is clearly in the public interest. On September 12, 1991, the owner and holder of the mortgage on the Orchid Island development (which includes the real property on which the Petitioner hopes to construct the project at issue in this proceeding) instituted foreclosure proceedings. The circuit judge who presided over the foreclosure proceeding soon thereafter appointed an interim receiver to manage the property until a receiver who would manage the property for the duration of the foreclosure proceeding could be appointed. THE PROJECT MODIFICATIONS AND FACTS AS TO ESTOPPEL On October 31, 1991, representatives of Orchid Island Associates met with Respondent's staff to discuss this application. Trudie Bell, the Environmental Specialist assigned to supervise this application, and Douglas MacLaughlin, an attorney employed by Respondent, attended the meeting. Those attending the meeting on behalf of Orchid Island Associates included the interim trustee, the attorney for Orchid Island Associates, and Darrell McQueen, who at all times pertinent to this proceeding was the project engineer. Mr. McQueen was upset that the project was going to be denied and wanted to know what could be done to make it a permittable project. In response to Mr. McQueen, Ms. Bell, without making any promises, suggested the following modifications to the project that might make it permittable: moving the canal more upland, elimination of the boat basin/marina, reducing the depth of the artificial waterway, and increasing the width of the littoral zone. On November 11, 1991, the representatives of Orchid Island Associates responded to the Respondent's suggested modifications and agreed to make the modifications. In an effort to design a project that would be acceptable to Respondent, Orchid Island Associates proposed to the Respondent to make certain modifications to the design of the project. Petitioner has agreed to those modifications which include the following: Elimination of the boat basin and associated 58 dock marina and clubhouse, but with the addition of 18 relatively narrow residential lots, each of which would have a dock on the south end of the waterway. 2/ Reduction of the depth of the artificial waterway to -7 feet NGVD from the proposed -8 feet NGVD. Realignment of the artificial waterway as depicted on the sealed drawings submitted to Respondent and dated January 28, 1993. Increasing the width of the littoral zone to be created along the length of the artificial waterway to 40 feet on the west side and 10 feet on the east side. On November 12, 1991, John C. Kurtz was appointed the receiver of the Orchid Island Associates property and remained the receiver until the property was conveyed to Petitioner at a foreclosure sale on July 31, 1993. After it acquired the property, Petitioner employed Mr. Kurtz to manage the subject property. Mr. Kurtz has been active in the project since his appointment as the receiver of the property. On November 21, 1991, Petitioner met with Respondent's staff, including Ms. Bell, to discuss the modifications. At that meeting, the Respondent's staff reacted favorably to the modifications agreed to by Petitioner. Ms. Bell described the revisions as "excellent" and "a great idea" and stated that the project was "a nice project" and that it looked like the project was heading in the right direction. Ms. Bell also represented that the Respondent would grant the Petitioner extensions of time to allow for a formal revision if the project was deemed permittable. Ms. Bell kept her superiors informed of the status of her review. On December 11, 1991, Charles Barrowclaugh, an employee of the Respondent, made an inspection of the site and informed representatives of the Petitioner that he had briefed Carol Browner, who was Secretary of the Department of Environmental Regulation, as to the project and the proposed modifications. Mr. Barrowclaugh stated that he believed the project was permittable. Petitioner was encouraged by Mr. Barrowclaugh's comments and by the fact that he would incur the expenses of traveling to the site. Between December 11, 1991, and November 13, 1992, Petitioner provided information to Respondent pertaining to the revised project. This additional information included a description of the revised plan and a revised schematic drawing, but it did not include detailed drawings of the revised project. On November 13, 1992, Ms. Bell wrote to Mr. McQueen a letter that stated, in pertinent part, as follows: The Bureau of Wetland Resource Management has reviewed the revised plan and additional information submitted on September 16. The revised proposal appears to address all of the issues that made the original proposal unpermittable. The detailed 8.5 by 11 inch permitting drawings will have to be revised to reflect the revised proposal and submitted to the Bureau for review. Kelly Custer and Orlando Rivera will be reviewing the project in the future. Petitioner interpreted that letter to mean that the Respondent intended to permit the project. At the time she wrote the letter of November 13, 1992, Ms. Bell thought the revised project would be permitted. Petitioner relied on the oral representations made by Respondent's staff and on the November 13, 1992, letter in continuing pursuit of a permit. Absent these encouraging comments by Respondent's staff, Petitioner would have discontinued pursuit of the permit. Although Petitioner was understandably encouraged by the discussions its representatives had with Respondent's staff, it knew, or should have known, that the favorable comments it was receiving from members of Respondent's staff were preliminary and that additional information would be required and further evaluation of the project would take place. Petitioner's representatives knew that the staff with whom they were having these discussions did not have the authority to approve the application, but that they could only make recommendations to their superiors. In late 1992, Kevin Pope, an Environmental Specialist employed by Respondent, was assigned as the primary reviewer of the revised project. At the time he became the primary reviewer of the project, Mr. Pope did not make an immediate, independent evaluation of the project, and relied on what other staffers who had been involved in the review told him. Until he conducted his own review of the project, Mr. Pope believed that the project was "clearly permissible". Mr. Pope informed a representative of the Petitioner of that belief and told the representative that he was prepared to start drafting the permit once he received final drawings documenting the modifications to the project. Subsequent to that conversation, Mr. Pope received the drawings he requested. After he received and reviewed the final drawings, Mr. Pope determined that all issues raised by the denial letter had not been addressed. Among the concerns he had was the fact that the project would dredge into the Indian River to the Intercoastal Waterway and that part of the dredging activity (at the north end of the project) would be in Class II shellfish approved waters. Mr. Pope again contacted the state and federal agencies that had originally commented on the project, described the proposed modifications to the project, and requested comments. Most of the agencies continued to object to the project. On August 5, 1992, Mr. Pope held a meeting with the commenting agencies and with representatives of the Petitioner to discuss the objections to the project. 3/ The agencies provided additional comments after this meeting and most continued to oppose the project. Mr. Kurtz testified that on June 1, 1993, Stacey Callahan, an attorney employed by Respondent, told him that she was attempting to draft the permit for the project. Ms. Callahan asked for sample wording for a restrictive covenant or for an easement that would limit the number of boats that could use the proposed docks. Subsequent to that inquiry, Petitioner was informed by Mr. Pope that the project would be denied. Petitioner has not made any specific proposal to assure a limitation on the number of boats that will be able to dock in the proposed canal. In June of 1993, a large number of objections to the project were filed with Respondent by members of the public. In early July, 1993, Secretary Wetherell responded to those objectors with a letter stating, in part, that the "Department's letter of November 1992 indicating an intent to issue for the project was imminent appears to have been premature." On September 20, 1993, Mr. Pope informed Petitioner's attorney that the Respondent was not going to change its position that the project, even with the modifications, should be denied. The decision not to permit the modified project was made by Mr. Pope. The only permit application filed by the Petitioner was the application for the initial permit. No formal amended application that incorporates all of the changes that Petitioner discussed with Respondent's staff was filed. A total of $74,735 was spent on behalf of the applicant on this project between December 26, 1991, (the date of the meeting with Mr. Barrowclaugh) and July 31, 1993, (the date the property was conveyed to Petitioner). From July 31, 1993, through April of 1994, Petitioner spent an additional $47,488 on the application for this project. The expenditures after July 31, 1993, included engineering costs that were incurred before that date. These figures do not include the costs of this proceeding. THE REVISED PROJECT The revised project may be summarily described as follows: Petitioner proposes to construct a canal that will be approximately 6,400 feet long, up to 200 feet wide, and -7 NGVD deep as depicted on drawings that have been submitted into evidence. There will be a littoral zone 40 feet wide on the west side of the canal and a littoral zone 10 feet wide on the east side. A hydrological channel, proposed from the north terminus of the canal to the Intercoastal Waterway to enable a proper flow of water through the canal, will be some 200 feet wide, 70 feet in length, and -3 NGVD. Petitioner proposes to construct a barrier at the north terminus of the canal to prevent manatees and boats from entering the canal from the north and has agreed to maintain that barrier. An access channel, proposed from the south terminus to the Intercoastal Waterway to enable boats access to the canal, will be some 200 feet wide, 700 feet in length, and -7 NGVD. A total of 62 docks are proposed. The project includes a mitigation plan that will be discussed below. THE REQUESTED VARIANCE The construction of the hydrological channel would be in Class II conditionally approved shellfish waters. Dredging in Class II conditionally approved shellfish waters is prohibited unless a variance is issued by Respondent that would permit this otherwise prohibited activity. Petitioner's attorney submitted a letter to the Respondent on August 18, 1993, for a variance to construct the channel from the north terminus of the canal to the Intercoastal Waterway. That letter stated, in pertinent part, as follows: DEP Rule 17-312.080(17) states: "Permits for dredging or filling directly in Class II or Class III waters which are approved for shellfish harvesting by the Department of Natural Resources shall not be issued." This provision is applicable to the pending application by Orchid Island Associates. Accordingly, we discussed Orchid Island requesting a variance pursuant to Section 403.201, Florida Statutes, and Rule 17-103.100, Florida Administrative Code, as a means of overcoming this prohibition. Since the dredge and fill application is pending, you indicated it would be appropriate for Orchid Island to ask, during final review of this application, that the Department also consider a request for a variance pursuant to the above mentioned statute and rule. Please consider this letter that request. . . . Petitioner did not submit along with its request the fee required by Respondent to process that request. Respondent did not advise Petitioner that it would not process its request without the requisite application fee until the prehearing stipulation was prepared for this proceeding shortly before the formal hearing. There was no evidence that Petitioner attempted to check on the status of its request for a variance or that it expected Respondent to act on the request for a variance independent of its final review of the overall project. As of the time of the formal hearing, Petitioner had not submitted to Respondent the fee that Respondent asserts is required before the request for the variance will be processed. Respondent asserted that position in the prehearing statement that was filed shortly before the formal hearing. The evidence as to the flow of water through the proposed canal assumed the existence of the hydrological channel from the north terminus of the proposed canal to the Intercoastal Waterway and the existence of the access channel from the south terminus of the proposed canal to the Intercoastal Waterway. CONSTRUCTION OF THE PROJECT The revised version of the artificial waterway will be excavated primarily from uplands, but the excavation will require that 3.6 acres of wetlands be filled and 7.1 acres of wetlands be dredged. The direct impact on wetlands will be at least 10.7 acres. The mitigation plan proposes that the berms around the mosquito impoundment will be leveled, the berm ditches will be filled, and certain rotary ditches will be dredged. The amount of wetlands to be impacted by that proposed activity was not established. The artificial waterway will be constructed utilizing a series of separate construction cells, a rim ditch, and filtration chambers. All excavated material will be disposed of on uplands. The construction system will filter most solids. Turbidity suppression devices will be used to minimize any turbidity associated with the excavation of the access channel at the south terminus and the hydrological channel at the north terminus. Petitioner established that its proposed construction techniques are consistent with best management practices. The small body of water that is referred to as the former borrow pit in the denial letter of September 12, 1991, is known as Boot Lake. Petitioner proposes to dredge the eastern end of Boot Lake, consisting of an area 800 feet by 180 feet (3.3 acres), to create part of the canal. The access channel at the south terminus of the canal will be approximately 700 feet in length and will have to be hydraulically excavated in the Indian River to connect the canal to the Intercoastal Waterway. The hydrological channel at the north terminus of the canal will be hydraulically excavated to connect the canal to the Indian River. The connection will require approximately 70 feet of dredging to -3 NGVD, which is the minimum necessary to maintain the proper flow of water through the canal. HYDROLOGY OF THE CANAL The artificial waterway will function as a flow-through system driven by a difference in the water surface elevation (the head difference) between the north terminus and the south terminus. The flushing of the artificial waterway far exceeds the Respondent's flushing requirement benchmark, which is a flushing time of four days. If a hypothetical pollutant's concentration is reduced to 10 percent of its initial concentration in four days, the flushing is considered to be acceptable. The flushing time for the system is approximately 2.6 hours, which will produce five total volume replacements per tidal cycle. The predicted flushing of the artificial waterway is quite rapid and energetic. The predominate flow of water in the artificial waterway is from north to south. At times, however, the flow will be from the south to the north. At the request of the Respondent, Petitioner conducted a tracer dye study within the Indian River at the proposed south terminus of the artificial waterway. No tracer dye study was requested for the north terminus. Although there was some disagreement as to the import of the tracer dye study, it established that pollutants introduced into the Indian River from the canal would be rapidly dispersed in the Indian River. WATER QUALITY - THE CANAL The artificial waterway will be classified as Class III waters of the State. Water quality within the artificial waterway will reflect the current water quality in the Indian River. Petitioner has provided reasonable assurances that the water quality within the artificial waterway itself will not violate state standards. Two potential sources of pollutants to the artificial waterway have been identified. The first source is stormwater runoff through the stormwater management system associated with the upland development. The second is pollution inherent with the docking and operation of large vessels. Respondent interprets its rules so that discharge of pollutants into the artificial waterway will constitute indirect discharges to the Indian River. Because of the excellent flushing capacity of the canal, pollutants will not tend to accumulate in the canal. A pollutant entering the canal or a spill of pollutants into the canal will mix very little in the canal, probably less than five percent, so the pollutant will discharge from the canal into the Indian River as a plug. There was a conflict in the evidence as to whether pollutants introduced into the canal will enter the Indian River in measurable quantities. Testimony was elicited from Dr. Roessler, one of Petitioner's experts, that water entering the Indian River from the artificial waterway will not contain pollutants that are either measurably or statistically differentiable from the Indian River itself. That result depends, however, on the amount and the source of the pollutant introduced into the canal. Because of the rapid flushing of the canal, small spills or slowly released discharges of pollutants are not expected to result in water quality degradation in the Indian River. Since a pollutant introduced into the canal will exit in a plug essentially in the same concentration as it entered the canal, Petitioner has not provided reasonable assurances that large spills or discharges of pollutants from vessels or from other sources will not be discharged into the Indian River in concentrations that can be measured or that such large spills or discharges will not degrade the quality of the Indian River. Water from the canal will come out of both the north end and the south end of the canal. Some of the plume coming out of the north end may tend to hug the shoreline, with some of the plume reentering the canal when the tides change. Stormwater runoff contains significant amounts of fecal coliform, sometimes more than raw sewage. The stormwater management system associated with the upland development was permitted by the St. Johns Water Management District. The majority of the system is currently in place and functioning to retain stormwater runoff. The stormwater management system is designed to retain all of the first 4.75 inches of rainfall and most of the first 6.2 inches of rainfall. The design of this system exceeds the requirements imposed by the St. Johns Water Management District, which is that the first 1.5 inches of rainfall be retained. Stormwater management regulations are technology-based treatment criteria. If a system meets the retention requirement, it is presumed that no water quality will be violated by discharges through the system. Petitioner established that the stormwater management system was designed and constructed to retain at least three times the amount of rainfall required by the St. Johns Water Management District. Construction of the proposed canal will intercept two stormwater discharge pipes from the upland golf course and residential development. There was no evidence that the St. Johns Water Management System has reviewed this change in the system that has been permitted. The proposed change in where the outflow will be discharged could be significant since the discharge pipes are presently designed to discharge overflows from the system into wetland areas that provided additional natural treatment of the overflow before the overflow reaches the Indian River. With this change the overflow will be discharged during extraordinary storm events into the canal and thereafter into the Indian River without additional natural treatment. Because there will be modifications to the stormwater system the approval of that system by the St. Johns Water Management District should not be relied upon as providing reasonable assurances that no water quality violations will be caused by stormwater discharge. If this project is to be permitted, Petitioner should be required as a condition precedent to the issuance of the permit to have the proposed changes to the system reviewed by the St. Johns Water Management District and it should be required to obtain an amendment to the stormwater management system permit that would authorize the proposed changes. The project contemplates the construction of 62 docks. The size and the docking capacity of each dock has not been established. While Petitioner presented testimony that it is likely that only 50 percent of the docks will likely be used at any one time, that testimony is considered to be speculative. The number and size of boats that can or will be docked in the canal at any one time or on a regular basis is unknown. It is likely that each dock will have docking capacity for at least one vessel up to 60 feet in length and for a smaller vessel. The manner in which these docks will be constructed was not established. Chromatic copper arsenic, which is frequently used to coat docks and anti-fouling paints containing heavy metals used on boats are sources of contamination to shellfishing. Oils and greases from boats contain hydrocarbons which can adversely impact shellfish. These contaminants can have adverse impacts to shellfish at very low concentrations. Petitioner has agreed to prohibit live-aboard vessels and to prohibit the fueling and maintenance of vessels within the artificial waterway. Sewage containing fecal coliform dumped or spilled from boats or from stormwater discharge is a primary source of contamination for shellfishing waters. It is the practice of the Respondent's Shellfish Environmental Assessment Section to close waters to shellfishing in the vicinity of marinas, mainly due to potential contamination from untreated sewage. The Shellfish Environmental Assessment Section does not recommend the immediate closing of shellfishing waters when a project involves single family docks associated with a residence because it assumes people will use bathroom facilities in the house instead of on the boat. The Respondent does not have reasonable assurances that there will be houses associated with each of the 50 foot lots designated at the southern end of the canal. If a proposed facility has boat docks, but does not have houses associated with each dock, the Shellfish Environmental Assessment Section would recommend closure of shellfishing in the vicinity of the facility. The Shellfish Environmental Assessment Section would not recommend immediate closure of the shellfishing waters in the vicinity of this proposed project because it has assumed that each of the proposed docks will be associated with a house. If this project is to be permitted, reasonable assurances should be required that a residence will be constructed before or contemporaneously with the construction of a dock. The modifications made by Petitioner to the project will reduce the danger of pollutants from vessels in the artificial waterway. However, because the number and the size of the vessels that will be using the artificial waterway was not established, the extent of pollutants from vessels is unknown. Consequently, it is concluded that Petitioner did not provide reasonable assurances that measurable pollutants would not indirectly discharge into the Indian River from the canal. IMPACT ON WETLANDS Of the approximately 10.70 acres of wetlands that will be directly impacted by the proposed waterway, 4.10 acres are predominately impacted by invasive exotic (non-native) plants, 4.27 acres are somewhat impacted by exotic plants, and 2.23 acres are not impacted by exotic plants. The exotic plants found at the project site are primarily Australian Pine and Brazilian Pepper. The mitigation plan, which will be discussed below, proposes that the berms constructed around the mosquito impoundment area be removed and the rim ditches that abut the berms be filled. The amount of wetlands to be impacted by that activity was not established. The project contemplates that rotary ditches will be constructed at different places in the mosquito impoundment area after the berms are removed and the berm ditches filled. The areas to be impacted by the construction of the rotary ditches were not identified. The Petitioner proposes to dredge out the entire east end of Boot Lake for use as part of the canal. This area will be approximately 800 feet by 180 feet and will be 3.3 acres. Boot Lake is a fairly healthy biological system, about the same as the Indian River. It was found to contain 22 species of fish and seven species of birds, with brown pelican and the great blue heron dominant. Eleven species of crustacean, six species of mollusks, 24 vermes 4/ and one coelenterate were collected from the lake. Replacement of the eastern portion of Boot Lake with the canal will adversely impact those species. Between the Indian River and the proposed waterway is a mosquito impoundment constructed in the early 1960s. The mosquito impoundment and associated berms total approximately 105 acres. The exact area was not established since there is an unresolved issue as to the exact location of the mean high water line. 5/ The impoundment is breached in several locations and no longer functions efficiently as a mosquito impoundment. IMPACTS ON SEAGRASSES The excavation of the access channel from the south terminus to the Intercoastal Waterway will involve the removal of approximately 2500 square feet of a healthy, productive seagrass bed. Seagrasses are beneficial for wildlife habitat as they provide a substrate for algae and diatoms. Seagrasses are a direct food source for manatees and other species, and provide shelter and protection for fish. Seagrasses observed in this area where grasses will be eliminated are Halodule writtii, Syringodium filiforme, and Halophia johnsonii. Halophia, one of the identified species in this seagrass bed, is designated by the Florida Natural Areas Inventory as a rare and endangered species. Besides the seagrasses actually eliminated where the channel is to be constructed, other nearby seagrasses are also likely to be affected. The sides of the channel are likely to slough to some degree, which would adversely impact the seagrasses abutting the channel. The operation of power boats, even at slow speeds, will cause turbidity that will likely adversely impact seagrasses. Maintenance dredging, which will be required every few years, will cause turbidity that will likely adversely impact seagrasses. There are presently thousands of acres of seagrasses located within the Indian River. There has been a historical decline in seagrass in the Indian River Lagoon. Since 1950, there has been a 30 percent loss of seagrasses and seagrass habitat. IMPACTS ON SHELLFISH The proposed project will have an adverse impact on shellfish and shellfishing. At a minimum, the project will require dredging in a shellfishing area. The hydrological channel that will be dredged to connect the north terminus of the canal with the Intercoastal Waterway will be located in Class II waters that have been conditionally approved for shellfishing. Both commercial and recreational shellfishing occur in the Indian River adjacent to the project site. The predominate flow of water through the canal will be southerly. There will be, however, a predictable northerly flow of waters that will cause waters from the proposed canal and any associated contaminants contained in those waters to flow from the north terminus of the canal into the Class II waters that have been conditionally approved for shellfishing. The proposed project may introduce a significant amount of freshwater into the adjoining shellfishing waters of Indian River, primarily in the vicinity of the north terminus of the canal. Any additional freshwater discharges to shellfishing waters is a concern because fecal coliform bacteria survive longer in freshwater than saltwater. Three likely sources of freshwater that would be added by this project to the Indian River in the conditionally approved shellfishing area were identified by Respondent. First, the proposed canal appears to be intersecting near its north terminus with a sulphur spring or artesian well which produces fresh water with a high sulphur content. Fresh water will likely be introduced into the canal from this source and discharged into the shellfishing waters when the tidal flow becomes northward. Second, freshwater may be introduced into the canal from the overflow pipes from the surface water management system. This source of freshwater would not be significant. Third, additional freshwater may enter the area after the berms around the mosquito impoundment area are removed as contemplated by the mitigation plan. The extent of this source of freshwater was not established. If this project is permitted, the Shellfish Environmental Assessment Section will monitor this area for water quality to determine if the area will have to be closed for shellfishing. This additional monitoring, for which Respondent will pay, will be required because of the potential adverse impacts this project presents to shellfishing. Because of evidence of deteriorating water quality, the Shellfish Environmental Assessment Section is recommending that the shellfishing waters adjacent to the site be reclassified from "conditionally approved" to "conditionally restricted". In "conditionally restricted" waters, shellfish can still be harvested, but the harvested shellfish have to be placed in designated waters or in on-land facilities so the shellfish can cleanse themselves of fecal coliform before going to market. The conditions in the area of the proposed project are not yet bad enough to prohibit shellfishing. IMPACT ON MANATEES There are approximately 2,000 manatees living in Florida waters, with approximately 1,000 living on the east coast and approximately 1,000 living on the west coast. The manatee is an endangered species, and the long-term survival of the species is not secure. The Indian River in the area of the proposed project provides good habitat for manatees and is a major travel corridor for several hundred manatees. Indian River County is one of 13 key counties that has been designated by the Governor and Cabinet to address special manatee concerns. Manatees traveling back and forth in this area usually use the channel of the Intercoastal Waterway because it is deeper and allows manatees an easier travel route. Speed zones for boat traffic are an effective manatee protection mechanism. The artificial waterway will be posted as an idle speed zone. The area where the access channel connecting the south terminus of the canal with the Intercoastal Waterway will be dredged is presently designated as a slow speed zone and the access channel itself will be marked. Petitioner has agreed to implement Respondent's standard manatee conditions. Seagrasses are an important source of food for manatees. The project contemplates that 0.05 acres of seagrass will be dredged, but that Spartina will be planted in parts of the littoral zone. While manatees eat Spartina to some extent, they prefer seagrasses. Since there are thousands of acres of seagrass located in the Indian River, it is concluded that the elimination of 0.05 acres of seagrass associated with this project is negligible and will not adversely affect manatees. A barrier to navigation will be maintained at the north terminus of the waterway to preclude boat access and limit access to the waterway by manatees. Manatees would be unable to enter or leave the artificial waterway via the north terminus. The artificial waterway will not attract manatees and should not, in and of itself, adversely impact manatees. The main adverse impact to manatees from this proposed project is the threat of collisions by boats that leave the canal and enter the waters of the Indian River, including the Intercoastal Waterway. At least ten West Indian manatees have been killed by boats in Indian River County since 1981. Even with the speed limits, the increase in boating in this area will present an increased risk to manatees. IMPACT ON BIRDS No species of wading birds, including those listed as endangered or threatened, nests or roosts within the project site. The project site is not currently heavily utilized by wading birds, but several species of wading birds were observed foraging for food in Boot Lake. It is reasonable to expect that dredging of Boot Lake and the increased boat traffic will have an adverse impact on birds. Diving birds, such as the brown pelican and least tern, will benefit from the increased open waterway created by the canal, which should serve as a feeding habitat. Wading birds congregate and nest in rookeries. The area of the proposed project is within the foraging range of 14 active rookeries, and it is reasonable to expect that those rookeries will be disturbed by the increased boat use or human activity that the project will bring to this area. Officials of Pelican Island National Wildlife Refuge have observed such disturbances and are opposed to this project. The pressure of human and boating activities on bird rookeries in the Pelican Island National Wildlife Refuge, including human intrusion into buffer zones established to protect the birds, has resulted in a continuing decline of the bird population since 1960. When disturbed by boats or by humans, the parent wading bird will often leave the nest, which exposes the eggs or the chicks to attack by predators or to overexposure to sunlight. Boaters will often cause wading birds who are foraging for food to flush, which disturbs their search for food. Certain species of wading birds are flushed more frequently and for longer distances when flushed from narrow tidal creeks in Spartina marshes (a habitat similar to the proposed canal) than in open shoreline habitat. IMPACT ON FISH The existing ditches inside the mosquito impoundment berms presently provide a habitat similar to that of a tidal creek for a variety of fish, including juvenile snook, tarpon, red drum, black drum, lady fish, and mullet. The proposed project will result in the filling of these habitats and impoundments. As a consequence of that activity, these species of fish will be adversely impacted by the project. Although Petitioner proposes to construct certain rotary ditches that it asserts would provide a habitat similar to that provided by the existing ditches, Petitioner has not submitted any plans or drawings or other specific information concerning these rotary ditches and has not provided reasonable assurances that these proposed rotary will replace the habitat that will be eliminated by the filling of the existing ditches. CUMULATIVE IMPACTS Other projects have been permitted on the Indian River north and south of the proposed project that have increased boat traffic on the Indian River in the vicinity of the project. The Respondent has not identified any similar projects which have been permitted in the vicinity within the last five years. The only similar application pending before the Respondent in the vicinity of the project is for two docks north of the project site. Although Respondent established that boat traffic on the Indian River has increased, this project is unique in scope and design, and it is concluded that Petitioner has given reasonable assurances that no negative cumulative impacts will be associated with the project. OTHER PERMITTING CRITERIA The parties stipulated to the following facts that pertain to permitting criteria: The project will not adversely affect navigation or the flow of water. The project will not cause harmful erosion or shoaling. The project will be of a permanent nature. The project will not adversely affect any significant historical or archaeological resources. The project will not adversely affect the property of others. The proposed waterway will be located almost entirely on private property in areas not currently utilized for fishing or other recreational activities. Except for the impacts on shellfishing, birds, and fish discussed above, the project will not adversely affect the fishing or recreational values within the vicinity of the project. THE MITIGATION PLAN Petitioner has taken all reasonable steps to minimize the adverse impacts associated with the type project it is proposing. Because there will be adverse impacts to an Outstanding Florida Water, the project can be permitted only if it is determined that the mitigation plan offsets the adverse impacts and makes the project clearly in the public interest. Petitioner's mitigation plan was contained in the original application and was revised between October 1991 and January 1992. Respondent considered the current mitigation plan in its review of this project. The current mitigation plan consists of the creation of wetlands, the enhancement of wetlands, and the preservation and donation of wetlands owned by Petitioner within the mosquito impoundment. The estimated cost of creation and enhancement of the mitigation plan is $600,000. Petitioner proposes to create approximately 14 acres of wetlands by removing the mosquito impoundment berms and converting other uplands within the impoundment to wetlands. These areas will be revegetated with various wetland plant species including red, black, and white mangroves. In addition, Petitioner proposes to create a forty foot wide intertidal littoral zone along the entire length of the western side of the artificial waterway and a ten foot wide littoral zone along the entire eastern side of the artificial waterway. Approximately three acres of the littoral zone will be created from uplands. The littoral zone will be revegetated with 80 percent cord grass and 20 percent red mangrove. Petitioner proposes to implement an open marsh mosquito control management program consisting of the elimination of natural accumulations of water in low lying areas within the impoundment by rotary ditching small channels to allow these areas to drain and to allow predator fish access to the areas. Petitioner will remove exotic plant species throughout the impoundment and will revegetate with native species such as red, black, and white mangroves. Petitioner proposes to monitor the project area to assure that exotic plant species do not re-colonize. The mosquito impoundment area and the associated berms is estimated as being approximately 105 acres. Because of the difficulty in determining the mean high water line and because of the number of breaches in the berms, the precise acreage within the impoundment area that is not currently sovereign lands was not established. If accurately surveyed, it is possible that the amount of acreage within the impoundment owned by Petitioner may be determined to be up to 10 percent less than is currently estimated. For the purposes of this proceeding, it is found that 105 acres is a reasonable estimate of the area of the impoundment owned by Petitioner. After completion of the enhancement program, Petitioner proposes to donate all the property it owns within the impoundment to the State of Florida. Petitioner asserts that it would have the right to construct single family docks from its property directly into the Indian River if this project is not permitted and that these docks would not be subject to Respondent's permitting jurisdiction. The construction of such docks would have an adverse impact on manatees and seagrasses. As part of its mitigation plan, Petitioner offers to waive its right to construct single family docks from its property directly into the Indian River. EVALUATION OF THE MITIGATION PLAN The wetland in the existing impoundment area is presently a good biological system that contains a good diversity of plants and animals. While Petitioner's proposals will enhance this area, the evaluation of that enhancement should take into consideration the quality of the existing system. There are at least three existing breaches in the berm system. Through these breaches there is some tidal influences and the export of detrital material. Because of the relatively isolated nature of the mosquito impoundment, it currently contributes little to the productivity of the Indian River. The removal of the berm system will result in greater tidal influence in the impoundment area. As a consequence, much of the leaf litter from mangroves within the impoundment that presently accumulates on site would be exported as detrital material to the Indian River, which will add material to the food chain. It is expected that increased tidal influence will also result in an improvement in the dissolved oxygen levels within the impoundment. The reestablishment of tidal influence within the impoundment area will increase habitat for fish, shrimp, and crabs, and therefore benefit the Indian River. Removal of the impoundment berms to reestablish tidal influences within the impoundment area will increase and improve feeding and forage habitat for wading birds. Consequently, wading birds that nest in the vicinity of the project will be benefited. Increased tidal influence will likely result in better growth for mangroves which would create roosting sites for wading birds where none presently exist. Currently, Australian pines are the dominate species in areas within the impoundment area. Other areas of the impoundment are heavily populated by Brazilian pepper. Australian pines and Brazilian peppers do not serve as food sources for any native wildlife and have the potential to crowd out native plant species such as mangroves. If not removed, the potential exists for Brazilian pepper to become the dominate plant species. Removal of exotics and replanting with native species is a benefit to the Indian River system. With an appropriate monitoring plan, the exotic removal should be successful. If the project is permitted, the implementation of an appropriate monitoring plan should be a condition of the permit. Because of widespread mosquito control activities, the high marsh ecosystem is now rare in the Indian River system. The restoration of the impoundment area to an area of high marsh would be of benefit to the Indian River ecosystem. Prior to alteration by man, the mosquito impoundment was a high marsh ecosystem consisting primarily of black and white mangroves over an understory of succulent plants. There was a conflict in the evidence as to whether the Petitioner's proposals would result in the impoundment area returning to a high marsh area. While the impoundment area will be enhanced by the Petitioner's proposals, it is found that whether the area will be returned to a high marsh system is speculative. The mosquito impoundment is breached in various locations and, as a consequence, the impoundment is not functioning to control mosquitoes as it was originally designed. The current primary mechanism for mosquito control within the breached mosquito impoundment is aerial spraying of insecticides. The proposed removal of the existing berms will not adversely affect mosquito control and may positively affect mosquito control due to the increased accessibility of the impoundment by natural predators such as fish. This open marsh management plan is an effective means of controlling mosquitoes. The wetland creation proposed by Petitioner should have a high rate of success. Petitioner has agreed to implement a suitable monitoring plan to further guarantee the success of the proposal. If the project is permitted, the implementation of a suitable monitoring plan should be a condition of the permit. Scraping down the mosquito berms will create more wetlands, but the earth from the berms will be placed in the adjacent ditches, which presently serve as valuable tidal creek type habitat. Therefore, the mitigation itself will have some adverse impact. Petitioner's unspecified proposal to put in some rotary ditches to offset the loss of tidal creek habitat is inadequate in that there has been no specific proposal as to the location, size, shape, configuration, or acreage of the proposed rotary ditches. While planting of the littoral zones on the edges of the canal with Spartina provides some biological value, the growth of Spartina on the ten foot ledge on the east side will be impacted by boats and docks. The littoral zones will likely perform valuable wetland functions if properly planted and monitored and will likely become a productive wetland system that will provide habitat for wading birds. If the project is permitted, the Petitioner should be required to monitor the Spartina planting to ensure its successful growth. Even if the creation of the 13.9 acres of wetlands is successful, it will take years to become a mature biological system similar to the wetlands they are to replace. This time lag should be taken into account when evaluating the mitigation plan. There are adverse impacts from this proposed project that the mitigation plan does not offset. The mitigation plan does not offset the elimination of seagrasses, the loss of the Boot Lake habitat, the potential adverse impacts to shellfish and shellfishing, or the impacts to manatees. It is likely that property owners wishing to construct docks directly into the Indian River would have to get a permit from Respondent to gain access to the parts of the property where these docks could be constructed. Any proposal to extend docks into the Pelican Island National Wildlife Refuge would likely be prevented by the U.S. Fish and Wildlife Service. Whether such docks would, or could, be constructed is speculative, and this portion of the mitigation plan should be accorded little weight. As part of its mitigation plan, Petitioner proposes to donate approximately 105 acres to the State of Florida. This is considered to be a favorable aspect of the mitigation plan. The central issue in this proceeding is whether the mitigation plan offsets the negative impacts of this project so that the project becomes "clearly in the public interest." This issue is resolved by finding that even when the mitigation plan and the conditions that are recommended herein are considered, this project is "not clearly in the public interest."
Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the Respondent enter a final order that adopts the findings of fact and conclusions of law contained herein and which denies the modified application for the subject project. DONE AND ENTERED this 31st day of August 1994, in Tallahassee, Leon County, Florida. CLAUDE B. ARRINGTON Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 31st day of August, 1994.
Findings Of Fact Petitioner owns a rectangular plot approximately 300 feet (north to south) by 1,300 feet (east to west). The property is within the City of Longwood and is zoned light industrial. The land is undeveloped except for a laminated cabinet factory and warehouse owned by Petitioner. The proposed development includes construction of a paved right-of-way sixty feet wide through the center of the parcel. Entry and exit would be from the east with a cul de sac on the west end. The property would be divided into twenty lots, each facing this street. Petitioner contemplates sale of these lots to light industrial users. A tributary of Soldiers Creek which flows into Lake Jessup and ultimately the St. John's River, separates the eastern one third of the property from the remainder of the parcel. This stream is typically one to three feet deep, with very slow movement. Water in the stream bed becomes virtually stagnant during the dry season. The on-site survey conducted by Respondent's environmental specialist established that the ordinary or mean height water line follows the 52 foot contour, creating a stream bed about 400 feet wide across Petitioner's property. The development proposal calls for filling most of this area, retaining a stream channel one hundred feet wide. Petitioner intends to install four 38" x 60" oval culvert pipes at the stream crossing of the proposed roadway. To control runoff from rain showers, Petitioner plans to construct swells on each side of the roadway and drainage troughs and catch basins are intended to retain runoff pollution. However, during peak rainfall periods, these devices will not prevent direct discharge into the watercourse. Petitioner has not conducted any tests to determine the impact of his proposed project on water quality other than percolation tests associated with the use of septic tanks. The stream is heavily forested with mature hardwood trees. The undergrowth includes buttonbush, royal fern, primrose willow and water tupelo. Clumps of pickerel weed are scattered throughout the stream. The stream bottom consists of one to two feet of leaf litter and accumulated organic muck over firm sand. Respondent's dip net sampling produced numerous least killifish, which are indicative of good water quality. Forested streams and bayheads such as this are natural storage and treatment areas for upland runoff, and tend to reduce the peak runoff discharge to lakes and rivers from rainfall. This, in turn, reduces sedimentation rates and the resultant siltation of downstream waterbodies. The proposed project would eliminate approximately one acre of stream bottom and continuous submerged transitional zone lands. Urban runoff can contain significant amounts of pollutants including nutrients, heavy metals, dissolved solids, organic wastes, and fecal bacteria. In industrial situations, such as that proposed here, concentrations of oils, greases, heavy metals, toxic chemicals, and phenolic compounds from tire wear, paving and use of other petroleum products are anticipated. The discharge of these contaminants would be harmful to the plant and animal life in Soldiers Creek and the subject tributary. The proposed project would not only reduce existing vegetation which serves as a sediment trap and natural nutrient filter, but would create an impervious (paved) surface which would accelerate runoff and would, itself, be a source of pollution. Water quality would be further reduced by the introduction of fill material and the canalization of the stream, which would increase its rate of flow. The Division of Administrative Hearings has jurisdiction over the subject matter and the parties to this proceeding under Section 120.57(1), Florida Statutes. The parties stipulated to Respondent's permitting authority over the proposed fill project. Specifically, Respondent has permitting jurisdiction below the 52 foot contour line which defines the stream bed. See Sections 17-4.02(17), 17-4.02(19) and 17-4.28, F.A.C. Subsections 17-4.28(1) and 17-4.28(3) F.A.C., require Petitioner to establish reasonable assurance that the short term and long term effects of the filling activity will not result in violation of the water quality criteria, standard, requirement and provisions of Chapter 17-3, F.A.C. Petitioner's stream, Soldiers Creek and Lake Jessup are surface waters within the Class III designation of Section 17-3.081, F.A.C. Sections 17-3.061 and 17-3.121, F.A.C., provide the applicable water quality standards and criteria which Petitioner must provide reasonable assurance of meeting. The standards and criteria limit the amount of various chemicals, nutrients, oils and greases which may be introduced as a result of the proposed activity. The evidence adduced herein established that the proposed project would promote substantial changes in these surface waters, degrading their existing quality. These changes would occur through the introduction of oils, greases and other undesirable chemicals and compounds. Further, Petitioner has conducted no specific testing which would establish reasonable assurance that the water quality standards would be met. Petitioner contends that denial of the permit would amount to inverse condemnation or unconstitutional taking of his property without just compensation. Such a determination is beyond scope of this administrative proceeding.
Recommendation From the foregoing, it is RECOMMENDED that the State of Florida Department of Environmental Regulation enter a final order denying the petition of Jack Cruickshank for a fill permit. DONE AND ORDERED in Tallahassee, Leon County, Florida, this 10th day of February, 1981. R. T. CARPENTER Hearing Officer Division of Administrative Hearings Collins Building Tallahassee, Florida 32301 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 10th day of February, 1981. COPIES FURNISHED: Charles G. Stephens, Esquire Department of Environmental Regulation Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32301 William W. Carpenter, Esquire 830 East Highway 434 Longwood, Florida 32750
Findings Of Fact Mr. Mills owns a 105 acre tract of land on which he raises cattle. This land is directly east of South Bull Pond in Putnam County, Florida. The land which he proposes to fill lies within the landward extent of South Bull Pond. The pond is a natural lake of approximately 350 acres which does not become dry each year. The lake has a maximum average depth of greater than 2 feet throughout the year. Its shoreline is owned by more than one person. South Bull Pond is a Class III water of the State of Florida. Petitioner's proposed project involves the excavation of approximately 5,000 cubic yards of sand and muck from the lake bottom. He plans to place the fill in an area adjacent to the dredge site but within the landward extent of the lake. The area to be excavated is 200 feet long and 50 feet wide. The area to be filled with spoil material is the same size immediately to the east of the dredge area. The excavation will be approximately three feet deep into the lake bottom. Mr. Mills' application indicates that the purpose of the proposed work is to keep his cows out of the bog and also to increase the value of his property. The proposed dredging and filling will result in the permanent elimination of approximately one-half acre of natural vegetation along the lake. This area consists of a natural berm formed by alluvial deposits and a wet bog landward of the berm. There is an opening through the berm which allows the free exchange of waters between the main body of the lake and the bog area. The top elevation of the berm is such that the berm area is submerged for long periods of time. Ordinary high water inundates the berm and passes over it into the bog which is at a lower elevation than the berm. The field appraisal of the proposed site was conducted by Mr. John Hendrix, a Department biologist, on May 5, 1981. The site consists of three areas: the lakeshore, the berm, and the bog. The dominate species along the lakeshore are Saw grass (Cladium jamaicensis), Water Lily (Nymphaea spp.), Pickerelweed (Pontederia lanceolata), and Spatter dock (Nuphar spp.). The dominant fresh water species on the berm are: Saw grass (Cladium jamaicensis), and Arrowhead (Sagittaria spp.). Two transitional fresh water species also grow on the berm: St. John's wort (Hypericum fasciculatum) and Button bush (Cephalanthus occidentalis). The dominant species of the bog, which is landward of the berm, are Water Lily (nymphaea spp.), Water shield (Brasenia schreberi), Royal fern (Osmunda regalis), and Arrowhead (Sagittaria spp.). The lake is presently mesotrophic. It has a large productive vegetative structure primarily along the shoreline. The nutrients are "tied up" or stored in the marshes and peaty sediments of this shoreline and are not freely circulating in the main water body. The shoreline vegetation provides filtration for the main water body. The plants physically entrap sediments and biochemically assimilate them. They also store nutrients which otherwise degrade the water in the lake. The proposed dredging and filling will degrade water quality in two ways: 1) The equipment used for dredging will disrupt the sediments. They will then discharge freely into the water column of the lake and release their stored nutrients. 2) The berm and bog areas will be destroyed so that they can no longer stabilize the shoreline or provide the filtration function. Adverse water quality impacts from the project will be both short and long term. The short terms impacts include expected violations of the following water quality criteria found in Chapter 17-3, Florida Administrative Code: BOD; dissolved oxygen; transparency; biological integrity; turbidity; pH; nuisance species; and both nutrients criteria. The long term impacts will include stimulation of shifting of the natural balance of the lake towards a more eutrophic state and violation of the water quality criteria for nutrients, dissolved oxygen, BOD and transparency. Petitioner wants to fill the bog to prevent injury to his cows. A workable alternative to filling the bog is to erect a fence across the property to exclude the cows from that area. The drawings submitted by Petitioner as part of his application show that the operation of the dredging machinery would be from the berm. During the hearing Petitioner indicated that such machinery would be operating from the lakeshore. This modification would create fewer short term violations of water quality criteria. However, the following criteria would still be violated: BOD, turbidity, nuisance species, biological integrity, dissolved oxygen, transparency and nutrients.
Recommendation Based on the foregoing findings of fact and conclusions of law, it is RECOMMENDED that the Department of Environmental Regulation enter a final order denying Petitioner's permit application. DONE AND ENTERED this 14th day of October 1981 in Tallahassee, Florida. MICHAEL PEARCE DODSON Hearing Officer Division of Administrative Hearings The Oakland Building 2009 Apalachee Parkway Tallahassee, Florida 32301 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 14th day of October 1981. COPIES FURNISHED: Jimmie L. Mills Route 2, Box 244 Hawthorne, Florida 32640 Silvia Morell Alderman, Esquire Cynthia K. Christen, Esquire Assistant General Counsel Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32301