Elawyers Elawyers
Washington| Change
Find Similar Cases by Filters
You can browse Case Laws by Courts, or by your need.
Find 49 similar cases
WALTER F DECKER vs. DEPARTMENT OF ENVIRONMENTAL REGULATION, 85-001457 (1985)
Division of Administrative Hearings, Florida Number: 85-001457 Latest Update: Jan. 24, 1986

The Issue Whether the activities conducted on respondent's property required a dredge/fill permit and whether respondent violated the conditions of the permit issued on February 15, 1985.

Findings Of Fact Respondent is the record holder of a parcel of land located within Section 35, Township 45, South, Range 21 East, in Lee County, Florida. Respondent's property is contiguous to Pine Island Sound, a Class II, Outstanding Florida Water. Maureen Powers, an Environmental Specialist with the Department initially inspected respondent's property on May 23, 1984, after the Department received an anonymous complaint that someone was clearing away mangroves on the property. Ms. Powers-discovered that an earthen-fill road had been constructed on the property, and a portion of the road, 24' x 43'; was located within the landward extent of the state's waters. The determination that the portion of the road was within the Department's jurisdiction was based on the dominance of black and white mangroves. There had been recent mangrove cutting in the area, and a pile of vegetative debris, the result of the cutting, had been placed in the jurisdictional wetlands contiguous to Pine Island Sound. On June 1, 1984, Ms. Powers met with respondent in Langley Adair's office to discuss the violations observed on May 23, 1984, and to discuss the resolution of these violations. Respondent agreed to remove all of the earthen fill and vegetative debris that he had deposited within the jurisdictional wetlands. He agreed to refrain from any further work within the jurisdictional area prior to receiving a permit from the department. He also agreed to open up a flow channel in the berm along Pine Island Sound to restore circulation to the area. On July 11, 1984, Ms. Powers conducted an on-site inspection and discovered that the vegetative debris and the fill material had not been removed. Further, it was apparent that respondent's proposed home site, outlined by string and stakes, was submerged and directly connected by water to Pine Island Sound. The water standing on the property covered a portion of the fill area. On August 8, 1984, another inspection was performed, and it was discovered that respondent still had not removed the fill materials. The condition of the property was essentially the same as it had been on July 11, 1984. By letter dated August 20, 1984, respondent was again notified of the violations and reminded that he had agreed on June 1, 1984, to remove the vegetative and earthen fill. Respondent was informed that he needed to remove the fill materials within 30 days of receipt of the letter in order to avoid further enforcement action. On September 5, 1984, Ms. Powers again inspected the property and found that the proposed homesite and a portion of the fill were still submerged, that the water connected directly with Pine Island Sound and the fill materials had not been removed. Also apparent was a flume of milky white water which originated at the toe of the fill and continued into Pine Island Sound. Water samples were taken which revealed that the erosion of the unauthorized fill was resulting in a violation of state surface water quality criteria, specifically, turbidity1 greater than 29 Nephelometric Turbidity Units above natural background. The background sample, taken upstream from the site of the discharge, had a value of 5.2 turbidity units. The water sample taken two feet from the toe of the fill had a value of 69 turbidity units, and the sample from Pine Island Sound waterward of the mangrove fringe had a value of 46 turbidity units. On October 9, 1984, a letter was sent to respondent which pointed out that the earthen and vegetative fill had not been removed and notifying respondent that erosion of the earthen fill into the waters of Pine Island Sound had resulted in violation of surface water quality criteria. Respondent was requested to immediately cease and desist from all unauthorized. activity under the Department's jurisdiction. To clarify the situation, original photos of the site were sent with the letter which showed the earthen fill, the vegetative debris, and the turbid water leaving the site. A diagram of the site was also included to show the location fill materials that were to have been removed. On October 25, 1984, Ms. Powers met with Mr. Decker at the site. Ms. Powers showed respondent the earthen fill and vegetative debris that should have been removed. Ms. Powers noted that the waterward 23' x 24' section of the earthen fill had become heavily colonized by black mangrove seedings and, therefore, excepted that portion of the fill from the removal requirement so that the seedlings would not be disturbed. Mr. Decker stated that he would remove the unauthorized fill within two weeks. Meanwhile, apparently in September, respondent had submitted a permit application. Mr. Beaver was the field inspector assigned by DER to evaluate the application and make a recommendation on the feasibility of the project to the dredge and fill supervisor. On October 8, 1984, Mr. Beaver performed the field inspection at the site, and on October 23, 1984, issued his permit application appraisal recommending that the application be denied. Mr. Beaver recommended that the project be reconsidered for a permit if, among other things, the house site were removed from the landward extent of the state waters and located in the uplands, the septic tank were removed from the low lying portions of the site, and previously cut areas were allowed to regrow in native vegetation. On November 15, 1984, Mr. Beaver met with Mr. Decker and Mr. Cantrell, the district supervisor of dredge and fill, to discuss the project. Mr. Cantrell asked how the project could be modified so that Mr. Decker could have his house in the location where he wanted it. Mr. Beaver suggested a stilt, elevated house with a small fill pad that would allow access to the entrance of the house. The house would have to be elevated -enough so that revegetation of wetland plants could occur underneath the house structure and water flow could be maintained. On November 19, 1984, Ms. Powers and Mr. Beaver met Mr. Decker at the property. Ms. Powers and Mr. Beaver staked the DER jurisdiction line and marked the proposed location of Mr. Decker's boardwalk. Mr. Decker asked about placing wood chip mulch on the wetlands on his property in order to beautify the area. Mr. Decker was informed that wood chip mulch was considered vegetative fill and would require modification of his permit application. Subsequent to the meeting of November 15 and the on- site inspection of November 19, Mr. Decker modified his project. However, wood chip mulch was not mentioned. On December 7, 1984, Mr. Beaver recommended that the application be approved subject to specified conditions, which were ultimately incorporated into the permit. On December 11, 1984, Ms. Powers inspected the site and discovered that a large pile of wood chips had been placed on the northeast end of the fill road waterward of the jurisdiction line. The vegetative debris and earthen fill that had previously been on the project had not been removed. Respondent was notified of the violations by a Cease and Desist letter dated January 4, 1985. The letter pointed out that respondent had been told specifically that wood chip mulch was considered vegetative fill and that dredge/fill permit would be required prior to the placement of any fill material. On February 5, 1984, respondent met with DER, officials to discuss the violations. Mr. Decker stated that the fill had been removed as requested. The Department informed Mr. Decker that an inspection would be performed and, if the fill had not been removed, the Department would pursue formal enforcement action. On February 7, 1985, the site was inspected none of the fill material had been removed. A subsequent inspection on February 20, 1985, revealed that the wood chips had been spread throughout the jurisdictional wetlands. On February 15, 1985, respondent received a permit to fill and to construct a dock and boardwalk. The specific conditions of the permit include the following: 2. A 20' x 16' - 4" fill pad shall be the only fill placed waterward of the jurisdictional line. This fill pad will be composed of clean sand and have the banks stabilized by a riprap revetment with a slope not greater than 2H:1V. * * * The house and all associated structures shall be built upon stilts with concrete footings and/or wooden pilings. On-site turbidity control devices shall be installed and properly maintained to localize turbidity impacts to the construction area. * * * All vegetative debris, trash and spoil material resulting from concrete footing placement shall be removed from the landward extent of State Waters as defined by the jurisdiction line staked by the DER. Upon completion of construction, non- filled areas beneath the stilt house and associated structures shall be returned to original grade if they were altered by construction. Wetland vegetation shall be planted in the previously cleared area and mangroves removed by construction activities shall be replaced on a 2 for 1 basis with 80% survival over a three year period. * * * 11. The project shall comply with applicable State Water Quality Standards, namely: 17-3.051 - Minimum Criteria for All Waters at All Times and All Places. 17-3.061 - Surface Waters: General Criteria 17-3.111 - Criteria - Class II Waters Shellfish Propagation or Harvesting, Surface Waters General Conditions 2 and 5 of the permit provide: 2. This permit is valid only for the specific processes and operation applied for and indicated in the approved drawings or exhibits. Any unauthorized deviation from the approved drawings, exhibits, specifications, or conditions of this permit may constitute grounds for 81' filled area was located within the landward extent of the state waters. 19. Respondent has violated several conditions of the permit issued February 15, 1985. Specific Condition #2 provided that the 20' x 16' fill pad would be "the only fill placed waterward of the jurisdictional line." Instead, respondent filled an area approximately 78' x 81' to an average height of about 2\', totaling approximately 585 cubic yards of fill. The fill was non-native fill brought onto the site. The permit did not authorize fill for a septic tank in the revocation and enforcement action by the department. 5. This permit does not relieve the permittee from liability for harm or injury to human health or welfare, animal, plant or aquatic life or property and penalties therefor caused by the construction or operation of this permitted source, nor does it allow the permittee to cause pollution in contravention of Florida Statutes and department rules, unless specifically authorized by an order from the department. On March 19, 1985, an inspection of the property revealed that Mr. Decker had totally ignored the conditions of his permit. Rather than a fill pad of 20' x 16', respondent had filled an area approximately 78' x 81'.2 The fill was unstabilized, and no turbidity control devices were in place. Fill material had been used to construct a earthen berm across a natural flow channel, blocking the flow of water onto the property. Further, the vegetative debris resulting from the construction of the boardwalk had been deposited in the mangrove wetlands. On March 22, 1985, a Notice of Violation and. Orders for Corrective Action was sent to the respondent. Respondent received the notice on or about March 26, 1985. The landward extent of the state waters on respondent's property, the area in which a DER permit is required for dredging and filing, was determined by the presence of red mangroves (Rhizophora mangle), black mangroves (Avicennia germinans), and saltwort (Basis maritime) as the dominant species. The jurisdiction line was originally staked on November 19, 1984, and was reestablished on April 23, 1985, from remaining landmarks, due to the original markers being removed. The 78' x81' filled area was located within the landward extent of the state waters. Respondent has violated several conditions of the permit issued February 15, 1985. Specific Condition #2 provided that the 20' x 16' fill pad would be "the only fill placed waterward of the jurisdictional line." Instead, respondent filled an area approximately 78' x 81' to an average height of about 21/2', totaling approximately 585 cubic yards of fill. The fill was non-native fill brought onto the site. The permit did not authorize fill for a septic tank in the jurisdictional wetlands, but respondent placed a septic tank and drainfield in that area.3 By filling an area several times the size of the area authorized, respondent has seriously violated the conditions of the permit. A fill area of the size that now exists eliminates the habitat and water quality functions that the area historically performed. Respondent has violated Specific Condition #4, which required that the house and associated structures be built on stilts. The purpose of such a requirement is to preserve undisturbed the existing substrate, which constitutes the base of the food chain, and to allow for a free flow of water across the site, which is essential to the health of the mangrove system. Respondent not only filled an area larger than his proposed house, he poured a solid, continuous, concrete foundation on top of the fill, which would prevent the flow of water should the water rise high enough to come onto the filled area.4 By filling the area, destroying the substrate, and preventing the flow of water into the area, respondent has violated Specific Condition #4 of the permit. Respondent violated Specific Condition #5 of his permit in that respondent failed to install any turbidity control devices. Turbidity control devices of some sort are necessary in a fill area such as the one in this case. Turbidity screens or staked hay bales could have been used. Respondent also violated Specific Condition #8. Construction debris and vegetative debris were located throughout the area. Although respondent technically has not violated Specific Condition #9, in that it requires acts to be performed "upon completion of construction", respondent has made compliance with that provision an impossibility because he has filled the "non- filled areas beneath the stilt house" and therefore there are no "non-filled areas" to return to original grade. Respondent has never requested that his permit conditions and requirements be modified. By his actions, respondent has repeatedly shown a complete disregard for the requirements of the law, and he has totally ignored the conditions set forth in the permit. Mr. Decker was not qualified as an expert and I did not find him to be a credible witness. The reasonable costs and expenses incurred by the Department in relation to the enforcement aspects of this action are $866.17. These costs and expenses were incurred by the Department in its effort to control and abate pollutants and to restore the waters and property of the state to their former condition.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the respondent's permit, number 360902245, be revoked that the respondent be ordered to make payment to the Department in the amount of $866.17 for costs and expenses incurred by the state and that the following corrective action be ordered: Respondent shall within thirty (30) days, remove all unauthorized fill material placed within the area of Department jurisdiction. Prior to initiating the fill removal respondent shall arrange for Department personnel to stake the area to be restored. All areas shall be restored to the elevation and soil conditions which existed prior to the placement of fill material. Respondent shall take all necessary precautions to ensure that state water quality standards are not violated during the restoration work. Respondent shall not disturb adjacent areas within the jurisdiction of the Department unless approved by the Department in writing. DONE and ENTERED this a 24th day of January, 1986, in Tallahassee, Leon County, Florida. DIANE A. GRUBBS Hearing Officer Division of Administrative Hearings The Oakland Building 2009 Apalachee Parkway Tallahassee, Florida 32301 (904) 488-9675 FILED with the Clerk of the Division of Administrative Hearings this 24th day of January, 1986.

Florida Laws (5) 120.57120.60403.087403.141403.161
# 1
FLORIDA KEYS FISHING GUIDES ASSOCIATION, INC. vs FLORIDA POWER AND LIGHT AND DEPARTMENT OF ENVIRONMENTAL PROTECTION, 20-002968 (2020)
Division of Administrative Hearings, Florida Filed:Tallahassee, Florida Jun. 29, 2020 Number: 20-002968 Latest Update: May 13, 2025

The Issue Whether Respondent, Florida Power & Light Company, is entitled to the renewal of Permit No. FL0001562-012-IW1N, the combined Industrial Wastewater/National Pollutant Discharge Elimination System permit for the continued operation of the Turkey Point Cooling Canal System.

Findings Of Fact The Parties Respondent FPL is the largest energy company in the United States, serving more than five million customer accounts in the state of Florida. FPL owns and operates the Turkey Point Clean Energy Center ("Turkey Point"), which consists of three electrical generating units. FPL is the holder of the Permit, an industrial wastewater ("IWW")/National Pollutant Discharge Elimination System ("NPDES") permit for the Turkey Point CCS, which provides wastewater treatment and effluent disposal for two of the three electrical generating units at Turkey Point. As stated above, FPL is the applicant for the Renewal Permit that has been challenged in this proceeding. Respondent DEP is the state agency authorized to regulate the construction and operation of wastewater treatment and effluent disposal facilities, pursuant to chapter 403, Florida Statutes, and implementing rules. As part of its responsibilities, DEP issues permits to authorize the treatment and discharge of industrial wastewater under the state industrial wastewater program, and the federal NPDES program pursuant to delegation from the United States Environmental Protection Agency ("EPA").4 Petitioner FKAA is a public water supply utility authority, established pursuant to chapter 76-441, Laws of Florida. It is responsible for providing potable water services in Monroe County, and domestic wastewater and reclaimed water services to select areas within its geographic jurisdiction. FKAA operates a potable water wellfield in Florida City, Florida, approximately 9.5 miles west of the CCS that withdraws water from the Biscayne Aquifer. Petitioner FKFGA is a volunteer association comprised of professional fishing guides who conduct business, and engage in conservation and education activities, in and around south Florida. Intervenor Monroe County is a county and political subdivision of the state of Florida, the geographic boundaries of which include the Florida Keys, the Florida Keys National Marine Sanctuary, and a portion of Biscayne Bay. Monroe County receives its potable drinking water services from FKAA. 4 The NPDES program is a federal pollution control program established by the Clean Water Act at 33 U.S.C. §1342, the purpose of which is to control point source discharges of industrial and domestic wastewater and stormwater into navigable waters of the United States. The Turkey Point Clean Energy Center and the CCS Turkey Point is an electrical generating facility located on approximately 11,000 acres in unincorporated southeast Miami-Dade County. Its business address is 9760 Southwest 344th Street, Florida City, Florida. The Biscayne National Park is east of, and adjacent to, the facility, and the Biscayne Bay Aquatic Preserve is located northeast, east, and southeast of the facility. The Model Land area, which is a tract of freshwater and brackish wetlands, is generally located to the north, west, and south of the CCS. Several water management canals are located in close proximity to Turkey Point. Specifically, the South Florida Water Management District's ("SFWMD") L-31E Canal, C-106 North Model Land Canal, and C-107 South Model Land Canal are located west of the CCS. Additionally, the Card Sound Road Canal is located west and southwest of the facility, and discharges into Biscayne Bay south of the CCS. The SFWMD S-20 Discharge Canal is located west and south of the CCS, and the Sea-Dade Canal is south of the facility; these canals discharge into Biscayne Bay south of the CCS. Additionally, remnant once-through cooling water canals are located at Turtle Point and the Barge Basin, at the eastern boundary of the facility. These canals have been plugged, so that they no longer are connected to Biscayne Bay. As stated above, Turkey Point currently consists of three electrical generating units: Units 3 and 4, which are nuclear units; and Unit 5, which is a natural gas-fired combined-cycle unit. These electrical generating units are authorized pursuant to the Certification. The Turkey Point facility is the only baseload electrical generating facility that serves the critical load area of Miami-Dade County, Florida. The CCS consists of a network of canals covering approximately 5,900 acres and providing wastewater treatment and effluent disposal for Units 3 and 4, as well as functioning like a radiator to dissipate heat from the cooling water generated by the operation of these units. The heated cooling water is discharged into the CCS at an internal outfall located at the northwest end of the CCS. Water pumps and gravity circulate the heated water in a counterclockwise direction, north to south, through the CCS, dissipating heat as the water flows through the CCS. Once the cooling water has circulated through the CCS, it is pumped back into Units 3 and 4 at the northeast end of the CCS for reuse as cooling water for those units. The CCS was excavated into sediments and limestone that are part of the surficial Biscayne Aquifer. The CCS is not lined, so there is no physical barrier that prevents water in the canals from entering the Biscayne Aquifer ground water beneath the CCS. Most of the canals comprising the CCS are between three and four feet deep, with an approximately 20-foot-deep canal that formerly was part of the once-through cooling system. A perimeter berm system blocks the CCS from having a direct connection to surface waters, and there are no water control structures, such as culverts, pipes, or pumps, which allow water to be directly discharged from the CCS into offsite surface waters. There are approximately 4.5 billion gallons of water in the CCS, on average. Although some small wastewater streams from the electrical generating units and stormwater are discharged into the CCS, the water in the CCS is comprised of rainfall, cooling water for the electrical generating units, water pumped into the CCS from the Upper Floridan Aquifer, and ground water seepage. Evaporation is the predominant means by which water leaves the CCS, and water from the CCS also seeps into ground water. Evaporation, rainfall, and water inflows from other sources affect the salinity of the water in the CCS canals. As a result of evaporation and periods of low rainfall, the salinity of the water in the CCS has increased over time. The addition of water from rainfall, ground water seepage, and other sources counteracts the effect of evaporation on salinity in the canals. Thus, the salinity of the water in the canals at any given time is driven by the balance of evaporation, water inflows, and water outflows. The Interceptor Ditch, which is located immediately west of the CCS and immediately east of the L-31E Canal, was constructed to create a hydraulic barrier between the CCS and the L-31E Canal and lands west of the L-31E Canal. Permitting History of Turkey Point and the CCS The Turkey Point electrical generating facility was constructed in the 1960s. As originally constructed, Turkey Point had a once-through cooling water system through which heated cooling water was directly discharged into Biscayne Bay. Pursuant to a 1971 Consent Decree between FPL and the U.S. Department of Justice, FPL constructed the CCS to alleviate the adverse environmental effects of the direct discharge of heated cooling water into Biscayne Bay. When the CCS was designed, the U.S. Atomic Energy Commission prepared an Environmental Impact Statement ("EIS"), which recognized that water from the CCS could seep, via ground water, into Biscayne Bay. The EIS concluded that the effect of this seepage would be insignificant and was outweighed by the benefit of stopping direct discharges of heated water from Turkey Point into Biscayne Bay. In order to construct the CCS, FPL obtained numerous permits and approvals from multiple regulatory agencies, including the U.S. Atomic Energy Commission, EPA, the U.S. Army Corps of Engineers, the Florida Water Pollution Control Board, and Miami-Dade County, Florida. FPL has operated the CCS, consistent with its original design, since 1973. EPA issued NPDES permits for the CCS, and these permits periodically were renewed. Additionally, since approximately 1982, DEP and its predecessor agency have issued industrial wastewater permits for the CCS. EPA delegated the NPDES permitting program to DEP in 1995, and since that time, DEP has issued combined IWW/NPDES permits5 for the CCS. These permits typically have been issued for a five-year period, and renewed for subsequent five-year periods. The existing Permit authorizes discharges of stormwater and industrial wastewater from the electrical generating units through internal outfalls into the CCS. The Permit does not authorize direct discharges from the CCS into surface waters of the state. The Permit authorizes discharges from the CCS into the Class G-III6 ground water underlying the CCS, provided that these discharges do not cause a violation of the minimum criteria for ground water codified in Florida Administrative Code Rules 62-520.400 and 62-520.430, and do not impair the reasonable and beneficial use of adjacent ground waters or surface waters, in violation of rule 62-520.400. In order to ensure compliance with the Permit, FPL conducts extensive monitoring7 of a range of water quality parameters in surface water, porewater, and ground water near the CCS; the seagrass, mangroves, and freshwater marshes near the CCS; and numerous environmental parameters, including rainfall, at, and proximate to, the CCS. FPL reports its data to regulatory agencies on a regular basis, and submits annual reports to 5 DEP's industrial wastewater regulatory jurisdiction extends to discharges into ground water and surface waters, while the NPDES regulatory jurisdiction extends to point source discharges into navigable surface waters. The combined IWW/NPDES permit issued by DEP covers all of these types of discharges. 6 As discussed below, Class G-III ground water has a concentration of 10,000 milligrams per liter ("mg/L") or greater of total dissolved solids. 7 As an example of the extent of FPL's monitoring associated with the operation of Turkey Point and the CCS, FPL collected over 4.5 million data points through its monitoring network for the period from June 1, 2019, to May 31, 2020. SFWMD, addressing all data collected over the previous year. FPL also provides reports to the Miami-Dade County Department of Environmental Resource Management ("DERM") regarding its remediation program at the CCS, and provides access to its monitoring data to other regulatory agencies, including DEP. The most recent version of the Permit was issued in 2005. The Biscayne Aquifer As stated above, the CCS is excavated into the sediments and limestone of the surficial portion of the Biscayne Aquifer. The Biscayne Aquifer is a water-bearing formation consisting of porous, highly permeable limestone that underlies Broward County, Miami- Dade County, parts of Palm Beach County, and parts of Monroe County. The surficial portion of the Biscayne Aquifer is connected to surface waters, including Biscayne Bay, and to the CCS and other canals in south Florida that are excavated to sufficient depth to connect to the surficial aquifer. The Biscayne Aquifer contains both saltwater and fresh water. Saltwater enters the aquifer from Biscayne Bay, canals containing saltwater, and saltwater wetlands. Fresh water enters the aquifer from rainfall, canals containing fresh water, and freshwater wetlands. The transmissivity of the Biscayne Aquifer varies. Generally, the horizontal transmissivity is greater than the vertical transmissivity in the aquifer, and the horizontal transmissivity varies between different layers of the aquifer. In the vicinity of the CCS, the shallowest portions of the aquifer, from land surface to approximately 20 feet below land surface, are less transmissive than some deeper portions of the aquifer. Beneath this shallow portion of the aquifer, there are three more transmissive, preferential flow zones through which water flows more readily: the Upper Flow Zone, located approximately 25 to 35 feet below ground surface; the Lower Flow Zone, located approximately 50 to 65 feet below ground surface; and the Deep Flow Zone, located approximately 70 to 80 feet below ground surface. Portions of the Biscayne Aquifer serve as the primary drinking water source for portions of southern Florida, including Miami-Dade and Monroe counties. The FKAA operates a potable water wellfield, located approximately 9.5 miles west of the CCS in Florida City, that withdraws water from the Biscayne Aquifer. The portions of the Biscayne Aquifer immediately west of the CCS are not used as a potable water source, and there are no drinking water wells in the portion of the Biscayne Aquifer where hypersaline water is present. For purposes of these proceedings, the saltwater interface is the location in the aquifer at which Class G-II and G-III ground water intersect. The saltwater interface is not a vertical line, but, rather, is wedge-shaped, with the lighter, more buoyant fresh water above, and the denser, heavier saltwater below. The location of the saltwater interface changes, depending on hydrologic conditions. Before the substantial drainage of, and development in, south Florida, the saltwater interface was located at the edge of Biscayne Bay in many locations. As a result of the construction and operation of drainage canals, wellfields, water withdrawals, mining activities, and land use practices throughout the 20th century, the saltwater interface has moved inland. By 1955, the saltwater interface already was located west of where the CCS is now located. Thus, by the time the CCS was constructed and became operational in 1973, saline water already had intruded inland along the coast, and saline ground water existed beneath the CCS site and in the deeper portions of the aquifer west of the current location of the CCS. Thus, portions of the Biscayne Aquifer located west of the CCS did not meet Class G-II8 ground water quality standards, even before construction and operation of the CCS. Additionally, due to sea level rise and other factors, the saltwater interface in the Biscayne Aquifer generally is continuing to move inland in southeast Florida. Interaction of the CCS with Ground Water The ground water under the CCS westward to the L-31E Canal is classified as Class G-III ground water, which is non-potable ground water. At the time the CCS was constructed and began operation, the water in the canals had an average salinity of approximately 34 practical salinity units ("PSU"), close to that of Biscayne Bay. Over time, the salinity of the water in the CCS has increased, primarily due to evaporation, which leaves salt behind. By the early 2000s, the salinity level of the water in the CCS had significantly increased. By 2015, the average salinity of the water in the CCS averaged 50 to 60 PSU and peaked at close to 90 PSU. As the water in the CCS became more saline,9 it became more dense than the water in the portion of the aquifer immediately underlying the CCS. As a result, the saline water sank out of the CCS into the underlying ground water until it reached the bottom of the aquifer, approximately 80 feet below land surface. From there, the saline water spread horizontally, primarily westward due to the hydraulic head pressure of seawater to the east. By 2013, a body of hypersaline ground water (referred to, for purposes of these proceedings, as the "hypersaline plume") extended 1.5 to 2.5 miles west of the CCS. Due to its greater density, the hypersaline plume is located 8 As discussed below, Class G-II ground water is potable ground water having a total dissolved solids concentration of less than 10,000 mg/L. 9 This term generally means that the water has a salinity level greater than seawater. at the bottom of the Biscayne Aquifer, with less saline water immediately above it, and fresher water floating near the surface of the aquifer. Over the approximately 48 years of operation of the CCS, the saltwater interface has moved approximately one to 1.5 miles westward from its location when the CCS was constructed and began operating. To date, the greatest westward extent of the saltwater interface is at a point along the Card Sound Road Canal, west and southwest of the CCS, and near the Florida City Canal, north of the CCS. Administrative Enforcement and Remedial Measures Pursuant to the Certification for Turkey Point, starting in 2009, FPL implemented an extensive surface water and ground water monitoring program to determine the vertical and horizontal extent of saline CCS water and its effects on existing and projected surface water and ground water resources. Specifically, FPL installed an extensive water quality monitoring network consisting of 42 ground water monitoring wells and 33 surface water monitoring stations. Each ground water monitoring well consisted of a station comprised of a cluster of three wells: a deep well, an intermediate well, and a shallow well. The ground water monitoring wells and surface water monitoring stations measured and recorded salinity, specific conductance, and other parameters, at established frequencies. As a result of this monitoring program, FPL has collected a substantial amount of data, which has been analyzed and submitted in reports to various regulatory agencies and entities, including SFWMD and DEP. Based on the monitoring data and analysis, in 2013, SFWMD issued a letter to FPL, concluding that the Interceptor Ditch was effective in restricting the westward movement of saline water from the CCS in the upper portion of the aquifer, but was not effective in restricting the movement of saline water from the CCS into the deeper portions of the Aquifer. SFWMD concluded that, as a result of the operation of the CCS, saline water has moved westward of the L-31E Canal. Also based on the monitoring data and analysis, and in consultation with SFWMD and other regulatory entities, DEP determined that the westward migration of saline water from the CCS needed to be abated to prevent further harm to waters of the state, and that, in order to do so, the water in the CCS needed to be freshened to a salinity of approximately 34 PSU. In December 2014, DEP issued Administrative Order 14-0741, directing FPL to develop a CCS salinity management plan to reduce the salinity of the CCS, in order to abate the westward movement of saline CCS water into Class G-II ground water. The Administrative Order was challenged by third parties, and, following an administrative hearing in DOAH Case Nos. 15-1746 and 15-1747, DEP issued a Final Order on April 21, 2016, approving the Administrative Order and the remedial measures established therein.10 On April 1, 2016, the Siting Board issued a Final Order in OGC Case No. 14-051, DOAH Case No. 15-1559EPP,11 approving the modification of the Certification, to authorize FPL to construct and operate two wells to withdraw up to 14 million gallons per day ("mgd") of water from the Upper Floridan Aquifer and discharge that water into the CCS as part of the salinity management plan to lower the salinity of the water in the CCS. On April 25, 2016, DEP issued a Warning Letter to FPL, stating that water quality sampling indicated that water originating in the CCS was reaching tidal surface waters connected to Biscayne Bay, possibly violating surface water quality standards and ground water quality standards. Also on April 25, 2016, DEP issued a Notice of Violation ("NOV"), incorporating findings in DEP's Final Order in DOAH Case Nos. 15-1746 10 DEP entered a Final Order approving the Administrative Order, which was appealed by one of the parties, Atlantic Civil, Inc. ("ACI") in DCA Case No. 3D16-978. ACI ultimately dismissed its appeal. 11 ACI and other third parties unsuccessfully challenged the modification of the Certification, authorizing the construction and operation of these wells to freshen the CCS. and 15-1747. These findings were that the CCS is the major contributing cause of the continued westward movement of the saltwater interface; that the discharge of saline CCS water into ground water contributes to saltwater intrusion; and that saltwater intrusion into the aquifer west of the CCS is impairing the reasonable and beneficial use of adjacent G-II ground water, in violation of rule 62-520.400. Among other things, the NOV directed FPL to consult with DEP to determine appropriate abatement and remediation measures to address the violations identified in the NOV. In May 2016, FPL submitted to DEP nutrient monitoring results from surface water quality monitoring stations in deep channels in Biscayne Bay adjacent to the CCS. Based on the surface water quality monitoring results, DEP determined, and found in the Consent Order, that no violations of surface water quality standards in Biscayne Bay had occurred due to operation of the CCS. On June 20, 2016, FPL and DEP executed a Consent Order to address the ground water quality violations identified in the NOV and to preemptively address future surface water quality violations which were the subject of the Warning Letter. The Consent Order was not timely challenged, so became final agency action and is in effect. To address ground water violations identified in the NOV, and to help ensure that surface water quality standards are not violated in the future, the Consent Order established three objectives: (1) ceasing discharges from the CCS that impair the reasonable and beneficial use of the G-II ground water to the west of the CCS, in violation of rule 62-520.400; (2) preventing releases of ground water from the CCS into surface waters connected to Biscayne Bay that exceed surface water quality standards in Biscayne Bay; and (3) providing mitigation for environmental impacts related to the historic operation of the CCS. The Consent Order identified specific measures for achieving these objectives; established standards for determining compliance with the objectives and measures; and established timeframes for implementing the measures to accomplish the objectives. To achieve the first objective, the Consent Order directed FPL to engage in freshening activities by pumping essentially fresh water from the Floridan Aquifer into the CCS, as authorized under the modification to the Certification12 to reduce the salinity of the water in the CCS to an average annual salinity of 34 PSU. To implement this remedial measure, FPL installed five wells, having a collective pumping capacity of 14 mgd, to pump brackish water from the Floridan Aquifer into the CCS to reduce the overall salinity of the water in the CCS. The Consent Order established a specific schedule for meeting this target salinity level, and, if necessary, requires FPL to submit a plan containing additional measures to meet that salinity level. FPL began implementing these freshening measures in November 2016, and the CCS had reached a salinity of 34 PSU by November 2020; however, FPL did not achieve the 34 PSU target on an average annual basis because there was less rainfall than in the ten-year period of record on which the freshening plan was based. As previously noted, FPL has proposed additional freshening measures, as required by the Consent Order; however, that proposal, which would be addressed by modifying the Certification, is in the early stages of review and addressed in, or authorized by, the Renewal Permit.13 FPL also has implemented a thermal efficiency plan, as required by the Consent Order, to maintain the water in the CCS at a lower temperature in order to reduce evaporation. 12 Neither the freshening activity authorized in the Certification nor the freshening activity recently proposed by FPL—which, if approved, would be authorized by a modification of the Certification—are authorized by the Renewal Permit. Therefore, these activities are not within the scope of these proceedings. 13 Refer to notes 3 and 12, above. Another key component of the Consent Order aimed at accomplishing the first objective was to require FPL to halt the migration of the hypersaline plume of water seeping from the CCS within three years of the commencement (i.e., May 15, 2018) of the remediation measures, and to reduce the westward extent of the hypersaline plume back to the L-31E Canal within ten years of commencement of the remediation measures.14 To withdraw the hypersaline plume eastward to the L-31E Canal, FPL has installed a Recovery Well System ("RWS"), consisting of ten wells located along the northern and western boundary of the CCS. These wells, which are cased to the Lower Flow Zone of the Biscayne Aquifer, collectively withdraw hypersaline water from the bottom hypersaline plume at a rate of 15 mgd. The hypersaline water removed by the wells is injected, by deep underground injection control wells, into the Floridan Aquifer Boulder Zone, a deep isolated geological formation which does not contain potable water and is used for the disposal of domestic and industrial wastewater. As further discussed below, operation of the RWS creates a hydrologic barrier to prevent water beneath the CCS from flowing west of the boundary of the CCS, and also functions as a remediation measure by drawing hypersaline water that previously had migrated westward from the CCS, back to the L-31E Canal. The Consent Order provides that the westward migration of the hypersaline plume will be deemed halted when the third Continuous Surface Electromagnetic Mapping ("CSEM") survey shows no net increase in hypersaline water volume and no net westward movement in the leading edge of the hypersaline plume. As stated above, the RWS became operational on May 15, 2018. 14 The rate of discharge of water from the CCS into ground water is directly related to the salinity level of the water in the CCS, with more saline water discharging at a greater rate than less saline water. Reducing the salinity of water in the CCS will reduce the rate of discharge into ground water, and also will reduce the salinity gradient that pushes ground water westward from the CCS. Once the water in the CCS no longer is hypersaline, there will be no further discharge of hypersaline water into the aquifer. To accomplish the second objective of the Consent Order, FPL filled in the Turtle Point Canal and the Barge Basin Canal in order to reduce the potential for CCS-origin ground water to flow or seep into surface waters at these locations. In addition, FPL has implemented a nutrient management plan to reduce nutrient concentrations in the water in the CCS and has undertaken other measures, further discussed below, to mitigate for the impacts of the hypersaline plume. The Renewal Permit On or about October 22, 2009, FPL timely filed the application (hereafter, "Application") to renew Permit No. FL0001562-012-IW1N with DEP, requesting authorization for the continued operation of the CCS as a wastewater treatment and effluent disposal facility for the Turkey Point electrical generating facility. Because FPL timely filed the Application,15 the validity period of the Permit was administratively extended, so that the 2005 version of the Permit is the current operative regulatory authorization for the CCS. Pursuant to rule 62-620.335(3), the 2005 version of the Permit remains in effect until a final order is issued in these proceedings, approving or denying the Renewal Permit. DEP reviewed the Application and supporting information and determined, based on those submittals; an analysis of FPL's Annual Remedial Action Annual Status Reports ("RAASRs"); the Electronic Document Management System ("EDMS," also known as "OCULUS") database for the Turkey Point facility; and data and information provided by third parties and other regulatory agencies, including SFWMD and DERM. In addition, consistent with federal and state rule requirements, DEP 15 The Application was filed at least 180 days before expiration of the Permit. See Fla. Admin. Code r. 62-620.335(1), (3). coordinated with EPA regarding renewal of the Permit; EPA did have any objections to issuance of the Renewal Permit DEP complied with all applicable permit application review process requirements, pursuant to rule 62-620.510. On January 2, 2019, DEP issued a Notice of Draft Permit, which was published in the Miami Herald on January 15, 2019. A public notice announcing a public meeting on the Draft Permit was published in the Miami Herald on April 4, 2019, and a public meeting on the Draft Permit was held in Homestead, Florida, on May 7, 2019. Additionally, DEP received public comment through May 21, 2019. Pursuant to the comments received and input at the public meeting, DEP made approximately 28 revisions to the Draft Permit. On April 20, 2020, DEP issued the Notice of Intent to Issue the Renewal Permit. The Notice of Intent was published in the Miami Herald on April 23, 2020, Petitioners and Intervenor received written notice on April 22, 2020. After receiving an extension of time to challenge the proposed issuance of the Renewal Permit, on June 4, 2020, FKAA and FKFGA each timely filed a separate petition for administrative hearing, challenging the proposed issuance of the Renewal Permit. The Renewal Permit authorizes FPL to continue to operate the CCS as a wastewater treatment and effluent disposal facility; establishes numeric and narrative limits for constituents in the water leaving the CCS; establishes extensive surface water, ground water, and pore water monitoring requirements, and establishes requirements regarding operation of the CCS. There are no new surface water or ground water discharges authorized by the Renewal Permit. Like the Permit issued in 2005, the Renewal Permit is a "no discharge" NPDES permit, in that it does not authorize a direct point source discharge to surface waters. Consistent with the 1972 EIS prepared for the construction of the CCS, the Renewal Permit continues to authorize seepage of CCS water into surface waters, provided that such seepage does not cause or contribute to a violation of applicable surface water quality standards and criteria established in Florida Administrative Code Chapter 62-302 and does not impair the designated use of contiguous surface waters. The Renewal Permit also continues to authorize the diffuse discharge of CCS water into Class G-III ground water, provided such discharge meets the water quality standards in rules 62-520.400, 62-520.420, and 62-430 applicable to Class G-III ground water and does not impair the reasonable and beneficial use of adjacent ground waters. The Renewal Permit establishes a compliance schedule for meeting this condition that is consistent with the timeframes set forth in the Consent Order for halting the westward migration of the hypersaline plume of water from the CCS and retracting the hypersaline plume back to the L-31E Canal.16 Specifically, Renewal Permit paragraphs I.1. and VI.8 through VI.10 require that the westward migration of the hypersaline plume from the CCS be halted within three years of commencement of the remedial measures established in the Consent Order, and that the hypersaline plume be retracted back to the L-31E Canal within ten years of commencement of those remedial measures. Compliance with these requirements is determined by CSEM surveys. As stated above, the remedial measures were commenced on May 15, 2018, so the westward migration of the hypersaline plume must be halted by May 16, 2021, and the hypersaline plume must be retracted back to the L-31E Canal by May 16, 2028.17 As further discussed below, the competent substantial evidence establishes that by implementing the RWS, FPL already is meeting the 16 The Renewal Permit refers to the Consent Order, and imposes a compliance schedule for halting and retracting the hypersaline plume that is consistent with specified provisions of the Consent Order, but it does not incorporate the Consent Order. 17 FPL's progress in meeting these compliance milestones, in order to demonstrate reasonable assurance that it will comply with the Renewal Permit's ground water-related conditions, is discussed below. requirement to halt the westward migration of the hypersaline plume from the CCS, and is on track to meet the requirement to withdraw the hypersaline plume back to the L-31E Canal within the timeframe set forth in the Renewal Permit. The Renewal Permit provides that if the compliance milestone established in paragraph VI.9, regarding halting the westward migration of the hypersaline plume, is not met, as determined by the CSEM surveys, FPL must develop and submit a plan for halting the westward migration of the hypersaline plume with the compliance schedule established in the Renewal Permit. The Renewal Permit also provides that at the conclusion of the fifth year of implementing the remedial measures—i.e., May 16, 2023—FPL must evaluate and report to DEP regarding the effectiveness of the remedial measures in retracting the hypersaline plume back to the L-31E Canal by May 16, 2028. If FPL's evaluation shows that such measures are not sufficient to achieve the hypersaline plume ten-year retraction requirement, FPL must provide an alternate plan for DEP review and approval to achieve this requirement. The Renewal Permit authorizes the continued operation of internal outfalls that discharge plant process water and stormwater to the CCS. The Renewal Permit imposes additional protective measures in order to provide reasonable assurance that surface and ground water quality standards will be met by operation of the CCS. Specifically, these measures include a new ground water monitoring group, Ground Water Monitoring Group G-001, which consists of cluster wells that sample ground water at shallow, intermediate, and deep depths, at 20 specified locations in the relative vicinity of the CCS—specifically, west of the L-31E Canal; west of the south-central portion of the CCS; south of the CCS; Southwest Model Lands; Northwest Model Lands; west-central Model Lands; West of Card Sound Canal Road; Biscayne Bay channel entrance to the Barge Basin; Biscayne Bay east of the CCS; north of the CCS; in the central portion of the CCS; Biscayne Bay southeast of the CCS; the northwest corner of the CCS; east of the south-central portion of the CCS; east of the L- 31E Canal, adjacent to the S-20 water control structure; Model Lands west of the L-3 well; Model Lands west of the Florida City Canal—and one deep well adjacent to the City of Homestead baseball complex; the L-3 well sampling at two depths; the L-5 well sampling at two depths; the G-28 well sampling at two depths; and the G-21 well sampling at two depths. These ground water monitoring wells will sample and monitor numerous ground water parameters, including specific conductance; salinity; total dissolved solids ("TDS"); chloride; sodium; nitrogen species, including total ammonia, ammonium ion, nitrate plus nitrite, and total Kjeldahl nitrogen ("TKN"); phosphorus; orthophosphate; magnesium; sulfate; sulfide; and tritium. These sampled parameters include those that Petitioners have raised in these consolidated challenges as exceeding applicable ground water and surface water standards as a result of operation of the CCS. Ground water monitoring wells TPGW-1, 4, 5, 6, 17, 18, and 19 are specifically designated for use in determining compliance with the permit requirement to retract the hypersaline plume. In addition, the Renewal Permit authorizes a new series of surface water monitoring sites, Surface Water Monitoring Group D-01A, at locations in Biscayne Bay, the L-31E Canal, the S-20 Canal, and the Card Sound Canal. Samples collected at these sites will be analyzed for a range of parameters, including TDS; salinity; specific conductance; nitrogen species, including total ammonia, ionized and unionized ammonium, nitrate plus nitrite, and TKN; phosphate; phosphorus; chlorides; chlorophyll; magnesium; sulfate; sodium; and tritium. These sampled parameters include those that Petitioners have raised in these consolidate challenges as exceeding applicable surface water standards as a result of operation of the CCS. The Renewal Permit also authorizes a new series of porewater18 monitoring sites, Porewater Monitoring Group D-02A, in coastal marine wetlands located north, east, and south of the CCS. Samples collected at these sites will be analyzed for a range of parameters, including TDS; salinity; specific conductance; nitrogen species, including total ammonia, ionized and unionized ammonium, nitrate plus nitrite, and TKN; phosphate; phosphorus; chlorides; chlorophyll; magnesium; sulfate; sodium; and tritium. These sampled parameters include those that Petitioners have raised in these consolidate challenges as exceeding applicable ground water and surface water standards as a result of operation of the CCS. Additionally, the Renewal Permit requires monitoring, at several specified monitoring locations in the CCS, of a range of parameters in non-process wastewater and stormwater discharges into the CCS through and existing internal outfall. The parameters to be sampled include total suspended solids; biochemical oxygen demand; dissolved oxygen; pH; salinity; specific conductance; TDS; nitrogen species, including total ammonia, ionized and unionized ammonium, nitrate plus nitrite, and TKN; orthophosphate; phosphorus; chlorides; chlorophyll; magnesium; sulfate; sodium; and tritium. The Renewal Permit also requires FPL to develop and implement a detailed Best Management Practices ("BMPs") Plan, the purpose of which is to prevent or minimize the generation, and potential for release, of pollutants from operation of the Turkey Point facility that would be discharged into the CCS. As discussed above, after FPL submitted the Application for the Renewal Permit in 2009, and before DEP issued the Notice of Intent to issue the Renewal Permit, DEP determined that the discharge of water from the 18 Porewater is the free water present in sediment. It is water within the interstitial distance between ground water, where ground water standards apply, and surface water, where surface water quality standards apply. Porewater sampling and analysis is a useful tool in determining whether constituents in ground water are seeping into surface water. CCS into ground water was impairing the reasonable and beneficial use of adjacent Class G-II ground water, and issued the NOV. FPL and DEP entered into the Consent Order to resolve that violation, as well as to ensure that water seeping from the CCS into ground water would not cause violations of surface water quality standards. In implementing the remediation measures required under the Consent Order,19 FPL constructed, and is operating, the RWS. As further discussed below, the RWS already has halted the westward migration of the hypersaline plume, so that the operation of the CCS under the Renewal Permit will not violate applicable ground water quality standards. Thus, when DEP issued the Notice of Intent, FPL no longer was in violation of any conditions of the Permit or applicable ground water or surface water quality standards; accordingly, DEP determined that the Renewal Permit should not be denied on the basis of a violation of any permit condition. Challenge to the Renewal Permit As discussed above, on June 4, 2020, Petitioners FKAA and FKFGA each filed a petition, challenging DEP's proposed issuance of the Renewal Permit. These challenges were referred to DOAH and respectively assigned Case Nos. 20-2967 and 20-2968. As noted above, on August 24, 2020, Monroe County filed its unopposed Motion to Intervene, challenging the proposed issuance of the Renewal Permit. Monroe County became a party to these consolidated proceedings on August 26, 2020. At their core, the Administrative Petitions and Motion to Intervene allege, in part, that continued operation of the CCS will result in the 19 The specific purpose of the Consent Order was to address and resolve the ground water quality standard violation that had resulted from the discharge of hypersaline water from the CCS into ground water. continued westward migration of the hypersaline plume, threatening drinking water and other ground water-dependent natural resources.20 The Administrative Petitions and Motion to Intervene also allege that the operational changes authorized by the Renewal Permit will increase nutrient loading, including nitrogen and phosphorus, in Biscayne Bay, thereby disrupting populations of aquatic flora and fauna, in violation of surface water quality standards. The Administrative Petitions and Motion to Intervene allege that FPL has not provided the necessary reasonable assurance that the continued operation of the CCS, through issuance of the Renewal Permit, meets the applicable statutory and rule requirements and standards. Specifically, the Administrative Petitions and Motion to Intervene allege that operation of the CCS, including discharges to ground waters and surface waters, as authorized in the Renewal Permit: (1) will impair designated uses of adjacent surface waters and ground waters, in violation of applicable surface water and ground water rules in chapters 62-302 and 62-520, respectively; (2) will cause or contribute to violations of the surface water quality standards in chapter 62-302; (3) does not adequately protect against discharges of nuisance, acutely toxic, carcinogenic, mutagenic, teratogenic, and dangerous compounds, as required by rules 62-520.400 and 62-520.430; (4) will result in discharges into ground water that will impair contiguous surface waters, in violation of rule 62-520.310(2); (5) will cause a violation of the estuary specific numeric nutrient criteria applicable 20 The Petitions also allege that adding water to freshen the CCS will increase the seepage rate of hypersaline water, resulting in maintenance or increase of the westward movement of the hypersaline plume, which will, in turn, result in the alleged harm to drinking water and natural resources. However, as discussed above, the Renewal Permit does not authorize the addition of freshening water to the CCS; that activity is required under the Consent Order— which was not challenged and is in effect—and was authorized by modification of the Certification, which also is in effect, after being unsuccessfully challenged. Therefore, any effects of freshening activities that already have been authorized, or any future freshening that may be authorized pursuant to further modification of the Certification, are not at issue in this proceeding. to Biscayne Bay which are established in rule 62-302.532(1)(h); (6) will fail to maintain and protect Biscayne Bay National Preserve, as required by rule 62-302.200(27), by virtue of being designated an Outstanding Florida Water ("OFW") and an Outstanding Natural Resource Water ("ONRW")21; (7) will fail to protect Biscayne Bay, as an OFW, pursuant to rule 62-302.700(9)(h)5. and 6.; (8) is inconsistent with the anti-degradation policy set forth in rules 62-302.300, 62-302.700, and 62-4.242(1); (9) has not been shown to be necessary or desirable under federal standards or under circumstances which are clearly in the public interest, if it is shown that the discharges from the CCS will result in water quality degradation; (10) is not in the public interest because: it is not important and beneficial to the public health, safety, or welfare, taking into account policies in rules 62-302.300 and 62-302.700; it will adversely affect the conservation of fish and wildlife, including threatened or endangered species, or their habitats; it will adversely affect fishing or water-based recreational values or marine productivity in the vicinity of the proposed discharge; and is not consistent with any applicable surface water improvement and management plan that has been adopted by a water management district and approved by DEP; should be denied on the basis of prior permit violations, pursuant to rules 62-4.070(5) and 62-302.320(7); (12) constitutes a menace to public health; creates a public nuisance; is harmful to wildlife and to fish and other aquatic life; and impairs domestic, agricultural, industrial, recreational, and other beneficial uses of air and water, in violation of section 403.021(1) and implementing rules; (13) is inconsistent with the State of Florida's declared public policy to conserve the waters of the state and to protect, maintain, and improve the quality thereof for public water supplies; the propagation of wildlife, fish, and other aquatic life; and domestic, agricultural, industrial, 21 Biscayne Bay has been designated as an ONRW by rule 62-302.700(10)(a); however, that designation is not in effect, and was not in effect at the time of the final hearing, because the Legislature has not enacted legislation specifically authorizing protection and maintenance of ONRWs to the extent required by federal regulation. recreational, and other beneficial uses; and to provide that no wastes be discharged into any waters of the state without first being given the degree of treatment necessary to protect the beneficial uses of such water, as provided in section 403.021(2) and implementing rules; (14) is inconsistent with the State of Florida's declared public policy, in section 403.012(5), that the prevention, abatement, and control of pollution of the air and waters of this state are affected with a public interest; (15) is inconsistent with rule 62-4.070(1) requirement that a permit shall be issued to the applicant upon such conditions as DEP may direct, only if the applicant affirmatively provides DEP with reasonable assurance, based on plans, rest results, installation of pollution control equipment, or other information, that the construction, expansion, modification, operation, or activity of the installation will not discharge, emit, or cause pollution in contravention of DEP standards or rules, and the corresponding requirement, in rule 62-4.070(2), that DEP deny any application where reasonable assurances are not provided; (16) is inconsistent with the requirement in rule 62-4.242(2)(a) that DEP not issue a permit or water quality certification for any proposed activity or discharge in an OFW, or which significantly degrades, either alone or in combination with other stationary installations, any OFWs, unless the applicant affirmatively demonstrates that the proposed activity or discharge is clearly in the public interest, and either a DEP permit for the activity has been issued or an application for such permit was complete on the effective date of the OFW designation, or the existing ambient water quality within OFWs will not be lowered as a result of the proposed activity or discharge, except on a temporary basis during construction for a period not to exceed 30 days; that lowered water quality would occur only within a restricted mixing zone approved by DEP; and that water quality criteria would not be violated outside the mixing zone; (17) will violate the prohibition in rule 61-4.242(3) that all discharges or activities that may cause degradation of water quality in ONRWs are prohibited, other than discharges that are exempted by statute from DEP permitting or regulation, or discharges or activities described in rules 62-4.242(2)(a)1.b. or c., and 62-4.242(2)(a)2.b.; (18) will violate the anti-degradation policy in rule 62-302.300(14) through (16),22 that existing uses and the level of water quality necessary to protect the existing uses shall be fully maintained and protected; that pollution which causes or contributes to new violations of water quality standards or to continuation of existing violations is harmful to the waters of this state and shall not be allowed and that waters having water quality below the criteria established for them shall be protected and enhanced, except that DEP shall not strive to abate natural conditions; that if DEP finds that a new or existing discharge will reduce the quality of the receiving waters below the classification established for them or violate any DEP rule or standard, it shall refuse to permit the discharge; that if an applicant for either a general or generic permit or renewal of an existing permit for which no expansion of discharge is proposed is not required to show that any degradation from the discharge is necessary or desirable under federal standards and under circumstances which are clearly in the public interest; and that if DEP determines that the applicant has caused degradation of water quality over and above that allowed by previous permits issued to the applicant, then the applicant shall demonstrate that this lowering of water quality is necessary or desirable under federal standards, or under circumstances which are clearly in the public interest and are limited to cases where it has been demonstrated that degradation of water quality is occurring due to the discharge; (19) will violate the requirement in rule 62-302.500(1)(a)6. and (1)(b) that surface waters remain free from man-induced non-thermal components of discharges which post a serious danger to the public health, safety, and welfare, and/or which produce conditions so as to create a nuisance; (20) will violate the requirement in rule 62-520.400(1)(f) that the permitted discharge from the 22 The petitions also allege violations of rule 62-302.300(18)(a) and (b), which have not been specifically cited. CCS shall not impair the reasonable and beneficial use of adjacent waters beyond the facility boundary; (21) will violate the requirement in rule 62-520.420 that water quality standards for Class G-II and Class G-III ground water shall not be violated; (22) will violate the requirement in rule 62-520.430 that water quality standards for Class G-III ground water shall not be violated; (23) will violate the requirement in rule 62-620.300(5) that the permitted activity is operated consistent with the proposed permit conditions; (24) will violate the requirement in rule 62-620.320(1) that a permit shall only be issued if the applicant affirmatively provides DEP with reasonable assurance, based on a preliminary design report, plans, test results, installation of pollution control equipment, or other information, that the construction, modification, or operation of the wastewater facility or activity will not discharge or cause pollution in contravention of chapter 403 and applicable DEP rules; and (25) will violate the requirement in rule 62-620.320(9) that the permit conditions provide for compliance with chapter 403 and applicable DEP rules. Effect of the CCS on Offsite Surface Waters Potential for Seepage of CCS Water into Offsite Surface Waters As previously discussed, there is no direct surface water connection between the canals and water in the CCS and surface waters, including Biscayne Bay. The competent substantial evidence establishes that the berm system, as constructed, creates a relatively impermeable barrier to the direct discharge of CCS water into Biscayne Bay. Moreover, in any event, any net surface flow that could exist between the CCS and Biscayne Bay would predominantly be from east to west—i.e., from Biscayne Bay toward the CCS. Also, as previously discussed, when the CCS was constructed and became operational in the early 1970s, the EIS recognized that there was the potential for some indirect discharge of CCS water into surface waters, including Biscayne Bay, via seepage of CCS water into the ground water immediately underlying the CCS and seepage of that ground water into surface water. In order for water in the CCS to travel through ground water to surface waters, including to Biscayne Bay, three conditions must collectively exist: a pathway that allows the significant flow of water; a hydraulic gradient—i.e., energy potential difference—between the water levels in the CCS and Biscayne Bay; and sufficient time for the water to flow the distance from the CCS to Biscayne Bay, which, in turn, is dependent on the hydraulic conductivity of the geologic unit through which the water flows. If any of these conditions is not present, then water cannot flow from the CCS to Biscayne Bay or other surface waters. The Evidence Does Not Establish that there is Seepage of CCS Water into Biscayne Bay The competent substantial evidence establishes that these conditions do not collectively exist such that there is little, if any, flow or seepage of water from the CCS, via ground water, into Biscayne Bay. As discussed above, the Biscayne Aquifer generally is highly permeable; however, its permeability—and, therefore, its ability to enable significant water flow—varies at different depths and locations. The upper 20 feet of the Biscayne Aquifer is comparatively less permeable than some of the deeper layers in the aquifer. Thus, the upper portion of the Biscayne Aquifer immediately underlying the CCS does not enable any appreciable flow or seepage of ground water containing CCS water into Biscayne Bay. To this point, a comparison of the height of the water in the CCS relative to that in Biscayne Bay shows that the water height in the CCS remains relatively constant, while the water height in Biscayne Bay fluctuates with tidal cycles. This constitutes strong evidence that CCS water does not enter, or have any appreciable exchange with, Biscayne Bay surface waters through a ground water connection. The evidence also does not bear out that CCS water flows into Biscayne Bay through the more permeable preferential flow zones within the Biscayne Aquifer. CCS water may seep into the Upper Flow Zone, which is a layer of the aquifer located approximately 20 to 30 feet below the land surface that acts as a preferential flow zone; however, the competent, substantial, and persuasive evidence establishes that the Upper Flow Zone does not intersect the bottom of Biscayne Bay at any location, so that a pathway does not exist for CCS water which has seeped into the ground water in the Upper Flow Zone to ultimately seep or flow into Biscayne Bay. The competent, substantial, and persuasive evidence also shows that CCS-origin water does seep, via ground water, into Biscayne Bay through submarine springs. Some small karst depressions, which Petitioners and Intervenor have characterized as caves,23 exist in the limestone at the bottom of Biscayne Bay east of the CCS. The competent, substantial, and persuasive evidence establishes that these depressions are not deep enough to intersect the Upper Flow Zone of the Biscayne Aquifer. That CCS water does not seep into Biscayne Bay via these karst depressions is borne out by tritium data from water samples collected at the bottom of the depressions, showing that very little of the water at the bottom of the depressions is CCS-origin water, and that to the extent CCS-origin water is present in the depressions, it can be explained entirely by atmospheric deposition. Tritium is a mildly radioactive isotope of hydrogen that is naturally present in the upper atmosphere and waters distal from the Turkey Point facility at average levels of approximately 6 picocuries per liter ("pCi/L"). 23 Dr. Mark Stewart, FPL's expert hydrogeologist, testified that "caves" are solution features in limestone large enough for a person to enter, and that the karst depressions at the bottom of Biscayne Bay, immediately east of the CCS, are not large enough to be considered caves. Tritium also is created as a by-product of the nuclear reaction process, and is part of all water in the CCS, at an average level of approximately 6,000 pCi/L. Because tritium is part of the water molecule in all CCS-origin water, it is an excellent tracer for CCS-origin water. The atmospheric background level of tritium in the vicinity of the CCS averages approximately 11.2 pCi/L, due to evaporation of tritium- containing water from the CCS. By comparing tritium levels in surface water and ground water samples collected at, and in the vicinity of, Turkey Point with the natural atmospheric background tritium level, one can ascribe any tritium levels in the samples which exceed the natural background level to CCS-origin water. The level of tritium in water quality monitoring samples taken at the bottom of the karst depressions ranges between approximately 12 and 20 pCi/L, which shows that highly diluted CCS-origin water—i.e., approximately one one-thousandth of the water sample—exists in these depressions. The competent, substantial, and persuasive evidence establishes that if there were any significant groundwater seepage of CCS-origin water, via ground water, into these depressions in Biscayne Bay, the sustained tritium levels in the depressions likely would be comparable to the tritium levels of the water in the CCS. However, nowhere in Biscayne Bay, including at the bottom of these karst depressions, do tritium levels approach the 6,000+ pCi/L tritium levels of CCS-origin water that would exist if there were seepage or flow of CCS water into Biscayne Bay. Surface water samples taken in Biscayne Bay consistently show tritium levels in the range of 11 to 20 pCi/L, which is entirely explained by atmospheric deposition in the form of rainfall or water vapor, rather than by ground water seepage. To this point, Dr. Kip Solomon, FPL's expert on tritium transport in atmospheric and aqueous mediums, persuasively opined that the overwhelmingly dominant pathway for transport of tritium into Biscayne Bay is via evaporation and atmospheric deposition. This conclusion is supported by the persuasive evidence establishing that neither the karst depressions, nor any other location at the bottom of Biscayne Bay, intersect the Upper Flow Zone or any other deeper preferential flow zones in the Biscayne Aquifer. Additionally, if there were ground water seepage from the CCS into Biscayne Bay, that ground water would enter the bay through the porewater in the sediment at the bottom of the bay. However, porewater sampling in sediment at the bottom of Biscayne Bay consistently shows an average tritium level of approximately 9.3 pCi/L, which is less than the average concentration of tritium in the surface water of Biscayne Bay. This supports the conclusion that tritium likely enters Biscayne Bay at the surface of the water, consistent with an atmospheric deposition source, rather than by ground water seepage from the CCS. Ground water monitoring of tritium levels at various locations under, and in the vicinity of, the CCS, further shows that the predominant movement of tritium-containing water, via seepage from the CCS into ground water, is downward, rather than eastward. These monitoring results further support the conclusion that there is no significant seepage of CCS-origin water, via ground water, into Biscayne Bay. The competent substantial evidence also does not show the existence of a hydraulic gradient that would favor flow of CCS water, via ground water, into Biscayne Bay. The hypersaline water in the CCS is more saline, and, therefore, denser, and heavier per volume, than the seawater in Biscayne Bay, which averages between 34 and 36 PSU. Thus, any hypersaline CCS water in the Upper Flow Zone is generally denser and heavier than the seawater above it, in Biscayne Bay and the uppermost portions of the Biscayne Aquifer. This density and weight difference creates a stable stratification of ground water, with the denser, heavier hypersaline water sinking to, and present at, the lower levels, and the fresher, lighter seawater floating on the top of the stratified ground water column. This stable stratification prevents any hypersaline water that may move from the CCS eastward under Biscayne Bay from rising in the stratified water column up into the bay. Additionally, as discussed above, the water levels in Biscayne Bay typically are higher than the water levels in the CCS, even at low tide in the bay. The lowest water levels in the CCS are on its eastern side, closest to Biscayne Bay, due to operation of the CCS pumps, which pump the water counterclockwise through the CCS, starting at its northwestern corner and ending at its northeastern corner. The difference in the water levels between the CCS and Biscayne Bay creates a hydraulic gradient that results in a net flow of water from east to west—i.e., toward the CCS, rather than toward Biscayne Bay. FPL's expert hydrogeologist, Stewart, determined that for the period from 2011 to 2018, there was a westward hydraulic gradient, favoring water movement from east to west, 70 to 75 percent of the time, and that in the relatively short period when an eastward gradient existed—in 2015, an outlier period during which the CCS water levels were at historic highs—the duration of that eastward gradient was insufficient to allow CCS-origin water to flow to and reach Biscayne Bay. Thus, the prevailing westward hydraulic gradient significantly limits the potential for CCS-origin water to flow or seep into areas beneath Biscayne Bay or reach surface waters in Biscayne Bay. Additionally, the competent substantial evidence establishes that there is no significant flow of ground water from the CCS into Biscayne Bay via the Turtle Point Canal or Barge Basin Canal. These canals, which are located at the northeast corner of the Turkey Point facility, are remnants of the cooling water pass-through system that existed before construction of the CCS. Pursuant to the Consent Order, FPL filled these canals specifically to reduce the potential for CCS water to flow, via ground water seepage or flow, into Biscayne Bay. The Turtle Point Canal previously was approximately 20 feet deep, but has been almost completely filled,24 as required by the Consent Order. The Barge Basin Canal, which provides water access to Turkey Point, previously was approximately 30 feet deep; this canal has been filled, pursuant to the Consent Order, to a depth of approximately nine feet, which is the depth of the channel in Biscayne Bay leading to it. If these canals had constituted a significant source of CCS water discharge into Biscayne Bay before they were filled, a stable, density- stratified, high-salinity and high-tritium layer of water would have filled the canal cuts. However, sampling at the canal sites before they were filled did not indicate the existence of such conditions. This shows that even before the canals were filled, they likely were not a significant source of discharge of CCS-origin water into Biscayne Bay. Moreover, the tritium data collected through water quality monitoring at the Turtle Point and Barge Basin canals shows that tritium levels are very similar to those in the surface water of Biscayne Bay, further indicating that there is no significant flow or seepage of CCS-origin water, via ground water connection through these canals, into Biscayne Bay. In sum, the competent, substantial, and persuasive evidence establishes that there is little, if any, seepage or flow of CCS-origin water into Biscayne Bay. The Evidence Does Not Establish that CCS Water Seeps into Offsite Canals Additionally, the competent substantial evidence does not show that CCS-origin water is seeping, via ground water, to offsite canals or surface waters west of the CCS. As discussed above, the Interceptor Ditch is located immediately to the west of the CCS. As previously noted, it was constructed for the purpose 24 The Turtle Point Canal also has been plugged with a dam consisting of bentonite clay, which has very low permeability so acts as an effective barrier to water flow or percolation. of creating a hydraulic barrier between the CCS and the L-31E Canal and lands west of the L-31E Canal. The water level in the Interceptor Canal is maintained at a level that establishes an eastward hydraulic gradient from the L-31E Canal to the CCS, so that shallow surface flow from the CCS to the west is restricted. Tritium analysis of the surface water in the L-31E Canal shows that very little, if any, CCS water is seeping or flowing into the L-31E Canal. The competent substantial evidence further establishes that, since FPL's operation of the RWS beginning in 2018, the hydraulic gradient is toward the wells in the RWS, rendering it highly unlikely that CCS water is seeping or flowing into the L-31E Canal. There are other canals located west and south of the CCS. These include the S-20 Discharge Canal, which is located west and south of the southern end of the CCS, and the Card Sound Road Canal and Sea-Dade Canal, both which are located west and south of the CCS. The same hydrological principles that govern the potential for ground water seepage toward Biscayne Bay govern the potential for ground water seepage to the offsite canals. Specifically, there must be a ground water pathway through which water can readily travel from the CCS to the offsite canals; a hydraulic gradient favoring the movement of water from the CCS toward the offsite canals must exist; and the hydraulic gradient must exist for a sufficient duration to allow water seeping from the CCS to reach the canals. The competent, substantial, and persuasive evidence does not establish that pathway exists for CCS-origin water to seep into the L-31E Canal. The L-31E Canal is approximately 15 to 18 feet deep, so is not deep enough to intersect the Biscayne Aquifer Upper Flow Zone. Additionally, the hydraulic gradient does not favor flow or seepage of ground water from the CCS into the L-31E Canal. As noted above, the water level in the Interceptor Ditch is maintained at a lower water elevation than in the L-31E Canal, so there is a continual west to east gradient, from the L-31E Canal toward the CCS. Moreover, and importantly, because the RWS has been implemented along the western boundary of the CCS, the hydraulic gradient of ground water is toward the RWS, such that any ground water seeping westward from the CCS is intercepted by the RWS and pumped into the Boulder Zone of the Floridan Aquifer; thus, that water cannot seep into the L-31E Canal. The S-20 Discharge Canal, Card Sound Road Canal, and Sea-Dade Canal are all approximately 18 feet deep—too shallow to intersect the Upper Flow Zone, which would constitute the pathway for CCS-origin water to seep, via ground water, into these canals. Water quality monitoring data in and around the S-20 Discharge Canal, Card Sound Road Canal, and Sea-Dade Canal indicates that little, if any, CCS-origin water reaches these offsite canals via ground water seepage. Additionally, the tritium data does not show significant CCS-origin water seepage or flow, via ground water, into these canals. Water quality data collected in 2015 and 2016 indicates that the Turtle Point Canal and Barge Basin Canal may have intersected the Upper Flow Zone, so that CCS-origin water could have seeped into these canals. However, as discussed above, as required by the Consent Order, these canals have been filled with a bentonite slurry wall down to a depth of approximately 30 feet below land surface, so that they no longer intersect the Upper Flow Zone. In sum, the competent, substantial, and persuasive evidence shows that there is very little, if any, seepage of CCS-origin water, via ground water, into the canals or other surface waters proximate to the Turkey Point facility. The Evidence does not Establish that the CCS Causes Surface Water Quality Violations or Degrades Water Quality in Biscayne Bay Because there is no surface water connection of the CCS to Biscayne Bay, to the extent nutrients—i.e., phosphorus and nitrogen—were to seep or flow from the CCS into Biscayne Bay, the only mechanism by which these nutrients in CCS water could reach Biscayne Bay would be through seepage of CCS-origin water into ground water, and then up into the bay. Further to this point, dissolved nutrients generally do not travel with water molecules that evaporate. Therefore, unlike tritium, nutrients cannot be atmospherically deposited into Biscayne Bay via water vapor or rain. As discussed above, the competent, substantial, and persuasive evidence establishes that the Upper Flow Zone of the Biscayne Aquifer does not intersect the bottom of Biscayne Bay, so there is no significant pathway for CCS water carrying dissolved nutrients to flow or seep into Biscayne Bay. Additionally, as discussed above, even if a pathway existed for CCS water to flow or seep, via ground water, into Biscayne Bay, the predominant westward hydraulic gradient, which is from Biscayne Bay toward the CCS, significantly limits the potential for CCS-origin water carrying dissolved nutrients to seep or flow, via ground water, into the surface waters of the bay. Also, as discussed above, to the extent a short-lived eastward hydraulic gradient were to exist, the evidence establishes that it is not of sufficient duration to enable CCS water to reach Biscayne Bay surface waters. The competent substantial evidence also establishes that, in any event, the water in the CCS does not contain excessive amounts of phosphorus and nitrogen. As noted above, FPL has implemented a nutrient management plan. Therefore, even if a pathway, hydraulic gradient, and sufficient time for seepage of water from the CCS into Biscayne Bay all existed, the CCS does not constitute a significant potential source of nutrient pollution. Furthermore, because phosphorus is biologically active, and because the movement of nitrogen and phosphorus dissolved in CCS water is retarded by physical and geochemical processes as the water flows through the sediments comprising the aquifer, to the extent CCS water were to seep, via ground water, into Biscayne Bay, nutrient concentrations in that water would be even less than that of tritium25—i.e., less than one-one thousandth of the water sample—so would not constitute a significant source of nutrient input into Biscayne Bay. Compliance with Numeric and Narrative Nutrient Criteria Biscayne Bay is classified as a Class III marine water body, pursuant to rule 62-302.400(1), which means that the specific water quality standards applicable to the water body are established to protect fish consumption, recreation, and the propagation of a healthy, well-balanced population of fish and wildlife. Rule 62-302.530 codifies numeric and narrative surface water quality criteria for a range of constituents. With respect to total phosphorus and total nitrogen, rule 62-320.530(48)(a) and (48)(b) establish narrative criteria.26 Specifically, rule 62-302.530(48)(a) requires that the discharge of nutrients shall be limited as needed to prevent violations of other standards contained in chapter 62-302, regarding surface water quality standards. The rule further states that man-induced nutrient enrichment (total nitrogen or total phosphorus) shall be considered degradation in relation to the provisions of rules 62-302.300, 62-302.700, and 62-4.242. Additionally, rule 62-302.530(48)(b) provides that "[i]n no case will nutrient concentrations of a body of water be altered so as to cause an imbalance in natural populations of aquatic flora or fauna." 25 As discussed above, tritium is an excellent tracer of CCS-origin water because it is part of the water molecule in all CCS-origin water. Because dissolved nitrogen and phosphorus ions are not part of the water molecule, and physically and chemically react with the sediment comprising the aquifer, they would be present in smaller concentrations than tritium in CCS- origin water. 26 DEP has not adopted generally applicable Class III surface numeric water quality standards for total phosphorus or total nitrogen. Rule 62-302.531, titled Numeric Interpretations of Narrative Nutrient Criteria, requires that the narrative water quality criterion for nutrients set forth in rule 62-302.530(48)(b) be numerically interpreted for nutrients (i.e., total phosphorus and total nitrogen) and nutrient response variables (i.e., chlorophyll-a),27 in a hierarchical manner. Fla. Admin. Code R. 62-302.531(2). Numeric nutrient criteria generally are developed by determining a threshold level of nutrients in a water body beyond which additional nutrients will cause an imbalance in the flora and fauna. Importantly, the rule provides that when a site-specific interpretation of the narrative criterion in rule 62-302.530(48)(b) has been established, that numeric interpretation will constitute the primary interpretation for that criterion. Fla. Admin. Code R. 62-302.531(2)(a). Thus, pursuant to this rule, for locations for which DEP has adopted site-specific numeric interpretations of the narrative criteria, those site-specific numeric nutrient criteria are used to determine whether there is an exceedance of the narrative nutrient criterion. In rule 62-302.532, titled Estuary Specific Numeric Interpretations of the Narrative Nutrient Criterion, DEP has established site-specific numeric interpretations of the narrative criterion for the estuaries in Florida. With respect to Biscayne Bay, DEP has adopted numeric nutrient criteria for total nitrogen, total phosphorus, and chlorophyll-a that are applicable to specific areas of Biscayne Bay called Estuary Nutrient Regions ("ENRs"). ENRs are regions in the Bay which have similar physical and biological characteristics. The ENR-specific numeric nutrient criteria were adopted to maintain nutrient levels within the ENR at concentrations consistent with the very low nutrient levels that existed in the 1970s, pre-development of much of the area around Biscayne Bay. 27 Chlorophyll-a is a nutrient response variable that can be used as an indicator of algal biomass in a water body. In order to maintain healthy conditions in the ENR, the numeric nutrient criteria for nitrogen, phosphorus, and chlorophyll-a all must be met for that ENR. These site-specific numeric nutrient criteria are codified in rule 62-302.532(1)(h), which went into effect on July 3, 2012. To determine compliance with the numeric nutrient criteria adopted for a specific ENR, water quality sampling for each nutrient is conducted in that ENR at least four times per year, with one sampling event in the winter and one in the summer. In order for the water quality within an ENR to be in compliance with the numeric nutrient criteria established for that ENR, the numeric nutrient criterion for the specific nutrient cannot be exceeded more than once in a three-year period. The ENRs that are immediately proximate to the CCS are ENR H1 (Card Sound Estuary), ENR H6 (South Central Inshore Estuary), and ENR H7 (South Central Mid-Bay Estuary). Russell Frydenborg, who served as a water quality program administrator with DEP and had substantial involvement in developing the site-specific numeric nutrient criteria for the ENRs in Biscayne Bay, presented testimony and supporting evidence regarding compliance with the numeric nutrient criteria in these ENRs. The water quality monitoring data for ENRs H1, H6, and H7 show, for the period from 2013 to 2020, there were no exceedances of the total phosphorus numeric nutrient criterion in ENRs H1, H6, and H7. Accordingly, the numeric nutrient criterion for total phosphorus is being met in the ENRs immediately proximate to the CCS. For the period from 2013 to 2020, the water quality monitoring data for ENRs H1, H6, and H7 show that the numeric nutrient criterion for total nitrogen was exceeded once, in 2018, in ENR H6. However, because the criterion was exceeded only once during the sampling period, which is longer than the three-year period necessary for compliance, the water quality within each of these ENRs was in compliance for total nitrogen over the sampling period. Accordingly, the numeric nutrient criterion for total nitrogen is being met in the ENRs immediately proximate to the CCS. The competent, substantial, and persuasive evidence establishes that the proposed surface water monitoring stations included in the Application for the Renewal Permit are located such that they will accurately detect any potential exceedances of the numeric nutrient criteria in ENRs H1, H6, and H7. The water quality monitoring data for ENRs H1, H6, and H7 show that over the period from 2013 to 2020, the numeric nutrient criterion for chlorophyll-a was exceeded once, in 2017, in ENR H7. Again, because the criterion was exceeded only once during the sampling period—which is longer than the three-year period necessary for compliance—the water quality within each of these ENRs was in compliance for chlorophyll-a over the sampling period. Kenneth Weaver, DEP's program administrator who oversees the development and administration of water quality standards, also testified regarding the results of water quality monitoring for chlorophyll-a, total nitrogen, and total phosphorus conducted over a 20-year period, between 1980 and 2020, in ENRs H1, H6, and H7. The results of his analysis, which were consistent with the evidence presented by Frydenborg, confirm that there currently are no exceedances of the numeric nutrient criteria for chlorophyll-a, total nitrogen, and total phosphorus in ENRs H1, H6, and H7. Weaver's long-term water quality analysis also showed that, for the period between approximately 1970—before the CCS commenced operation— and 2020, salinity levels in ENRs H1, H6, and H7 fluctuated over a range from approximately 25 PSU to 40 PSU, but that there were, and are, no upward trends in salinity levels in these areas of Biscayne Bay. This evidence further supports the conclusion that the CCS is not contributing significant amounts of water, via surface water or ground water seepage or flow, in these areas of the bay. Additionally, porewater samples taken over a ten-year period at transects proximate to the CCS show lower nutrient levels than at areas distal from potential influence of the CCS. This constitutes further evidence that the CCS is not a significant source of nutrient input into Biscayne Bay. Collectively, this competent, substantial, and persuasive evidence demonstrates that ENRs H1, H6, and H7 are meeting—and, over a substantial period of time, have met—the numeric nutrient criteria established for these parts of the bay. Weaver also testified, persuasively, that there is no evidence of any imbalance of flora or fauna related to nutrient concentrations in ENRs H1, H6, and H7. Rather, over time, the water quality in the areas of Biscayne Bay proximate to the CCS has improved. This is borne out by the competent, substantial, and persuasive evidence, discussed in detail below, showing that the marine ecosystem in the areas of Biscayne Bay proximate to the CCS is in a relatively healthy, high-functioning condition, particularly compared to other areas in the bay. Additionally, Weaver and Frydenborg both explained that the estuary-specific numeric nutrient criteria adopted in rule 62-302.532(1) for Biscayne Bay, including ENRs H1, H6, and H7, are more stringent than the narrative nutrient criteria for those ENRs. The numeric nutrient criteria for Biscayne Bay were developed using a "no observed effect" standard, rather than an imbalance threshold, so that the numeric criteria will be exceeded before an imbalance in natural populations of aquatic flora or fauna occurs. Thus, compliance with the numeric nutrient criteria for the ENR means that the narrative nutrient criteria for the ENR are met. In sum, the competent, substantial, and persuasive evidence establishes that the continued operation of the CCS pursuant to the Renewal Permit will comply with the applicable estuary-specific numeric nutrient criteria, and, therefore, will comply with the applicable narrative nutrient criteria. Discharge from the CCS does not Degrade Surface Water Quality in Biscayne Bay As noted above, Biscayne Bay is designated as a Class III marine water body, pursuant to rule 62-302.400(1), which means that the specific water quality standards applicable to the water body are established to protect fish consumption, recreation, and the propagation of a healthy, well- balanced population of fish and wildlife. Florida's anti-degradation policy, codified at rule 62-302.300, states, in pertinent part, that pollution that causes or contributes to new violations of water quality standards or to the continuation of existing violation is harmful to the waters of this State and will not be allowed. Fla. Admin. Code R. 62-302.300(15). The policy further states if DEP finds that a new or existing discharge will reduce the quality of the receiving water below the classification established for that water body—here, the Class III designation—or violate any DEP rule or standard, then DEP shall refuse to permit the discharge. Fla. Admin. Code R. 62-302.300(16). Rule 62-302.300(18) further provides that, with limited exception,28 an applicant for the renewal of an existing permit for which no expansion of the discharge is proposed is not required to show that any degradation from the discharge is necessary or desirable under federal standards and under circumstances which are clearly in the public interest. Fla. Admin. Code R. 62-302.300(18)(a). 28 Under rule 62-302.300(18)(b), if an applicant for the renewal of an existing permit has caused water quality degradation beyond that allowed in the permit, then the applicant must show that the lowering of water quality is necessary or desirable under federal standards and under circumstances that are clearly in the public interest. As discussed below, the competent substantial evidence does not establish that any discharge from the CCS into surface waters has resulted in the degradation of water quality in Biscayne Bay or other surface waters. The anti-degradation permitting requirements, which implement the anti-degradation policy set forth in rule 62-302.300, are codified at rule 62-4.242. This rule authorizes the issuance of permits when consistent with the anti-degradation policy set forth in rule 62-302.300, and, if applicable, rule 62-302.700, regarding OFWs. Fla. Admin. Code R. 62-4.242(1)(a). Rule 62-4.242(1)(b), which—importantly—applies only when a proposed discharge would result in water quality degradation, provides that, in determining whether a proposed discharge which results in water quality degradation is necessary or desirable under federal standards and under circumstances which are clearly in the public interest, DEP will consider and balance four factors: whether the proposed project is beneficial to the public health, safety or welfare, taking into account the policies in rule 62-302.300 and, if applicable, rule 62-302.700; whether the proposed discharge will adversely affect the conservation of fish and wildlife, including threatened or endangered species or their habitats; whether the proposed discharge will adversely affect the fishing or water-based recreational values or marine productivity in the vicinity; and whether the proposed discharge is consistent with any applicable adopted and DEP-approved surface water improvement and management ("SWIM") plan. Additionally, the open surface waters of Biscayne Bay adjacent to the CCS are designated an OFW, pursuant to rule 62-302.700. This designation prohibits discharges which degrade water quality, except as allowed under rule 62-4.242(2), below the ambient water quality that existed in the water body as of the date of its designation as an OFW. Biscayne Bay was designated an OFW in 1979. Rule 62-4.242(2) prohibits DEP from issuing a permit for a proposed activity or discharge within an OFW, or which significantly degrades, either alone or in combination with activities or discharges, any OFW, unless the applicant affirmatively demonstrates that the proposed activity or discharge is clearly in the public interest. Here, the competent, substantial, and persuasive evidence establishes that, to the extent there may be some indirect discharge or seepage from the CCS, via ground water, into Biscayne Bay, that discharge or seepage does not degrade, and has not degraded, the quality of the surface waters of the Bay. First, as discussed above, the applicable numeric nutrient criteria for Biscayne Bay, including ENRs H1, H6, and H7, are intended to maintain nutrient levels at concentrations necessary to maintain healthy conditions in the ENR. Thus, compliance with the applicable numeric nutrient criteria constitutes compliance with the OFW anti-degradation standard. As discussed above, ENRs H1, H6, and H7 all are in compliance with the applicable estuary-specific numeric nutrient criteria. Therefore, the evidence does not show that there has been any degradation of water quality in these ENRs. Further, the competent substantial evidence shows that, to the extent there may be any discharge of nutrients from the CCS into Biscayne Bay, the nutrient levels in such discharge do not vary from, or exceed, the natural variability of the levels for those nutrients established in the numeric nutrient criteria for ENRs H1, H6, and H7. As discussed above, water quality monitoring over a recent multi-year period (2013 to 2020) establishes that there have not been any exceedances of the numeric nutrient criteria for total phosphorus, total nitrogen, or chlorophyll-a in these areas of the bay, which are closest to the CCS. Additionally, to establish that the water quality in ENRs H1, H6, and H7 has not been degraded by nutrient discharges since 1979, when Biscayne Bay was designated an OFW, Frydenborg presented the results of water quality monitoring conducted between approximately 1970 and 2020, for total phosphorus, total nitrogen, and chlorophyll-a in these ENRs. The water quality monitoring results for total phosphorus for ENR H1 shows that in 1985 and 1988, the level of total phosphorus exceeded the level that has since been established as the numeric nutrient criterion for total phosphorus. However, more recent water quality monitoring shows that since approximately 1993, total phosphorus levels in ENR H1 have not exceeded the level that constitutes the numeric nutrient criterion for that ENR, and, in fact, have declined and remained well below the numeric nutrient criterion for total phosphorus for that ENR through 2020. Water quality monitoring for total phosphorus in ENR H6 shows that in 1971, before the CCS commenced operation, total phosphorus exceeded the level that has since been established as the numeric nutrient criterion for total phosphorus. More recent water quality monitoring shows that since approximately 1993, total phosphorus levels in ENR H6 have not exceeded the level that constitutes the numeric nutrient criterion for that ENR, and have declined and remain well below the numeric nutrient criterion for total phosphorus for that ENR. Water quality monitoring for total phosphorus in ENR H7 shows that in 1970 and 1971, and in 1976 through 1979, total phosphorus exceeded the level that has since been established as the numeric nutrient criterion for total phosphorus. However, starting in 1980, water quality monitoring shows that, with the exception of total phosphorus levels in 1985, 1987, and 1988, total phosphorus has not exceeded the level that has been established as the numeric nutrient criterion for total phosphorus for that ENR. Since 1990, the total phosphorus levels in ENR H7 have declined and remain well below the numeric nutrient criterion for total phosphorus for that ENR. The water quality monitoring results for total nitrogen for ENR H1 shows that in 1970, 1979, and 1981 through 1984, total nitrogen exceeded the level that has since been established as the numeric nutrient criterion for total nitrogen. However, more recent water quality monitoring shows that between 1993 and 2020, total nitrogen levels in ENR H1 have not exceeded the level that constitutes the numeric nutrient criterion for that ENR. Water quality monitoring for total nitrogen in ENR H6 for the period between 1993 and 2020 shows that the total nitrogen level that has been established as the numeric nutrient criterion has been exceeded twice, in 2008 and 2018. The water quality monitoring results otherwise generally show that since 2009, the total nitrogen level in ENR H6 has been well below that established as the numeric nutrient criterion for that ENR. Water quality monitoring for total nitrogen in ENR H7 for the period between 1970 and 2020 shows five exceedances—in 1970, 1974, 1975, 1981, and 2003—of the total nitrogen level that has been established as the numeric nutrient criterion for that ENR. Recent water quality monitoring results, for the period between 2009 and 2020, show that the total nitrogen level in ENR H7 has remained at or below the level that constitutes the numeric nutrient criterion for total nitrogen for that ENR. Water quality monitoring for chlorophyll-a for ENR H1 for the period between 1979 and 2020 shows that, with the exception of, 1982, 1991, and 2007, the level of chlorophyll-a that has been established as the numeric nutrient criterion for this ENR has not been exceeded. In fact, since 2008, the chlorophyll-a levels in ENR H1 have been well below the level established as the numeric nutrient criterion for this ENR. Water quality monitoring for chlorophyll-a for ENR H6 for the period between 1979 and 2020 show that the level of chlorophyll-a has remained at or below the level that has been established as the numeric nutrient criterion for this ENR. Water quality monitoring results for chlorophyll-a for ENR H7 for the period between 1979 and 2020 show that, with the exception of an exceedance in 2017, the level of chlorophyll-a has remained at or below the level that has been established as the numeric nutrient criterion for this ENR. Collectively, this evidence shows that, to the extent that there may be an indirect discharge from the CCS, via ground water seepage or flow, into Biscayne Bay, that discharge has not caused or contributed to the violation of the applicable estuary-specific numeric nutrient criteria established in rule 62-302.532(1)(h) for the ENRs adjacent to the CCS, and has not caused or contributed to the violation of any applicable Class-III surface water criteria or standards codified in rules 62-302.500 or 62-302.530. This evidence also establishes that, to the extent there is any discharge of water from the CCS into Biscayne Bay, the discharge has not caused or contributed to the degradation of Biscayne Bay below Class-III surface water quality standards, nor has it degraded surface water quality beyond that allowed in the Permit. Thus, FPL is not required, to demonstrate, under rule 62-4.242(1)(b), that such discharge is necessary or desirable under federal standards and under circumstances that are clearly in the public interest, pursuant to the factors set forth in that rule. However, even if a discharge from the CCS degraded water quality, that discharge would meet the "necessary and desirable under federal standards" and "clearly in the public interest" requirements of rule 62-4.242(1)(b). Specifically, the Turkey Point electrical generating facility is an essential source of electricity for south Florida and is the only baseload electrical generating facility that serves the critical load area of Miami-Dade County, Florida. Because the CCS dissipates heat from, and serves as a source of cooling water for, the operation of Units 3 and 4, these electrical generating units cannot be operated without the CCS. Closure of Units 3 and 4 would deprive FPL's customers in south Florida, and, particularly, in Miami-Dade County, of an essential source of electricity. Thus, operation of the Turkey Point facility, and, necessarily, the CCS, is important and beneficial to the public health, safety, and welfare. Additionally, as discussed below, the competent, substantial, and persuasive evidence establishes that the CCS does not, and, under the Renewal Permit, will not, adversely affect the conservation of fish and wildlife, including threatened and endangered species, or fishing or water- based recreational values or marine productivity in the vicinity of the CCS. Moreover, to the extent CCS water were to discharge into Biscayne Bay, and that discharge resulted in water quality degradation for these nutrients—neither of which has been demonstrated by the competent substantial evidence, discussed above—because the CCS was in operation before Biscayne Bay was designated an OFW, FPL would not be required to show that any such degradation was in the public interest unless it proposed to expand its discharge into surface waters. As discussed above, the competent substantial evidence establishes that there is no surface water discharge, and very little, if any, ground water discharge, from the CCS into Biscayne Bay, and no evidence was presented showing that FPL has proposed to expand its discharge from the CCS into surface waters. Finally, if FPL were required, pursuant to rule 62-4.242(2), to show that a discharge from the CCS into Biscayne Bay is clearly in the public interest, the competent substantial evidence in the record shows that this standard is met. As discussed above, the Turkey Point electrical generating facility is an essential source of electricity for south Florida, and Units 3 and 4 cannot be operated without the CCS as a source of cooling water and heat dissipation for the thermal discharge from these units. Thus, operation of the Turkey Point facility, and, necessarily, the CCS, is clearly in the public interest. Furthermore, under any circumstances, the competent substantial evidence, discussed above and also addressed below, does not establish that, to the extent there is any discharge of CCS water into Biscayne Bay, that discharge has caused or contributed to degradation of surface water quality in the bay. In sum, the competent, substantial, and persuasive evidence establishes that continued operation of the CCS pursuant to the Renewal Permit will not violate Florida's anti-degradation policies codified in rules 62-302.300 and 62-302.700, and will comply with the applicable anti- degradation permitting provisions in rule 62-4.242. The CCS has not Adversely Affected the Marine Ecosystem Immediately Offshore of the CCS The existence of a high-functioning marine ecosystem in Biscayne Bay immediately offshore of the CCS constitutes additional, strong evidence that the CCS is not a source of nutrient introduction into Biscayne Bay. FPL's expert marine ecologist, Dr. Jerald Ault, testified regarding the condition and function of the marine ecosystem immediately adjacent to the CCS. Based on his extensive onsite investigations, he opined that the condition and ecological function of this portion of the bay is as good, or better, than at any other location in the bay. Specifically, unlike many other areas in Biscayne Bay, the portion of the bay immediately contiguous to the CCS, including the remnant water intake and discharge canals at Turkey Point, has an undisturbed, healthy mangrove forest and healthy seagrass communities. That the marine ecosystem is functioning at a high level in the vicinity of Turkey Point is evidenced by the substantial abundance and diversity of bait fish species, such as mullet, anchovies, and sardines; the substantial abundance of pink shrimp, which serves as a food source for many marine fish species; the substantial abundance, diversity, and individual size of predator species of fish, such as tarpon, snapper, snook, and schoolmaster; and the presence of many predator species of bird, such as pelicans, cormorants, ospreys, and terns. The presence, abundance, diversity, and individual size of these organisms immediately offshore of Turkey Point evidences the existence of high-quality, high-functioning marine habitat in this area. Additionally, the presence of threatened and endangered species, such as the smalltooth sawfish, in the portion of Biscayne Bay proximate to the CCS is another indicator of high quality, relatively unstressed marine habitat in this area.29 The good condition and high-level function of the ecosystem in this part of Biscayne Bay shows that the CCS is not adversely affecting the ecology of this portion of the bay. To this point, if the CCS were a source of nutrient introduction to Biscayne Bay, or were otherwise harming the ecological functioning of this part of the bay, the marine ecosystem in the area closest to the CCS would exhibit stress and degradation—which it does not. Dr. Ault compared the good condition and high-level ecological function of the portion of Biscayne Bay proximate to the CCS with that of other parts of the bay which are suffering significant ecological decline as a result of development, urban and agricultural discharges to the bay, and extensive pressure from recreational overfishing. Historically, Biscayne Bay was a highly productive estuarine ecosystem. Before the network of drainage canals was constructed in south Florida, the bay received diffuse freshwater sheet flow from the Everglades, across the land. Construction and operation of the multiple drainage canals in the area has replaced the diffuse freshwater discharge from sheet flow with intermittent high-volume discharges from the canals, transforming portions of Biscayne Bay from an estuary to a partially-enclosed saltwater lagoon. This transformation has resulted in significant ecological degradation in parts of Biscayne Bay, particularly in those areas proximate to the drainage canals. By contrast, the CCS has not affected the delivery of freshwater to Biscayne Bay. Additionally, much of the shoreline habitat along the littoral edge of Biscayne Bay has been eliminated by seawalls and bulkheads associated with 29 Species that have become threatened or endangered often become endangered or threatened because they are particularly sensitive to changes to natural environmental conditions. urban development. Undisturbed, healthy mangrove shoreline habitat now only exists in the southern portion of Biscayne Bay, including at the shoreline adjacent to Turkey Point. To this point, Turkey Point has essentially functioned as a buffer from development of the shoreline along that portion of Biscayne Bay. Dr. Ault also opined that recreational overfishing and boating, directly related to the substantial population increase of Miami-Dade County, along with the impacts of commercial shrimping operations on seagrass habitat and quantities of shrimp available as a food source for fish species, have substantially contributed to the significant decline of fish populations in Biscayne Bay. Additionally, water quality has significantly declined in the portions of Biscayne Bay closest to the points where the drainage canals, which convey agricultural and urban runoff containing nitrogen, phosphorus, and other pollutants, discharge into the bay. These canals have been established as constituting the primary source of nutrient introduction into Biscayne Bay. The addition of nutrients to historically-oligotrophic Biscayne Bay has degraded the water quality and disrupted the ecology of many portions of the Bay, particularly areas to the north of Turkey Point, where these canals discharge into the bay. Dr. Ault developed, and presented the results of, a hydrodynamic model that he conducted, demonstrating the transport, in Biscayne Bay, of fresh water containing dissolved phosphorus and other nutrients discharged from the drainage canals north of Turkey Point into the bay. This model shows that the net movement of water particles containing dissolved nutrients is from north to south along the western shore of Biscayne Bay. The results of this model constitute strong evidence that, to the extent water quality monitoring in Biscayne Bay in the vicinity of Turkey Point were to show the presence of elevated levels of phosphorus or nitrogen, the discharge from the drainage canals north of Turkey Point, rather than the CCS, is the source of those nutrients. Dr. David Tomasko, director of the Sarasota Bay Estuary Program, testified regarding the condition of seagrass in Biscayne Bay, including the areas of the bay closest to the CCS. Seagrass meadows are a good indicator of ecosystem health in Florida estuarine ecosystems. The existence and extent of coverage of seagrass meadows in Biscayne Bay are highly variable, and there is not uniform coverage of seagrass at all locations at all times of the year. Based on Tomasko's investigation, in which he analyzed data gathered through FPL's extensive seagrass monitoring program over a ten- year period at 54 locations near the CCS,30 he opined that the CCS is not having an adverse impact on seagrasses in the vicinity of the CCS. Specifically, he noted that turtlegrass continues to grow at the monitoring sites. While the density of the seagrass is highly variable from site to site, and its distribution is patchy due to shallow bottom sediment depths, there is no underlying trend of seagrass decline or nutrient enrichment at the monitored sites near the CCS. The monitoring information also does not show any increase of macroalgae, or replacement of seagrass by macroalgae, in the immediate vicinity of the CCS. Additionally, unlike the seagrasses at a reference site at Barnes Sound, further south in the bay, the condition of the seagrasses in the vicinity of the CCS generally is good. To this point, Tomasko testified, credibly, that the coverage and condition of the seagrasses along transects in Card Sound proximate to the CCS remain similar to the conditions and coverage that he observed in Card 30 FPL's seagrass monitoring program features three pairs of transects located in Biscayne Bay near the CCS, and another reference site south of the CCS, in Barnes Sound, distal from any potential influence from the CCS. Sound in the 1990s. The evidence does not show that there has been any significant die-off of seagrass in the portion of Biscayne Bay immediately proximate to the CCS. Additionally, the nitrogen-to-phosphorus ratios measured in the leaves of the seagrasses sampled along the transects in the vicinity of the CCS are similar to, or greater than, the nitrogen-to-phosphorus ratios measured in seagrasses at the reference site in Barnes Sound.31 If the CCS were a localized phosphorus input source, the seagrasses sampled along the transects nearest to the CCS would have lower nitrogen-to-phosphorus ratios than those at the reference site. In formulating his opinion, Tomasko relied on findings in a 2019 DERM comprehensive report regarding the decline of seagrass and hardbottom habitat in Biscayne Bay. Based on many years of water quality and habitat monitoring, the DERM report concluded that the areas experiencing significant seagrass die-off are north of the CCS, in the 79th Street Basin, Julia Tuttle Basin, Venetian Basin, and Rickenbacker Basin; in central Biscayne Bay, where several drainage canals, including the Coral Gables Canal and the Snapper Creek Canal, discharge into the bay; and south of the CCS, in the Barnes Sound/Manatee Bay Basin, where canals discharge stormwater into the bay. As discussed above, the water entering the bay from these canals contains substantial amounts of nutrients, including phosphorus, which causes algal blooms that adversely affect seagrass. In sum, although there is substantial temporal and spatial variability in the density and coverage of seagrass at locations closest to the CCS, the evidence establishes that the seagrass in these areas are in relatively good condition compared to other locations in Biscayne Bay. If the CCS were a 31 In nitrogen-to-phosphorus ratios, nitrogen levels constitute the numerator and phosphorus levels constitute the denominator. Therefore, the greater the phosphorus level in the seagrass, the lower the nitrogen-to-phosphorus ratio will be. Conversely, the lower the level of phosphorus in the seagrass, the higher the nitrogen-to-phosphorus ratio will be. significant source of phosphorus input into Biscayne Bay, the seagrasses proximate to the CCS would likely be in significantly worse condition. Dr. William Nuttle testified on behalf of Petitioners regarding the flow of CCS-origin water, via ground water, into Biscayne Bay. Based on information contained in FPL's annual water quality monitoring reports for the Turkey Point facility, Nuttle analyzed water and salt budgets for the CCS and interaction of the CCS with the Biscayne Aquifer. Based on his analysis of the amounts of inflow of water into, and outflow of water from, the CCS, Nuttle opined that water leaves the CCS at a depth of around ten feet deep, flows easterly through ground water, and reaches the surface water of Biscayne Bay, and vice versa. As a basis for his opinion, he relied on what he characterized as "elevated" salinity levels in water in the karst depressions in the Bottom of Biscayne Bay at the lowest point of low tide, when the hydraulic gradient from the CCS toward the bay would be greatest. However, he did not compare the salinity levels in the karst depressions, which he characterized as elevated, with the average salinity levels in other areas of Biscayne Bay, or with the average salinity level of the bay as a whole. He also acknowledged that he does not know how much water from the CCS flows into Biscayne Bay, and that, consequently, he could not opine as to the effect that any flow from the CCS has on surface water quality in Biscayne Bay. Nuttle conceded that most of the time, the hydraulic gradient favors movement of water from Biscayne Bay to the CCS. He further acknowledged that in formulating his opinion that water leaves the CCS and enters Biscayne Bay through the karst depressions, he did not take into account the or absence of a significant pathway for flow between the CCS and the bay, or whether there was sufficient time for CCS water to seep or flow into Biscayne Bay. He did not use tritium as a tracer in his investigation of salinity in the karst depressions, so that he was unable to confirm that water in the depressions having what he characterized as "elevated" salinity levels was, in fact, CCS-origin water. Nuttle acknowledged that, to the extent the Turtle Point and Barge Basin canals may previously have been a source of nutrient input into Biscayne Bay, those canals have been filled, creating an impervious barrier to flow or seepage of water from the CCS to the bay. He did not present any evidence showing nutrient levels associated with these remnant canals after they were filled. Petitioners and Intervenor also presented the testimony of Dr. James Fourqurean, who opined that the CCS is adversely affecting the balance of flora and fauna in the region of Biscayne Bay immediately offshore of the CCS. Fourqurean testified regarding the effect of introducing nutrients to seagrass-dominated ecosystems in south Florida. Specifically, when phosphorus is added to sediment in which turtlegrass is growing, the turtlegrass becomes denser, up to the point at which continued addition of phosphorus then favors the growth of benthic macrophyte species, such as shoal grass and widgeon grass. These species outcompete the turtlegrass, thereby causing a decline in the density, coverage, and condition of the turtlegrass. With the continued addition of phosphorus to the system, seagrass communities eventually give way to communities dominated by seaweed and macroalgae, and, ultimately, single-celled microalgae. In 2018 and 2020, Fourqurean conducted investigations of seagrass communities in the offshore areas adjacent to the CCS. In 2018, he found that some turtlegrass beds in the area generally were dense, indicating what he referred to as a phosphorus "sweet spot" for turtlegrass growth. However, in other turtlegrass beds in the area, he found that macro- and microalgae had overgrown the beds, so that little turtlegrass was left. He ascribed the decline of turtlegrass coverage and density, and the preferred growth of algae to increased levels of phosphorus in the sediment. In 2020, he found that in some areas near the CCS, the turtlegrass beds were still dense, but single- celled microalgae were beginning to grow on the turtlegrass blades, indicating the continued addition of phosphorus to the water in that area. He compared the results of his investigations with historic seagrass coverage maps prepared by DERM from seagrass data collected between the 1980 and 1983, with seagrass coverage in 2020, for the immediate offshore areas of Biscayne Bay north of the CCS, adjacent to the CCS, and south of the CCS. This comparison shows that in 2020, for most, if not all, areas of Biscayne Bay immediately offshore, starting north of the CCS and heading south past the CCS, seagrass coverage has significantly declined. The areas north of the CCS, where urban drainage canals discharge into the bay, show the greatest percentage of increased macroalgal coverage and concomitant decline of seagrass coverage, and increased areas of bare sediment having no seagrass or algal coverage. The areas immediately east of the CCS show also show increased percentage of macroalgal coverage, decreased seagrass coverage, and increased areas having no coverage. The area south of the CCS, where the Sea-Dade Canal discharges into the bay, which historically supported seagrass, now shows mostly macroalgae and bare sediment, with little seagrass coverage. Fourqurean also presented testimony and supporting information showing that over the 20-year period between 1999 and 2020, at all areas of Biscayne Bay, starting north of the CCS and going south of the discharge points of the Sea-Dade Canal, with the exception of one area north of the CCS and immediately east of the Homestead Airforce Base, seagrass coverage has declined at annual rates of between 0.1 and 2.5 percent, with the greatest decreases in coverage occurring southeast and south of the CCS, in relative proximity to discharge points of the Sea-Dade Canal and the Card Sound Road Canal. He also presented evidence that some of the highest phosphorus levels in seagrasses have been observed immediately east of, and adjacent to, the CCS. Fourqurean also investigated, and presented evidence regarding, the concentration of tritium in the sediment porewater at some locations immediately east of the CCS which exhibited the highest phosphorus levels in seagrasses. His investigation showed the existence of a positive correlation between the highest concentrations of porewater tritium and the greatest amount of phosphorus in seagrasses. His analysis did not take into account any background level of tritium. Based on this evidence, Fourqurean opined that the areas immediately adjacent to the CCS have experienced the greatest seagrass decline over the 20-year period, and he attributed that decline to phosphorus input from the CCS, through ground water seepage, into Biscayne Bay. For several reasons, the undersigned finds his testimony and opinions unpersuasive. First, although his opinion is based on the assumption that CCS- origin water carrying dissolved phosphorus is seeping into Biscayne Bay, he did not know either the quantity of such water, or the concentrations of phosphorus in such water, that he contended seep into the Bay. Furthermore, in developing his opinion, Fourqurean did not take into account the other significant sources of phosphorus input to Biscayne Bay, including urban and agricultural runoff that enters the bay through discharges from canals located to the north and south of the CCS. He acknowledged that his opinion that the CCS was the source of the high phosphorus levels that he observed in seagrasses near the CCS was predicated on the assumption that the CCS was the source of all of the phosphorus that he observed in the seagrasses. Fourqurean's failure to consider other significant sources of phosphorus in Biscayne Bay while attributing phosphorus levels in seagrass solely to CCS- origin water renders his opinion unpersuasive. Fourqurean also acknowledged that he did not consider hydrodynamic modeling showing that water containing dissolved phosphorus discharged from canals north of the CCS flows south toward the CCS. He also did not take into account geochemical processes, including adsorption, which would attenuate phosphorus levels in CCS-origin water in ground water flowing through a limestone aquifer, which would reduce the amount of phosphorus that may seep into surface water. Additionally, Fourqurean did not take into account natural background tritium levels near the CCS when he developed his opinion that, based on tritium levels in porewater he measured at some locations east of the CCS, where he also observed high phosphorus levels in seagrasses, the phosphorus levels in those seagrasses came from CCS-origin water seeping into Biscayne Bay. Notably, the tritium levels observed in the porewater at the locations that Fourqurean sampled averaged approximately 4.6 pCi/L— far below the 6,000 pCi/L average tritium concentration of CCS water. These tritium levels can entirely be explained by atmospheric deposition into surface waters in the vicinity of the CCS.32 Fourqurean's analysis of porewater in locations where he also calculated high levels of phosphorus in seagrass showed a positive correlation between the concentration of tritium and higher levels of phosphorus in seagrass; however, he acknowledged that this correlation did not demonstrate a causal relationship between the presence of CCS-origin porewater in sediment and the higher levels of phosphorus in seagrasses at the locations he sampled. Stated succinctly, Fourqurean conceded that the 32 Dr. Kip Solomon, FPL's expert on tritium and its transport in the environment, credibly opined that, due to atmospheric deposition, background levels of tritium in surface waters in the area of Biscayne Bay proximate to the CCS consistently range between 11 and 20 pCi/L, and porewater levels of tritium in this area have an average concentration of approximately 9.3 pCi/L. presence of phosphorus-enriched seagrasses near the CCS did not establish a cause-and-effect relationship between such phosphorus enrichment and seepage of water from the CCS into the bay. Fourqurean included, in his expert report, a graphic depicting areas near the CCS where there was seagrass die-off due to high levels of phosphorus. He acknowledged that when he sampled tritium levels in the porewater at these locations in 2020, the tritium levels at these specific locations were some of the lowest he detected in his porewater sampling investigation, thus indicating that very little, if any, CCS-origin water was the source of the high phosphorus levels in seagrass at these locations. He acknowledged that this evidence did not support his hypothesis that excessive nutrients seeping from the CCS via groundwater caused seagrass die-off at these locations. He also acknowledged that, at specific locations in Biscayne Bay where he contended there was significant seagrass decline and die-off from historic levels that were mapped by DERM in the early 1980s, many factors other than phosphorus input from CCS-origin water seeping into the bay— including guano from roosting birds and numerous other potential sources of phosphorus—could be the cause of such seagrass decline and die-off. He also acknowledged that the areas of Biscayne Bay near the CCS are not the only areas of the bay in which there has been extensive seagrass decline and die- off over the nearly 40-year period between DERM's seagrass mapping and his investigation of the levels and locations of that decline. Fourqurean performed a regression analysis of data on seagrass percent coverage in delineated areas near the CCS in order to determine whether the seagrass decline in those areas was statistically significant; however, he did not perform a similar analysis to determine whether other areas in Biscayne Bay also were experiencing statistically significant levels of decline. He acknowledged that, for the areas of the bay closest to the CCS for which he did perform a regression analysis, the areas showing the greatest decline were those south of the CCS, near the location where the Card Sound Canal discharges into the bay. Fourqurean acknowledged that some of the areas east of the CCS which had the greatest levels of phosphorus in seagrasses are proximate to islands that provide bird roosting habitat, thus providing a rich source of phosphorus input to the surface water in the area. He also acknowledged that in the areas closest to the CCS, the levels of phosphorus are much lower than the areas closest to the bird roosting habitat. Fourqurean also acknowledged that in the area where the karst depressions that Petitioners and Intervenor have characterized as "caves" are located, near the southeastern end of the CCS, lower levels of phosphorus were detected in the seagrasses than at other locations where Fourqurean analyzed seagrass phosphorus levels. This indicates that these depressions do not constitute a point of phosphorus input into the bay. Fourqurean did not take water or porewater samples in the karst depressions to analyze for tritium levels in the depressions. It is noted that FPL's expert hydrogeologist, Stewart, performed an analysis of tritium levels in water samples taken in the depressions, and concluded that the tritium levels of water sampled in the depressions are similar to those in water samples taken in other open water locations in Biscayne Bay relatively close to the depressions. This indicates that these depressions do not constitute a connection between the CCS and Biscayne Bay. Fourqurean concurred with Tomasko that seagrass communities in Biscayne Bay are highly variable, and that even under natural conditions, seagrass location and coverage changes over time. He also acknowledged that the most accurate way to determine whether there is a trend with respect to seagrass density at a specific location is to sample that specific location over time in order to determine whether there is a change in density. In formulating his opinions, he did not perform such an investigation, nor did he rely on FPL's extensive seagrass transect data, which shows no adverse trend in seagrass over a ten-year period. He also did not review the 2019 DERM report, which, in part, concluded that the seagrass in areas near Turkey Point are in relatively good condition compared to the seagrasses in areas of the bay north and south of the CCS. In sum, the competent, substantial, and persuasive evidence demonstrates that the continued operation of the CCS will not result in the input of nutrients into Biscayne Bay. Accordingly, the competent, substantial, and persuasive evidence shows that the continued operation of the CCS pursuant to the Renewal Permit will not violate applicable surface water quality criteria and standards in rules 62-302.500, 62-302.530, and 62-302.532, or the anti- degradation policy and permitting standard established in rules 62-302.300, 62-302.700, and 62-4.242, with respect to Biscayne Bay. The Evidence Does Not Show that the CCS Causes Violations of Surface Water Quality Standards Applicable to Other Offsite Surface Waters As previously discussed, there is no direct surface water connection between the CCS and offsite surface waters, including the L-31E Canal, S-20 Discharge Canal, Sea-Dade Canal, or other offsite canals in the vicinity of the CCS. Additionally, as discussed above, the evidence does not show that there is significant, if any, seepage of CCS-origin water, via ground water seepage, into the L-31E Canal, S-20 Discharge Canal, Sea-Dade Canal, or other offsite canals or surface waters in the vicinity of the CCS, and the evidence does not show that the CCS is a source of nutrient input into these canals or other surface waters. Moreover, the RWS is operating to prevent CCS-origin water that seeps into ground water from moving westward past the boundary of the CCS. Thus, under any circumstances, operation of the RWS ensures that future operation of the CCS will not cause nutrient input into offsite canals or other offsite surface waters. Petitioners and Intervenor did not present any evidence showing that there are any water quality violations or ecological imbalances resulting from nutrient discharge or seepage from the CCS into offsite canals or other offsite surface waters. To the contrary, the competent substantial evidence established that continued operation of the CCS will not result in any exceedances of surface water quality standards or criteria applicable to the offsite canals or other surface waters, nor will it alter nutrient concentrations so as to cause an imbalance in natural populations of aquatic flora or fauna in these canals or in other offsite surface waters. Accordingly, the competent, substantial, and persuasive evidence shows that the continued operation of the CCS pursuant to the Renewal Permit will not violate applicable surface water quality criteria and standards in rules 62-302.500, 62-302.530, and 62-302.532, or the anti- degradation policy and permitting standard established in rules 62-302.300, 62-302.700, and 62-4.242, with respect to offsite canals and other surface waters. Effect of Continued Operation of CCS on Offsite Ground Water The Biscayne Aquifer horizontally extends into western Miami-Dade County. Historically, parts of the Biscayne Aquifer have been naturally saline. As a result of the construction of drainage canals, mining, land development, and ground water withdrawals, and other activities, significant saltwater intrusion has occurred in southeastern Miami-Dade County. As discussed above, by 1955, the location of the saltwater interface in the Model Land area in south Miami-Dade County had moved inland, from its original location near the coastline, to near Florida City, with its greatest landward extent at the Card Sound Road Canal, which, at the time, was an uncontrolled source of saltwater intrusion inland. A water control structure was installed in the Card Sound Road Canal in approximately 2010, and the evidence shows that, as of 2012, the inland extent of the saltwater interface along the Card Sound Road Canal had retracted slightly eastward. As discussed above, by the time the CCS became operational in 1973, the saltwater interface was located approximately three to three-and-a-half miles inland from the coast in the Model Land area. Since then, the saltwater interface has moved approximately one to one-and-a-half miles further inland in the Model Land area, to where it currently is located, approximately four- and-a-half miles from the coast. The NOV issued by DEP in April 2016 found that the CCS was the major contributing cause of the continued westward movement of the saltwater interface in the Model Land area, and that saltwater intrusion into the area west of the CCS was impairing the reasonable and beneficial use of adjacent Class G-II ground water in that area. To resolve this ground water standard violation, and to prevent future violations of surface water quality standards and criteria, FPL and DEP entered into the Consent Order. Allen Stodghill, a geologist with DEP who has worked on various ground and surface water-related issues for the Turkey Point facility since approximately 2008, and who was involved in drafting the Consent Order, testified regarding FPL's compliance with the Consent Order.33 As previously discussed, a key objective of the Consent Order was, and is, to cease saline water discharges from the CCS that impair the 33 To the extent FPL is implementing, or has implemented, remedial measures imposed in the Consent Order to address past violations of ground water standards and to prevent future violations of surface water quality standards, FPL's compliance with the Consent Order is germane to determining whether FPL has provided reasonable assurance that it is in compliance with applicable surface water and ground water quality standards, and, therefore, is entitled to issuance of the Renewal Permit. reasonable beneficial use of the adjacent Class G-II ground water to the west. FPL is in compliance with this objective. Although FPL did not achieve a 34 PSU salinity level in the CCS, it submitted a supplemental salinity management plan and also submitted, and is implementing, a thermal efficiency plan to lower the temperature of the cooling water being discharged into the CCS; this will reduce evaporation, which will help reduce the salinity concentration of water in the CCS. As discussed above, FPL also has implemented the RWS, which consists of a series of ten wells located immediately adjacent to the northern and western boundaries of the CCS. These wells collectively pump approximately 15 mgd, or approximately 5.4 billion gallons per year, of water from the Lower Flow Zone of the Biscayne Aquifer, from depths between 70 and 90 feet below land surface. As hypersaline water is withdrawn, the hypersaline plume decreases in vertical and horizontal extent, with the adjacent lower salinity ground water replacing the area formerly containing the hypersaline water that originated from the CCS. As of the final hearing, over 12.5 billion gallons of hypersaline ground water had been extracted from the Biscayne Aquifer by the RWS. The saline water withdrawn through the recovery wells is disposed, through deep underground injection control wells, into the Floridan Aquifer Boulder Zone, approximately 3,000 feet below land surface. The RWS became fully operational in May 2018. The 5.4 billion gallons per year of hypersaline water extracted by the RWS exceeds the approximately four billion gallons per year of water that discharges from the CCS into the ground water beneath the CCS, so that more hypersaline water is being withdrawn by the RWS than is being added to ground water by the CCS. The RWS wells function to withdraw hypersaline water by creating a potentiometric trough, or hydraulic gradient, in the surface of the aquifer. The wells draw water from the hypersaline plume west of the CCS, thereby withdrawing hypersaline water that had migrated west of the CCS before May 2018, when the RWS was implemented. The wells also draw hypersaline water from the CCS that has seeped into ground water to the east of the RWS, thereby creating a hydraulic barrier such that none of the CCS water that seeps into ground water is able to move westward past the RWS. The extraction of the hypersaline ground water beneath the CCS reduces the driving force that contributed to lateral movement away from the CCS, thereby halting the westward migration of hypersaline water from the CCS. Thus, since May 2018, the RWS has functioned—and continues to function— as a hydrologic barrier that has halted the westward movement of hypersaline water from the CCS. The Consent Order also requires that, by May 2028, the hypersaline plume resulting from historical migration of saline water from the CCS in ground water be retracted back to the L-31E Canal. Based on the results of the RWS operation over the past two-plus years, as determined by CSEM data and water quality monitoring, it is anticipated that the hypersaline plume will be retracted back to the L-31E Canal within the ten-year timeframe established in the Consent Order. Another key objective of the Consent Order was, and is, to prevent releases of ground water from the CCS which violate surface water quality standards in Biscayne Bay. This objective was met by filling the Turtle Point and Barge Basin canals. Thus, to the extent these canals intersected the Upper Flow Zone of the Biscayne Aquifer such that there have been a potential pathway for the migration of nutrients from the CCS, via ground water, into Biscayne Bay, that pathway no longer exists at these locations. Additionally, FPL has submitted and implemented a nutrient management plan, and conducted and completed an inspection of the peripheral impoundment structures. The Consent Order also required FPL to mitigate impacts related to historic operation of the CCS. To meet this objective, FPL completed an analysis, using a variable density three-dimensional ground water model developed under an agreement with DERM to allocate the relative contributions of other entities and factors to the inland movement of the saltwater interface. FPL also has entered into an agreement regarding the conveyance to SFWMD of FPL properties to facilitate the Comprehensive Everglades Restoration Plan, and has provided $1.5 million dollars to DEP to be used to finance saltwater intrusion mitigation projects in the Turkey Point region. FPL also conducted, and completed, the surface water quality sampling program to improve trend analysis in Biscayne Bay and Card Sound. FPL also is in compliance with the water quality monitoring requirements imposed in the Consent Order, including conducting the CSEM surveys and monitoring the salinity of ground water in and around the CCS. FPL submits RAASR reports on an annual basis, summarizing activities related to implementing the Consent Order, which contain CSEM survey and water quality monitoring data. As further discussed below, the results of this monitoring provide strong evidence that the RWS has halted the westward migration, via ground water movement, of CCS-origin water. The monitoring wells associated with the RWS consist of a cluster of three wells, one of which samples from the Upper Flow Zone, one of which samples from the Lower Flow Zone, and one that samples the deep aquifer. The results of the ground water monitoring associated with the RWS generally show that the wells are retracting the hypersaline plume. Some deep well monitoring results show an increase in the chloride levels as the RWS extracts the hypersaline water. This is because, as the RWS system draws water from the bottom of the aquifer, the heavier, more saline water sits, and tends to stay, at the bottom of the aquifer, while the less saline water is extracted by the recovery wells. The increase in chloride levels at the deep monitoring wells is expected because the RWS was recently implemented, and as the RWS operates over time, the chloride levels in the deep monitoring wells are anticipated to drop, as the denser, more saline water located at the bottom of the aquifer ultimately is extracted by the RWS. Based on the foregoing, it is determined that FPL is in compliance with the requirements of the Consent Order. Data collected by CSEM surveys and interpreted by FPL's expert hydrologist, Mark Stewart, confirms that the RWS is functioning effectively to halt the westward migration of the hypersaline plume and to retract the hypersaline plume back to the L-31E Canal, as required by the Consent Order. Using the CSEM data, Stewart conducted ground water modeling for chloride levels for each of 14 layers representing the Biscayne Aquifer at different depths, from land surface down to approximately 99 feet below land surface. Stewart's model, which has been peer-reviewed and accepted as accurate by regulatory agencies, including SFWMD, shows that the RWS is functioning to retract the hypersaline plume eastward to the L-31E Canal. Specifically, for the Upper Flow Zone, which constitutes Layer 7 of Stewart's model and ranges from 7.9 to 9.8 meters (approximately 25.9 to 33 feet) below land surface, the modeling results show significant retraction of the hypersaline plume between 2018, before the RWS became operational, and 2020, after approximately two years of RWS operation. Layer 10 of Stewart's model, which constitutes the Lower Flow Zone and ranges from 14.2 to 16.8 meters (approximately 46.5 to 55 feet) below land surface, also shows significant retraction of the hypersaline between 2018, before the RWS became operational, and 2020, after approximately two years of RWS operation. The accuracy of Stewart's modeling was confirmed by water quality monitoring data for chloride taken at numerous ground water quality monitoring wells west and north of the CCS. Most of these monitoring wells showed a statistically significant decrease in chloride concentration, while others showed decreases that were not statistically significant. Some wells showed no trend regarding chloride concentration, while a very small number of the wells had an apparent increase in chloride that was not statistically significant. Stewart noted that the hypersaline plume is not being retracted uniformly in each layer of the aquifer, and that in some of the lower layers of his model, which correspond to greater depths below land surface, the extent of retraction of the hypersaline plume has not been as great as that at shallower layers. However, the RWS is reducing the volume of the plume, which, in Stewart's opinion, shows that the RWS is working to retract the hypersaline plume back toward the L-31E Canal. Stewart further noted that, due to operation of the RWS, there is no additional water coming out of the CCS and flowing westward in the aquifer. Based on the conservative assumption that the original position of the saltwater interface originally was located near the current position of the CCS, and that it moved westward to the TPGW-7 monitoring well by 2018, Stewart estimated that the saltwater interface is moving inland at a rate of approximately 450 feet per year. It is noted that this rate is similar to FKAA's 500-feet-per-year rate estimated movement rate for the saltwater interface. Stewart opined, persuasively, that because the RWS has created a hydrologic barrier such that CCS water no longer is flowing into the aquifer west of the CCS boundary, and because water in the CCS is now less saline, due to freshening, than the ground water under the CCS, such that there no longer is a density drive for CCS water to move downward into the aquifer, it is unlikely that CCS water will move to FKAA's Biscayne Aquifer wellfield. E.J. Wexler, a hydrologist whose expertise is in ground water modeling, solute transport modeling, and contaminant hydrogeology, testified on behalf of Petitioners and Intervenor regarding FPL's remedial measures to withdraw the hypersaline plume east to the L-31E Canal by May 2028. Wexler developed a three-dimensional solute transport model in connection with ACI's proposed expansion of its aggregate mining operation. His study entailed an investigation of the hydrogeology of the area around the ACI site and considered the effects of the SFWMD canals, other lakes and discharge canals, municipal water supply wells, agricultural wells, and the CCS. He modeled the area between the Mowry Canal to the north, the C-111 Canal to the west, and the shoreline of Biscayne Bay to the east and southeast, to determine the location of the saltwater interface and the body of hypersaline water in the Biscayne Aquifer, and to predict the movement of both over time. As part of his modeling, Wexler performed an attribution analysis similar to that performed by FPL, pursuant to the Consent Order. Wexler's model confirmed that hypersaline water seeping from the CCS displaced ground water in the Model Land area, and, thus, acted as the main driver of inland movement of the saltwater interface in the Model Land area. Wexler's ran predictive modeling simulations for a ten-year period, between 2018 and 2027, taking into account the RWS and freshening of the CCS by the addition of 12 mgd of water from the Floridan Aquifer.34 The results of his modeling showed that in the shallower layers of the aquifer, the hypersaline plume will mostly have been retracted back to the western edge of the CCS by 2027. His model also shows that at a depth of approximately 65 feet below land surface, the 35 PSU isochlor remains west of the boundary of the CCS at the end of the ten-year model run, in 2027. 34 Wexler also testified that his model also showed that existing freshening of the addition of 12.2 mgd per day of Floridan Aquifer water to the CCS will not reduce the salinity of the CCS to approximately 34 PSU, as required by the Consent Order. However, the 34 PSU salinity level target for the CCS is not a rule standard and has not been incorporated into the Renewal Permit. Rather, it is a condition of the Consent Order, which is a final, separately enforceable administrative order that is not at issue in these proceedings. Wexler's modeling also shows that the position of the saltwater interface, which is at the approximately 10,000 mg/L, or 10 PSU isochlor line, shows slight eastward movement over the ten-year period simulated.35 Based on the results of his modeling, Wexler opined that the RWS will preferentially retract high salinity ground water from the west in the highly permeable layers of the Biscayne Aquifer, but will leave a persistent body of highly saline ground water in the deeper layers of the aquifer west of the L-31E Canal,36 despite the operation of the RWS. Based on Wexler's modeling simulations for the ten-year period from 2018 to 2027, taking into account the RWS, he opined that the RWS functions more as an interceptor system than a true recovery well system. Specifically, he opined that much of the saline water seeping from the CCS into ground water is intercepted by the RWS, but that the recovery wells comprising the RWS are spaced too far apart, so that when there are high water levels in the CCS, some ground water containing saline CCS-origin water will still seep westward of the CCS in the deep portion of the aquifer. Thus, Wexler opined, the RWS does not create an effective hydrologic barrier to prevent CCS-origin water from continuing to move west of the CCS in the deep aquifer and will not retract hypersaline water back toward the L-31E Canal in the deep aquifer.37 35 Importantly, the Renewal Permit does not require the saltwater interface—which has moved inland due to numerous activities, not just operation of the CCS—to be retracted back to L-31E Canal by May 2028; rather, it requires the hypersaline plume caused by hypersaline water seepage from the CCS to be retracted to the L-31E Canal by the end of that period. 36 This is consistent with Allen Stodghill's and Mark Stewart's testimony that the RWS will draw hypersaline water down into the deeper layers of the aquifer as it operates and that it will take some time for the RWS to withdraw all of that hypersaline water from the bottom of the aquifer. 37 Wexler also opined that FPL will not meet the requirement, in Condition VI.10 of the Renewal Permit, to retract the hypersaline plume back to the L-31E Canal by 2028. However, Condition VI.10 of the Renewal Permit requires FPL, at the end of the fifth year of operation of the RWS, to evaluate the effectiveness of the RWS in retracting the hypersaline plume to the L-31E Canal within ten years of RWS operation. If this evaluation shows that the RWS will not retract the hypersaline plume to the L-31E Canal by the end of the ten- year period, then FPL must provide an alternative plan for retracting the hypersaline plume Nonetheless, Wexler opined that the RWS would function to retract the saltwater interface slightly over the ten-year compliance period for retracting the hypersaline plume. Wexler's model used different aquifer transmissivity values than those used by Stewart, whose transmissivity values were obtained from United States Geological Survey data. Additionally, Wexler's ground water model—unlike the model prepared and run by Stewart—has neither been peer-reviewed nor reviewed or accepted as accurate by any government agencies. Wexler also opined that highly saline water carrying nutrients, that seeps from the CCS into ground water could flow eastward under Biscayne Bay via preferential pathways and discharged directly to Biscayne Bay. However, he did not investigate whether there are any points at which CCS- origin water seeping into ground water can discharge into Biscayne Bay. As previously discussed, the persuasive evidence, consisting of the testimony and supporting evidence presented by Stewart and Stodghill, shows that there is little, if any, hydrologic connection of the CCS to Biscayne Bay, and, therefore, little, if any, seepage of CCS-origin water into Biscayne Bay. As discussed above, the persuasive evidence does not establish that the karst depressions at the bottom of Biscayne Bay are connected to the Upper Flow Zone or any other preferential pathway in the Biscayne Aquifer, such that CCS-origin water has a pathway to flow or seep into Biscayne Bay. by the end of that period. This interim compliance evaluation provides a "safety check" to help ensure that the hypersaline plume is retracted, such that it no longer is a factor in the location of the saltwater interface. Kirk Martin testified on behalf of Petitioners and Intervenor regarding the projected effect of the hypersaline plume and the movement of the saltwater interface38 on FKAA's Biscayne Aquifer wellfield39 near Florida City, and FKAA's actions in exploring the development of another wellfield so that it can continue to fulfill its obligations to provide potable water to the Florida Keys.40 FKAA operates a wellfield that yields approximately 20 million gallons of water per day from the Biscayne Aquifer, which has been as a sole source aquifer by EPA. This designation means that this portion of the Biscayne Aquifer is the sole source of fresh ground water for southeast Florida. The portion of the Biscayne Aquifer below FKAA's wellfield from which it withdraws fresh water is designated by rule 62-520.410 as a Class G-II aquifer, which, as noted above, means that it is designated for potable water use and has a total dissolved solids concentration of less than 10,000 mg/L. As part of his work for FKAA, Martin analyzed several hydrological components, such as sea level rise, rainfall patterns, ground water levels, ground water pumpage, and water control management for the network of canals in the area, and compared each of these components to noted changes in salinity in monitoring wells. He determined that the most substantial contributor to movement of the saltwater interface in what he termed the "southern front"—which is 38 As discussed above, the saltwater interface is the intersection of Class G-II and G-III ground waters. Class G-III ground water has a total dissolved solids concentration of 10,000 mg/L or greater, and Class G-II ground water has a total dissolved solids concentration of less than 10,000 mg/L. Ten thousand mg/L is roughly equivalent to a 5,000 to 6,000 mg/L chloride concentration. 39 FKAA also has a co-located brackish water wellfield that yields approximately six million gallons of water per day from the Upper Floridan Aquifer. 40 It is important that FKAA monitor for saltwater intrusion because that is the primary threat to the portion of the Biscayne Aquifer from which FKAA withdraws potable water. located south and east of FKAA's wellfields—is manipulation of canal levels, particularly the level of the C-111 Canal, by SFWMD. He opined that operation of the CCS is the major contributor to movement of the saltwater interface within the Model Land area, west of the CCS, and that the movement of the saltwater interface inland is a threat to the portion of the Biscayne Aquifer from which FKAA obtains its source of potable water. The movement of the saltwater interface inland in the Model Land area has impaired the reasonable beneficial use of the adjacent Class G-II ground water, which consists of the Biscayne Aquifer in this location. Martin opined that because implementation of the RWS only withdraws the hypersaline plume, and does not remediate areas in the Model Land in which the ground water has become more saline but is not hypersaline, the implementation of the RWS does not provide reasonable assurance that the saltwater interface will not continue to move inland due to operation of the CCS, thereby violating Class G-II water quality standards and impairing the reasonable and beneficial use of adjacent ground water. However, because the saltwater interface already was located west of the CCS when it commenced operation in 1973, and has continued to move westward due to many other causes besides those solely attributable to the CCS, the Renewal Permit does not require the saltwater interface to be retracted; rather, it requires the hypersaline plume caused by hypersaline water seepage from the CCS to be retracted to the L-31E Canal by May 2028. Additionally, if, as Martin also opined, the hypersaline plume from the CCS is the primary driver of the westward movement of the saltwater interface, and given that westward movement already has been halted by the RWS and that, assuming successful operation of the RWS, the hypersaline plume will be retracted to the L-31E Canal by May 2028, then implementation of the RWS under the Consent Order will stop the westward movement of the saltwater interface, to the extent such movement is caused by the discharge of hypersaline water from the CCS into ground water. Additionally, as discussed above, the competent, substantial, and persuasive evidence establishes that the operation of the RWS already has halted the westward movement, beyond the boundary of the CCS, of water seeping from the CCS into ground water. Therefore, by definition, the continued operation of the CCS under the Renewal Permit will not result in additional CCS-origin water moving via ground water, westward into the Model Land area or other areas. Martin also opined that FPL's freshening of the CCS, as required by the Consent Order and authorized by the Certification for Turkey Point increases the hydrostatic head of water seeping from the CCS, and will exacerbate the movement, or increase the size, of the hypersaline plume. This opinion fails to take into account that the RWS is removing the water that seeps from the CCS into ground water. Thus, operation of the RWS prevents any water seeping from the CCS into ground water from moving west of the CCS. Accordingly, water seeping from the CCS will not affect the size of the hypersaline plume; to the contrary, the persuasive evidence shows that the RWS already is significantly retracting the hypersaline plume in the Upper Flow Zone and Lower Flow Zone. As discussed above, it is anticipated that as the RWS operates over time, the chloride levels in the deep monitoring wells will drop as the denser, more saline water sitting at the bottom of the aquifer ultimately is extracted. The persuasive evidence indicates that the hypersaline plume retraction conditions in the Renewal Permit will be met within the timeframe set forth in that condition. Martin also testified that current discharges from the CCS will impact the FKAA's use of the potable water, through reduction of the amount of fresh water available and reduction of the buffer between the saltwater interface and FKAA's wellfield. However, again, Martin's opinion fails to take into account that the operation of the RWS already has halted the migration of CCS-origin water west of the boundary of the CCS, so the current operation of the CCS is not affecting the aquifer offsite. To the extent that past discharges from the CCS have caused salinity levels to increase in the Class G-II aquifer west of the CCS and have impaired the reasonable and beneficial uses of that ground water, those past discharges are being retracted by the RWS back to the L-31E Canal, pursuant to the Consent Order. Additionally, the Renewal Permit, Condition VI.9, requires that the westward migration of the hypersaline plume must be halted by May 15, 2021, and Condition VI.10 requires that the hypersaline plume must be retracted back to the L-31E Canal by May 2028. Operation of the CCS in compliance with these conditions will ensure that FPL's future operation of the CCS pursuant to the Renewal Permit does not violate Class G-II ground water standards or impair the reasonable beneficial use of adjacent ground waters. Martin acknowledged that he does not know the quantities or rates of seepage of water from the CCS into ground water for years 2018, 2019, and 2020, and that he did not consider this information in opining that continued operation of the CCS under the Renewal Permit will result in further westward movement of the saltwater interface. He also acknowledged that he does not know the amount of hypersaline water being extracted by the RWS, which has been in operation since May 2018, and he did not take the operation of the RWS into consideration in formulating his opinion. For these reasons, Martin's opinion regarding the lack of effectiveness of the RWS in halting the westward migration of, and retracting, the hypersaline plume is not supported by the evidence and is unpersuasive. The competent substantial evidence establishes that, assuming the saltwater interface is moving westward at a rate of approximately 500 feet per year,41 it would take approximately ten years for the saltwater interface to move one mile westward. At this rate of movement, without any ongoing corrective actions pursuant to the Consent Order, Martin estimates that it would take approximately 40 years for the saltwater interface to reach FKAA's Biscayne Aquifer wellfield. This estimate is consistent with other experts' estimates of the amount of time it will take, if rate of movement of the saltwater interface remains similar to its current rate. Based on the foregoing, it is determined that the continued operation of the CCS under the Renewal Permit will not violate applicable ground water standards. Petitioners' and Intervenor's Standing FKAA's Standing JoLynn Reynolds, Director of Engineering for FKAA, testified regarding the FKAA's interest in challenging the Renewal Permit. As noted above, the FKAA was created by chapter 76-441, Laws of Florida. Pursuant to this law, FKAA supplies water to the Monroe County/Florida Keys area, and wastewater services for parts of Monroe County and the Florida Keys. To meet its legal obligations under this law, FKAA has developed, and operates, two potable water wellfields in Florida City. At its Biscayne Aquifer wellfield, FKAA has ten fresh water-producing wells that withdraw water from the Biscayne Aquifer. At its Floridan Aquifer wellfield, FKAA has four brackish water-producing wells that withdraw water from the Floridan Aquifer, and one deep injection well associated with the reverse osmosis plant. FKAA's water supply pipeline leads from Florida City to the Keys, and traverses a route from Ocean Reef to Key West. 41 Martin testified that monitoring well measurements show that the saltwater interface is moving as slowly as 280 feet per year, while other wells show it moving as fast as 480 feet per year. Martin testified that assuming a rate of 500 feet per year is reasonable for water supply planning purposes, given the uncertainty of measurement. Currently, FKAA produces approximately 18 mgd to meet the potable water demand of its customers. FKAA prepares a Water System Master Plan ("Master Plan") in order to plan its water demands, projected demands, water supply sources, and capital improvement projects over a 20-year planning horizon. However, the Master Plan is updated every two years in order to stay current. FKAA's current Master Plan covers the 2020 to 2040 planning period. FKAA's existing water production wells have a useful life of approximately 50 years. The wells, which were installed in the 1980s, will reach the end of their service life at the end of the 20-year planning horizon. Currently, FKAA does not anticipate having to upgrade or replace any of its water production wells during its current 20-year planning horizon. FKAA has a lime-softening water treatment plant that treats approximately 23.8 mgd of water withdrawn from the Biscayne Aquifer. In addition, FKAA operates a reverse osmosis brackish water treatment plant that treats Floridan Aquifer water and produces approximately six mgd of potable water. FKAA also operates two emergency reverse osmosis plants: one in Marathon, which produces approximately one mgd of potable water, and one in Stock Island, which produces approximately two mgd of potable water. The lime-softening plant, which is used to treat water withdrawn from the Biscayne Aquifer, cannot be used to treat water withdrawn from another aquifer. This plant must treat the water to the drinking water standards of 160 parts per million of sodium and 250 parts per million of chloride. The lime-softening plant is unable to be used to remove salt from the water produced by the wells; thus, the water that is treated by the lime- softening plant must meet drinking water standards for salinity, even before it is treated by the plant. The reverse osmosis plant has a salinity treatment threshold of 4,000 parts per million for chloride, so it cannot be used to treat hypersaline water.42 As part of its water use permit, FKAA is required to have a saltwater intrusion monitoring program. This monitoring program currently consists of 15 wells located east, southeast, and south of the Florida City wellfield site. These wells sample water from depths of 35 feet to 80 feet below land surface. Using USGS-developed isochlor lines, FKAA prepared a graphic showing the approximate location of the saltwater interface for the years 2008, 2011, and 2016. This graphic shows that the saltwater interface is closest to—i.e., approximately 2.99 miles east of—the FKAA's Florida City wellfield at the Card Sound Road Canal. Notably, the saltwater interface at this location did not significantly move in the period between 2008 and 2016. As previously discussed, that canal was open to Biscayne Bay until approximately 2010, and provided a direct conduit for saltwater intrusion inland. The graphic shows that, as of 2016, the next closest location of the saltwater interface is in the Model Land area, approximately 4.48 miles east of the Florida City wellfield. Due to the continued inland movement of the saltwater interface inland over time, in 2017, FKAA installed six new saltwater interface monitoring wells, at an estimated cost of approximately $400,000, to enable continued monitoring of the movement of the saltwater interface.43 One of the wells installed in 2017, FKS-14, showed sharply rising chloride levels at depths from 55 feet to 80 feet below land surface over the period between approximately February 2018 and July 2018. This well also 42 This plant treats water withdrawn from the Floridan Aquifer. There are no allegations in this case that the hypersaline plume has affected, or may affect, any part of the Floridan Aquifer. 43 Notably, three of FKAA's monitoring wells, FKS-1, FKS-2, and FKS-8, which are located east of the saltwater interface, are located immediately proximate to, respectively, the C-111, C-110, and Card Sound Road canals. showed chloride levels beginning to rise at the 40 to 45 feet below land surface level starting in approximately April 2018.44 FKAA's Biscayne Aquifer water production wells withdraw water from between 20 and 60 feet below land surface, so increasing chloride levels have given rise to FKAA's concern regarding the movement of the saltwater interface inland. Based on information showing that the hypersaline plume is pushing the saltwater interface westward toward its Florida City wellfield, FKAA has challenged the Renewal Permit. Currently, FKAA's Biscayne Aquifer wellfield is not contaminated with saline or hypersaline water. However, based on the estimated rate of movement of the saltwater interface of approximately 500 feet per year, the saltwater interface—if its movement is unchecked—is estimated to reach FKAA's Biscayne Aquifer wellfield between 34 and 43 years. As Reynolds explained, FKAA intends to continue producing water from the Biscayne Aquifer because that water already meets drinking water standards for sodium and chlorides, so requires less extensive and expensive treatment than water produced by Floridan Aquifer wells, which would require more costly treatment by reverse osmosis to meet drinking water standards. Thus, in response to its concern that chloride levels may rise in its production wells, FKAA is exploring other locations to which it could relocate its Biscayne Aquifer wellfield if chloride levels continue to rise at accelerated rates in its monitoring wells. To this end, FKAA has Kirk Martin, FPL's water supply planning consultant, to identify available properties north/northwest of its Florida City wellfield that may be suitable for relocation of its water production wellfield. 44 FKS-14 is located southeast of, and in close proximity to, the ACI quarry. FKAA roughly estimates that it will cost approximately $4 million to locate and purchase land suitable for development as a wellfield, and it also estimates that installing additional pipeline to transmit water from a new wellfield to the Florida City lime-softening treatment plant would cost between $1.5 and 2 million dollars per mile. FKAA also would have to install a new pump station, at additional cost, to pump water from a new wellfield to the lime-softening treatment plant. Due to the monitoring results for well FKS-14, which show chloride levels rising sharply once they become elevated, FKAA currently is planning—and incurring cost—in anticipation that it may be required to relocate its wellfield. Reynolds estimated that the process of planning, purchasing, designing, constructing, and commencing operation of a wellfield would take many years. She explained that, given its legal obligation under its special act to provide potable water to the Florida Keys, FKAA does not have the luxury to adopt a wait-and-see approach with respect to preparing for impacts of movement of the saltwater interface on the Biscayne Aquifer. FKAA's water use permit issued by SFWMD grants it the legal right to continue to withdraw from the Biscayne Aquifer up to March 13, 2028. FKFGA's Standing Stephen Friedman, Commodore of the FKFGA, testified regarding that entity's interest in the outcome of these proceedings. The FKFGA, which was established in 1956, is a conservation organization having slightly over 100 members, who are professional fishing guides in and around south Florida. Among other things, the FKFGA helps to educate its members and the public regarding best practices on the water in order to preserve and protect fishery resources and habitat. Its members also assist in sampling activity and in conducting censuses related to natural resources in south Florida. Its members engage in fishing activities all over south Florida, including in Biscayne Bay and the Florida Keys. Friedman testified that he and other members fish in the portion of Biscayne Bay east of the CCS, in the vicinity of the Arsenicker Keys. He testified that he has observed changes in the environmental conditions in this area. According to Friedman, when he started fishing in that area, it had good fishing habitat; however, since 2000, he has observed sparse and dead seagrass, and the quality of the fishing has declined. He testified that bonefish and permit, which are the "target" species for his clientele, are not as plentiful. Consequently, he does not fish there as often as he did in the past. He testified that other members of the FKFGA have related similar experiences to him. Friedman stated that the FKFGA and its members' concerns are that [W]e have a nuclear power plant sitting in between two national parks, and where we're having some environmental difficulties in the Everglades, and we're seeing environmental difficulties in Biscayne Bay National Park. . . . And when we see habitat degrade, and know that it could be prevented, that's where we try to step in and gain as much knowledge as we can, and educate ourselves to find out how we can change something and bring back what used to be great habitat in certain areas. . . . Especially if it's something that we've found that science corroborates our observations. Due to these concerns, as expressed by Friedman, the FKFGA has challenged the Renewal Permit. Benjamin Blanco, a member of the FKFGA, testified regarding his own experiences, as a professional fishing guide and in his personal capacity as a recreational fisherman, regarding fishing in Biscayne Bay and, specifically, in the area offshore of the Turkey Point facility. According to Blanco, he fishes the area offshore of Turkey Point approximately 100 days per year. He testified that, in the past, there were plentiful turtlegrass beds in the area, but that now the bottom of the bay in the area is mostly sand, with no grass. The decline of the abundance and condition of turtlegrass beds in this area has negatively affected the abundance and movement of the game fish species in these areas. As a result, this area no longer supports extensive fishing for these species, and Blanco and other professional fishing guides have had to change their fishing practices. Additionally, as a result of the decline of fish habitat in this area, Blanco no longer engages in personal recreational fishing in this area. He acknowledged that he is not a scientist and has not engaged in any scientific studies on fish populations in Biscayne Bay. He also acknowledged that there are many other factors that are adversely affecting the environment in south Florida, including in Biscayne Bay. Specifically, he acknowledged that the decrease of fresh water flow into Biscayne Bay, the destruction of shoreline habitat, the decline of water quality due to nutrient discharges, and the increase in recreational fishing, all have harmed fish populations in the bay. Monroe County's Standing Michael Forster, County Commissioner for Monroe County District 5, testified on behalf of Intervenor Monroe County, Florida, regarding the County's interest in these proceedings. The County, and the municipalities in the County, receive their potable water supply from FKAA. The County has entered into an interlocal agreement with FKAA, establishing the respective roles of FKAA and the County with respect to FKAA's provision of potable water to the County. Additionally, the County has adopted, in the Monroe County, Florida, Comprehensive Plan (hereafter, "County Plan"), a goal, objectives, and policies recognizing and supporting the role of FKAA in providing the potable water supply to meet the needs of present and future County residents. Under the County Plan, in order for a certificate of occupancy or its functional equivalent to be issued for land development activity for which such approval is required, there must be an adequate potable water supply available to support the development. If a reliable potable water supply is not available to the County, no certificates of occupancy can be issued, thereby severely affecting the County, its economy, and its residents. Forster also testified that the County has an interest in protecting Biscayne Bay as a natural resource. Under the County Plan, the County has planning obligations with respect to, and allocates resources for, the monitoring of environmental and natural resources within its boundaries. In particular, the County is obligated to work cooperatively with various federal and state agencies, including the Florida Keys National Marine Sanctuary ("FKNMS"), which is located in Monroe County, to protect water quality within the FKNMS. Forster testified, credibly, that the County's economy is water-based, and that recreational and commercial fisheries are a major part of that economy. To that end, the County expends resources to monitor the health of fisheries in the County. Ecotourism also constitutes a large part of the County's economic base. Specifically, through the taxes the County collects as a result of tourism, including ecotourism, the County is able to provide a range of local government services to its residents that it otherwise would not be able to provide if it did not have such revenue. The County requested to intervene in these proceedings due to its concerns that the continued operation of the CCS would adversely affect the potable ground water in FKAA's wellfield from which the County obtains its potable water. The County also requested to intervene due to its concerns regarding protecting and maintaining the quality of surface waters in Biscayne Bay, which constitutes an important resource that supports the County's ecotourism.

Conclusions For Petitioners and Intervenor: Andrew J. Baumann, Esquire Amy Taylor Petrick, Esquire Lewis, Longman & Walker, P.A. 515 North Flagler Drive, Suite 1500 West Palm Beach, Florida 33401 Frederick L. Aschauer, Esquire Lewis, Longman & Walker, P.A. 315 South Calhoun Street, Suite 830 Tallahassee, Florida 32301 For Respondent, Department of Environmental Protection: Marianna Sarkisyan, Esquire Matthew J. Knoll, Esquire Office of the General Counsel Department of Environmental Protection Douglas Building, Mail Station 35 3900 Commonwealth Boulevard Tallahassee, Florida 32399-3000 For Respondent, Florida Power & Light Company: Thomas Neal McAliley, Esquire Yolanda P. Strader, Esquire Steven M. Blickensderfer, Esquire Carlton Fields, P.A. 100 Southeast Second Street, Suite 4200 Miami, Florida 33131 Peter Cocotos, Esquire Florida Power & Light Company 215 South Monroe Street, Suite 810 Tallahassee, Florida 32301

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the Department of Environmental Protection enter a final order granting Permit No. FL0001562-012-IW1N to Florida Power & Light Company. DONE AND ENTERED this 18th day of February, 2022, in Tallahassee, Leon County, Florida. S CATHY M. SELLERS Administrative Law Judge 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 18th day of February, 2022. COPIES FURNISHED: Peter Cocotos, Esquire Florida Power & Light Company 215 South Monroe Street, Suite 810 Tallahassee, Florida 32301 Brian Stamp Florida Power & Light Company 9760 Southwest 344 Street Florida City, Florida 33035 Frederick L. Aschauer, Esquire Lewis, Longman & Walker, P.A. 315 South Calhoun Street, Suite 830 Tallahassee, Florida 32301 Marianna Sarkisyan, Esquire Matthew J. Knoll, Esquire Office of the General Counsel Department of Environmental Protection Douglas Building, Mail Station 35 3900 Commonwealth Boulevard Tallahassee, Florida 32399-3000 Thomas Neal McAliley, Esquire Yolanda P. Strader, Esquire Steven M. Blickensderfer, Esquire Carlton Fields, P.A. 100 Southeast Second Street, Suite 4200 Miami, Florida 33131 Joseph Ianno, Esquire Florida Power & Light Company 700 Universe Boulevard Juno Beach, Florida 33408-2657 Justin G. Wolfe, General Counsel Department of Environmental Protection Legal Department, Suite 1051-J Douglas Building, Mail Station 35 3900 Commonwealth Boulevard Tallahassee, Florida 32399-3000 Andrew J. Baumann, Esquire Amy Taylor Petrick, Esquire Lewis, Longman & Walker, P.A. 515 North Flagler Drive, Suite 1500 West Palm Beach, Florida 33401 Christopher J. Wahl, Esquire Abbie Schwaderer Raurell, Esquire Miami-Dade County Attorney's Office 111 Northwest 1st Street, Suite 2810 Miami, Florida 33128 Lea Crandall, Agency Clerk Department of Environmental Protection Douglas Building, Mail Station 35 3900 Commonwealth Boulevard Tallahassee, Florida 32399-3000 Shawn Hamilton, Secretary Department of Environmental Protection Douglas Building 3900 Commonwealth Boulevard Tallahassee, Florida 32399-3000

# 2
STEVEN L. SPRATT vs CITY OF DELTONA AND ST. JOHNS WATER MANAGEMENT DISTRICT, 05-003664 (2005)
Division of Administrative Hearings, Florida Filed:Deltona, Florida Oct. 06, 2005 Number: 05-003664 Latest Update: Jun. 26, 2006

The Issue This case involves a challenge to St. Johns River Water Management District’s (District or SJRWMD) intended issuance of an Environmental Resource Permit (ERP) granting the City's Application No. 4-127-97380-1, for the construction and operation of a surface water management system for a retrofit flood-relief project known as Drysdale Drive/Chapel Drive Drainage Improvements consisting of: excavation of the Drysdale Drive pond (Pond 1); improvement to the outfall at Sterling Lake; and the interconnection of Pond 1 and four existing drainage retention areas through a combination of pump stations and gravity outfalls (project or system). The issue is whether the applicant, the City of Deltona (City or Deltona), has provided reasonable assurance the system complies with the water quantity, environmental, and water quality criteria of the District’s ERP regulations set forth in Chapter 40C-4, Florida Administrative Code,1 and the Applicant’s Handbook: Management and Storage of Surface Waters (2005) (A.H.).2

Recommendation Based upon the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the St. Johns River Water Management District enter a final order issuing to the City of Deltona an ERP granting the City's Application No. 4-127-97380-1, subject to the conditions set forth in the Technical Staff Report. DONE AND ENTERED this 17th day of March, 2006, in Tallahassee, Leon County, Florida. S J. LAWRENCE JOHNSTON Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 17th day of March, 2006.

Florida Laws (2) 120.57373.4136
# 3
TERRI SALTIEL vs. SCHOOL BOARD OF LEON COUNTY AND DEPARTMENT OF ENVIRONMENTAL REGULATION, 89-002752 (1989)
Division of Administrative Hearings, Florida Number: 89-002752 Latest Update: Mar. 24, 1993

The Issue The issue for determination is whether Respondent Leon County School Board should be issued a dredge and fill permit to excavate and backfill in connection with the installation of sewage collection system pipes beneath the Alford Arm of Lake Lafayette in Leon County.

Findings Of Fact On April 13, 1989, the Board submitted a permit application to DER for the dredge and fill permit which forms the basis for this proceeding. The project represented in the dredge and fill application consisted of installation of two sewage collection system pipes beneath the Alford Arm of Lake Lafayette. Installation would be accomplished by excavating and backfilling two trenches, each approximately 50 feet long by four feet wide by two feet deep. The pipes to be installed in the trenches adjacent to Buck Lake Road are one 15-inch gravity main and one 14-inch force main. A total of 15 cubic yards of soil was proposed for excavation and replacement. The project area consisted of less than 100 square feet. The Alford Arm in the project's vicinity is a canal dredged in the 1920's and 1930's. Neither the Alford Arm nor Lake Lafayette constitute Outstanding Florida Waters (OFW), instead these water bodies are Class III Waters. On April 14, 1989, DER staff conducted an inspection of the project site, completed a permit application appraisal of the project, and issued permit no. 371633191 for the project. On the same day, the permit was withdrawn when it was discovered that the document had been signed by an unauthorized official. On April 20, 1989, DER again issued permit no. 371633191 to the Board for the project. The dredging, pipe installation, and backfilling were subsequently completed. Water Quality Since the dredging and filling could potentially produce short-term turbidity in the Alford Arm as a result of sediment entering the water, a specific condition of the permit required the placement of a row of staked hay bales downstream from the project site prior to construction and thereafter until re- vegetation of the site had occurred. By compliance with this turbidity control measure, reasonable assurance was provided by the Board that violations of state water quality standards would not result from the project construction. The project did not cause any violations of DER water quality criteria for turbidity or any other water quality criteria. Numerous technological advances and safeguards built into the sewer lines and lift stations make probability of any leakage very remote. Petitioner's concern with regard to potential for leakage from the collection system lines and the lift stations to cause water quality problems in the Alford Arm is not supported by any competent substantial evidence of record regarding statistical frequency and probability of such occurrences. Further, there is no such evidence of infirmities regarding design soundness or the functional history of the pipe used in the project. Public Interest DER evaluated the project in accordance with the criteria of Section 403.918(2), Florida Statutes, prior to issuance of the permit. Another review has now been completed approximately two years after completion of the project. The project has not and will not cause any adverse impacts on public health, safety, welfare, or property of others. Likewise, the project has not caused adverse impacts on significant historical or archaeological resources. Similarly, no adverse impacts on the conservation of fish or wildlife, including endangered or threatened species or their habitats has or will result from the project. Interestingly, woodstorks have been observed feeding in the very vicinity of the project as recently as May 28, 1991, more than two years after completion of the project. No adverse impacts have or will be visited upon navigation or flow of the water. No harmful erosion or shoaling has or will result from the project. The project has not and will not cause any adverse impacts on fishing, recreational values or marine productivity in the vicinity of the project. The impacts of this dredge and fill project were temporary. The dredged and filled area has re-vegetated with the same species, pickerelweed and smartweed. Wetland functions of the site that existed prior to the project were minimal and have been re-established. Cumulative And Secondary Impacts Cumulative impacts from similar projects were not evidenced at the final hearing. There are no projects proposed which are closely linked or causally related to the dredge and fill project. The only non-speculative secondary impact from the project was possible leakage of wastewater from the collection system lines and lift station. The probability of such leakage is very low. Particularly in view of the geographical area, engineering design and manufacture of the pipes and waste collection system, such probability is speculative and minimal or non-existent in the absence of competent substantial evidence regarding statistical frequency of such an event. The construction of the sewage collection system with which the project is associated is a result of growth in the geographic area. While the project has not been established to induce growth in the area, such development would not affect Lake Lafayette since the collection system currently installed has a 400 gallon per minute capability, or the ability to serve 400 residential connections. Prior to issuance of the dredge and fill permit, 800 existing residential lots were platted along Buck Lake Road within two miles east and two miles west of the project site. Since the system could be upgraded to accommodate 1600 residential units, the potential increase that could result from the project in any event is an additional 800 residential units. If these additional residences are built at the very high density of one per quarter acre, these lots would cover only approximately two-thirds of a square mile or less than one percent of the Lake Lafayette drainage basin of approximately 80 square miles. Such development would have no measurable impact on Lake Lafayette.

Recommendation Based on the foregoing, it is hereby recommended that a Final Order be entered approving the issuance of permit number 371633191 to the Board. RECOMMENDED this 9th day of August, 1991, in Tallahassee, Leon County, Florida. DON W.DAVIS Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Fl 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 9th day of August, 1989. APPENDIX TO RECOMMENDED ORDER, CASE NO. 89-2752 The following constitutes my specific rulings, in accordance with Section 120.59, Florida Statutes, on findings of fact submitted by the parties. Petitioner's Proposed Findings. None Submitted. Respondent Board's Proposed Findings: 1.-17. Adopted in substance. Respondent Department's Proposed Findings: 1.-24. Adopted in substance. COPIES FURNISHED: Terri Saltiel 7769 Deep Wood Trail Tallahassee, FL 32311 Richard A. Lotspeich, Esq. John T. LaVia, III, Esq. P.O. Box 271 Tallahassee, FL 32302 Michael Donaldson, Esq. Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, FL 32399-2400 Carol Browner, Secretary Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, FL 32399-2400 Daniel H. Thompson, Esq. General Counsel Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, FL 32399-2400

Florida Laws (3) 120.52120.57120.68
# 4
DESOTO CITIZENS AGAINST POLLUTION, INC., AND ALAN BEHRENS vs IMC-PHOSPHATES COMPANY AND DEPARTMENT OF ENVIRONMENTAL PROTECTION, 01-001082 (2001)
Division of Administrative Hearings, Florida Filed:Bradenton, Florida Mar. 15, 2001 Number: 01-001082 Latest Update: Nov. 25, 2002

The Issue Petitioners and Intervenors challenge the Department of Environmental Protection's (Department) Notice of Intent to Issue Environmental Resource Permit (ERP) No. 0142476-003 to IMC Phosphates Company (IMC) for proposed mining of phosphate at the Manson Jenkins Property (Property) located in Manatee County, Florida. The ultimate issue is whether IMC has provided reasonable assurance that the applicable requirements of Chapters 373 and 403, Florida Statutes, and relevant rules promulgated thereunder, have been satisfied justifying entitlement to an ERP.

Findings Of Fact The Parties Respondent, IMC, is a general partnership authorized to do business in the State of Florida and is the applicant in these proceedings. IMC has applied for an ERP to mine, reclaim, and conduct associated activities on the Property in Manatee County, Florida. These activities shall be referred to as the "Manson Jenkins Project." The Department administers the ERP program for various activities including phosphate mining and reviewed the ERP application for the Manson Jenkins Project. Petitioner, DCAP, is a not-for-profit corporation. Alan Behrens and Joe Fernandez reside in DeSoto County and joined in the DCAP Petition. Petitioner, Charlotte County, and Intervenors, Sarasota County and Lee County, are political subdivisions of the State of Florida. Intervenor, the Authority, is a regional water supply authority established under Section 373.196, Florida Statutes, and created by interlocal agreement to supply wholesale drinking water to its member governments and to approximately 100,000 residents of Charlotte, DeSoto, and Sarasota counties, most of whom reside in Charlotte County. Intervenors, ECOSWF and Manasota-88, are not-for-profit environmental organizations. IMC and the Department agreed to the standing of the Petitioners and Intervenors to participate in these proceedings. Environmental Resource Application General In 1993, the Legislature directed the Department and the water management districts to combine the Management and Storage of Surface Water (MSSW) program, administered by the water management districts pursuant to Chapter 373, Florida Statutes, and the Dredge and Fill Program, administered by the Department pursuant to Chapter 403, Florida Statutes, into a single permitting program, the ERP Program. The Department and the water management districts worked jointly to merge the two programs. The process was completed in 1995, when the rules implementing the ERP Program took effect. The MSSW permits were issued by the water management districts for construction activities that would significantly alter surface water flow or otherwise affect surface water management systems. The dredge and fill permits were issued by the Department for activities proposed in surface waters and wetlands. The ERPs are now issued by the Department pursuant to Chapter 373, Florida Statutes, which requires the issuance of an ERP for any construction activities in or seeking to alter certain waters and wetlands. ERP applications for phosphate mining are submitted to, processed and evaluated by, the Department's Bureau of Mine Reclamation (Bureau) pursuant to Chapter 373, Florida Statutes, and specific rules. By law and interagency agreement, the Department issues ERPs for proposed phosphate mining operations. The Bureau conducts an initial review and may request additional information. Upon review of the initial application and responses, the Bureau determines whether the application is complete. Unless waived by the applicant, the Bureau has 90 days within which to take agency action, i.e., either grant or deny the application. ERPs are divided into the construction and operation phases. During the construction phase of a phosphate mining operation, an applicant conducts the mining and related activities, including the actual preparation and mining of the land. After mining, an applicant pumps sand tailings back into the mine cuts, re-contours the land and plants the appropriate vegetation, also known as the reclamation process. After reclamation, the Department inspects the site and determines whether on-site wetlands can be properly reconnected to waters of the state. Reconnection typically occurs when the Department determines that the site functions as a self-sustaining natural system, and water quality standards are met. Following reconnection, the operational stage of the ERP begins because the property is then a natural site and self-sustained. Throughout the construction and operation phases, the Department continually inspects the property. A site will not be released from permit requirements until all permit conditions have been met. For ERP permits issued within the Southwest Florida Water Management District (SWFWMD), the Department incorporated by reference certain sections of Chapters 40D-1, 40D-4, 40D-40, and 40D-45, Florida Administrative Code, and specific provisions of the Basis of Review for Environmental Resource Permit Applications (1995) (ERP BOR), as its permitting criteria. See Rule 62-330.200(3)(a)-(e), Florida Administrative Code. The main permitting criteria followed by the Department in issuing ERP permits for activities within the SWFWMD are contained in Rule 40D-4.301, Florida Administrative Code (Conditions for Issuance of Permits), and Rule 40D-4.302, Florida Administrative Code (Additional Conditions for Issuance of Permits). Both rules became effective in 1995. Prior to the merger of the Department and the water management districts' functions under the Department's regulatory umbrella, the various districts had slightly different conditions for the issuance of permits. The Department and all of the districts developed one version of these rules, which were then adopted by the four districts (without the Northwest Water Management District, which does not implement the program) to promote uniformity. In turn, the Department incorporated the above-mentioned rules by reference. Thus, for example, Rules 40D-4.301 and 40D-4.302 are a blending of the previous MSSW rules with the previous dredge and fill rules. In evaluating ERP permit applications, the Department considers the SWFWMD's (as well as other water management districts) historical interpretation of the rules which have been adopted by the Department, although the Department is not bound to adopt former SWFWMD interpretations nor does the Department defer to the SWFWMD's interpretation of these rules. Until this proceeding, the Bureau evaluated adverse water quantity and flow impacts based on a standard that limited post-mining flows and mass volume to 105 percent and 85 percent of the pre-mining flows and volumes, respectively. As a direct result of the filing of a challenge to this policy, the Department will not rely on this policy as a basis for decision in this proceeding. See Charlotte County, Florida, and Peace River/Manasota Regional Water Supply Authority v. Department of Environmental Protection and IMC Phosphates Company, DOAH Case Nos. 01-2399RU and 01-2412RU (Settlement Agreement July 6, 2001). In this de novo proceeding, IMC has the burden to establish reasonable assurances in a variety of contexts. See, e.g., Rules 40D-4.301 and 40D-4.302, Florida Administrative Code. 2. The Manson Jenkins ERP Application Review Process On October 1, 1999, IMC submitted to the Department an application for an ERP for authorization to mine phosphate, reclaim, and conduct associated activities on the Property. The Manson Jenkins Project is an extension of the existing Fort Green Mine, which is contiguous to the Property. The Department reviewed the information contained in the initial application and issued a series of requests for additional information. IMC provided responses to these requests on February 7, June 5, July 15, September 6, and October 11, 2000. Thereafter, the Department determined that the application was complete and issued a Notice of Intent to Issue (NOI) an ERP to IMC on February 8, 2001. This NOI was published in the Bradenton Herald on February 12, 2001. The parties stipulated that "Chapters 373 and 403, Florida Statutes, and the rules promulgated pursuant thereto are the applicable law in this proceeding." However, the parties disagree regarding which specific statutes and rules apply here. 3. Draft Environmental Resource Permit The Department's NOI includes a draft ERP. This permit is issued under the authority of Part IV of Chapter 373, Florida Statutes, and Chapter 62, Florida Administrative Code. The draft ERP authorizes IMC, in part, "to mine or disturb approximately 361 acres of wetlands for phosphate mining and associated activities . . . . The mitigation/reclamation will consist of approximately 537.8 acres of wetlands . . . . The project will also disturb 1988.1 acres of uplands for phosphate mining and associated activities [and t]he reclamation will consist of 1811.3 acres of uplands . . ." in a variety of land formations. IMC voluntarily agreed to provide a two-phased Conservation Easement consisting of not less than 521 acres, consisting "of [during phase one] not less than 182 acres associated with the no-mine area of the West Fork of Horse Creek, which shall be preserved from mining associated disturbance" and, during phase two, "an additional 339 acres of created wetlands and encompassed stream associated with the West Fork of Horse" Creek. The Conservation Easement is not considered part of the mitigation offered by IMC. The Conservation Easement authorizes the Property owners to use these areas after reclamation and release of the Property. The draft ERP contains general conditions, and specific conditions requiring, in part, monitoring to assure that the proposed mitigation of waters and wetlands is completed in accordance with success criteria contained in the draft ERP; monitoring to assure that groundwater levels are maintained at appropriate levels in areas undisturbed by mining or mining related activities; and numerous other legally enforceable conditions of approval. Phosphate Mining Geological Background and Phosphate Mining Process Millions of years ago, the oceans were rich in phosphorous. At that time, central Florida was under water. Over geological time, certain organisms decayed and settled to the bottom of the ocean. After the waters receded, deposits of phosphate were covered by land. Essentially, phosphate is the product of marine deposits. Although deposits are located in other states, such as Idaho and North Carolina, the largest phosphate rock deposit in the United States is in Central Florida, including the Manson Jenkins Property. The deposits of phosphate-bearing material are referred to as the "matrix," which consists of one-third phosphate, one-third sand, and one-third clay. On the Manson Jenkins Property, the entire matrix or ore body is approximately 15 to 18 feet thick. This phosphate matrix layer is buried under a layer of soils, rocks, sand, and clay, known as the "overburden," which is up to approximately 33 feet thick. There is a layer beneath the matrix which is 150 to 200 feet thick which is a confining layer of dense clay and separates the surficial aquifer from the intermediate aquifer. The phosphate to be mined on the Property is above the bed clay and the top of the intermediate aquifer system. Because the matrix is overlain by the overburden, the only way that it can be accessed and removed is through a surface mining operation. The first step prior to any land disturbance associated with phosphate mining is the installation of a "ditch and berm" system around the proposed mining area. The ditch and berm system is referred to by the Department and the United States Environmental Protection Agency (EPA) as a "best management practice" (BMP). The ditch and berm system for the Property will be designed and installed pursuant to specific criteria. This system is designed to preclude a direct release of impacted water from the mining area to adjacent land, and wetlands or waters, such as streams. The ditch and berm system can be expected to operate appropriately and efficiently if it is constructed, operated, and inspected in accordance with the design criteria described by IMC engineers. A properly designed, constructed, and operated ditch and berm recharge system will effectively maintain water levels outside of the mine areas. A berm is a small embankment which has an inspection roadway on top which is typically 12 to 15 feet wide and has a fairly flat downstream slope. The berm is designed to be flat and stable. The primary purpose of the berm is to prevent water that is collected in the ditch from overflowing into the preserved areas and other undisturbed areas and creating, among other things, potential water quality problems. This system is also designed to prevent water that may be associated with the mining activity from moving off-site to adjacent, undisturbed areas, including wetlands or waters and to protect the ecology of the area outside of the berm. Another function of the system, including the recharge ditches, is to maintain groundwater along the boundaries of the property line so that undisturbed areas outside the mining area will remain at pre-mining conditions. Water levels are actively maintained in the ditches surrounding mining areas to assure that the mining excavations do not drain groundwater from adjacent areas. Preserved areas are also surrounded by ditch and berm and recharge systems that hydrate the area so that, for example, existing wetlands are not degraded. Prior to mining a to-be-disturbed area, the ditch portion of the ditch and berm system acts to collect water and carry it to an area where it is pumped into a recirculation system. The ditch and berm system also typically acts as a recharge system. IMC will design, construct, and operate a recharge system that will maintain the water level in the area immediately adjacent to the mine cuts. The water that is in the recirculation system consists of rainfall, water from the deeper aquifer systems, water from the surficial aquifer system that drains into the mine cuts, and runoff that is captured behind the ditch and berm systems. Prior to mining, IMC will install monitor wells at regular intervals along the recharge ditches, which will be located adjacent to either preserved areas or adjacent to property owned by someone else other than IMC, who would be concerned about drawing the water level down beneath his property. The monitor well gauges will give an indication as to the baseline water levels, the fluctuations of the water level, and the high water levels along the preserved areas. The monitor well gauges can also be read to ensure that the water in the recharge ditch is getting into the ground and maintaining the water table at the same level it was prior to mining. Water can also be drawn from nearby wells which can be used to make up the water that seeps out of the recharge system. IMC currently operates approximately 75 miles of perimeter ditches and berms at various mining operations. IMC has resolved compliance issues relating to recharge ditches (because of dewatering concerns) on the Fort Green Mine. Compliance issues, including the Four Corners Mine, have been reported by IMC to the SWFWMD. Also, IMC has had other unpermitted discharges related to its ditches and berms, which have been resolved by consent orders. Compliance issues regarding the East Fork of the Manatee River have not been resolved completely, as the SWFWMD has not closed its enforcement files. IMC will continue to act to resolve these issues until reclamation is completed around the East Fork. Notwithstanding these compliance issues and the related problems, the weight of the evidence indicates that IMC is capable of designing, constructing, and maintaining the proposed ditch and berm system, including the recharge ditches, on the Property in order to avoid past problems which resulted in, for example, dewatering of property. These problems can be significant and, if left undetected and unremedied, can cause serious consequences. Careful and timely monitoring, and continued self-reporting of non-compliance by IMC is imperative. The SWFWMD has issued a consolidated water use permit for the Property. Under this permit, IMC has reduced its daily permitted pumping by an average of over 50 percent. Prior to mining, an alternate flow way (AFW) will also be constructed to carry water that was previously flowing from the northwestern portion (boundary) of the Property to the preserved area to the south of the Property. The AFW will temporarily replace the conveyance and storage of the portions of the West Fork of Horse Creek that will be mined. The AFW is likely to be removed in years 5 to 6 of mining. See Findings of Fact 87-94. Once the ditch and berm system is in place, the land is cleared to prepare for mining. The area is mined in strips or rows. After clearing, large electrically powered draglines remove the overburden layer to expose the phosphate-bearing matrix. The overburden is cast into an open adjacent mine cut, exposing the matrix for mining. These same draglines then extract the matrix and place it in depressions created at the mine which are called "slurry wells" or "pits." The matrix is then mixed with water in the pits to form a slurry which is conveyed hydraulically through a series of pipes and pumps to a "beneficiation" plant to remove the phosphate rock product from the matrix. The recovered phosphate matrix contains phosphate rock, clay, and sand. At the beneficiation plant, the phosphate rock, sand, and clay are physically separated. The phosphate rock is stored prior to additional processing required to convert it to fertilizer at off-site facilities. The sand is hydraulically transported back to the mining areas for use in land reclamation. The clays are generated from the beneficiation process and hydraulically transported to a clay settling area (CSA) where they are dewatered prior to reclamation. IMC plans to construct and operate two CSAs on the Property. However, the weight of the evidence indicates that approval of the ERP application at issue here, does not approve these CSAs because they have to be permitted and operated under separate Department regulations. See Findings of Fact 244-247 and 268. CSAs are a repository for the clay material. They are generally built in mined-out areas and built with the overburden material that is dragline cast in the mine cut. CSAs are necessary because, unlike sand which readily drains through water, clay materials are very light; and it takes time for the clays to settle out of the water, so the water can be reused in the re-circulation system. IMC expects that the two CSAs on the Property will ultimately be designed to handle the equivalent amounts of clays that will be mined from the Manson Jenkins Project. There will also be two CSAs immediately to the east of the Property on the Fort Green Mine, which will be operating as a result of the mining on the Property. Specifically, the CSAs proposed for the Property are expected to be constructed in mined-out areas (the northeast portion of the Property) and are expected to be surrounded by engineered dams approximately 40 feet above the surrounding land surface grade. One of the CSAs will encompass approximately 540 acres and the other 520 acres. After the clay is initially settled, specialized equipment will be used to dig drainage ditches and take other steps to expedite the settling process. This will allow a "crust" to form on the top of the clay surface. Thereafter, the dams surrounding the CSA (which are composed of overburden material) will be pushed in to cover a portion of the settled clays. The area will then be primarily uplands with relatively small wetland systems present. Years ago, settling areas would be reclaimed in 10 to 15 years. Today, with special mobile equipment, CSAs can be reclaimed within 3 to 5 years. Reclamation of the CSAs on the Property is expected to be completed within the 15 year timeframe contemplated for mining and reclamation activities. Once the matrix has been removed from a mining area segment, land reclamation commences. IMC expects to use four, different land reclamation techniques, including but not limited to, crustal development reclamation and land and lakes reclamation. These methods were described in detail during the hearing. Manson Jenkins Project Pre-Mining Conditions (Historical and Current Conditions of the Property) The Property encompasses approximately 2,808 acres in northeast Manatee County, Florida, which is largely owned by FP- 1 and FP-2 Corporations. IMC has a lease to mine the Property, having obtained these rights in 1993 when IMC entered into a partnership with Agrico Chemical Company, who, in turn, acquired the mining lease in 1986. The lease prohibits the owners from using the Property during mining, until it is released from reclamation. The owners have the right to use the Property prior to mining and after reclamation. The Parties stipulated that there are no archeological or historical resources located at the Property. The Peace River starts in Polk County, north of Bartow, and flows through Wauchula and Arcadia, and southwesterly to Charlotte Harbor. Horse Creek begins in the southern portion of Polk and Hillsborough Counties and flows south through Hardee County, approximately 40 miles to the confluence of Horse Creek and the Peace River in DeSoto County. The eastern boundary of the Property is the Manatee County-Hardee County boundary line. The Property abuts land to the east that is being mined and reclaimed by IMC as part of its Fort Green Mine, and the Manson Jenkins Project is an extension of that mining operation. According to a 1940 composite aerial, as interpreted, the Property contained wetlands that had not been ditched or drained. At the time, the West Fork of Horse Creek had not been channelized. The aerial indicates that there was a line of wetlands and a series of elongated marshes strung together, like a string of sausages, running south along the West Fork, and a distinct, yet not continuous, channel running southeast toward the southern boundary of the Property. The 1940 aerial, as interpreted, also indicates that the upland areas of pines had been cut. Cattle grazing is also apparent. The upland, however, consisted of very dense and rich undergrowth of range grasses, palmettos, low shrubs, and other assorted species. As of 1950, herbaceous wetlands existed at the north end of the Property and a vegetative cover existed between that wetland and the forested portion of the Property at the southern end. At that time, there was no channelization. As of 1965, the West Fork of Horse Creek, in or around the middle of the Property, had been channelized and heavily ditched. The area in the northeastern portion of the Property had been impacted by agriculture and row crops. The wetlands had been drained and tied into these ditches. The native range had been removed. IMC and its predecessors did not participate in the drainage of the Property for agricultural purposes. The present condition of the Property is very similar to the condition as of 1965. There is an approximately 3-square-mile area north of the Property which drains through a marsh, down to the West Fork of Horse Creek. The West Fork of Horse Creek, which enters the northwest portion of the Property, bisects the entire length of the Property in a north-south direction, and is channelized. The West Fork of Horse Creek is a first order stream because of its location in the watershed. See Findings of Fact 234-236. There is a headwater marsh area which leads into the northwestern portion of the Property and is part of West Fork of Horse Creek. The uppermost portion of the West Fork on the Property, which will be mined, has been referred to as "a channelized or ditch portion" or a "wide ditch." This includes the headwater marsh area. There is a "complex of wetlands" in the northwest corner of the Property which contribute water flow down the West Fork. There is a large ditch in the middle of the headwater marsh which conveys most of the water through the system and down the center of the Property. This portion of the West Fork of Horse Creek does not have the upland vegetation that is usually associated with a stream bank. Its ecological value is less than what is generally found in other first order stream or headwater systems. While the experts diverge on this issue, the weight of the evidence indicates that while the headwater marsh area to the north of the Property and in the northern portion of the Property has hydrological importance, the West Fork of Horse Creek is not a regionally significant stream. The weight of the evidence indicates that the West Fork of Horse Creek is a tributary of Horse Creek which, in turn, is a tributary of the Peace River. However, it is unclear whether the West Fork of Horse Creek is a work of SWFWMD. Assuming that it is, reasonable assurances have been provided that this project will not cause adverse impacts to the West Fork of Horse Creek in light of the mitigation offered by IMC and the proposed reclamation of the area and the reasonable expectation that this area will be improved from its current state. See Finding of Fact 257. There is also an area on the West Fork of Horse Creek and to the southeast of the Property (Section 13) which will be preserved and not mined, which is a combination of a channel system and forested uplands and wetlands. Walker Road runs north and south and is located in the middle and west of the West Fork of Horse Creek on the Property. Walker Road follows the proposed AFW. There is also a dirt or shell road which runs west to east across the West Fork of Horse Creek on the Property and a spillway structure at this location. The spillway structure was used by the landowner in agricultural practices to control the flow of water to irrigate the crops in the northeastern portion of the Property. The Property is located in the West Fork of Horse Creek, Manatee River, and Myakka River Basins, and in the far western part of the Peace River Basin. IMC's ERP Application contains approximately 300 acres, west of Walker Road (part of Sections 2 and 11) and in the northwestern portion of the Property in the Manatee River Basin. (Approximately 17 acres of wetlands in this area will be mined and will be replaced with approximately 51 acres of wetlands. See Findings of Fact 95-96 and 211.) This area is not part of the Development of Regional Impact approved by Manatee County, although IMC plans to request permission from Manatee County to mine this area, and if approved, IMC would mine less than 200 acres. This portion essentially drains into the Manatee River. Further, IMC has included the southwest triangle of these 300 acres as a preservation area. This area contains, among other land covers, mixed wetland hardwoods and freshwater marshes. There is another portion of the Property in the Myakka River Basin, approximately 32 acres, located in the southwest corner of the site. (There is also a small wetland in this area consisting of approximately 4 acres of wetlands which will be replaced with approximately 12 acres of wetlands. See Findings of Fact 95-96.) This portion drains through a drainage ditch and eventually enters Wingate Creek and the Myakka River. The balance, and by far the largest portion of the Property, is located in the Peace River Basin. After leaving the Property boundary to the south, the West Fork of Horse Creek joins the main branch of Horse Creek approximately 3 to 3.5 miles south of the Property line. Horse Creek then joins the Peace River approximately 30 miles from the Property boundary. The Peace River then empties into Charlotte Harbor approximately 40 miles from the Property. Today, the predominant land use on the Property are improved pasture and agricultural ditches. In order to achieve this cover and use, an extensive surface drainage system was constructed to drain isolated marshes into the West Fork of Horse Creek and to reduce the flood stage elevations within the creek itself. In areas with less extensive ditching, the existing vegetative communities more closely approximate natural systems. The improved pasture has been planted with bahia grass and other exotic pasture grasses. In recent years, a large portion of the pasture area has been converted into a sod farm and the sod has been stripped from that area leaving a large area of bare semi-vegetative soil. The Property is not pristine or close to its original condition, although, as argued by Charlotte County and others, portions of the Property do provide ecological functions. The wetlands on the Property have been subjected to extensive agricultural ditching. The main ditch is quite wide and deep, and there are many side ditches that proceed into smaller wetlands. There are also some lands that have not experienced conversion to improved pasture which, for the most part, are scheduled for preservation. IMC plans to mine, in part, the channelized portion of the West Fork of Horse Creek from north to south to the preserved area where the more heavily vegetated and forested portion of the natural stream channel of the West Fork of Horse Creek is located. This area will be blocked off during mining by a ditch and berm system. IMC will construct an AFW to carry the water that was previously flowing from the northern area (that is not part of this project and is not owned by IMC) around the area to be mined in the stream channel, which will be reconnected into the preserved area to the south. See Findings of Fact 87-94. From a hydrological standpoint, the to-be-mined marsh and channelized stream segment will be replaced with a flow- through marsh and recreated stream segment that connects the area to the north with the preserved portion of the West Fork of Horse Creek. The uplands will be placed back to the same elevations existing pre-mining and additional wetlands added. The marsh and the vegetative part of the stream will be slightly bigger. Proposed Mining Activities (Mine Sequence for the Property) IMC proposes to mine 2,348 acres of the 2,808 acres on the Property in approximately 6 to 9 years. The mining activities at the Property will follow the general sequence outlined above. Reclamation is expected to begin within 3 to 4 years after the commencement of mining operations, except for the CSAs. The mining and reclamation activities are expected to completed within 15 years. IMC will construct an AFW in year one (and prior to mining) of the mining activities. The AFW should be tied into the preserved area in the southern portion of the Property as soon as feasible in order to minimize the impacts to this area and downstream. The AFW is necessary because IMC intends to mine approximately 1.6 miles of the channelized or ditched marsh and stream portion of the West Fork of Horse Creek located in the northwest to middle portion of the Property. The AFW is designed to temporarily replace the conveyance and storage of the portions of the West Fork of Horse Creek that will be mined north of the preserved area. The AFW will carry water that was previously flowing from the northwestern boundary of the Property to the preserved areas to the southern portion of the Property. In this manner, if constructed and operated properly, it is expected that the proposed mining and related activities at the project area will not cause adverse flooding to on-site or off-site property and will not cause adverse impacts to existing surface water storage and conveyance capabilities. Further, the AFW and downstream areas will not be expected to suffer from erosion as a result of the installation of the AFW. The slopes and bottom of the AFW will be a vegetated channel designed to receive surface water runoff from the area north of the Property and convey it southward and then eastward back into that portion of the West Fork of Horse Creek on the Property which is part of the area being preserved in the southern portion of the Property. The bottom of the AFW will be vegetated with wetland type vegetation and will provide a habitat for fish and other wildlife. The AFW will not be used until the vegetation has become established. Vegetation is an effective method for minimizing erosion in a flow way or stream as described here. The design recommendations also require that the ends of the access corridor be stabilized so if they are subjected to overflow during the 25-year or 100-year storm event, they will be protected from erosion. Any sharp bends in the AFW will be stabilized prior to being put into service. The size of the AFW (50 feet wide) was revised and adjusted so it could carry the expected flows without backing the water up and causing water elevation to be above that which existed historically. The actual design of the AFW has been modified in accordance with the ERP conditions. The Draft ERP, "Specific Condition 4. c." provides: An alternate flow way shall replace the headwater marsh and wetlands of the West Fork of Horse Creek during site preparation, mining, and until the reclamation is re- connected. The alternate flowway will begin south of the north project boundary and end at the north end of the preserved wetlands, as shown on Figure IV F. The alternate flowway will convey water from areas north of the north project boundary south into the unmined portions of the West Fork of Horse Creek. The AFW shall be constructed as a trapezoidal channel with a minimum bottom of with [sic] of 50 feet and side slopes no steeper than 3 ft horizontal to 1 foot vertical, (3H to 1V). A recharge ditch and associated berms shall be placed along the entire east side and portions of the west side of the alternate flowway as noted in Figures IV F and IV F(a). To ensure maximum water quality treatment, the flowway will be planted with a variety of herbaceous wetland species such as pickerel weed Peak level recording devices will be placed at the north end, south end, and just north of the half Section line of Section 11. The top of the recording tube and the cross section elevations of the alternate flowway will be surveyed at the time of installation. This data will be submitted with the first monitoring report. Stream flows will be measured in conjunction with the quarterly mine inspection at each peak level station until the reclamation is reconnected to the West Fork unmined area. IMC-Phosphates shall submit monthly flow data and rainfall data to the bureau for review and approval. IMC-Phosphates shall not conduct any activities that result in a violation of Class III water quality standards within the West Fork [of] Horse Creek flowway. If at any time the water quality fails to meet [C]lass III standards, the bureau shall be immediately notified and corrective measures implemented. The reconstructed stream channel, like the AFW, will be vegetated and not placed into service until the vegetation is established. IMC proposes to disturb 361 acres of jurisdictional wetlands on the Property. This acreage comprises approximately 4, 17, and 330 (approximately 351 acres according to Dr. Durbin) acres in the Myakka, Manatee, and Peace River Basins, respectively. The balance of the Property will be reclaimed as uplands. See Findings of Fact 218-219. IMC will reclaim 538 acres of wetlands for the 361 acres of disturbed wetlands, consisting of approximately 12, 51, 475 acres of wetland mitigation in the Myakka, Manatee, and Peace River Basins, respectively. IMC proposes to preserve approximately 316 acres (approximately 45 percent of the wetlands on-site) of jurisdictional wetlands on the Property, including over 70 percent of the forested wetlands on-site. By eliminating existing agricultural ditching and providing appropriate mitigation, and by providing upland buffers around the wetlands, the post-reclamation condition of the Property is expected to be better than the current condition of the Property. Conditions for Issuance Water Quantity Impacts Surface Water General During the final hearing, substantial evidence was presented concerning the potential impact of mining on surface water flows across the Property and downstream. Pursuant to Rule 40D-4.301(1)(a) and (b), Florida Administrative Code, an ERP applicant must provide reasonable assurance that its proposed activities will not cause adverse water quantity impacts to receiving waters and adjacent lands and will not cause adverse flooding to on-site or off-site property. Dr. Garlanger is an expert in hydrology and hydrologic modeling with special expertise in surface and ground water systems associated with phosphate mining operations and reclaimed mined lands. IMC requested Dr. Garlanger to assess the potential impacts of the proposed mining and reclamation on the hydrology of the Property, and also to assess the potential hydrological or hydrogeological impacts downstream from the site to wetlands or waters of the state. Dr. Garlanger used models to assist him in assessing the nature, scope, and the extent of any future impacts resulting from the phosphate mining. Modeling requires the making of calculations relating one variable to another. Scientists, such as Dr. Garlanger and others who testified during this final hearing, who run comparative water balance models to calculate the differences in daily stream flow leaving a project site at the project boundary, must take into account several factors associated with the hydrological cycle, including the following: 1) the typography of the site; 2) the hydraulic conductivity or permeability of different soil levels; 3) the transmissivity of the different aquifer systems; 4) the geometry of the stream channel; 5) the amount and timing of rainfall on-site; 6) the amount of surface runoff; 7) the amount of evapotranspiration (ET); 8) the amount of deep recharge to the Floridan aquifer system; 9) the amount of groundwater outflow, including that portion of which makes it to the stream and becomes base flow; and 10) the temperature, wind speed, and amount of solar radiation, because they control ET. Each of these issues was reasonably evaluated by Dr. Garlanger. The weight of the evidence supports the accuracy, completeness, and conclusions of Dr. Garlanger's modeling work. Dr. Garlanger has been reviewing hydrological aspects of mining projects since 1974 for phosphate mining projects that require hydrological and hydrogeological analysis reflecting the unique aspects of mining operations. Dr. Garlanger explained how professional judgment was applied in his engineering calculations and how his model input data are reasonable. He also explained that he used reasonable information estimates to conduct this particular modeling work, which are consistent with measured data. Surface water flows are dependent on two sources: rainfall runoff from adjacent areas and groundwater that enters surface water streams and is sometimes referred to as "base flow." The weight of the evidence demonstrated that during mining activities the act of confining mining areas by the ditch and berm system would capture the rainfall runoff on these areas and thus reduce that rainfall runoff contribution to the ditched segment of the West Fork of Horse Creek (prior to the time that it is mined), the AFW during its operation, and the reclaimed West Fork of Horse Creek (during the time that mining continues to occur in the vicinity). During the active mining and reclamation activities, the ditch and berm system operates to maintain groundwater levels in areas undisturbed by mining at pre-mining conditions. Water levels are actively maintained in the ditches surrounding mining areas to assure that the mining excavations do not drain groundwater from adjacent areas. Thus, during the active mining and reclamation activities, the base flow component of surface water is not likely to be affected. The weight of the evidence demonstrates that the base flow contribution to surface water flows through the AFW, when operational, will be somewhat higher than is present in the West Fork of Horse Creek during pre- mining conditions. After mining and reclamation are complete, the ditch and berm systems will no longer be needed and present at the Property, and thus rainfall runoff is not expected to be captured thereby. More wetlands, however, will be present at the Property after reclamation is completed than are now present. These wetlands tend to "use," through ET, more water than a comparably sized upland area. Thus, after reclamation is completed, there will be a reduction in the amount of water contributed from the Property to the flow of water in the reclaimed and preserved portions of the West Fork of Horse Creek. The weight of the evidence indicates that the proposed mining and reclamation activities at the Property will not cause any adverse impacts on surface water quantity at the Property during active mining and reclamation or thereafter, and that there will be no adverse impacts at downstream locations. 2. Rainfall Predictive modeling was carried out by Dr. Garlanger to assess the potential significance of rainfall runoff capture and base flow reductions anticipated during mining and after reclamation of the Property. The model efforts simulated stream flow conditions on a daily basis, assuming that the Property experienced rainfall of the same frequency and duration as had occurred during a 19-year period from 1980 to 1998 at the Wauchula rainfall gauge. The amount of rainfall drives the hydrological model because it determines the amount of groundwater outflow, the amount of surface water runoff, and basically determines the amount of stream flow. The volume and timing of rainfall are important factors to consider; information regarding the variability of rainfall is a critical input into any model. In mining operations, discharge volumes correspond directly to rainfall. When rainfall volumes increase, mining operations' discharges increase. When rainfall volumes decrease, mining operations' discharges decrease. Thus, rainfall is the primary controlling factor in the volume of water discharge from a phosphate mine. The Property is located in the Peace River Basin. See Finding of Fact 75. Information is available from the National Climatic Data Center (Center), the government archive for climatic data, which indicates the occurrences of annual rainfall in the Peace River Basin between 1933 and 2000. The Center is a reasonable source of rainfall data. From 1933 through 2000, the arithmetic average of the rainfall in the Peace River Basin was 52.3 inches. (The average rainfall was collected from five stations throughout the Peace River Basin and then averaged.) However, within this period, there is significant variation in rainfall between the high and low rainfalls. There have only been four occurrences when the rainfall has been between 51 and 54 inches during this time frame. The record low rainfall of 35.9 inches occurred in 2000 in a significant drought year. The highest rainfalls have been in the 72 to 75-inch range and near 75 inches on two occasions; thus, a model must be based on more than one year of data. Dr. Garlanger examined the daily rainfall for a 19- year period between January 1980 and December 1998. This rainfall was measured at Wauchula, which is a town in the Peace River Basin almost due east of the Property and located on the Peace River. The weather station collects daily rainfall data and the Center is the source of this information. The average rainfall at Wauchula for this 19-year period is 52.17 inches, similar to the 1933 through 2000 period mentioned above, and also indicates that there is significant daily variability of rainfall. The claim that the accuracy of Dr. Garlanger's modeling is questionable because IMC's modeling "only uses rainfall information from the Wauchula rain gauge" is not persuasive. Dr. Garlanger reasonably chose this particular period of time, 1980 to 1998, and the location for several reasons. First, the data was available from the Center and is reliable. Second, the average rainfall that he used in the Peace River Basin is the average from five stations in the Basin, not just from one station. Third, Dr. Garlanger also considered the data from a rain gauging station approximately 3 miles downstream from the Property where Horse Creek crosses State Road 64, and the average rainfall was about 52.2 inches, which is similar to the 19-year period of data for the Peace River Basin. It is also argued that Dr. Garlanger "fabricated certain rainfall data." In rebuttal, Dr. Garlanger agreed that a data gap of approximately 7 months existed in the rainfall record at the Wauchula station, which he used. He described the efforts made by his assistant in supplying data for the missing period of record, which included an examination of the average rainfall for the other 18 years, for a particular day which was missing from the original data set. The weight of the evidence shows the calculations for these missing months out of the entire 19-year record did not adversely affect the overall conclusions of Dr. Garlanger's modeling work, including the predicted impacts. It is also suggested that Dr. Garlanger's modeling work improperly "omits a 3 square mile of the West Fork of Horse Creek watershed . . . that is critical to judging environmental impacts and changes in flow on the Manson Jenkins Property." While the entire Horse Creek watershed exceeds 200 square miles, an area of approximately 10 square miles composes the Horse Creek watershed upstream of the Property. A portion of IMC's Fort Green Mine is located in the West Fork of Horse Creek watershed. This portion of the Fort Green Mine includes approximately 3 square miles of catchment area. While IMC's Fort Green Mine is not currently contributing surface runoff to the West Fork of Horse Creek, the 3 square miles lying in the Fort Green Mine catchment area still comprise part of the overall Horse Creek Basin. In order to properly evaluate any impact on existing flow expected from Manson Jenkins activities, Dr. Garlanger reasonably did not select the 10-square mile historic basin, which would include the 3 square miles of Fort Green Mine catchment area and which, if included in the modeling assumptions as part of the watershed, would produce more favorable, higher flows. Rather, Dr. Garlanger reasonably used the current condition or baseline condition, which is the approximately 10 square miles of the historic basin minus the 3- square mile catchment area of the Fort Green Mine, approximately 6.2 square miles, in order for a valid comparison to be made of the potential effects that Manson Jenkins activities would have on existing flow. Dr. Garlanger's exclusion of this 3-square mile area in his modeling for the project was prudent to predicting what, if any, flow impacts would occur on a daily basis and under existing conditions. Dr. Garlanger's modeling work reasonably predicted both (1) the runoff that would occur on a daily basis over the next twenty years if no mining were to occur and (2) the runoff that would occur given the same rainfall record during mining and post-reclamation conditions at the Property. It was reasonable to use the same rainfall record in comparing these two scenarios in order to get a model comparison that accounted for pre-mining, during-mining, and post-reclamation conditions. 3. Evapotranspiration The reasonableness of Dr. Garlanger's modeling work is illustrated by the predictive accuracy of Dr. Garlanger's ET data as compared to measured data. Dr. Garlanger's model estimated ET on a daily basis, and the same ET values were used by Dr. Garlanger for the same types of vegetation cover. Dr. Garlanger compared the predicted daily ET with the ET calculated on actual, measured stream flow data along with the estimate of the rainfall in the Horse Creek Basin for the period from 1980 through 1998. Dr. Garlanger's predicted ET for the Property was 39.2 inches per year. The ET data from Horse Creek at State Road 64 is 40.3 and at State Road 72 is 39.9. Thus, Dr. Garlanger's predicted ET was within 2 percent or 3 percent of the data from these stations where the stream flow was measured. 4. Flow Impacts Using the reasonable meteorological data assumptions noted above and applying accepted hydrological and other physical laws, Dr. Garlanger used the model to predict anticipated flow conditions at the Property and downstream. The modeling results demonstrate that flow in stream segments which receive rainfall runoff and base flow contribution from the Property would be reduced only during the relatively small percentage of time that the streams would normally exhibit high flow conditions. For example, at the southern Property boundary line, the flow in the West Fork of Horse Creek during active mining and reclamation activities is predicted to be reduced only during the higher flow periods which exist for 10-20 percent of the time during the year. For the remaining 80-90 percent of the year flow reductions are not anticipated. After reclamation is completed, flow in the West Fork of Horse Creek at the Property line is predicted to be reduced only during approximately 5 percent of the time during the year when high flows are experienced in the stream. The only impact of the anticipated flow reductions during high flow periods at the Property boundary will be to reduce the depth of the water within the channel of the stream at that point. At the southern boundary of the West Fork of Horse Creek as it leaves the Property boundary, during the operation of the AFW, there should be no decrease in average stream flow, and there may even be a net increase in stream flow. During years 6 through 13 of the mining/reclamation sequence, or the mine life, Dr. Garlanger calculated there would be a decreased stream flow leaving the Property boundary of approximately 1.4 cubic feet per second (cfs) on an annual average basis as a result of mining activity, assuming the average rainfall during that period is 52 inches and the area has the same rainfall distribution as in Wauchula from 1980-1998. (The 1.4 cfs decrease applies downstream as well, but reflects Dr. Garlanger's worst case assumption.) Dr. Garlanger further testified that the slight decrease in flow in the Horse Creek, corresponding to a decrease in flow depth of a few inches when the flow depth in the Horse Creek is between 7.5 feet and 12.8 feet, will not cause adverse water quantity impacts. Dr. Garlanger compared on a daily basis the predicted reduction in stream flow resulting from mining to the baseline pre-mining condition. This allowed Dr. Garlanger to predict the effect on the depth of water in the stream channel at various points in time during both high flows and low flows. Significantly, Dr. Garlanger's modeling work indicates that during higher rainfall events, that is, high flows, when most of the runoff would occur, the greatest effect as a result of mining occurs. Predictably, during the period when there are no rain events or small rain events, that is, when there is low flow, Dr. Garlanger's calculations show the Manson Jenkins activities have virtually no impact on flow. Consequently, the effects of IMC's proposed mining and reclamation activities are consistent with the permitting rules because IMC's mining activities will reduce rather than cause adverse flooding. Water leaving the Property travels downstream to Horse Creek and the Peace River and ultimately to Charlotte Harbor, about 40 miles downstream from the Property's southern boundary. Dr. Garlanger also assessed the timing and magnitude of flow reduction impacts at several points in these downstream locations. Once again, slight flow reductions during high flow conditions were predicted for downstream segments of Horse Creek and the Peace River with the magnitude of the flow reductions decreasing significantly as one moves farther downstream from the Property. It is expected that such reductions in depth will have no ecological significance. During low flow periods, no flow reduction impacts were predicted at these downstream locations. The flow in the Peace River at Arcadia and at Charlotte Harbor over the next 19-year period is not expected to be lower than the measured flow existing during the previous, historic 19-year period, such that any change will have an adverse water quantity impact. Water flowing from the Property ultimately enters the Peace River at a point downstream from the Arcadia gauging station where measurements are taken to control the ability of the Authority to withdraw water for municipal water supply purposes. Accordingly, the predicted reduction in flow during high flow conditions resulting from the permitted activities at the Property cannot be reasonably expected to adversely affect the Authority's legal rights to withdraw such water. See Findings of Fact 248-249. The Authority's water intake structure is located upstream (on the Peace River) of the confluence of Horse Creek and the Peace River. The predicted small reduction in flow during high flow conditions attributed to activities at the property, will have little or no impact on the Authority's capacity to withdraw water at that point. Furthermore, the freshwater-saltwater interface in the Peace River will be well downstream of the intake structure and cannot be expected to be impacted by any reasonably predicted reduction in freshwater flow caused by activities at the Property. The persuasive evidence in the record indicates that the predicted impacts calculated by permit opponents on the Peace River flow resulting from mining were not accurate. For example, pre-mining flow from both the wet season and the dry season is not identical and the calculation of average annual flow does not properly match wet and dry season flows. Additionally, the water quantity calculation errors included using the wrong number of days for both wet and dry season average flows, which overestimated the impact by 50 percent for the dry season and 100 percent for the wet season. Certain assumptions made by permit opponents concerning flow reductions due to industry-wide mining are not reliable. The assumptions concerning the amount of land that would be mined after 2025 exceeded actual available land to be mined by a significant percentage. It was assumed the area to be mined after 2025 is approximately 161,000 acres, when the amount of land that could be added to mining is less than 20,000 acres. (A high-side number might result in another 40,000 acres mined after 2025, which is approximately 25 percent of the estimates.) The overestimate of these assumptions resulted in a 100 percent higher reduction in flow in the Peace River at the Authority's water withdrawal point than would modeling estimates using reasonable assumptions. 5. "No-Flow Days" Analysis The record does not support the claim of an increase in the number of no-flow days in West Fork of Horse Creek at the Property boundary. The record shows there was no accounting (by party opponents) for the fact that flow from direct runoff is actually distributed over a period of time. The model incorrectly had runoff from a storm occur all on the day of the storm, rather than over a period of days. Contributing stream flow from the undisturbed area located upstream of the Property was also not considered. Dr. Garlanger's modeling data was not accurately transferred, and there is evidence that had the correct flow data from Dr. Garlanger's work been used, the increase in no-flow days would not have been calculated as they were and relied upon. Further, in rebuttal, and contrary to permit opponent's suggestion that Dr. Garlanger did not estimate no-flow days, Dr. Garlanger reevaluated his calculations and reconfirmed that, while there is an expected reduction in the flow, there is no increase expected in the number of no-flow days. Dr. Garlanger's modeling work is both professionally competent and reasonable in predicting Manson Jenkins activity flow impacts. 6. Model Calibration It is also argued that Dr. Garlanger's modeling work was "not calibrated." However, this argument is rejected based on the weight of the evidence. Dr. Garlanger explained that the model used for the Manson Jenkins Project was calibrated by the models used at another phosphate mine (the Ona Mine tract) located a few miles east of the Property. He also used the same input parameters for the Farmland-Hydro Mine in Hardee County. In this light, the model provided Dr. Garlanger with a reasonable estimate of both pre-mining or baseline condition and the post-reclamation condition, and also furnished him with a basis to estimate impacts during mining. In Dr. Garlanger's professional judgment, every input parameter used for the project's modeling work was reasonable and is accepted. Additionally, Dr. Garlanger compared the project groundwater outflow for the different sub-basins and found the outflow averaged 7.5 to 7.8 inches per year for all basins. Dr. Garlanger testified the measured groundwater outflows reported by W. Llewellyn, United States Geological Survey, averaged 7.7 to 8.9 inches per year in the Horse Creek Basin. Thus, Dr. Garlanger's modeling work, as to the groundwater component, was reasonably good predictive work. Furthermore, as discussed herein, the ET rate is one of the most important factors in determining the amount of water available to be discharged through the stream system. There is persuasive evidence that Dr. Garlanger calibrated the IMC model for ET. When referring to calibration, Dr. Garlanger referred to estimated ET from the different vegetative types on the Property. In this manner, Dr. Garlanger used the estimate of the average annual ET for the upland and for the upland wetlands. ET cannot be directly measured. Rather, it must be determined indirectly. Thus, estimates of the average annual ET are made by the modeler exercising professional judgment. The average daily ET value used in the modeling was determined based on total ET from the entire 218-square mile Horse Creek Basin down to the gauging site at Arcadia. Dr. Garlanger then determined what portion of the basin was upland, wetlands, or riverine wetlands, and what the ET values were for each of those systems. In disagreeing with Dr. Garlanger's model, permit opponents imply that Dr. Garlanger's ET numbers are unreliable as they "came from information . . . that indirectly measured ET for wetlands in the Everglades." Dr. Garlanger's initial ET used 50 inches per year for both riverine and upland wetlands. However, Dr. Garlanger knew that total ET rates for the system-types on the Property range between 36 and 39 inches per year. Thus, he had discussions with other hydrologic experts about his concern of using 50 inches of ET per year for both riverine and upland wetlands. In order to evaluate the appropriate ET rate for the Property, Dr. Garlanger also reviewed data from a study containing indirectly measured ET for wetlands in the Everglades, which systems can be compared to the wetlands at the Property. The Everglades data was contained in a scientific paper concerning a study performed in the Everglades by ecologists, limnologists, and physicists where they indirectly measured ET under various conditions. The Everglades professional study assisted Dr. Garlanger and other experts in determining, based on their professional judgment, what would be the appropriate and reasonable ET rate to use in the IMC model. 7. The Department's Review of the Models The Department, by and through the Bureau, reviewed the ERP Application for, among other things, comparison of pre- mining with post-mining conditions, the use of the AFW, and the best management practices of IMC, and concluded that reasonable assurances to issue the permit were provided under the permitting rules. Furthermore, the Department will continually evaluate the project's effects by the ongoing monitoring for impacts to site conditions, and the Department will perform quarterly inspections. It is typical for the Department to rely on the models and permit information that is submitted by the permit applicant's professional engineer. While Mr. Partney did not necessarily agree with portions of Dr. Garlanger's model analysis, he stated that "this approach is fine for planning and checking the feasibility of a plan." Mr. Partney maintained that, in his professional opinion, because the reclamation activity would result in a net improvement of the environment on the Property, an approximate 5 percent annual average decline in flow was not a concern. (Dr. Garlanger stated that a 5 percent or greater reduction of annual average flow is significant. However, for the reasons stated herein, Dr. Garlanger felt that the impacts would not be adverse.) Groundwater In the vicinity of the Property, groundwater is present in the unconfined surficial aquifer within the overburden and matrix and in the underlying confined intermediate and Floridan aquifer systems. Surficial groundwater levels in areas not disturbed by mining will be maintained by use of the ditch and berm system. Dr. Garlanger presented credible evidence that after reclamation, groundwater levels return to pre-mining elevations. Credible evidence was presented that in some cases, slightly more groundwater outflow to the streams and preserved areas is expected than to the same areas prior to mining. During active mining operations, there will be a short-term reduction in recharge of groundwater to the deeper aquifer systems in the immediate area of mining. This short- term reduction has no adverse impact upon water supply availability in the underlying aquifer systems and is largely offset by the increase referred to above. Underlying the CSAs, deep groundwater recharge will be increased over that experienced normally during the timeframe that the clays are settling. Once the clays are fully settled, deep recharge in these areas will be within the range that occurs naturally in the vicinity of the Property. Flooding 1. General Modeling submitted by IMC as part of the ERP application demonstrated that off-site flows after mining and reclamation would be in compliance with design requirements set forth in the 1995 SWFWMD Basis of Review adopted by reference by the Department. The AFW is specifically designed to assure that during its operation it had the capacity to carry anticipated flows from the drainage area north of the Property during high peak flow conditions without causing water to back up and flood that area or to cause flooding at downstream locations. After mining and reclamation, the reclaimed West Fork of Horse Creek will have sufficient capacity to handle anticipated storm events without causing flooding. The increased wetland acreage after reclamation will provide additional storage and attenuation of flood flows and, therefore, may actually reduce the possibility of flooding. It is asserted that IMC "did not evaluate the impact of long-duration flooding events." But, the ERP permitting criteria did not require long-duration flooding analysis of the natural systems as a condition for issuance of the permit. Even if IMC were obligated under the rules to specifically address long-duration flooding, the record shows there are no predicted adverse impacts from Manson Jenkins activities concerning long- duration flooding because the modeling shows any "event flooding" is likely to drain off before an adverse impact to a natural system would occur. 2. Recharge Ditches There is no substantial evidence to support permit opponents' claim that the flood analysis needs to be "redone" because of IMC's failure to account for the effects of seepage from the recharge ditches on the AFW. Dr. Garlanger predicted that the recharge ditches would result in an additional 3.26 cfs of flow in the AFW. Opponents' expert Mr. Zarbock testified that this additional increase was a reasonable calculation. Adding 3.2 cfs to the peak flow in the AFW predicted by the HEC-RAS model for the 100-year storm event results in a relatively small percent increase in the peak flow. This small increase in peak flow is an insignificant increase with no meaningful effect on the flood analysis and on actual water levels either upstream or downstream of the Property. Adding an additional 3.2 cfs of groundwater outflow to the West Fork of Horse Creek’s average annual flow of 5.5 cfs resulted in a 59 percent increase (not 99 percent as asserted by opponents) in the average annual flow, and is not expected to have a detrimental effect on the average flow in West Fork of Horse Creek, Horse Creek, Peace River, or Charlotte Harbor. 3. Integrity of Clay Settling Areas The weight of the evidence indicates that this ERP permit is not intended to address dam construction or to evaluate the sufficiency of dam design, both of which will be considered under other permitting processes. However, the record shows the proposed Manson Jenkins CSAs must be engineered dams designed, built, and operated to achieve full compliance with the stringent requirements of Rule 62-672, Florida Administrative Code, according to exacting standards concerning site investigation, soil testing, cross-section design work, stability analysis, and design safety factors. After construction, the dam will be inspected weekly. The Department does not require flood inundation studies for the type of dam proposed by IMC, although it is characterized by Mr. Partney as a significant hazard dam. These studies are only required by the Department for high-hazard dams, which the IMC dams are not. Additionally, Mr. Partney, Florida’s Dam Safety Engineer, advised that the Department has made recent changes that ensure that construction of the CSAs is improving. See Findings of Fact 244-247. Dr. Dunn admitted that "the probability of failure is low" for a CSA. IMC has been issued its Federal Clean Water Act NPDES Permit which authorizes IMC to conduct its operations, involving the use of water. The NPDES Permit also regulates the discharge of waters to the surface and ground. The NPDES permit has specific conditions to assure the safety of dams that IMC must comply with related to the construction and operation of the CSAs. Surface Water Storage and Conveyance Capabilities General Rule 40D-4.301(1)(c), Florida Administrative Code, requires the applicant to provide reasonable assurance that the project will not cause adverse impacts to existing surface water storage and conveyance capabilities. These issues are addressed in the prior section. However, additional issues are addressed below. 2. Depressional Storage Dr. Garlanger provided a reasonable explanation regarding whether an increase in depressional storage can be expected. Dr. Garlanger performed calculations based on the average thickness of phosphate matrix being mined. The removal of the phosphate rock from the matrix generally reduces the depth of the soil profile components by 1.7 feet. The overburden that is removed in order to access the phosphate matrix is "cast" back into the adjacent mine cuts and occupies a greater volume after it is removed for mining than it will prior to mining. In other words, the overburden "swells" after it is removed to expose the phosphate matrix. This "swelling" results in an increase in volume of the overburden somewhere between 10 percent and 15 percent. Thus, based on the measurements of the density of spoil piles performed by Dr. Garlanger, the overburden actually increases in thickness by about 3.3 feet, which would more than make up for the 1.7 feet reduction in thickness of the soil profile components resulting from the removal of the phosphate rock. Additionally, the sand and clay components of the matrix also increase in thickness after having been mined, processed at the beneficiation plant, and through the reclamation processes, which further increase the average thickness of the soil profile components. If there is an increase in the average thickness of the soil profile components, even though most of the increase is associated with the reclaimed clay areas, there cannot be an increase in depressional storage. 3. Reclaimed Land Forms and Reestablishing Hydrologic Regimes The storage and conveyance capabilities provided by the flow-through marsh and the stream segment that are proposed to replace the existing ditched segment will greatly enhance the surface water conveyance and storage capabilities on the Property. Specifically as to the AFW, IMC's engineers and consultants from Ardaman & Associates reasonably designed the AFW to adequately replace the conveyance and storage capabilities of the portion of the West Fork of Horse Creek that will be mined. Also, a Storm Water Management Plan, which is a required document by the Bureau, analyzed surface water discharges under both historic conditions and under post- reclamation conditions and determined sufficient storage and conveyance capabilities will exist during mining and post- reclamation. A primary purpose of the reclamation plan developed by IMC is to create a land use topography on the Property that will allow runoff to occur as it did under the pre-mining condition prior to the ditching that was completed decades ago. Even though land surface on average is higher due to the "swelling" of the materials used in reclamation, the reclamation is contoured so that there is no storage except for the storage that is purposefully left in the recreated wetlands. Party opponents claim that a review of other mine permit applications shows a hydrologic characteristic of "reduced runoff from storm events by approximately 15 percent of the pre-mining condition." However, Mr. Zarbock, in reviewing approved phosphate mine applications, did not see any such phosphate mine applications that showed a 15 percent (not higher than 12 percent) reduction in flow, nor could he identify any mine that experienced the percentage reduction in flow that he assumed in performing his calculations. Water Quality Impacts Surface Water Rule 40D-4.301(1)(e), Florida Administrative Code, requires reasonable assurance that the project will not adversely affect the quality of receiving waters such that enumerated water quality standards will be violated. The waters and associated wetlands of the West Fork of Horse Creek located on or downstream from the Property are Class III waters. Downstream from the Property, the West Fork meets Horse Creek and both Creeks continue as Class III waters until Horse Creek becomes Class I waters in DeSoto County. The Myakka River is Class III waters through Manatee County. (Approximately 4 acres of wetlands will be mined on the Property located in the Myakka River Basin, to be replaced with approximately 12 acres of wetlands. See Finding of Fact 77.) The Manatee River to the west of the Property, including the North and East Forks of the Manatee River, are Class I waters. See Rule 62-302.400(12)41, Florida Administrative Code (The Manatee River is a Class I river from "[f]rom Rye Ridge Road to the sources thereof ") The far northwestern portion of the Property is in the Manatee River Basin. (Approximately 17 acres of wetlands in this area are proposed for mining and will be replaced with approximately 51 acres of wetlands. See Findings of Fact 76 and 211.) These wetlands have a ditched connection between the these wetlands and other wetlands, which ultimately lead to the East Fork of the Manatee River. As a limnologist, Dr. Durbin agreed that these existing wetlands, even after reclamation, are part of the water source for the Manatee River watershed. Dr. Dunn stated that if the "[BMPs] operate as designed [he assumed], that there will not be water quality impacts" to the East Fork of the Manatee River during actual mining. Rather, he was concerned about (after mining and reclamation and before release) "potential water quality problems for those areas that contribute flow to the East Fork of the Manatee River," as Class I waters. Dr. Durbin reasonably explained that after mining and reclamation, the existing wetlands will be severed from the Manatee River because the agricultural ditching will be removed, which leads to the reasonable conclusion that the replaced wetlands will not have a surface water discharge into other wetlands which are ultimately tributaries to the East Fork of the Manatee River. Thus, the wetlands will not flow to surface waters that then enter Class I waters. Further, there are no expected measurable decreases in depth of flow to the Manatee and Myakka Rivers resulting from mining and reclamation activity on the Property, which might reasonably be expected to adversely impact the water quality of these rivers. There are no measurable impacts to any Outstanding Florida Waters (OFW)(no OFWs are located on the Property), including aquatic preserves, or to Class I or II waters, which are likely to result from this project. See Findings of Fact 193-195. The ditch and berm system around active mining and reclamation areas will preclude the direct release of waters impacted by mining to surface water bodies on the Property. The system is designed to isolate the unmined areas from surface water runoff that may be present in the mine area and to maintain water levels in undisturbed wetlands. See Findings of Fact 31-42. Waters collected in the ditch and berm system will be reused and recycled by IMC in the mining operations. Some portion of that water will be discharged through permitted discharge outfalls not located on the Property in accordance with IMC's currently valid Department NPDES Permit. Such discharges must comply with discharge water quality criteria set forth in the NPDES Permit. Permitted water discharges from these outfalls is necessary because IMC will need the ability to release water from the mine into nearby waters and streams. The activities on the Property are regulated pursuant to the Fort Green Mine NPDES Permit, and, in particular, outfalls 3 and 4 which discharge water into Horse Creek. (Outfalls number 1 and 2 discharge water into Payne Creek.) Over the past 5 years, in measuring the water quality of the water leaving the permitted outfalls, IMC is unaware of any violations of permit limits, including surface water quality standards at the Fort Green Mine site based on samples taken at the outfalls. In the event there is a concern regarding water quality at an outfall, a gate constructed at the outfall can be quickly closed to stop off-site flows. Water quality data from Payne Creek, where over two- thirds of the watershed has been mined and a good portion reclaimed, demonstrate that phosphate mining has not adversely impacted dissolved oxygen (DO) levels in the receiving stream, i.e., the concentrations are comparable to other streams. Payne Creek has had lower nitrogen concentrations in most years than other measured streams, such as Joshua Creek, which has had no mining. Water used to recharge the ditch and berm system and maintain groundwater levels will be of high quality and is not expected to cause or contribute to adverse water quality impacts should they reach area surface waters as a part of base flow. The predicted reductions in stream flow, either during active mining and reclamation or after reclamation is complete, are not expected to have an adverse impact on the water quality of surface waters flowing through the Property or at any point downstream. Freshwater flows have a major role in determining the salinity in an estuary. The small reduction in fresh water flow during high-flow conditions predicted during mining and after reclamation of the Property is not expected to cause adverse impacts to salinity levels in the Charlotte Harbor Estuary. The small predicted impact is of insufficient magnitude to be measurable and, therefore, to warrant a reasonable concern. During active mining and reclamation activities at the Property, off-site drainage entering the Property will be unaffected by mining operations. Augmented base flow will be of high quality and runoff from undisturbed areas that reach surface waters on the Property will be the same as prior to the time mining commenced. Evidence presented at the final hearing demonstrated that, once mining and reclamation activities have been completed and the West Fork of Horse Creek has been reclaimed, surface water bodies on the Property or downstream in the Horse Creek and Myakka River are expected to achieve all applicable Class III surface water quality criteria. The proposed mining and reclamation activities at the Property are not expected to cause or contribute to a violation of Class I standards in the Manatee River. Charlotte County's expert witness, Dr. Janicki, opined that the proposed mining and reclamation project will not cause a violation of any currently applicable numerical water quality standards. Water quality sampling at the Property indicates that DO levels lower than the Class III standards currently occur in the West Fork of Horse Creek and in wetland systems at the Property. This is not an uncommon occurrence in natural systems. The DO levels in reclaimed wetlands at the Property will essentially mimic conditions in naturally occurring wetlands, and it is not anticipated that DO levels in the reclaimed wetlands will be depressed any more than occurs in a natural system. With regard to the reclaimed West Fork of Horse Creek, the reclaimed stream will be at least equivalent to the current ditched segment with regard to DO levels, and it is likely that DO levels will be improved overall since the design of the system will provide for a meandering channel and for the placement of logs or other obstructions in the channel which should increase aeration and thus potentially elevate DO. Opponents' expert Dr. Dunn agreed the existing water quality in the West Fork of Horse Creek is not as good as it is in the main channel of Horse Creek. Water quality monitoring carried out by IMC on reclaimed areas demonstrates that water leaving the reclaimed areas and entering surface water bodies meets applicable water quality standards. IMC will be required to monitor the quality of water in the reclaimed wetlands areas on the Property and will not be authorized by the Department to connect the reclaimed areas to the surface water system unless monitoring data demonstrate that water quality criteria are met. Under IMC's ERP Application, prior to any reclaimed wetland being reconnected to the off-site surface waters, there is one full year of water quality sampling required in order to demonstrate that water quality standards are met before the wetland is connected to the natural system, which is an extra safeguard not required in non-mining ERP applications. Moreover, there is credible evidence in the record of IMC's historical and successful use of AFWs and their effect on water quality. A study done by the Department in 1994 stated that the water quality indicators in an operational AFW were better than those same indicators at a natural site that did not have alternate flow-way characteristics. The weight of the evidence indicated that the water quality and biological integrity of the AFW will be in full compliance with the permitting requirements and with the state water quality standards. The weight of the evidence in the record does not indicate that the mining and restoration of the West Fork of Horse Creek will result in violations of water quality standards, as the water quality leaving the site during mining and after reclamation will be similar to the water quality that currently exists on-site. There are several reasons why water quality will not be adversely impacted: (1) a substantial portion of the watershed for the West Fork of Horse Creek lies north of the Property, and the water coming from this area will still move through the Property into the preserve area and off- site; (2) IMC will use best management practice berms to keep any runoff from active mine areas or cleared areas from entering the wetlands and streams associated with the flow way over the reclaimed wetlands precluding degradation of the water quality from those areas; and (3) IMC will use clean water in the recharge ditch system which will be seeping into the surrounding wetlands and the stream that is essentially feeding the wetlands with clean water augmenting the flow downstream. Groundwater Groundwater quality monitoring in the vicinity of the phosphate mining operations has demonstrated that such operations will not adversely impact the quality of groundwater in the vertical aquifer adjacent to mining operations or in the deeper intermediate or Florida aquifer systems. Impacts to Wetlands and Other Surface Waters Functions Provided to Fish and Wildlife Pursuant to Rule 40D-4.301(1)(d), Florida Administrative Code, an ERP applicant must provide reasonable assurance that its proposed activities will not adversely affect the value of functions provided to fish and wildlife, and listed species including aquatic and wetland dependent species, by wetlands, other surface water, and other water-related resources of SWFWMD. Prior to mining, pedestrian-type surveys of the Property will be conducted of the Property to determine the listed wildlife in order to avoid impacting particular species. Some species, including gopher tortoises, would be relocated to an unmined area. The weight of the evidence shows that IMC will minimize impacts to fish and wildlife through (a) a Conservation Easement, which preserves those areas with an abundance of habitat diversity, (b) through best management practice berms, which protect water quality of adjacent systems, and (c) through the AFW, which will allow continuous movement of fish and wildlife from areas north and south of the Property as well as creation of additional habitats. IMC's efforts to avoid and minimize the potential for impacts to fish and wildlife during mining and reclamation satisfy permitting rule requirements. Fish and wildlife functions in areas to be mined or disturbed at the Manson Jenkins Project will be temporarily impacted. The areas to be impacted typically are of lower ecological value while IMC has agreed to preserve a substantial amount of the higher quality wetlands on the Property together with, in some cases, important adjacent upland habitats. The impacts that do occur will be mitigated by the replacement of the impacted systems by more and higher quality systems than existed prior to mining. This includes the enhancement of the project with the wildlife corridor through the middle of the Property and improvements to the stream system. The Conservation Easement can be expected to protect the "habitat mosaic of the corridor." (The Conservation Easement on the Property includes approximately 521 acres.) Credible evidence also shows that IMC will satisfy permitting rule requirements after mining. Under the reclamation plan there will be diverse, connected habitats instead of the existing pre-mining single ditch and, primarily, agricultural land cover. There is also empirical data in the record concerning reclamation indicating that reclaimed areas were equal to or better for fish and invertebrate use when compared to natural systems, and similar results are also expected for IMC's reclamation. Both state and federal agencies approved the work plan of IMC used to survey wildlife at the Property. IMC's wildlife surveys are reasonable, which enabled the preparation of a comprehensive wildlife management plan. Avoidance and Mitigation Avoidance Phosphate ore underlies the land surface beneath waters and wetlands. Thus, it is not possible to avoid disturbance of these systems and still mine the valuable resource. See generally Section 378.201, Florida Statutes. IMC and the Department evaluated the quality of the waters and wetlands proposed for disturbance at the Property as part of the permit application process. Most of the wetlands systems deemed to be of higher quality through the application of the WRAP (Wetland Rapid Assessment Procedure) analysis are being preserved. (The WRAP Procedure is an accepted procedure to evaluate wetland functions and assign a value based on several criteria. The first WRAP was developed by South Florida Water Management District. WRAP scores generally are numerical values that can be assigned on a per-unit-acre basis to wetlands that are an index of their functional value.) For all areas that are not avoided, IMC is required to take steps as part of its land reclamation process to mitigate the unavoidable impacts associated with mining the Property. It was suggested that IMC did not avoid impacts due to IMC's determination to mine approximately 17 acres of wetlands in the Manatee River Basin. This suggestion is not persuasive because over 316 acres of wetlands will be left unmined on the entire Property, which equates to approximately 45 percent of the wetlands on the Property, including over 70 percent of the forested wetlands on the Property. The weight of the evidence shows that IMC was prudent in balancing between avoidance of appropriate environmentally significant areas, such as some wetland systems, and the operational needs to reach the phosphate matrix that is underlying the Property. Also, approximately 3.7 tons of phosphate rock reserves underlie the preserved areas with a projected loss of total income of over $55 million. 2. Mitigation In the ERP Program, the term "mitigation ratio" refers to the wetlands or other surface waters and areas the applicant is proposing to, for example, create, restore, enhance, donate in kind, or preserve, versus the impacted wetlands. For example, a mitigation ratio of two to one means the applicant is proposing to mitigate or recreate two acres of wetlands for every acre that is being disturbed or impacted. Section 373.414(6)(b), Florida Statutes, provides that wetlands reclamation activities for, in part, phosphate mining undertaken "pursuant to chapter 378 shall be considered appropriate mitigation for [Part IV of Chapter 373] if they maintain or improve the water quality and the function of the biological systems present at the site prior to the commencement of mining activities." See also Section 3.3.1.6., Basis of Review. Mining, reclamation, and revegetation on the Property is expected to be completed within 15 years, including reclamation of the CSAs. The conceptual reclamation plan, which includes the Property, was approved by Department final agency action on March 20, 2001, pursuant to Chapter 378, Part III, Florida Statutes, and Chapter 62C-16, Florida Administrative Code. However, this approval does not mean that IMC is not required to prove reasonable assurances regarding its mitigation plan, which is discussed herein. Rule 62C-16.0051(4), Florida Administrative Code, requires the restoration of impacted wetlands on at least an acre-for-acre and type-for-type basis. Compliance with this provision is mandatory for phosphate mines. IMC's mitigation plan satisfies this acre-for-acre, type-for-type mitigation requirement. In addition to satisfying the mitigation guidelines contained in the permitting requirements, other factors such as (a) the low quality of the wetlands that are being disturbed due to historical ditching and draining to accommodate historical agricultural land uses, (b) the significant on-site preservation effort, and (c) the Integrated Habitat Network (IHN) that provides a regional benefit to wildlife and their habitats and to water quality and which represents mitigation beyond applicable requirements, all taken together demonstrate the appropriateness of IMC's mitigation plan. The total cost to IMC for wetlands mitigation at the Property is approximately $3.6 million. The number of acres of wetlands affected by the Manson Jenkins activities in the Myakka, Manatee, and Peace River Basins total approximately 361 acres. See Findings of Fact 76-77 and 95-96. IMC will reclaim 538 acres of wetlands as mitigation for the 361 acres of generally low quality wetlands that will be disturbed at the Property. The reclamation area wetlands will be designed to provide a diversity of habitat and function that does not presently exist at the Property. IMC's reclamation plan adequately mitigates for any impacts by creating approximately 538 total wetland acres distributed among these three basins. Additionally, those wetlands that are created will have associated upland buffers, which the existing wetlands do not, and these newly created buffers will provide additional, enhanced wildlife and water quality benefits at each created wetland. In the reclaimed landscape, a forested buffer is expected which will provide some wildlife and water quality benefits to each wetland. The created wetlands will be hydrated by the groundwater outflow from the recharge system. IMC has had experience in the reclamation of wetland systems in Florida. Since 1975, IMC and its predecessor company, Agrico Chemical Company, have reclaimed approximately 6,850 acres of wetlands. Biologists and reclamation experts Dr. Durbin and Dr. Clewell presented persuasive evidence that IMC is capable of successfully completing the proposed reclamation activity and that the ultimately reclaimed wetlands systems will restore long-term ecological value to the Property and adjacent areas. Nevertheless, restoration and reclamation of wetlands is not a perfect science; mistakes have been made, e.g., Dog Leg Branch, and are documented in this record. To his credit, Dr. Clewell agreed. However, several studies, including Charlotte Exhibits 29 and 31 and others, do not persuasively indicate that IMC's proposed reclamation and restoration proposal for the Manson Jenkins Project will not be successful or that IMC does not have the wherewithal and overall professional expertise to accomplish the desired result. The weight of the evidence demonstrates that IMC can effectively carry out the proposed reclamation plan as set forth in the ERP and that, with regard to waters and wetlands impacted by mining operations at the Property, it will effectively mitigate the unavoidable ecological losses associated with mining those areas. The ERP contains detailed success criteria for the required wetlands reclamation. Extensive monitoring is required and Department personnel carry out regular inspections of reclamation sites. Only after reclamation success criteria are achieved, including attainment of necessary water quality criteria, will the reclaimed wetlands be approved by the Department and reconnected to the natural system. Stated differently, the project will only be deemed to be officially successful after release by the Department. This does not mean, however, that reclaimed wetlands, including wetlands reclaimed by IMC, have not been or are not functional before release. This includes the Big Marsh. (It appears that the existence of nuisance species currently precludes the release of Big Marsh. Dr. Clewell advised that Big Marsh is very close to meeting all criteria for release right now. See Findings of Fact 231 and 265.) 3. Acre-for-Acre/Type-for-Type As noted above, Chapter 378, Florida Statutes, contains an acre-for-acre, type-for-type mitigation strategy for phosphate mining reclamation, and IMC's reclamation plan exceeds the one-to-one mitigation ratio contained in the mine reclamation rules of Chapter 378, Florida Statutes. Substantial evidence in the record exists to support the claim that the ecological value of the wetlands proposed to be reclaimed will be higher than the current ecological value of the wetlands that will be disturbed and are currently existing at the Property. There are two types of reclamation: herbaceous and forested reclamation. IMC has reclamation experience, and based on IMC's experts' evaluation of many reclaimed sites, the average WRAP value assigned to herbaceous systems is .64 and for forested systems is .73. The wetlands proposed to be disturbed at the Property have an average pre-mining score for herbaceous systems of .54 and for forested systems of .51. Once reclamation occurs, the reclaimed herbaceous systems at the Property will score 1.19 times the existing the value, or an approximate 20 percent improvement from the existing wetland systems at the Property. Significant ecological improvement is also evidenced for the Property's reclaimed forested wetlands that will have an improved value of approximately 43 percent. The evidence shows IMC used the WRAP procedure to value wetlands and the functions wetlands provide to fish and wildlife as well as the accompanying water quality and quantity issues at the Property. WRAP was used for the Manson Jenkins Project because it was required by similar permitting under the Clean Water Act for the United States Army Corps of Engineers. The Department participated in the evaluation of the methodology used, including auditing the results in the field and on paper. But the Department did not accept or reject the methodology per se. On the other hand, the "King Formula" used by permit opponents' expert Dr. Dunn to critique IMC's reclamation proposal is a "completely different approach" from the regulatory requirement of acre-for-acre, type-for-type that is applicable to this ERP application. Further, the "King Formula" has not been accepted by the Department as an appropriate methodology for ERP evaluations, nor has Dr. Dunn ever before relied on the "King Formula" to support any ERP permit that he assisted in obtaining. There is credible evidence that even if the permit opponents' mitigation calculation (or "King's Formula") is applied, IMC would need 1.15 to 1 replacement for herbaceous systems and 1.27 to 1 replacement for forested systems. The record reflects IMC is required under the proposed ERP permit to have 1.38 to 1 replacement for herbaceous systems and 2.28 to 1 replacement for forested systems. Thus, IMC is committed to a more functionally equivalent mitigation objective than is calculated using the opponents' method for evaluating mitigation ratios. 4. Restoration of the West Fork of Horse Creek and Headwater Marsh The record shows that IMC has a successful history of restoration generally and, specifically, reclaiming headwater marshes as part of their overall mitigation experience. IMC's reclamation efforts have been recognized with both state and federal awards. Two examples of reclamation projects which appear to be functionally successful, although not yet released by the Department, are Big Marsh, which is a 229-acre headwater marsh flowing into Horse Creek, and the approximately 200-acre, P-20 Marsh, which is a headwater of Horse Creek, and next to Big Marsh. Both Big Marsh and P-20 Marsh show comparable features, placement, and functions when compared to their pre-mining condition and their current post-reclamation condition. The restoration efforts at the P-20 Marsh are relevant because it is similar to the Property in that it too was cleared of vegetation and ditched. Testimony shows that the benthic macroinvertebrate organisms, which are important to the successful functioning of a headwater marsh, are reasonably expected to be recolonized in the reclaimed system at the Property in a variety of permit- required habitats, which habitats are ecologically better than the existing habitat conditions on the Property. Further, the benthic invertebrate populations existing in the area north of the Property will be connected to the reclaimed Property enabling recolonization of the reclaimed marsh. IMC presented credible evidence that the excavated portions of the West Fork of Horse Creek will have ongoing, functional value and the reclaimed headwater marsh and stream system will at least maintain, but likely improve the water quality and function of the excavated portions of the West Fork of Horse Creek. IMC's reclamation plan is to recreate West Fork of Horse Creek to more resemble a natural Florida stream with a meandering flow-away with trees that shade the stream and provide improved habitats for fish and wildlife. Moreover, the existing West Fork of Horse Creek, though properly identified as a "first order stream," is a very small system with intermittent flow. The stream ordering system is a method of classifying the size of streams in terms of watershed basins and sub-basins. A "first order stream" is the smallest of the set of streams making up an entire drainage basin and is more a landscape or hydrologic indicator and does not necessarily indicate a stream's ecological value. The West Fork of Horse Creek is not a regionally- significant stream because the existing conditions at the West Fork of Horse Creek are degraded as a result of agricultural ditching, the ecologically poor uplands surrounding the area, and the overall presence of agricultural land. More specifically, the area proposed for mining in the West Fork of Horse Creek is of "very low ecological value, relative to what another first-order or headwater system might be." 5. Temporal Lag It has been asserted that there will be some temporal lag of ecological function at the Property because certain reclaimed systems will take some time to become mature. (Temporal lag is the phrase given to a lag time between the impact to a wetland system and the replacement of the functions once offered by the wetland system. Chapter 62C, Florida Administrative Code, does not require consideration of temporal lag in determining reclamation requirements. The weight of the evidence presented, however, shows that more acres of wetlands will be reclaimed than are being disturbed and the reclaimed systems will be of higher ecological value than the stressed systems proposed for mining. Furthermore, the evidence at hearing demonstrated that the total amount of wetland acreage at the Property is not significantly reduced. Also, fairly early in the mining and reclamation sequence, the total number of wetland acres on the Property are reasonably expected to exceed pre-mining conditions. Even using the worst-case scenario as proposed by opponents to the permit application with longer temporal lag (6 years instead of 3 years for herbaceous systems and 40 years instead of 20 years for forested systems), the resulting calculated required herbaceous system ratio of 1.21 to 1 is still less than the permit's requirement of 1.38 to 1. Similarly, the forested system's worst-case calculated ratio using permit opponents' unwarranted temporal lag assumptions is 1.74 to 1, which is still less than the 2.28 to 1 permit requirement. Further, the evidence shows that doubling the time between the removal of the systems and mitigation, from 4 to 8 years, results in a herbaceous ratio of 1.39 to 1 and a forested ratio of 2.04 to 1, which indicates that even if the time between impacts and mitigation were doubled, IMC's reclamation plan would still be adequately mitigating for any impacts. 6. Iron and Manganese IMC's expert explained the scientific research performed on behalf of the Florida Institute of Phosphate Research involving 11 phosphate mines and more than 40 exploratory wells and borings to evaluate the water quality of mined lands. There were no exceedances of standards with the exception of iron and manganese, which were expected to exceed standards because Florida has high background concentrations of iron manganese oxide in the soil. There is no reason to believe Manson Jenkins’ activities will cause adverse impacts to wetlands due to "groundwater perturbations." 7. "Flocculation" (Iron Bacteria) There is credible evidence that iron bacteria is a naturally-occurring substance and is common in Florida soils. Dr. Durbin testified that iron bacteria is not a reasonable concern for the Manson Jenkins Project. A benefit provided by the proposed reclaimed streams, wetlands, and lakes is that these are natural treatment systems that, in the case of iron bacteria, will remove iron from the water and will not cause any off-site concerns. Secondary Impacts 1. General Rule 40D-4.301(1)(f), Florida Administrative Code, requires an applicant to provide reasonable assurance that the project will not cause adverse secondary impacts to the water resources. IMC presented credible evidence that the proposed mining and reclamation activities at the Project will not cause any adverse secondary impacts to the water resources. 2. Stability of CSA's and Associated Dams Mr. Partney, the Department's dam safety engineer, has been involved with the state of Florida's current dam safety program since its inception approximately six years ago, and has been in charge of the dam safety program since its inception. He testified that no inundation studies are necessary for the clay-settling ponds and their associated dams in this project because these are not high hazard dams. The record does not support permit opponents' statement that the proposed Manson Jenkins CSAs are considered high hazard dams. As a result, inundation studies are not required to be performed to determine the risk and consequences of a discharge. The Department's dam safety program rules are contained in Rule 62-672, Florida Administrative Code, and regulate the construction of the dams surrounding CSAs by specifically requiring soil testing, cross-section design work, and stability analysis, among other design safety factors that incorporate engineering practices employed by the United States Army Corps of Engineers under their dam construction rules. The dam failures that have occurred in the past were dams constructed prior to the implementation of this rule except for one, IMC's Hopewell Mine dam. This dam failure was investigated by a "blue ribbon panel," including Mr. Partney. The cause of the failure was determined, and the problem with that failure corrected in the current version of the rule. The weight of the evidence also supports IMC's commitment to dam safety as evidenced by IMC's response to this dam failure. IMC voluntarily agreed to remove all pre-rule, non-engineered dams from operations, and within one and a-half years, IMC had categorized, inventoried, and taken out of service all non-engineered structures. Also, IMC has a Site Preparedness Plan, otherwise called an emergency plan, that prescribes actions should the signs of a potential failure be detected. Weekly inspections are required and documented. The testimony of permit opponents' expert Dr. Dunn supports the fact that the probability of a failure of a CSA and its associated dam is low. Mr. Partney shares this view, i.e., CSAs are "extremely safe" and there is about a "one in two million chance or so of one of them failing." 3. Authority's Withdrawals from the Peace River The weight of the evidence indicates that the Manson Jenkins Project will not adversely affect the Authority's permitted limits on the withdrawal of water from the Peace River because the activities at the Property will not physically affect the flow of the Peace River, upstream of its confluence with Horse Creek at the Arcadia gauge station, which is the station that determines the Authority's permitted allowance to withdraw water. IMC's expert in environmental hydrodynamics and estuarine physics, credibly testified that the slight potential reduction in freshwater flow due to Manson Jenkins’ activities has little or no potential to negatively impact salinity concerns in downstream water bodies. 4. Ditch and Berm Protection of Wetlands There was credible testimony that the ditch and berm system is a best management practice to ensure the protection of the hydrologic systems adjoining the Property. See Findings of Fact 31-42. IMC's expert, Dr. Garlanger, is one of the co-authors of the criteria used by IMC to engineer these BMPs ditch and berm systems, and the weight of the evidence indicates that the proposed ditch and berm system will protect the water quality of the surrounding wetlands systems as well as maintain the hydrologic regime of the off-site systems. Minimum Flows and Levels Pursuant to Rule 40D-4.301(1)(g), Florida Administrative Code, an ERP applicant must provide reasonable assurance that its proposed activities will not adversely impact the maintenance of surface or ground water levels or surface water flows established pursuant to Section 373.042, Florida Statutes. This subsection references minimum flows and levels. The Department has not established minimum flows and levels. The water management districts establish minimum levels for aquifers and surface waters and minimum flows for surface water courses pursuant to Section 373.042, Florida Statutes. The Department is "very involved with the districts in developing those minimum flows and levels as part of [the Department's] supervisory authority." In the case of ERP applications filed with the Department for facilities located within SWFWMD's jurisdiction, it is the minimum flows and levels established by SWFWMD that are protected from adverse impact pursuant to Subsection 40D-4.301(1)(g). However, the weight of the evidence, especially the testimony of Department witnesses, indicates that minimum flow and levels adopted pursuant to Section 373.042, Florida Statutes, must be established by rule, and not a permit condition that only applies to one permittee, such as the Authority. SWFWMD has not established, by rule, a minimum flow or level pursuant to Section 373.042, Florida Statutes, for any water body impacted or potentially impacted by the proposed mining or reclamation at the Property, including the Peace River. The proposed mining and reclamation activity, therefore, will not adversely impact the maintenance of any minimum flows and levels established by law. Works of the District Rule 40D-4.301(1)(h), Florida Administrative Code, provides that reasonable assurance be given that a project will not cause adverse impacts to a work of the district, here SWFWMD, established pursuant to Section 373.086, Florida Statues. The weight of the evidence indicates there will be no adverse impact to any surface water body on or downstream of the Property either from a water quality standpoint or from a water quantity standpoint. Accordingly, there will be no adverse impacts to a "work of the district" established pursuant to Section 373.086, Florida Statutes. See also Finding of Fact 72. This proceeding is to determine IMC's entitlement to an ERP, not a "work of the district" permit. It has been the practice of the Department, that if an ERP is issued by the Department, the permittee does not need to also obtain a separate "work of the district" permit. However, SWFWMD's "work of the district" rule has not been adopted by the Department. Effective Performance and Function Engineering and Scientific Capability The mining and reclamation activities proposed for the Property are capable, based upon generally acceptable scientific principals, of being effectively performed and functioning as proposed, including the AFW, ditch and berm systems, the reclaimed wetland areas, and the reclaimed West Fork of Horse Creek Stream Channel. See Rule 40D-4.301(1)(i), Florida Administrative Code. Financial, Legal and Administrative Capability IMC has all necessary legal property rights to mine and reclaim the Property as lessee under a mining lease issued by the Property owners. IMC has demonstrated by the weight of the evidence that it is an entity with financial, legal and administrative capability of ensuring that the activities proposed at the Property will be undertaken in accordance with the terms and conditions of the ultimately issued ERP, including the additional agreed permit condition referenced below. See Rule 40D-4.301(1)(j), Florida Administrative Code. IMC is a large business with assets in excess of $1.6 billion. IMC also presented credible evidence that it has provided Manatee County with a reclamation bond in the amount of $17 million to cover all reclamation liability existing in Manatee County at that time, including the upcoming year that IMC plans to mine. IMC has agreed to provide Manatee County with a general surety bond of $1 million and an environmental risk insurance policy in the amount of $10 million. At hearing, the Department requested and IMC agreed to have the following permit condition added to the ERP upon issuance: At least thirty (30) days prior to the initiation of mining operations, the final version of the financial responsibility mechanism required by Section 3.3.7.6 of the Basis of Review shall be provided to and approved by the Department as required by Rule 40D-4.301(1)(j), Florida Administrative Code (October 1995) and Rule 62-330.200(3), Florida Administrative Code. After reclamation of the Property, IMC has in place a Conservation Easement that places restrictions, such as requiring all regulatory approvals to be obtained, and imposes required management practices in the event that agricultural operations are initiated by a third party. Credible evidence in the record supports IMC's historical efforts in reclaiming wetland systems such as Big Marsh despite suggestions that IMC has not demonstrated the capability to restore marsh systems because, e.g., Big Marsh has not been "released" by the Department. Although this system has not been "released," this system is ecologically valuable. See Findings of Fact 225 and 231. Public Interest Test Several statutory and rule criteria must be considered and balanced to determine whether IMC's proposed activity's on the Property are not contrary to the public interest. See Section 373.414(1), Florida Statutes; Rule 40D- 4.302(1)(a)1-5, and 7, Florida Administrative Code. Public Health Safety or Welfare or the Property of Others As noted elsewhere in this Recommended Order, the proposed project will not cause adverse water quality, water quantity or flooding on the Property or at any point off the Property. The mining and reclamation activities will be carried out within private property subject to security and control by IMC. The CSAs proposed to be constructed at the Property will be designed and constructed in accordance with strict regulatory requirements. A separate Department permit must be applied for and issued before construction of a CSA may commence. The weight of the evidence indicates that the chance of failure of any dam designed and constructed in accordance with current rule provisions is remote, e.g., one in two million according to Mr. Partney. See Findings of Fact 50-57, 161-165, and 244-247. 2. Conservation of Fish and Wildlife The proposed activity at the Property will not cause adverse impacts to natural systems that are not directly subject to disturbance. The ditch and berm system will protect adjacent areas from direct surface water impacts and will maintain groundwater conditions so that preserved wetland systems will continue to function during mining activities. The mining activities will be conducted in a sequence designed to minimize impacts on mobile wildlife species. By mining in the area farthest away from the preserved wetlands in the south and moving in that direction, these wildlife will be able to relocate into the preserved areas. During active mining operations, the mining areas provide value to wildlife. Many bird species use CSAs and active mine cuts during mine activities. Other animals, including raccoons, deer, possums, armadillos, snakes, and frogs use the mine areas while mining is being conducted. IMC has surveyed the Property to identify plant and animal species present at the site and developed a wildlife management plan which was included as part of the application with the ERP. This plan addresses potentially listed threatened or endangered species that could be found on the Property now or in the future and prescribes measures for protecting those listed species. The wildlife management plan comports with good scientific practice. The proposed reclamation will enhance conservation of fish and wildlife values over that currently present at the Property. Currently the site contains several small wetland systems spread out over the site connected by ditches. These wetlands are generally surrounded by pasture. The proposed reclamation plan will consolidate the wetlands into a larger contiguous mass along the West Fork of Horse Creek and will provide for an adjacent upland corridor. The upland corridor will provide additional habitats for species that may use it as a transitional zone between a wetland and an upland. IMC's voluntary establishment of a Conservation Easement over the preserved wetlands in the south portion of the Property and the reclaimed wetland system within and adjacent to the West Fork of Horse Creek in the north provide reasonable assurance that the fish and wildlife values inherent in these areas will be protected. (The Conservation Easement covers approximately 521 acres of wetlands on-site.) In addition, this system upon completion will act as a wildlife corridor of approximately 2.5 miles in length along the West Fork of Horse Creek and will connect to a larger network of habitat corridors known as the IHN. See Finding of Fact 216. IHN is a regional conceptual plan developed by the Department in 1992 for the entire Southern Phosphate District of Florida (1.3 million acres in Polk, Hardee, Hillsborough, Manatee, and DeSoto Counties) and is intended to link existing wildlife habitats, thereby allowing wildlife populations the ability to travel throughout reclaimed areas and publicly owned lands. 3. Navigation, Flow or Harmful Erosion or Shoaling The West Fork of Horse Creek on the Property is not a navigable waterway. The AFW will be vegetated before it is put into operation. It is specifically designed to handle high flow stream events, including the 100-year flood event, and will not erode or cause downstream erosion. Any sharp bends in the AFW way will be stabilized prior to use. The reclaimed West Fork of Horse Creek will be reclaimed as a natural system and will be able to manage high flows without experiencing erosion in the reclaimed stream channel or causing erosion downstream. 4. Fishing, Recreational Values or Marine Productivity The Property is privately owned and does not support public recreation or fishing activities. Following completion of mining reclamation activities, fish and wildlife values in the reclaimed wetlands and waters will be enhanced. 5. Temporary or Permanent Nature Phosphate mining, by its very nature, strips and deprives the land of existing resources, and its effects cannot be underestimated. Dr. Dunn characterizes phosphate mining as destroying the land. Nevertheless, phosphate mining is considered a temporary disturbance of the land, see Section 378.201, Florida Statutes, when compared to other types of activities. Unlike other types of activities, such as commercial or residential development, mining is completed within a finite period of time, and land reclamation follows thereafter resulting in the return of the land to other valuable land forms. 6. Current Conditions and Relative Value of Functions Performed by Affected Areas The proposed activity on the Property will not have an adverse effect on the condition and relative value of functions currently being performed at the Property in areas that will not be disturbed by mining. The areas to be disturbed by mining reflect man-induced changes over the years and provide relatively limited ecological value on the whole. Cumulative Impacts General The Department's method for evaluating the potential impacts from individual ERPs satisfies regulatory consideration of cumulative impacts of a project because so long as phosphate mines mitigate in the same drainage basin as the impacts of the proposed activity and meet the statutory and rule requirements, there will be no cumulative impacts. See Section 373.414(8)(b), Florida Statutes. The Department's evaluation includes the conceptual reclamation plan, which is mandated by Chapter 378, Florida Statutes, that describes the complete mining plan and activities for a site as well as the site's reclamation plans and the Integrated Habitat Network plan. Further, the Department's policy of analyzing similar projects (in the case of IMC's permit application that means other phosphate mines) is reasonable because phosphate mining is a temporary activity that reclaims the land to an enhanced natural system. Other types of development, such as residential and industrial, are not temporary in nature. Additionally, the Manson Jenkins Project received regional review and approval as part of IMC's Development of Regional Impact process from the Tampa Bay Regional Planning Council, which distributed information concerning the Manson Jenkins Project to the Central Florida Regional Planning Council and Manatee County. The weight of the evidence indicates that there will be no adverse water quality impacts on undisturbed areas at the Property or at any downstream location. There are no adverse water quantity impacts on or off the Property. Implementation of the reclamation plan approved by the Department pursuant to Chapter 378, Florida Statutes, and the mitigation which will be provided, as proven in this proceeding, will maintain or improve the water quality and the function of the biological systems present at the site prior to the commencement of mining activities and thus constitute appropriate mitigation. Such mitigation will occur on the Property and will be in the same drainage basins where the activities are proposed. 2. IMC's Cumulative Impact Calculations Although the Department does not require the type of cumulative impact analysis permit opponents suggest is needed, Dr. Garlanger testified that IMC performed an analysis on the Horse Creek Watershed Basin involving the existing Ft. Green and Four Corners Mines and the future Ona Mine. IMC assessed the impact of past, current, and future mining activities in the Peace River Basin on the flow in the Peace River Basin and on Horse Creek on a cumulative basis. The predictive cumulative impact assessment modeling performed by Dr. Garlanger analyzed the future long-term potential impacts on stream flow by determining the capture during previous mining activities as a baseline period and the resulting impact from the reclamation activities for that baseline. This was then compared with the potential decreases in runoff due to the capture in the areas that are planned to be mined and reclaimed in the future. The cumulative impact analysis performed by IMC made a predictive assessment through the year 2020, which includes mining at the Property as well as mining proposed for three new mines (Ona Mine, Pine Level Mine, and Farmland-Hydro Hardee County Mine) that are in the Horse Creek Basin and existing mines that would be mining at times up to the year 2020. In order to ensure a worst-case prediction, Dr. Garlanger in his analysis assumed that all the direct surface runoff from all of the mining areas would be captured within the mine recirculation systems and consumed in the process and not available to contribute to stream flow in the area. The analysis then assumed that to the extent an area was captured, it would reduce stream flow by that amount in the areas that normally would have flowed to the natural surface water systems. A cumulative impact analysis performed by IMC concluded that for approximately 70 to 80 percent of the time there is essentially no impact on the flow in Horse Creek. Further, reduction in flow during high-flow periods, which is approximately 10 percent of the time, would reduce the flow depth from 7.46 feet to approximately 7.18 feet or less than .3 of a foot and for one percent of the time the reduction in the flow would be from 12.8 to 12.6 feet. These are the predicted impacts if all the potential capture for Horse Creek occurred. The changes in the depths of these waters, during high-flow periods, will likely have a positive impact on decreasing the amount of flooding during a high-flow period. During other times there is no adverse impact from decreasing water by just a few inches out of several feet of water. The same type of cumulative analysis was performed for the entire Peace River Basin. The areas mined and the areas reclaimed were determined using the same maximum potential capture and decreased runoff due to reclamation. Calculations were performed as to the potential decreased stream flow in the Peace River above Arcadia and at Charlotte Harbor due to past, current, and future mining activities. Similar to the Horse Creek Basin analysis, Dr. Garlanger used the maximum potential capture and maximum decrease in the stream flow resulting from reclamation and calculated the maximum expected decrease in stream flow in the Peace River Basin above Arcadia and at Charlotte Harbor for both the baseline condition and the future mining period through the year 2020. This analysis determined that for approximately 80 percent of the time there will be no impact on the Peace River. The only impact is a small increase in flows during high-flow periods at the Arcadia station. Similarly, at the point where the Peace River empties into Charlotte Harbor, the differences in stream flow are practically immeasurable and, if anything, there is predicted a slight increase in flow. The flow will increase slightly because the average area that was captured during the baseline period decreases over time, meaning there is less area for rainfall capture within mining recirculation systems. Though the cumulative impact analysis performed by IMC does show a slight reduction in flow in the Horse Creek, the impact will be a decrease in the stream flow depth of less than 3 or 4 inches in water that is already 7.5 feet and 12.8 feet deep, respectively, which few inches will not cause any adverse impact. Further, the analysis showed that for the same rainfall the overall flow in the Peace River at Arcadia and at Charlotte Harbor through the period 2020 will actually be greater than during the past 19-year period. Furthermore, phosphate mining operations do pump water from the Floridan aquifer system to use in their operations. Deep groundwater pumping can contribute to reduced flow in the Peace River, but phosphate mine operators have substantially reduced their withdrawal of deep well groundwater over the last decade, and it is not anticipated that any substantial increase in use will occur in the future. IMC's withdrawals of groundwater for mining activities conducted at the company's mines, including the Property, have been authorized by the issuance of Water Use Permit No. 20114000 by SWFWMD. 3. Flow Impacts There is significant testimony concerning an analysis of the impacts of phosphate mining and reclamation on a watershed. IMC's expert Peter Schreuder performed an analysis involving the Peace River, Alafia, and Withlacoochee River Basins. Phosphate mining activities take place in the Peace River and Alafia River Basins and no phosphate mining activities taken place in the Withlacoochee River Basin. Each of these watersheds has a gauging station (a place where flows are electronically measured on a continual basis going out of a watershed) maintained by the United States Geological Survey. The analysis performed by IMC's expert compared the pattern of flow in watersheds where no phosphate mining was taking place with flow patterns in watersheds where phosphate mining was occurring. IMC's expert gathered data from the farthest downstream gauging station at each of these three watersheds; the data dated back to nearly 1935. This data provided actual measured flow data, with rainfall as the driving variable. The purpose of the analysis was to determine if phosphate mining was having an influence on flow. It is alleged that phosphate mining reduces flow. If the allegation is correct, the trend would be downward because less flow in the river would be expected. However, the weight of the evidence showed that under normal flow conditions, mined basins have more flow than unmined basins and in storm events the mined basins moderate the runoff to some minor degree by attenuating runoff and allowing for a slower and later release as beneficial, normal, base flow instead of flood flows. 4. Non-Mining Impacts There is convincing evidence in the record that other types of developments expected in the Peace River Basin, which include commercial and residential development as well as agricultural development, do not have the potential to capture surface runoff to the extent of mining activities. Additionally, residential and commercial development, because they result in lower evaporation due to the abundant impervious areas, result in an increased runoff in the basin. Thus, if these types of developments were included in the impact analysis, there would be an additional increase in runoff. G. Specific Conditions The draft ERP sets forth numerous general and specific conditions. Petitioners and Intervenors question the sufficiency of several specific conditions. In particular, Specific Condition 4.c. requires IMC to collect and report flow data from the AFW, but does not identify a reference stream or indicate what the Department is do with the data and how the data is to be evaluated. Mr. Partney convincingly suggested that these issues should be included in Specific Condition 4.c. On this record, it is difficult to conclusively determine which stream should be used as a reference stream. Pursuant to its special expertise, the Department should consider adding supplemental language to clarify these issues. See generally Reedy Creek Improvement District v. State, Department of Environmental Regulation, 486 So. 2d 642 (Fla. 1st DCA 1986). Specific Condition 12.b.i. requires that "[t]he created replacement stream for the West Fork of Horse Creek shall have a similar hydroperiod to the upper reaches of the preserved area of Horse Creek." Mr. Partney suggested that while "there may be some impacts going on," "they're not as significant in terms of the ratio of the impact to the ratio of the project area at that point. There would be--certain to be significant area of watershed that was not experiencing impacts. And a substantial portion of the Horse Creek in this area is preserved. So there is some assurance at that point that there will be sufficient natural conditions to give [the Department] the data [the Department] needs." Nevertheless, the monitoring of flow patterns is critical to the success of this project. In this light, the Department should endeavor to assure itself that the portion of the Horse Creek to be used for comparison is suitable for the purposes reflected in Specific Condition 12.b.i.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is recommended that a final order be rendered as follows: Petitioners and Intervenors have standing to challenge the issuance of ERP No. FL 0142476-003; IMC provided reasonable assurance that it has the ability to comply with the conditions of draft ERP No. FL 0142476-003; IMC has complied with all conditions for final issuance of draft ERP No. FL 0142476-003; ERP No. FL 0142476-003 be issued with the following additional permit condition: At least thirty (30) days prior to the initiation of mining operations, the final version of the financial responsibility mechanism required by Section 3.3.7.6 of the Basis of Review shall be provided to and approved by the Department as required by Rule 40D-4.301(l)(j), Florida Administrative Code (October 1995), and Rule 62-330.200(3), Florida Administrative Code. DONE AND ENTERED this 8th day of March, 2002, in Tallahassee, Leon County, Florida. CHARLES A. STAMPELOS Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 8th day of March, 2002. COPIES FURNISHED: Kathy C. Carter, Agency Clerk Department of Environmental Protection 3900 Commonwealth Boulevard Mail Station 35 Tallahassee, Florida 32399-3000 Teri L. Donaldson, General Counsel Department of Environmental Protection 3900 Commonwealth Boulevard Mail Station 35 Tallahassee, Florida 32399-3000 Aliki Moncrief, Esquire Earthjustice Legal Defense Fund Post Office Box 1329 Tallahassee, Florida 32303 Edward P. de la Parte, Jr., Esquire Vivian Arenas, Esquire De la Parte & Gilbert, P.A. Post Office Box 2350 Tampa, Florida 33601-2350 Martha Y. Burton, Esquire Charlotte County Attorney's Office 18500 Murdock Circle Port Charlotte, Florida 33948-1094 Alan Behrens 4070 Southwest Armadillo Trail Arcadia, Florida 34266 Douglas Manson, Esquire David M. Pearce, Esquire Carey, O'Malley, Whitaker & Manson, P.A. 712 South Oregon Avenue Tampa, Florida 33606 John R. Thomas, Esquire Thomas & Associates, P.A. 233 3rd Street, North, Suite 302 St. Petersburg, Florida 33701 Thomas L. Wright, Esquire Lee County Attorney's Office 2115 Second Street Post Office Box 398 Ft. Myers, Florida 33902 Alan W. Roddy, Esquire Sarasota County Attorney's Office 1660 Ringling Boulevard, Second Floor Sarasota, Florida 34236 Roger W. Sims, Esquire Rory C. Ryan, Esquire Jeff Donner, Esquire Holland & Knight LLP 200 South Orange Avenue, Suite 2600 Orlando, Florida 32801 Robert L. Rhodes, Esquire Holland & Knight LLP 2099 Pennsylvania Avenue, Northwest Washington, DC 20006 Susan L. Stephens, Esquire Holland & Knight LLP 315 South Calhoun Street, Suite 600 Tallahassee, Florida 32301 Patricia A. Petruff, Esquire Dye, Deitrich, Prather, Petruff & St. Paul, P.L. 1111 Third Avenue, Suite 300 Bradenton, Florida 34205 Craig D. Varn, Esquire Doreen Jane Irwin, Esquire 3900 Commonwealth Boulevard Mail Station 35 Tallahassee, Florida 32399-3000

Florida Laws (16) 120.569120.572.04373.016373.042373.086373.413373.414373.421378.201378.202378.203378.205378.2077.187.46
# 5
ST. JOHNS RIVERKEEPER, INC. AND HENRY O. PALMER vs DEPARTMENT OF ENVIRONMENTAL PROTECTION, 09-007054RX (2009)
Division of Administrative Hearings, Florida Filed:Tallahassee, Florida Dec. 29, 2009 Number: 09-007054RX Latest Update: Nov. 16, 2010

The Issue The issues to be determined in this case are: whether Petitioners have standing; and whether Rule 62-302.800(2) is an invalid exercise of delegated legislative authority, as defined by Section 120.52(8)(b) and (c), Florida Statutes.3

Findings Of Fact Petitioner, St. Johns Riverkeeper, Inc. (Riverkeeper), is a nonprofit, membership-based corporation with its principal place of business in Jacksonville, Florida. It is dedicated to the protection, preservation, and restoration of the ecological integrity of the St. Johns River watershed, monitors water quality in the river and its tributaries, and involves citizens in the decisions that affect the health of the river, and organizes regular boat trips for its members and citizens to learn more about the river and how they can participate in its management. Petitioner, Henry O. Palmer (Palmer), uses the lower St. Johns River (LSJR), including its marine portions and tributaries, for kayaking, boating, and observation of wildlife, and a substantial number of Riverkeeper's members use the LSJR, including its marine portions and tributaries, for boating, fishing, crabbing, observing birds and other wildlife, and other water-based recreational activities. Based on undisputed affidavits, Petitioners are substantially affected by algal blooms and decay and vegetation and fish kills in and along the river. These conditions can be caused by excessive nutrients along with other factors. Respondent, Department of Environmental Protection (DEP), has used the procedures in Rule 62-302.800(2) to establish a Type II site-specific alternative criterion (SSAC) for dissolved oxygen (DO) for the LSJR that is lower than the otherwise-applicable, default water quality standard in Rule 62- 302.530(30). See Fla. Admin. Code R. 62-302.800(5)(a). As a result of the SSAC, DEP revised the Total Maximum Daily Load (TMDL) for total phosphorus (TP) and total nitrogen (TN) allowed for the marine portion of the LSJR. Rule 62-302.800 sets out a procedure for establishing a SSAC. Paragraph (1) sets out the procedure for Type I SSACs, which can be established when a "water body, or portion thereof, may not meet a particular ambient water quality criterion specified for its classification, due to natural background conditions or man-induced conditions which cannot be controlled or abated" and "when an affirmative demonstration is made that an alternative criterion is more appropriate for a specified portion of waters of the state." Paragraph (2), which is challenged in this case, sets out the procedure to petition DEP for a Type II SSAC for unspecified "reasons other than those set forth above in subsection 62-302.800(1), F.A.C." Rule 62-302.800(2) provides in part: The Department shall initiate rulemaking for the [Environmental Regulation] Commission to consider approval of the proposed alternative criterion as a rule if the petitioner meets all the requirements of this subparagraph and its subparts. The petitioner must demonstrate that the proposed criterion would fully maintain and protect human health, existing uses, and the level of water quality necessary to protect human health and existing and designated beneficial uses. If the petition fails to meet any of these requirements (including the required demonstration), the Department shall issue an order denying the petition. In deciding whether to initiate rulemaking or deny the petition, the Department shall evaluate the petition and other relevant information according to the following criteria and procedures: The petition shall include all the information required under subparagraphs (1)(a)1.-4. above. In making the demonstration required by this paragraph (c), the petition shall include an assessment of aquatic toxicity, except on a showing that no such assessment is relevant to the particular criterion. The assessment of aquatic toxicity shall show that physical and chemical conditions at the site alter the toxicity or bioavailability of the compound in question and shall meet the requirements and follow the Indicator Species procedure set forth in Water Quality Standards Handbook (December 1983), a publication of the United States Environmental Protection Agency, incorporated here by reference. If, however, the Indicator Species Procedure is not applicable to the proposed site-specific alternative criterion, the petitioner may propose another generally accepted scientific method or procedure to demonstrate with equal assurance that the alternative criterion will protect the aquatic life designated use of the water body. The demonstration shall also include a risk assessment that determines the human exposure and health risk associated with the proposed alternative criterion, except on a showing that no such assessment is relevant to the particular criterion. The risk assessment shall include all factors and follow all procedures required by generally accepted scientific principles for such an assessment, such as analysis of existing water and sediment quality, potential transformation pathways, the chemical form of the compound in question, indigenous species, bioaccumulation and bioconcentration rates, and existing and potential rates of human consumption of fish, shellfish, and water. If the results of the assessments of health risks and aquatic toxicity differ, the more stringent result shall govern. The demonstration shall include information indicating that one or more assumptions used in the risk assessment on which the existing criterion is based are inappropriate at the site in question and that the proposed assumptions are more appropriate or that physical or chemical characteristics of the site alter the toxicity or bioavailability of the compound. Such a variance of assumptions, however, shall not be a ground for a proposed alternative criterion unless the assumptions characterize a factor specific to the site, such as bioaccumulation rates, rather than a generic factor, such as the cancer potency and reference dose of the compound. Man-induced pollution that can be controlled or abated shall not be deemed a ground for a proposed alternative criterion. The petition shall include all information required for the Department to complete its economic impact statement for the proposed criterion. For any alternative criterion more stringent than the existing criterion, the petition shall include an analysis of the attainability of the alternative criterion. No later than 180 days after receipt of a complete petition or after a petitioner requests processing of a petition not found to be complete, the Department shall notify the petitioner of its decision on the petition. The Department shall publish in the Florida Administrative Weekly either a notice of rulemaking for the proposed alternative criterion or a notice of the denial of the petition, as appropriate, within 30 days after notifying the petitioner of the decision. A denial of the petition shall become final within 14 days unless timely challenged under Section 120.57, F.S. The provisions of this subsection do not apply to criteria contained in Rule 62- 302.500, F.A.C., or criteria that apply to: Biological Integrity. B.O.D. Nutrients. Odor. Oils and Greases. Radioactive Substances. Substances in concentrations that injure, are chronically toxic to, or produce adverse physiological or behavioral response in humans, animals, or plants. Substances in concentrations that result in the dominance of nuisance species. Total Dissolved Gases. Any criterion or maximum concentration based on or set forth in paragraph 62-4.244(3)(b), F.A.C. Despite any failure of the Department to meet a deadline set forth in this subsection (2), the grant of an alternative criterion shall not become effective unless approved as a rule by the Commission. Nothing in this rule shall alter the rights afforded to affected persons by Chapter 120, F.S. Rule 62-302.800 cites several statutes as its specific rulemaking authority and specific provisions of law implemented, including Section 403.061, Florida Statutes, which states in pertinent part: The department shall have the power and the duty to control and prohibit pollution of air and water in accordance with the law and rules adopted and promulgated by it and, for this purpose, to: * * * Adopt rules pursuant to ss. 120.536(1) and 120.54 to implement the provisions of this act. . . . . * * * Adopt a comprehensive program for the prevention, control, and abatement of pollution of the air and waters of the state, and from time to time review and modify such program as necessary. Develop a comprehensive program for the prevention, abatement, and control of the pollution of the waters of the state. In order to effect this purpose, a grouping of the waters into classes may be made in accordance with the present and future most beneficial uses. . . . . Establish ambient air quality and water quality standards for the state as a whole or for any part thereof, and also standards for the abatement of excessive and unnecessary noise. . . . . Section 403.201, Florida Statutes, sets out a separate procedure to apply to DEP for a variance from DEP's rules and regulations, including water quality standards, "for any one of the following reasons": There is no practicable means known or available for the adequate control of the pollution involved. Compliance with the particular requirement or requirements from which a variance is sought will necessitate the taking of measures which, because of their extent or cost, must be spread over a considerable period of time. A variance granted for this reason shall prescribe a timetable for the taking of the measures required. To relieve or prevent hardship of a kind other than those provided for in paragraphs (a) and (b). Variances and renewals thereof granted under authority of this paragraph shall each be limited to a period of 24 months, except that variances granted pursuant to part II may extend for the life of the permit or certification. There was no evidence that the revised TMDLs for TP and TN allowed for the marine portion of the LSJR will lead to algal growth and algal blooms, reduced DO, fish kills, or adverse impacts to recreation on the river. To the contrary, the Type II DO SSAC for the marine portion of the LSJR has not been challenged and conclusively establishes that it will "maintain and protect human health, existing uses, and the level of water quality necessary to protect human health and existing and designated beneficial uses" and will "protect the aquatic life designated use of the water body." Fla. Admin. Code R. 62- 302.800(2)(c). See also Affidavit of Douglas J. Durbin, Ph.D., filed June 25, 2010.

CFR (1) 40 CFR 131.11(b)(1) Florida Laws (13) 120.52120.536120.54120.56120.57120.68253.03258.004258.007403.061403.201550.0251550.2415 Florida Administrative Code (7) 18-14.00318-21.00461D-6.00262-302.20062-302.80062-4.24462D-2.014
# 6
PORT ANTIGUA PROPERTY OWNERS ASSOCIATION vs SEANIC CORPORATION AND DEPARTMENT OF ENVIRONMENTAL PROTECTION, 00-000139 (2000)
Division of Administrative Hearings, Florida Filed:Islamorada, Florida Jan. 07, 2000 Number: 00-000139 Latest Update: Jan. 08, 2001

The Issue The issue presented is whether Respondent Seanic Corporation's application for an operating permit for a domestic wastewater treatment facility should be granted.

Findings Of Fact On January 20, 1994, Respondent Seanic Corporation submitted to Respondent Department of Environmental Protection an application to construct a wastewater treatment and disposal facility. The application requested approval to construct a facility with a design capacity of 15,000 gallons per day and to discharge its treated effluent to G-III groundwater through two Class V injection wells. Although the Department had no rules with specific depth requirements for such wells, the plans that accompanied the application contemplated wells with a total depth of 90 feet below land surface, which would be cased down to a depth of 60 feet below land surface. On February 23, 1994, the Department gave notice of its intent to issue the requested construction permit. Petitioners did not challenge the issuance of the construction permit, and the Department issued the permit on April 22, 1994, with an expiration date of five years after the issuance of the permit. On February 17, 1999, Seanic began construction of the permitted facility, including the construction of the two Class V injection wells. At the time the wells were first drilled, there were no statutes or rules regarding the appropriate depth of underground injection wells at a facility like Seanic's. Construction of the Seanic facility was completed before April 12, 1999, as reflected by the Certificate of Completion of Construction for the permitted facility. On April 21, 1999, Seanic filed with the Department its application to operate the facility. Chapter 99-395, Laws of Florida, became effective on June 18, 1999, approximately two months after the facility was constructed and the operating permit application was submitted. Section 5 of Chapter 99-395 defines the term "existing" to mean "permitted by the Department of Environmental Protection or the Department of Health as of the effective date of this act." Chapter 99-395 imposes different effluent limitations for "existing sewage facilities" than those that are applied to new facilities. For facilities that have a design capacity of less than 100,000 gallons per day, new facilities must provide treatment that will produce an effluent that contains no more, on a permitted annual basis, than the following concentrations: Biochemical Oxygen Demand (CBOD5) of 10 mg/L Suspended Solids of 10 mg/L Total Nitrogen of 10 mg/L Total Phosphorus of 1 mg/L These standards are frequently referred to as the "10-10-10-1 Standard." In accordance with Section 6(4) of Chapter 99-395, "existing sewage facilities" have until July 1, 2010, to comply with the 10-10-10-1 standard. Prior to that date, "existing sewage facilities" must meet effluent limitations of 20 mg/L for both CBOD5 and suspended solids and must monitor their effluent for concentrations of total nitrogen and total phosphorus. The Seanic facility is an "existing" facility, as that term is defined in Chapter 99-395, and, therefore, has until July 1, 2010, to comply with the 10-10-10-1 standard. Section 6(7)(a) of Chapter 99-395 requires Class V injection wells for facilities like Seanic's to be "at least 90 feet deep and cased to a minimum depth of 60 feet or to such greater cased depth and total well depth as may be required by Department of Environmental Protection rule." The Department has not promulgated any rules requiring Class V injection wells to be deeper than the depth prescribed in Chapter 99-395, Laws of Florida. As of January 26, 2000, the total depth of Seanic's injection wells measured 92 and 94.5 feet, respectively. On November 24, 1999, the Department entered its notice of intent to issue the operating permit applied for by Seanic and attached to the notice a "draft permit" with the conditions and effluent limitations that would be applied to the facility. In issuing the notice, the Department determined that Seanic had provided reasonable assurance that the facility will not discharge, emit, or cause pollution in contravention of applicable statutes or the Department's standards or rules. The draft permit included effluent limitations of 20 mg/L for both CBOD5 and suspended solids and required Seanic to monitor its effluent for total nitrogen and total phosphorus, in accordance with Chapter 99-395, Laws of Florida, and the Department's rules for existing sewage facilities. The draft permit notes that Seanic must comply with the 10-10-10-1 standard by July 1, 2010. Because Seanic's condominium development has not been completed and the wastewater treatment facility is not expected to go into operation for approximately one year, the draft permit also requires that the facility be re-inspected and re-certified immediately prior to going into operation. The Seanic facility was designed to create an effluent that is several times cleaner than required by Department rules. The facility uses an extended aeration process that is expected to reduce levels of both biological oxygen demand ("BOD") and total suspended solids ("TSS") to lower than 5 mg/L, concentrations that are 75 percent lower than the effluent limitations in the draft permit. Similar facilities in the Florida Keys have shown that they can achieve BOD and TSS concentrations of less than 5 mg/L. The Seanic facility has also been designed to provide a greater level of disinfection than required by law. While the draft permit requires only that the facility maintain a chlorine residual of 0.5 mg/L after fifteen minutes' contact time, the facility has been designed with larger chlorine contact tanks to provide a chlorine contact time of approximately one hour at anticipated flow rates. The facility operator can also increase residual chlorine concentrations. These facts, along with the reduced TSS levels at this facility, will provide considerably greater levels of disinfection than the law requires. Although the draft permit does not contain effluent limitations for total nitrogen or total phosphorus, the levels of these nutrients expected to be present in the Seanic facility's effluent are approximately 5 mg/L and 2-3 mg/L, respectively. Studies conducted on the rate of movement of phosphorus in the subsurface indicate that some of the phosphorus is rapidly immobilized through chemical reactions with the subsurface soil matrix. Specifically, studies conducted on injection wells in the Florida Keys report that 95 percent of the phosphorus is immobilized within a short time after entering the injection well. Studies conducted on the rate of movement of nitrates in the subsurface indicate that some nitrate migration is also retarded through chemical reactions with the subsurface soil matrix. More specifically, studies conducted with injection wells in the Florida Keys report that denitrification removes approximately 65 percent of the nitrates within a short time after the effluent enters the injection well. In addition to the chemical reduction of phosphorus and nitrogen levels in the groundwater, studies conducted on injection wells in the Florida Keys with a total depth of 90 feet and a cased depth of 60 feet have reported extremely high dilution rates by the time effluent injected into such wells would appear in surrounding surface waters. More specifically, studies using chemical and radioactive tracers have reported dilution rates on the range of seven orders of magnitude, i.e., 10 million times. After undergoing chemical reduction in the groundwater as well as extremely high dilution rates, the levels of nitrogen and phosphorus that would be expected to enter Captain's Cove and the adjacent canals will be infinitesimal, i.e., less than one part per trillion. Such levels would be several orders of magnitude below detection limits of currently available analytical methods. The surface waters in the artificial canals and in Captain's Cove surrounding the homes of Petitioners' members are classified by the Department as Class III waters that are predominantly marine. The permitted levels of fecal coliform bacteria in the facility's effluent (as restricted in the draft permit) are identical to the discharge limits for fecal coliform bacteria in Class III waters that are predominantly marine. The operation of Seanic's facility will not result in discharges of fecal coliform bacteria in excess of the applicable effluent limitations. Petitioners' expert witnesses agree that the facility, as designed, will comply with all of the conditions and effluent limitations in the draft permit. No Department rule or standard will be violated by this facility. The Department has not promulgated any effluent limitations or standards for viruses to be discharged to G-III groundwater or Class III surface waters that are predominantly marine. Petitioners' members use and enjoy the clear waters in their canals and in Captain's Cove. They have had the water quality tested four times a year since 1988. Captain's Cove, along with the adjacent canals, has remained a clear, oligotrophic water body with minimal algae growth. Petitioners' members fear that the introduction of viruses and other microorganisms through the facility's effluent will cause swimming in Captain's Cove and the adjacent canals to be harmful to their health. Their fear has been heightened by newspaper stories about viruses and a publicized study which erroneously claimed that Captain's Cove had high levels of harmful bacteria. Petitioner Port Antigua Property Owners Association ("PAPOA") received notice of the Department's intent to issue an operating permit to Seanic. The president discussed the permit with another resident, a microbiologist, who in turn discussed the facility with geologists and reviewed studies performed in the Florida Keys. Their serious concern over the depth of the injection wells and the possible release of viruses and bacteria harmful to the marine environment and to the public health was expressed throughout PAPOA's petition, and a copy of one of the tracer studies upon which they relied was attached to the petition. The president of Petitioner Port Antigua Townhouse Association, Inc. ("PATA"), who is also a member of PAPOA, discussed the Department's notice of intent with the president of PAPOA and the microbiologist. He also discussed the project with a member of PATA who oversees Broward County's wastewater treatment facility, which has the same effluent limitations as the Seanic facility. PATA members believed they should join with PAPOA and the Lower Matecumbe Key Association in requesting a hearing on Seanic's operating permit. PATA and others have also filed litigation in the Circuit Court against Seanic Corporation and others. That litigation is still pending. Petitioners were not able to cite any statute or rule that would be violated by the Seanic facility's discharge. They believe that since the facility is not yet operating, it should be required to adhere to the stricter effluent standards required for new facilities. They also believe that the Department should consider the harmful effects of viruses and bacteria on the marine environment and on the public health. Petitioners did not file their petitions for any improper purpose. They did not file their petitions for any frivolous purpose or to harass or to cause unnecessary delay or to increase Seanic's costs in obtaining an operating permit for its facility. They believed the language in the Department's notice of intent to issue the permit which advises substantially affected persons that they have a right to an administrative hearing and that the Department could change its preliminary agency action as an result of the administrative hearing process. They believe they are simply exercising a right that they have under the law.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that a final order be entered granting Seanic's application for an operating permit for its domestic wastewater treatment facility but denying Seanic's Motion for Attorney's Fees and Costs. DONE AND ENTERED this 13th day of November, 2000, in Tallahassee, Leon County, Florida. LINDA M. RIGOT Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 13th day of November, 2000. COPIES FURNISHED: Francine Ffolkes, Esquire Department of Environmental Protection 3900 Commonwealth Boulevard Mail Station 35 Tallahassee, Florida 32399-3000 Evan Goldenberg, Esquire White & Case, LLP First Union Financial Center 200 South Biscayne Boulevard Miami, Florida 33131-5309 Lee R. Rohe, Esquire Post Office Box 500252 Marathon, Florida 33050 Kathy C. Carter, Agency Clerk Department of Environmental Protection 3900 Commonwealth Boulevard Mail Station 35 Tallahassee, Florida 32399-0300 Teri L. Donaldson, General Counsel Department of Environmental Protection 3900 Commonwealth Boulevard Mail Station 35 Tallahassee, Florida 32399-0300

Florida Laws (4) 120.569120.57120.595403.051 Florida Administrative Code (1) 62-302.530
# 7
THE CORPORATION OF THE PRESIDENT OF THE CHURCH OF JESUS CHRIST OF LATTER DAY SAINTS, A UTAH CORPORATION, D/B/A IN FLORIDA UNDER THE NAME OF DESERET RANCHES vs. ST. JOHNS RIVER WATER MANAGEMENT DISTRICT AND CITY OF COCOA, 89-000828 (1989)
Division of Administrative Hearings, Florida Number: 89-000828 Latest Update: Oct. 26, 1990

Findings Of Fact The Parties The City is a municipal corporation of the State of Florida. The City owns and operates a public water utility system which supplies potable water to the City of Cocoa, Cocoa Beach, Rockledge, Cape Canaveral, certain unincorporated areas of Brevard County, Merritt Island, Patrick Air Force Base, Cape Kennedy, Cape Canaveral Air Force Station, and the Cocoa Beach Ocean Tracking Annex. Potable water is provided to approximately 136,000 persons in that service area. The District is an agency created pursuant to Chapter 373, F.S., with the responsibility for regulating consumptive uses of water in a nineteen county area of the State of Florida, including all of Brevard County and that part of Orange County on which the City's wellfield is located. Deseret Ranches is a Utah corporation authorized to do business in the State of Florida. Deseret owns real property in eastern Orange County surrounding the City's existing wells. Twenty-one of the City's proposed wells are to be located on Deseret's property. Deseret's operations in the vicinity of the wells include citrus, cattle, sod harvesting, forestry, and wildlife management for hunting leases. Holland Properties, Inc., is a closely-held Florida corporation owning real property in eastern Orange County on which three of the City's proposed wells are to be located. Holland's business is primarily citrus and cattle. Holland has four wells on its property, one at a dwelling, one at the bunkhouse and cattle pens, and two in the citrus groves. Doris Keller, the Isle of Pine Property Owners Association and remaining individual petitioners own residential property near and bordering Lake Mary Jane within a two-mile radius of proposed City wells #32 and 33. The property owners generally maintain individual wells for domestic and irrigation purposes. The corporate and individual petitioners are existing legal users of water. The System and WellField The City's public water utility system consists of a wellfield and raw water collection lines, the Wewahootee pump station, transmission lines from the pump station to the treatment plant, the Dyal water treatment plant, and a distribution system which includes both elevated and ground storage. The distribution system is located in Brevard County; the wellfield and rest of the utility are located in eastern Orange County, west of the St. Johns River. The entire system and its users are located within the boundaries of the District. The City's wellfield is divided into an eastern wellfield and a western wellfield which together have a total of twenty-three active wells and nine inactive wells. Active wells 7A, 13, 14, 15, 16, 17, 18, and 19 are located in the western wellfield. Active wells 1, 2, 3, 4, 4A 1, 5, 7, 7T, 8, 9, 10, 11, 12A, 12B and R-1; and inactive wells 1T, 2T, 3T, 4T, R-2, R-3, R-4, R-5, and R-6 are in the eastern wellfield. The wells designated with a prefix "R" are aquifer storage and recovery (ASR) wells. These are used to inject partially treated water into an underground formation for storage and later use in meeting maximum day demands on the utility. All six ASR wells have been constructed, and well R-1 is operating under a temporary consumptive use permit. All of the ASR wells are located on the 63-acre Dyal water treatment plant site owned by the City. When all are operational the six ASR wells will have a combined recovery capacity of approximately 8 million gallons a day (MGD). The City has been operating its wellfield for more than thirty years. The Application On February 20, 1979, the District issued consumptive use permit (CUP) #2-095-0005 to the City for its eastern Orange County wellfield. The permit approved a total of 30 MGD average daily withdrawal and 40 MGD maximum daily withdrawal. This total included an existing use of 16 MGD average daily withdrawal and 23 MGD maximum daily withdrawal, approved for a period of 25 years. The new use, 14 MGD average daily withdrawal and 17 MGD maximum daily withdrawal, was approved for 10 years. In September 1988, the City submitted its CUP application to renew the new use approval due to expire in February 1989. This application also sought an increased allocation to meet projected demand for the City's service area. The application included a request for authority to withdraw surface water from the Taylor Creek Reservoir, but this request was withdrawn in February 1989. The total consumptive use allocation sought in CUP application #2-095-0005 is 31 MGD average daily withdrawal and 48 MGD maximum daily withdrawal, which total includes the approved existing use which will not expire until the year 2004. The City proposes to add seven new Floridan aquifer wells (wells 38, 39, 40, 41, 42, 43 and 44) and eleven new intermediate aquifer wells (wells 5T, 6T, 8T, 9T, 10T, 11T, 12T, 13T, 14T, 15T and 16T) to the eastern wellfield; all to be located on land currently owned by Deseret. The City proposes to add six new Floridan aquifer wells to the western wellfield: wells 20, 21, 22, 31, 32 and 33. Wells 20, 21 and 22 will be located on land currently owned by Deseret. Wells 31, 32 and 33 will be located on land currently owned by Holland. The application includes the addition of all six ASR wells on land owned by the City. The City proposes to activate two existing Intermediate aquifer wells, 2T and 3T. District staff issued a technical staff report dated February 6, 1989, recommending approval of the September 1988 application, with conditions. After the application was amended in November 1989, District staff again reviewed it and prepared revised permit conditions, dated February 21, 1990. Petitioners have not directly contested those conditions but have proposed their own conditions if their position regarding denial of the permit is rejected. Description of the Geology and Hydrogeology An aquifer is a geologic unit, portion of a geologic unit or combination of geologic units containing water that can be withdrawn economically. There are four significant aquifer systems in the area of the City wellfield: the Surficial aquifer, the Intermediate aquifer, the upper Floridan aquifer and the lower Floridan aquifer. The potentiometric surface, or "head" of an aquifer refers to the pressure surface of a confined or semi-confined aquifer. It is the level above the top of the aquifer to which water will rise within a tightly cased well completed in the aquifer. Fine grained sands, clay and shell deposits exist from land surface to approximately 50 feet below land surface (BLS). The saturated portion of this unit comprises the Surficial aquifer, sometimes called the shallow or water table aquifer. From approximately 50 feet to 60 feet BLS there is a discontinuous clay lens. This unit acts as a semi-confining unit between the Surficial aquifer and the underlying Intermediate aquifer. There is a reasonably good hydraulic connection between the Intermediate and Surficial aquifer in the vicinity of Lake Mary Jane. The Intermediate aquifer lies approximately 60 feet to 100 feet BLS, and is comprised of water-bearing shell layers mixed with sand. Below the Intermediate aquifer is a thick clay layer, called the Hawthorn formation, which is a confining layer separating the Intermediate from the underlying Floridan aquifer. Within the Hawthorn are discontinuous lenses of marl (clayey limestone) which in some areas can produce water. The Hawthorn extends from approximately 100 feet BLS to 250 feet BLS, and becomes less thick heading west. The Hawthorne formation in the subject area has extremely low permeability, making it very difficult for water to move through the formation. It is widely accepted that there is a poor hydraulic connection between the Floridan aquifer beneath the Hawthorne, and the Intermediate and Surficial aquifers above the Hawthorne. The subject area has one inch or less per year recharge to the Floridan from the overlying aquifers. "Recharge" means the supply of water to an aquifer from an outside source, for example, rainfall. Below the Hawthorne formation is the massive limestone and dolomite sequence of the Floridan aquifer, divided generally into an upper and lower region, with the upper Floridan beginning at approximately 250 feet BLS descending to 650 feet BLS, and the lower region extending from approximately 650 feet BLS to greater than 1100 or 1200 feet BLS. Most of the water in the Floridan aquifer in the subject area enters horizontally from the Floridan aquifer in the recharge area of western Orange County. There is a natural flow from west to east, from the high recharge area and higher head, to the lower head in the east. All but one of the active wells in Cocoa's existing wellfield draws from the upper Floridan aquifer. Well 7T withdraws water from the Intermediate aquifer. Wells 1T, 2T, 3T and 4T, currently inactive, are designed to withdraw water from the Intermediate aquifer. None of the proposed new wells will draw from the lower Floridan or Surficial aquifers. The Floridan and Intermediate aquifers are capable of producing the quantity of water requested by the City, a fact which at various times in this proceeding has been admitted by Petitioners' experts, Lichtler and Drake. Wellfield Design and Operation In its 30 years of operation the City has made some wellfield management errors. A number of wells were drilled too deep and pumped too hard, causing deterioration in the water quality of wells in the eastern wellfield when poorer quality water located deep within the Floridan aquifer was drawn upward into the wells. The City has begun addressing elevated chloride levels by backplugging some of its upper Floridan aquifer wells, with success. The Petitioners are urging expansion of the City's backplugging program. However, the production capacity of a well is reduced by backplugging. The total capacity of the City's wellfield with all existing active wells operating is approximately 38 MGD. In 1989 the peak demands for water came close to exceeding capacity on several occasions, thus there is currently no reserve capacity in the wellfield. Due to the lack of reserve, the District issued water shortage orders dated November 14, 1989 and April 10, 1990, imposing water shortage restrictions in the City's service area. Reserve capacity is essential to sound wellfield management. It provides flexibility and the ability to meet water demands during routine maintenance or in the event of loss of a well due to pump breakdown or lightning strike. Additional wells will allow the City to redistribute pumpage to reduce the negative impacts of pumping in the eastern wellfield. Twenty percent, the amount requested in the City's application, is a reasonable and appropriate reserve in excess of the City's projected maximum daily demand. The City's current wellfield is physically incapable of meeting projected 1997 water demands, even without a reserve. Water Demand Conservation and Reuse In 1989 the City withdrew water from its wellfield at a rate of 26 MGD average daily withdrawal and 38 MGD maximum daily withdrawal. The City's application requests an increased allocation to meet a reasonable projected demand over the next seven years. In 1989 the City served approximately 136,000 persons and anticipates serving 160,000 by 1997, based on projections from the Brevard County planning department. In projecting need for the year 1997, the City took an average of the results of two projection methods: a straight line method and a population- based method. The straight line method is based on historical average and maximum daily demands on the system from 1984 through 1987, the four full years prior to the City's application submittal. This method projects a demand in 1997 of approximately 36 MGD average daily withdrawal and 57 MGD maximum. The population-based method calculates future average daily demands based on projections of future equivalent residential connections. Future maximum daily demands are calculated by applying an historic ratio of maximum day to average day demands. The ratio for the period 1983-1987 was 1.57. This method predicts an average daily demand of 29 MGD and maximum daily demand of 45 MGD in 1997. Averaging the two results yields a prediction of 32.5 MGD average demand and 51 MGD maximum daily demand for the City's service area in 1997. Reasonable persons can differ as to future demand projections. Gerald Hartman, Deseret's expert, projected less demand but only projected to the year 1995, as he advocates a shorter term permit than the seven years requested by the City. He also obtained historical data over an eighteen year period between 1970 and 1987, when the area was experiencing a lower growth rate. When extrapolated to a seven, rather than five year projection, Hartman's figures are reasonably close to those projected by the City. Historical demand data for the years 1988 and 1989 since the City's application was filed, are consistent with the City's projections. It is generally preferable to over-project demand, rather than under- project and have insufficient water available for the service area's needs. The District staff's proposed special permit conditions #12 and 13 provide a gradual increase in allocation over the period of the permit, up to 48 MGD maximum daily withdrawal in 1997. In addition, permit condition #9 reserves to the District the right to modify annual allocations if the permittee does not reach its new projected demand in the service area. Although the projected maximum daily demand is 51 MGD, the application seeks 3 MGD less, or an allocation of 48 MGD. Some of this deficit will be mitigated by more effective reuse and conservation methods. The City employs a full-time conservation officer to conduct education and retrofitting programs. The City's conservation efforts are consistent with other permitted users, and its commitment to reuse measures has been reasonable. The City and other governmental units or installations within its service area are reusing domestic wastewater at a rate of approximately 30%. Except for its contract with the City of Cocoa Beach, the City currently does not have the authority to impose reuse and conservation beyond its own municipal jurisdiction. As the contracts expire, renewal contracts will include such provisions. The District requires additional information to support requests with per capita usage above 150 GPD. Based on the total number of residential connections and water usage billed to residential meters, the City reasonably derives a per capita usage rate of 72 gallons per day. Alternate sources are not reasonably available to meet the City's system's near future water demands. Development of the Taylor Creek Reservoir as a surface water source will take approximately five to eight years -- too long to meet the City's needs now and in the interim. Reverse osmosis plants (sometimes called desalination) may be a viable source of water in the Brevard County area in the future, but they have a limited potential yield and are a costly alternative. Moreover, this alternative is not available now for Cocoa's near-future needs. Storage facilities are useful for meeting hourly demands during the day. They are filled at night and drained during the day when necessary. However, with a lightning strike or mechanical failure which might take several days or several weeks to repair, the storage tanks will not replace a lost well. ASR wells are a relatively new technology. The first in Florida became operational in 1984. They do not produce new water, but rather provide additional storage capacity, much like above-ground tanks. Operation of the City's one permitted ASR well has raised questions as to how long the quality of water injected into the well may be maintained. ASR wells cannot be considered a reliable substitute for additional production wells at this time. Nor is expansion of interconnections with neighboring water systems a reasonable present alternative. The City has two interconnections with the Melbourne water system and one is planned with the Titusville system. These are for emergency use only, as these two municipalities do not have excess water supply for Cocoa's service area needs. Impact of the Proposed Consumptive Use on Water Levels The City's wellfield has been in operation for thirty years and there is no evidence of adverse impact on water levels in wells owned by the Petitioners. No one has ever complained to the City regarding interference with the production of water from his or her well, with lake levels, or with vegetation. At the request of the District, the City's consultants conducted studies to determine the impact of the proposed withdrawals on existing legal users of water. The Intermediate aquifer studies consisted of aquifer performance tests (APT) and pump tests at the Wewahootee Pump Station and along Wewahootee Road, and groundwater flow modeling. The Floridan aquifer studies included APT's at ASR Well R-1 at the Dyal treatment plant, and groundwater flow modeling of proposed withdrawals from the Floridan aquifer. An APT involves withdrawing water from a well and measuring the withdrawals on water levels in that or other monitor wells. The test is used to determine hydraulic characteristics of a well and the aquifer within the vicinity of the well. Groundwater flow models are used in the field of hydrology to mathematically simulate impacts of withdrawals on one or more hydrologic formations. They are commonly relied on by regulatory agencies in evaluating applications for consumptive use. In many cases these models are the only tool available for assessing impact of water supply facilities that have not been constructed. For its groundwater flow model, the City's consultants used a model prepared by the U.S. Geological Survey (USGS) called USGS MODFLOW. This is a numerical model used to calculate groundwater flows and aquifer levels for various hydrogeologic units in a system. It is a model to determine regional, rather than local, impacts. The consultants also used a more limited "analytic" model to predict the effects on water levels at various locations near the existing and proposed production wells. In measuring impacts to the upper Floridan aquifer, parameters or aquifer characteristics were obtained from historical data on the existing wellfield, published hydrogeologic information and past APT's and pump tests performed on existing city wells. This data made it unnecessary to conduct additional APT's. It was unnecessary to model the impact of proposed upper Floridan withdrawals on the Intermediate and Surficial aquifers because of the poor hydraulic connection between the Floridan and overlying aquifers. The MODFLOW model was appropriately calibrated by comparing the simulated potentiometric surface with a USGS potentiometric surface map showing the actual measured 1987 potentiometric surface of the upper Floridan aquifer, using both 1985 and 1987 pumpage amounts. Although USGS potentiometric surface maps involve, by necessity, some extrapolation and interpretation of surfaces between a series of observation wells, these maps are commonly relied upon by hydrogeologists. Calibration such as that conducted by the City produces a reasonable simulation of actual measured levels. Because there was very little information available on the characteristics of the Intermediate aquifer in the subject area, three APT's were conducted by the City's consultants to determine the hydraulic characteristics of the Intermediate Aquifer and to establish its lateral extent in the wellfield. Additionally, single well pumping tests were conducted at several sites along Wewahootee Road. The parameters derived from these tests were used with the groundwater flow model to predict area drawdowns and the impact of the City's proposed withdrawals on the area's water resources. For the groundwater flow model the City used a one mile by one mile grid at the center of the study area. There are no standard grid sizes, and the size used by the City is adequate for determining regional impacts. In the area of the City wellfield, the City's groundwater flow model tends to overestimate expected drawdowns. The city's analytical model was used to predict water level changes locally within the grids at varying distances from existing and proposed wells. This included withdrawal impacts on the potentiometric surface of the Upper Floridan Aquifer in the immediate vicinity of the production wells and beneath the properties owned by Deseret, Holland, and the individual property owners. The analytical model and its parameters applied by the City were reasonable. The City's proposed consumptive use will cause a redistribution of wellfield pumping that will reduce stress on the upper Floridan aquifer in the eastern wellfield and will shift withdrawals into the western wellfield. The potentiometric surface of the Upper Floridan in the eastern wellfield will rebound (rise), and the surface will decline slightly in the western wellfield. This will more evenly spread the stress. Because of the poor hydraulic connection between the upper Floridan and overlying aquifers (Intermediate and Surficial) the reduction in potentiometric surface of the upper-Floridan by the City's proposed withdrawal will not have a measurable impact on the withdrawal capability of any Surficial or Intermediate aquifer well. Nor will the levels of any surface water bodies or wetlands be impacted by the City's use. The City's withdrawals will have no effect on users of the lower Floridan aquifer. The closest existing legal user is the Orlando Utility commission and its facilities are so far away that there is virtually no interaction between the City's withdrawals and the potentiometric surface of the lower Floridan at Orlando Utility's wellsites. It is reasonably predicted that the difference between proposed and current City withdrawals from the upper Floridan will cause approximately 0.6 to 0.8 feet additional drawdown in Deseret's wells; 2.4 to 3.3 feet drawdown in Holland's wells; and 1.3 to 4.4 feet in Keller and other individual Petitioners' wells. Effects on the withdrawal capability and operation of any existing well due to the City's proposed upper Floridan withdrawals will be insignificant and well below the 10% or greater reduction which, according to the District's Applicants' Handbook, Section 9.4.4., is the threshold for presumption of interference with an existing legal use. The results of modeling Cocoa's withdrawals from the Intermediate aquifer predicted a worst case scenario of no more than 25 feet drawdown in the Intermediate aquifer. Water table (Surficial aquifer) drawdowns will range from approximately .24 feet to .34 feet. The drawdown is too insignificant to adversely affect the use of lakes and impoundments. Drawdown effect decreases rapidly with distance from the wells, with any decline in water table inconsequential beyond a half mile radius. The District has not established minimum flows for surface water courses nor minimum levels for aquifers or surface water sources. No Intermediate or Surficial aquifer wells are located close enough to the area of influence to be affected by the City's Intermediate aquifer withdrawals. Because of the poor hydraulic connection between the Floridan and Intermediate aquifer, no Floridan wells will be affected by the City's Intermediate aquifer withdrawals. Withdrawals from the single existing ASR well has not caused any adverse impacts to the water resources of the area, to existing wells, land uses, vegetation or lakes. There has been no saline intrusion nor land subsidence problems. All six ASR wells are located in the same area, 300-400 feet apart, and no adverse impacts from these are reasonably foreseen. Even the Petitioners encourage their use. None of the Petitioners performed modeling or other analysis to show drawdowns or other impacts from the City's proposed upper Floridan and Intermediate aquifers. Instead, Petitioners' experts concentrated on criticisms of the City's parameters, assumptions and methodology in an effort to erode confidence in the City's findings. The experts presented by Petitioners had little or no experience in preparing or using the groundwater flow model USGS MODFLOW, used by the City. Nor did the Petitioners' experts actually apply other parameters to the model to determine ultimate results. District staff reviewed the groundwater flow model and analytic modeling performed by the City's consultants. Richard Levin, a hydrologist employed by the District who was trained by the authors of USGS MODFLOW, ran the model on his computer to verify the results reported by the City. Levin's calibration scenario included an additional 20 existing withdrawal sources not utilized by the City, but his results did not significantly vary from those obtained by the City. Levin also reran and confirmed the results of the City's analytic model. If, as urged by Petitioners, there is no substitute for actual experience in determining adverse impacts, that actual experience will be derived once the new wells are in place and operating. As a condition of permit approval, the District has the authority to curtail withdrawals if such impacts occur. The City will be required to mitigate any adverse impacts. There are methods available for the City to mitigate impacts on the use of other wells and the City is capable of implementing those methods. Impacts of Proposed Consumptive Use on Chloride Levels Concern about the chloride problem addressed in paragraphs 30 and 31, above, led the District staff to require that the City conduct solute transport modeling in the application process. A solute transport model is a computer simulation of the changes in water quality in an aquifer due to changes in water level in the aquifer. A solute transport model is used to evaluate the impact of groundwater withdrawals on water quality and the impact of withdrawals on the movement of naturally occurring low quality water. The use of such models in the field of hydrology is universally accepted. It is considered a highly sophisticated tool. The City's consultants used a solute transport model prepared by the USGS referred to as "USGS MOC". Calibrated parameters from the Floridan aquifer USGS MODFLOW Model were used to create a solute transport model of the smaller area immediately surrounding the City's wellfield. Within this area, water quality baseline conditions were input and the model was run to simulate recent chloride levels at the wellfield. It was run again to simulate the impact of the proposed Floridan Aquifer withdrawals on chloride levels. It was not necessary to analyze the Intermediate or Surficial aquifers, as historic data from these sources indicate no change in water quality; therefore elevated chlorides in these units is not a concern. Withdrawals from the Intermediate aquifer will not affect water quality of the Floridan aquifer due to the poor hydraulic connection. The modeling analysis did not take into account the beneficial effects of rehabilitating Floridan aquifers in the eastern wellfield (the backplugging), thus the model results are a conservative prediction of anticipated chloride levels. The parameters input into the MOC Model are reasonable. The grid size was selected to provide twice the resolution of the MODFLOW model, or 1/2 mile by 1/2 mile. Chloride concentrations used in the model came from data from existing production wells as they were being installed. They represent the original unstressed condition of the Floridan aquifer. Petitioners have posited that the City's proposed new wells will draw poorer water quality from the east into the area of the western wellfield and into their own wells. This theory suggests that chloride contamination is based on lateral intrusion, rather than "upconing" of poor quality water from below. The modeling, as well as experience in management of the City's existing wellfield, with one peculiar exception, disprove that theory. Monitoring of the eastern wellfield has not shown significant lateral movement of the lower quality water. The higher chloride levels appear confined to the production wells themselves. Success of the City's backplugging program also suggests that the chloride is moving up from below, rather than laterally. When wells experiencing higher chlorides in the eastern wellfield have been allowed to rest for short periods, the heavier chloride-laden water subsides back into the lower zones of the aquifer, and water quality is immediately improved when pumping resumes. Lateral intrusion problems resolve more slowly since horizontal movement through the aquifer is quite slow. The predominant natural groundwater flow in this region is from west to east, and lateral instrusion from east to west would have to flow against the natural gradient of the pieziometric surface. This fact is acknowledged in an informative although perhaps somewhat outdated, 1968 treatise co-authored by Deseret's expert, William F. Lichtler, Water Resources of Orange County, Florida, (Holland exhibit #20, p. 127) The District performed a geochemical pattern analysis of the City's wells to determine the relative dominance of calcium chloride versus sodium chloride. Water in the recesses of the lower Floridan aquifer is relic seawater, characterized by a predominant sodium chloride content. A fault or fracture along the St. Johns River to the east of the wellfield has allowed relic seawater to move upward into the upper Floridan in that area. The lower reaches of the upper Floridan contains water with calcium chloride content where fresh water from the western recharge area has moved in to displace the relic sea water, but which, because of its age, has picked up calcium ions from the limestone through which it has traversed. The chloride water found in the City's wells is predominately calcium chloride, drawn upwards, rather than laterally, through the aquifer. An anomaly occurs in the monitor well C, close to wells 7A, 13 and 14, where upconing occurred between depths of 1351 and 1357 feet BLS, and not between depths of 1044 and 1050 feet BLS. Chlorides concentration occurred, however, in Cocoa well 14 accross the road at depths of only 252 to 761 feet BLS. Deseret's expert claims that this is explained by the fact that chlorides have travelled horizontally from the east into well 14. The City's experts conjecture that the better water quality in the deeper zone and abrupt decrease in quality is caused by a dead pocket of fresh water, removed from the usual exchange and flow system, or a lens of fresh water similar to that which has occurred in other areas of the state even when no pumping stress is found. The weight of evidence supports the City's position that degradation of water quality is occurring primarily through upconing, and very insubstantially through lateral intrusion. This means that the City's proposed plan to reduce withdrawals from the existing eastern wellfield Floridan aquifer wells, redistributing pumping over the new wellfield configuration, continuing to backplug wells with elevated chlorides and submitting a wellfield operations plan pursuant to the District's recommended conditions, will improve existing conditions in the eastern wellfield. The proposed withdrawals in the western wellfield should not draw the poorer quality water westerly into Petitioner's wells. Saline water intrusion or encroachment is considered significant when a consumptive use causes chloride concentrations to exceed 250 milligrams per liter (mg/l), the state standard for drinking water. The City's solute transport model comparing existing permitted withdrawals to the proposed consumptive use reveals that the modeled area having chloride concentration exceeding 250 mg/l will substantially decrease from 3.4% to .4%, and the modeled area having chloride concentration between 50 and 150 mg/l will increase from 34.2% of the area to about 37% of the area. These predictions do not take into consideration the additional improvements which will occur by rehabilitating the eastern wellfield Floridan aquifer wells. The water quality in the Intermediate aquifer remains very good, and lack of a good hydraulic connection with the underlying Floridan makes it extremely unlikely that higher chloride concentrations will be moved from the Floridan into the Intermediate and surficial aquifers. Proposed use of the six ASR wells will not harm the quality of the groundwater underlying the Dyal treatment plant. It is more likely that injection of partially treated drinking water will help flush out the brackish water in the area. Petitioners did not perform modeling or other analysis demonstrating that water quality impacts from the City's proposed consumptive use are any different from those presented by the City. As with the groundwater flow model, Petitioner's experts instead sought to impeach the presumptions and techniques employed by the City's consultants in the solute transport model. Some of these are the same as used in MODFLOW. Although qualified as experts in solute transport modeling, Petitioner's witnesses have no experience in using the model, USGS MOC, at issue in this proceeding. The City proposes three new monitor wells in its 1988 and 1989 applications: one each in the eastern and western wellfield, and a third to be located north of the wellfield, somewhere between the wellfield and the Orange County landfill. These and existing monitor wells will facilitate monitoring of the flow of lower quality water. The District's conditions drafted in February 1990 to address the City's application, as amended, prescribe a detailed water quality monitoring regimen, including the submittal of water quality test results to the District prior to production withdrawals from any of the proposed Floridan aquifer wells in the eastern and western wellfields. Certain supply and monitor wells are required to be sampled and analyzed, with the results to be sent to the District semi-annually. The wellfield operation program which will be developed by the City and approved by the District must include the provision that the eastern wellfield Floridan aquifer wells will not pump more than 5.20 MGD on a combined average annual basis and the western wellfield Floridan aquifer wells will not pump more than 2.07 MGD each on an average annual basis. These conditions and the condition that the City must mitigate any adverse water quality impacts caused by its withdrawals will protect Petitioners and other existing legal users. Environmental Impacts of the Proposed Consumptive Use District staff and the City's consultants conducted field investigations in the one mile corridor of Deseret's property, the center of which is the site of existing and proposed City Intermediate aquifer wells. This area is characterized by improved pasture land, pine flatwoods, citrus groves, freshwater marsh, wetland mixed forest, cypress sloughs and domes, freshwater swamps, and borrow pits and ditches. Land uses found in this area are forestry, livestock production, citrus production, sod production, landscape plant harvesting, hunting and fishing leases, and borrow pit operation. Vegetation and land uses on Holland's property are improved pasture, citrus groves, pine flatwoods and pine/palmetto rangeland, mixed hardwood wetland, cypress forest, wetland mixed forest, wet prairie, and ponds and borrow pits. The land use existing on the individual Petitioner's property is low density single family residential. In order to analyze the impact of withdrawals on vegetation and land uses, the City's consultants looked at rainfall data and water level data from three monitor wells, performed a double mass analysis for each of the three wells, examined operation records of the City's Intermediate aquifer well 7T, and made field site visits to the properties. The double mass analysis compares cumulative well stages with cumulative rainfall for the available period of record. The analysis plots the cumulative sum of one set of data against the other set of data over a common period of time. A trend line is established from the plot, and a change in the slope of the double mass line implies a change in the relationship between the two data sets. Double mass analysis is used in the fields of biology, botany and ecology to examine how groundwater and surface water levels are affected by man-made activities--in this case, pumping. Changes in water levels can in turn affect natural biological systems. The three monitoring wells selected in the analysis were installed by and maintained by the USGS for the purpose of monitoring the City wellfield. One is located in the center of the pumping area, and the other two are outside the influence of the wellfield. Rainfall data was collected from the National Oceanographic and Atmospheric Agency (NOAA) station at the Orlando International Airport, within ten miles of the center of the City's wellfield. This is the closest station with a continuous record dating back 30 or more years, the period covered by the City's pumping history. Data used in the analysis was appropriate. The analysis establishes that historical operation of the Cocoa wellfield under progressively greater withdrawals has had no discernible impact on the water table. Pumping from Intermediate Aquifer well 7T did not impact water table elevations in monitoring well Cocoa M, approximately one-half mile away, indicating that drawdown from Intermediate Aquifer wells is very localized. Historic water table declines have been the result of rainfall deficits, and as to Deseret's and Holland's properties specifically, due to the landowners' and others' drainage practices. A number of large ditches and pits have been constructed throughout Deseret's property, mostly located within improved pasture and interspersed wetlands. Ditches, five feet deep, and swales, one to two feet deep, have been constructed on Holland's property to lower the water table elevation in the grove area and to promote runoff and reduce ponding in the pastures. In addition, there are major drainage works in the vicinity of Holland's property and the Lake Mary Jane area less than one mile from the western boundary of Holland's property. These works include the Disston Canal and various U.S. Army Corps of Engineer projects constructed in the 1960's and 1970's to control flooding. Because water table decline due to pumping is highly localized (confined to an approximate one-half mile radius), pumping from the City's Intermediate aquifer wells will have no measurable effect on Holland's or the individual Petitioners' property. Upper Floridan withdrawals will have no measurable effect on the water table, surface water levels, vegetation or land use because the Floridan is not well connected hydraulically to the overlying regions. The City's proposed withdrawals will not cause land collapse or sinkholes, as the area is not hydrologically prone to such, and these phenomena have not occurred during the history of the wellfield. Land collapse or subsidence caused by a reduction in water levels is a specific adverse impact required by the District to be mitigated in its proposed permit conditions. The Petitioners have presented no evidence of modeling or other analysis indicating drawdowns or water table impacts different from those presented by the City or the District. The Petitioners presented no experts qualified in the fields of botany, biology or ecology. The District's proposed permit conditions #28-38 dictate detailed evaluation methods to determine the impact of the City's Intermediate aquifer wells on wetlands and vegetation. This involves the installation of pieziometers and gauges in selected wetlands, and installation of a rain gauge at the Wewahootee pump station to record daily rainfall data for the duration of the permit. Data must be reported to the District. Vegetative monitoring is required for a period of one year prior to the operation of any Intermediate aquifer wells other than 2T, 3T and 7T. Standing and Other Matters Petitioners failed to prove that they will suffer an immediate injury in fact of the type which this proceeding is designed to protect if the City's CUP application is approved subject to the District's 1990 proposed permit conditions. Rather than present affirmative evidence of actual injury, they attempted in a thorough manner to discredit the findings of the City's studies and the District's review. Modeling and predictive analysis such as that provided by the City and the District may be imperfect, but the ultimate conclusions are supported by the weight of evidence. In the unlikely event that, as suggested by Petitioners, the City has been so reckless as to pick and choose parameters to "fix" the results of its studies, this folly will quickly be exposed in the monitoring performed under the District's conditions. The District's recommended permit conditions are appropriate regulatory requirements to assure that the City's proposed use will not cause unmitigated adverse impacts. The City has accepted those conditions. The conditions proposed by Holland and Keller, et al., and by Deseret, are already covered within the District's conditions or are unnecessary. The City has proven its entitlement to the permit it seeks.

Recommendation Based on the foregoing, it is hereby RECOMMENDED: That a Final Order be entered, approving the City of Cocoa's application for consumptive use permit, as amended in November 1989, and with the conditions proposed by District staff in February 1990; and dismissing the petitions of Deseret, Holland, and Keller, et al.. DONE AND RECOMMENDED this 26th day of October, 1990, in Tallahassee, Leon County, Florida. MARY CLARK Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904)488-9675 Filed with the Clerk of the Division of Administrative Hearings this 26th day of October, 1990. APPENDIX The following constitute specific rulings on the findings of fact proposed by the parties. Findings Proposed by Deseret Adopted in paragraph 1. Adopted in paragraph 2. 3.-5. Adopted in paragraph 3. 6. Adopted in paragraph 1. 7.-11. Adopted in substance in paragraph 8. Rejected as unnecessary. Adopted in paragraph 9. Adopted in paragraph 10. Adopted in paragraph 13. 16.-17. Rejected as unnecessary. 18. Adopted in paragraph 13. 19.-46. The parties' stipulation is included in the record of this proceeding. The legal descriptions of the well sites are established without dispute and need not be repeated here. Adopted in paragraph 15. Adopted in paragraph 9. 49.-50. Adopted in paragraph 3. Adopted in paragraph 30. Adopted in paragraph 19; except for the second sentence, which is rejected as contrary to the weight of evidence. 53.-54. Adopted in part in paragraphs 58 and 77, otherwise rejected as unnecessary. 55. Adopted in paragraph 60. 56.-58. Rejected as unnecessary. 59.-70. Rejected as contrary to the weight of evidence. Adopted in substance in paragraph 30. Addressed in part in paragraph 90, otherwise rejected as contrary to the weight of evidence. Adopted in substance in paragraph 31. 74.-84. Rejected as unnecessary or contrary to the weight of evidence. 85. Adopted in substance in paragraph 78. 86.-91. Rejected as unnecessary or contrary to the weight of evidence. 92.-96. Addressed in summary in paragraph 90, but the conclusion with regard to the cause is rejected as contrary to the weight of evidence. 97.-105. Rejected as contrary to the weight of evidence or unnecessary. 106.-110. Addressed in paragraph 63; however, the conclusions reflected in these paragraphs, with regard to the reasonableness of the calibration, are rejected as contrary to the weight of evidence. 111.-116. Rejected as unnecessary or contrary to the weight of evidence. Findings Proposed by Holland and Keller, et al. Adopted in paragraph 1. Adopted in paragraph 2. 3.-4. Rejected as unnecessary. Adopted in paragraph 3. Adopted in paragraph 4. Adopted in paragraph 1. Adopted in paragraph 7. 9.-10. Adopted in substance in paragraph 8. 11. Adopted in paragraph 10. 12.-13. Adopted in paragraph 30. 14.-15. Adopted in paragraph 8. Adopted in paragraph 13. Adopted in paragraph 14. Adopted in paragraph 13. Adopted in paragraph 14. Rejected as unnecessary. 21.-24. Adopted in paragraph 9. 25.-30. Addressed in Preliminary Statement. Adopted in summary in paragraph 4. Adopted in summary in paragraph 5. Rejected as unnecessary. 34.-50. Rejected as unnecessary or contrary to the weight of evidence. 51.-52. Adopted in paragraph 30. Rejected as unnecessary. Adopted in substance in paragraph 31. 55.-66. Rejected as unnecessary or contrary to the weight of evidence. 67. Adopted in paragraphs 67 and 70. 68.-96. Rejected as unnecessary or contrary to the weight of evidence. Findings Proposed by the City of Cocoa 1.-4. Adopted in paragraphs 1 and 7. Rejected as unnecessary. Adopted in paragraph 10. 7.-8. Adopted in substance in paragraph 8. 9.-17. Rejected as unnecessary. 18.-26. Adopted in paragraphs 13-16. 27. Adopted in paragraph 2. 28.-45. Addressed in summary in Preliminary Statement. Adopted in paragraph 19. Adopted in paragraph 27. 48.-49. Adopted in paragraph 25. 50. Adopted in paragraph 28. 51.-52. Adopted in paragraph 29. 53.-54. Adopted in paragraph 36. Adopted in paragraph 37. Rejected as cumulative. Adopted in paragraph 38. 58.-60. Adopted in paragraph 40. Adopted in paragraph 39. Adopted in paragraph 39. Adopted in paragraph 38. Adopted in substance in paragraph 41. Adopted in substance in paragraph 45. Adopted in substance in paragraph 42. Adopted in substance in paragraph 44. Adopted in substance in paragraph 42. 69.-77. Rejected as unnecessary. Adopted in paragraph 47. Rejected as contrary to the weight of evidence. Adopted in paragraph 47. 81.-82. Adopted in paragraph 48. 83. Adopted in paragraph 47. 84.-85. Rejected as unnecessary. Adopted in paragraph 46. Adopted in paragraph 45. 88.-89. Adopted in paragraph 34. 90.-91. Adopted in paragraph 35. 92.-93. Rejected as unnecessary. 94.-96. Adopted in paragraph 33. Rejected as cumulative. Adopted in paragraph 53. 99.-101. Adopted in paragraph 54. 102.-104. Rejected as cumulative. 105.-108. Adopted in substance in paragraph 56. 109.-110. Adopted in paragraph 57. 111. Adopted in paragraph 60. 112.-113. Adopted in paragraph 62. Adopted in paragraphs 60, 65 and 66. Rejected as unnecessary. 116.-117. Adopted in paragraph 61. 118. Rejected as unnecessary. 119. Adopted in paragraph 65. 120.-126. Rejected as unnecessary. 127.-128. Adopted in paragraph 75. 129. Adopted in paragraph 65. 130.-140. Rejected as unnecessary. 141. Adopted in paragraph 66. 142.-144. Rejected as unnecessary. 145.-146. Adopted in paragraph 74. 147.-148. Adopted in paragraph 67. 149.-150. Adopted in paragraph 68. 151. Adopted in paragraph 69. 152.-160. Adopted in paragraph 70. 161.-162. Rejected as cumulative. 163. Adopted in paragraph 64. 164. Rejected as cumulative. 165. Adopted in paragraph 64. 166.-167. Rejected as cumulative. 168.-174. Adopted in substance in paragraph 71. 175. Adopted in paragraph 72. 176. Rejected as contrary to the weight of evidence. 177.-179. Adopted in paragraph 73. 180. Adopted in paragraph 74. 181.-183. Rejected as cumulative. 184.-185. Adopted in substance in paragraph 76. 186.-187. Adopted in paragraphs 30 and 31. 188.-190. Rejected as unnecessary. 191. Adopted in paragraph 31. 192. Rejected as unnecessary. 193.-194. Adopted in paragraph 31. 195. Rejected as unnecessary. 196.-197. Adopted in paragraph 77. 198.-199. Adopted in paragraph 78. 200.-201. Adopted in paragraph 79. 202.-203. Rejected as cumulative. 204. Adopted in paragraph 85. 205. Rejected as unnecessary. 206. Addressed in paragraph 90. 207. Adopted in paragraph 85. 208.-209. Adopted in paragraph 91. 210. Rejected as unnecessary. 211.-212. Adopted in paragraph 96. 213.-218. Adopted in substance in paragraph 92. 219.-223. Adopted in paragraph 79. 224. Adopted in paragraph 95. 225. Adopted in paragraph 92. 226. Adopted in paragraph 93. 227. Rejected as cumulative. 228.-229. Adopted in paragraph 97. 230. Adopted in paragraph 98. 231. Adopted in paragraphs 100.-101. 232. Adopted in paragraph 102. 233. Adopted in paragraph 103. 234. Rejected as contrary to the weight of evidence and unnecessary. 235.-236. Adopted in paragraph 114. 237. Adopted in paragraph 107. Adopted in paragraph 106. Adopted in paragraph 105. Adopted in paragraph 108. 241.-243. Adopted in paragraph 109. 244. Adopted in paragraph 105. 245.-246. Rejected as unnecessary. 247. Adopted in paragraph 112. 248.-253. Adopted in paragraph 111. 254.-261. Adopted in substance in paragraph 113. 262. Adopted in paragraph 115. 263.-264. Rejected as unnecessary. 265. Adopted in paragraph 52. 266. Adopted in paragraph 51. 267. Adopted in paragraph 55. 268. Rejected as cumulative and unnecessary. 269.-274. Rejected as cumulative or unnecessary. 275.-279. Adopted in paragraph 116. 280. Adopted in paragraphs 118. and 119. Findings Proposed by St. Johns River Water Management District Adopted in paragraphs 1. and 7. Adopted in paragraph 1. Adopted in paragraph 7. Adopted in paragraph 10. Adopted in substance in paragraph 8. 6.-7. Adopted in paragraph 11. 8.-9. Rejected as unnecessary. Adopted in paragraph 12. Rejected as unnecessary. 12.-13. Adopted in paragraph 12. Adopted in paragraph 19. Adopted in paragraph 21. Adopted in paragraph 22. Adopted in paragraph 23. Adopted in paragraph 24. Adopted in paragraphs 25. and 26. Adopted in paragraph 26. 21.-22. Adopted in paragraph 28. 23.-24. Adopted in paragraphs 13. and 14. 25.-26. Rejected as unnecessary. 27. Adopted in paragraph 29. 28.-31. Rejected as cumulative or unnecessary. Adopted in paragraph 9. Rejected as unnecessary. Adopted in paragraph 28. Adopted in paragraph 7. Adopted in paragraph 36. Adopted in paragraph 37. Rejected as unnecessary. 39.-40. Adopted in paragraph 36. Adopted in paragraph 38. Adopted in paragraph 39. Adopted in paragraph 40. Adopted in paragraph 41. Adopted in paragraph 43. 46.-49. Adopted in substance in paragraph 47. 50. Adopted in paragraph 49. 51.-53. Rejected as cumulative or unnecessary. Adopted in paragraph 47. Rejected as unnecessary. 56.-57. Rejected as unnecessary or cumulative. Adopted in paragraph 46. Adopted in paragraph 45. Adopted in paragraph 52. Adopted in paragraph 51. Adopted in paragraph 55. Adopted in paragraph 35. Adopted in paragraph 34. Adopted in paragraph 32. Adopted in paragraph 33. Adopted in paragraph 54. 68.-69. Adopted in paragraph 56. 70. Adopted in paragraph 57. 71.-72. Adopted in paragraph 60. 73. Adopted in paragraph 61. 74.-76. Adopted in summary in paragraph 70. 77. Adopted in paragraph 65. 78.-80. Rejected as unnecessary. 81. Adopted in paragraph 75. 82.-83. Adopted in paragraph 63. 84.-85. Rejected as unnecessary. 86. Adopted in paragraph 60. 87.-89. Adopted in paragraph 66. 90. Adopted in paragraph 67. 91.-92. Adopted in paragraph 68. Adopted in paragraph 69. Rejected as cumulative. Adopted in paragraph 70. Rejected as cumulative. 97.-98. Adopted in paragraph 70. Adopted in paragraph 57. Adopted in paragraph 64. 101.-102. Rejected as unnecessary and cumulative. 103.-106. Adopted in paragraph 71. 107. Adopted in paragraph 72. 108.-109. Adopted in paragraph 73. 110. Adopted in paragraph 76. 112.-113. Adopted in paragraph 71. 113.-115. Adopted in paragraphs 30, 31 and 77. Rejected as unnecessary. Adopted in paragraph 31. 118.-120. Rejected as unnecessary or cumulative. 121. Adopted in paragraph 77. 122.-123. Adopted in paragraph 78. Adopted in paragraph 80. Adopted in paragraph 85. Adopted in paragraph 84. Adopted in paragraph 86. 128.-129. Adopted in paragraph 85. 130. Adopted in paragraph 87. 131.-132. Adopted in paragraph 88. 133. Adopted in paragraph 89. 134.-135. Adopted in paragraph 93. 136.-138. Adopted in paragraph 94. 139. Adopted in paragraph 95. 140.-141. Adopted in paragraph 97. 142. Adopted in paragraph 111. 143.-147. Adopted in paragraph 100. 148. Adopted in paragraph 102. 149. Adopted in paragraph 103. 150.-151. Adopted in paragraph 104. 152.-155. Adopted in paragraph 108. 156.-159. Adopted in paragraph 109. 160.-165. Rejected as cumulative or unnecessary. 166. Adopted in paragraph 112. 167. Adopted in paragraph 113. 168.-169. Adopted in paragraph 118. 170. Adopted in paragraph 116. Copies furnished: Kathryn L. Mennella, Esquire P.O. Box 1429 Palatka, FL 32078-1429 Robert Morrison, Esquire Donald Morrison, Esquire P.O. Box 3628 Orlando, FL 32802 Frederick Reeves, Esquire 202 Madison St. Tampa, FL 33602 Richard A. & Judith Pearce 14147 Nell Road Orlando, FL 32832 Edward P. de la Parte, Jr., Esquire David M. Caldevilla, Esquire 705 E. Kennedy Blvd. P.O. Box 172537 Tampa, FL 33672-0537 Henry Dean, Executive Director St. Johns River Water Mgmt. District P.O. Box 1429 Palatka, FL 32178-1429

Florida Laws (5) 120.57373.019373.042373.223373.226 Florida Administrative Code (1) 40C-2.301
# 9
DEPARTMENT OF ENVIRONMENTAL REGULATION vs. DUDLEY P. HARDY, J. D. ODOM, JR., ET AL., 82-000908 (1982)
Division of Administrative Hearings, Florida Number: 82-000908 Latest Update: Dec. 06, 1992

The Issue Whether Respondents have violated Chapter 403, Florida Statutes by dredge and fill activities at Sampson Lake, Bradford County, Florida, and should therefore be subject to corrective action and costs, as set forth in Notice of Violation and Orders for Corrective Action, dated March 4, 1982. This case arises from Petitioner's filing of a Notice of Violation and Orders for Corrective Action against Respondent Dudley P. Hardy on March 4, 1982, alleging that he conducted dredge and fill activities on property which he owned adjacent to Sampson Lake without obtaining a departmental permit for such activities. The notice further alleged that such activities created a stationary installation reasonably expected to be a source of pollution, and sought to have the Respondent take corrective action by restoring the affected area, and also to nay investigative costs, pursuant to Chapter 403, Florida Statutes. Respondent Hardy responded to the Notice of Violation and therein requested an informal administrative hearing pursuant to Section 120.57(2), Florida Statutes. He also averred that he only owned a one-half interest in the subject property, and that the other one-half interest was owned by J. D. Odom, Jr. and Vernie Phillips Odom, his wife. Based upon Petitioner's request, a formal hearing under Section 120.57(1), Florida Statutes, was scheduled for July 14-15, 1982, but pursuant to Petitioner's Motion for Continuance, the hearing was rescheduled for August 12- 13, 1982, by Order dated May 24, 1982. Petitioner thereafter amended its notice of violation to include J. D. Odom, Jr. and Vernie Phillips Odom as Respondents in the proceeding as indispensable parties. By Order dated July 7, 1982, Petitioner's Motion for Leave to Amend was granted. By Order of Consolidation dated April 28, 1982, this case was consolidated with five other cases involving similar activities at Sampson Lake. (DOAH Cases Nos. 82-907and 02-909 - 82-912) However, prior to the scheduled hearing, counsel for Petitioner advised the Hearing Officer that the other cases had been resolved by consent orders. At the hearing, Respondent J. D. Odom, Jr. appeared without counsel and was advised of his rights in a Chapter 120 administrative proceeding. He acknowledged his understanding of such rights and elected to proceed without counsel. Petitioner presented the testimony of three witnesses and submitted ten exhibits. Respondent testified in his own behalf and submitted two exhibits. After the conclusion of the hearing, Respondent J. Odom submitted a letter to the Hearing Officer, dated August 17, 1982, which enclosed a copy of a survey which had been previously received in evidence as Petitioner's Exhibit 1, and photographs which had not been received in evidence at the hearing. Petitioner filed a Motion to Strike these matters, and the motion is hereby partially granted. The additional photographs presented by Respondent can not be taken into consideration in this Recommended Order because they were not admitted in evidence at the hearing. Petitioner's post-hearing Proposed Findings of Fact, Conclusions of Law, and Proposed Recommended Order has been fully considered, and those portions not adopted herein are deemed either unnecessary or irrelevant, or unsupported in law or fact. In like manner, the statements made by Respondent Odom in his post-hearing letter that are unrelated to the photographs have been fully considered.

Findings Of Fact By warranty deed, dated March 12, 1980, Sampson Lake Properties, Inc. conveyed a parcel of the land located in Bradford County, Florida to Respondent, Dudley P. Hardy. The property is bordered by Sampson Lake on the west and Rowell Canal on the south. By warranty deed, dated July 10, 1980, Hardy conveyed an undivided one-half interest in the property to Respondents J. D. Odom, Jr. and Vernie Phillips Odom, his wife. (Testimony of J. Odom, Petitioner's Exhibits 5-6, Respondents' Exhibit 1) Rowell Canal is a man-made canal which is designated as Class III waters of the State, and connects lakes Rowell and Sampson, also Class III waters of the State. Lakes Sampson and Rowell are natural lakes that are owned by more than one person. Each lake is larger than ten acres with an average depth of more than two feet existing throughout the year, and neither becomes dry each year. (Testimony of Scott, Farmer, Petitioner's Exhibit 1) Respondents' property lies immediately west of a railroad right-of-way, and a railroad ditch lies parallel to the property next to a railroad trestle. The ditch was approximately 45 feet wide at Rowell Canal and some 215 feet long at the time Respondents acquired the property. (Testimony of Scott, Farmer) At some undisclosed date in 1981, Respondent J. Odom widened and deepened the west side of the ditch with a backhoe in order to create a canal which would enable him to launch boats at the Rowell Canal. The dirt removed from the ditch was piled along the side of the newly created canal. When finished, the canal was some 213 feet long, 20 to 30 feet wide, with depths ranging from 2 to 7 feet. At the present time, a natural earthen plug remains between the excavated canal and the Rowell Canal. During the rainy season, water overflows the plug and any waters from the Odom Canal would interchange to some degree with those of Rowell Canal. (Testimony of Scott, Farmer, Barber, Petitioner's Composite Exhibit 2, Respondents' Composite Exhibit 2) Respondent Odom did not apply for a permit to conduct the dredging and filling activities on his property. After Petitioner became aware of the situation in September, 1981, two members of the enforcement section of Petitioner's St. Johns River Subdistrict visited the site and determined that the Department had enforcement jurisdiction due to the fact that the dominant vegetation for approximately the first hundred feet of Respondents' canal from Rowell Canal to the north was a band of cypress trees (Taxodium Sp.). Such a wetland species serves as a guide to determining the landward extent of waters of the State, pursuant to Rules 17-4.02(17) and 17-4.28, Florida Administrative Code. There is also a large number of pine trees on the property. Thereafter, by letter of November 30, 1981, Petitioner's St. Johns River Subdistrict Manager sent a letter to Respondent Hardy placing him on notice concerning unauthorized dredging and filling activities. (Testimony of Scott, Farmer, Petitioner's Exhibits 3-4, Respondents' Exhibit 2) By warranty deed, dated July 26, 1982, Respondent Hardy conveyed his interest in the property to J. D. Odom, Jr. and Vernie Phillips Odom. (Testimony of Farmer, Petitioner's Exhibit 7) On August 10, 1982, DER personnel took dissolved oxygen readings of the dredged canal. Analysis of the water samples reflected depressed dissolved oxygen levels throughout the canal in violation of water quality standards for Class III waters. (Testimony of Farmer, Petitioner's Exhibit 9) A dead-end canal reasonably can be expected to cause pollution due to the fact that organic matter decays on the bottom and becomes a nutrient trap, thus depressing the dissolved oxygen in the water. During the inspection by DER personnel, gas bubbles were observed in the canal, thus indicating the presence of hydrogen sulphate, which is indicative of anaerobic conditions. The presence of fish in the canal at the present time indicates there is enough dissolved oxygen to sustain life, however. (Testimony of Scott, Farmer, Petitioner's Exhibit 9) Until a few years ago, Sampson Lake had not been developed. However, at the present time many canals have been built and Petitioner has issued twelve notices of violations in the area. Canals such as that of Respondents' can be expected to have an adverse cumulative impact on the waters of Rowell Canal and Sampson Lake due to the entry of water containing excessive nutrients. (Testimony of Barber) Respondent Odom Intended to remove the earthen plug at the end of his canal in order to gain access to Rowell Canal from his proposed cement boat ramp to provide access to Sampson Lake. About twelve to fifteen years ago, a dam was built on Sampson Lake to control the water level. Prior to construction of the dam, a road existed around the lake which could be driven upon approximately 50 percent of the time during dry season. At the present time, Respondent can transport a boat through his property to Rowell Canal with difficulty because of the existing trees. Prior to the dredge and fill activity of Respondent, a boat could be moved through the property to Rowell Canal, generally in the area where the present dredged canal is located. (Testimony of Respondent Odom) Petitioner expended $132.34 in costs of investigating Respondents' dredging and filling activities. (Testimony of Barber, Petitioner's Exhibit 10)

Recommendation That Petitioner issue a final order requiring Respondents to take corrective action with regard to their dredge and fill activities as specified in the Notice of Violation and Orders for Corrective Action, and to pay departmental investigative costs, but withhold the effective date thereof to provide Respondents a period of thirty days to make application for an "after- the-fact" permit pursuant to Rule 17-4.28, F.A.C. If they fail to make such application within the required period, the final order should then become effective. If application is made, the effect of the final order should be staved until conclusion of proceedings on the application. DONE and ENTERED this 7th day of September, 1982, in Tallahassee, Florida. THOMAS C. OLDHAM Division of Administrative Hearings The Oakland Building 2009 Apalachee Parkway Tallahassee, Florida 32301 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 7th day of September, 1982. COPIES FURNISHED: Cynthia K. Christen, Esquire Assistant General Counsel and Michael Tammaro, Certified Legal Intern DePartment of Environmental Regulation Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32301 Dudley P. Hardy, Esquire Post Office Drawer 1030 Starke, Florida 32091 J. D. Odom, Jr. and Vernie Phillips Odom, his wife Post Office Box 517 Starke, Florida 32091 Victoria Tschinkel, Secretary Department of Environmental Regulation Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32301 ================================================================= AGENCY FINAL ORDER ================================================================= STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION STATE OF FLORIDA, DEPARTMENT OF ENVIRONMENTAL REGULATION, Petitioner, vs. CASE NO. 82-908 DUDLEY P. HARDY, J.D. ODOM, JR., and VERNIE PHILLIPS ODOM, Respondents. /

Florida Laws (4) 120.57403.087403.141403.161
# 10

Can't find what you're looking for?

Post a free question on our public forum.
Ask a Question
Search for lawyers by practice areas.
Find a Lawyer