The Issue The issue in the case is whether the Petitioner is entitled to variances from the requirements of Rule 40D-0.27(2), Florida Administrative Code.
Findings Of Fact William E. Klein (Petitioner) owns two water wells, both in Tampa, Florida. Each water well serves three rental units which are also owned by the Petitioner. One well is located at 302 East North Bay Street. The second well is located at 4113 North Suwanee Street. Each water well is classified as a "limited use community public water system" as defined by Rule 10D-4.024(13)(b), Florida Administrative Code. The wells have been in existence for perhaps as long as eighty years. As of January 1, 1993, limited use community public water system wells must obtain permits to operate. Permits are issued by the Department of Health and Rehabilitative Services. The relevant permit requirements include water testing, submission of an application and a site plan, and payment of a fee. By February 23, 1996, the Department was aware of the Petitioner's wells and had provided notice of the permit requirements to the Petitioner. The Petitioner has met the water testing requirements, but has not submitted applications, site plans, or applicable fees related to these two wells. On May 30, 1996, the Petitioner filed applications for variances, seeks to be excused from submitting the applications, site plans and fees. On June 3, 1996, the Department denied the Petitioner's requests for variances. As grounds for the variance requests, the Petitioner cites financial hardship which will be imposed by payment of the fees. According to the stipulation filed by the parties, the application fee for each well is $110. Of the fee, $75 is retained by the state and $35 is retained by Hillsborough County, where the Petitioner's wells are located. The evidence fails to establish that the Petitioner is entitled to the requested variances. The evidence fails to establish that there are any costs related to submission of site plans. The Petitioner may prepare and submit site plans without assistance. The evidence fails to establish that there are any costs related to submission of a completed applications for permits. The evidence fails to establish that the total fee of $220 related to the issuance of well permits for six rental units will cause a financial hardship for the Petitioner. At most, the evidence indicates that the payment of the fee may reduce the Petitioner's profit from the rental units.
Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is recommended that the Department of Health and Rehabilitative Services enter a Final Order denying the Petitioner's requests for the variances at issue in this case. DONE and ENTERED this 18th day of November, 1996, in Tallahassee, Florida. WILLIAM F. QUATTLEBAUM Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (904) 488-9675 SUNCOM 278-9675 Fax Filing (904) 921-6847 Filed with the Clerk of the Division of Administrative Hearings this 18th day of November, 1996. COPIES FURNISHED: Gregory D. Venz, Agency Clerk Department of Health and Rehabilitative Services 1317 Winewood Boulevard Building 2, Room 204X Tallahassee, Florida 32399-0700 Richard Doran, General Counsel Department of Health and Rehabilitative Services 1317 Winewood Boulevard Building 2, Room 204 Tallahassee, Florida 32399-0700 William E. Klein, Pro Se Thomas Lewis, Representative 8716 Ruth Place Tampa, Florida 33604 Raymond R. Deckert, Esquire Department of Health and Rehabilitative Services 4000 West Martin Luther King Jr., Boulevard Tampa, Florida 33614
Findings Of Fact Respondent is an individual who owns or operates a water system that provides piped water for human consumption to the Hardy House Diner in Washington county, Florida. The water system serves at least 35 persons daily at least 60 days out of the year. Respondent has owned or operated the water system since at least October 28, 1976. Respondent does not continually apply effective disinfectant measure to the water distributed to the customer of the Hardy House Diner, nor is Respondent's water system equipped with any disinfection equipment. Respondent's water system has a daily flow greater than 2,500 gallons per day, but less than 100,000 gallons per day. The operation, maintenance and supervision of the water system is not performed by a person who has passed an examination that entitles such a person to be a certified operator. Neither the Department nor the Washington County, Florida Health Department has received from Respondent reports which contained information about the operation and maintenance of the Respondent's water system. The water system's lack of disinfectant equipment and the absence of a certified operator for the system and Respondent's failure to file operation reports have existed continuously since "October, 1976. Representatives of the Department conducted a public water systems inspection of Respondent's water system on October 26, 1976. At that time, the system was found to be unsatisfactory in several categories, including general plant condition, existence of safety hazards, lack of chlorination, failure to submit regular reports, failure to submit monthly bacteriological samples, failure to perform chemical analysis of drinking water and failure to install a raw water tap between the pump and point of chlorination. A second inspection was performed on April 7, 1977, in which it was determined that Respondent still had not installed a chlorinations system, had failed to submit monthly operating reports had failed to employ a certified operator, had failed to submit monthly bacteriological samples, and had failed to perform annual chemical analysis of water disposed from the system. On December 7, 1977, a representative of the Department whose job responsibilities included inspecting public water systems was refused permission to enter and inspect the water system serving the Hardy house diner and its customer. The Department representative was refused entry after he had identified himself and made his purpose known to Respondent. The Department has incurred expenses of $117.58, including personnel time and travel expense, in the course of investigating Respondent's alleged violations.
Recommendation RECOMMENDED: That a final order be entered by the State of Florida, Department of Environmental Regulation, finding the Respondent to be in violation of the above-referenced statutes and regulations, and requiring Respondent to pay the state its reasonable costs and expenses, in the amount of $117.58 incurred in investigating and prosecuting this administrative proceeding. RECOMMENDED this 26th day of February, 1979, at Tallahassee, Florida. WILLIAM E. WILLIAMS, Hearing Officer Division of Administrative Hearings The DeSoto Building 2230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 26th day of February, 1979. COPIES FURNISHED: Vance W. Kidder, Esquire Assistant General Counsel Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32301 Mr. Eugene Hardy 1005 Highway 90 West Chipley, Florida 32428 ================================================================= AGENCY FINAL ORDER ================================================================= STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION STATE OF FLORIDA, DEPARTMENT OF ENVIRONMENTAL REGULATION, Petitioner, vs. CASE NO. 78-1209 DER Case No. WC-10-78 EUGENE HARDY, Respondent. /
The Issue The issues to be adjudicated in this proceeding concern whether Conrock Utility Company's application for a water certificate in Hernando County meets the requirements of Sections 367.041 and 367.051, Florida Statutes, and, therefore, whether it should be granted.
Findings Of Fact 1. Applications and notices of intent to apply for a water certificate for a particular service area are required to be noticed in a newspaper of general circulation in the service area involved. In this proceeding, an affidavit was introduced from the "Sun Coast News," to the effect that Conrock had caused to be published in that newspaper its notice of intent to apply for the water certificate. That newspaper is published on Wednesdays and Saturdays in New Port Richey, Pasco County, Florida. Conrock's proposed service area, or territory, is in that portion of Hernando County lying east of the City of Brooksville. This newspaper is a free publication and states on the front page that it is circulated in Pasco and Hernando Counties. There is some testimony to the effect that the newspaper is only circulated in that portion of Hernando County lying westward of Brooksville near the Pasco County border, which is an area removed from Conrock's proposed service territory. No evidence was presented to the effect that that newspaper actually circulates in Conrock's proposed service territory. 2. Rules 25-30.030(2)(f), 25-30.035(3)(f) and 25-30.035(3)(h), Florida Administrative Code, require that the utility provide evidence that it owns the land where the treatment facilities are to be located or provide a copy of an agreement providing authority for the continuous use of the land involved in the utility operations and that a system map of the proposed lines and facilities be filed with the Commission. It was not established that Conrock owns or has a written lease for the land where the water facilities are proposed to be located. No actual lease has been executed providing for long-term continuous use of the land. It is true, however, that a verbal agreement exists with the Williams family members and/or the Williams Family Trust, who own the land upon which the facilities would be located, authorizing the use of the land for the proposed operations and facilities. That unrebutted evidence does establish, therefore, that Conrock has authorization to use the land where the water facilities, including the wells, are, or will be located. Although there is no extant written agreement, as yet, providing for the continuous use of the land involved, Conrock did establish that such an agreement can be consummated in the near future based on the verbal agreement it already has. Conrock did place into evidence a territorial map of the proposed service area. It did not, however, provide a system map or otherwise provide concrete evidence of where distribution lines and other facilities would be located for its proposed system. It submitted instead a "planning study" directed to the question of whether a water utility is needed for the proposed territorial area. It submitted no design specifications for the proposed system into evidence however. Conrock has not filed any tariff rate schedules for any water service it might conduct, if granted a certificate. Concerning the question of the need for the proposed water service, it was established by Conrock that 900 acres of the proposed service territory are mainly owned by the Sumner A. Williams Family Trust (Family Trust). Additionally, some small tracts are owned by S. A. Williams Corporation, a related family corporation. The majority of the 900-acre tract is zoned agricultural and the S.A.W. Corporation operates a construction/demolition landfill on that property. There is no evidence that it contemplates a real estate development on that 900-acre tract or other tracts in the area which could be served by the proposed water utility. Neither is Conrock attempting entry into the utility business in order to supply water to a development of the above-named corporation or any related party, person or entity. The proposed service area is rural in nature. The majority of people living in the area live on tracts of land ranging from 1 to 200 acres in size. The people living in the proposed territory either have individual wells or currently receive water service from the City of Brooksville or from Hernando County. Both of those entities serve small subdivisions, or portions thereof, lying wholly or in part in the proposed service territory of Conrock. Conrock has not received any requests for water services from residents in the proposed service territory. There is some evidence that discussions to that effect may have occurred with an entity known as TBF Properties, lying generally to the north of the proposed service territory. TBF Properties apparently contemplates a real estate development on land it owns, which also encompasses part of the Williams family property; some of which lies within the proposed service territory. Plans for TBF's residential construction development are not established in the evidence in this case however. There is no evidence which shows when or on what schedule the construction of that development might occur, nor whether it would actually seek service from Conrock if that entity was granted a water certificate. TBF Properties is the only entity or person in Conrock's proposed service territory that has expressed any interest to the City of Brooksville concerning receiving water service from the city. There have been no requests to the county for water service in the proposed service territory, except by Budget Inn, a motel development. The proposed service area includes a number of small subdivisions. These subdivisions are Mundon Hill Farms, Eastside Estates, Cooper Terrace, Country Oak Estates, Chris Morris Trailer Park, Potterfield Sunny Acres, Gunderman Mobile Home Park, and Country Side Estates. Mundon Hill Farms is an undeveloped subdivision. Eastside Estates and Cooper Terrace have limited development and the Country Oak Estates consist of only three homes. The Chris Morris Trailer Park has a small number of mobile homes but is not of a high density. Potterfield Sunny Acres has six to eight homes. Gunderman Mobile Home Park is a minor development. The Country Side Estates development has its own independent water system. Some subdivisions in Conrock's proposed service area already receive water service from the city or the county. Conrock was incorporated in the past year and as yet has not had any active business operations. It currently has no employees. Mark Williams, the President of Conrock, manages the construction/demolition landfill operation owned by the S.A.W. Corporation. The landfill business is the most closely related business endeavor to a water utility business in the experience of Mr. Williams, Conrock's president. If Conrock were granted a water certificate, either Ms. Donna Martin or Mr. Charles DeLamater would be the operations manager. Neither of these persons possesses any license or training authorizing him or her to operate a water utility system. No evidence was presented as to Ms. Martin's qualifications to operate a water utility system. Mr. DeLamater manages a ranch at the present time and also works in a management capacity in the landfill operation for the Williams family. There is no evidence that he has received any training in the operation of a water utility. It is true, however, that the representatives of the engineering and consulting firm retained by Conrock, who testified in this case, do possess extensive water and sewer design and operation expertise. The evidence does not reflect that those entities or persons would be retained to help operate the utility, but Conrock established that it will promptly retain operating personnel of adequate training and experience to operate the water system should the certificate be granted. Conrock has not established what type of system it would install should the certificate be granted, but a number of alternatives were examined and treated in its feasibility study (in evidence). One alternative involves the use of well fields alone, without treatment, storage or transmission lines. In this connection, the feasibility study contains some indication that the water quality available in the existing wells is such that no water treatment is necessary. In any event, Conrock has not established of record in this case what type of facilities it proposes to install in order to operate its proposed water service. Further, that feasibility study, designed to show a need for the proposed water service, is based upon the actual population, density and occupancies in the homes and subdivisions of the proposed service territory, even though those current residents and occupants have independent water supplies at the present time, either through private wells or through service provided by the City of Brooksville or Hernando County. Thus, the feasibility study itself does not establish that the proposed service is actually needed. Concerning the issue of the proposed facility's financial ability to install and provide the service, it was shown that Conrock stock is jointly held between the Williams family and the S.A.W. Corporation. The Conrock Corporation itself has no assets. The president of Conrock owns 100 shares of the utility corporation, but has not yet committed any personal funds to the venture. No efforts, as yet, have been made to obtain bonds, loans or grants. In fact, the first phase of the proposed project, which is expected to cost approximately $400,000, can be provided in cash from funds presently held by the Williams Family Trust and the S.A.W. Corporation. The various system alternatives proposed in Conrock's feasibility study, in evidence, range in cost from $728,200 to $5,963,100. Conrock has no assets and therefore no financial statement as yet. The financial statements of Mr. and Mrs. Sumner A. Williams, the parents of Conrock's president, include approximately $3,069,907. This is the corpus of the family trust mentioned above, and with other assets, amount to a net worth for those individuals of approximately 5.8 million dollars. Mr. Williams, Conrock's president, has an income interest in the family trust. The financial statements of the S.A.W. Corporation indicate it has a net worth of $1,588,739. The Family Trust financial statement shows a net worth of $3,069,907 of which $1,444,165 consists of stock in the S.A.W. Corporation. The Family Trust owns 90.9 percent of the S.A.W. Corporation stock. It is thus a close-held corporation, not publicly traded and thus has no value independent of the corporation's actual assets. In spite of the fact that Conrock, itself, the corporate applicant herein, does not have assets or net worth directly establishing its own financial responsibility and feasibility, in terms of constructing and operating the proposed water service, the testimony of Mr. Williams, its president, was unrefuted and does establish that sufficient funds from family members and the trust are available to adequately accomplish the proposed project. Concerning the issue of competition with or duplication of other systems, it was established that the City of Brooksville currently provides water service to the Wesleyan Village, a subdivision within the Conrock proposed service territory. The City has a major transmission line running from its corporate limits out to the Wesleyan Village. The Wesleyan Village is receiving adequate water service at the present time, although there is some evidence that water pressure is not adequate for full fire flows. The City also has another water main running from US 41 down Crum Road, which is in the proposed service territory of Conrock. By agreement with Hernando County, a so-called "interlocal agreement," the City of Brooksville is authorized to provide water and sewer utility service in a 5-mile radius in Hernando County around the incorporated area of Brooksville. This 5-mile radius includes much of the proposed service territory of Conrock. The City of Brooksville comprehensive plan, approved by the Florida Department of Community Affairs, contains an established policy discouraging "urban sprawl" or "leap frogging"; the placing of developments including separate, privately owned water utilities in predominantly rural areas. It, instead, favors the installation of subdivision developments in areas which can be served by existing, more centralized, publicly owned water and sewer utilities such as the City of Brooksville or Hernando County. Thus, the installation of the separate, privately owned system in a rural area of the county would serve to encourage urbanization away from area contiguous to the municipality of Brooksville which is served, and legally authorized to be served, by the City of Brooksville. Such a project would be in derogation of the provisions of the approved comprehensive land use plan. Further, Conrock's proposed system would be in partial competition with and duplication of the city and county water systems in the proposed service territory. The county provides some water service through its water and sewer district system to some of the subdivisions and residents in the proposed service territory of Conrock and much of Conrock's territory, as mentioned above, lies within the 5-mile radius urban services area of Brooksville, authorized to be served by the city and county interlocal agreement. Such interlocal agreements, including this one, are contemplated and authorized by the comprehensive plan approved by the Department of Community Affairs and the city/county agreement involved in this proceeding was adopted in 1978 in accordance with certain federal grant mandates in Title 201 of the Federal Safe Water Drinking Act. In terms of present physical competition and duplication, Conrock's proposed system would likely involve the running of water lines parallel to and in duplication of the county's lines within the same subdivision.
Recommendation Having considered the foregoing findings of fact, conclusions of law, the evidence of record, the candor and demeanor of the witnesses and the pleadings and arguments of the parties, it is therefore RECOMMENDED that the application of Conrock Utilities Corporation for a water certificate authorizing it to operate a water utility in Hernando County, Florida, as more particularly described herein, be denied. DONE AND ENTERED in Tallahassee, Leon County, Florida, this 23rd day of January 1990. P. MICHAEL RUFF Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearing this 24th day of January 1990. APPENDIX Petitioners, City of Brooksville, Hernando County, and Hernando County Water and Sewer District's proposed findings of fact. Accepted. Accepted. Accepted. Rejected as subordinate to the Hearing Officer's findings of fact on the subject matter. Rejected as subordinate to the Hearing Officer's findings of fact on the subject matter. Rejected as subordinate to the Hearing Officer's findings of fact on the subject matter. Respondent's proposed findings of fact. Accepted. Accepted. Rejected as subordinate to the Hearing Officer's findings of fact on this subject matter and as not entirely in accordance with the preponderant weight of the evidence. Accepted. Accepted. Rejected as subordinate to the Hearing Officer's findings of fact on this subject matter and as not entirely in accordance with the preponderant weight of the evidence. Intervenor's proposed findings of fact. Accepted. Rejected as subordinate to the Hearing Officer's findings of fact on this subject matter and not in itself materially dispositive. Accepted. Accepted. Accepted. Accepted. Accepted. Accepted. Accepted. Accepted. Accepted, but not in itself materially dispositive and subordinate to the Hearing Officer's findings of fact on this subject matter. Accepted. Accepted. Rejected as subordinate to the Hearing Officer's findings of fact on this subject matter and as not in itself materially dispositive. Accepted, but not in itself materially dispositive. Accepted, but subordinate to the Hearing Officer's findings of fact on this subject matter. Accepted, but subordinate to the Hearing Officer's findings of fact on this subject matter. Accepted. Accepted. Accepted. Accepted. Copies furnished to: William B. Eppley, Esquire Post Office Box 1478 Brooksville, Florida 34605 Peyton B. Hyslop, Esquire 10 North Brooksville Avenue Brooksville, Florida 34601 James F. Pingel, Jr., Esquire South Ashley Drive Suite 1400, Ashley Tower Post Office 1050 Tampa, Florida 33601 David C. Schwartz, Esquire Florida Public Service Commission East Gaines Street Tallahassee, Florida 32399-0855 Steve Tribble, Director Records and Recording Florida Public Service Commission 101 East Gaines Street Tallahassee, Florida 32399-0850 David Swafford Executive Director Florida Public Service Commission 101 East Gaines Street Tallahassee, Florida 32399-0850 Susan Clark, General Counsel Florida Public Service Commission 101 East Gaines Street Tallahassee, Florida 32399-0850 =================================================================
The Issue Whether Bay County has demonstrated its entitlement to the Permit?
Findings Of Fact The Ecologically Diverse Florida Panhandle With its high diversity of species and richness in endemic plants, the Florida Panhandle has been identified as one of six continental "biodiversity hot spots" north of Mexico. It has more species of frogs and snakes, for example, than any other equivalently-sized area in the United States and Canada and has botanical species that do not exist anywhere else in the Coastal Plain, one of the three floristic provinces of the North Atlantic American Region. The biodiversity stems from a number of factors. The Panhandle was not glaciated during the Pleistocene Period. Several major river systems that originate in the southern Appalachian Mountains terminate on the Panhandle's Gulf Coast. Its temperate climate includes relatively high rainfall. These factors promote or produce plentiful sources of surface and groundwater that encourage botanical and zoological life and, in turn, a diverse ecology. When compared to the rest of Florida, the Panhandle is relatively free from man-made impacts to its water resources. Until recently, the population growth rate lagged behind much of the state. Despite a rapid increase in the population in the late 1990s into the early part of the twenty-first century, it remains much less densely populated than areas in the I-4 Corridor and coastal peninsular Florida to the south. The Panhandle can be divided into physiographic areas of geological variation that are highly endemic; a substantial number of plant and animal species found in these areas are found nowhere else in the world. One of these areas is of central concern to this case. Located in southern Washington County and northern Bay County, it is known as the Sand Hill Lakes Area. The Sand Hill Lakes Area The Sand Hill Lakes Area (the "Area") is characterized by unusual geology that produces extraordinary ecological value. With few exceptions (see findings related to Dr. Keppner's flora and fauna inventories on the NTC/Knight Property below), the Area has not been extensively studied. The data on biological communities and water levels that exist, sparse as it is, has been obtained from historic aerials dating to 1941. The aerials are of some use in analyzing lakes and surface waters whose source is the Surficial Aquifer, but they are of limited value otherwise. They are not of use in determining the level in the Surficial Aquifer. Nor are they of assistance in determining river height when the banks of the river are covered by hardwood forest canopy. The resolution of the aerials is insufficient to show details of the various ecosystems. They do not show pitcher plants, for example, that exist at the site of hillside seepage bogs common in the Area. An aspect of the Area that the aerials do reveal is its many karst features on the surface of the land. Karst lakes and sinkholes dominate the Area and are a component of its highly unusual geology which is part of a larger system: the Dougherty Karst Plain. The Dougherty Karst Plain is characterized by numerous karst features: springs, caverns, sinkhole lakes, and sinkholes. Sinkholes In Florida, there are three types of sinkholes: cover subsidence, cover collapse, and "rock" or "cavern" collapse. Of the three, cover subsidence sinkholes are the most common in the state. Cover subsidence sinkholes form as the result of processes that occur on the surface. A cover subsidence sinkhole is usually a shallow pan typically not more than a few feet deep. Found throughout Central and South Florida, they are the most common type of sinkholes in most of peninsular Florida. In contrast, the other two major types of sinkholes (cover collapse and cavern collapse) occur as the result of processes below the surface that cause collapse of surface materials into the substrata. Both types of "collapse" sinkholes are found in the Area, but cover collapse is the more common. Cavern collapse sinkholes are relatively rare. Typical of the Area, cover subsidence sinkholes are not found on the NTC/Knight Property. The NTC/Knight Property The majority of the NTC/Knight Property is in Washington County, but the property straddles the county line so that a smaller part of it is in northern Bay County. All of the NTC/Knight Property is within the Area. The District recognizes that the NTC/Knight Property contains natural resources of extraordinary quality as does the Area generally. Over the three years that preceded the hearing, Dr. Keppner, an NTC/Knight expert, conducted extensive inventories of the flora and fauna on NTC/Knight Property. Dr. Keppner's inventory showed the NTC/Knight Property supports more than 500 species of vascular plants (flora with a system of tubes within the stem, phloem, and the xylem that exchange materials between the roots and leaves) and 300 species of animals. Among them are at least 28 vascular plants and six animals listed as imperiled (threatened or endangered) by state or federal agencies. At least 22 of the imperiled species of vascular plants and eight of the imperiled species of animals are located within an area expected to be affected by the Wellfield for which Bay County seeks the permit modification. For example, at Big Blue Lake alone where impacts were predicted by NTC/Knight experts to take place, the following imperiled plant species are found: Smoothbark, St. John's Wort, Kral's Yelloweyed Grass, Quilwort Yelloweyed Grass, Threadleaf Sundew, Panhandle Meadowbeauty, and Crystal Lake Nailwort. In addition to the Keppner inventory, NTC/Knight commissioned other studies to determine the nature of the sinkholes and whether they are connected to the Floridan Aquifer. NTC/Knight's experts determined that the property contains cover collapse and a few cavern collapse sinkholes that connect to the Floridan Aquifer. Despite evidence to the contrary submitted by the District and Bay County, the NTC/Knight determinations are accepted as facts for a number of reasons, including the lineup of the sinkholes and sinkhole lakes along identified photo-lineaments and the distribution of them in patterns that are not random. A District study using a dye test, moreover, confirmed conduit flow exists in the Area just east of the NTC/Knight Property. With regard to the distribution of the sinkholes and sinkhole lakes on the NTC/Knight Property, Dr. Sam Upchurch used the term "String of Pearls" to describe multiple sinkholes that exist along the edges of several lakes on the property. When sinkholes closer to the center of a lake are clogged or plugged with sediment and debris, the lakes continue to leak around the plugs which causes new sinkholes to form along the edge of the plugs. Examples of the "String of Pearls" formation on the edges of existing lakes are found at White Western and Big Blue Lakes on the NTC/Knight Property and at Crystal Lake nearby in Washington County. The multiple sinkholes bordering the edge of Big Blue Lake are examples of cover collapse sinkholes that, in geological terms, are relatively young as evidenced by their steep sides. In a karst area such as the Area, there is preferential flow in the conduits because of the difference of efficiency of transmission of water flowing through a porous medium of rock compared to that flowing though a conduit. Absent pumping in the Wellfield, the underlying aquifers are relatively stable. If the requested pumping does not take place, it is likely the stability will remain for a substantial period of time. It is not known with precision what will happen in the long term to the karst environment should pumping occur at the Wellfield at the rate the District proposes. When pumping occurs, however, water in the Area affected by the Wellfield will move toward the Wellfield. "[A]s it does[,] you may get some turbulent flow or vorticity in the water." Tr. 1391, (emphasis supplied). At some point, a change in the potentiometric surface and loss of buoyancy will most likely occur. This leads to concerns for Dr. Upchurch from two perspectives: One . . . is that if there is a[n affected] sinkhole lake [on the surface,] it may induce downward flow . . . the other . . . is that if it breaks the plug it may either create a new sinkhole or create a substantial drop in the level of water in the lake . . . which drains periodically, not necessarily because of a wellfield, but because that plug breaks. Id. In the first instance, lake levels could be reduced significantly. In the second, a new sinkhole could be created or the water level could drop dramatically as occurred at Lake Jackson in Tallahassee. Sand Hill Lakes Wetlands The Area contains a number of wetland communities. These include hillside seepage bogs, steepheads, sphagnum bogs, littoral seepage slopes around certain Sand Hill Lakes, temporary ponds, and creeks and streams in forested wetlands. A number of these wetlands occur on the NTC/Knight Property within the zone of influence in the Surficial Aquifer predicted by NTC/Knight's experts employing a model known as the "HGL Model." The wetland systems on the NTC/Knight Property are diverse, by type, plant species composition, and richness. This remarkable diversity led the District to recognize that the NTC/Knight Property contains lakes of nearly pristine quality, interconnected karst features, and endemic steephead ravines, all of which are regionally significant resources of extraordinary quality. The Area's wetlands also include many streams, among them Pine Log Creek, the majority of which is located on the NTC/Knight Property. Significant recharge to the Floridan Aquifer occurs on NTC/Knight Property. To the west, north, and east of the NTC/Knight Property are major concentrations of Floridan Aquifer springs that are crucial to the quality and character of regional surface water systems, including the Choctawhatchee River, Holmes Creek, and Econfina Creek systems. All of these surficial systems are dependent on the groundwater resources of the Area. The Area's Hillside Seepage Bogs Hillside seepage bogs are marsh-like wetland usually located on gentle slopes of the sides of valleys. They form when the Surficial Aquifer intercepts the sloping landscape allowing water to seep onto the sloped surface. The plant communities in the bogs are dominated by a great number and variety of herbaceous plants that prefer full sun. Among them are carnivorous plants. These unusual plants include the Trumpet and White-Topped pitcher plants as well as other varieties of pitcher plants. Inundation or saturation for extended periods of time is necessary for pitcher plants and most of the rest of the plant communities found in the bogs to thrive and to fend off invasion by undesirable species. Hillside seepage bogs are valued because they are among the most species-rich communities in the world. A reduction in water levels in the bogs below the root zone of associated plants will kill the plant communities that live in them and pose a threat to the continued existence of the bogs. Hillside seepage bogs were once abundant in pre- settlement Florida, but their expanse has been greatly reduced. They are now estimated to only occupy between one and five percent of their original range. On NTC/Knight Property, they have been spared to a significant degree. Numerous hillside seepage bogs continue to exist on the NTC/Knight Property primarily along the margin of Botheration Creek and its tributaries. The Area's Steepheads Steepheads are unique wetland systems. Found around the globe, they are usually regarded as a rarity. More than 50 percent of the steepheads that exist in the world are in a narrow latitudinal band that extends from Santa Rosa County in the west to Leon County in the east, a major section of the Florida Panhandle. Steepheads occur in deep sandy soils where water originating in the Surficial Aquifer carries away sand and cuts into sandy soils. The seepage emerges as a "headwater" to create a stream that conveys the water from the steephead into a river, or in some rare circumstances, into a karst lake. Over time, flow of the seepage waters results in deep, amphitheater- shaped ravines with steep valley side walls. Steepheads are important to the ecologies of the areas in which they occur. They provide habitat for a number of Florida endemic animals and plants believed to be relics of once-abundant species. Water that emerges from a steephead is perennial. Because the steep slopes of the steephead have not been disturbed over a long period of time, the water remains at a relatively constant temperature, no matter the season. Sampling of aquatic invertebrates at the Russ Pond and Tiller Mill Steepheads on the NTC/Knight Property found 41 and 33 distinct taxa, respectively, to inhabit the steepheads. Among them were a number of long-lived taxa. Their presence is consistent with the hallmark of a steephead: perennial flow of water at a relatively constant temperature. Most of the known steepheads flow into streams or rivers. Between six and ten within the Area, however, flow into Sand Hill Lakes. They have no direct connection to any surface drainage basin, thereby adding to their uniqueness. The level in the Surficial Aquifer has a direct impact on where and to what extent seepage flows from the sidewalls of a steephead. The Area's Sphagnum Bogs Sphagnum moss grows in many locations within the landscape and requires moisture. Where there is a large amount of sphagnum moss, it can form a unique community known as a sphagnum bog that is capable of supporting unique plant and animal populations. In the Area, these sphagnum bogs form along the valley sidewalls of steephead ravines and are fed by Surficial Aquifer seepage from the sidewall of the ravine. These sphagnum bogs support unique plant and animal communities, including a salamander discovered by Dr. Means that is new to science and so far only known to exist in sphagnum bogs in the Florida Panhandle. The Area's Sinkhole Lakes and their Littoral Seepage Slopes Sand Hill Lakes are nutrient poor, or "oligotrophic," receiving most of their nutrient inputs through exchange with the plant and animal communities on the adjacent littoral shelves during periods of high water levels. Fluctuating water levels in the Sand Hill Lakes allow a littoral zone with many different micro-habitats. Areas closest to the lakes are inundated regularly, but higher areas of the littoral zone are generally dry and inundated only every ten or 20 years -- just often enough to prevent encroachment of trees. In a few instances, portions of the littoral zones are inundated by seepage from the Surficial Aquifer. Above the normal low water of the Sand Hill Lakes, the littoral shelf occurs along a low gradient. As the littoral shelf transitions into the lake bottom and toward the deeper parts of the lake, there is an inflection point, where the gradient of the lake bottom becomes much steeper than the littoral shelf. If lake water levels fall below that natural inflection point, gully erosion will occur. The flow of water will be changed along the littoral shelf from seepage sheet flow over a wide expanse to water flowing down gullies in a concentrated stream. This change in flow will result in a loss of area needed by certain seepage dependent plants and animals as well as increased sedimentation from erosion. Big Blue Lake is unique because it boasts the largest known littoral zone seepage area of any Sand Hill Lake. The seepage zone along Big Blue Lake supports a number of rare plant species, including the Thread-Leaf Sundew, Smoothed Barked St. Johns Wort, and Crystal Lake Nailwort. The Area's Temporary Ponds Temporary ponds are small isolated water bodies that generally have no surface water inlet or outlet. Typically very shallow, they are sometimes wet and sometimes dry. Temporary ponds can range from basins that have continuous water for three to five years, to basins that have standing water for a month or two, every two to four years. These conditions limit their occupation by fish and, therefore, provide ideal conditions for amphibian reproduction which only occurs when water levels are maintained long enough to complete a reproductive cycle. In the Area, temporary ponds are a direct expression of the Surficial Aquifer and contain no known restrictive layer that might cause water to be "perched" above the Surficial Aquifer. Temporary ponds are critical to the viability of amphibian populations and support high amphibian biodiversity. A given pond can contain between five and eight species of salamander, and between 12 and 15 species of frogs. There has been a decline recently in the population of frogs and other amphibians that depend upon temporary ponds. The decline is due in part to ditching and other anthropogenic activities that have altered the hydrology of temporary ponds. Temporary ponds have a higher likelihood of being harmed by a drawdown than larger, connected wetlands systems. Lowered Surficial Aquifer water levels would lower water levels in temporary ponds and, thereby, threaten amphibian reproduction. Creeks/Streams in Forested Wetlands Streams are classified on the basis of the consistency of flowing water, including perennial (always flowing), intermittent (flowing part of the year), and ephemeral (flowing only occasionally during rain events). The type of stream flow is important because movement of water is essential to support aquatic systems in stream habitats. The NTC/Knight Property includes a number of stream systems, including Botheration Creek and Pine Log Creek. Botheration Creek is fed by groundwater discharge and originates, in large part, on the NTC/Knight Property. Botheration Creek flows from east to west until it intersects Pine Log Creek on the southwest part of the NTC/Knight Property. Botheration Creek provides Pine Log Creek with approximately 89 percent of Pine Log Creek's flow. From the confluence, Pine Log Creek flows south and west into the Pine Log State Forest and eventually joins the Choctawhatchee River. Botheration Creek contains high quality water and a diverse mix of aquatic invertebrates and fish. Sampling at a stage recorder located approximately two miles west of the eastern boundary of the NTC/Knight Property ("BCS-01") identified 46 taxa of macroinvertebrates, including six long- lived taxa, and mussels. The water level in Botheration Creek at BCS-01 was measured to be between 0.1 and 0.32 feet by four measurements taken from October 2010 to July 2011. Nonetheless, the presence of long-lived taxa and mussels indicates that, at BCS-01, Botheration Creek is a perennial stream. Carbon export from streams provides nutrients that feed the stream system. Headwater streams like Botheration Creek and its tributaries are essential to carbon export. For carbon export to occur, a stream must have out-of-bank flood events regularly to promote nutrient exchange with the flood plain. Bay County and its Water Supply Prior to 1961, the County obtained its public water supply from wellfields located near downtown Panama City. The wellfields drew from the Floridan Aquifer. An assessment of the pre-1961 groundwater pumping appears in a District Water Supply Assessment released in June 1998. In summary, it found that near Panama City, the potentiometric surface was substantially depressed by the pumping. Due to the threat of saltwater intrusion, the Deer Point Lake Reservoir (the "Reservoir") was constructed as an alternate water supply. A local paper mill, the city of Panama City, and Tyndall Air Force Base, all began to obtain public supply water from the Reservoir. Six years after the construction of the Reservoir, the Floridan Aquifer's water levels had rebounded to pre-pumping levels. See NTC/Knight Ex. 93 at 69. The authorization for the Reservoir began in the 1950's when the Florida Legislature passed a series of laws that granted Bay County authority to create a saltwater barrier dam in North Bay, an arm of the St. Andrews Bay saltwater estuary. The laws also allowed Panama City to develop and operate a surface freshwater reservoir to supply water for public use. The Deer Point Lake Dam (the "Dam") was built in 1961 from metal sheet piling installed across a portion of North Bay. The Dam created the Reservoir. The watershed of the Reservoir includes portions of Jackson, Calhoun, Washington, and Bay Counties and covers approximately 438 square miles. The Reservoir receives freshwater inflow from several tributaries, including Econfina Creek, Big Cedar Creek, Bear Creek/Little Bear Creek, and Bayou George Creek, totaling about 900 cubic feet per second ("cfs") or approximately 582 MGD. The volume of inflow would increase substantially, at least two-fold, during a 100-year storm event. The Dam is made of concrete and steel. Above it is a bridge and two-lane county road roughly 11.5 feet above sea level. The bridge is tied to the Dam by pylons. The top of the Dam is 4.5 feet above sea level, leaving a distance between the Dam and the bridge bottom of about seven feet. There is an additional structure above the Dam that contains gates, which swing open from the force of water on the Reservoir's side of the Dam. Capable of releasing approximately 550 MGD of freshwater into the saltwater bay, the gates keep the level of the Reservoir at about five feet above sea level. The height of the Dam and the gate structure leaves a gap between the bottom of the bridge deck and the top of the structure of "somewhere between 12 and 14 inches, a little better than a foot." Tr. 140. If storm surge from the Gulf of Mexico and St. Andrew's Bay were to top the Dam and the gate structure, the gap would allow saltwater to enter the Reservoir. The gates and the Dam structure are not designed to address storm surge. The Dam is approximately four feet thick and roughly 1,450 feet long. The 12-to-14 inch gap extends across the length of the Dam. With normal reservoir levels, the volume of water it contains is approximately 32,000-acre-feet or roughly 10.4 billion gallons. Bay County needs to drawdown the lake level for fish and wildlife purposes, the control of aquatic growth, and weed control. In winter, FWS prescribes a 45-day period of time to draw down the lake to expose the banks to kill vegetation. The last time the lake was drawn down by the County, the water level dropped approximately three feet, from five feet above sea level to two feet above sea level. This process took approximately six days and 16 hours, or approximately 53 hours/foot. Repair of the Dam and its Maintenance The Dam has been repaired three times. The last repair was following Hurricane Opal which hit the Florida Panhandle in the fall of 1995. During Hurricane Opal, "saltwater . . . entered . . . the [R]eservoir . . . [t]hat took 20-some days to flush out . . . ." Tr. 135. No evidence was presented regarding the Dam's vulnerability from the perspective of structural integrity during normal or emergency conditions. Other than the inference drawn from Mr. Lackemacher's testimony that Hurricane Opal damaged the Dam in 1995, no evidence was presented to suggest that the Dam's structure is vulnerable to damage caused by a storm surge, wave effect or other conditions caused by a storm of any magnitude. After the last of the three repairs, Bay County implemented a detailed maintenance program. Based upon the latest inspection reports, the Dam is in good condition and structurally sound. No work other than routine inspection and maintenance is currently planned. The 1991 Agreement and the WTP Bay County's current withdrawal of water from the Reservoir is based on a 1991 agreement between Bay County and the District (the "1991 Agreement"). See Joint Ex. Vol. II, Tab K. The 1991 Agreement allows Bay County after the year 2010 to withdraw 98 MGD (annual average) with a maximum daily withdrawal of 107 MGD. The 1991 Agreement, still in effect, authorizes Bay County to withdraw enough water from the Reservoir to meet its needs through 2040. Water for public supply is withdrawn from the Reservoir by a water utility pump station (the "Pump Station") located a short distance from the Dam in Williams Bayou. The water is piped to the water utility's treatment plant (the "Water Treatment Plant") five miles away. The Water Treatment Plant treats 60 MGD. Following treatment, the water is distributed to Bay County's wholesale and retail customers. The Reservoir water available to Bay County utilities is more than adequate to fulfill the water consumption demands of Bay County's system through a 20-year permit horizon. The transmission line between the Pump Station and the Water Treatment Plant has fittings that were designed to allow transmission of groundwater withdrawn from groundwater wells to be located along the transmission line to the Water Treatment Plant to provide a backup supply for the Reservoir. Bay County's Current Use of Potable Water The amount of water consumed by Bay County utility customers has declined over the last five years. Bay County's current use of water, based upon the average of the 13 months prior to the hearing, was 24.5 MGD, an amount that is only 25 percent of the water allocation authorized by the 1991 Agreement. There are approximately 560,000 linear feet of main transmission lines in Bay County with small service lines accounting for another several hundred thousand linear feet. Bay County furnishes water directly to approximately 6,000 retail customers in areas known as North Bay, Bay County, and the former Cedar Grove area, which is now part of Bay County. Wholesale customers include Panama City Beach, Panama City, Mexico Beach, Callaway, Parker, Springfield, and parts of Lynn Haven. The County also furnishes potable water to Tyndall Air Force Base. Lynn Haven does have some water supply wells; however, Bay County still supplements this water supply by approximately 30 percent. No other cities serviced by Bay County produce their own water. Bay County has a population of approximately 165,000- 170,000 permanent residents, which includes residents of the cities. The Bay County area experiences seasonal tourism. From spring break to July 4th, the population can grow to more than 300,000. The users of Bay County's drinking water supplies include hospitals, Tyndall Air Force Base, and the Naval Support Activity of Panama City ("NSA"). The County has 178 doctor's offices, 56 dental offices, 29 schools, 21 fire departments, 12 walk-in-clinics, six nursing and rehabilitation homes, six major employers, three colleges and universities, and two major hospitals, all which are provided drinking water by Bay County. Panama City Beach is the community which has the highest water use. Panama City Beach's average daily use is approximately 12 MGD. The peak day of usage for all of Bay County's customers over the 13 months prior to the hearing was 40 MGD. Bay County sells water to community water utility systems referred to as a "consecutive system." They include Panama City Beach, Panama City, and Mexico Beach. Bay County's request for 30 MGD contemplates provision of water for all essential and non-essential water uses occurring within the consecutive system. Bay County and the consecutive systems are subject to the District's regulations regarding emergency water use restrictions which typically restrict the non-essential use of water during water shortage emergencies. Hurricanes, Train Wrecks, and Post-9/11 America At the District's recommendation, Bay County has been considering a backup potable water source since the mid-1980's. Bay County's main concern is that it has inadequate alternatives to the Reservoir should it be contaminated. Contamination to date has been minimal. In the period of time after the 1961 creation of the Reservoir to the present, the Dam and the Reservoir have suffered no major damage or impacts from a tropical storm. No tropical storm since 1961 has disrupted Bay County's ability to provide potable water. Even Hurricane Opal in 1995 did not disrupt the water supply. Recent hurricane activity in the Gulf of Mexico, however, has aroused the County's fears. Should a storm of sufficient magnitude make landfall in proximity to the Dam, there is potential for saltwater contamination of the Reservoir from storm surge or loss of impounded freshwater due to damage to the Dam. Mr. Lackemacher, assistant director of the Bay County Utility Department and manager of the water and wastewater divisions of the department, has experience with other hurricanes in Palm Beach, Florida, and Hurricane Hugo in Myrtle Beach, South Carolina, during which water utilities suffered disruption of their distribution systems. The experience bolsters his concern about the damage a storm could cause Bay County's source of public water supply. Bay County's intake structure at Williams Bayou is approximately one mile away from the Dam. The location of the Pump Station puts it at risk for damage from a strong storm or hurricane. There is a rail line near the Reservoir. It runs along Highway 231 and over creeks that flow into the Reservoir, including the Econfina Creek. The rail line is known as "Bayline." Bayline's most frequent customers are the paper mill and the Port of Panama City. Not a passenger line, Bayline is used for the transport of industrial and chemical supplies. In 1978, a train derailment occurred on tracks adjacent to creeks that feed the Reservoir. The derailment led to a chlorine gas leak into the atmosphere. There was no proof offered at hearing of contamination of the Reservoir. There has never been a spill that resulted in a hazardous chemical or pollutant being introduced into the Reservoir. Bay County has not imposed restrictions on the type of vehicles that are allowed to use, or the material that may pass over, the county road on the bridge above the Dam. Nonetheless, in addition to saltwater contamination, Bay County also bases the need for an alternative water source on the possibility of a discharge into the Reservoir of toxic substances from a future train derailment. Bay County is also concerned about contamination of the Reservoir from a terrorist attack. In short, Bay County is concerned about "anything that could affect the water quality and water in Deer Point Lake." Tr. 184. The concerns led Bay County to file its application for the Wellfield on lands currently owned by the St. Joe Company. Consisting of ten wells spaced over an area of approximately ten square miles, the Wellfield would have a capacity of 30 MGD. Bay County's application was preceded by the development of the District's Region III Regional Water Supply Plan and efforts to acquire funding. Funding for the Wellfield and the Region III Regional Water Supply Plan Shortly after the commencement of the planning for the Wellfield, the District, in May 2007, authorized the use of funds from the State's Water Protection and Sustainability Trust Fund ("WPSTF"). The WPSTF is intended for development of alternative water supplies. In cooperation with the District, Bay County began drilling a test well followed by analyses to evaluate the water for potable suitability. In October of the same year, the District passed a resolution to request the Department of Environmental Protection to release $500,000 from the WPSTF to the District for local utilities in Bay and Escambia Counties for "Water Resource Development." NTC/Knight Ex. 195, p. 2. The amount was to be used "to provide funding for implementation of alternative water supply development and water resource developments projects pursuant to sections 403.890 and 373.1961, F.S." Id., p. 1. In February 2008, the District began a process to develop a regional water supply plan for Bay County. If the Wellfield were designated in the applicable regional water supply plan as "nontraditional for a water supply planning region," then it would meet the definition of "alternative water supplies" found in section 373.019(1), Florida Statutes. "In evaluating an application for consumptive use of water which proposes the use of an alternative water supply project as described in the regional water supply plan," the District is mandated "to presume that the alternative water supply is consistent with the public interest " § 373.223(5). Whether the Wellfield is to be presumed to be in the public interest depends on whether the application proposes the use of an alternative water supply project as described in the District's Region III Water (Bay County) Water Supply Plan adopted in 2008. The 2008 RWSP Pursuant to the process commenced in February, the District in August 2008 produced the Region III (Bay County) Regional Water Supply Plan (the "2008 RWSP"). In a section entitled "Identification of Alternative Water Supply Development Projects," the 2008 RWSP provides the following: "All of the water supply development projects identified in Table 4 are interrelated and considered alternative, nontraditional water supply development projects." NTC/Knight Ex. 187 at 14. Table 4 of the 2008 RWSP does not specifically identify the Wellfield. It identifies three projects in general terms. The first of the three (the only one that arguably covers the Wellfield) shows "Bay County Utilities" as the sole entity under the heading "Responsible Entities." Id. at 13. The project is: "Inland Ground Water Source Development and Water Supply Source Protection." Id. Under the heading, "Purpose/Objective," the Table states for the first project, "Develop inland alternative water supply sources to meet future demands and abate risks of salt water intrusion and extreme drought." Id. The Table shows "Estimated Quantity (MGD)" to be "10.0." Id. (In July 2008, the District's executive director informed Bay County that the Wellfield could produce 10 MGD.) The "Time Frame" is listed as 2008-12, and the "Estimated Funding" is "$5,200,000 WPSPTF" and "$7,800,000 Local, NWFWMD." Id. While not specifically identified in the 2008 RWSP, Table 4's project description supports a finding that the Wellfield is, in fact, one of the inland alternative water supply sources. The 2008 RWSP, therefore, designates the Wellfield as a "nontraditional" water supply source for Region III.4/ (The Wellfield also, therefore, meets the definition of "[a]lternative water supplies" in section 373.019(1). The demonstration of a prima facie case by Bay County and the District, however, make the applicability of the presumption a moot point. See Conclusions of Law, below.) Water Supply Assessments and Re-evaluations Development of a regional water supply plan by the governing board of each water management district is mandated "where [the governing board] determines that existing and reasonably anticipated sources of water are not adequate to supply water for all existing and future reasonable-beneficial uses and to sustain the water resources and related natural systems for the planning period." § 373.709(1), Fla. Stat. (the "Regional Water Supply Planning Statute"). The District determined in its 1998 District Water Supply Assessment ("WSA") for Region III (Bay County) that the existing and reasonably anticipated water sources are adequate to meet the requirements of existing legal users and reasonably anticipated future water supply needs of the region through the year 2020, while sustaining the water resource and related natural systems. See NTC/Knight 93 at 79. In 2003, Ron Bartel, the director of the District's Resource Management Division, issued a memorandum to the Governing Board (the "2003 Re-evaluation Memorandum"), the subject of which is "Regional Water Supply Planning Re- evaluation." NTC/Knight 95 (page stamped 42). The 2003 Re-evaluation Memorandum sets out the following with regard to when a "water supply plan" is needed: The primary test we have used for making a determination that a water supply plan was "not needed" for each region is that projected consumptive use demands for water from major water users do not exceed water available from traditional sources without having adverse impacts on water resources and related natural systems. Similarly, regional water supply planning is initiated "where it is determined that sources of water are not adequate for the planning period (20) years to supply water for all existing and reasonable-beneficial uses and to sustain the water resources and related natural systems." Id. With regard to the need for a Water Supply Plan for Bay County the 2003 Re-evaluation Memorandum states: [I]n Bay County (Region III), sufficient quantities have been allocated for surface water withdrawal from Deer Point Lake Reservoir through the District's consumptive use permitting program extending through the year 2040. In this area, the District is also scheduled to complete a minimum flow and level determination for the lake by the year 2006. This determination will be useful for deciding if additional water supply planning is needed before the permit expires in 2040. Id. (page stamped 43). The 2008 RWSP's designation of the Wellfield is justified in the minutes of the Governing Board meeting at which the 2008 RWSP's approval took place: While the reservoir has largely replaced the use of coastal public supply wells historically impacted by saltwater intrusion, there remain challenges within the region that make development and implementation of a Regional Water Supply Plan (RWSP) appropriate. Development of alternative water supplies would diversify public supply sources and help drought-proof the region through establishment of facility interconnections. Development of alternative supplies would also minimize vulnerability associated with salt water potentially flowing into the reservoir during major hurricane events. Id., p. 3 of 4. The adoption of the 2008 RWSP was followed in December 2008 by the District's 2008 Water Supply Assessment Update. The update is consistent with the earlier determinations of the adequacy of the Reservoir as a water supply source for the foreseeable future (in the case of the update, through 2030). The update also voices the concern about water quality impacts from storm surge. The update concludes with the following: In Region III, the existing and reasonably anticipated surface water resources are adequate to meet the requirements of existing and reasonably anticipated future average demands and demands for a 1-in-10 year drought through 2030, while sustaining water resources and related natural systems. However, the major concern for potential water quality impacts is that resulting from hurricane storm surge. A Regional Water Supply Plan (NWFWMD 2008) has recently been prepared for Region III to address concerns associated with existing surface water systems. NTC/Knight Ex. 101, p. 3-41. The Parties Washington County is a political subdivision of the State of Florida. Washington County is located directly north of Bay County and the Wellfield and within one mile of some of the proposed wells. Washington County includes thousands of wetlands and open water systems. Because of the hydro-geologic system in the area of the Wellfield, if there are wetland, Surficial Aquifer, and surface water impacts from the withdrawal under the Permit, it is likely that impacts will occur in Washington County. Washington County has a substantial interest in protection, preservation, and conservation of its natural resources, including lakes, springs, and wetlands, and the flora and fauna that depend on these water resources, especially endangered flora and fauna. Washington County has a substantial interest in the protection of all water resources in Washington County because of the close relationship between surface waters, groundwater, and the potable water supply used by Washington County residents. NTC/Knight is the owner of approximately 55,000 acres of land located in northern Bay County and southern Washington County. The NTC/Knight Property includes thousands of acres of wetlands and open waters, including Sand Hill Lakes, steepheads, hillside seepage bogs, sphagnum bogs, littoral seepage slopes around certain Sand Hill Lakes, temporary ponds, and forested wetlands. A large portion of the NTC/Knight Property is directly adjacent to the Wellfield and within the HGL Model projected drawdown contour. Based on the projected amount of drawdown from pumping at the proposed average rate of 5 MGD, the 0.5 projected drawdown contour predicted by the HGL Modeling Report (see Finding of Fact 121, below) extends over thousands of acres of the property. NTC/Knight has a substantial interest in the protection of the surface and groundwater directly on, under, and adjacent to its property. The water supports the numerous ecosystems of extraordinary value located on the property. James Murfee and Lee Lapensohn are individuals, who reside in Bay County on property fronting on and beneath Tank Pond approximately five miles from the Wellfield. Petitioners Murfee and Lapensohn have a well which extends into the Intermediate Aquifer. The Murfee and Lapensohn properties are within the HGL Model projected drawdown contour. Petitioners Murfee and Lapensohn have a substantial interest in the protection of their drinking water supply well and the surface waters directly on and adjacent to their properties. Bay County, the applicant, is a political subdivision of the State of Florida. The District is a water management district created by section 373.069(1). It has the responsibility to conserve, protect, manage, and control the water resources within its geographic boundaries. See § 373.069(2)(a), Fla. Stat. Section 120.569(2)(p), Florida Statutes Section 120.569(2)(p), in pertinent part, provides: For any proceeding arising under chapter 373, chapter 378, or chapter 403, if a nonapplicant petitions as a third party to challenge an agency’s issuance of a license, permit, or conceptual approval, the order of presentation in the proceeding is for the permit applicant to present a prima facie case demonstrating entitlement to the license, permit, or conceptual approval, followed by the agency. This demonstration may be made by entering into evidence the application and relevant material submitted to the agency in support of the application, and the agency’s staff report or notice of intent to approve the permit, license, or conceptual approval. Subsequent to the presentation of the applicant’s prima facie case and any direct evidence submitted by the agency, the petitioner initiating the action challenging the issuance of the license, permit, or conceptual approval has the burden of ultimate persuasion and has the burden of going forward to prove the case in opposition to the license, permit, or conceptual approval through the presentation of competent and substantial evidence. The permit applicant and agency may on rebuttal present any evidence relevant to demonstrating that the application meets the conditions for issuance. Paragraph (p) was added to section 120.569(2) in the 2011 Session of the Florida Legislature. Accordingly, the final hearing commenced with the Bay County and the District's presentation of its prima facie case by submitting the application, supporting documentation, and the District's approval of the application. Respondents also presented the testimony of four witnesses in the hearing's first phase. Phase I of the Final Hearing: Bay County's Application, Supporting Documents, the District's Approval and Supporting Testimony The Application File At the final hearing, Bay County and the District offered the "application file," marked as Joint Exhibit Binder Volumes I-IV (the "Application File") in the hearing's first phase. It was admitted into evidence. A document entitled "Alternate Water Supply Report - Bay County Water Division" dated May 20, 2008 (the "Hatch Mott MacDonald Report") is contained in the Application File. See Joint Ex. Vol. I, Tab B. The Hatch Mott MacDonald Report is a preliminary evaluation of a wellfield with 22 wells, an "initial phase . . . [of] five (5) wells producing 5 MGD and the final phase . . . [of] 17 wells, producing 25 MGD." Id. at 1. The evaluation includes the gathering of information, a recommendation for the best method of treatment, an analysis of whether individual well sites or a centralized site would be superior, a hydraulic model and analysis, and the potential construction and operation costs. The report concludes in its Executive Summary: HMM's preliminary results, based upon water analysis of Well No. 1, indicate that only disinfection will be required for potable water treatment. Additionally, the hydraulic analysis indicated that the wells are capable of providing the initial 5 MGD and future 25 MGD to the proposed connection point along Highway 388 without re-pumping. Adequate storage for fire protection should be considered at current and future service areas. The use of chlorine gas at each well site during the initial phase had the lowest present worth of $16,770,270; that is, the smallest amount of funds needed today to build, operate, and maintain the system. The use of chlorine gas at each well in the final phase had a present worth of $41,245,118, only slightly more than the present worth of $40,834,245 for on-site Id. generation of disinfectant at three (3) central facilities. The Application File contains a response to a District request for additional information (the "2009 RAI Response") submitted by the Bay County Services Utility Director and received by the District in September 2009. See Joint Ex. Vol. II, Tab K. The 2009 RAI Response contains the 1991 Agreement and numerous other documents. Among them is a report prepared by HydroGeoLogic, Inc. ("HGL") entitled "Groundwater Model Development for the Assessment of a New Wellfield in Bay County, Florida" dated September 2009 (the "2009 HGL Modeling Report"). The report predicts impacts that would be created to the surrounding aquifers as a result of the Wellfield pumping, but recommends that additional data be obtained. The Application File contains the District's Notice dated March 25, 2010. See Joint Ex. Vol. III, Tab B. Attached to the Notice is a draft of the Permit and a staff report from the District recommending approval with conditions. Condition 11 of the Permit's standard conditions obligates Bay County to mitigate any significant adverse impacts caused by withdrawals and reserves the right to the District to curtail permitted withdrawal rates "if the withdrawal causes significant adverse impact on the resource and legal uses of water, or adjacent land use, which existed at the time of the permit application." Joint Ex. Vol. III, Tab B, p. 3 of 17. Attachment A to the Permit requires conditions in addition to the standard conditions contained in the body of the Permit. Paragraph 12 of Attachment A, for example, requires that Bay County implement and maintain a water and conservation efficiency program with a number of goals. Attachment B to the Permit requires a monitoring and evaluation program and wetland monitoring of adjacent properties to determine if the pumping causes adverse impacts to wetland areas, including habitat and species utilization. The Application File contains a revised modeling report also entitled "Groundwater Model Development for the Assessment of a New Wellfield in Bay County, Florida" (the "2011 Revised HGL Modeling Report" or the "HGL Model Report"). See Joint Ex. Vol. III, Tab P. The 2011 Revised HGL Modeling Report predicts impacts of the pumping of the Wellfield on the Upper Floridan Aquifer and the Surficial Aquifer. The HGL Model is based on an adaptation of an original model first developed by the U.S. Geological Survey (USGS) and then further adapted by HGL. The adapted model is known as MODFLOW-SURFACT. The MODFLOW-SURFACT Model has been used in excess of 600 applications and is used worldwide. The HGL Model predicted impact from pumping when wellfield pumping achieves a "steady state." Steady state impact is achieved after 10-12 years of constant pumping. The impact and the area of impact is depicted on Figure 5.1b(1) of the 2011 Revised HGL Modeling Report. The predicted drawdown of the Surficial Aquifer is predicted to be six inches (0.5 ft) within the areas indicated. The Application File shows that the permit was revised twice. Ultimately, a Second Revised Notice of Proposed Agency Action dated July 22, 2011, was issued by the District. Attached to the Second Revised NOPAA is the District's Permit. See Joint Ex. Vol. IV, Tab U. A revised Staff Report from the District dated July 18, 2011, is also included in Volume IV of the joint exhibits. See id., Tab Q. The Permit as supported by the staff report allows an average daily withdrawal of 5 MGD, a maximum daily withdrawal of 30 MGD for no more than 60 days per year (with a maximum of 52 consecutive days), and a maximum monthly amount of 775 million gallons. See Joint Ex. Vol. IV, Tab U. The Permit also includes the LTEMP jointly prepared by the Applicant and the District. See id., Attachment B. The Permit requires Bay County to "mitigate any significant adverse impact caused by withdrawals . . . on the resource and legal water withdrawals and uses, and on adjacent land use, which existed at the time of the permit application." Joint Ex. Vol. IV, Tab R, p. 3 of 11. If the District receives notice of an impact from the existing legal user, it contacts the utility. "Within 72 hours [the utility has] a well contractor out there and they have determined what the problem is." Tr. 615. There are no time requirements for the resolution of the impact or any other resolution procedures in the Permit. Definitions of Emergency and Maintenance Amounts The Permit does not include a definition of when the Reservoir may be considered to be unavailable as a public water supply. That determination is left to Bay County. The Permit does not set a withdrawal limit lower than the limits detailed above for maintenance of the Wellfield. There is one set of withdrawal limits. They apply irrespective of the purpose of the withdrawals, that is, whether for backup in an emergency, maintenance, or some other purpose that falls under Public Supply or Industrial Use. Conditions and Monitoring Requirements Bay County is required to mitigate any significant adverse impacts on resources and legal water withdrawals and uses caused by the County's withdrawal from the Wellfield. In addition, the District reserves the right to curtail permitted withdrawal rates if Bay County's withdrawal causes adverse impacts on local resources and legal uses of water in existence at the time of the permit application. In the event of a declared water shortage, the Permit requires Bay County to make water withdrawal reductions ordered by the District. In addition, the District may alter, modify, or deactivate all or parts of the Permit. Attachment A to the Permit, states: The Permittee shall not exceed total, combined groundwater and surface water (authorized in Individual Water Use Permit No. 19910142) withdrawals of an average daily withdrawal of 98,000,000 gallons, a maximum daily withdrawal of 107,000,000 gallons and a maximum monthly withdrawal of 2,487,750,000 gallons. Joint Ex. Vol. IV, Tab U, p. 4 of 11. The inclusion of "surface water" in the condition covers withdrawals from the Reservoir. The combination of actual withdrawals from the Wellfield and actual withdrawals from the Reservoir, therefore, means that Bay County may not exceed the limitations of the withdrawals authorized by the 1991 Agreement. Attachment A to the Permit further explains how Bay County must mitigate harm caused by groundwater withdrawals. The Permittee, within seven days of determination or notification by the District that the authorized groundwater withdrawal is causing harm to the resources, shall cease or reduce, as directed by the District, its pumping activity. The Permittee shall retain the services of a qualified, licensed professional to investigate allegations of interference with an existing, legal groundwater use. The Permittee shall ensure their chosen contractor investigates the alleged interference within 72 hours of the allegation being made. If it is determined that the use of a well has been impaired as a result of the Permittee's operation, the Permittee shall undertake the required mitigation or some other arrangement mutually agreeable to the Permittee and the affected party. The Permittee shall be responsible for the payment of services rendered by the licensed water well contractor and/or professional geologist. The Permittee, within 30 days of any allegation of interference, shall submit a report to the District including the date of the allegation, the name and contact information of the party making the allegation, the result of the investigation made and any mitigation action undertaken. Joint Ex. Vol. IV, Tab U, Attachment A, p. 4 of 11. Bay County is also required, within two years from the Permit's issuance, to submit to the District for review and approval a contingency plan to mitigate potential impacts. The County must wait one full year prior to commencing withdrawal of groundwater for production purposes. During the one-year period, the County must complete groundwater, surface water, and wetland monitoring. The requirements of the mandatory monitoring are found in Attachment B of the Permit, LTEMP. See Joint Ex. Vol. IV, Tab U, Attachment B. The LTEMP "is designed to track trends in ecological and hydrological conditions caused by naturally occurring fluctuations in rainfall, which may affect ground and surface water hydrologic conditions; and to identify potential effects caused by wellfield pumping." Joint Ex. Vol. IV, Tab U, Attachment B at 1. If a substantive deviation occurs from predictions made by the HGL Modeling, or if any other hydrologic or ecologic changes due to the withdrawals are observed at monitoring sites, the District is required to review and, in consultation with Bay County, appropriately revise the LTEMP as necessary with the aim that the monitoring will assure that the conditions for issuance of the Permit are being met. Testimony in Support of the Application In addition to the documentary evidence offered in the first phase of the proceeding, Bay County and the District presented the testimony of several witnesses. These witnesses testified as to background and the 2008 RWSP, the vulnerability of the Reservoir to saltwater contamination from storm surge, and the basis for the District's decision. Vulnerability to Storm Surge There is a one percent chance every year of a 100- year storm event. Flood Insurance Rates Maps ("FIRMS") show that the 100-year water level (the level of storm surge in a 100-year storm event) at the Dam will reach 11 feet NAVD, two feet above the top of the gate structure above the Dam. The Federal Emergency Management Agency ("FEMA") and the National Weather Service ("NWS") have developed the Sea, Lake, and Overland Surge from Hurricanes ("SLOSH") model, which estimates storm surge depths resulting from historical, hypothetical, or predicted hurricanes. A Florida Department of Emergency Management's SLOSH model of the Panama City area shows maximum surge levels for Storm Categories 1, 2, 3, 4, and 5, in NAVD feet as 3.3, 5.8, 10.8, 14.1, and 18.1, respectively. The SLOSH model, in all likelihood, is a low estimation. It is reasonable to expect surge levels in a Category 3 hurricane that passes directly over the Dam, for example, to be higher than 10.8 feet NAVD predicted by the SLOSH model at the Dam. According to the National Oceanic and Atmospheric Administration's ("NOAA") database, 43 tropical storms and hurricanes have passed within 200 miles of the Reservoir between 1970 and 2010 and 20 have come within 100 miles. None have made landfall closer than 40 miles away from the Dam. Of the 20 storms passing within 100 miles of the Reservoir, four have reached Category 3 strength or higher: Eloise, Elena, Opal, and Dennis. In 2004, Hurricane Ivan made landfall over 100 miles to the west of the Dam and raised water levels near the Dam to nearly five feet NAVD. The following year, Hurricane Dennis made landfall 76 miles to the west of the Dam. Dennis produced a surge level of nearly four feet NAVD near the Dam. "Hurricane Eloise (1975) made landfall 40 miles west of Panama City and produced water levels 15 ft above normal at Panama City ([citation omitted]). However, the storm passed through the area quickly and does not appear to have significantly affected the dam." Bay County Ex. 1, p. 3 of 9. Hurricane Opal made landfall 86 miles west of Panama City Beach and produced water levels of about 8.3 feet NAVD near the Dam. The storm surge did not overtop the gate structure above the Dam, but the gates were jammed by debris. "[C]hloride levels rose above 50 ppm at the intake pumps and two to three times above normal background levels of 8 to 10 ppm 'almost one mile up-reservoir.'" Id. The levels of chloride were "still well within drinking water limits," tr. 434, of 250 parts-per- million (ppm). Hurricane Katrina made landfall in 2005 more than 200 miles west of the Reservoir with storm surges higher than 20 feet. Katrina produced surge levels of five feet above normal tide levels in Bay County. The rate and amount of saltwater that would enter the Reservoir depends on the height of the storm surge above the Dam. The 100-year surge levels could remain above the top of the Dam for three or more hours. Such an event would introduce approximately 56,200,000 cubic feet or 1,290 acre-feet of saltwater into the Reservoir, even if the Dam were to remain intact (undamaged) and the tide gates remain closed. The salinity levels bay-side of the dam are generally 23,000 to 33,000 ppm. It is reasonable to expect that in the event of a 100-year storm event, much of the storm surge would come directly from the Gulf of Mexico, which has higher salinity levels. With the Dam intact, the introduction of 1,290 acre- feet of saltwater at 33,000 ppm would raise the average chloride concentration in the Reservoir to at least 800 ppm, more than three times the maximum drinking water chloride level of 250 ppm. Assuming the Dam remained intact during a 100-year storm event, freshwater added over time to the lake from the streams and aquifer will dilute the elevated lake chloride level and restore the lake water to a level fit for human consumption. The USGS has measured stream flow at Deer Point Lake and estimated the lake receives an average of 600 million gallons of freshwater per day or 900 cfs. Post-Opal rates were estimated at 1,500 cfs by the District. Given the estimated volume of saltwater introduced to the lake, at an inflow rate equal to the estimated post- hurricane freshwater inflow rate, Bay County's expert, Dr. Miller, estimated it would take at least two weeks to reduce salinity in the lake to drinkable levels. The inflow rate, however, is not certain. Dr. Miller estimated it is reasonable to expect that it could take anywhere from two weeks to two months for the lake to recover from the saltwater intrusion depending on the variation in the inflow rate. Nonetheless, Dr. Miller assumed that the saltwater from storm surge entering the Reservoir would mix in a uniform matter. There would be "quite a bit of mixing in a storm," tr. 485, of saltwater topping the Dam and freshwater in the Dam. But there would also be stratification due to the sinking of denser saltwater and the rising in the water column of freshwater. The above estimations assume the bridge and Dam remain intact during a major storm. The Dam and tide gates act as a solid barrier, protecting the lake from saltwater in the bay. If rainfall rises in the lake prior to a surge, the tide gates would open to release water, becoming vulnerable to damage or jamming by debris as occurred during Hurricane Opal. In the event of storm surge bringing saltwater into the Reservoir, the opening of the tide gates will assist the Reservoir in reaching chloride levels below 250 ppm provided the tide gates operate properly. Dr. Janicki, an NTC/Knight expert, used the Environmental Fluid Dynamics Code hydrodynamic model ("EFDC Model") to simulate the effects of control structures and water withdrawals on the Reservoir. Taking into consideration the factors Dr. Janicki considered relevant, he predicted that chloride levels, in the event of storm surge from a Category 3 hurricane overtopping the Dam, would only exceed 250 ppm, the drinking water standard, for approximately 3.4 days. Dr. Janicki's prediction, however, was flawed. He added too little saltwater to the lake in the event of contamination from storm surge. He assumed that saltwater would be flushed too soon from the Reservoir following contamination. He did not account for the effects of waves in his model. His model was not in accord with data for Hurricane Opal and the chloride levels near the Dam taken by Bay County after Opal. If the bridge and Dam were severely damaged, more saltwater could enter the lake. With severe damage to the Dam, the Reservoir would be exposed to normal tides. Restoration would not begin until the Dam and bridge had been fully repaired. If an event were catastrophic, the Reservoir could be offline for a lengthy period of time. The Basis for the District's Decision Bay County's reliance on the Reservoir for water for the majority of the population led the District in the mid-1980s to encourage the County to obtain a backup supply. After the District turned down several requests for withdrawals of up to 30 MGD for every day of the year, the District ultimately approved what is reflected in the Permit. The justification for the permitted withdrawal is as a backup supply in the event the Reservoir becomes unavailable and for maintenance of the system and recoupment of its cost. With regard to maintenance, the District attempted to obtain information from Bay County as to appropriate withdrawal limitations. The attempts were abandoned. Despite repeated requests by the District, Bay County did not provide the amount of water needed to be withdrawn for maintenance since it did not have "infrastructure specifics," tr. 552, needed to provide the District with a numeric limit. In contrast to the amount needed for maintenance, the District found Bay County to have demonstrated that it needs 30 MGD when the Reservoir is offline and that it is reasonable for the County to need 30 MGD up to 60 days per year. The District determined that the Bay County's application met the requirements for the issuance of a consumptive use permit found in section 373.221(1)(a)-(c). In determining whether approval of the application is in the public interest, the District did not presume that it is in the public interest on the basis of the designation in the 2008 RWSP of an inland groundwater source as an alternative water supply. The District determined that it is in the public's interest for Bay County to have a reliable and safe water supply source as a backup to the Reservoir irrespective of the statutory presumption. Nonetheless, the District maintains in this proceeding that the presumption applies. The District also applied the 18 criteria test for finding a reasonable-beneficial use found in Florida Administrative Code Rule 62-40.410(a)-(r) and determined that the application should be approved. Petitioners' Case in Opposition Washington County (Petitioner in Case No. 10-2983), NTC/Knight (Petitioner in Case No. 10-2984), and Messrs. Murfee and Lapensohn (Petitioners in Case No. 10-10100) filed individual petitions for formal administrative hearing. Although not identical, the petitions share the similarity that, in essence, each alleges that Bay County failed to establish that the proposed use of water meets the statutory and rule criteria for obtaining a permit for the consumptive use of water. For example, among the many issues listed under the heading "Disputed Issues of Material Fact and Law" in Washington County's Petition for Formal Administrative Hearing is "[w]hether Bay County has provided reasonable assurance that its proposed use of water is a reasonable-beneficial use as defined in section 373.019, Florida Statutes." See p. 5 of the Washington County petition. In like fashion, the Washington County petition and the other two petitions allege that the issues are whether Bay County provided reasonable assurance that it meets the other statutory criteria in section 373.223, and the applicable rule criteria that must be met by an applicant in order for the District to issue a permit for the consumptive use of water. The Petitioners' cases focused on five topics: 1) the limitations of the HGL Model; 2) the likelihood of impacts to wetlands and the failure of the monitoring plan to provide reasonable assurance that the District's monitoring under the plan will succeed in detecting harm to wetlands caused by the withdrawals; 3) the reasonable-beneficial nature of the proposed use of the permit, including the vulnerability of the Reservoir; 4) interference with presently existing legal users; and 5) the feasibility of alternative sources. Bay County and the District offered evidence on rebuttal to meet the Petitioners' cases. Surrebuttal was conducted by Petitioners. Modeling Groundwater models "represent what is happening in very complex physical systems." Tr. 1495. Typically, the data used by models is not sufficient to obtain a completely accurate representation. The models depend on specific data points such as information from boreholes or water level measurements that do not reveal everything that is occurring in the complex system and, therefore, are not enough to support completely accurate model predictions. As explained by Dr. Guvanasen, Bay County and the District's expert, in order to reach a representation of the entire system when the data available from boreholes and measurements is insufficient, which is typically the case, the modeler must "extrapolate a lot of information and use other knowledge of other events." Id. The "knowledge of other events" that the HGL Model used included Dr. Scott's knowledge of the karst environment in the Panhandle of Florida, the mapping of Bay and Washington County geology by the Florida Geological Society, and Dr. Upchurch's knowledge of karst topography. The HGL results of the available data and the extrapolations were placed into a mathematical model (the HGL Model) that considered the withdrawals at issue to determine the response of the system to the additional stress of the withdrawals. Mathematical models like the HGL Model lead to "non- unique solutions" in which "no model . . . is exactly 100 percent correct . . . ." Tr. 1635. Modeling results, therefore, are subject to changes as additional data is collected that demand a better representation than the model provided prior to the data's collection and analysis. HGL Modeling for this case provides examples of non- unique solutions. HGL "built a model twice . . . and got two different sets of answers." Tr. 1633. Besides the recommendation that more data be obtained after the first HGL Model results, the model was not satisfactorily calibrated and the model was recalibrated for the Revised HGL Modeling results. Mr. Davis, NTC/Knight's expert, conducted additional modeling work (the "Davis Modeling"). Using the HGL Model and additional data concerning the NTC/Knight Property, Mr. Davis found drawdowns would occur over a similar but greater area than shown in the 2011 Revised HGL Modeling Report. (Compare NTC/Knight Ex. 31 at 2 to Joint Ex. Vol. III, Tab P, Figure 51b(1).) The Davis Modeling drawdowns, moreover, ranged up to 0.8 feet, 60 percent more than the 0.5 feet determined by the second HGL Modeling results. In the area of Big Blue Lake, for example, the drawdown contours produced by the Davis Model were either 0.6 feet or 0.7 feet, 20 to 40 percent more than the 0.5 feet produced by the second HGL Modeling results. See NTC/Knight Ex. 31 at 2. Asked to rank the modeling results between the first HGL Model run, the second HGL Model run, and his own results, Mr. Davis was unable to say which was better because of the sparseness of the data. Mr. Davis opined that he could conduct another "dozen more model runs," but without additional data he would be "hard pressed" to be able to say which run was more accurate. Tr. 1633. In Mr. Davis' opinion there remain significant uncertainties that cannot be resolved without more data. Inadequate data "precludes . . . reasonable assurance as to exactly where the impacts will travel and exactly what the magnitude of those impacts will be . . . ." Tr. 1637. Ecological Impacts Bruce A. Pruitt, Ph.D., was accepted as an expert in hydrology, soil science, fluvial geomorphology, and wetland sciences. Dr. Pruitt mapped the soil types on the NTC/Knight Property using the Natural Resource Conservation Service ("NRCS") Web Soil Survey and tested soil types by hand-auguring in wetland areas. He characterized the various soil-types on the property by drainage class (relative wetness of the soil under natural conditions) and hydraulic conductivity (permeability). Dr. Pruitt ranked the vulnerability of wetlands within the zone of drawdown predicted by the HGL Model as "very high," "high," or "moderate." The categories were based on the presence of threatened and endangered species, Florida Natural Area Inventor ("FNAI") habitat designation, and the hydrology of the wetland. He assumed that if the water level in the Surficial Aquifer were to be drawn down by 0.3 feet or 0.4 feet then the water level in the seepage bogs at Botheration Creek would be drawn down by the same amount. Wetlands with a vulnerability classification of "very high" will suffer an adverse impact at a drawdown level of 0.2 feet; those at "high" at 0.3 feet and those at "moderate" at 0.5 feet in times of drought. Dr. Pruitt calculated wetland acreage by type using the Florida Cover Classification System. He assigned vulnerability rating for the wetlands within the Surficial Aquifer drawdown contours generated by the HGL Model. Based on Dr. Pruitt's calculations, a total of approximately 4,200 acres of wetlands are likely to be harmed by the predicted drawdown. A majority of these wetlands are located in Washington County. Based on Dr. Pruitt's analysis, it is likely that the NTC/Knight Property contains 1,981 acres of "very highly" vulnerable wetlands; 1,895 acres of "highly" vulnerable wetlands; and 390 acres of "moderately" vulnerable wetlands, which are likely to be harmed by the drawdown in times of drought. In reaching his opinion about the quantification of acres of wetlands likely to be harmed, Dr. Pruitt applied the Florida Uniform Mitigation Assessment Method ("UMAM"). UMAM was designed to address compensatory mitigation in dredge and fill cases. It was not designed for consumptive water use cases. In contrast and damaging to its case of reasonable assurance that natural systems will not be significantly affected, the District did not conduct an analysis to determine loss of wetland function resulting from operation under the Permit. Nor did it determine how much drawdown the affected wetlands could tolerate before they were harmed. Rather than conducting such an analysis, the District chose to rely on implementation of the LTEMP to cure any harm that might be down by drawdown to the Surficial Aquifer. The District and Bay County's wetland scientists opined that there might be a less permeable restrictive layer maintaining water levels above the Surficial Aquifer on the NTC/Knight Property. Dr. Pruitt acknowledged that the NTC/Knight Property had scattered clay layers beneath the surface. It is possible, therefore, that some of the wetland areas he identified as subject to harm have restrictive features under them which would hold water and resist dehydration. In his hand-auguring, however, Dr. Pruitt found no evidence of a less permeable layer. The auguring only went to a depth of three feet and would have to go to a depth of two meters to be definitive. Furthermore, Dr. Pruitt found no evidence of a less permeable layer from well drillings. The District and Bay County did not prove that there is, in fact, such a restrictive layer. NTC/Knight collected water-level data from shallow hand-augured wells and stage recorders at the Botheration Creek Hillside Seepage Bog. The data demonstrate that the water level in the shallow, hand-augured wells at the Botheration Creek Bog is a direct reflection of the level of the Surficial Aquifer. The Surficial Aquifer at the Botheration Creek Bog was approximately 95.5 feet NAVD, over 35 feet higher than at Big Blue Lake and the highest measured level south of Big Blue Lake. The Botheration Creek Hillside Seepage Bog is located between the 0.3 and 0.4 foot Surficial Aquifer drawdown contours predicted by the HGL Model. Based on the HGL Model, the District and Bay County's experts estimated the Surficial Aquifer drawdown at this bog would be 0.39 feet. During the approximately one year of NTC/Knight's water-level recording, a drawdown of 0.39 feet would have reduced the frequency and duration of inundation at this bog significantly. For example, an analysis of the approximately one year of data collected by NTC/Knight shows that at the intermediate water-level recorder location in the bog, one 29-day period of inundation would have been reduced to just nine days and that further down gradient in the bog, none of the five instances when the bog was inundated would have occurred. This is consistent with Dr. Pruitt's vulnerability assessment, which finds that the vulnerability of the hillside seepage bogs to drawdown is "very high," that is, these systems are likely to be harmed in times of drought at drawdown levels in the Surficial Aquifer of 0.2 feet or greater. A drawdown of 0.3-0.4 feet in the Surficial Aquifer at the hillside seepage bog along Botheration Creek increases the likelihood that the hillside seepage bogs along Botheration Creek will be lost in times of drought. The littoral shelves of Sand Hill Lakes typically occur along a low gradient above the normal low water level of the lakes. The existence of the shelf promotes seepage sheet flow along a wide expanse. The drawdown will change the flow from seepage sheet flow to concentrated stream flow within gullies. The erosion and increased sedimentation produced by the greater force of the water in the gullies will cause a loss of area needed by certain seepage dependent plants and animals. If Big Blue Lake were to be drawn down by the 0.71 feet predicted by Mr. Davis, the location of the seepage would move down 0.71 feet vertically and an estimated 24.5 feet horizontally. The result would be a reduction in the littoral shelf conducive to seepage-dependent plant communities by approximately nine acres. The impact would likely be significant since the seepage zone is in an area of "very high" vulnerability according to Dr. Pruitt. Between October 2010 and July 2011, NTC/Knight took four measurements of water level at "BCS-01," a stage recorder in Botheration Creek. The measurements showed the water level in the creek at that point to be 0.1 to 0.32 feet. NTC/Knight also sampled for taxa of macroinvertebrates in the reach of the creek. NTC/Knight identified 46 taxa, including mussels and six long-lived taxa. The presence of the long-lived taxa and mussels indicate that the reach of the creek in the vicinity of the stage recorder should be considered to be a perennial stream. Botheration Creek is high-quality water and, as shown by NTC/Knight's sampling, it contains a diverse mix of aquatic invertebrates and fish. A drop in the level of Botheration Creek of 0.2 feet predicted by the HGL Model would have caused the creek to go dry at BCA-01 during three of the four dates on which the water level was measured. Such a drop would convert the reach of the creek in the vicinity of the stage recorder from a perennial to an intermittent stream and would eliminate the reach's viability for long-lived taxa. Similarly, upstream reaches that are intermittent would become ephemeral (streams that flow only during periods of high rainfall). If the Wellfield becomes fully operational as allowed by the Permit, there will be a reduction in the Surficial Aquifer at Botheration Creek of between 0.2 and 0.3 feet. The reduction in the aquifer will reduce flow in Botheration Creek, reduce the volume downstream, including in Pine Log Creek, and reduce out-of-bank flood frequency and duration. The result will be a reduction in nutrients delivered downstream and to the floodplain to the detriment of plants and animal life that depend on them. Additionally, other reaches of the creek that have perennial flow will be converted to intermittent streams and reaches that are intermittent will become ephemeral. The result will be the elimination of plant and animal species currently living in these portions of the creek. The impact of the HGL Model predicted drawdown to steepheads depends on the individual steephead and the drawdown contour at its location and the amount of rainfall. Four steepheads on the NTC/Knight Property could suffer impacts similar to the impact at Russ Steephead to which Dr. Pruitt assigned a high probability of impact. Russ Steephead is located on the NTC/Knight Property above Russ Pond. NTC/Knight installed Surficial Aquifer wells at Russ Steephead between the HGL Model's predicted 0.5 and 0.6 foot Surficial Aquifer drawdown contours. NTC/Knight also installed a stage recorder just downstream from the steephead. During drought, NTC/Knight observed a loss of flow from the sidewall seepage areas and in the Russ Steephead Stream. If the Surficial Aquifer at Russ Pond were to be drawn down by 0.5-0.6 feet, the sidewalls of the Russ Steephead Stream and the stream itself would lose flow in times of drought. The loss of flow would lead to oxidation and loss of organic materials in the stream channel and flood plain, resulting in soil subsidence. If the water level at the terminus of the Russ Steephead Stream were drawn down, headward down cutting in the stream channel would be induced. In such a case, in the words of Dr. Pruitt, "there is a high probability that if drawdown occurs and . . . over a long period of time," the process will make the steephead "look more like a gully . . . ." Tr. 2120. The drawdown will also reduce the frequency and duration of inundation of the sphagnum bogs in the four steepheads likely to be affected by the drawdown. The bogs and the associated animals that depend upon them would be lost. Dr. Means identified a number of temporary ponds within HGL's predicted drawdown of the Surficial Aquifer. Nine were between the 0.3 and 0.6 foot drawdown contour, and two were between the 0.6 and 0.7 foot drawdown contours. These ponds and plant and animal communities dependent upon them would likely be harmed by the drawdowns. Mr. Cantrell offered testimony to rebut the Petitioners' case on wetland impacts. His testimony was based on an evaluation of aerial photography, site visits to the Wellfield, and a one-day trip to the NTC/Knight Property. It is Mr. Cantrell's opinion that if the NTC/Knight Property were to drain, it would be because of a surface water drainage system, such as ditching, not because of drawdown in the Surficial Aquifer caused by operation of the Wellfield. Mr. Cantrell's opinion is that because the Area has been subjected to a wide range of fluctuations in water levels and the wetland systems have survived, operation of the Wellfield will not have significant impacts. Mr. Cantrell's opinion, however, overlooks the effect of constant drawdown during times of severe drought. That wetlands have survived severe drought in the past does not mean they will survive severe drought conditions exacerbated by drawdown caused by operation of the Wellfield. Monitoring Special condition 19 of the Permit requires Bay County to implement the LTEMP after the Permit is issued. The LTEMP requires Bay County to establish a monitoring network, but does not provide the location of any particular monitoring site. Sites identified in the LTEMP are recommended, but the ability to use a particular site is dependent on field verification of suitability and authorization by the landowner. Over half the area designated in the LTEMP from the HGL Model's projected 0.5 foot drawdown in the Surficial Aquifer is located on the NTC/Knight Property. It will be necessary, therefore, to include sites on the NTC/Knight Property in the ultimate environmental monitoring network. The LTEMP's recommended sites do not include monitoring of some of the most susceptible wetland systems: temporary ponds, the Botheration Creek hillside seepage bogs, and the perennial headwaters of Botheration Creek. Without this monitoring, the LTEMP will be unable to detect whether these systems are harmed by withdrawals. The Permit and LTEMP require no more than one-year of baseline data to be collected prior to initiation of water withdrawals. The proposed monitoring time is inadequate to create a sufficient record for use in determining whether a reduction in water levels is attributable to water withdrawals or natural phenomena, such as drought. Baseline monitoring should be conducted for a sufficient duration to ensure that a full range of wet and dry years is captured. The LTEMP describes the types of data that are to be collected. A missing component is sampling for frogs, salamanders, and other amphibians that are sensitive to changes in hydrologic regimes and which depend upon infrequent periods of inundation in order to breed. This type of faunal sampling is particularly important in the temporary ponds and seepage environments. Without sampling for the presence of these species, the LTEMP will be unable to determine whether these populations have been harmed by withdrawals. The LTEMP includes a number of "triggers," that if tripped, require the preparation of an auxiliary report. A number of these triggers make reference to changes in water levels at the level of "significant deviation," an undefined term. More importantly, the LTEMP fails to require any statistical analysis. Without it, the LTEMP will be inadequate to establish whether a reduction in water levels is caused by water withdrawals or another cause. Similarly, other triggers lack sufficient detail to determine when they are tripped, such as those that refer to downward movement of plants. Finally, even if one of these triggers is tripped and an auxiliary report is prepared, nothing in the Permit or LTEMP sets forth the circumstances under which withdrawals would need to be curtailed and by what amount. The purpose of the LTEMP is to determine whether withdrawals are causing harm to the wetlands within the vicinity of the Wellfield. The LTEMP fails to provide reasonable assurance that it will succeed in achieving its purpose. Reasonable-Beneficial Use Use if the Reservoir is Unavailable In the event of Reservoir unavailability, Bay County is likely to need much less than 30 MGD. The need is likely to fall between 7.42 MGD and 9.71 MGD for the current population. In 2013, the need is likely to fall between 9.40 MGD and 12.29 MGD. See NTC/Knight Ex. 5, p. 4 of 4. The Permit, however, does not limit Bay County to emergency or backup use. While Bay County might voluntarily limit withdrawals to emergency use or backup supply, it has unfettered discretion to determine what constitutes an emergency or the necessity for a backup supply. The Permit is also not restricted to essential uses. Authorization of 30 MGD provides more than Bay County's current average daily demand for potable water. If the Permit restricted the use to essential uses, the authorization would be far less than 30 MDG. The District commissioned King Engineering to assist in development of a "Coastal Water Systems Interconnect Project" (the "Interconnect Project"). On average, the utilities subject to the Interconnect Project estimated that 42 percent of the average daily demand is dedicated to essential uses with the remaining 58 percent going to non-essential uses. Consistent with the estimate, the Project set a target of 50 percent of average daily demand to be allowed for use in an emergency. None of the information from the Interconnect Project, however, was used by the District in setting the limits of withdrawal in the Permit. b. Daily Use Bay County claims the 5 MGD annual average allocation under the Permit is needed for several reasons, principally the maintenance of pumps. Bay County's justification for 5 MGD is found in testimony from Mr. Lackemacher and a document he authored entitled, "Confidential Draft for Internal Use Only 5 MGD Pumping Rate" (the "Lackemacher Confidential Draft"), admitted as Bay County Ex. 24. Mr. Lackemacher's testimony follows: A. The fact is that there are no absolute knowns when we're talking about what needs to be. Q. What do you mean? A. Well, here we have a document [Bay County Ex. 24] where I talk about rationalization for 5 million gallons a day, why we would need it, mechanical reasons, financial reasons, regulatory reasons. I always felt that it was very difficult to justify a number. I don't know. We haven't designed the system. We haven't got all of the wells in. We don't know what their specific yields are. There's unknowns here. So do we need 2 million gallons a day or 5 million gallons a day? I don't know. I don't know that. But here is the rationalization for 5 million if that's in fact what we need. We may very well find out that we don't need 5 million gallons a day. Q. Is that because you don't know the precise locations of the well and how they're going to be piped and distributed? A. That's absolutely true. Q. Well, did you in this report, Exhibit 24, did you make some reasonable assumptions? A. I based it on some of the values as you discussed or as I pointed out earlier from Hatch Mott MacDonald's preliminary design. * * * Q. And do you feel confident that your analysis supported that in the area of 5 million gallons a day is what would be needed to operate the wellfield? A. Yes. And that's why the paper was generated that [is] a justification for 5 million gallons a day, here's what we think we would need. Tr. 209-10. The Lackemacher Confidential Draft is a one-page, written justification for the 5 MGD. Based on the Hatch Mott McDonald Report, see tr. 210, it considers regulatory, mechanical and financial factors. It is not supported, however, by engineering analysis. Any financial analysis found in the Hatch Mott McDonald Report, moreover, is far from complete. The factors taken into consideration are recited in the most general of terms. For example, of four such factors, the document lists the second as: "All water pumps are designed to run - turning pumps on and off is not the best situation for the overall electrical efficiency or the mechanicals of a pump." Bay County Ex. 24. Consistent with Mr. Lackemacher's testimony, the document concludes that the amount of water needed to run each well is unknown. The financial justification is based on costs shown in the Hatch Mott MacDonald Report for construction and operation of 22 wells, ten more wells than are contained in the Wellfield and without any analysis of revenue to recoup the costs. The financial justification is a bare conclusion on the part of Mr. Lackemacher: We cannot afford to operate a well field at a financial loss, based on this fact alone we would have to pump a minimum of 4.49 MGD. Combined with the fact that we don't know what volumes of water have to be turned over to ensure water quality 5 MGD seems quite reasonable. Bay County Ex. 24. The Lackemacher Confidential Draft is dated May 17, 2011. It was not part of Bay County's Application nor was it submitted to the District prior to the decision to issue the Permit. Although the District attempted to obtain information from Bay County about what was needed for maintenance, Bay County did not provide it. As Mr. Gowans testified, "[t]hen I finally told staff, [s]top asking, we're not going to get the numbers . . . ." Tr. 552. The District performed no analysis to determine the minimum amount of water needed to maintain the Wellfield. In contrast, NTC/Knight and Washington County presented the testimony of Phillip Waller, an engineer accepted as an expert in the design and construction of potable water systems, including groundwater wells, surface water, and transmission and distribution of drinking water. Mr. Waller testified that if the wells were connected to a central treatment system, there would not be the need to flush the pipeline for disinfection prior to use of the well in an emergency. Only 2.4 million gallons per year or 6,500 gallons per day would be needed to maintain optimum operating conditions, an amount far less than 5 MGD. Mr. Waller's experience when groundwater is used as a backup, moreover, is that they are operated periodically. While prudent to periodically operate backup wells especially in advance of hurricane season, vertical pumps in wells, unlike horizontal pumps, do not have a need for frequent operation because of even force distribution. They certainly do not need to be continuously operated. "In fact, wells routinely are idle for months at a time." Tr. 1123. Interference with Existing Legal Users In its Revised Staff Report dated July 18, 2011, the District wrote: Nearby Users: Under the most intensive pumping activity, drawdown in the Upper Floridan Aquifer is predicted to be approximately 15 feet in the vicinity of the nearest private wells. Water level declines of this magnitude may cause water levels to fall below the level of the pump intake in some privately-owned wells. Joint Ex. Vol. IV, Tab Q, p. 4. The District's high estimate of the number of wells used by existing legal users that might suffer impacts approaches 900. The exact number or whether any existing legal users would be likely to suffer impacts was not proven. Alternatives Groundwater wells, if installed and attached to the fitting in the existing transmission line that delivers water from the Pump Station to the Water Treatment Plant, could serve as backup to the Reservoir. Bay County did not conduct a study of whether groundwater in the area of the transmission line was adequate to serve as an alternative. Mr. Waller, on behalf of NTC/Knight and Washington County, on the other hand, testified that the transmission line could support ten wells with a capacity of 10 MGD and could be constructed at a cost of $12 million, far less than the Wellfield. The area of the transmission line is in an area identified by the District as acceptable for the creation of potable water wells. The area does not present a significant risk of saltwater intrusion if not used continuously. The water meets the drinking water requirements for the Department of Environmental Protection and the Department of Health. The existing transmission line alternative is located near the existing raw water supply line which minimizes the need for additional piping. There is sufficient length along the existing raw water pipeline to accommodate ten wells. The existing transmission line alternative, therefore, has significant potential to succeed as a water supply backup to the Reservoir. NTC/Knight and Washington County, through Mr. Waller, also proposed another alternative: an intake at Bayou George. Near Highway 231, the main pipeline from the intake would run along public right-of-way. North of the existing intake in Williams Bayou and three miles north of the Dam, the proposed intake would be less susceptible to contamination from storm surge. Neither Bay County nor the District presented a thorough analysis of any alternative to the Wellfield. In contrast, NTC/Knight and Washington County presented the testimony of Mr. Waller that there are two alternatives that could be constructed at much less cost than the Wellfield and that have significant potential of providing backup supply.
Recommendation Based upon the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the Northwest Florida Water Management District enter a final order that denies the application of Bay County for the individual water use permit at issue in this proceeding. DONE AND ENTERED this 26th day of July, 2012, in Tallahassee, Leon County, Florida. S DAVID M. MALONEY Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 26th day of July, 2012.
The Issue The issue is whether reasonable assurance has been provided by Sarasota County (County) for the issuance of Environmental Resource Permit (ERP) No. 44040881.000 authorizing the proposed alteration of a drainage ditch in the City of Sarasota (City), and whether Petitioner, SRQUS, LLC, was entitled to receive notice of the application pursuant to Florida Administrative Code Rule 40D-1.603(9)(a) and (b).
Findings Of Fact Parties Petitioner is a Florida limited liability corporation established in 2010 whose only members are Erika and Achim Ginsberg-Klemmt. In 2010, Petitioner purchased parcel 2009-16- 0015 in a tax deed sale. The parcel consists primarily of the submerged lands within the marina basin adjacent to the project area. Petitioner contends that the tax deed accords it ownership of the western most 130 feet of the existing ditch and that the County is not authorized to do work on that property. The City and County dispute this claim and it is now being litigated in circuit court. The City claims ownership or control of all of the project area to be addressed under the permit. The City authorized the County to apply for and construct the improvements authorized by the permit pursuant to an interlocal agreement with the County for consolidation of stormwater management responsibilities. The District is the agency charged with the responsibility of controlling water resources within its geographic boundaries and to administer and enforce chapter 373 and the rules promulgated in rule division 40D. The County submitted the application pursuant to an interlocal agreement with the City and will construct, operate, and maintain the project if the permit is issued. The Project U.S. Highway 41, also known as Tamiami Trail, travels through downtown Sarasota. During rainy months, between Fruitville Road and Second Street, U.S. Highway 41 experiences frequent roadway flooding. At the area where U.S. Highway 41 floods and between the Quay development to the north and the Ritz-Carlton Hotel to the south, is a stormwater ditch that drains west into a marina basin or bayou adjoining Sarasota Bay. However, it does not directly discharge into Sarasota Bay. The ditch is an upland cut drainage ditch approximately 650 feet in length and has been in existence for decades. The ditch is covered under a National Pollutant Discharge Elimination System (NPDES) Municipal Separate Stormwater Sewer System (MS4) permit issued to the County for the surrounding communities. Contaminants in the stormwater system are addressed under this permit. The ditch provides the only outfall for an approximately 46-acre heavily urbanized drainage basin for which stormwater is collected through the stormwater system. The stormwater is discharged into the drainage ditch through a double concrete box culvert under U.S. Highway 41 and is ultimately conveyed to a marina basin adjoining Sarasota Bay. The ditch is located in what was originally platted as the right-of-way for Eighth Street (now known as Second Street) on the Central Broadway subdivision plat within the City. Pursuant to an earlier exemption determination by the District, in 2004 the County conducted maintenance dredging on the easterly portion of the drainage ditch in an effort to remove the sediments and vegetation that had built up in the ditch over the years and reduced its flow. Since that time, the ditch has again filled in as a result of the significant amounts of sedimentation from stormwater flows entering and settling in the ditch and significant amounts of vegetation. Also, flooding on U.S. Highway 41 has become more frequent. In its current condition, the ditch is approximately eight to 12 feet wide and eight to 12 inches deep, is poorly drained due to the sedimentation and heavily overgrown mangroves and nuisance vegetation, and is tidally influenced. Accumulated sediments in the ditch are approximately four feet thick at the eastern end and become thinner at the western end of the ditch. In August 2009, staff from the City, County, District, and Florida Department of Transportation met at the site of the ditch to conduct a pre-application meeting and discuss possible ways of addressing flooding problems at this location. Aside from the ditch improvements being proposed by the County, the only other remedy is to pipe the ditch, which is cost-prohibitive and would defeat the County's goal of keeping as much desirable vegetation in place as possible. To address flooding and maintenance concerns, on September 8, 2011, the County submitted an ERP application to the District to seek authorization to dredge and undertake ditch improvements. The application identifies the ditch as being within City right-of-way. Included with the application was a letter from the City authorizing the County to apply for the ERP on behalf of the City pursuant to their interlocal stormwater agreement. At the time the application was filed, the County Property Appraiser's Office Geographic Information Systems tax parcel map showed the ditch and dredge area as being within the City right-of-way. The proposed project consists of reconstruction of the ditch with a defined channel to be lined with rip rap and geotextile fabric and the addition of two sediment sump boxes. Some of the mangroves and nuisance vegetation will be removed as necessary to construct the ditch improvements. Mangroves will be preserved where not impacted by construction. The Property Dispute Petitioner claims ownership of the western 130 feet of the right-of-way in which the ditch is located. As noted above, at the time the permit application was submitted, official property records showed the existing ditch as located within City right-of-way. Therefore, the County and District had no reason to doubt City ownership or control of the ditch area. A recently filed circuit court action seeks to determine ownership of a portion of the right-of-way in which the ditch is located. The circuit court has exclusive jurisdiction over all actions involving the titles and boundaries or right of possession of real property. District rules permit applicants to demonstrate sufficient ownership or legal control of the proposed project area in order to conduct the activities to be permitted. An applicant with eminent domain authority that does not have ownership or control for all property necessary for the proposed project may rely on its eminent domain authority to demonstrate sufficient ownership or legal control of the property necessary to construct the project. The permit will be conditioned to prohibit construction until all ownership or legal control of the property necessary to construct the project is acquired by the permittee. See Fla. Admin. Code R. 40D-4.301(1)(j); BOR § 2.0. The proposed permit contains Specific Condition No. 8 which enforces this requirement. Reasonable assurance of sufficient ownership or legal control of the project area is provided by virtue of the City's and County's eminent domain authority and the fact that the proposed permit prohibits construction until the permittee acquires all necessary ownership or other legal control of the property necessary to construct the project. Notice Requirements Petitioner contends the permit should be denied because it did not receive notice of the application pursuant to rule 40D-1.603(9). That rule provides that when the applicant is an entity with the power of eminent domain that does not have current ownership or control of the entire project area as described in the application, the applicant shall provide the property owner(s) identified in the application with so-called eminent domain noticing, which consists of (a) written notice of District receipt of the application, and (b) written notice of agency action on the application. Persons entitled to eminent domain noticing are owners of property located within the proposed project area as identified in the county property appraiser's records within 30 days prior to the filing of the application. The purpose of the District's eminent domain noticing provision is to provide notice and an opportunity to be heard to owners of property subject to being condemned or otherwise acquired by the applicant for part of the project area. As originally submitted, the application proposed some activities extending approximately ten feet into the marina basin and beyond the claimed City right-of-way. The permit application did not indicate City ownership or control of submerged lands within the marina basin. Consequently, in its request for additional information (RAI), the District advised that pursuant to rule 40D-1.603(9)(a) and (b), eminent domain notices to affected landowners would be required for any proposed easements over offsite property. As part of the application process, a seagrass study was prepared which showed seagrasses and oyster beds growing in the marina basin just beyond the end of the ditch, where some construction activity was proposed. Because seagrasses were observed growing at the end of the ditch, the County responded to the RAI by scaling back the project to confine activities to the City's right-of-way. With the change in project area, offsite easements were no longer necessary for the project. Thus, the project no longer required eminent domain noticing pursuant to rule 40D-1.603(9). The County and District acknowledge that Petitioner did not receive eminent domain notices. Although not provided notice, Petitioner nevertheless became aware of the permit application during the course of its own application process with the Department of Environmental Protection (DEP) for an ERP to construct a 4,760-square foot, ten-slip docking facility on its adjacent submerged lands in the marina basin. The lack of notice has not prevented Petitioner from challenging the project or has otherwise prejudiced it. Having received actual notice of the permit, Petitioner filed a timely objection and request for hearing in this matter. Petitioner contends that while it does not oppose the ditch dredging, it would have wanted an opportunity to suggest a re-design of the ditch to include a dingy dock and kayak launching facility. Although it has known of the project since at least May 21, 2012, when it filed its first petition, and probably several months earlier, Petitioner has not provided the County or District with any alternative designs to maximize the potential for recreational use of the drainage canal. There is no requirement for ERP applicants to provide alternative designs to maximize potential public recreational uses. Requiring the County to do so would impose requirements that go beyond the conditions for permit issuance. ERP Permitting Criteria To obtain an ERP, a permit applicant must provide reasonable assurance that the proposed activities will not cause adverse impacts to water quality, water quantity, and other environmental resources. For activities proposed in, on, or over wetlands and other surface waters, reasonable assurance must also be provided that such activities are not contrary to the public interest and do not cause unacceptable cumulative impacts upon wetlands and other surface waters. The conditions for issuance of an ERP are set forth in rules 40D-4.301 and 40D-4.302. The standards and criteria in the BOR are used to determine whether an applicant has met the conditions for issuance in those two rules. The parties have stipulated that the project either complies with the following conditions for issuance or that they are not applicable: 40D-4.301(1)(b), (c), (g), (h), (j), and (k) and 40D-4.302(1)(a)6. Also, rule 40D-4.302(1)(c) and (d), which concerns projects located in, adjacent to, or in close proximity to certain shellfish harvesting waters or which involve vertical seawalls, is not applicable to this matter. Based on the parties' Stipulation, at issue is whether reasonable assurance has been provided that the proposed activities will not cause adverse water quantity impacts to receiving waters and adjacent lands (40D-4.301(1)(a)); will not adversely impact the value of functions provided to fish and wildlife by wetlands and other surface waters (40D-4.301(1)(d)); will not adversely affect the quality of receiving waters such that applicable state water quality standards will be violated (40D-4.301(1)(e)); and will not cause adverse secondary impacts to the water resources (40D-4.301(1)(f)). Petitioner also contends that the County has failed to give reasonable assurance that the project is not contrary to the public interest and that it will not cause unacceptable cumulative impacts, as required by rule 40D-4.302(1)(a) and (b). Water Quantity Impacts Rule 40D-4.301(1)(a) requires reasonable assurance be provided that the project will not cause adverse water quantity impacts to receiving waters and adjacent lands. Existing and post-construction flows were modeled by the County using the accepted Inter-Connected Pond Routing model. Drainage calculations demonstrate that for the 25-year storm, the flood stage will be reduced by 1.94 feet, and for the 100-year storm event, by 1.75 feet, which will provide flood relief. Modeling results demonstrate a reduction in flood stages not just for U.S. Highway 41 but for other adjoining properties. The evidence establishes that while the project is not designed to eliminate all potential flooding, flooding during normal events will be reduced. Specifically, no adverse water quantity impacts were demonstrated with respect to Petitioner's adjacent submerged lands. Improvements proposed to the ditch will increase its storage capacity and allow water to flow more efficiently. By increasing the storage and hydraulic efficiency of the ditch without generating any additional runoff volume, the proposed activities will not cause adverse water quantity impacts and will have no adverse water quantity impacts on the receiving waters. Reasonable assurance has been demonstrated that the project will not cause adverse water quantity impacts to receiving waters or adjacent lands and will not cause adverse flooding to on-site or off-site property, including adjacent submerged lands owned by Petitioner. Impact on Value of Functions Rule 40D-4.301(1)(d) requires that reasonable assurance be provided that project activities "will not adversely impact the value of functions provided to fish and wildlife, and listed species including aquatic and wetland dependent species, by wetlands, other surface waters and other water related resources of the District." The existing ditch provides limited ecological functions for fish and wildlife, as it contains significant levels of exotics and nuisance vegetation that provide little in the way of habitat. The removal of the nuisance vegetation, improved water circulation, and decreased sediments will be an improvement. The proposed ditch reconstruction and replanting with other vegetation will provide a more suitable habitat for younger life stages of fish such as sea trout, red fish, and hog chokers, which are species typically found in tidally influenced drainage systems. Overall, the proposed project will result in an improved habitat available for fish and wildlife. The project will retain as many of the existing mangroves as possible, thereby retaining the ecology of the mangrove wetlands. Reasonable assurance has been provided that the project will not adversely impact the value of functions being provided to fish and wildlife and will actually improve the ecological functions provided by the ditch. Quality of Receiving Waters Rule 40D-4.301(1)(e) requires that reasonable assurance be provided that the proposed ditch alterations will not adversely affect the quality of receiving waters such that water quality standards will be violated. The parties have stipulated that the project will not violate water quality standards set forth in rule chapters 62-522 and 62-550. Petitioner contends, however, that reasonable assurance has not been provided concerning possible impacts relating to surface water quality standards in rule chapter 62-302, the anti- degradation provisions of rule chapter 62-4, or the groundwater permitting and monitoring requirements of rule chapter 62-522. No evidence was presented by Petitioner that the activities will adversely affect the groundwater protection provisions of rule chapter 62-522. The proposed ditch alterations do not involve activities relating to these state water quality standards. Under BOR section 3.2.4, reasonable assurance must be provided for the short term and the long term that water quality standards are not violated. As to potential construction or short-term impacts, the proposed construction work involves the removal of sediments accumulated in the ditch, reconstruction of the ditch to be wider and deeper and within a more defined course, the addition of rip rap and geotextile fabric on the ditch bottom, and replanting of the ditch banks with salt- tolerant grasses and other vegetation to provide soil stabilization and erosion control. The proposed permit addresses the potential for turbidity during construction activities to cause short-term water quality violations by authorizing a temporary mixing zone and by requiring the installation of turbidity barriers and ongoing turbidity monitoring during construction. To further minimize the potential for any water quality violation during construction activities, construction methods will include the use of cofferdams or similar techniques to provide a barrier between the open water of the marina basin and the work being constructed within the ditch, which will be undertaken in segments starting at the eastern outfall at U.S. Highway 41. These provisions adequately address the potential for any short- term water quality impacts and are consistent with BOR provisions relating to short-term water quality. As to possible long-term water quality impacts, the evidence establishes that the proposed activities will not add any additional pollutants or new pollutant source to the receiving waters and will not cause or contribute to any violation of water quality standards. To the contrary, by removing existing stormwater sediments, which are known to contain pollutants, controlling sedimentation through collection of sediments in sediment sumps, and armoring the ditch channel to prevent erosion, water quality is expected to improve. The proposed sediment sumps to be added as a best management practice are appropriately sized to handle the approximately 5,600 pounds of sediments that accumulate annually in the ditch, as determined by annual pollutant load calculations provided by the County. The sumps will be located most efficiently at the outfall where the ditch begins. Preventing sediments from entering the receiving waters is one of the best things that can be done to improve water quality in nearby Sarasota Bay. Improvements in water quality are also expected to occur as a result of the addition of rip rap that will dissipate the flow energy, thereby allowing any remaining sediments to settle down, and the geotextile fabric that will keep soil in place and not allow it to float up. The sodding and replanting of the ditch embankments will also prevent side erosion from occurring, which erosion could add sediments in the ditch. Once constructed, the ditch will be regularly maintained by the County, with sediments to be cleaned out of the sump on a quarterly schedule. Any sediments settling on the rip rap and on plant vegetation would be cleaned out as needed, as determined by regular inspections. Petitioner contends that reasonable assurance has not been provided to show that water quality standards in rule chapter 62-302, and the anti-degradation provisions of rule chapter 62-4, will not be violated by the proposed activities. Its expert opined that the impact of the proposed activity on state water quality standards cannot be determined because no sampling of the receiving water was conducted, the permit does not require compliance monitoring, and the existing ditch sediments were not sufficiently analyzed. The evidence establishes that it can be reasonably presumed, without compliance monitoring or sampling, that the water flowing from the 46-acre urbanized watershed served by the ditch contains sediments and other pollutants typically associated with urban runoff. Most of the expected pollutants are contained within, or settle into the sediments that are deposited into, the ditch. By removing sediments through the use of adequately sized sediment sumps, slowing the water down to allow suspended solids to settle out within the ditch, adding geotextile fabric and rip rap covering the ditch bottom, establishing vegetation on the ditch sidebanks to prevent erosion, and implementing periodic maintenance through vacuum removal of collected sediments, the proposed activities will remove pollutants from the water flowing into the ditch and discharging into the marina basin and ultimately entering Sarasota Bay. Thus, it is reasonable to expect without sampling or monitoring that the proposed activities will improve water quality. In addition to identifying the positive benefits of the proposed activities, the evidence established that the proposed activities will not add a pollutant source to the receiving waters. This was not credibly disputed by Petitioner. Because the project does not generate pollutants, the proposed activities will not cause or contribute to a violation of state water quality standards. There is no reason to require pre-construction or baseline sampling to compare with post- construction sampling, as no pollutants will be generated. The removal of sediments and ongoing ditch maintenance will result in an improvement in water quality. Therefore, it can be reasonably assured without requiring sampling or monitoring that the activities will not result in any violations of state water quality standards. Secondary Impacts Rule 40D-4.301(1)(f) and BOR section 3.2.7 require that an applicant provide reasonable assurance that a regulated activity will not cause adverse secondary impacts to the water resource. As originally proposed, the project included activities extending beyond the end of the ditch and into the marina basin, where seagrasses and oyster beds are present. By avoiding impacts to these resources, the project also avoids any secondary impacts to manatees that may frequent Sarasota Bay. Turbidity control measures to be used during construction will also avoid secondary impacts to these resources. Petitioner provided no evidence that secondary impacts would occur as a result of the project. Reasonable assurance has been provided that the proposed activities will not result in any secondary impacts to the water resources. Public Interest Test Rule 40D-4.302(1)(a) requires an applicant to provide reasonable assurance that activities to be located in, on, or over wetlands and other surface waters will not be contrary to the public interest, as determined by balancing certain criteria, or if such activity significantly degrades or is within an Outstanding Florida Water (OFW), that the activity will be clearly in the public interest. The proposed activities are not located within Sarasota Bay, a designated OFW. Petitioner provided no evidence that the proposed activities would significantly degrade that body of water. Therefore, the County need only demonstrate that the proposed activities are not contrary to the public interest. The parties have stipulated that rule 40D- 4.302(1)(a)6., which governs historical and archaeological resources, is not applicable to this matter. The remaining criteria at issue are whether the activity will adversely affect the public health, safety, or welfare or the property of others; whether the activity will adversely affect the conservation of fish and wildlife, including endangered or threatened species, or their habitats; whether the activity will adversely affect navigation or the flow of water or cause harmful erosion or shoaling; whether the activity will adversely affect the fishing or recreational values of marine productivity in the vicinity of the activity; whether the activity will be of a temporary or permanent nature; and the current condition and relative value of functions being performed by areas affected by the proposed activity. The evidence establishes that the project will reduce flooding during normal stages and remove sediments. By reducing the potential for roadway flooding and improving water quality through sediment reduction, the project will have a beneficial impact on public health, safety, and welfare, and will not adversely affect the property of others. Efforts were made to reduce or eliminate impacts to wetlands and other surface waters in the design of the project. Proposed activities will involve the removal of some of the existing mangroves. Based upon an analysis conducted pursuant to the Uniform Mitigation Assessment Manual, the unavoidable impacts to wetlands and other surface waters will result in a functional loss score of 0.08. Unavoidable wetland and other surface water impacts anticipated from the project will be appropriately mitigated through the use of a 0.08 credit from the Curry Creek Regional Offsite Mitigation Area (ROMA). The evidence demonstrates that the project will not adversely affect the value of functions provided by wetlands and other surface waters to conservation of fish and wildlife, including any endangered or threatened species, or their habitats and will actually result in an improvement in wetland and other surface water functions and habitat. The evidence establishes that the proposed activities will not adversely impact navigation or the flow of water and will not cause erosion or shoaling. The ditch reconstruction will prevent the possibility of shoaling at the downstream end of the ditch adjoining Petitioner's submerged lands by increasing the width of the ditch, slowing the water down, removing sedimentation along the ditch bottom, and reducing erosion through the planting of salt-tolerant sod and other vegetation along the ditch side banks. Petitioner presented no contrary evidence. No adverse impacts are expected to occur with respect to fishing or recreational values or marine productivity in the vicinity of the proposed activity. By removing sediments, the project will provide an improvement to fishing and recreational activities in the marina basin and Sarasota Bay. Petitioner raised concerns regarding the amount of floatable material that will be discharged from the ditch as a result of removal of mangroves. As provided in the permit plans, significant portions of the mangroves will remain undisturbed. Under current conditions, the ditch and mangroves do not prevent or trap all trash and floatables entering the ditch. On-site observations of existing conditions confirmed there is not a large amount of trash and floatables currently being retained by existing mangroves. Any temporarily retained floatables within the ditch area ultimately float out to Sarasota Bay with the tide. The evidence establishes that even with the removal of some mangroves, the project is not expected to result in an easier flow or increased amount of floatables entering the marina basin. Finally, because the project activities do not add floatable materials to the ditch, requiring the County to implement design changes to remove floatables would exceed what is necessary to meet the conditions for permit issuance. Petitioner also raised concerns regarding the levels of fecal coliform and the possibility of illicit connections to the stormwater collection outfalls to the ditch. The ditch is part of a MS4 permit that is regulated pursuant to NPDES Permit No. FLS000004 issued to the County. The NPDES permit governs stormwater discharges within the unincorporated portions of the County, the municipalities within the County, and that part of Longboat Key that is in Manatee County. The primary function of the MS4 permit is to address issues of water quality as they relate to stormwater discharges. The MS4 permit requirements would be the appropriate regulatory framework to address elevated fecal coliform, illicit connections, or other water quality concerns in the stormwater emanating from the drainage basin served by the ditch, and not the ERP regulatory program. Having weighed and balanced the six applicable criteria, and based upon the evidence presented, the County has provided reasonable assurance that the proposed activities will not be contrary to the public interest. Cumulative Impacts Rule 40D-4.302(1)(b) requires an applicant to demonstrate that the proposed activities will not cause unacceptable cumulative impacts on wetlands and other surface waters, as further described in BOR sections 3.2.8 through 3.2.8.2. BOR section 3.2.8 provides that if an applicant proposes to mitigate any adverse impacts within the same drainage basin as the impacts, and if the mitigation fully offsets those impacts, then the regulated activity is considered to have no unacceptable cumulative impacts upon wetlands and other surface waters. Mitigation for unavoidable wetland impacts upon wetlands will be provided through the use of the 0.08 credit from the Curry Creek ROMA. The evidence establishes that the proposed mitigation fully offsets the impacts and is within the same drainage basin as the proposed impacts. No adverse cumulative impacts will occur with the project. Petitioner presented no contrary evidence of adverse cumulative impacts. Impaired Receiving Waters Petitioner contends that the project does not comply with the requirements of rule 40D-4.301(2) and related BOR section 3.2.4.5, which are applicable when existing ambient water quality does not meet state water quality standards. Rule 40D-4.301(2) provides that if an applicant is unable to meet water quality standards because existing ambient water quality does not meet standards, the applicant shall meet the requirements of BOR section 3.2.4.5 and related sections cited in that provision. Together, these provisions require that where existing ambient water quality does not meet standards, the applicant must demonstrate that for the parameters that do not meet water quality standards, the proposed activity will not contribute to the existing violation. If it does contribute to the existing violation, mitigation measures will be required that result in a net improvement of the water quality in the receiving waters for the parameter that does not meet standards. The marina basin that is the receiving waters for the ditch has been identified by DEP as impaired due to levels of mercury in fish tissue. The evidence demonstrates that the project will not contribute to this water quality violation. Although not required to implement mitigation measures that will cause a net improvement of the levels of mercury in fish tissue, the evidence establishes that to the extent existing sediments contain mercury deposits, removal of the sediments reduce a source of mercury that can be ingested by fish in the receiving waters. Water Quality Certification Petitioner contends that Specific Condition No. 9 of the proposed permit, which expressly waives certification of compliance with state water quality standards, is contrary to Section 401 of the Clean Water Act, 33 U.S.C. § 1341, and inconsistent with the legislative declaration of policy set forth in section 373.016(3)(f) and (j). As explained by unrefuted testimony of the District, the water quality certification provisions of Section 401 allow states an opportunity to address the water resource impacts of federally issued permits and licenses. Under Section 401, a federal agency cannot issue a permit or license for an activity that may result in a discharge to waters of the United States unless the affected state has granted or waived Section 401 certification. A state may grant, deny, or waive certification. Granting certification allows the federal permit or license to be issued. Denying certification prohibits the federal permit or license from being issued. Waiving certification allows the permit or license to be issued without state comment. Pursuant to rule 40D-4.101(4), an application for an ERP shall also constitute an application for certification of compliance with state water quality standards where necessary pursuant to Section 401. Issuance of the permit constitutes certification of compliance with water quality standards unless the permit is issued pursuant to the net improvement provision of section 373.414(1), or the permit specifically states otherwise. By letter dated February 2, 1998, to the United States Environmental Protection Agency, DEP has delegated to the state's five water management districts the authority to issue, deny, or waive water quality certifications under Section 401. DEP has also established categories of activities for which water quality certification will be considered waived. Under the DEP delegation, water management districts may waive water quality certification for four situations, one of which is when the permit or authorization expressly so provides. This is still current DEP direction. The types of permitting decisions which constitute the granting of water quality certification and the types of activities for which water quality certification could be considered waived are also addressed in the current Operating Agreement between the United States Army Corps of Engineers (USACE), DEP, and the five water management districts. According to both DEP guidance and the water management district agreement with the USACE, water quality certification will be considered waived when the permit or authorization expressly so states. The District most often expressly waives water quality certification for permits issued pursuant to the net improvement provisions and for projects that discharge into impaired waters. Proposed Specific Condition No. 9 of the permit expressly waives water quality certification due to the fact that the receiving waters are listed by DEP as impaired. Conditioning of the permit in this manner is consistent with DEP guidance and District practice under these circumstances. Although water quality certification for federal permitting review purposes is waived, the project must still comply with water quality requirements by demonstrating that the proposed activities do not cause or contribute to a violation of state water quality standards or if the activities contribute to an existing violation, that a net benefit is provided. The evidence establishes that the project will not cause or contribute to a violation of water quality standards and is not expected to contribute to the receiving water impairment of elevated mercury levels in fish tissue. While not required, the project is nevertheless expected to have a positive benefit on overall water quality and likely will reduce mercury levels in fish tissue by removing the sediments that contain metals such as mercury. The District's waiver of water quality certification is consistent with Section 401, the legislative declaration of policy set forth in section 373.016(3)(f) and (j), and applicable regulatory practices for Clean Water Act water quality certification.
Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the Southwest Florida Water Management District enter a final order approving the issuance of ERP No. 44040881.000 to the City and County, as joint permittees. DONE AND ENTERED this 7th day of May, 2013, in Tallahassee, Leon County, Florida. S D. R. ALEXANDER Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 7th day of May 2013. COPIES FURNISHED: Blake C. Guillery, Executive Director Southwest Florida Water Management District 2379 Broad Street Brooksville, Florida 34604-6899 Erika Ginsberg-Klemmt SRQUS, LLC 3364 Tanglewood Drive Sarasota, Florida 34239-6515 Achim Ginsberg-Klemmt SRQUS, LLC 3364 Tanglewood Drive Sarasota, Florida 34239-6515 Martha A. Moore, Esquire Southwest Florida Water Management District 7601 Highway 301 North Tampa, Florida 33637-6758 Alan W. Roddy, Esquire Office of the County Attorney 1660 Ringling Boulevard, Second Floor Sarasota, Florida 34236-6808 Michael A. Connolly, Esquire Fournier, Connolly, Warren & Shamsey, P.A. One South School Avenue, Suite 700 Sarasota, Florida 34237-6014
The Issue The issue in this case is whether, and what, reasonable mitigative conditions are necessary to protect the interest of the public and the environment, prior to issuing Petitioner's default permit.
Findings Of Fact Application and Default Petitioner's application is to dredge an extension, 50 feet wide by 300 feet long by 5 feet deep, to an existing 650 foot-long man-made canal of the same width and depth, normal (perpendicular) to old Central and South Florida Flood Control (now SFWMD) Rim Canal (the L-48 Borrow Canal), which is along the northwest shore of Lake Okeechobee. Petitioner's initial, incomplete application filed in DEP's Port St. Lucie office on August 31, 2000, included: the proposed project's location by County, section, township, and range; its legal description; a sketch of its general location and surrounding landmarks; a SFWMD letter verifying conformity with the requirements of a "No Notice General Permit for Activities in Uplands" of a drawing for a proposed pond expansion (to a size less than half an acre), "which will provide borrow material necessary for a house pad and access drive"; a description of water control Structure 127, together with its purpose, operation, and flood discharge characteristics, which were said to describe water levels in Buckhead Ridge, the name of the subdivision where the project was proposed; two virtually identical copies of a boundary survey for Petitioner's property (one with legal description circled) showing the existing canal, with boat basin off the canal on Petitioner's property near the L-48 Rim Canal, at a scale of one inch equals 200 feet; two more virtually identical copies of the boundary survey at the same scale showing the existing canal, with boat basin off the canal on Petitioner's property near the L-48 Rim Canal, and the proposed canal extension and house locations; and a copy of a 1996 aerial photograph of Petitioner's property and existing canal, and vicinity. The application did not describe a proposed method or any other details of construction, include any water quality information, or include a water quality monitoring plan. On September 15, 2000, Petitioner filed an additional page of the application form with DEP's Punta Gorda office. The page added the information: "Digging to be done with trac-hoe." No other specifics of the proposed construction method were included. What happened after the filing of the application is described in Tuten I and Tuten II, which are the law of the case. However, those opinions do not explain the delay between Tuten I and the issuance of DEP's proposed ERP with conditions approximately two years later. The evidence presented at the final hearing explained only that counsel of record for DEP promptly asked district staff to draft a proposed default ERP with conditions that "would probably track the RAI that had been sent out prior to the default." DEP's district staff promptly complied and forwarded the draft to DEP's Office of General Counsel in Tallahassee, which did not provide any legal advice as to the draft ERP for almost two years. There was no further explanation for the delay. As reflected in Tuten II and in the Preliminary Statement, it was DEP's position that the proper procedure to follow after its default was to issue a proposed ERP with conditions and that it would be Petitioner's burden to request an administrative hearing to contest any conditions and to prove Petitioner's entitlement to a default ERP with conditions other than those in DEP's proposed ERP. DEP's Proposed General Conditions The conditions DEP wants attached to Petitioner's default permit include general conditions taken from SFWMD's Rule 40E-4.381, which are appropriate, as indicated in the Preliminary Statement and Conclusions of Law, and as conceded by Petitioner's expert. While the Rule 40E-4.381 general conditions are appropriate, Petitioner takes the position (and his expert testified) that some of the general permit conditions contained in Rule 62-4.160, as well as Rule 62-4.070(7) (providing that "issuance of a permit does not relieve any person from complying with the requirements of Chapter 403, F.S., or Department rules"), are more appropriate general conditions to attach to Petitioner's default ERP, even if technically inapplicable, because the Chapter 62 Rules govern the operation of a permitted project (whereas the former govern the construction of a permitted project) and are "more protective of the environment." Actually, all of the rules contain general conditions that govern both construction and operation phases of an ERP, and all are "protective of the environment." There is no reason to add general conditions taken from Rules 62-4.160 and 62-4.070(7) to the applicable general conditions contained in Rule 40E-4.381. DEP's Proposed Specific Conditions (i) In General The conditions DEP wants attached to Petitioner's default permit also include specific conditions which essentially require that Petitioner provide the information in the RAI sent in December 2000, together with additional specific conditions thought necessary to protect the environment in light of the lack of detail in the application without the answers to the RAI. Some DEP's proposed specific conditions are designed to ascertain whether the application would provide reasonable assurance that permitting criteria would be met. (They make the requested information subject to DEP "approval" based on whether reasonable assurance is provided.) In general, those specific conditions no longer are appropriate since DEP is required to issue a default permit. (Looked at another way, inclusion of those specific conditions effectively would un-do the default, in direct contradiction of the court's opinion Tuten I and Tuten II.) See Conclusion of Law 52, infra. On the other hand, some of the RAI information was designed to ascertain the proposed method and other details of construction. Pending the "answers" to those "RAI conditions," DEP also wants broad specific conditions, including a baseline water quality investigation and a water quality monitoring plan, designed to be adequate for a "worst case scenario" that could result from the project. Petitioner opposes DEP's proposed broad specific conditions. He takes the position that it was incumbent on DEP in this proceeding to use discovery procedures to ascertain Petitioner's intended method of construction and tailor specific conditions to the method of construction revealed through discovery. At the same time, Petitioner opposes DEP's proposed specific conditions requiring RAI-type information, including the details of his proposed construction method. Notwithstanding the positions Petitioner has taken in this case, his expert testified that Petitioner intends to use a steel wall inserted between the water and upland at the end of the existing canal, phased excavation from the upland side, and removal of the steel wall in the final phase of construction. Assuming that method of construction, Petitioner takes the position (and his expert testified) that the statutes, rules, and permit conditions acceptable to Petitioner, and which generally prohibit pollution of the environment, are adequate. Even if the statutes, rules, and permit conditions acceptable to Petitioner would be adequate for the method of construction Petitioner now says he will use, Petitioner's application does not in fact commit to a method of construction. All Petitioner's application says is that he intends to dig with a trac-hoe. Without a binding commitment to a method of construction, it was appropriate for DEP to take the position that specific conditions were necessary to ascertain the method of construction Petitioner would use and, pending the "answers" to those "RAI conditions," and to impose broad specific conditions, including a baseline water quality investigation and a water quality monitoring plan, designed to be adequate for a "worst case scenario" that could result from the project. In his PRO, Petitioner committed to use the construction method described by his expert during the hearing, as follows: Excavation of any spoil shall be done by means of a mechanical trac-hoe; Prior to the excavation of any soil, Petitioner shall first install an isolating wall, such as interlocking sheet pile, between the existing man-made canal, and the proposed canal extension; The mechanical excavation shall be done in such a manner such that the excavated soil is not deposited in wetlands or in areas where it might be reasonably contemplated to re-enter the waters of the State of Florida; After the proposed canal extension is excavated to its project limits in the foregoing manner, the side slopes of the canal extension shall be allowed to revegetate prior to removal of the isolating wall. With a condition imposing this method of construction, fewer and narrower specific conditions will be necessary. ii. Seriatim Discussion DEP's proposed Specific Condition 1 requires a perpetual conservation easement prohibiting docking and mooring of water craft on all portions of Petitioner's property within the canal extension in order to "address cumulative impacts." But DEP did not prove that the proposed conservation easement was reasonably necessary to protect the interest of the public and the environment. First, DEP did not prove that there would be any cumulative impacts, much less unacceptable cumulative impacts, from Petitioner's project. See § 373.414(8), Fla. Stat.; Rule 40E-4.302(1)(b); and BOR § 4.2.8. Second, even if unacceptable cumulative impacts were proven, those could be addressed in other permit cases (assuming no DEP default in those proceedings), since the concept of cumulative impacts essentially requires an applicant to share acceptable cumulative impacts with other similar permittees, applicants, and foreseeable future applicants. See Broward County v. Weiss, et al., DOAH Case No. 01-3373, 2002 Fla. ENV LEXIS 298, at ¶¶54-58 (DOAH Aug. 27, 2002). As Petitioner points out, the easement further described in Specific Condition 1 appears to be overly broad for its stated purpose in that it would cover "the legal description of the entire property affected by this permit and shown on the attached project drawings," which could be interpreted to include not just the canal extension but the entire extended canal, or even the entirety of Petitioner's 6.6 acres of property. Indeed, the latter might have been the actual intention, since DEP's witness testified that Specific Condition 1 also was intended to address impacts from fertilizer runoff and septic tank leaching from new homes built along the canal. Although some of those impacts (as well as future construction of additional homes and docks) actually are secondary impacts, not cumulative impacts, it is possible that they can be addressed in DEP or SFWMD proceedings on future applications, as well as in Department of Health proceedings on septic tank installations. DEP's proposed Specific Condition 2 requires that: spoil material from the dredging to be "used for the sole purpose of constructing a single-family fill pad" on Petitioner's property under a pending permit; spoil "be placed in a manner so as not to affect wetlands or other surface waters"; and the "spoil disposal location shall be shown in the drawings required by Specific Condition #4 below." DEP did not prove that the first requirement was reasonably necessary to protect the interest of the public and the environment. First, it is unreasonable since Petitioner already has built the referenced single-family fill pad and a home on top of it. Second, the reason DEP's witness gave for this requirement was that, under an operating agreement with SFWMD (which was officially recognized), DEP only has jurisdiction to take action on single-family uses (which he defined to include duplexes, triplexes, and quadriplexes) but not on larger multi-family and certain other projects. However, the operating agreement on jurisdiction is not a reason to place Specific Condition 1 on the use of spoil material on Petitioner's default permit. SFWMD can regulate, in permitting proceedings under its jurisdiction, the placement of fill material for multi- family construction or other projects not under DEP jurisdiction. In addition, under the operating agreement, jurisdiction can be "swapped" by written agreement in cases where deviation from the operating agreement would result in more efficient and effective regulation. The second two requirements under Specific Condition 2 are reasonable and necessary to protect the interest of the public and the environment. DEP's proposed Specific Condition 3 requires disclosure of all pending and issued permits for the property from SFWMD, Glades County, or the U.S. Army Corps of Engineers (USCOE). DEP did not prove that this is reasonable or reasonably necessary to protect the interest of the public and the environment. DEP probably has all such permits and can easily obtain any it does not have. DEP's proposed Specific Condition 4 requires fully dimensional plan view and cross-sectional drawings of the property and area to be dredged, before and after dredging, including a north arrow and the water depths in and adjacent to the dredge area. DEP's witness stated that the primary purpose of this part of the condition is to provide hydrographic information normally provided in an application (or required in an RAI) so that DEP's hydrographic engineer can ascertain flushing characteristics, which are pertinent primarily to the dissolved oxygen water quality parameter and to heavy metals from boat use. As previously indicated, requests for information relating to reasonable assurance and the public interest test generally no longer are appropriate since DEP is required to issue a default permit. See Finding 9, supra. However, information regarding flushing characteristics, combined with other specific conditions, is reasonable and necessary to protect the interest of the public and the environment. See Finding 27, infra. In addition, the plan view and cross-sectional drawings required by Specific Condition 4 are to include the location of navigational obstructions in the immediate area, any roads, ditches, or utility lines that abut the property; any encumbrances, and any associated structures. DEP's witness stated that the primary purpose of this information is to determine whether Petitioner has provided reasonable assurance that the "public interest" test under Rule 40E-4.302 is met, and make sure that management, placement, and disposal of spoil material do not infringe on property rights or block culverts and cause flooding. As previously indicated, requests for information relating to reasonable assurance and the public interest test generally no longer are appropriate. See Finding 9, supra. However, information regarding the location of culverts to assure that management of spoil does not cause flooding is reasonable and necessary to protect the interest of the public and the environment. In addition to objecting to having to provide RAI information as a "default permittee," Petitioner's expert asserted that the information requested in Specific Condition 4 would be provided as part of the "as-built" drawings required by General Condition 6. But General Condition 6 does not require "as-built" drawings. Rather, it requires an "as-built" certification that can be based on "as-built" drawings or on-site observation. Besides, the purpose of the "as-built" certification is to determine "if the work was completed in compliance with permitted plans and specifications." Without the information requested in Specific Condition 4, there would only be vague and general permitted plans and specifications and hydrographic information. Finally as to Specific Condition 4, Petitioner objects to the requirement that the drawings be sealed by a registered professional engineer. However, Petitioner cites to General Condition 6, which requires that the "as-built" certification be given by a "registered professional" and cites Rule Form 62- 343.900(5), which makes it clear that "registered professional" in that context means a registered professional engineer. DEP's proposed Specific Condition 5 requires Petitioner to submit for DEP approval, within 180 days of permit issuance and before any construction, reasonable assurance that the canal extension will not violate water quality standards due to depth or configuration; that it will not cause a violation of water quality standards in receiving water bodies; and that it will be configured to prevent creation of debris traps or stagnant areas that could result in water quality violations. The reasonable assurance is to include hydrographic information or studies to document flushing time and an evaluation of the maximum desirable flushing time, taking several pertinent factors into consideration. As previously indicated, requests for information relating to reasonable assurance and the public interest test generally no longer are appropriate. See Finding 9, supra. In addition, Petitioner's expert testified without dispute that the information requested could take more than 180 days and cost approximately $20,000. However, it is reasonable and necessary to protect the interest of the public and the environment to include a specific condition that Petitioner's canal extension be configured so as have the best practicable flushing characteristics. DEP's proposed Specific Condition 6 requires Petitioner to submit for DEP approval, within 180 days of permit issuance and before any construction, reasonable assurance that construction of the canal extension will meet all permit criteria set out in Rules 40E-4.301 and 40E-4.302 and in BOR § 4.1.1. As previously indicated, requests for information relating to reasonable assurance and the public interest test generally no longer are appropriate. See Finding 9, supra. DEP's proposed Specific Condition 7 requires Petitioner to submit existing water quality information for DEP approval within 180 days of permit issuance and before any construction. In this instance, DEP's approval would not be a determination on the provision of reasonable assurance but a determination as to the reliability of the water quality information, which is necessary to establish a baseline for assessing and monitoring the impact of the project. For that reason, the information is reasonable and necessary to protect the interest of the public and the environment. Petitioner's expert testified that the information could cost $2,000-$3,000 to produce (and more, if DEP rejects the information submitted, and more information is required). He also testified that water quality information already is available, including over 25 years worth of at least monthly information on all pertinent parameters except biological oxygen demand and fecal coliform, at a SFWMD monitoring station in the Rim Canal at Structure 127 (a lock and pump station at the Hoover Levee on Lake Okeechobee) approximately 8,000 feet away from Petitioner's canal. DEP did not prove that the SFWMD information would not serve the purpose of establishing baseline water quality for Petitioner's canal for all but the missing parameters. For that reason, only water quality information for the missing parameters is reasonable and necessary to protect the interest of the public and the environment in this case. DEP's proposed Specific Condition 8 requires that, if the water quality information required by Specific Condition 7 shows any violations of state ambient water quality standards, Petitioner must submit for DEP approval, within 180 days of permit issuance and before any construction, a plan to achieve net improvement for any parameters shown to be in violation, as required by Section 373.414, Florida Statutes. See also BOR § and 4.2.4.2. Normally, if applicable, this information would be expected in an application or RAI response. Petitioner's expert testified that this condition would require Petitioner to help "fix Buckhead Ridge" (unfairly) and that it would cost lots of money. But Petitioner did not dispute that the law requires a plan for a "net improvement," which does not necessarily require a complete "fix" of water quality violations, if any. As previously indicated, requests for information relating to reasonable assurance and the public interest test generally no longer are appropriate, and Petitioner's ability to construct the canal extension should not be dependent on DEP's approval of a net improvement plan. See Finding 9, supra. But a specific condition that Petitioner implement a plan to achieve net water quality improvement in the event of any water quality violations would be reasonable and necessary to protect the interest of the public and the environment. DEP's proposed Specific Condition 9 requires Petitioner to submit for DEP's approval, at least 60 days before construction, detailed information on how Petitioner intends to prevent sediments and contaminants from being released into jurisdictional waters. DEP asserts that this specific condition asks for a detailed description of how the applicant will comply with various subsections of BOR § 4.2.4.1 that address short-term water quality to aid in providing reasonable assurance that water quality standards will not be violated, as required by Section 373.414(1), Florida Statutes, and Rule 40E-4.301(1)(e). As previously indicated, requests for information relating to reasonable assurance and the public interest test generally no longer are appropriate, and Petitioner's ability to construct the canal extension should not be dependent on DEP's approval of information submitted. See Finding 9, supra. But it is reasonable and necessary to protect the interest of the public and the environment to include a specific condition that Petitioner's canal extension be constructed using adequate turbidity barriers; stabilize newly created slopes or surfaces in or adjacent to wetlands and other surface waters to prevent erosion and turbidity; avoid propeller dredging and rutting from vehicular traffic; maintain construction equipment to ensure that oils, greases, gasoline, or other pollutants are not released into wetlands and other surface waters; and prevent any other discharges during construction that will cause water quality violations. DEP's proposed Specific Condition 10 requires Petitioner to submit, at least 60 days before construction, detailed information regarding Petitioner's plans for handling spoil from dredging, including "discharge details, locations retention plans, volumes, and data used to size the disposal cell(s)." It allows this information to be combined with the Specific Condition 2 submittal. It also requires spoil to be properly contained to prevent return of spoil to waters of the State and to be deposited in a self-contained upland site that prevents return of any water or material into waters of the State. DEP asserts that this specific condition (like Specific Condition 9) is necessary to comply with BOR § 4.2.4.1 by addressing short-term water quality to aid in providing reasonable assurance that water quality standards will not be violated, as required by Section 373.414(1), Florida Statutes, and Rule 40E-4.301(1)(e). As previously indicated, requests for information relating to reasonable assurance and the public interest test generally no longer are appropriate, and Petitioner's ability to construct the canal extension should not be dependent on DEP's approval of information submitted. See Finding 9, supra. But it is reasonable and necessary to protect the interest of the public and the environment to include a specific condition requiring spoil to be properly contained to prevent return of spoil to waters of the State and to be deposited in a self-contained upland site that prevents return of any water or material into waters of the State. DEP's proposed Specific Condition 11 requires Petitioner to submit "as-built" drawings to DEP's Punta Gorda office with 30 days after completion of construction, "as required by General Condition #6." Petitioner's expert testified that this condition was unreasonable only because it duplicates General Condition 6 and two statutes. But General Condition 6 actually does not require "as-built" drawings, see Finding 9, supra, and it is not clear what statutes Petitioner's expert was referring to. For these reasons, and because it provides a filing location, Specific Condition 11 is reasonable and reasonably necessary to protect the interest of the public and the environment. DEP's proposed Specific Condition 12 requires Petitioner to "maintain the permitted canal free of all rafted debris by removal and property upland disposal." DEP asserts that this specific condition is necessary to comply with BOR § by addressing long-term water quality to aid in providing reasonable assurance that water quality standards will not be violated, as required by Section 373.414(1), Florida Statutes, and Rule 40E-4.301(1)(e). Rafted debris, which may be of an organic or inorganic nature, can accumulate at the end of canals due to wind, waves, boats, or other forces. Such organic rafted debris may rot and, by creating a high biological oxygen demand, rob the water of dissolved oxygen. Petitioner's only expressed opposition to this condition is that the conservation easement in Specific Condition 3 might prevent compliance. While it is unclear how the easement would prevent compliance, the issue is eliminated if no conservation easement is required. DEP's proposed Specific Condition 13 requires Petitioner to use turbidity screens during construction for compliance with BOR § 4.2.4.1 by addressing short-term water quality to aid in providing reasonable assurance that water quality standards will not be violated, as required by Section 373.414(1), Florida Statutes, and Rule 40E-4.301(1)(e). The turbidity screen requirements detailed in this specific condition are typical best management practices that contractors use and are a standard condition placed in permits of this nature by DEP. Petitioner contends that turbidity screens are unnecessary given his intended construction method and that other conditions are sufficient to cover DEP's concerns. However, as indicated, the application does not commit to a method of construction. With the application in its current state, Specific Condition 13 is appropriate subject to a demonstration by Petitioner that turbidity screens are not needed for the construction method committed to in Petitioner's PRO. DEP's proposed Specific Condition 14 requires Petitioner to "ensure that any discharge or release of pollutants during construction or alteration are not released into wetlands or other surface waters that will cause water quality standards to be violated." Again, this condition is intended to ensure compliance with BOR § 4.2.4.1 by addressing short-term water quality to aid in providing reasonable assurance that water quality standards will not be violated, as required by Section 373.414(1), Florida Statutes, and Rule 40E-4.301(1)(e). While this specific condition seems general and perhaps duplicates other conditions (which was Petitioner's only point of contention), DEP added it in an attempt to make sure the possible and not uncommon release of pollutants from construction equipment was addressed. As such, the condition is appropriate. DEP's proposed Specific Condition 15 provides details on the use of turbidity screens. Petitioner's primary points of contention are that turbidity screens are not needed for his intended construction method and that other conditions are sufficient without this condition. As such, the relevant issues already have been addressed in connection with Specific Condition With the application in its current state, Specific Condition 15 is appropriate subject to a demonstration by Petitioner that turbidity screens are not needed for the construction method committed to in Petitioner's PRO. DEP's proposed Specific Condition 16 requires Petitioner to used staked filter cloth to contain any turbid run- off and erosion from created slopes of the canal extension. This is the most common best management practice and is a standard condition for ERP permits dealing with side slopes that may affect water quality. Unstable slopes can result in chronic turbidity, which is detrimental to wildlife. Unstable slopes also can lead to upland runoff being deposited into the water along with debris and sediment. Such runoff can bring deleterious substances such as heavy metals and nutrient-loaded substances that might impact dissolved oxygen levels in the water. Petitioner's primary points of contention on Specific Condition 16 are that, like turbidity screens, staked filter cloth is not needed for Petitioner's intended construction method and that other conditions are sufficient without this condition. (Petitioner also questions why the condition gives Petitioner up to 72 hours from "attaining final grade" to stabilize side slopes, but the condition also requires side slope stabilization "as soon as possible," and the 72-hour outside limit seems reasonable.) As such, the relevant issues already have been addressed in connection with Specific Condition 13 and 15. With the application in its current state, Specific Condition 16 is appropriate subject to a demonstration by Petitioner that staked filter cloth is not needed if he uses the construction method committed to in Petitioner's PRO. DEP's proposed Specific Condition 17, 18, 19, and 20: details required long-term water quality monitoring and reporting [#17]; establishes sampling intervals and requires Petitioner to submit a "plan to remediate" if monitoring shows water quality violations or "a trend toward future violations of water quality standards directly related to the permitted canal" [#18]; allows "additional water quality treatment methods" to be required if water quality monitoring shows it to be necessary [#19]; and allows water quality monitoring requirements to be modified (which "may include reduction in frequency and parameters . . . or the release of the monitoring process"), "based on long term trends indicate that the permitted canal is not a source to create water quality violations [#20]." These conditions are intended to ensure compliance with BOR § 4.2.4.2 by addressing long-term water quality to aid in providing reasonable assurance that water quality standards will not be violated, as required by Section 373.414(1), Florida Statutes, and Rule 40E-4.301(1)(e). The evidence was that these specific conditions are standard for ERP permits where a constructed system may lead to water quality violations in the long term. Contrary to Petitioner's contentions, conditions of this kind are not dependent on a post-construction finding of water quality standard violations (even though DEP defaulted on Petitioner's application). Besides contending that monitoring requirements in Specific Conditions 17 and 18 are unnecessary, Petitioner also contends that they are too extensive and not tailored to Petitioner's intended construction, but DEP proved their necessity, even assuming the construction method committed to in Petitioner's PRO. Petitioner complains that Specific Condition 19 is vague and that Petitioner's ERP does not provide for "water quality treatment." But the present absence of post-construction water quality treatment should not preclude the possible future imposition of some kind of water quality treatment if monitoring shows it to be necessary. For this kind of condition, the absence of detail regarding the kind of treatment to be imposed is natural since it would depend on future events. DEP's proposed Specific Condition 21 merely requires that Petitioner's project comply with State water quality standards in Florida Administrative Code Rules 62-302.500 and 62- 302.530. Petitioner contends that this is duplicative and unnecessary. But it certainly is not unreasonable to be specific in this regard. No Improper Purpose As part of his request for attorney's fees under Section 120.595, Florida Statutes, Petitioner necessarily contends that DEP participated in this proceeding "for an improper purpose"--i.e., "primarily to harass or to cause unnecessary delay or for frivolous purpose or to needlessly increase the cost of litigation, licensing, or securing the approval of an activity." Even assuming that DEP should be considered a "nonprevailing adverse party," Petitioner's evidence did not prove that DEP's participation was for an "improper purpose." To the contrary, DEP "participated" initially because Petitioner filed an application. DEP's denial of Petitioner's application was not proven to be "for an improper purpose" but rather for the purpose of attempting to protect the environment. The propriety of the denial was litigated in Tuten I, which made no finding that the denial was "for an improper purpose" and which ordered DEP to participate in a hearing for purposes of determining "reasonable mitigative conditions." The two-year delay between Tuten I and Tuten II was not fully explained, but Tuten II also made no finding that the denial, or the delay, or DEP's proposed ERP with conditions were "for an improper purpose" and again ordered DEP to participate in a hearing for purposes of determining "reasonable mitigative conditions." While DEP's views on the nature of the hearing to be conducted for purposes of determining "reasonable mitigative conditions" was rejected, it was not proven that DEP argued its views "for an improper purpose" or that its participation, once its views were rejected, was "for an improper purpose," as defined by statute. To the contrary, the evidence was that DEP participated in this proceeding in an attempt to place conditions on Petitioner's permit which DEP thought were necessary to protect the environment, many (although not all) of which are accepted in this Recommended Order. As Petitioner accepts and points out, it remains necessary for Petitioner to construct and operate his project in a manner that does not violate environmental statutes and rules. But without any water quality information or monitoring, DEP's enforcement of those laws and rules will be hamstrung.
Recommendation Based upon the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that DEP enter a final order issuing Petitioner a default ERP, to expire five years from issuance, to dredge an extension, 50 feet wide by 300 feet long by 5 feet deep, to an existing man-made canal, as applied for, subject to: DEP's proposed General Conditions 1-19; DEP's proposed Specific Conditions 4 and 11-21; DEP's proposed Specific Conditions 2, 5, and 7-10, as modified by the Findings of Fact; and the construction method committed to in Petitioner's PRO (see Finding 14, supra. DONE AND ENTERED this 11th day of August, 2006, in Tallahassee, Leon County, Florida. S J. LAWRENCE JOHNSTON Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 11th day of August, 2006.
Findings Of Fact Upon consideration of the oral and documentary evidence adduced at the hearing, the following relevant facts are found: WEST COAST REGIONAL WATER SUPPLY AUTHORITY (STARKEY WELLFIELD) The Authority is a nonprofit five-member interlocal entity created in 1974, pursuant to Section 373.1962, Florida Statutes, for the purpose of planning, designing and operating new sources of water supply to governmental entities in Pasco, Pinellas and Hillsborough Counties. Its members include the Counties of Pasco, Pinellas and Hillsborough and the Cities of St. Petersburg and Tampa. The City of New Port Richey also has a seat on the Authority Board. The Authority's revenues are presently derived entirely from the sale of water to its customers. It owns and/or operates five wellfields, some of which are connected by a water transmission pipeline to each other and to wellfields operated or owned by Pinellas County and the City of St. Petersburg. In 1984, the Authority supplied approximately 74 million gallons per day (mgd) to its customers and held consumptive use permits (CUPs) for a total of 94 mgd average and 144 mgd peak or maximum. The Authority anticipates that it will serve approximately 800,000 people in the year 1985. Its master plan, which was last updated in 1982, projects future water demands through 1995 and identifies alternative sources of supply to satisfy those demands. One of the wellfields presently operated by the Authority is the Starkey Wellfield located in Pasco County. The Starkey Wellfield property, located on some 5,400 or 6,947 acres, was acquired in phases by the Southwest Florida Water Management District (District) over a period of years beginning in the early 1970's. There are two remaining parcels which the District has contracted to acquire in 1985 and 1986. These parcels will be acquired under the "Save Our Rivers" program embodied in Section 373.59, Florida Statutes. The various contracts between the District and the Starkey family contain restrictive covenants which require that "the land remain, as nearly as practicable, in its natural state" and that water withdrawals be restricted so that they "do not substantially and/or permanently damage the lands adjacent to the area." In 1981, the District granted the Authority an exclusive license to operate a wellfield on the Starkey property provided that it maintain the wellfield "as nearly as practicable in its natural state." All cater produced from the property is to be for the water supply needs of the City of New Port Richey and Pasco County, except that those entities can authorize the sale of surplus water. Prior to the Authority's involvement with the Starkey Wellfield, the City of New Port Richey planned and constructed water supply facilities at the extreme western portion of the wellfield. Four wells were originally permitted for 3 mgd average and 4.5 mgd maximum. In 1979, in conjunction with Pasco County as a co-applicant, the permit was modified to provide for increased withdrawals of 8 mgd average and 15 mgd peak. This increase was not implemented due to contractual problems between the City and the County. Then, in December of 1981, the Authority became involved in the Starkey Wellfield. Pursuant to a Water Transfer and Management Agreement and a Water Supply Agreement, the City of New Port Richey's four existing wells were transferred to the Authority and the Authority was authorized to construct additional wells and sell the water to the City and Pasco County. As noted above, any surplus water could be sold to others. These agreements have a term of 35 years, with an option of a 35-year renewal period. If the agreements are terminated, the facilities are to revert back to the City of New Port Richey and Pasco County. In 1982, the Authority, the City of New Port Richey and Pasco County obtained the present CUP authorizing the construction and operation of a total of 14 wells and permitting withdrawals at an average annual rate of 8 mgd and a maximum daily rate of 15 mgd. This CUP expires on February 3, 1986. The ten presently operating wells have the capacity to produce 22 mgd. The financing arrangements for the construction of the Starkey Wellfield are not sufficient to complete construction. There is a shortfall of about $720,000, which the Authority plans to make up in revenues from the facility. On December 20, 1983, the Authority, with the City of New Port Richey and Pasco County as co-applicants, applied to the District for a modification of the 1982 CUP to increase withdrawals from 8 mgd average, 15 mgd maximum to 11 mgd average and 21 mgd maximum. At the time, the Authority believed that the increases were justified by the projected water demands of the City and Pasco County. In preparing its water supply plan submitted to the District on March 1, 1984, the Authority determined that it would be feasible to interconnect the Starkey Wellfield with the Cypress Creek pipeline and other major production facilities. In order to finance this pipeline interconnection and again believing that there was sufficient demand in Pasco County and the City of New Port Richey to justify increased withdrawals, the Authority, along with the City and the County, amended the application to modify their CUP on March 23, 1984. This amendment sought average annual withdrawals of 15 mgd and maximum daily withdrawals of 25 mgd. Also requested was the relocation of 2 wells that have not yet been constructed. Between 1971 and 1982, five pump tests have been performed at the Starkey Wellfield, and monitor wells are installed throughout the property. Except for the northwest corner of the property, existing withdrawals have not changed the natural condition of the property. Utilizing these various tests and monitoring results to predict the hydrologic effects of the Authority's proposed increased withdrawals, the District found that the potentiometric drawdown and the water table drawdown at the requested rates would each increase to almost twice the drawdown at the currently permitted rates. The withdrawal of water will cause the level of the potentiometric surface to be lowered more than five feet outside the northern and southern boundaries of the Starkey Wellfield property. The one-foot water table drawdown anticipated from the increased withdrawals could have an adverse effect upon lands immediately adjacent to the north and west. Likewise, this one foot water table drawdown could cause adverse ecological effects on forests and wetlands within the Starkey Wellfield properties. Approximately 40 percent of the Starkey property is high quality wetlands. In June of 1984, a three-day field validation multi-pump test was performed for the Authority. These test results were not available to the District at the time it performed its evaluation. The June tests showed aquifer characteristics different than those previously thought to exist. A much higher transmissivity level was found and the differing leakance values throughout the property demonstrated that the aquifer beneath the Starkey Wellfield is not homogenous. A higher transmissivity level decreases the extent of potentiometric surface drawdown. After substituting the new aquifer characteristics found from the June pump tests, the Authority's computer modeling demonstrates no violation of District hydrologic rules with respect to potentiometric surface and water table drawdowns at the increased level of withdrawals. The Authority's ecologist did not feel that the increased withdrawals would adversely affect natural conditions on the Starkey property, stating that a one-foot water table drawdown is well within the adaptive range of wetland vegetation. In addition, the Authority will maintain its existing ecological monitoring plan on site. The District has not established regulatory levels for the rate of flow of streams or other water courses, for the potentiometric surface or for the surface water in the vicinity of the Starkey Wellfield. Deep monitor wells on the property indicate that there has been no increase in chloride concentrations. Increased withdrawals are not expected to induce saltwater encroachment. If it is found that the potentiometric surface at the Starkey property boundary is lowered more than five feet, an alternative pumping schedule can be put into effect to prevent that occurrence. The pattern of production can be changed by shifting to different wells during the dry season. Increased withdrawals will not lower off-site water tables, lakes or other impoundments by more than one foot, and the potentiometric surface will not be lowered below sea level. The Authority's proposed consumptive use of 15 mgd average would withdraw 2,777.77 gallons per acre per day if the Starkey Wellfield contains 5,400 acres, and 2,159.13 gallons per acre per day if it contains 6,947 acres. Its present permitted withdrawals average more than 1,000 gallons per acre per day. The Authority's proposed increased withdrawals will not interfere with any presently existing legal use of water. BEXLEY (CENTRAL PASCO WELLFIELD) Bexley owns 14,510 acres of land in Pasco County located immediately east of the Starkey Wellfield. The land contains improved pasture, crops, planted pine and some cypress heads and ponds. He presently holds a CUP authorizing a combined average annual withdrawal of 2,416,000 gallons per day with a maximum withdrawal of 11,520,000 gallons per day. Such withdrawals are permitted for agricultural irrigation purposes and come from five wells. In August of 1983, Bexley entered into a contract with Pasco County. The contract requires Bexley to produce and supply to Pasco County an average of 9 mgd of public supply water and a maximum of 13 mgd. Pasco County is given the exclusive right to purchase these amounts and, indeed, must pay for the water made available, whether it is accepted or not. The term of the agreement between Bexley and the County is 33 years. Pursuant to his contract with Pasco County, Bexley applied to the District on December 21, 1983 to modify his existing CUP. A decrease in agricultural withdrawals was requested, as were five additional wells to produce 10.0 mgd average and 13.5 mgd maximum for Pasco County's public water supply. The five additional wells are to be located on 10,848 acres of land, to be known as the Central Pasco Wellfield, located within the 14,510 acres owned or controlled by Mr. Bexley. The modification would result in total (agricultural irrigation and public water supply use) withdrawals of 11,881,000 gallons per day annual average and 23,580,000 gallons per day maximum. In order to determine the anticipated hydrologic effect of the proposed withdrawals, Bexley's hydrologist reviewed and analyzed previous studies of regional hydrogeology and other wellfields prepared by the District, the United States Geological Survey and private consultants. He also conducted a "slug test" and a single well pump test over a period of six days. The aquifer characteristics of the Bexley property were found to be within the range of values derived from other regional testing. Assuming an homogenous aquifer, these characteristics were used in computer modeling to predict the effect of increased withdrawals on and off the Bexley property. The five-foot potentiometric drawdown is confined to the Bexley property, as is the three-foot water table drawdown. The effects of any potentiometric surface and/or water table drawdowns on agricultural crops in the vicinity of the production wells can be offset by irrigation. No lake or other impoundment off-site will be lowered more than one foot. The proposed withdrawals will not cause the potentiometric surface to be lowered below sea level. Regulatory levels have not been established by the District for potentiometric surface, stream flows or surface water on the Bexley property. Although there was no deep monitor well testing done, salt water encroachment is not anticipated as a result of the proposed withdrawals. After an independent evaluation, the District staff also concluded that the proposed Bexley withdrawals would not violate the District's hydrologic rules. The proposed public water supply use of 10 mgd average from 10,848 acres will average 921.80 gallons per acre per day. The combined public supply and agricultural irrigation use of 11.8 mgd from 14,510 acres will average 818.78 gallons per acre per day. CITY OF ST. PETERSBURG (SOUTH PASCO WELLFIELD) The City of Saint Petersburg owns and operates the South Pasco Wellfield, located on a 589 acre site to the south of the Bexley property. This wellfield has been in operation since 1973, and the City has a CUP to withdraw water at the rate of 16.9 mgd annual average and 24 mgd maximum as part of a public supply system. This CUP expires on September 1, 1992. The CUP requires the City to balance production from its South Pasco Wellfield equally with its two other well fields -- Section 21 and Cosme-Odessa. Among the terms and conditions of the CUP are that three regulatory wells be monitored so as not to cause the cumulative weekly average elevations of the potentiometric surface of the aquifer to be lower than the regulatory level set for each well. One of the regulatory wells is located on State Road 54, about 1.5 miles south of the Bexley southern property boundary. The regulatory level set for that well is that the potentiometric surface not be below 42.0 feet above mean sea level on a cumulative weekly average basis. On a noncumulative weekly average basis, the elevations may be 37.0 feet above mean sea level. Since 1974, average water levels at the State Road 54 regulatory well have fluctuated from 44.8 feet to 49.4 feet. Bexley's proposed combined average withdrawals may cause a potentiometric surface drawdown of between 1.3 and 1.9 feet at the State Road 54 regulatory well. The City of Saint Petersburg presented evidence that if the City pumps at its permitted average of 16.9 mgd and Bexley pumps at its average of 11.8 mgd, the City will only be able to withdraw 14.1 mgd without violating the regulatory level for the State Road 54 well. However, this result was obtained by starting off with the normal water levels in the State Road 54 well as they existed in 1980-81, a particularly dry year, and then comparing them with the results obtained if Bexley were to pump its total combined average of 11.8 mgd. This methodology fails to take into account Bexley's permitted withdrawals of 2.4 mgd as they existed in 1980-81, and in effect, double-counted them by initially ignoring their impact on the 1980-81 water levels and adding them back in as a part of the new combined total. In addition, the exhibits and testimony offered by the City failed to demonstrate that the cumulative weekly average elevations would go below 42.0 feet if Bexley were pumping at its requested average rate. While the City of St. Petersburg did utilize its permitted average capacity in 1975, for the past five years it has averaged only between 10.1 and 12.3 million gallons per day from its South Pasco Wellfield. Even if the regulatory level of the State Road 54 well were in jeopardy of violation, it would be possible to shift the pumpage among the eight production wells to counter such a result. The Bexley property is located approximately 3.5 miles from the center of pumpage at the South Pasco Wellfield. THE OTTO POTTBERG TRUST PROPERTY The Otto Pottberg Trust Property, owned by the Pottberg family since 1936, is comprised of 8,000 acres of land located immediately north of the Starkey Wellfield. The property is used for cattle grazing and a nursery operation, and wildlife on the property is abundant. The intervenor Pottberg has observed that since the operation of the well field began on the Starkey property, the cattle ponds on the Pottberg property dry up and vegetation and grasses are adversely affected during the dry seasons. He has observed a noticeable decline in all lake levels. He fears that increased withdrawals from the Starkey well field would diminish the use of his property for cattle grazing and nursery operations, would create a fire hazard and would adversely affect plant, animal and human life on his property. The Authority's experts found no surface drawdowns which would extend into the Pottberg property. The District determined that the potentiometric surface drawdown resulting from the proposed increased withdrawals from the Starkey Well field would exceed five feet on the northern boundary--thus extending into the property owned by the Otto Pottberg Trust. Likewise, the water table drawdown of one foot extends beyond the property at the northwest corner. However, there was no evidence that there are lakes on the Pottberg property at or near the northwest corner of the Starkey property, or that there is an existing CUP well on the Pottberg property in the area where the potentiometric surface drawdown exceeds five feet. PASCO COUNTY'S WATER DEMANDS AND SUPPLIES Pasco County is legally authorized and required to provide an adequate public water supply for its citizens. Based upon per capita use and estimates of population growth, the quantity of public supply water needed by Pasco County has been estimated by various experts as follows: YEAR AVERAGE MGD MAXIMUM MGD 1985 11.3 20.3 1986 12.3 1988 12.8 28.6 1990 16.4 29.5 1993 18.8 40.8 1995 21.8 39.5 2000 27.2 49.0 In the year 1983, the Pasco County Utility Department actually utilized 8.1 mgd for public water supply purposes. Pasco County has a contract right and obligation to purchase the following amounts of water produced by the Authority at the Starkey Wellfield: YEAR AVERAGE AND MAXIMUM MGD 1985 7 1986 6.7 1987 6.4 1988 6.1 1989 5.8 1990 and thereafter 5.5 The City of New Port Richey also has an allocated entitlement to the remaining amounts of water withdrawn from the Starkey Wellfield under its current permit. The Water Supply Agreement for the Starkey Well field recognizes that the City and County will have increasing water supply needs, and provides that they may, upon giving the Authority two years prior notice, increase their entitlement. The Pasco County Utility Department also has 13 CUPs covering public supply wells located on or near the coast. These CUPs, which were renewed in May of 1984 and expire in May of 1992, authorize a total withdrawal of 4.54 mgd average. The majority of these wells are located in coastal areas along and to the west of the 10-foot potentiometric surface contour near the saltwater- freshwater interface. Wells west of the 10-foot contour line generally have high chloride levels. The County has experienced inefficiency in operating some of these wells, and they are considered suitable mainly for fire control and peaking purposes. A condition of the 13 CUPs requires a proportionate, or gallon by gallon, decrease of average day withdrawals should Pasco County acquire another source of public water supply. Pinellas County is contractually obligated to provide Pasco County with up to 10 mgd upon demand. Pasco County controls how much water it will take from the Pinellas County water system. This water is produced by the Authority from other wellfields located within Pasco County, is purchased by Pinellas County and then is transported to Pinellas County. Upon request by Pasco County, the water is then transported back up north again to Pasco County. The water travels approximately 25 to 40 miles from Pasco County to Pinellas County and back to Pasco County. The Pinellas County water system has sufficient capacity to continue to provide 10 mgd to Pasco County. Pasco County does not currently utilize the full 10 mgd, partially because such use would currently present difficulties in fulfilling its contractual obligation or entitlement from the Starkey Wellfield. The contract between Pinellas and Pasco Counties was not placed into evidence. No evidence was presented as to whether Pasco County is either able to or desires to eliminate or change its contract with Pinellas County. It was the position of the Pasco County Director of Public Works and Utilities that it would be more cost-effective to have an alternative source of public water supply. There was insufficient evidence produced at the hearing to determine if the Pinellas County water provided to Pasco County is more or less expensive than the rates presently charged by the Authority or by the contractual agreement between Bexley and Pasco County.
The Issue The issue to be determined in this case is whether the City of Tarpon Springs (“City”) is entitled to a industrial wastewater facility permit for its proposed discharge of demineralization concentrate into the Gulf of Mexico adjacent to Pasco County, Florida.
Findings Of Fact The Parties Henry Ross is a resident of Tarpon Springs. In his petition for hearing, he alleges that he is a recreational fisherman and a "consumer of fish taken from the area" where the proposed wastewater discharge would occur. He presented no evidence at the final hearing to prove these allegations. Neither the City or the Department stipulated to facts that would establish Ross's standing. The City of Tarpon Springs is a municipality in Pinellas County and the applicant for the industrial wastewater permit that is challenged by Ross. The Department is the agency charged by law with the duty, and granted the power, to regulate the discharge of pollutants into waters of the State. The Proposed Permit - General Due to the cost of obtaining potable water from Pinellas County Utilities, the City decided to look for another source of drinking water. In February 2004, an alternative water supply plan was developed by the City’s Office of Public Services which analyzed potable water supply options. It determined that the withdrawal and treatment of brackish groundwater represented the best option for the City. The proposed permit authorizes the City to discharge industrial wastewater into waters of the State. The wastewater is demineralization concentrate, which is produced when RO technology is used to remove salts from brackish water to convert it to potable water. The wastewater would be produced in conjunction with the operation of a not-yet-constructed WTP that would supply public drinking water to the residents of the City. The City must also obtain a consumptive use permit from the Southwest Florida Water Management District for the proposed withdrawal of groundwater. Whether the Town is entitled to a consumptive use permit is not at issue in this proceeding. The industrial wastewater permit would authorize a maximum daily discharge of 2.79 million gallons per day ("mgd") of RO concentrate. The initial operation of the WTP, however, is expected to discharge 1.05 mgd. The RO concentrate would be transported via a force main from the WTP in the City to an outfall in Pasco County. The outfall would discharge the wastewater into a canal which is already being used for the discharge of cooling water from Progress Energy Florida, Inc.’s Anclote Power Generation Facility. The outfall would be 50 feet north of the point in the canal where Progress Energy is required to demonstrate compliance with its own permitting requirements, so as not to interfere with Progress Energy's ability to demonstrate compliance. There is a floating barrier in the channel north of the proposed point of discharge, and a fence along the side of the canal, to prevent swimmers, boaters, and persons on foot from getting near the Progress Energy power plant. The floating barrier and fence would also prevent swimmers, boaters, or pedestrians from reaching the proposed discharge outfall and the area of the canal where the discharge will initially mix. After being discharged into the canal, the wastewater would become diluted and flow northward, out of the canal and into the open waters of the Gulf. The prevailing currents in area would most often force the wastewater south toward Pinellas County and the mouth of the Anclote River. To determine the characteristics of the wastewater, the City's consultants collected water from the three proposed well fields for the new WTP and ran the water through a small, pilot-scale RO unit to generate an RO concentrate that is representative of the proposed RO discharge. It was determined that eight constituents of the wastewater would likely be present in concentrations that would exceed applicable state water quality standards: aluminum, copper, iron, gross alpha (a radioactivity measurement), total radium, selenium, nickel, and zinc. The Mixing Zones The Department may authorize mixing zones in which a wastewater discharge is allowed to mix with the receiving waters. See Fla. Admin. Code R. 62-4.244. Within the mixing zone, certain minimum water quality criteria must be met. At the outer boundary of the mixing zone, the applicable state water quality standards must be met. In this case, the water quality standards for Class III marine waters are applicable. The City's consultants analyzed the wastewater, receiving waters, and other factors and used an analytical model to simulate a number of mixing scenarios. In cooperation with Department staff, a separate mixing zone was established for each of the eight constituents that are not expected to meet water quality standards at the outfall. The largest mixing zone, for copper, is 1,483.9 square meters. The smallest mixing zone, for nickel, is 0.7 square meters. The mixing zones are conservatively large to assure sufficient mixing. Under most conditions, the mixing is expected to occur in a smaller area. Toxicity Analysis Among the minimum criteria that must be met within a mixing zone is the requirement to avoid conditions that are acutely toxic. See Fla. Admin Code R. 62-302.500(1)(a). A wastewater discharge is tested for potential acute toxicity by exposing test organisms to the undiluted discharge and determining whether more than 50 percent of the organisms die within a specified time period. The test organisms, mysid shrimp and silverside minnow, are sensitive species. Therefore, when a discharge is not acutely toxic to these organisms, it can be reasonably presumed that the discharge would not harm the native organisms in the receiving waters. The acute toxicity test for the proposed RO concentrate indicated zero toxicity. The Department requested that the City also analyze the potential chronic toxicity of the proposed discharge. A wastewater discharge shows chronic toxicity if exposure to the discharge adversely affects the growth and weight of the test organisms. The tests performed on the representative discharge showed that the proposed discharge of RO concentrate would not create chronic toxicity in the mixing zones. Petitioner’s expert witness, Ann Ney, did not review the toxicity analyses or other water quality data that were submitted to the Department by the City. However, she expressed a general concern about a salty discharge that could create stratification in the canal with higher salinity at the bottom of the canal that might be hypoxic (little or no dissolved oxygen). The more persuasive evidence shows that salinity stratification, or a hypoxic condition, is unlikely to occur. The proposed permit requires the City to conduct quarterly chronic toxicity tests. The permit also requires the City to periodically test the water and sediments for any unexpected cumulative effects of the discharge. Evaluation of Disposal Options Florida Administrative Code Rule 62-620.625(6) requires that an applicant for a permit to discharge demineralization concentrate must investigate disposal options potentially available in the project area. The City evaluated blending the discharge concentrate with the City's re-use water irrigation program or with the City’s domestic wastewater discharge into the Anclote River. The RO concentrate was too salty for irrigation use and there was an inadequate volume of domestic wastewater available throughout the year. In addition, the Anclote River is an Outstanding Florida Water and, therefore, is afforded the highest water quality protection under Department rules. See Fla. Admin. Code R. 62-4.242(2). The City also looked at underground injection but that was economically unreasonable and there was concern about upward migration of the discharge. It was economically unreasonable to discharge the concentrate farther out into the Gulf. Anti-degradation Analysis For a proposed new discharge, a permit applicant must demonstrate that the use of another discharge location, land application, or recycling that would avoid the degradation of water quality is not economically and technologically reasonable. See Fla. Admin. Code R. 62-4.242(1)(d). As discussed above, the City investigated other disposal options, but they were not economically or technologically reasonable. An applicant for a permit authorizing a new discharge must demonstrate that any degradation is desirable under federal standards and under circumstances that are clearly in the public interest. See Fla. Admin. Code R. 62-302.300(17). In determining whether a proposed discharge is desirable under federal standards and under circumstances that are clearly in the public interest, the Department is required by Rule 62-4.242(1)(b) to consider the following factors: Whether the proposed project is important to and is beneficial to public health, safety or welfare (taking into account the policies set forth in Rule 62-302.300, F.A.C., and, if applicable, Rule 62-302.700, F.A.C.); and Whether the proposed discharge will adversely affect conservation of fish and wildlife, including endangered or threatened species, or their habitats; and Whether the proposed discharge will adversely affect the fishing or water-based recreational values or marine productivity in the vicinity of the proposed discharge; and Whether the proposed discharge is consistent with any applicable Surface Water Improvement and Management Plan that has been adopted by a Water Management District and approved by the Department. The proposed project is important to and is beneficial to public health, safety or welfare because it would provide drinking water for the public. In addition, the treatment and use of brackish groundwater converts otherwise unusable water into a valuable resource. The use of brackish water avoids the use of water in the surficial aquifer that is used by natural systems, such as wetlands. The Florida Legislature has found that the demineralization of brackish water is in the public interest, as expressed in Section 403.0882, Florida Statutes (2010): The legislature finds and declares that it is in the public interest to conserve and protect water resources, provide adequate supplies and provide for natural systems, and promote brackish water demineralization as an alternative to withdrawals of freshwater groundwater and surface water by removing institutional barriers to demineralization and, through research, including demonstration projects, to advance water and water by-product treatment technology, sound waste by-product disposal methods, and regional solutions to water resources issues. The proposed discharge would not adversely affect conservation of fish and wildlife. Because the discharge is not toxic to sensitive test organisms provides reasonable assurance that the native fish and other aquatic life would not be adversely affected by the discharge. The only identified threatened or endangered species that frequents the canal waters is the endangered Florida Manatee. Manatees use the canal because of its relatively warm waters. Manatees come to the surface to breathe and they drink fresh water. There is no reason to expect that a manatee moving through the mixing zones would be adversely affected by the RO concentrate. The Florida Fish and Wildlife Conservation Commission, which has primary responsibility for the protection of endangered and threatened species, did not object to the proposed permit. Manatees and many other aquatic species use seagrasses as food or habitat. There are no seagrasses in the area of the canal into which the RO concentrate would be discharged, but there are dense seagrass beds nearby. The proposed discharge would have no effect on the seagrasses in the area. The proposed discharge would not adversely affect fishing or water-based recreational values or marine productivity in the vicinity of the proposed discharge. Because the proposed discharge is non-toxic and would meet Class III water quality standards before reaching the closest areas where humans have access to the canal and Gulf waters, there is no reason to believe that the proposed discharge would be harmful to humans. The proposed discharge would not adversely affect recreational activities, such as swimming, boating, or fishing. Petitioner presented the testimony of two fishermen about fishing resources and water flow in the area, but no evidence was presented to show how the proposed discharge would reduce marine productivity. Petitioner contends that the proposed discharge would adversely affect the Pinellas County Aquatic Preserve. However, the aquatic preserve is two miles away. The proposed discharge would probably be undetectable at that distance. It would have no effect on the waters or other resources of the aquatic preserve. With regard to the requirement that the proposed discharge be consistent with an adopted and approved Surface Water Improvement and Management Plan for the area, there is no such plan.
Recommendation Based on the foregoing Findings of Fact and Conclusions of Law it is RECOMMENDED that the Department issue a final order determining that Petitioner lacks standing, and approving the issuance of the industrial wastewater facility permit to the City. DONE AND ENTERED this 16th day of December, 2010, in Tallahassee, Leon County, Florida. S BRAM D. E. CANTER Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 16th day of December, 2010. COPIES FURNISHED: Nona R. Schaffner, Esquire Department of Environmental Protection 3900 Commonwealth Boulevard, Mail Station 35 Tallahassee, Florida 32399-3000 Thomas J. Trask, Esquire Frazer, Hubbard, Brandt & Trask, LLP 595 Main Street Dunedin, Florida 34698 Henry Ross 1020 South Florida Avenue Tarpon Springs, Florida 34689 Lea Crandall, Agency Clerk Department of Environmental Protection Douglas Building, Mail Station 35 3900 Commonwealth Boulevard Tallahassee, Florida 32399-3000 Tom Beason, General Counsel Department of Environmental Protection Douglas Building, Mail Station 35 3900 Commonwealth Boulevard Tallahassee, Florida 32399-3000 Mimi Drew, Secretary Department of Environmental Protection Douglas Building 3900 Commonwealth Boulevard Tallahassee, Florida 32399-3000
The Issue The issues to be determined in this proceeding are: whether the challengers have standing; and (2) whether Proposed Rule 40E-8.221(2) is an invalid exercise of delegated legislative authority.
Findings Of Fact Based on the parties' stipulations and the evidence adduced at the final hearing, the following findings of fact are made: The Parties The District is a government entity existing and operating pursuant to chapter 373, Florida Statutes, as a multi- purpose water management district. The District has the power and duty to adopt MFLs consistent with the provisions of part I of chapter 373. Sanibel is a barrier island sanctuary in Lee County and a duly-formed municipality with a population of more than 6,000. Sanibel is situated at the mouth of the Caloosahatchee River, within the Caloosahatchee's greater estuarine area. Sanibel is known primarily for its natural beauty, including clear blue waters, shell beaches, world-class sport fisheries, and wildlife refuges. That is why tourists come from around the globe to visit Sanibel, and why Sanibel's residents move and remain there. Sanibel actively participated in the rulemaking process for the Proposed Rule from its inception. Sanibel submitted two technical comment letters to the District during the development of the Proposed Rule. Sanibel's natural resources director, James Evans, attended numerous public and technical meetings associated with the development of the Proposed Rule, speaking on the record at each of the public meetings prior to the adoption hearing by the District's governing board. The Town, located on Estero Island in Lee County, is also a barrier island community and duly-formed municipality with a population of more than 6,000. The Town is situated just south of the mouth of the Caloosahatchee River and on the southeastern edge of the Caloosahatchee River's greater estuarine area. The Town is known primarily for its natural beauty, including clear blue waters, shell beaches, world-class sport fisheries, and wildlife refuges. Cape Coral is a duly-formed municipality in Lee County and is the largest city between Tampa and Miami, with a population in excess of 150,000. Cape Coral is bordered on the south by the Caloosahatchee River and has over 400 miles of navigable canals and waterways, all of which are within the Caloosahatchee River's greater estuarine area. In addition, Cape Coral has an assigned load reduction allocation under the Basin Management Action Plan (BMAP) for the Caloosahatchee River Estuary (CRE) due to it being designated as impaired for dissolved oxygen and nutrients. Maintaining sufficient flow in the Caloosahatchee River would have a direct impact on Cape Coral's ability to meet its assigned load reduction allocation. In addition to living on or near the water, a substantial number of the residents of Sanibel, Cape Coral, and the Town engage in water-based recreational activities such as swimming, fishing, boating, kayaking, paddle boarding, bird watching, and nature observation in and around the Caloosahatchee River's greater estuarine area. Fort Myers is a duly-formed municipality in Lee County and has a population of approximately 80,000. Fort Myers is bordered by the CRE throughout its entire jurisdictional boundary. Fort Myers owns and maintains a yacht basin (Ft. Myers Yacht Basin), which includes a mooring field and an anchorage field in the Caloosahatchee River. Fort Myers presented testimony that commercial crabbing and recreational fishing have declined and that it has suffered economic harm due to water quality issues. Fort Myers owns the submerged land in the Caloosahatchee River from Marker 39 to Marker 58, and islands in the river. One such island will be used as a park for recreational activities such as canoeing, kayaking, and hiking for visitors to enjoy the Caloosahatchee River. Fort Myers also owns and operates piers and a public boat ramp within the Caloosahatchee River. Fort Myers' dock master has observed declines in seagrasses in the Caloosahatchee River during his 19-year career working at the Ft. Myers Yacht Basin. Fort Myers has adopted a Harbor Management Plan for the management of its mooring and anchorage fields in the Caloosahatchee River. Fort Myers has also been assigned a load reduction allocation under the BMAP for the CRE, and is responsible for a certain amount of pollution reduction over time. Bonita Springs is a municipality of more than 50,000 in Lee County. The borders of Bonita Springs include portions of Estero Bay, which, along with San Carlos Bay and the Caloosahatchee River, is part of the greater Lower Charlotte Harbor Estuary. Bonita Springs includes wildlife refuges, such as the Estero Bay Aquatic Preserve and Lovers Key State Park and Recreation Area. While Bonita Springs' strategic priorities include environmental protection and water quality, it does not have environmental staff or test water quality. Bonita Springs participates in Estero Bay Management and the Charlotte Harbor National Estuary Program (CHNEP). Bonita Springs provides financial assistance to the Caloosahatchee Citizen Sea Grass Gardening Project. Concerns regarding harm to the CRE and tape grasses are shared by a significant number of residents in Bonita Springs and Estero, including injury to the quality of life and recreational uses such as swimming, boating, and kayaking in the waterways. Estero is a municipality of more than 30,000 in Lee County. Estero borders the eastern portion of Estero Bay. Estero includes wildlife refuges, such as Estero Bay Aquatic Preserve and Koreshan State Park. While Estero has environmental policies, it does not have environmental staff or test water quality. Estero makes financial contributions to CHNEP. Estero is concerned that the Proposed Rule will affect its water quality, which could affect its residents' quality of life. Estero believes it could be harmed by poor water quality because its residents are portable retirees who can move away, or tourists who can choose not to visit. Captiva Island is situated at the mouth of the Caloosahatchee River, within the Caloosahatchee's greater estuarine area. CCP is a Florida not-for-profit corporation representing property owners, businesses, and the community of Captiva Island. Captiva Island is part of unincorporated Lee County and is located north of Sanibel. CCP has 200 financial contributors comprised of property owners, businesses, and residents on Captiva Island. CCP's mission includes protection of clean off-shore water, diverse and healthy marine life, and robust native vegetation along with the protection of mangrove fringe and water quality. CCP works with Lee County on provisions of the County's comprehensive plan, which include the quality of adjacent waters. CCP relied on the expertise of James Evans, the director of natural resources for Sanibel, and on the Sanibel- Captiva Conservation Foundation (SCCF). CCP was advised that the Proposed Rule was not sufficient to protect the environment and Vallisneria americana (Vallisneria) or tape grass during the dry season. Caloosahatchee River and Estuary The watershed of the Caloosahatchee River covers approximately 861,058 acres. The watershed consists of four sub-watersheds, three of which are upstream of the S-79 structure. The Tidal Caloosahatchee Basin sub-watershed (estuarine system) is downstream of the S-79 structure. The S-79 structure captures all the upstream discharges of fresh water that go into the estuarine system through the S-79 structure. Major tidal tributaries of the Tidal Caloosahatchee Basin are the Orange River and Telegraph Creek, which drain into the upper estuary downstream of the S-79 structure. Fresh water inflows from these and other tributaries also contribute fresh water into the estuarine system. The Caloosahatchee River was originally a natural watercourse running from its origin at Lake Flirt to San Carlos Bay. It is currently defined as the "surface waters that flow through the S-79 structure, combined with tributary contributions below S-79 that collectively flow southwest to San Carlos Bay." Fla. Admin. Code. R. 40E-8.021(2). Man-made alterations to the Caloosahatchee River began as early as 1884, but major alterations began in the 1930s with the authorization and construction of the C-43 Canal. The C-43 Canal runs 41.6 miles from Lake Okeechobee at Moore Haven, i.e., from the S-77 structure, to Olga, i.e., the S-79 structure. The C-43 Canal serves as a conveyance feature to drain water from the three sub-watersheds located upstream of the S-79 structure and convey regulatory discharges of water from Lake Okeechobee. In 1957, the United States Army Corps of Engineers (USACOE) prepared a report focused on drainage, flood control, and navigation needs of the Caloosahatchee River Basin, and one recommendation was construction of the S-79 structure. The key objectives of the S-79 structure were to eliminate undesirable salinity in the lower Caloosahatchee River, prevent the rapid depletion of water supplies, and raise the prevailing dry weather water table levels. The S-79 structure was constructed in 1965. It is a lock and dam structure that is also known as the Franklin Lock and Dam. The S-79 structure captures all upstream fresh water discharges that go into the CRE. The S-79 structure demarcates the head of the CRE, which extends 26 miles downstream to Shell Point, where it empties into San Carlos Bay in the southern portion of the greater Lower Charlotte Harbor Estuary. Most of this surface water flow takes a southerly route, flowing to the Gulf of Mexico under the Sanibel Causeway that crosses San Carlos Bay. When fresh water inflows are high, tidal action pushes some of this water back up into Matlacha Pass and Pine Island Sound. Additionally, some water exits to the south and flows into Estero Bay through Matanzas Pass. Salinity exhibits a strong gradient in the CRE. Changes in the watershed upstream of the S-79 structure have profoundly influenced the delivery of fresh water to the CRE. Runoff is now more variable with higher wet season flows and lower dry season discharges. Large volumes of fresh water during the wet season can flush salt water from the tidally-influenced sections of the water body, resulting in low salinity conditions throughout most of the CRE. In contrast, fresh water inflow at the S-79 structure can stop entirely during the dry season, especially during significant drought events. This results in saline intrusion that can extend upstream to the S-79 structure. Fluctuations of this magnitude at the head and mouth of the system cause mortality of organisms at both ends of the salinity gradient. Downstream of the S-79 structure, the CRE was significantly altered by multiple dredging activities, including the removal of extensive shoals and oyster bars. Seven automobile bridges, a railroad trestle, and the Sanibel Causeway were built between the 1880s and 1960s. A large canal network was built along the northern shoreline of the CRE in Cape Coral. To provide navigational access from the canal network to deeper water, multiple access channels were dredged within the CRE. Alterations to the delivery of fresh water combined with structural changes to the tidally-influenced sections of the water body have had lasting ecological consequences. These include the loss of extensive shoals and oyster bars, loss of a flourishing bay scallop fishery, and significant decline in seagrass cover in deeper areas. MFLs An MFL is the limit at which further withdrawals would be significantly harmful to the water resources or ecology of the area. The District's rules define significant harm as the "temporary loss of water resource functions, which results from a change in surface or ground water hydrology, that takes more than two years to recover, but which is considered less severe than serious harm." Fla. Admin. Code R. 40E-8.021(31). The rule further specifies that a water body's specific water resource functions addressed by an MFL are defined in the MFL technical support document. Id. MFLs are calculated using the best information available. The regulatory agency is required to consider changes and structural alterations to watersheds, and the constraints such changes or alterations placed on the hydrology of an affected watershed. Certain waterbodies may not serve their historical hydrologic functions and recovery of these waterbodies to historical hydrologic conditions may not be economically or technically feasible. Accordingly, the regulatory agencies may determine that setting an MFL for such a water body based on its historical condition is not appropriate. Caloosahatchee MFL For the CRE, MFL criteria were designed to protect the estuary from significant harm due to insufficient fresh water inflows and were not guidelines for restoration of estuarine functions to conditions that existed in the past. The MFL criteria consider three aspects of the flow in terms of potential significant harm to the estuary: (1) the magnitude of the flow or the volume of fresh water entering the estuary; (2) the duration of time that flows can be below the recommended level before causing significant harm; and (3) the return frequency, or the number of times the MFL can be violated over a number of years before it results in significant harm, recognizing that natural climatic variability will be expected to cause fresh water inflows to fall below recommended levels at some natural frequency. The CRE MFL initially adopted in 2001 was primarily based on the salinity tolerance of one valued ecosystem component (VEC). The VEC was Vallisneria americana or tape grass, a fresh water aquatic plant that tolerates low levels of salinity. A major assumption of this approach was that flow and salinity conditions that protect Vallisneria would also protect other key organisms in the estuary. The 2001 CRE MFL was based on a regression model for estimating the relationship between surface salinity measured at the Ft. Myers monitoring station located in the Ft. Myers Yacht Basin and discharge at the S-79 structure. Although the District monitors surface and bottom salinity at multiple stations in the CRE, the Ft. Myers monitoring station is located centrally in the CRE and at the historical downstream extent of the Vallisneria habitat. The Ft. Myers monitoring station also has the most comprehensive period of record of monitoring data available. The fixed data sondes that monitor surface and bottom salinity are located at 20 percent and 80 percent of total river depth measured at mean low water. The data sondes continuously measure temperature and specific conductivity and, depending on the manufacturer, contains programs that calculate salinity. Those calculations are based on standards recognized and used worldwide by estuarine, marine, and oceanographic scientists.1/ The regression model only implicitly included inflows from the Tidal Caloosahatchee Basin sub-watershed downstream of the S-79 structure. To address this, during the 2003 re-evaluation, a linear reservoir model of Tidal Caloosahatchee Basin inflows was developed. The regression model results showed that a total inflow from S-79 plus the Tidal Caloosahatchee Basin of about 500 cubic feet per second (cfs) was required to produce a salinity of 10 at the Ft. Myers monitoring station. Thus, the 2001 CRE MFL of 300 cfs measured at the S-79 structure would produce a salinity of 10 at the Ft. Myers monitoring station only with additional inflow from the downstream Tidal Caloosahatchee Basin sub- watershed. However, that additional inflow estimate was highly uncertain. The conclusion was that actual flow measurements over a period of time were needed in order to perform more robust calibrations for the new models that were being developed. The Re-evaluation The District's re-evaluation effort began in 2010 after the Conservancy of Southwest Florida filed a petition requesting review of the Caloosahatchee MFL. At the time, the governing board denied the petition but directed staff to undertake additional research and monitoring to ensure a future revision would be supported by the best information available. The first step was to review the September 2000 Final Peer Review Report (PRR) for the initial adoption. The 2000 PRR identified several items the District should consider, including a hydrodynamic salinity model, a numerical population model for Vallisneria, quantification of habitat value for Vallisneria, and documentation of the effects of minimum flows on downstream estuarine biota. The 2000 PRR documented concerns that the current MFL was based solely on the salinity tolerance of Vallisneria and recommended using multiple indicator species. To address those recommendations, the District conducted studies to evaluate multiple ecological indicators, such as zooplankton, aquatic vegetation, oysters, benthic communities, and blue crabs, in the Caloosahatchee from the S-79 structure to beyond Shell Point. In addition, the District collected flow data from the Tidal Caloosahatchee Basin sub-watershed for at least five years to develop watershed, flow, and hydrodynamic models that could properly simulate inflows and salinity responses. When the initial research was complete in 2016, the District published the Draft Science Document containing 11 component studies. In September 2016, the District held a two- day Science Symposium to present the 11 component studies and gather public comment. In response to public comment, the District performed additional evaluations, modeling, and updated the component studies to produce a Draft Technical Document. A Peer Review Panel reviewed the Draft Technical Document, which included the Draft Science Document. The Peer Review Panel has over 150 years of combined relevant scientific experience. The Peer Review Panel toured the CRE by air and water. The District also held a Peer Review Session to engage the public and obtain feedback. The Peer Review Panel's 2017 report (PRP report) stated that the District had "crafted a well-executed and well- documented set of field and laboratory studies and modeling effort" to re-evaluate the CRE MFL. The PRP report supported the 11 component studies, the modeling, the evaluations, and the initial proposed rule language. The Final Technical Document published in January 2018 incorporated five different models and additional science, examining the entire watershed and the criteria itself. The Final Science Document was Appendix A to the Final Technical Document and contained the scientific research and analysis that was done for the 11 component studies, the modeling, and the additional scientific analyses performed in response to public and stakeholder input. The District initiated rule development in December 2017. Rule development workshops were held in February and June 2018 and a stakeholder technical meeting was held in May 2018. The District validated the comments after each workshop and meeting, and revised the proposed rule language. The District published its Notice of Proposed Rule on July 23, 2018.2/ At its September 13, 2018, meeting, the District's governing board held a public hearing on the Proposed Rule. The mayors of Sanibel, Cape Coral, and the Town publicly commented at the hearing. After considering public comments, the governing board adopted the Proposed Rule. The District documented and responded to each public comment, memorializing the information in the Final Technical Document. Later, after the rule workshops and May 2018 technical meeting, the District prepared and presented all of the updated information, including public comment, at the September 2018 adoption hearing. Thus, the District's re-evaluation process was open and transparent. The Re-evaluated Caloosahatchee MFL The science supporting the re-evaluation involved a comprehensive assessment of the effects of diminished dry season fresh water inflows on the CRE. The dry season was chosen for two reasons. First, because it is well-established that the upstream migration of salt combined with reduced fresh water inflow alters the health and productivity of estuarine habitats. Second, because the dry seasons are the times when the current MFL criteria are likely to be exceeded or violated. The 11 component studies targeted specific concerns regarding physical and ecological characteristics. Together they offered a holistic understanding of the negative effects of diminished fresh water inflow on estuarine ecology. The re-evaluated MFL criteria were developed using a resource-based approach. The approach combined the VEC approach and the habitat overlap concept. The habitat overlap approach is based on the idea that estuaries serve a nursery function and salinity determines the distribution of species within an estuary, including distribution during different life stages. The combined approach studied the minimum flow requirements of the various indicator species in terms of magnitude, duration, and return frequency, resulting in the following three aspects of the flow: (1) for magnitude, a 30-day moving average flow of 400 cfs measured at the S-79 structure; for duration, an MFL exceedance occurs during a 365-day period when the 30-day moving average flow at S-79 is below 400 cfs and the 30-day moving average salinity exceeds 10 at the Ft. Myers salinity monitoring station; and (3) for return frequency, an MFL violation occurs when an exceedance occurs more than once in a five-year period. The magnitude component is based on the salinity requirements of Vallisneria, along with results from the 11 studies modeling salinity and considering the salinity requirements of the other VECs. The duration component is based mainly on the estimates of rate of loss of Vallisneria shoots when salinity rises above 10 and the recovery rate of the shoots when salinities fall back below 10. Return frequency was determined based on long-term rainfall records rather than flow measurements from the S-79 structure, which the PRP report felt was well justified. In addition to the component studies, the re-evaluated MFL criteria and existing recovery strategy were evaluated using a suite of hydrologic and ecological models simulating long-term fresh water inflow to the CRE associated with varying management options, the resulting salinity in the CRE, and the ecological response of indicator species that are sensitive to low fresh water inflows. Five models were utilized. Three models simulated fresh water inflows to the CRE: two for S-79 flows; and one for Tidal Caloosahatchee Basin sub-watershed flows. The other two models were a three-dimensional hydrodynamic salinity model and a Vallisneria model. Tidal Caloosahatchee Basin sub-watershed has a number of tributaries that drain fresh water into the CRE. The flow at several of the tributaries was monitored for a five-year period. The measured flow was used to calibrate a watershed model and conduct a long-term simulation. The results showed an average fresh water inflow for all seasons of approximately 430 cfs. The average fresh water inflow during the dry season was 245 cfs while the wet season average fresh water inflow was 613 cfs. Fresh water inflow from the Tidal Caloosahatchee Basin sub- watershed was approximately 20 percent of total fresh water inflow to the CRE while 80 percent was released through the S-79 structure. Petitioners' and Intervenors' Objections 400 cfs Is Too Low Sanibel relied on a memorandum prepared by Dr. David Tomasko (Tomasko report) concerning his company's review of the January 2018 Final Technical Document supporting the Proposed Rule. The Tomasko report, dated October 23, 2018, was in the form of a "technical memorandum" outlining "preliminary findings." The Tomasko report was admitted as a joint exhibit; however, Dr. Tomasko did not testify at the final hearing. The Tomasko report is hearsay that was not used to supplement or explain competent direct evidence. Although hearsay is admissible in this proceeding, it cannot be the sole basis for a finding of fact.3/ See § 120.57(1)(c), Fla. Stat. The District's expert witnesses, who testified at the final hearing, explained that ten of the 11 component studies identified average indicator flows at S-79 ranging from 237 to 545 cfs with standard deviations ranging from plus or minus 57 to plus or minus 774 cfs.4/ The District's experts performed three different evaluations of those flow results. They identified the mean of all the means, calculated the median of the means, and performed a probability density function. The flow results for each of the three evaluations were 381 cfs, 400 cfs, and 365 cfs, with standard deviations that ranged from plus or minus 277 cfs to plus or minus 706 cfs. The District's experts testified that the three flow results are indistinguishable from a statistical point of view. The District chose 400 cfs because it was the highest flow result, and, therefore, the most protective of the three. The Petitioners and Intervenors failed to present evidence that showed any deficiencies in the District's component studies, hydrologic, hydrodynamic, or statistical modeling, or analysis of compliance data. The preponderance of the evidence established that the District used the best available science to calculate the MFL criteria. The District did not act arbitrarily or capriciously when it chose 400 cfs as the magnitude component of the MFL criteria. Inclusion of Salinity in the MFL Criteria The preponderance of the evidence also established that Vallisneria continues to be a particularly useful indicator of environmental conditions in the CRE. It supports essential ecological goods and services, is sensitive to salinity fluctuations at the ecosystem scale, and has value to a variety of stakeholders. The location of Vallisneria habitat in the upper CRE and its negative response to increased salinity made it an excellent candidate as an ecological indicator for fresh water inflow. A combination of field monitoring, mesocosm studies, and modeling results allowed the application of Vallisneria responses as a platform to quantify the effects of high salinity duration in the upper CRE. Component Study Eight reviewed the development and initial application of a simulation model for Vallisneria in the CRE. The Vallisneria model was used to evaluate the salinity conditions that led to net annual mortality, or, in other words, the duration of high salinity exposure that led to decreased Vallisneria shoots versus the duration of low salinity conditions required for recovery. Component Study Seven included an analysis of the relationship between the number of consecutive days where salinity at the Ft. Myers monitoring station was greater than 10 and the percentage of initial Vallisneria shoots remaining at the end of each high salinity period. To further evaluate the duration element associated with the MFL criteria, the field monitoring data contained in Component Study Seven was evaluated with the mesocosm and modeling results. All three sources were analyzed similarly to derive a combined curve showing high salinity exposure duration that is significantly harmful to Vallisneria. The model also provided information that was used to quantify the duration of low salinity conditions required for Vallisneria to recover a relative fraction of shoots after high salinity exposure. Merging the exposure and recovery evaluations facilitated a determination of the unfavorable salinity duration that could significantly harm Vallisneria habitat. With significant harm defined as the environmental harm from which two years are required to recover, the determination was that Vallisneria should experience no more than 55 consecutive days of salinity greater than 10. However, stakeholders expressed concerns regarding the percentage loss of Vallisneria habitat after 55 days of high salinity exposure. In response, the District conducted further analysis of modeling results and revised the duration component to accept the stakeholder recommendation, now expressed in the Proposed Rule, of a 30-day moving average salinity greater than 10. The Petitioners and Intervenors argued that by expressing the MFL as a "flow plus salinity component" the Proposed Rule enlarges, modifies, or contravenes the specific provisions of law implemented. However, the duration component is part of compliance and represents the duration of time that flows can be below the recommended level before causing significant harm to the indicator species Vallisneria. The MFL in the Proposed Rule is a 30-day moving average flow of 400 cfs measured at the S-79 structure. Flow is both measured and operationally controlled at the S-79 structure. However, as previously found, there are other sources of fresh water entering the CRE downstream of the S-79 structure. The District does not control and cannot control these downstream sources, which modeling reveals contribute approximately 20 percent of total fresh water inflow to the CRE. By including salinity, the District can account for fresh water inflows coming from the tidal basin when there are low or no flows at S-79 since the significant harm threshold in the CRE is directly related to salinity tolerance of the indicator species Vallisneria. The District's experts also testified that salinity can be used as a flow component because it is not affected by chemical or biological processes and is an indicator of how much fresh water is entering the system.5/ Salinity is included in the duration component of the MFL criteria and is an exceedance criterion because the science established that the salinity gradient is crucial to the overall health of the CRE. Including salinity in the duration component of the MFL criteria achieves the purpose of the statutory mandate to set MFLs that are designed to avoid significant harm to the water resources and ecology of the area. No Unit of Measurement for Salinity The Petitioners and Intervenors argued that the Proposed Rule is vague because the language does not contain any units for salinity. The UNESCO calculation is the standard equation used by the estuarine and marine science community to convert specific conductivity and temperature data to salinity. The District's experts testified that the UNESCO calculation reports salinity as a ratio, which is a dimensionless number and has no units. The District uses the UNESCO calculation and performs the conversion in a spreadsheet that it maintains. In some instances, certain brands of data sondes are programmed to perform the calculation and provide the salinity number. The preponderance of the evidence established that use of the practical salinity unit (PSU) is not technically correct. PSU is a misnomer, a pseudo-unit equivalent to a unitless salinity number. The Petitioners' and Intervenors' expert witness, Dr. Anthony Janicki, conceded there is no difference between reporting salinity as unitless or as PSU. And although technically incorrect, he suggested that placing the word "practical" or putting "PSU" in the Proposed Rule would reduce confusion and vagueness. However, since the preponderance of the evidence established that use of PSU is not technically correct, the use of a pseudo-unit would actually cause confusion instead of reduce confusion. The Petitioners and Intervenors also argued that the Proposed Rule is vague because the language does not state that the method of measuring salinity is specific conductivity, or that the equation used to convert specific conductivity and temperature data to salinity is the standard developed by UNESCO. The Petitioners and Intervenors essentially argued that members of the public and those who may be regulated by the Proposed Rule are left to guess about the method or methods used to measure salinity. Because the Proposed Rule identifies and locates by latitude and longitude coordinates the Ft. Myers salinity monitoring station as the location where salinity would be measured for compliance, the Proposed Rule language is not vague. The Proposed Rule is not vague because it does not describe the data sondes, what parameters are measured by the data sondes, and how those parameters are converted to a salinity number. Salinity Monitoring Location and Mean Low Water The Petitioners and Intervenors argued that the Proposed Rule is vague for failing to define the phrase "20% of the total river depth at mean low water," and is arbitrary or capricious for failing to include more than one salinity monitoring station. Total river depth or the water column depth is a standardized measurement that is made from the surface down to the bottom of the river bed. Mean low water is commonly understood in the oceanographic and coastal sciences community as the average of all low tides over the time period defined as the national tidal datum epic. The District's expert witness, Dr. Cassondra Armstrong, testified that mean low water can be determined by using two documents prepared by the National Oceanographic and Atmospheric Administration (NOAA), i.e., the NOAA tide charts and glossary. The District's expert witnesses testified that "20% of the total river depth at mean low water" is the location of the data sonde at the Ft. Myers monitoring station that measures surface salinity. This is also the depth at which Vallisneria is located in the CRE. Since, the Proposed Rule language simply identifies the location of the existing data sonde at the Ft. Myers salinity monitoring station, the language is not vague. The preponderance of the evidence established that the Ft. Myers salinity monitoring station has two salinity data sondes, the one at 20 percent of the total river depth and the other at 80 percent. The data sonde at 20 percent of the total river depth was identified in the Proposed Rule for the following reasons. First, this is the depth where Vallisneria grows and is representative of the salinity exposure for Vallisneria. Second, it guarantees the data sonde is always submerged and able to record data. Third, it has the most comprehensive period of record of monitoring data available. As previously found, Vallisneria continues to be a particularly useful indicator of environmental conditions in the CRE. The location of Vallisneria habitat in the upper CRE and its negative response to increased salinity made it an excellent candidate as an ecological indicator for fresh water inflow. Because the preponderance of the evidence established that Vallisneria continues to be a particularly useful indicator of environmental conditions in the CRE, the choice of the Ft. Myers monitoring station is not arbitrary or capricious. Water Resource Functions vs. Environmental Values The District's MFL rule specifies that a water body's specific water resource functions addressed by an MFL are defined in the MFL technical support document. See Fla. Admin. Code R. 40E-8.021(31). The Final Technical Document identified the relevant water resource functions of the CRE as fish and wildlife habitats, estuarine resources, water supply, recreation, navigation, and flood control. The Petitioners and Intervenors argued that the environmental values listed in Florida Administrative Code Chapter 62-40, also known as the Water Resource Implementation Rule, were not adequately addressed in the Final Technical Document. A proposed rule challenge is not the proper forum to determine whether a proposed rule is consistent with the Water Resource Implementation Rule. Such a determination is within the exclusive jurisdiction of the Department of Environmental Protection under section 373.114(2), Florida Statutes. Consistency of the District's Proposed Rule with the Water Resource Implementation Rule of the Department of Environmental Protection is not a basis in this proceeding for a finding that the Proposed Rule is an invalid exercise of delegated legislative authority. Other Issues The Petitioners and Intervenors raised other issues during the hearing, although not specifically argued in their proposed final order. Since those issues were identified as disputed issues in the Joint Pre-hearing Stipulation, they are addressed below. 1. Elimination of Single-day Exceedance Criterion During the rulemaking process, Sanibel and SCCF sent the District a letter requesting justification for eliminating the single-day exceedance salinity criterion in the current rule. The District staff evaluated the available Caloosahatchee River MFL compliance record, dating back to when the MFL was adopted in September 2001. The District maintains a historical record of MFL monitoring data and reviewed it to determine if the single-day exceedance salinity criterion was exceeded before the 30-day moving average criterion. The compliance record showed five exceedance events of the single-day salinity criterion have occurred. However, the compliance record also showed that the 30- day moving average salinity criterion had already been exceeded before the five events occurred. In other words, the single-day criterion was never exceeded before the 30-day moving average criterion. Based on this evaluation, the District eliminated the single-day exceedance salinity criterion because it did not provide any additional resource protection. The District's decision was not arbitrary or capricious. 2. Not Using the Latest Model Evaluation of recommended MFL criteria and a recovery strategy for the CRE were greatly aided by integration of a suite of hydrologic and ecological models simulating (1) long-term fresh water inflow associated with varying management options, (2) the resulting salinity in the estuary, and (3) ecological response of indicator species that are sensitive to low fresh water inflows. Five models were specifically utilized, including three models for simulations of fresh water inflows to the CRE, a three-dimensional hydrodynamic salinity model, and a Vallisneria model. The three models simulating fresh water inflows included (1) the South Florida Water Management Model (SFWMM) to simulate fresh water discharges at S-79, which includes regional operations of Lake Okeechobee and incorporates Caloosahatchee River irrigation demands; (2) the C-43 Reservoir Model, which uses the SFWMM-simulated daily S-79 flow as input and simulates the management benefit of the C-43 Reservoir; and (3) the Watershed (WaSh) Model to simulate tidal tributary inflow from the Tidal Caloosahatchee Basin sub-watershed. The Caloosahatchee Hydrodynamic/Salinity Model was based on the Curvilinear Hydrodynamic Three-dimensional Model (CH3D) modeling framework with the functionality of simulating the spatial salinity structure across the entire estuary. The Vallisneria Model took the CH3D modeled salinity as input to simulate Vallisneria growth at critical locations in the estuary. The District did review the more recent Environmental Fluid Dynamic Code (EFDC) model developed for the Caloosahatchee Total Maximum Daily Load (TMDL) and being used by the Department of Environmental Protection. The District's expert witness, Dr. Detong Sun, testified that until 2014, the hydrodynamic part of the EFDC model was not working well. He testified that in 2016, the District still had concerns and suggested the use of the District's continuous monitoring data from seven locations across the CRE rather than grab samples for model calibration. Dr. Sun's opinion was that the EFDC model has improved in recent years, but was still behind the CH3D model in terms of performance. The District's expert witness, Dr. Amanda Kahn, testified that the water quality component of the EFDC model was not appropriate for this re-evaluation because the MFL is about water quantity, not water quality. The water quality component of the EFDC model addresses nutrient loadings, not minimum flows. Dr. Kahn also testified that in setting MFL criteria for the CRE, salinity was not a water quality component. Salinity was used as a water quantity component because it does not change with biological processes and can be a measure of how much fresh water is coming into the system. Based on a preponderance of the evidence, the District's decision not to use the EFDC model was not arbitrary or capricious. 3. Seasonality The Petitioners and Intervenors argued that the District is required to set an MFL that varies by season. For the CRE, the District set MFL criteria that protect the system from low flow that would occur in either the wet or dry season. As previously found, the re-evaluation studies focused on the dry season for two reasons: first, because it is well-established that the upstream migration of salt combined with reduced fresh water inflow alters the health and productivity of estuarine habitats; and second, because the dry seasons are the times when the current MFL criteria are likely to be exceeded or violated. The MFL statute states that "when appropriate, [MFLs] may be calculated to reflect seasonal variations." § 373.042(1)(b), Fla. Stat. The preponderance of the evidence showed that for the CRE, it was not necessary to set an MFL that varied by season. Improper Purpose The Petitioners, Sanibel, Cape Coral, and the Town, did not participate in this proceeding primarily to harass or to cause unnecessary delay or for frivolous purpose or to needlessly increase the cost of litigation. The Petitioners did not participate in this proceeding for an improper purpose. The Intervenors, Fort Myers, Estero, Bonita Springs, and CCP, did not participate in this proceeding primarily to harass or to cause unnecessary delay or for frivolous purpose or to needlessly increase the cost of litigation. The Intervenors did not participate in this proceeding for an improper purpose.
The Issue Whether Petitioner has documented that he has the requisite experience to qualify to take the Class A Domestic Drinking Water Plant Operator certification examination.
Findings Of Fact Petitioner, Manuel Rodriguez, Jr., applied for and received certification from DER as a Florida Class C Domestic Drinking Water Plant Operator in 1985. The requirements for certification as a Class C Operator included three years of actual or recognized constructive experience with at least one year of actual experience in the operation, supervision, and maintenance of a drinking water plant. In the processing of this application, DER accepted Mr. Rodriguez's claimed 12.96 months of actual experience without requiring documentation of that experience. Mr. Rodriguez applied for and received certification from DER as a Class B Domestic Drinking Water Plant Operator in 1988. The requirements for certification as a Class B Operator included eight years of actual or recognized constructive experience with at least two years of actual experience in the operation, supervision, and maintenance of a drinking water plant. In the processing of this application, DER accepted Mr. Rodriguez's claimed 38.76 months of actual experience without requiring documentation of that experience. The requirements for certification as a Domestic Drinking Water Plant Operator at the A, B, and C levels of certification have not changed since 1985. DER should have required Mr. Rodriguez to document his actual experience when he applied for his C level of certification and for his B level of certification, but it did not do so. On or about May 5, 1989, Mr. Rodriguez, submitted to DER an "Application for Certification for Operators of Domestic Wastewater or Drinking Water Plants" on a DER form found at Rule 17-1.210(1), Florida Administrative Code. This application was for certification as a drinking water operator at certification level "A". The application form for certification at the "B" and "C" levels were on the same form used for the "A" level. The criteria for certification has not changed since 1982. Such an application for certification must be reviewed and accepted by DER before the applicant is permitted to sit for the requisite examination. The application submitted by Mr. Rodriguez was rejected by DER because the application failed to document that Mr. Rodriguez met the actual experience requirements for certification at the "A" level. In order to qualify to take the Class A level certification examination, an applicant must document 12 years (144 months) of total experience. Of this, 4 years (48 months) must be actual experience. DER considers 2,080 hours of experience as being equal to one year of experience. DER's application form (which has been adopted as a rule) requires an applicant to document his experience by: (a) listing the name and address of each public drinking water system at which the applicant has performed work that qualifies for actual experience credit, (b) listing the class designation of that water system, and (c) detailing the number of hours the applicant has worked at that system. On his application for his Class A Certification, Mr. Rodriguez claimed 49.85 months of actual experience for his employment with Atlantic Salt & Water Treatment, a company Mr. Rodriguez owns and operates. This company is not a water treatment plant, but provides services to residential customers and to certain public drinking water systems. The application provided no documentation as to the public drinking water systems at which Mr. Rodriguez claimed to have performed services. Mr. Rodriguez also claimed actual experience based on information on file with DER in past applications. Mr. Rodriguez was notified that his application was rejected because of his failure to document his actual experience. The Notice of Final Order of Denial, dated May 31, 1989, based the rejection of the application on the following: You have not accumulated the 4 years of satisfactory full-time on-site employment in the operation of a treatment plant, as required by Section 17-16.03, F.A.C. Your application indicates that you have only 11 years, 0 months of operational experience on the date of the application. The Notice of Final Order of Denial, dated May 31, 1989, erroneously reflected that Mr. Rodriguez had been credited with 11 years, 0 months of operational experience. This erroneous statement was caused by a computer error. Mr. Rodriguez was aware of this error and was aware that DER had credited him with having no actual experience because his application failed to document that experience. Following the rejection of his application, Mr. Rodriguez filed an amendment to his application which provided additional information regarding his work experience. This information, submitted in late June 1989, claimed 76 months of actual experience as follows: 39 months between March 1985 and June 1989 while employed as the owner and operator of Atlantic Salt (the full name of Petitioner's company was not spelled out on the amendment). This claimed experience is based on services rendered to Jones Fish Camp (twice a week) and to South Dade Storage and Industrial Park (once a week). 14 months between October 83 and December 84 while employed by Home Refinement. This claimed experience is based on services to South Dade Shopping Center (twice a week), Commercial Carriers (once a week), Dennys Restaurants Miami Beach (once a week), Dennys S. Dixie Highway (once a month), Bank of Homestead (twice a week), Tivoli Shopping Plaza (twice a week), Florida Power & Light Princeton Complex (twice a week), Florida Rock & Fill (twice a week), Florida Transport (twice a week), The Dialysis Center Homestead (once a month), and Botanical Garden (once a month). 12 months while employed by Culligan Water between October 1978 and October 1979. This claimed experience is based on services to Jackson Memorial Hospital (twice a week), Mercy Hospital (twice a week), Coral Reef Hospital (twice a week), Baptist Hospital of Miami (once a month), Howard Johnson Hotel Downtown (once a month), Americana Hotel Miami Beach (twice a month), Kings Bay Club (once a month), and Standard Concrete Plant (twice a month). 7 months while employed by Enviropact, Inc., between March 1977 and October 1978 (sic). This claimed experience is based on services to Quality Inn S. Dixie Highway (once a week). 4 months while employed by Florida Water Treatment between January 1977 and March 1977 (sic). This claimed experience is based on services to Hialeah Garden School for the Handicapped (once a week). The application, as amended, did not contain the required documentation of actual experience. There was no listing of the address of each respective water system, the class designation for each system, or the number of hours Mr. Rodriguez claimed to have worked at each water system. DER maintains a computer list which contains a complete inventory listing of all public drinking water systems recognized as such be DER, including inactive systems. DER checked the establishments for which Mr. Rodriguez claimed experience against its computer records to determine which of those establishments are DER approved public drinking water systems. Although such a computer check is not authorized by rule, this type check is routinely performed by DER and the computer records are verified for accuracy and for completeness. Mr. Rodriguez correctly contends that inclusion on the DER computer inventory should not determine whether an entity is a public drinking water system because that determination should be made by application of the pertinent DER rules. However, in the absence of documentation to the contrary, this computer check provides a reasonable means of determining whether an entity is a public drinking water system. On July 7, 1989, DER notified Mr. Rodriguez that the amendment was insufficient in a letter that provided, in part, as follows: The Department carefully reviewed your amend- ment to your application. Of the establish- ments you listed only Jones Fish Camp and Botanical Garden (Morey's Garden Center) are public drinking water systems. We estimated that you have spent approximately 200 hours over four years at these businesses. This is not sufficient to meet the criteria for an "A" level water treatment license. DER determined that at most Mr. Rodriguez has documented 200 hours of actual experience for work at Jones Fish Camp and the Botanical Garden. (It was determined after the letter of July 7, 1989, that no credit should have been given for the Botanical Garden because the entity to which Mr. Rodriguez referred was not the same Botanical Garden that appeared on the computer inventory.) DER properly awarded no actual experience credit to Mr. Rodriguez for services he rendered to any other entity he listed in his amended application because none of the other entities were on DER's computer inventory of DER approved public drinking water systems or otherwise documented by Mr. Rodriguez to have been public drinking water systems as defined by DER. Mr. Rodriguez has not provided an accurate or detailed statement as to the number of hours he has spent during the course of his employment in the operation of those entities he asserts should be considered to be public drinking water system. Mr. Rodriguez's inability to give details about the services he has provided has been impaired because his former employers are now his competitors and they refused to cooperate with him. However, there was no evidence that Mr. Rodriguez attempted to subpoena any of the records from these former employers. Mr. Rodriguez has received appropriate constructive experience credit for his education and specialized training. He has successfully completed all of the required course work for the Class A water treatment plant operator certification, and it was only his inability to document his actual experience that prevented his sitting for the Class A examination. Each level of certification is independent of each other, and a lower level certification is not necessary in order to receive a higher level. DER determined that the credit for actual experience given to Mr. Rodriguez based on his application for Class C certification and his application for Class B certification should not have been given because he did not document that experience, and did not credit him with the experience for the Class A certification to the extent he was unable to document such experience. Mr. Rodriguez failed to document that he has the requisite experience to sit for the Class A examination. While Mr. Rodriguez may in fact have such experience with public water systems, he has not documented that experience either in his application or at the formal hearing.
Recommendation Based upon the foregoing Findings of Fact and Conclusions of Law, it is recommended that a Final Order be entered which upholds the Department of Environmental Regulation determination that Petitioner, Manual Rodriguez, Jr., has failed to document that he has the actual experience required for Class A Domestic Drinking Water Plant Operator, and which upholds the rejection of his application to sit for the Class A Domestic Drinking Water Plant Operator examination. RECOMMENDED in Tallahassee, Leon County, Florida, this 13th day of February, 1991. CLAUDE B. ARRINGTON Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 13th day of February, 1991. APPENDIX TO RECOMMENDED ORDER, CASE NO. 89-4052 The following rulings are made on the proposed findings of fact submitted on behalf of the Respondent. The proposed findings of fact in paragraphs 1-5, 7-8, and 10-15 are adopted in material part by the Recommended Order. The proposed findings of fact in paragraphs 6 and 9 are rejected as being subordinate to the findings made. The proposed findings of fact in paragraph 16 are rejected as being unnecessary to the conclusions reached. COPIES FURNISHED: Calvin Fox, Esquire Elena Tauler, Esquire TAULER & FOX, P.A. 3477 S.W. Third Avenue Miami, Florida 33145 Cynthia K. Christen, Esquire Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32399-2400 Carol Browner, Secretary Department of Environmental Regulation Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32399-2400 Daniel H. Thompson General Counsel 2600 Blair Stone Road Tallahassee, Florida 32399-2400