Elawyers Elawyers
Ohio| Change
Find Similar Cases by Filters
You can browse Case Laws by Courts, or by your need.
Find 49 similar cases
DEPARTMENT OF ENVIRONMENTAL REGULATION vs. COMMUNITIES FINANCIAL CORPORATION, ET AL., 79-001560 (1979)
Division of Administrative Hearings, Florida Number: 79-001560 Latest Update: May 14, 1980

Findings Of Fact Respondent Communities Financial Corporation is a Florida corporation engaged in the subdivision and sale of real property. In 1971 CFC purchased approximately twenty-two sections, or 22 square miles, of real property ("the land") in Township 34 South, Range 33 East, Okeechobee County, Florida, which it proposed to sell as individual one-and-one-quarter (1-1/4) acre lots. The subsequent development of that land is the subject of this proceeding. Respondent Coquina Water Management District ("Coquina") was organized pursuant to Chapter 298, Florida Statutes, by judgment of the Circuit Court for Okeechobee County, Florida to perform drainage activities on the land. The land which CFC purchased in 1971 was originally platted in 1912 in a grid system with roads, drainage canals, and ditches. Extensive drainage was required for use of the land because it was very flat and had a high water table. Approximately one-half of the land was subject to flooding. After it was originally platted it was utilized for cattle ranching with drainage ditches connecting the low areas to encourage runoff. Ten-acre tracts surrounded by dikes and two to three foot deep ditches were used for tomato farming. Such agricultural ditching covered approximately 15 square miles of the property. At one time a hotel was situated on a portion of the property. North-South and East-West roads and a 5,000-foot airstrip were constructed across the property. The East-West road along the South boundary of the property, which is now a state road, has an adjacent drainage ditch which received ranchland water runoff from property east of the land. In 1971 and 1972 CFC registered the platted lots for sale with the Division of Florida Land Sales and Condominiums ("Land Sales") of the State of Florida Department of Business Regulation. In the normal course of compiling the documentation to be submitted for registration, CFC contacted several state regulatory agencies to determine whether such agencies required CFC to obtain permits for development of the property. CFC provided those agencies copies of its drainage plans, which included roads, swales, canals, and control structures. The State of Florida Department of Natural Resources ("DNR") stated that the construction of improvements as planned in the development would not be subject to that agency's jurisdiction for purposes of a dredge and/or fill permit. The State of Florida Department of Pollution Control ("DPC"), predecessor of DER, first stated in a letter of October 4, 1971, to Mr. Moseley Collins, who submitted a "plan of reclamation to DPC, that it had no regulatory responsibilities over the project: In response to your request for comments this Department has conducted a preliminary review of the proposed plan. We have no basic objections to the overall plan of development and believe it could be platted as shown. Specific details as to drainage techniques will be reviewed at a latter [sic] date. It is brought to you [sic] attention that although we have no regulatory responsibili- ties in this area we will welcome the opportunity to review cross sections and details at a latter [sic] date. We thank you for the opportunity to review a project of this magnitude at an early date. [Emphasis added.] The DPC, in a letter of March 30, 1972, to Collins, also observed that: This Department has conducted a review of the revised plan for the subject project and endorse the approach that you are contemplating in developing these areas. I have coordinated with other agencies and organizations and they concur with the approach. We would like to review the project at a future date to deter- mine the method of construction of the swales or greenways to move the water from one lake to another through the complete watershed area. You and your client are to be commended on this approach. From the preliminary layout you can see the possibilities for the potential develop- ment of an area for residential usage that will retain a large percentage of the natural resources and minimize the downstream effect on the overall watershed. Please advise when you want to review the project in greater detail. [Emphasis added.] In connection with the registration of the development, CFC submitted to Land Sales the above-referenced letters from DNR and DPC, detailed evidence of the proposed plan of development, and a public offering statement for use in solicitation of lot sales from the general public. Each offering statement contains several statements to the effect that "this is not a homesite subdivision." Land Sales approved use of the offering statement. In using it to solicit sales, CFC committed to the purchasers that it would complete the required road and drainage improvements by December 31, 1979. CFC commenced sales of lots in the development in 1971. The Agreements for Deed approved by Land Sales and subsequently entered into by CFC with lot purchasers required CFC to deliver improved lots by December 31, 1979. Most of the land sales were made between 1971 and 1973. (6,412 lots were sold and 1,146 were conveyed by June 23, 1977.) Approximately eighty percent of the lots have been sold to date. Up to one-half of the approximately nine thousand lot purchasers hold legal title to their lots pursuant to deeds issued to them by CFC upon full payment. CFC began construction of the promised improvements, consisting of roads and drainage, in 1972. At the present time approximately $1,000,000 of improvements have been completed and approximately $750,000 remain to be completed. In 1973 or 1974, CFC and Coquina submitted plans for the surface water management system which CFC proposed to construct for the property to the South Florida Water Management District ("SFWMD"). The initial plan of development called for the construction of a road and canal system. At the request of SFWMD, the plan was subsequently changed to a road and swale system, and the configuration of one of the control structures was changed. The design changes resulted in more water retention on the property and the preservation of sensitive areas. After several years of analysis and review of the design plan, inspection of the project site, and a public hearing, SFWMD granted conceptual approval for the surface water management system to be constructed by CFC in 1977. The conceptual approval was partially based on the SFWMD staff's assessment than pollutant loadings from the property after development would be less than existing loadings, and that adverse water quality impacts as a result of the proposed development were unlikely. The 1977 SFWMD conceptual approval of the drainage plan for the development was followed by the issuance of a construction permit for the westernmost seven sections on March 15, 1979. Throughout this period construction was continuing. The drainage system as approved consists of grassed lot, roadside, and collector "swales" together with a retention area comprised of natural wetlands in the area of the property known as Ash Slough. The volume of water leaving the property after development will be the same as that leaving the property before development. The drainage conveyances are designed with gradually sloping sides, vary to widths of over 100 feet for the larger collector conveyances, and have depths varying from 2 feet for the "lateral" swales to 3 feet for the larger collector swales. The groundwater table in the area of the project site varies from zero to approximately 30 inches below ground surface. The swales were designed at the request of SFWMD in lieu of the canals proposed within the same easements in the original drainage plan for the development. It appears from the evidence that these drainage conveyances are designed so as to contain contiguous areas of standing or flowing water only following the occurrence of rainfall or flooding. Although some testimony indicated that these conveyances contained contiguous areas of standing water, these observations were made either at isolated times during the progress of construction or soon after a major hurricane passed through the area. Since the purpose of the "swales" is to facilitate drainage from the property, it would appear necessary from an engineering viewpoint to allow some period of time after construction of the swales for them to stabilize to make a valid determination that they will not function as designed. Accordingly, it would not appear unusual that the swales contain areas of standing water until they have been given ample opportunity to stabilize. On the basis of the record in this proceeding, a determination simply cannot be made at this point in time that the swales will not function as designed. Following DPC's initial determination of no jurisdiction in 1971 and 1972, it and DER, its successor agency, were not involved with the project until 1974, when DPC received an inquiry concerning land sales matters from the U.S. Department of Housing and Urban Development. In 1975, a DER staff member conducted a critical review of the Project and filed an internal memorandum faulting the project on the same essential grounds that are the basis for the Notice of Violation issued June 1, 1979. DER representatives participated in various SFWMD meetings from 1975 to 1977 when the conceptual approval of the drainage plan for the project was discussed. During this period, SFWMD forwarded copies of various materials dealing with the project to DER. Further, a DER representative attended the public hearing on September 8, 1977, when the conceptual approval of the project was granted by SFWMD. Respondents' first indication of DER's renewed interest in the development was a letter from DER Subdistrict Manager Warren Strahm to Robert Birenbaum on June 23, 1977. This letter stated, in part, that: The above referenced application/staff report has been supplied to this office by the South Florida Water Management District (SFWMD). It has been determined that your project is subject to Chapters 403 and/or 253, Florida Statutes. A review of drainage plans by our staff indicates the referenced project will comply with Chapter 403, Florida Statutes permit requirements for pollutant discharge. Since these plans have been incorporated into the SFWMD permit, no discharge permit or monitoring in addition to SFWMD permit requirement will be required by the Department at this time. It appears, however, that the referenced project may fall within the permitting requirements set forth in Chapter 17-4, Florida Administrative Code. Pursuant to F.A.C. 17-4.28(2) should any excavation take place in submerged lands or within the transitional zone of submerged lands, dredge and fill permits will be required by this Department prior to commencement of said activi- ties. [Emphasis added.] Please contact Mr. Roger G. Gallop, at the Fort Pierce Branch Office, telephone (305) 464-8525, at your convenience in order to discuss the need for a construction dredge and fill permit. Thank you for your cooperation. Three months later, in a letter from James Brindell to Coquina, Respondents were notified that: A review, by this agency, of the plans associated with your Surface Water Management Permit Applica- tion No. 02187-A indicates that permits will be required from the Department of Environmental Regulation pursuant to Chapter 403 and/or Chapter 253, Florida Statutes for the construction con- templated. Specifically, permits will be required for the construction and operation of discharge structures as well as for any dredging and/or filling in the waters of the state including the submerged lands and transitional zone of these submerged lands. Additionally, certification pursuant to section 401 of F.L. 92-500 may be required. Formal or conceptual appova1 of your project by the South Florida Water Management District does not imply that your project will satisfy the requirements of this agency. Please contact Mr. Warren G. Strahm, Subdistrict Manager, 3301 Gun Club Road, West Palm Beach, phone 305/689-5800, at your earliest convenience concerning application for these permits. (Emphasis added). This letter was followed one-and-one-half months later by a "Letter of Notice" from DER advising Respondents that DER had reason to believe the project was in violation of Chapter 403, Florida Statutes, and requesting CFC to cease any further work. Throughout this series of correspondence, CFC and Coquina maintained that DER did not have permit jurisdiction. This position was reasserted in a letter of November 1, 1977, from Emerson Allsworth, counsel for Coquina, to DER. During this period, numerous meetings were held involving representatives of Respondents and DER in which Respondents were urged by DER to apply for permits. Respondents failed to do so, and, on June 1, 1979, DER issued its Notice of Violation. Natural drainage from the property occurs southwestward into an area known as Ash Slough; southward from the central portion of the property into Gore Slough; and from the northeast section of the property into Company Slough. The headwaters of both Ash Slough and Gore Slough originate on the project site and periodically extend off Respondents' property to the south to join the waters of Chandler Slough. Chandler Slough, in turn, eventually empties into Lake Okeechobee 11 to 15 miles from the property. Company Slough also extends off the project site eastward onto the lands of others. There is, however, insufficient evidence in this record from which to conclude that Company Slough regularly exchanges flow with any other body of water. A "slough", as that term is used in the context of this proceeding, is a surface conveyance pathway for waters whose lateral boundaries are not as well-defined as a stream bed, and whose rate of flow is relatively slow. Due to the flat topography of the project site, Ash, Gore and Company Sloughs have imprecise boundaries, and their rates of flow appear to range at various times from very slow to nonexistent. By Cease and Desist Order dated March 28, 1978, the United States Army Corps of Engineers required Respondents to halt any further work then being conducted on the project, asserting that work in progress at that time was being conducted in waters of the United States, including adjacent wetlands, without first having acquired a permit from the Corps of Engineers. This Order provided, in part, that: Section 301(a) of the [Federal Water Pollution Control Act Amendments of 1972] makes it unlawful to discharge dredged or fill material into waters of the United States unless author- ized by a Section 404 permit issued by the Secretary of the Army acting through the Chief of Engineers. Section 10 of the River and Harbor Act of 1899 prohibits the excavation or depositing of material or erecting any struc- tures in navigable waters of the United States unless authorized by a Department of the Army permit. The work referred to in the paragraph above is deemed to have occurred in waters subject to these statutory requirements without the requisite permits and is considered unlaw- ful by this office. Prior to 25 July, the Corps of Engineers limited the requirement for Section 404 type permits to areas either below the mean high water line in tidal areas or below the ordinary high water line of rivers and streams which either now sup- port, had supported, or were capable of supporting interstate commerce. However, on 25 July 1975, the regulatory juris- diction of the District was expanded to all waters of the United States and adjacent wetlands. [Emphasis add.] Subsequently, however, by memorandum dated May 17, 1978, the United States Army Corps of Engineers determined that it did not have jurisdiction over Respondent's activities for the following reasons: In the northeast and eastern portion of the tract the flagponds and saw grass prairies are isolated with no discernible drainage sloughs or patterns. The other area of concern, in the south west sector, contains isolated ponds and an old man-made drainage canal that comprises shallow, intermittent potholes above the natural headwaters of Ash and Gore Sloughs. There was no recognizable flow in any part of the canal and the point at which average annual flow appear to be 5 c.f.s. or greater is located to the south a considerable distance from the subject tract. The project, as proposed, will not destroy or threaten any endangered species or their habitat nor adversely impact water quality of the ultimate receiving waters in Kissimmee River and Lake Okeechobee. In 1971, the Soil Conservation Service of the United States Department of Agriculture classified Ash and Gore Sloughs, as well as Fish Slough, to which Company Slough is alleged by DER to connect, as "intermittent". This determination is supported by hydrological data compiled by the South Florida Water Management District which shows no net flow in Chandler Slough for as many as six months in 1975 and four months in 1976. In the South Florida Water Management District report concerning flow patterns in Chandler Slough, it was pointed out that: The climate in this portion of Florida is subtropical with warm summers and moderate winters. Rainfall is seasonal with about 75 percent of the total occur- ring in a well-defined wet season, from May to October. This distribution of rainfall results in considerable surface water flow during part of the year. During the late winter and early spring many of the creeks and sloughs, such as Chandler Slough, become completely dry. [Emphasis added.] In addition, testimony in the record in this proceeding establishes that on at least one occasion during the time in which construction on the property was being conducted, Company Slough was completely dry. There is no data in the record quantifying the annual flow of water from Ash and Gore Sloughs into Chandler Slough. Further, there is no evidence concerning the periodicity of any such water exchanges between Ash and Gore Sloughs and Chandler Slough. As indicated above, the evidence establishes that Chandler Slough, which is the larger collector slough into which both Ash and Gore sloughs allegedly discharge, periodically becomes "completely dry." DER witnesses testified that they had observed contiguous areas of standing water in Ash, Gore and Company Sloughs during visits to the site, and had also determined the existence of an exchange of waters between Ash, Gore and Company Sloughs with other sloughs connecting to Chandler Slough by analyzing aerial photographs. However, those aerial photographs were not made a part of the record in this proceeding. Additionally, the relatively few visits to the site by these witnesses, in the absence of validly derived data establishing pertinent flow rates, is insufficient to establish "normal" conditions in the area. This is especially true in light of the aforementioned countervailing determinations based upon data compiled by the United States Army Corps of Engineers, the United States Department of Agriculture and the South Florida Water Management District. The evidence shows that some of the types of vegetation listed in DER's vegetation indices by which DER determines whether areas are "submerged lands" or "transitional zones" of submerged lands have been found on the project site. Among the types of vegetation observed in and around Ash, Gore and Company Sloughs are maidencane, water willow, pickerelweed, button bush, saw grass and St. John's wort. Although these species were detected in some locations by visual observation, apparently no attempt was made to quantify these plants vis-a-vis other vegetative types, nor were any physical measurements made to locate their boundaries. In a report dated August 26, 1977, the SFWMD attempted to identify the acreage, but not boundaries, of wetlands on the development site. The findings of that report show that approximately 2,014 of 14,080 acres, or 14.3 percent of the total site, contains wetlands vegetation. The report also indicates that the wetlands vegetation is scattered in different locations over the site, with the median occurrence being 68 acres per 640-acre section. DER presented quantified evidence showing turbidity readings in the Ash Slough area of the development during the construction of swales in August, 1979, of 325 Jackson Units and November and December, 1979, of 155 and 176 Jackson Units, respectively. It should be noted that these readings were performed after the filing of the Notice of Violation herein. Although samples of August 6, 1979, were taken without a background sample in Ash Slough, the evidence establishes that background readings in Ash Slough were less than 25 Jackson Units. The evidence clearly establishes that DER's water quality sampling and analysis were conducted in accordance with applicable requirements of Chapter 17, Florida Administrative Code. The evidence establishes that these readings are attributable to construction of swales and control structures and would not be expected to continue after completion of construction. There is no evidence to show the duration of the discharges resulting in these turbidity readings, nor is there any showing of actual damage to animal, plant or aquatic life. Petitioner and Respondent have submitted proposed findings of fact in this proceeding. To the extent that those findings of fact are not adopted in this Recommended Order, they have been specifically rejected as being either irrelevant to the issues in this cause, or as not having been supported by the evidence.

Florida Laws (12) 120.57380.06380.12403.031403.061403.062403.087403.088403.121403.161403.803403.813
# 1
CITY OF ORLANDO AND DEPARTMENT OF ENVIRONMENTAL REGULATION vs. DEPARTMENT OF ENVIRONMENTAL REGULATION, 76-001573 (1976)
Division of Administrative Hearings, Florida Number: 76-001573 Latest Update: Jul. 11, 1977

The Issue Whether Petitioner should be granted a water pollution operation permit for the Bennett Road Sewage Treatment Facility under Chapter 403, Florida Statutes.

Findings Of Fact Petitioner owns and operates a sewage treatment plant known as the Bennett Road Sewage Treatment Facility in Orlando, Florida. The plant was originally built in the 1950's and its method of treatment has been modified and improved over the years. At the present time, the plant serves about 60 percent of the sewage treatment needs of the city. The sewage is first treated for the removal of biological compounds by means of trickling filters, followed by chemical treatment for removal of BOD, suspended solids, and phosphorus. In the latter process, aluminum sulfate is used, together with a polymer to assist in forming larger particles for more rapid settlement. These processes are followed by final settling, clorination and discharge through an outfall pipe approximately five miles to the Crane Strand Creek and thence to the Little Econlockhatchee River (Little Econ) which meets the Big Econlockhatchee River approximately twelve miles downstream and flows into the St. Johns River twenty- seven miles downstream. About 60 percent of the flow from Crane Strand Creek into the Little Econ is derived from the Bennett Road plant and there is no other significant source of pollutants from the remainder of the discharge. (Testimony of Jewett, Matthes, Petitioner's Composite Exhibits 1,2) In 1973, Respondent's predecessor, the State Department of Air and Water Pollution Control, issued a temporary operation permit to Petitioner, subject to certain conditions, for the Bennett Road plant. The permit was effective until June 1, 1976, "or sooner pursuant to the permittee upgrading his facility to provide 90 percent treatment and obtaining an operation permit in accordance with the rules and regulations of the Department Of Pollution Control." On May 7, 1976, Petitioner submitted an application for an operation permit wherein it was stated that the facility would be abandoned as soon as the Orlando Easterly Regional Facilities were constructed with a new treatment plant to be located in the vicinity of Iron Bridge Road. Respondent's manager of the St. Johns River District advised Petitioner by letter of July 21, 1976, of the Department's intent to deny the application for an operating permit. The reasons given were that (1) available data was insufficient to show sustained secondary treatment as defined in Chapter 403, Florida Statutes, and Chapter 17- 3, Florida Administrative Code; and (2) the facility's discharge caused violation of Section 17-3.09(3), F.A.C. The latter provision establishes one of the criteria for classification of Class III waters and provides generally that the concentration of dissolved oxygen in all such surface waters shall not average less than 5 mg/l in a twenty-four hour period and never less than 4 mg/l. Class III waters are designated in Rule 17-3.09 as "Recreation - propagation and management of fish and wildlife." In its above-mentioned letter, Respondent suggested that the Petitioner apply for a temporary operation permit. Petitioner chose to request an administrative hearing on the proposed denial and did so by petition filed herein on August 5, 1976. At the commencement of the hearing, the parties orally stipulated that Petitioner has been meeting the statutory and regulatory requirements as to secondary treatment so as to warrant withdrawal of Respondent's objection to granting the permit on that ground. The parties also agreed that the only matter remaining in issue is the question of whether Petitioner's discharge violates water quality criteria. (Petitioner's Exhibits 6,7) Petitioner began consideration of the need to replace or expand the Bennett Road plant about 1968. These plans have reached a stage where the Petitioner is now in the process of purchasing land and concluding a planning study required under federal law to construct a regional facility to service the eastern part of Orlando and a few of the northerly communities, including some in Seminole County. Such regionalization of sewage treatment facilities is encouraged by the federal government which provides 75 percent of the funding necessary for construction under Public Law 92-500 . It is anticipated that the proposed facility will be completed in 1980 at which time the Bennett Road plant will cease operations. The regional facility is to be located at Iron Bridge Road and its discharge would flow into the Little Econ several miles downstream of the present Bennett Road discharge. (Testimony of Matthes, Schneider, Petitioner's Composite Exhibit 2) Operation permits have been granted from 1971 to 1976 to a number of sewage treatment plants that will tie-in to the proposed regional facility. These permits were issued even though the discharge of most of the plants did not meet water quality standards. However, practically no secondary treatment plant can meet water quality standards in Central Florida without an extensive mathematical "modeling." These calculations made by Respondent are formulated from surveys of the body of water in question and result in what is termed "a waste load allocation." This term deals with a treatment standard that is computed to ascertain the assimilative capacity of a receiving body of water to take in pollutants from a particular source in order that water quality standards in terms of dissolved oxygen levels may be maintained. The waste load allocation is the standard which the treatment from the source must perform before it can be discharged. None of the above-mentioned plants nor the Bennett Road plant had been provided an assigned waste load allocation at the time of Respondent's adverse action on Petitioner's application. Neither had it been a past requirement of Respondent to require information concerning dissolved oxygen from an applicant in order to issue an operation permit. However, a preliminary survey of the Little Econ had been completed by Respondent by February 1976, and from this, a mathematical model was later computed based on chemical analysis of water samples taken from designated areas in that body of water. In the aforesaid permits that were granted, a clause provided that the plants would have to work with the City of Orlando in resolving discharge problems and cooperate in the achievement of a regional system. Although water quality criteria had not changed in recent years, they had not been enforced because Respondent had had insufficient background water data. At the time Petitioner's permit application was recommended for denial, the primary basis therefor was the fact that the Bennett Road plant had not then reached 90 percent treatment capability over a sustained period. The question of water quality was incidental in view of the fact that that office did not then have the final determination of water quality as evidenced by the intensive survey of the Little Econ and the final math modeling. (Testimony of Jewett, Davenport; Petitioner's Exhibit 4) By interoffice memorandums from the Respondent's Director of the Division of Environmental Permitting to district and subdistrict managers, dated January 28 and April 13, 1976, Subject: Temporary Operating Permits, the said managers were instructed that no operating permits should be issued for any source not achieving secondary treatment of its wastes or not meeting water quality standards. In such cases, only temporary operating permits were to be issued. Further, it was stated in the April 13 memorandum that enforcement action would be initiated against municipal facilities if they were either not achieving 90 percent removal Of BOD and suspended solids or not meeting water quality requirements, and had either (1) not applied for a federal grant, (2) was not following up to ensure receipt of the grant, or (3) had received a federal grant but was not expeditiously accomplishing the grant requirements. It was stipulated at the hearing that the memorandums had not been promulgated as rules by Respondent under Chapter 120, F.S. (Respondent's Exhibits 1, 2, Stipulation) Although the Little Econ is a highly degraded body of water, upstream of the Bennett Road discharge point it has a dissolved oxygen level of over 6 mg/l. After mixture with the Bennett Road discharge, the level drops to about 2 1/2 mg/l. Based upon the intensive survey taken by the Respondent in 1976, it was determined that water quality violations existed below the Bennett Road plant's discharge point but not above that point. It was further determined that the Bennett Road facility was contributing about 89 percent of the oxygen demanding substances in the system. In fact, the dissolved oxygen levels downstream from the Bennett Road discharge reached as low as one milligram per liter at several points. They ranged from that level up to approximately four and one-half milligrams per liter throughout the entire 27 miles of the system. The foregoing was the conclusion of Respondent's environmental specialist based on field data taken on August 30, 1976, at a time of the day when the dissolved oxygen levels would be at their highest. However, the drop in dissolved oxygen level to an even greater extent at certain points occurs in Respondent's mathematical model prediction that does not take into account any discharge from the Bennett Road plant. In fact, in such a "no discharge" situation, Respondent's prediction is that the dissolved oxygen level at points immediately following several control structures in the waters will produce an even greater drop than with the Bennett Road discharge taken into consideration. Although the control structures do not affect the actual oxygen demand on the system, they do increase the residence time of the water and permit substances to settle out. However, when the water flows over the dam, it creates reaeration that increases the oxygen level again. Therefore, although the control structures aggravate the problem, the Bennett Road discharge is in turn further aggravating the situation because some of the pollutants continue downstream. Part of the problem is due to the effect of deposits already on the bottom of the system and it is unknown to what extent they would be eliminated if the Bennett Road facility were taken out of the system. Although it is not anticipated that there would be a great rise in dissolved oxygen levels if the Bennett Road plant discharge were to be discontinued, Respondent's experts are of the opinion that there would be a definite increase in dissolved oxygen levels overall. Further, the field data and model predictions were based on high flow conditions but the 89 percent figure for pollutants from the Bennett Road facility was based on a low flow condition where it would be of more significance. Although the field data showed that at no point in the 27 mile course did the dissolved oxygen level of the water reach state standards of 5.0 milligrams per liter dissolved oxygen for Class III waters, the model prediction with no discharge from the Bennett Road facility shows that the dissolved oxygen level still would not meet state standards under high flow conditions. Under low flow conditions, though, the dissolved oxygen level without discharge from the Bennett Road plant would reach the state standards roughly halfway down the system. High flow conditions are more representative of an average of dissolved oxygen level during the year than under low flow conditions. The Bennett Road plant contributes approximately 60 percent of the total water flow reaching the St. Johns River. Even if the plant were to achieve advanced waste treatment standards, it still would not meet water quality standards. No evidence was presented as to the possibility of Petitioner using alternative methods of waste disposal, such as deep well injection, land irrigation, or the use of lakes and ponds. In fact, no discharge from the Bennett Road plant could be such as to raise the entire stream to meet the state requirement of 5.0 milligram per liter dissolved oxygen. (Testimony of Sawicki, Davenport, Armstrong, Horvath, Brown, Petitioner's Composite Exhibit 2, Respondent's Exhibit 3) An interoffice memorandum of Respondent's Grants section, dated October 28, 1976, pointed out that enforcement action had been shown to be a "great motivator in the area of bringing awareness to governmental agencies of their responsibilities in the field of pollution abatement." The memorandum sought compliance investigations of the various governmental entities within the area where the proposed regional sewage treatment system for East Orlando was to be undertaken, with recommendations that enforcement action be taken in the case of any violations of state standards. The memorandum further stated that enforcement action was already underway against the City of Orlando. The author of the memorandum denied that it was an attempt to force Respondent to proceed more vigorously with the regional system. (Testimony of Schneider, Petitioner's Exhibit 5) The Orange County Pollution Control Board requires variances from its rule that no treated effluent shall be discharged into the surface waters of the county. The Bennett Road plant operates under such a variance and at the present time is meeting county standards for sewage treatment. On May 19, 1976, the Orange County Assistant Pollution Control Director advised Respondent that the Bennett Road plant was meeting current state performance requirements and recommended approval of the operation permit. Although the county maintains records of the Little Econ River at various points, it has not used a mathematical model to determine whether the Bennett Road plant causes water quality violations. (Testimony of Sawicki, Petitioner's Exhibit 3)

Recommendation That the application of Petitioner City of Orlando, Florida for a water pollution operation permit for the Bennett Road sewage treatment facility be denied. DONE and ENTERED this 25th day of May, 1977, in Tallahassee, Florida. THOMAS C. OLDHAM Division of Administrative Hearings Room 530, Carlton Building Tallahassee, Florida 32304 (904) 488-9675 COPIES FURNISHED: Vance W. Kidder, Esquire Assistant General Counsel Department of Environmental Regulation 2562 Executive Circle East Montgomery Building Tallahassee, Florida Gretchen R. H. Vose, Esquire Assistant City Attorney 16 South Magnolia Avenue Post Office Box 793 Orlando, Florida 32802 ================================================================= AGENCY FINAL ORDER ================================================================= STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION CITY OF ORLANDO, FLORIDA, Petitioner, vs. CASE NO. 76-1573 STATE OF FLORIDA, DEPARTMENT OF ENVIRONMENTAL REGULATION, Respondent. /

Florida Laws (3) 120.57403.061403.088
# 2
LOIS SIMPSON vs. JOHN H. VOORHEES AND DEPARTMENT OF ENVIRONMENTAL REGULATION, 86-000599 (1986)
Division of Administrative Hearings, Florida Number: 86-000599 Latest Update: Feb. 17, 1987

Findings Of Fact The Department of Environmental Regulation (hereinafter "DER") issued a letter of "intent to issue" a permit based upon an application submitted by Respondent John H. Voorhees for a weedgate and associated fences to be placed at the mouth of the Hollerich Subdivision canal in Big Pine Key, Monroe County, Florida. The majority of owners of lots in the Hollerich Subdivision are in favor of the gate. The Hollerich Subdivision canal is approximately 1,200 feet long. it is an east-west dead-end canal with its mouth facing east. Floating seaweeds, grasses and detritus (a/k/a wrack are blown into the canal by the prevailing east and southeast winds. Although some surface wrack may blow back out of the canal with the occasional west wind, the sunken weeds will not. The accumulation of windblown wrack results in a stench caused by hydrogen sulfide gas from rotting weeds. The odor causes nausea, sore throats, and sneezing. Water quality tests of dissolved oxygen (DO) taken both in April 1985 and in November 1986 show the water in the canal to be below state standards. The low DO levels found in the canal are primarily due to the rotting weeds although the nutrients leaching from the surrounding yards also contribute to those low levels. The area outside the canal is better able to diffuse and absorb the wrack problem than the area inside the carnal. Accumulations of wrack outside the canal are more temporary and therefore produce less navigational difficulty and less deterioration of water quality. The navigational problems caused by weeds choking the canal range from difficulty in steering to poor visibility. The decaying wrack also causes growth on boat bottoms, can damage boat cooling systems, and turns the water in the canal red. The amount of wrack entering the canal and accumulating there has been increasing over the last five years. The proposed structure will stop wrack from entering the canal and will function as a weedgate. The design of the gate will not cause any navigational hazards, although the weedgate should have navigational aids to assure safety. Although the weedgate will not improve water quality in the canal so as to meet state standards, it will result in an improvement. DER has no jurisdiction to resolve property disputes. The proposed weedgate is to be placed in front of the canal with no on-land attachments, and Respondent Voorhees has given reasonable assurances that the proposed gate is not on privately owned property. The proposed structure will be placed in Class III Outstanding Florida Waters. DER has balanced the positive public interest effects that will accrue to the owners of property along the canal against the' negative public interest effects that may accrue to owners of property at the mouth of the canal. Respondent Voorhees has given reasonable assurances that the project will be clearly in the public interest. Respondent Voorhees has given reasonable assurances that the proposed project will meet all applicable DER rules and standards.

Recommendation Based upon the foregoing Findings of Fact and Conclusions of Law, it is, RECOMMENDED that a Final Order be entered (1), granting Respondent Voorhees' permit application and (2), authorizing the issuance of a permit subject to all permit conditions contained in the Department's letter of Intent to Issue the permit and also including the condition that no trespassing occur on the property at the mouth of the canal attendant to either the construction or the maintenance of the weedgate and associated fences. DONE and RECOMMENDED this 17th day of February, 1987, at Tallahassee, Florida. LINDA M. RIGOT, Hearing Officer Division of Administrative Hearings The Oakland Building 2009 Apalachee Parkway Tallahassee, Florida 32301 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 17th day of February, 1987. APPENDIX TO RECOMMENDED ORDER, CASE NOS. 86-0599, 86-0600, 86-0601, 86-0954, and 86-0955 l. Respondent Department of Environmental Regulation's proposed findings of fact numbered 1-5, 9, 10, 12-15, 17-20, the first and last sentences of 21, 23, 28, and 29 have been adopted in this Recommended Order either verbatim or in substance. The remainder of the Department's proposed findings have been rejected as follows: 6-8, 11 and 16, as being unnecessary for determination herein; the remainder of 21 and 22 as being immaterial to the issues herein; and 24-27 as being subordinate. 2. Respondent Voorhees' proposed findings of fact numbered l, 3, 8, and 13 have been adopted in this Recommended Order. The remainder of Voorhees' proposed findings of fact have been rejected as follows: 2 and 16 as being subordinate; 9 and 10 as being unnecessary; and 11, 12, 14 and 15 as not being supported by the evidence in this cause. COPIES FURNISHED: Douglas H. MacLaughlin, Esquire Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32301 John H. Voorhees Route 1, Box 612 F Big Pine Key, Florida 33043 H. Ray Allen, Esquire 618 Whitehead Street Key West, Florida 33040 Dale Twachtmann Secretary Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32301

Florida Laws (1) 120.57
# 3
KAREN AHLERS AND JERI BALDWIN vs SLEEPY CREEK LANDS, LLC AND ST. JOHNS RIVER WATER MANAGEMENT DISTRICT, 14-002609 (2014)
Division of Administrative Hearings, Florida Filed:Palatka, Florida Jun. 03, 2014 Number: 14-002609 Latest Update: Oct. 24, 2016

The Issue The issue to be determined is whether Consumptive Use Permit No. 2-083-91926-3, and Environmental Resource Permit No. IND-083-130588-4 should be issued as proposed in the respective proposed agency actions issued by the St. Johns River Water Management District.

Findings Of Fact The Parties Sierra Club, Inc., is a national organization, the mission of which is to explore, enjoy, and advocate for the environment. A substantial number of Sierra Club’s 28,000 Florida members utilize the Silver River, Silver Springs, the Ocklawaha River, and the St. Johns River for water-based recreational activities, which uses include kayaking, swimming, fishing, boating, canoeing, nature photography, and bird watching. St. Johns Riverkeeper, Inc., is one of 280 members of the worldwide Waterkeepers Alliance. Its mission is to protect, restore, and promote healthy waters of the St. Johns River, its tributaries, springs, and wetlands -- including Silver Springs, the Silver River, and the Ocklawaha River -- through citizen- based advocacy. A substantial number of St. Johns Riverkeeper’s more than 1,000 members use and enjoy the St. Johns River, the Silver River, Silver Springs, and the Ocklawaha River for boating, fishing, wildlife observation, and other water-based recreational activities. Karen Ahlers is a native of Putnam County, Florida, and lives approximately 15 miles from the Applicant’s property on which the permitted uses will be conducted. Ms. Ahlers currently uses the Ocklawaha River for canoeing, kayaking, and swimming, and enjoys birding and nature photography on and around the Silver River. Over the years, Ms. Ahlers has advocated for the restoration and protection of the Ocklawaha River, as an individual and as a past-president of the Putnam County Environmental Council. Jeri Baldwin lives on a parcel of property in the northeast corner of Marion County, approximately one mile from the Applicant’s property on which the permitted uses will be conducted. Ms. Baldwin, who was raised in the area, and whose family and she used the resources extensively in earlier years, currently uses the Ocklawaha River for boating. Florida Defenders of the Environment (FDE) is a Florida corporation, the mission of which is to conserve and protect and restore Florida's natural resources and to conduct environmental education projects. A substantial number of FDE’s 186 members, of which 29 reside in Marion County, Florida, use and enjoy Silver Springs, the Silver River, and the Ocklawaha Aquatic Preserve, and their associated watersheds in their educational and outreach activities, as well as for various recreational activities including boating, fishing, wildlife observation, and other water-based recreational activities. Sleepy Creek Lands, LLC (Sleepy Creek or Applicant), is an entity registered with the Florida Department of State to do business in the state of Florida. Sleepy Creek owns approximately 21,000 acres of land in Marion County, Florida, which includes the East Tract and the North Tract on which the activities authorized by the permits are proposed. St. Johns River Water Management District (SJRWMD or District) is a water-management district created by section 373.069(1). It has the responsibility to conserve, protect, manage, and control the water resources within its geographic boundaries. See § 373.069(2)(a), Fla. Stat. The Consumptive Use Permit The CUP is a modification and consolidation of two existing CUP permits, CUP No. 2-083-3011-7 and CUP No. 2-083- 91926-2, which authorize the withdrawal of 1.46 mgd from wells located on the East Tract. Although the existing CUP permits authorize an allocation of 1.46 mgd, actual use has historically been far less, and rarely exceeded 0.3 mgd. The proposed CUP modification will convert the authorized use of water from irrigation of 1,010 acres of sod grass on the East Tract, to supplemental irrigation of improved pasture for grass and other forage crops (approximately 97 percent of the proposed withdrawals) and cattle watering (approximately three percent of the proposed withdrawals) on the North Tract and the East Tract. An additional very small amount will be used in conjunction with the application of agricultural chemicals. CUP No. 2-083-3011-7 is due to expire in 2021. CUP No. 2-083-91926-2 is due to expire in 2024. In addition to the consolidation of the withdrawals into a single permit, the proposed agency action would extend the term of the consolidated permit to 20 years from issuance, with the submission of a compliance report due 10 years from issuance. Sleepy Creek calculated a water demand of 2.569 mgd for the production of grasses and forage crops necessary to meet the needs for grass-fed beef production, based on the expected demand in a 2-in-10 drought year. That calculation is consistent with that established in CUP Applicant’s Handbook (CUP A.H.) section 12.5.1. The calculated amount exceeds the authorized average allocation of 1.46 mgd. Mr. Jenkins testified as to the District’s understanding that the requested amount would be sufficient, since the proposed use was a “scaleable-type project,” with adjustments to cattle numbers made as necessary to meet the availability of feed. Regardless of demand, the proposed permit establishes the enforceable withdrawal limits applicable to the property. With regard to the East Tract, the proposed agency action reduces the existing 1.46 mgd allocation for that tract to a maximum allocation of 0.464 mgd, and authorizes the irrigation of 611 acres of pasture grass using existing extraction wells and six existing pivots. With regard to the North Tract, the proposed agency action authorizes the irrigation of 1,620 acres of pasture and forage grain crops using 15 center pivot systems. Extraction wells to serve the North Tract pivots will be constructed on the North Tract. The proposed North Tract withdrawal wells are further from Silver Springs than the current withdrawal locations. The proposed CUP allows Sleepy Creek to apply the allocated water as it believes to be appropriate to the management of the cattle operation. Although the East Tract is limited to a maximum of 0.464 mgd, there is no limitation on the North Tract. Thus, Sleepy Creek could choose to apply all of the 1.46 mgd on the North Tract. For that reason, the analysis of impacts from the irrigation of the North Tract has generally been based on the full 1.46 mgd allocation being drawn from and applied to the North Tract. The Environmental Resource Permit As initially proposed, the CUP had no elements that would require issuance of an ERP. However, in order to control the potential for increased runoff and nutrient loading resulting from the irrigation of the pastures, Sleepy Creek proposes to construct a stormwater management system to capture runoff from the irrigated pastures, consisting of a series of vegetated upland buffers, retention berms and redistribution swales between the pastures and downgradient wetland features. Because the retention berm and swale system triggered the permitting thresholds in rule 62-330.020(2)(d) (“a total project area of more than one acre”) and rule 62-330.020(2)(e) (“a capability of impounding more than 40 acre-feet of water”), Sleepy Creek was required to obtain an Environmental Resource Permit for its construction. Regional Geologic Features To the west of the North Tract is a geologic feature known as the Ocala Uplift or Ocala Platform, in which the limestone that comprises the Floridan aquifer system exists at or very near the land surface. Karst features, including subterranean conduits and voids that can manifest at the land surface as sinkholes, are common in the Ocala Uplift due in large part to the lack of consolidated or confining material overlaying the limestone. Water falling on the surface of such areas tends to infiltrate rapidly through the soil into the Floridan aquifer, occasionally through direct connections such as sinkholes. The lack of confinement in the Ocala Uplift results in few if any surface-water features such as wetlands, creeks, and streams. As one moves east from the Ocala Uplift, a geologic feature known as the Cody Escarpment becomes more prominent. In the Cody Escarpment, the limestone becomes increasingly overlain by sands, shell, silt, clays, and other less permeable sediments of the Hawthorn Group. The North Tract and the East Tract lie to the east of the point at which the Cody Escarpment becomes apparent. As a result, water tends to flow overland to wetlands and other surface water features. The Property The North and East Tracts are located in northern Marion County near the community of Fort McCoy. East Tract Topography and Historic Use The East Tract is located in the Daisy Creek Basin, and includes the headwaters of a small creek that drains directly to the Ocklawaha River. The historic use of the East Tract has been as a cleared 1,010-acre sod farm. The production of sod included irrigation, fertilization, and pest control. Little change in the topography, use, and appearance of the property will be apparent as a result of the permits at issue, but for the addition of grazing cattle. The current CUPs that are subject to modification in this proceeding authorize groundwater withdrawals for irrigation of the East Tract at the rate of 1.46 mgd. Since the proposed agency action has the result of reducing the maximum withdrawal from wells on the East Tract to 0.464 mgd, thus proportionately reducing the proposed impacts, there was little evidence offered to counter Sleepy Creek’s prima facie case that reasonable assurance was provided that the proposed East Tract groundwater withdrawal allocation will meet applicable CUP standards. There are no stormwater management structures to be constructed on the East Tract. Therefore, the ERP permit discussed herein is not applicable to the East Tract. North Tract Topography and Historic Use The North Tract has a generally flat topography, with elevations ranging from 45 feet to 75 feet above sea level. The land elevation is highest at the center of the North Tract, with the land sloping towards the Ocklawaha River to the east, and to several large wet prairie systems to the west. Surface water features on the North Tract include isolated, prairie, and slough-type wetlands on approximately 28 percent of the North Tract, and a network of creeks, streams, and ditches, including the headwaters of Mill Creek, a contributing tributary of the Ocklawaha River. A seasonal high groundwater elevation on the North Tract is estimated at 6 to 14 inches below ground surface. The existence of defined creeks and surface water features supports a finding that the North Tract is underlain by a relatively impermeable confining layer that impedes the flow of water from the surface and the shallow surficial aquifer to the upper Floridan and lower Floridan aquifers. If there was no confining unit, water going onto the surface of the property, either in the form of rain or irrigation water, would percolate unimpeded to the lower aquifers. Areas in the Ocala Uplift to the west of the North Tract, where the confining layer is thinner and discontiguous, contain few streams or runoff features. Historically, the North Tract was used for timber production, with limited pasture and crop lands. At the time the 7,207-acre North Tract was purchased by Sleepy Creek, land use consisted of 4,061 acres of planted pine, 1,998 acres of wetlands, 750 acres of improved pasture, 286 acres of crops, 78 acres of non-forested uplands, 20 acres of native forest, 10 acres of open water, and 4 acres of roads and facilities. Prior to the submission of the CUP and ERP applications, much of the planted pine was harvested, and the land converted to improved pasture. Areas converted to improved pasture include those proposed for irrigation, which have been developed in the circular configuration necessary for future use with center irrigation pivots. As a result of the harvesting of planted pine, and the conversion of about 345 acres of cropland and non-forested uplands to pasture and incidental uses, total acreage in pasture on the North Tract increased from 750 acres to 3,938 acres. Other improvements were constructed on the North Tract, including the cattle processing facility. Aerial photographs suggest that the conversion of the North Tract to improved pasture and infrastructure to support a cattle ranch is substantially complete. The act of converting the North Tract from a property dominated by planted pine to one dominated by improved pasture, and the change in use of the East Tract from sod farm to pasture, were agricultural activities that did not require a permit from the District. As such, there is no impropriety in considering the actual, legal use of the property in its current configuration as the existing use for which baseline conditions are to be measured. Petitioners argue that the baseline conditions should be measured against the use of the property as planted pine plantation, and that Sleepy Creek should not be allowed to “cattle-up” before submitting its permit applications, thereby allowing the baseline to be established as a higher impact use. However, the applicable rules and statutes provide no retrospective time-period for establishing the nature of a parcel of property other than that lawfully existing when the application is made. See West Coast Reg’l Water Supply Auth. v. SW Fla. Water Mgmt. Dist., Case No. 95-1520 et seq., ¶ 301 (Fla. DOAH May 29, 1997; SFWMD ) (“The baseline against which projected impacts conditions [sic] are those conditions, including previously permitted adverse impacts, which existed at the time of the filing of the renewal applications.”). The evidence and testimony in this case focused on the effects of the water allocation on the Floridan aquifer, Silver Springs, and the Silver River, and on the effects of the irrigation on water and nutrient transport from the properties. It was not directed at establishing a violation of chapter 373, the rules of the SJRWMD, or the CUP Applicant’s Handbook with regard to the use and management of the agriculturally-exempt unirrigated pastures, nor did it do so. Soil Types Soils are subject to classifications developed by the Soil Conservation Service based on their hydrologic characteristics, and are grouped into Group A, Group B, Group C, or Group D. Factors applied to determine the appropriate hydrologic soil group on a site-specific basis include depth to seasonal high saturation, the permeability rate of the most restrictive layer within a certain depth, and the depth to any impermeable layers. Group A includes the most well-drained soils, and Group D includes the most poorly-drained soils. Group D soils are those with seasonal high saturation within 24 inches of the soil surface and a higher runoff potential. The primary information used to determine the hydrologic soil groups on the North Tract was the depth to seasonal-high saturation, defined as the highest expected annual elevation of saturation in the soil. Depth to seasonal-high saturation was measured through a series of seven hand-dug and augered soil borings completed at various locations proposed for irrigation across the North Tract. In determining depth to seasonal-high saturation, the extracted soils were examined based on depth, color, texture, and other relevant characteristics. In six of the seven locations at which soil borings were conducted, a restrictive layer was identified within 36 inches of the soil surface. At one location at the northeastern corner of the North Tract, the auger hole ended at a depth of 48 inches -- the length of the auger -- at which depth there was an observable increase in clay content but not a full restrictive layer. However, while the soil assessment was ongoing, a back-hoe was in operation approximately one hundred yards north of the boring location. Observations of that excavation revealed a heavy clay layer at a depth of approximately 5 feet. In each of the locations, the depth to seasonal-high saturation was within 14 inches of the soil surface. Based on the consistent observation of seasonal-high saturation at each of the sampled locations, as well as the flat topography of the property with surface water features, the soils throughout the property, with the exception of a small area in the vicinity of Pivot 6, were determined to be in hydrologic soil Group D. Hydrogeologic Features There are generally five hydrogeologic units underlying the North Tract, those units being the surficial aquifer system, the intermediate confining unit, the upper Floridan aquifer, the middle confining unit, and the lower Floridan aquifer. In areas in which a confining layer is present, water falling on the surface of the land flows over the surface of the land or across the top of the confining layer. A surficial aquifer, with a relatively high perched water table, is created by the confinement and separation of surface waters from the upper strata of the Floridan aquifer. Surface waters are also collected in or conveyed by various surface water features, including perched wetlands, creeks, and streams. The preponderance of the evidence adduced at the final hearing demonstrates that the surficial aquifer exists on the property to a depth of up to 20 feet below the land surface (bls). Beneath the surficial aquifer is an intermediate confining unit of dense clay interspersed with beds of sand and calcareous clays that exists to a depth of up to 100 feet bls. The clay material observed on the North Tract is known as massive or structureless. Such clays are restrictive with very low levels of hydraulic conductivity, and are not conducive to development of preferential flow paths to the surficial or lower aquifers. The intermediate confining unit beneath the North Tract restricts the exchange of groundwater from the surficial aquifer to the upper Floridan aquifer. The upper Floridan aquifer begins at a depth of approximately 100 feet bls, and extends to a depth of approximately 340 feet bls. At about 340 feet bls, the upper Floridan aquifer transitions to the middle confining unit, which consists of finely grained, denser material that separates the interchange of water between the upper Floridan aquifer and the lower Floridan aquifer. Karst Features Karst features form as a result of water moving through rock that comprises the aquifer, primarily limestone, dissolving and forming conduits in the rock. Karst areas present a challenging environment to simulate through modeling. Models assume the subsurface to be a relatively uniform “sand box” through which it is easier to simulate groundwater flow. However, if the subsurface contains conduits, it becomes more difficult to simulate the preferential flows and their effect on groundwater flow paths and travel times. The District has designated parts of western Alachua County and western Marion County as a Sensitive Karst Area Basin. A Sensitive Karst Area is a location in which the porous limestone of the Floridan aquifer occurs within 20 feet of the land surface, and in which there is 10 to 20 inches of annual recharge to the Floridan aquifer. The designation of an area as being within the Sensitive Karst Area Basin does not demonstrate that it does, or does not, have subsurface features that are karstic in nature, or that would provide a connection between the surficial aquifer and the Floridan aquifer. The western portion of the North Tract is within the Sensitive Karst Area Basin. The two intensive-use areas on the North Tract that have associated stormwater facilities -- the cattle unloading area and the processing facility -- are outside of the Sensitive Karst Area Basin. The evidence was persuasive that karst features are more prominent to the west of the North Tract. In order to evaluate the presence of karst features on the North Tract, Mr. Andreyev performed a “desktop-type evaluation,” with a minimal field survey. The desktop review included a review of aerial photographs and an investigation of available data, including the Florida Geological Survey database of sinkhole occurrence in the area. The aerial photographs showed circular depressions suggestive of karst activity west and southwest of the North Tract, but no such depressions on the North Tract. Soil borings taken on the North Tract indicated the presence of layers of clayey sand, clays, and silts at a depth of 70 to 80 feet. Well-drilling logs taken during the development of the wells used for an aquifer performance test on the North Tract showed the limestone of the Floridan aquifer starting at a depth below ground surface of 70 to 80 feet. Other boring data generated on the North Tract suggests that there is greater than 100 feet of clay and sandy clay overburden above the Floridan aquifer on and in the vicinity of the North Tract. Regardless of site-specific differences, the observed confining layer separating the surficial aquifer from the Floridan aquifer is substantial, and not indicative of a karst environment. Aquifer performance tests performed on the North Tract were consistent in showing that drawdown in the surficial aquifer from the tests was minimal to non-detectable, which is strong evidence of an intact and low-permeability confining layer. The presence of well-developed drainage features on the North Tract is further evidence of a unit of confinement that is restricting water from going deeper into the subsurface, and forcing it to runoff to low-lying surface water features. Petitioners’ witnesses did not perform any site- specific analysis of karst features on or around the Sleepy Creek property. Their understanding of the nature of the karst systems in the region was described as “hypothetical or [] conceptual.” Dr. Kincaid admitted that he knew of no conduits on or adjacent to the North Tract. As a result of the data collected from the North Tract, Mr. Hearn opined that the potential for karst features on the property that provide an opening to the upper Floridan aquifer “is extremely remote.” Mr. Hearn’s opinion is consistent with the preponderance of the evidence in this case, and is accepted. In the event a surface karst feature were to manifest itself, Sleepy Creek has proposed that the surface feature be filled and plugged to reestablish the integrity of the confining layer. More to the point, the development of a surficial karst feature in an area influenced by irrigation would be sufficient grounds for the SJRWMD to reevaluate and modify the CUP to account for any changed conditions affecting the assumptions and bases for issuance of the CUP. Silver Springs, the Silver River, and the Ocklawaha River The primary, almost exclusive concern of Petitioners was the effect of the modified CUP and the nutrients from the proposed cattle ranch on Silver Springs, the Silver River, and the Ocklawaha River. Silver Springs Silver Springs has long been a well-known attraction in Florida. It is located just to the east of Ocala, Florida. Many of the speakers at the public comment period of this proceeding spoke fondly of having frequented Silver Springs over the years, enjoying its crystal clear waters through famous glass-bottomed boats. For most of its recorded history, Silver Springs was the largest spring by volume in Florida. Beginning in the 1970s, it began to lose its advantage, and by the year 2000, Rainbow Springs, located in southwestern Marion County, surpassed Silver Springs as the state’s largest spring. Silver Springs exists at the top of the potentiometric surface of the Floridan aquifer. Being at the “top of the mountain,” when water levels in the Floridan aquifer decline, groundwater flow favors the lower elevation springs. Thus, surrounding springshed boundaries expand to take more water to maintain their baseflows, at the expense of the Silver Springs springshed, which contracts. Rainbow Springs shares an overlapping springshed with Silver Springs. The analogy used by Dr. Knight was of the aquifer as a bucket with holes at different levels, and with the Silver Springs “hole” near the top of the bucket. When the water level in the bucket is high, water will flow from the top hole. As the water level drops below that hole, it will preferentially flow from the lower holes. Rainbow Springs has a vent or outlet from the aquifer, that is 10 feet lower in elevation than that of Silver Springs. Coastal springs are lower still. Thus, as groundwater levels decline, the lower springs “pirate flow” from the upper springs. Since the first major studies of Silver Springs were conducted in the 1950s, the ecosystem of Silver Springs has undergone changes. The water clarity, though still high as compared to other springs, has been reduced by 10 to 15 percent. Since the 1950s, macrophytic plants, i.e., rooted plants with seeds and flowers, have declined in population, while epiphytic and benthic algae have increased. Those plants are sensitive to increases in nitrogen in the water. Thus, Dr. Knight’s opinion that increases in nitrogen emerging from Silver Springs, calculated to have risen from just over 0.4 mg/l in the 1950s, to 1.1 mg/l in 2004, and to up to 1.5 mg/l at present,1/ have caused the observed vegetative changes is accepted. Silver River Silver Springs forms the headwaters for the Silver River, a spring run 5 1/2 miles in length, at which point it becomes a primary input to the Ocklawaha River. Issues of water clarity and alteration of the vegetative regime that exist at Silver Springs are also evident in the Silver River. In addition, the reduction in flow allows for more tannic water to enter the river, further reducing clarity. Dr. Dunn recognized the vegetative changes in the river, and opined that the “hydraulic roughness” caused by the increase in vegetation is likely creating a spring pool backwater at Silver Springs, thereby suppressing some of the flow from the spring. The Silver River has been designated as an Outstanding Florida Water. There are currently no Minimum Flows and Levels established by the District for the Silver River. Ocklawaha River The Ocklawaha River originates near Leesburg, Florida, at the Harris Chain of Lakes, and runs northward past Silver Springs. The Silver River is a major contributor to the flow of the Ocklawaha River. Due to the contribution of the Silver River and other spring-fed tributaries, the Ocklawaha River can take on the appearance of a spring run during periods of low rainfall. Historically, the Ocklawaha River flowed unimpeded to its confluence with the St. Johns River in the vicinity of Palatka, Florida. In the 1960s, as part of the Cross-Florida Barge Canal project, the Rodman Dam was constructed across the Ocklawaha River north of the Sleepy Creek property, creating a large reservoir known as the Rodman Pool. Dr. Knight testified convincingly that the Rodman Dam and Pool have altered the Ocklawaha River ecosystem, precipitating a decline in migratory fish populations and an increase in filamentous algae. At the point at which the Ocklawaha River flows past the Sleepy Creek property, it retains its free-flowing characteristics. Mill Creek, which has its headwaters on the North Tract, is a tributary of the Ocklawaha River. The Ocklawaha River, from the Eureka Dam south, has been designated as an Outstanding Florida Water. However, the Ocklawaha River at the point at which Mill Creek or other potential surface water discharges from the Sleepy Creek property might enter the river are not included in the Outstanding Florida Water designation. There are currently no Minimum Flows and Levels established by the District for the Ocklawaha River. The Silver Springs Springshed A springshed is that area from which a spring draws water. Unlike a surface watershed boundary, which is fixed based on land features, contours, and elevations, a springshed boundary is flexible, and changes depending on a number of factors, including rainfall. As to Silver Springs, its springshed is largest during periods of more abundant rainfall when the aquifer is replenished, and smaller during drier periods when groundwater levels are down, and water moves preferentially to springs and discharge points that are lower in elevation. The evidence in this case was conflicting as to whether the North Tract is in or out of the Silver Springs springshed boundary. Dr. Kincaid indicated that under some of the springshed delineations, part of the North Tract was out of the springshed, but over the total period of record, it is within the springshed. Thus, it was Dr. Kincaid’s opinion that withdrawals anywhere within the region will preferentially impact Silver Springs, though he admitted that he did not have the ability to quantify his opinion. Dr. Knight testified that the North Tract is within the Silver Springs “maximum extent” springshed at least part of the time, if not all the time. He did not opine as to the period of time in which the Silver Springs springshed was at its maximum extent. Dr. Bottcher testified that the North Tract is not within the Silver Springs springshed because there is a piezometric rise between North Tract and Silver Springs. Thus, in his opinion, withdrawals at the North Tract would not be withdrawing water going to Silver Springs. Dr. Dunn agreed that the North Tract is on the groundwater divide for Silver Springs. In his view, the North Tract is sometimes in, and sometimes out of the springshed depending on the potentiometric surface. In his opinion, the greater probability is that the North Tract is more often outside of the Silver Springs springshed, with seasonal and year—to—year variation. Dr. Dunn’s opinion provides the most credible explanation of the extent to which the North Tract sits atop that portion of the lower Floridan aquifer that feeds to Silver Springs. Thus, it is found that the groundwater divide exists to the south of the North Tract for a majority of the time, and water entering the Floridan aquifer from the North Tract will, more often than not, flow away from Silver Springs. Silver Springs Flow Volume The Silver Springs daily water discharge has been monitored and recorded since 1932. Over the longest part of the period of record, up to the 1960s, flows at Silver Springs averaged about 800 cubic feet per second (cfs). Through 1989, there was a reasonable regression between rainfall and springflow, based on average rainfalls. The long-term average rainfall in Ocala was around 50 inches per year, and long-term springflow was about 800 cfs, with deviations from average generally consistent with one another. Between 1990 and 1999, the relationship between rainfall and springflow declined by about 80 cubic feet per second. Thus, with average rainfall of 50 inches per year, the average springflow was reduced to about 720 cfs. From 2000 to 2009, there was an additional decline, such that the total cumulative decline for the 20-year period through 2009 was 250 cfs. Dr. Dunn agreed with Dr. Knight that after 2000, there was an abrupt and persistent reduction in flow of about 165 cfs. However, Dr. Dunn did not believe the post-2000 flow reduction could be explained by rainfall directly, although average rainfall was less than normal. Likewise, groundwater withdrawals did not offer an adequate explanation. Dr. Dunn described a natural 30-year cycle of wetter and drier periods known as the Atlantic Multidecadal Oscillation (AMO) that has manifested itself over the area for the period of record. From the 1940s up through 1970, the area experienced an AMO wet cycle with generally higher than normal rainfall at the Ocala rain station. For the next 30-year period, from 1970 up to 2000, the Ocala area ranged from a little bit drier to some years in which it was very, very dry. Dr. Dunn attributed the 80 cfs decline in Silver Springs flow recorded in the 1990s to that lower rainfall cycle. After 2000, when the next AMO cycle would be expected to build up, as it did post—1940, it did not happen. Rather, there was a particularly dry period around 2000 that Dr. Dunn believes to have had a dramatic effect on the lack of recovery in the post-2000 flows in the Silver River. According to Mr. Jenkins, that period of deficient rainfall extended through 2010. Around the year 2001, the relationship between rainfall and flow changed such that for a given amount of rainfall, there was less flow in the Silver River, with flow dropping to as low as 535 cfs after 2001. It is that reduction in flow that Dr. Knight has attributed to groundwater withdrawals. It should be noted that the observed flow of Silver Springs that formed the 1995 baseline conditions for the North Central Florida groundwater model that will be discussed herein was approximately 706 cfs. At the time of the final hearing in August 2014, flow at Silver Springs was 675 cfs. The reason offered for the apparent partial recovery was higher levels of rainfall, though the issue was not explored in depth. For the ten-year period centered on the year 2000, local water use within Marion and Alachua County, closer to Silver Springs, changed little -- around one percent per year. From a regional perspective, groundwater use declined at about one percent per year for the period from 1990 to 2010. The figures prepared by Dr. Knight demonstrate that the Sleepy Creek project area is in an area that has a very low density of consumptive use permits as compared to areas adjacent to Silver Springs and more clearly in the Silver Springs springshed. In Dr. Dunn’s opinion, there were no significant changes in groundwater use either locally or regionally that would account for the flow reduction in Silver Springs from 1990 to 2010. In that regard, the environmental report prepared by Dr. Dunn and submitted with the CUP modification application estimated that groundwater withdrawals accounted for a reduction in flow at Silver Springs of approximately 20 cfs as measured against the period of record up to the year 2000, with most of that reduction attributable to population growth in Marion County. In the March 2014, environmental impacts report, Dr. Dunn described reductions in the stream flow of not only the Silver River, but of other tributaries of the lower Ocklawaha River, including the upper Ocklawaha River at Moss Bluff and Orange Creek. However, an evaluation of the Ocklawaha River water balance revealed there to be additional flow of approximately 50 cfs coming into the Ocklawaha River at other stations. Dr. Dunn suggested that changes to the vent characteristics of Silver Springs, and the backwater effects of increased vegetation in the Silver River, have resulted in a redistribution of pressure to other smaller springs that discharge to the Ocklawaha River, accounting for a portion of the diminished flow at Silver Springs. The Proposed Cattle Operation Virtually all beef cattle raised in Florida, upon reaching a weight of approximately 875 pounds, are shipped to Texas or Kansas to be fattened on grain to the final body weight of approximately 1,150 pounds, whereupon they are slaughtered and processed. The United States Department of Agriculture has a certification for grass—fed beef which requires that, after an animal is weaned, it can only be fed on green forage crops, including grasses, and on corn and grains that are cut green and before they set seed. The forage crops may be grazed or put into hay or silage and fed when grass and forage is dormant. The benefit of grass feeding is that a higher quality meat is produced, with a corresponding higher market value. Sleepy Creek plans to develop the property as a grass- fed beef production ranch, with pastures and related loading/unloading and slaughter/processing facilities where calves can be fattened on grass and green grain crops to a standard slaughter weight, and then slaughtered and processed locally. By so doing, Sleepy Creek expects to save the transportation and energy costs of shipping calves to the Midwest, and to generate jobs and revenues by employing local people to manage, finish, and process the cattle. As they currently exist, pastures proposed for irrigation have been cleared and seeded, and have “fairly good grass production.” The purpose of the irrigation is to enhance the production and quality of the grass in order to maintain the quality and reliability of feed necessary for the production of grass-fed beef. East Tract Cattle Operation The East Tract is 1,242 acres in size, substantially all of which was previously cleared, irrigated, and used for sod production. The proposed CUP permit authorizes the irrigation of 611 acres of pasture under six existing center pivots. The remaining 631 acres will be used as improved, but unirrigated, pasture. Under the proposed permit, a maximum of 1,207 cattle would be managed on the East Tract. Of that number, 707 cattle would be grazed on the irrigated paddocks, and 500 cattle would be grazed on the unirrigated improved pastures. If the decision is made to forego irrigation on the East Tract, with the water allocation being used on the North Tract or not at all, the number of cattle grazed on the six center pivot pastures would be decreased from 707 cattle to 484 cattle. The historic use of the East Tract as a sod farm resulted in high phosphorus levels in the soil from fertilization, which has made its way to Daisy Creek. Sleepy Creek has proposed a cattle density substantially below that allowed by application of the formulae in the Nutrient Management Plan in order to “mine” the phosphorus levels in the soil over time. North Tract Cattle Operation The larger North Tract includes most of the “new” ranch activities, having no previous irrigation, and having been put to primarily silvicultural use with limited pasture prior to its acquisition by Sleepy Creek. The ranch’s more intensive uses, i.e., the unloading corrals and the slaughter house, are located on the North Tract. The North Tract is 7,207 acres in size. Of that, 1,656 acres are proposed for irrigation by means of 15 center- pivot irrigation systems. In addition to the proposed irrigated pastures, the North Tract includes 2,382 acres of unirrigated improved pasture, of which approximately 10 percent is wooded. Under the proposed permit, a maximum of 6,371 cattle would be managed on the North Tract. Of that number, 3,497 cattle would be grazed on the irrigated paddocks (roughly 2.2 head of cattle per acre), and 2,374 cattle would graze on the improved pastures (up to 1.1 head of cattle per acre). The higher cattle density in the irrigated pastures can be maintained due to the higher quality grass produced as a result of irrigation. The remaining 500 cattle would be held temporarily in high-concentration corrals, either after offloading or while awaiting slaughter. On average, there will be fewer than 250 head of cattle staged in those high-concentration corrals at any one time. In the absence of irrigation, the improved pasture on the North Tract could sustain about 4,585 cattle. Nutrient Management Plan, Water Conservation Plan, and BMPs The CUP and ERP applications find much of their support in the implementation of the Nutrient Management Plan (NMP), the Water Conservation Plan, and Best Management Practices (BMPs). The NMP sets forth information designed to govern the day to day operations of the ranch. Those elements of the NMP that were the subject of substantive testimony and evidence at the hearing are discussed herein. Those elements not discussed herein are found to have been supported by Sleepy Creek’s prima facie case, without a preponderance of competent and substantial evidence to the contrary. The NMP includes a herd management plan, which describes rotational grazing and the movement of cattle from paddock to paddock, and establishes animal densities designed to maintain a balance of nutrients on the paddocks, and to prevent overgrazing. The NMP establishes fertilization practices, with the application of fertilizer based on crop tissue analysis to determine need and amount. Thus, the application of nitrogen- based fertilizer is restricted to that capable of ready uptake by the grasses and forage crops, limiting the amount of excess nitrogen that might run off of the pastures or infiltrate past the root zone. The NMP establishes operation and maintenance plans that incorporate maintenance and calibration of equipment, and management of high-use areas. The NMP requires that records be kept of, among other things, soil testing, nutrient application, herd rotation, application of irrigation water, and laboratory testing. The irrigation plan describes the manner and schedule for the application of water during each irrigation cycle. Irrigation schedules for grazed and cropped scenarios vary from pivot to pivot based primarily on soil type. The center pivots proposed for use employ high-efficiency drop irrigation heads, resulting in an 85 percent system efficiency factor, meaning that there is an expected evaporative loss of 15 percent of the water before it becomes available as water in the soil. That level of efficiency is greater than the system efficiency factor of 80 percent established in CUP A.H. section 12.5.2. Other features of the irrigation plan include the employment of an irrigation manager, installation of an on-site weather station, and cumulative tracking of rain and evapotranspiration with periodic verification of soil moisture conditions. The purpose of the water conservation practices is to avoid over application of water, limiting over-saturation and runoff from the irrigated pastures. Sleepy Creek has entered into a Notice of Intent to Implement Water Quality BMPs with the Florida Department of Agriculture and Consumer Services which is incorporated in the NMP and which requires the implementation of Best Management Practices.2/ Dr. Bottcher testified that implementation and compliance with the Water Quality Best Management Practices manual creates a presumption of compliance with water quality standards. His testimony in that regard is consistent with Department of Agriculture and Consumer Services rule 5M-11.003 (“implementation, in accordance with adopted rules, of BMPs that have been verified by the Florida Department of Environmental Protection as effective in reducing target pollutants provides a presumption of compliance with state water quality standards.”). Rotational Grazing Rotational grazing is a practice by which cattle are allowed to graze a pasture for a limited period of time, after which they are “rotated” to a different pasture. The 1,656 acres proposed for irrigation on the North Tract are to be divided into 15 center-pivot pastures. Each individual pasture will have 10 fenced paddocks. The 611 acres of irrigated pasture on the East Tract are divided into 6 center-pivot pastures. The outer fence for each irrigated pasture is to be a permanent “hard” fence. Separating the internal paddocks will be electric fences that can be lowered to allow cattle to move from paddock to paddock, and then raised after they have moved to the new paddock. The NMP for the North Tract provides that cattle are to be brought into individual irrigated pastures as a single herd of approximately 190 cattle and placed into one of the ten paddocks. They will be moved every one to three days to a new paddock, based upon growing conditions and the reduction in grass height resulting from grazing. In this way, the cattle are rotated within the irrigated pasture, with each paddock being used for one to three days, and then rested until each of the other paddocks have been used, whereupon it will again be used in the rotation. The East Tract NMP generally provides for rotation based on the height of the pasture grasses, but is designed to provide a uniform average of cattle per acre per year. Due to the desire to “mine” phosphorus deposited during the years of operation of the East Tract as a sod farm, the density of cattle on the irrigated East Tract pastures is about 30 percent less than that proposed for the North Tract. The East Tract NMP calls for a routine pasture rest period of 15 to 30 days. Unlike dairy farm pastures, where dairy cows traverse a fixed path to the milking barn several times a day, there will be minimal “travel lanes” within the pastures or between paddocks. There will be no travel lanes through wetlands. If nitrogen-based fertilizer is needed, based upon tissue analysis of the grass, fertilizer is proposed for application immediately after a paddock is vacated by the herd. By so doing, the grass within each paddock will have a sufficient period to grow and “flush up” without grazing or traffic, which results in a high—quality grass when the cattle come back around to feed. Sleepy Creek proposes that rotational grazing is to be practiced on improved pastures and irrigated pastures alike. The rotational practices on the improved East Tract and North Tract pastures are generally similar to those practiced on the irrigated pastures. The paddocks will have permanent watering troughs, with one trough serving two adjacent paddocks. The troughs will be raised to prevent “boggy areas” from forming around the trough. Since the area around the troughs will be of a higher use, Sleepy Creek proposes to periodically remove accumulated manure, and re-grade if necessary. Other cattle support items, including feed bunkers and shade structures are portable and can be moved as conditions demand. Forage Crop Production The primary forage crop on the irrigated pastures is to be Bermuda grass. Bermuda grass or other grass types tolerant of drier conditions will be used in unirrigated pastures. During the winter, when Bermuda grass stops growing, Sleepy Creek will overseed the North Tract pastures with ryegrass or other winter crops. Due to the limitation on irrigation water, the East Tract NMP calls for no over-seeding for production of winter crops. Crops do not grow uniformly during the course of a year. Rather, there are periods during which there are excess crops, and periods during which the crops are not growing enough to keep up with the needs of the cattle. During periods of excess, Sleepy Creek will cut those crops and store them as haylage to be fed to the cattle during lower growth periods. The North Tract management plan allows Sleepy Creek to dedicate one or more irrigated pastures for the exclusive production of haylage. If that option is used, cattle numbers will be reduced in proportion to the number of pastures dedicated to haylage production. As a result of the limit on irrigation, the East Tract NMP does not recommend growing supplemental feed on dedicated irrigation pivot pastures. Direct Wetland Impacts Approximately 100 acres proposed for irrigation are wetlands or wetland buffer. Those areas are predominantly isolated wetlands, though some have surface water connections to Mill Creek, a water of the state. Trees will be cut in the wetlands to allow the pivot to pass overhead. Tree cutting is an exempt agricultural activity that does not require a permit. There was no persuasive evidence that cutting trees will alter the fundamental benefit of the wetlands or damage water resources of the District. The wetlands and wetland buffer will be subject to the same watering and fertigation regimen as the irrigated pastures. The application of water to wetlands, done concurrently with the application of water to the pastures, will occur during periods in which the pasture soils are dry. The incidental application of water to the wetlands during dry periods will serve to maintain hydration of the wetlands, which is considered to be a benefit. Fertilizers will be applied through the irrigation arms, a process known as fertigation. Petitioners asserted that the application of fertilizer onto the wetlands beneath the pivot arms could result in some adverse effects to the wetlands. However, Petitioners did not quantify to what extent the wetlands might be affected, or otherwise describe the potential effects. Fertigation of the wetlands will promote the growth of wetland plants. Nitrogen applied through fertigation will be taken up by plants, or will be subject to denitrification -- a process discussed in greater detail herein -- in the anaerobic wetland soils. The preponderance of the evidence indicated that enhanced wetland plant growth would not rise to a level of concern. Since most of the affected wetlands are isolated wetlands, there is expected to be little or no discharge of nutrients from the wetlands. Even as to those wetlands that have a surface water connection, most, if not all of the additional nitrogen applied through fertigation will be accounted for by the combined effect of plant uptake and denitrification. Larger wetland areas within an irrigated pasture will be fenced at the buffer line to prevent cattle from entering. The NMP provided a blow-up of the proposed fencing related to a larger wetland on Pivot 8. Although other figures are not to the same scale, it appears that larger wetlands associated with Pivots 1, 2, 3, and 12 will be similarly fenced. Cattle would be allowed to go into the smaller, isolated wetlands. Cattle going into wetlands do not necessarily damage the wetlands. Any damage that may occur is a function of density, duration, and the number of cattle. The only direct evidence of potential damage to wetlands was the statement that “[i]f you have 6,371 [cattle] go into a wetland, there may be impacts.” The NMP provides that pasture use will be limited to herds of approximately 190 cattle, which will be rotated from paddock to paddock every two to three days, and which will allow for “rest” periods of approximately 20 days. There will be no travel lanes through any wetland. Thus, there is no evidence to support a finding that the cattle at the density, duration, and number proposed will cause direct adverse effects to wetlands on the property. High Concentration Areas Cattle brought to the facility are to be unloaded from trucks and temporarily corralled for inspection. For that period, the cattle will be tightly confined. Cattle that have reached their slaughter weight will be temporarily held in corrals associated with the processing plant. The stormwater retention ponds used to capture and store runoff from the offloading corral and the processing plant holding corral are part of a normal and customary agricultural activity, and are not part of the applications and approvals that are at issue in this proceeding. The retention ponds associated with the high-intensity areas do not require permits because they do not exceed one acre in size or impound more than 40 acre-feet of water. Nonetheless, issues related to the retention ponds were addressed by Petitioners and Sleepy Creek, and warrant discussion here. The retention ponds are designed to capture 100 percent of the runoff and entrained nutrients from the high concentration areas for a minimum of a 24—hour/25—year storm event. If rainfall occurs in excess of the designed storm, the design is such that upon reaching capacity, only new surface water coming to the retention pond will be discharged, and not that containing high concentrations of nutrients from the initial flush of stormwater runoff. Unlike the stormwater retention berms for the pastures, which are to be constructed from the first nine inches of permeable topsoil on the property, the corral retention ponds are to be excavated to a depth of six feet which, based on soil borings in the vicinity, will leave a minimum of two to four feet of clay beneath the retention ponds. In short, the excavation will penetrate into the clay layer underlying the pond sites, but will not penetrate through that layer. The excavated clay will be used to form the side slopes of the ponds, lining the permeable surficial layer and generally making the ponds impermeable. Organic materials entering the retention ponds will form an additional seal. An organic seal is important in areas in which retention ponds are constructed in sandy soil conditions. Organic sealing is less important in this case, where clay forms the barrier preventing nutrients from entering the surficial aquifer. Although the organic material is subject to periodic removal, the clay layer will remain to provide the impermeable barrier necessary to prevent leakage from the ponds. Dr. Bottcher testified that if, during excavation of the ponds, it was found that the remaining in-situ clay layer was too thin, Sleepy Creek would implement the standard practice of bringing additional clay to the site to ensure adequate thickness of the liner. Nutrient Balance The goal of the NMP is to create a balance of nutrients being applied to and taken up from the property. Nitrogen and phosphorus are the nutrients of primary concern, and are those for which specific management standards are proposed. Nutrient inputs to the NMP consist generally of deposition of cattle manure (which includes solid manure and urine), recycling of plant material and roots from the previous growing season, and application of supplemental fertilizer. Nutrient outputs to the NMP consist generally of volatization of ammonia to the atmosphere, uptake and utilization of the nutrients by the grass and crops, weight gain of the cattle, and absorption and denitrification of the nutrients in the soil. The NMP, and the various models discussed herein, average the grass and forage crop uptake and the manure deposition to match that of a 1,013 pound animal. That average weight takes into account the fact that cattle on the property will range from calf weight of approximately 850 pounds, to slaughter weight of 1150 pounds. Nutrients that are not accounted for in the balance, e.g., those that become entrained in stormwater or that pass through the plant root zone without being taken up, are subject to runoff to surface waters or discharge to groundwater. Generally, phosphorus not taken up by crops remains immobile in the soil. Unless there is a potential for runoff to surface waters, the nutrient balance is limited by the amount of nitrogen that can be taken up by the crops. Due to the composition of the soils on the property, the high water table, and the relatively shallow confining layer, there is a potential for surface runoff. Thus, the NMP was developed using phosphorus as the limiting nutrient, which results in nutrient application being limited by the “P-index.” A total of 108 pounds of phosphorus per acre/per year can be taken up and used by the irrigated pasture grasses and forage crops. Therefore, the total number of cattle that can be supported on the irrigated pastures is that which, as a herd, will deposit an average of 108 pounds of phosphorus per year over the irrigated acreage. Therefore, Sleepy Creek has proposed a herd size and density based on calculations demonstrating that the total phosphorus contained in the waste excreted by the cattle equals the amount taken up by the crops. A herd producing 108 pounds per acre per year of phosphorus is calculated to produce 147 pounds of nitrogen per acre per year. The Bermuda grass and forage crops proposed for the irrigated fields require 420 pounds of nitrogen per acre per year. As a result of the nitrogen deficiency, additional nitrogen-based fertilizer to make up the shortfall is required to maintain the crops. Since phosphorus needs are accounted for by animal deposition, the fertilizer will have no phosphorus. The NMP requires routine soil and plant tissue tests to determine the amount of nitrogen fertilizer needed. By basing the application of nitrogen on measured rather than calculated needs, variations in inputs, including plant decomposition and atmospheric deposition, and outputs, including those affected by weather, can be accounted for, bringing the full nutrient balance into consideration. The numeric values for crop uptakes, manure deposition, and other estimates upon which the NMP was developed were based upon literature, values, and research performed and published by the University of Florida and the Natural Resource Conservation Service. Dr. Bottcher testified convincingly that the use of such values is a proven and reliable method of developing a balance for the operation of similar agricultural operations. A primary criticism of the NMP was its expressed intent to “reduce” or “minimize” the transport of nutrients to surface waters and groundwater, rather than to “negate” or “prevent” such transport. Petitioners argue that complete prevention of the transport of nutrients from the property is necessary to meet the standards necessary for issuance of the CUP and ERP. Mr. Drummond went into some detail regarding the total mass of nutrients expected to be deposited onto the ground from the cattle, exclusive of fertilizer application. In the course of his testimony, he suggested that the majority of the nutrients deposited on the land surface “are going to make it to the surficial aquifer and then be carried either to the Floridan or laterally with the groundwater flow.” However, Mr. Drummond performed no analysis on the fate of nitrogen through uptake by crops, volatization, or soil treatment, and did not quantify the infiltration of nitrogen to groundwater. Furthermore, he was not able to provide any quantifiable estimate on any effect of nutrients on Mill Creek, the Ocklawaha River, or Silver Springs. In light of the effectiveness of the nutrient balance and other elements of the NMP, along with the retention berm system that will be discussed herein, Mr. Drummond’s assessment of the nutrients that might be expected to impact water resources of the District is contrary to the greater weight of the evidence. Mr. Drummond’s testimony also runs counter to that of Dr. Kincaid, who performed a particle track analysis of the fate of water recharge from the North Tract. In short, Dr. Kincaid calculated that of the water that makes it as recharge from the North Tract to the surficial aquifer, less than one percent is expected to make its way to the upper Floridan aquifer, with that portion originating from the vicinity of Pivot 6. Recharge from the other 14 irrigated pastures was ultimately accounted for by evapotranspiration or emerged at the surface and found its way to Mill Creek. The preponderance of the competent, substantial evidence adduced at the final hearing supports the effectiveness of the NMPs for the North Tract and East Tract at managing the application and use of nutrients on the property, and minimizing the transport of nutrients to surface water and groundwater resources of the District. North Central Florida Model All of the experts involved in this proceeding agreed that the use of groundwater models is necessary to simulate what might occur below the surface of the ground. Models represent complex systems by applying data from known conditions and impacts measured over a period of years to simulate the effects of new conditions. Models are imperfect, but are the best means of predicting the effects of stresses on complex and unseen subsurface systems. The North Central Florida (NCF) model is used to simulate impacts of water withdrawals on local and regional groundwater levels and flows. The NCF model simulates the surficial aquifer, the upper Floridan aquifer, and the lower Floridan aquifer. Those aquifers are separated from one another by relatively impervious confining units. The intermediate confining unit separates the surficial aquifer from the upper Floridan aquifer. The intermediate confining unit is not present in all locations simulated by the NCF model. However, the evidence is persuasive that the intermediate confining unit is continuous at the North Tract, and serves to effectively isolate the surficial aquifer from the upper Floridan aquifer. The NCF model is not a perfect depiction of what exists under the land surface of the North Tract or elsewhere. It was, however, acknowledged by the testifying experts in this case, despite disagreements as to the extent of error inherent in the model, to be the best available tool for calculating the effects of withdrawals of water within the boundary of the model. The NCF model was developed and calibrated over a period of years, is updated routinely as data becomes available, and has undergone peer review. Aquifer Performance Tests In order to gather site-specific data regarding the characteristics of the aquifer beneath the Sleepy Creek property, a series of three aquifer performance tests (APTs) was conducted on the North Tract. The first two tests were performed by Sleepy Creek, and the third by the District. An APT serves to induce stress on the aquifer by pumping from a well at a high rate. By observing changes in groundwater levels in observation wells, which can be at varying distances from the extraction well, one can extrapolate the nature of the subsurface. In addition, well-completion reports for the various withdrawal and observation wells provide actual data regarding the composition of subsurface soils, clays, and features of the property. The APT is particularly useful in evaluating the ability of the aquifer to produce water, and in calculating the transmissivity of the aquifer. Transmissivity is a measure of the rate at which a substance passes through a medium and, as relevant to this case, measures how groundwater flows through an aquifer. The APTs demonstrated that the Floridan aquifer is capable of producing water at the rate requested. The APT drawdown contour measured in the upper Floridan aquifer was greater than that predicted from a simple run of the NCF model, but the lateral extent of the drawdown was less than predicted. The most reasonable conclusion to be drawn from the combination of greater than expected drawdown in the upper Floridan aquifer with less than expected extent is that the transmissivity of the aquifer beneath the North Tract is lower than the NCF model assumptions. The conclusion that the transmissivity of the aquifer at the North Tract is lower than previously estimated means that impacts from groundwater extraction would tend to be more vertical than horizontal, i.e., the drawdown would be greater, but would be more localized. As such, for areas of lower than estimated transmissivity, modeling would over-estimate off-site impacts from the extraction. NCF Modeling Scenarios The initial NCF modeling runs were based on an assumed withdrawal of 2.39 mgd, an earlier -- though withdrawn - - proposal. The evidence suggests that the simulated well placement for the 2.39 mgd model run was entirely on the North Tract. Thus, the results of the model based on that withdrawal have some limited relevance, especially given that the proposed CUP allows for all of the requested 1.46 mgd of water to be withdrawn from North Tract wells at the option of Sleepy Creek, but will over-predict impacts from the permitted rate of withdrawal. A factor that was suggested as causing a further over-prediction of drawdown in the 2.39 mgd model run was the decision, made at the request of the District, to exclude the input of data of additional recharge to the surficial aquifer, wetlands and surface waters from the irrigation, and the resulting diminution in soil storage capacity. Although there is some merit to the suggestion that omitting recharge made the model results “excessively conservative,” the addition of recharge to the model would not substantially alter the predicted impacts. A model run was subsequently performed based on a presumed withdrawal of 1.54 mgd, a rate that remains slightly more than, but still representative of, the requested amount of 1.46 mgd. The 1.54 mgd model run included an input for irrigation recharge. The simulated extraction points were placed on the East Tract and North Tract in the general configuration as requested in the CUP application. The NCF is designed to model the impacts of a withdrawal based upon various scenarios, identified at the hearing as Scenarios A, B, C, and D. Scenario A is the baseline condition for the NCF model, and represents the impacts of all legal users of water at their estimated actual flow rates as they existed in 1995. Scenario B is all existing users, not including the applicant, at end-of-permit allocations. Scenario C is all existing users, including the applicant, at current end-of-permit allocations. Scenario D is all permittees at full allocation, except the applicant which is modeled at the requested (i.e., new or modified) end-of-permit allocation. To simulate the effects of the CUP modification, simulations were performed on scenarios A, C, and D. In order to measure the specific impact of the modification of the CUP, the Scenario C impacts to the surficial, upper Floridan, and lower Floridan aquifers were compared with the Scenario D impacts to those aquifers. In order to measure the cumulative impact of the CUP, the Scenario A actual-use baseline condition was compared to the Scenario D condition which predicts the impacts of all permitted users, including the applicant, pumping at full end-of-permit allocations. The results of the NCF modeling indicate the following: 2.39 mgd - Specific Impact The surficial aquifer drawdown from the simulated 2.39 mgd withdrawal was less than 0.05 feet on-site and off- site, except to the west of the North Tract, at which a drawdown of 0.07 feet was predicted. The upper Floridan aquifer drawdown from the 2.39 mgd withdrawal was predicted at between 0.30 and 0.12 feet on-site, and between 0.30 and 0.01 feet off-site. The higher off-site figures are immediately proximate to the property. The lower Floridan aquifer drawdown from the 2.39 mgd withdrawal was predicted at less than 0.05 feet at all locations, and at or less than 0.02 feet within six miles of the North Tract. 2.39 mgd - Cumulative Impact The cumulative impact to the surficial aquifer from all permitted users, including a 2.39 mgd Sleepy Creek withdrawal, was less than 0.05 feet on-site, and off-site to the north and east, except to the west of the North Tract, at which a drawdown of 0.07 feet was predicted. The cumulative impact to the upper Floridan aquifer from all permitted users, including a 2.39 mgd Sleepy Creek withdrawal, ranged from 0.4 feet to 0.8 feet over all pertinent locations. The cumulative impact to the lower Floridan aquifer from all permitted users, including a 2.39 mgd Sleepy Creek withdrawal, ranged from 1.0 to 1.9 feet over all pertinent locations. The conclusion drawn by Mr. Andreyev that the predicted impacts to the lower Floridan are almost entirely from other end-of-permit user withdrawals is supported by the evidence and accepted. 1.54 mgd - Specific Impact The NCF model runs based on the more representative 1.54 mgd withdrawal predicted a surficial aquifer drawdown of less than 0.01 feet (i.e., no drawdown contour shown) on the North Tract, and a 0.01 to 0.02 foot drawdown at the location of the East Tract. The drawdown of the upper Floridan aquifer from the CUP modification was predicted at up to 0.07 feet on the property, and generally less than 0.05 feet off-site. There were no drawdown contours at the minimum 0.01 foot level that came within 9 miles of Silver Springs. The lower Floridan aquifer drawdown from the CUP modification was predicted at less than 0.01 feet (i.e., no drawdown contour shown) at all locations. 1.54 mgd - Cumulative Impact A comparison of the cumulative drawdown contours for the 2.36 mgd model and 1.54 mgd model show there to be a significant decrease in predicted drawdowns to the surficial and upper Floridan aquifers, with the decrease in the upper Floridan aquifer drawdown being relatively substantial, i.e., from 0.5 to 0.8 feet on-site predicted for the 2.36 mgd withdrawal, to 0.4 to 0.5 feet on-site for the 1.54 mgd model. Given the small predicted individual impact of the CUP on the upper Floridan aquifer, the evidence is persuasive that the cumulative impacts are the result of other end-of-permit user withdrawals. The drawdown contour for the lower Floridan aquifer predicted by the 1.54 mgd model is almost identical to that of the 2.36 mgd model, thus supporting the conclusion that predicted impacts to the lower Floridan are almost entirely from other end-of-permit user withdrawals. Modeled Effect on Silver Springs As a result of the relocation of the extraction wells from the East Tract to the North Tract, the NCF model run at the 1.54 mgd withdrawal rate predicted springflow at Silver Springs to increase by 0.15 cfs. The net cumulative impact in spring flow as measured from 1995 conditions to the scenario in which all legal users, including Sleepy Creek, are pumping at full capacity at their end-of-permit rates for one year3/ is roughly 35.4 cfs, which is approximately 5 percent of Silver Springs’ current flow. However, as a result of the redistribution of the Sleepy Creek withdrawal, which is, in its current iteration, a legal and permitted use, the cumulative effect of the CUP modification at issue is an increase in flow of 0.l5 cfs. Dr. Kincaid agreed that there is more of an impact to Silver Springs when the pumping allowed by the CUP is located on the East Tract than there is on the North Tract, but that the degree of difference is very small. Dr. Knight testified that effect on the flow of Silver Springs from relocating the 1.46 mgd withdrawal from the East Tract to the North Tract would be “zero.” The predicted increase of 0.15 cfs is admittedly miniscule when compared to the current Silver Springs springflow of approximately 675 cfs. However, as small as the modeled increase may be -- perhaps smaller than its “level of certainty” -- it remains the best evidence that the impact of the CUP modification to the flow of Silver Springs will be insignificant at worst, and beneficial at best. Opposition to the NCF Model Petitioners submitted considerable evidence designed to call the results generated by the District’s and Sleepy Creek’s NCF modeling into question. Karst Features A primary criticism of the validity of the NCF model was its purported inability to account for the presence of karst features, including conduits, and their effect on the results. It was Dr. Kincaid’s opinion that the NCF model assigned transmissivity values that were too high, which he attributed to the presence of karst features that are collecting flow and delivering it to springs. He asserted that, instead of assuming the presence of karst features, the model was adjusted to raise the overall capacity of the porous medium to transmit water, and thereby match the observed flows. In his opinion, the transmissivity values of the equivalent porous media were raised so much that the model can no longer be used to predict drawdowns. That alleged deficiency in the model is insufficient for two reasons. First, as previously discussed in greater detail, the preponderance of the evidence in this case supports a finding that there are no karst features in the vicinity of the North Tract that would provide preferential pathways for water flow so as to skew the results of the NCF model. Second, Dr. Kincaid, while acknowledging that the NCF model is the best available tool for predicting impacts from groundwater extraction on the aquifer, suggested that a hybrid porous media and conduit model would be a better means of predicting impacts, the development of which would take two years or more. There is no basis for the establishment of a de facto moratorium on CUP permitting while waiting for the development of a different and, in this case, unnecessary model. For the reasons set forth herein, it is found that the NCF model is sufficient to accurately and adequately predict the effects of the Sleepy Creek groundwater withdrawals on the aquifers underlying the property, and to provide reasonable assurance that the standards for such withdrawals have been met. Recharge to the Aquifer Petitioners argued that the modeling results showing little significant drawdown were dependent on the application of unrealistic values for recharge or return flow from irrigation. In a groundwater model, as in the physical world, some portion of the water extracted from the aquifer is predicted to be returned to the aquifer as recharge. If more water is applied to the land surface than is being accounted for by evaporation, plant uptake and evapotranspiration, surface runoff, and other processes, that excess water may seep down into the aquifer as recharge. Recharge serves to replenish the aquifer and offset the effects of the groundwater withdrawal. Dr. Kincaid opined that the NCF modeling performed for the CUP application assigned too much water from recharge, offsetting the model's prediction of impacts to other features. It is reasonable to assume that there is some recharge associated with both agricultural and public supply uses. However, the evidence suggests that the impact of recharge on the overall NCF model results is insignificant on the predicted impacts to Silver Springs, the issue of primary concern. Mr. Hearn ran a simulation using the NCF model in which all variables were held constant, except for recharge. The difference between the “with recharge” and “without recharge" simulations at Silver Springs was 0.002 cfs. That difference is not significant, and is not suggestive of adverse impacts on Silver Springs from the CUP modification. Dr. Kincaid testified that “the recharge offset on the property is mostly impacting the surficial aquifer,” and that “the addition of recharge in this case didn't have much of an impact on the upper Floridan aquifer system.” As such, the effect of adding recharge to the model would be as to the effect of groundwater withdrawal on wetlands or surface water bodies, and not on springs. As previously detailed, the drawdown of the surficial aquifer simulated for the 2.39 mgd “no recharge” scenario were less than 0.05 feet on-site and off-site, except for a predicted 0.07 foot drawdown to the west of the North Tract. The predicted drawdown of the surficial aquifer for the 1.54 mgd “with recharge” scenario was 0.02 feet or less. The preponderance of the evidence supports a finding that drawdowns of either degree are less than that at which adverse impacts to wetlands or surface waters would occur. Thus, issues related to the recharge or return flows from irrigation are insufficient to support a finding or conclusion that the NCF model failed to provide reasonable assurance that the standards for issuance of the CUP modification were met. External Boundaries The boundaries of the NCF model are not isolated from the rest of the physical world. Rather, groundwater flows into the modeled area from multiple directions, and out of the modeled area in multiple directions. Inflows to the model area are comprised of recharge, which is an assigned value, and includes water infiltrating and recharging the aquifer from surface waters; injection wells; upward and downward leakage from lower aquifers; and flow across the external horizontal boundaries. Outflows from the model area include evapotranspiration; discharge to surface waters, including springs and rivers; extraction from wells; upward and downward leakage from lower aquifers; and flow against the external model boundaries. Dr. Kincaid testified that flow across the external model boundary is an unknown and unverifiable quantity which increases the uncertainty in the model. He asserted that in the calibrated version of the model, there is no way to check those flows against data. His conclusion was that the inability of the NCF model to accurately account for external boundary flow made the margin of error so great as to make the model an unreliable tool with which to assess whether the withdrawal approved by the proposed CUP modification will increase or decrease drawdown at Silver Springs. The District correlates the NCF model boundaries with a much larger model developed by the United States Geological Survey, the Peninsula of Florida Model, more commonly referred to as the Mega Model, which encompasses most of the State of Florida and part of Southeast Georgia. The Mega Model provides a means to acknowledge that there are stresses outside the NCF model, and to adjust boundary conditions to account for those stresses. The NCF is one of several models that are subsets of the Mega Model, with the grids of the two models being “nested” together. The 1995 base year of the NCF model is sufficiently similar to the 1993-1994 base year of the Mega Model as to allow for a comparison of simulated drawdowns calculated by each of the models. By running a Mega Model simulation of future water use, and applying the change in that use from 1993 base year conditions, the District was able to come to a representative prediction of specific boundary conditions for the 1995 NCF base year, which were then used as the baseline for simulations of subsequent conditions. In its review of the CUP modification, the District conducted a model validation simulation to measure the accuracy of the NCF model against observed conditions, with the conditions of interest being the water flow at Silver Springs. The District ran a simulation using the best information available as to water use in the year 2010, the calculated boundary conditions, irrigation, pumping, recharge, climatic conditions, and generally “everything that we think constitutes that year.” The discharge of water at Silver Springs in 2010 was measured at 580 cfs. The discharge simulated by the NCF model was 545 cfs. Thus, the discharge predicted by the NCF model simulation was within six percent of the observed discharge. Such a result is generally considered in the modeling community to be “a home run.” Petitioners’ objections to the calculation of boundary conditions for the NCF model are insufficient to support a finding that the NCF model is not an appropriate and accurate tool for determining that reasonable assurance has been provided that the standards for issuance of the CUP modification were met. Cumulative Impact Error As part of the District’s efforts to continually refine the NCF, and in conjunction with a draft minimum flows and levels report for Silver Springs and the Silver River, the cumulative NCF model results for the period of baseline to 2010 were compared with the simulated results from the Northern District Model (NDF), a larger model that overlapped the NCF. As a result of the comparison, which yielded different results, it was discovered that the modeler had “turned off” not only the withdrawal pumps, but inputs to the aquifer from drainage wells and sinkholes as well. When those inputs were put back into the model run, and effects calculated only from withdrawals between the “pumps-off” condition and 2010 pumping conditions, the cumulative effect of the withdrawals was adjusted from a reduction in the flow at Silver Springs of 29 cfs to a reduction of between 45 and 50 cfs, an effect described as “counterintuitive.” Although that result has not undergone peer review, and remains subject to further review and comparison with the Mega Model, it was accepted by the District representative, Mr. Bartol. Petitioners seized upon the results of the comparison model run as evidence of the inaccuracy and unreliability of the NCF model. However, the error in the NCF model run was not the result of deficiencies in the model, but was a data input error. Despite the error in the estimate of the cumulative effect of all users at 2010 levels, the evidence in this case does not support a finding that the more recent estimates of specific impact from the CUP at issue were in error. NCF Model Conclusion As has been discussed herein, a model is generally the best means by which to calculate conditions and effects that cannot be directly observed. The NCF model is recognized as being the best tool available for determining the subsurface conditions of the model domain, having been calibrated over a period of years and subject to peer review. It should be recognized that the simulations run using the NCF model represent the worst—case scenario, with all permittees simultaneously drawing at their full end-of-permit allocations. There is merit to the description of that occurrence as being “very remote.” Thus, the results of the modeling represent a conservative estimate of potential drawdown and impacts. While the NCF model is subject to uncertainty, as is any method of predicting the effects of conditions that cannot be seen, the model provides reasonable assurance that the conditions simulated are representative of the conditions that will occur as a result of the withdrawals authorized by the CUP modification. Environmental Resource Permit The irrigation proposed by the CUP will result in runoff from the North Tract irrigated pastures in excess of that expected from the improved pastures, due in large measure to the diminished storage capacity of the soil. Irrigation water will be applied when the soils are dry, and capable of absorbing water not subject to evaporation or plant uptake. The irrigation water will fill the storage space that would exist without irrigation. With irrigation water taking up the capacity of the soil to hold water, soils beneath the irrigation pivots will be less capable of retaining additional moisture during storm events. Thus, there is an increased likelihood of runoff from the irrigated pastures over that expected with dry soils. The increase in runoff is expected to be relatively small, since there should be little or no irrigation needed during the normal summer wet season. The additional runoff may have increased nutrient levels due to the increased cattle density made possible by the irrigation of the pastures. The CUP has a no—impact requirement for water quality resulting from the irrigation of the improved pasture. Thus, nutrients leaving the irrigated pastures may not exceed those calculated to be leaving the existing pre-development use as improved pastures. Retention Berms The additional runoff and nutrient load is proposed to be addressed by constructing a system of retention berms, approximately 50,0004/ feet in length, which is intended to intercept, retain, and provide treatment for runoff from the irrigated pasture. The goal of the system is to ensure that post—development nutrient loading from the proposed irrigated pastures will not exceed the pre—development nutrient loading from the existing improved pastures. An ERP permit is required for the construction of the berm system, since the area needed for the construction of the berms is greater than the one acre in size, and since the berms have the capability of impounding more than 40 acre-feet of water. The berms are to be constructed by excavating the top nine inches of sandy, permeable topsoil and using that permeable soil to create the berms, which will be 1 to 2 feet in height. The water storage areas created by the excavation will have flat or horizontal bottoms, and will be very shallow with the capacity to retain approximately a foot of water. The berms will be planted with pasture grasses after construction to provide vegetative cover. The retention berm system is proposed to be built in segments, with the segment designed to capture runoff from a particular center pivot pasture to be constructed prior to the commencement of irrigation from that center pivot. A continuous clay layer underlies the areas in which the berms are to be constructed. The clay layer varies from 18 to 36 inches below the ground surface, with at least one location being as much as five feet below the ground surface. As such, after nine inches of soil is scraped away to create the water retention area and construct the berm, there will remain a layer of permeable sandy material above the clay. The berms are to be constructed at least 25 feet landward of any jurisdictional wetland, creating a “safe upland line.” Thus, the construction, operation, and maintenance of the retention berms and redistribution swales will result in no direct impacts to jurisdictional wetlands or other surface waters. There will be no agricultural activities, e.g., tilling, planting, or mowing, within the 25-foot buffers, and the buffers will be allowed to establish with native vegetation to provide additional protection for downgradient wetlands. As stormwater runoff flows from the irrigated pastures, it may, in places, create concentrated flow ways. Redistribution swales will be built in those areas to spread any remaining overland flow of water and reestablish sheet flow to the retention berm system. At any point at which water may overtop a berm, the berm will be hardened with rip—rap to insure its integrity. The berms are designed to intercept and collect overland flow from the pastures and temporarily store it behind the berms, regaining the soil storage volume lost through irrigation. A portion of the runoff intercepted by the berm system will evaporate. The majority will infiltrate either through the berm, or vertically into the subsurface soils beneath it. When the surficial soils become saturated, further vertical movement will be stopped by the impermeable clay layer underlying the site. The runoff water will then move horizontally until it reemerges into downstream wetland systems. Thus, the berm system is not expected to have a measurable impact on the hydroperiod of the wetlands on the North Tract. Phosphorus Removal Phosphorus tends to get “tied up” in soil as it moves through it. Phosphorus reduction occurs easily in permeable soil systems because it is removed from the water through a chemical absorption process that is not dependent on the environment of the soil. As the soils in the retention areas and berms go through drying cycles, the absorption capacity is regenerated. Thus, the retention system will effectively account for any increase in phosphorus resulting from the increased cattle density allowed by the irrigation such that there is expected to be no increase in phosphorus levels beyond the berm. Nitrogen Removal When manure is deposited on the ground, primarily as high pH urine, the urea is quickly converted to ammonia, which experiences a loss of 40 to 50 percent of the nitrogen to volatization. Soil conditions during dry weather conditions are generally aerobic. Remaining ammonia in the manure is converted by aerobic bacteria in the soil to nitrates and nitrites. Converted nitrates and nitrites from manure, along with nitrogen from fertilizer, is readily available for uptake as food by plants, including grasses and forage crops. Nitrates and nitrites are mobile in water. Therefore, during rain events of sufficient intensity to create runoff, the nitrogen can be transported downstream towards wetlands and other receiving waters, or percolate downward through the soil until blocked by an impervious barrier. During storm events, the soils above the clay confining layer and the lower parts of the pervious berms become saturated. Those saturated soils are drained of oxygen and become anaerobic. When nitrates and nitrites encounter saturated conditions, they provide food for anaerobic bacteria that exist in those conditions. The bacteria convert nitrates and nitrites to elemental nitrogen, which has no adverse impact on surface waters or groundwater. That process, known as denitrification, is enhanced in the presence of organic material. The soils from which the berms are constructed have a considerable organic component. In addition to the denitrification that occurs in the saturated conditions in and underlying the berms, remaining nitrogen compounds that reemerge into the downstream wetlands are likely to encounter organic wetland-type soil conditions. Organic wetland soils are anaerobic in nature, and will result in further, almost immediate denitrification of the nitrates and nitrites in the emerging water. Calculation of Volume - BMPTRAINS Model The calculation of the volume necessary to capture and store excess runoff from the irrigated pastures was performed by Dr. Wanielista using the BMPTRAINS model. BMPTRAINS is a simple, easy to use spreadsheet model. Its ease of use does not suggest that it is less than reliable. The model has been used as a method of calculating storage volumes in many conditions over a period of more than 40 years. The model was used to calculate the storage volumes necessary to provide storage and treatment of runoff from fifteen “basins” that had a control or a Best Management Practice associated with them. All of the basins were calculated as being underlain by soils in poorly-drained hydrologic soil Group D, except for the basin in the vicinity of Pivot 6, which is underlain by the more well-drained soil Group A. The model assumed about percent of the property to have soil Group A soils, an assumption that is supported by the evidence. Soil moisture conditions on the property were calculated by application of data regarding rainfall events and times, the irrigation schedule, and the amount of irrigation water projected for use over a year. The soil moisture condition was used to determine the amount of water that could be stored in the on-site soils, known as the storage coefficient. Once the storage coefficient was determined, that data was used to calculate the amount of water that would be expected to run off of the North Tract, known as the curve number. The curve number is adjusted by the extent to which the storage within a soil column is filled by the application of irrigation water, making it unable to store additional rainfall. As soil storage goes down, the curve number goes up. Thus, a curve number that approaches 100 means that more water is predicted to run off. Conversely, a lower curve number means that less water is predicted to run off. The pre-development curve number for the North Tract was based on the property being an unirrigated, poor grass area. A post-development curve number was assigned to the property that reflected a wet condition representative of the irrigated soils beneath the pivots. In calculating the storage volume necessary to handle runoff from the basins, the wet condition curve number was adjusted based on the fact that there is a mixture of irrigated and unirrigated general pasture within each basin to be served by a segment of the retention berm system, and by the estimated 15 percent of the time that the irrigation areas would be in a drier condition. In addition, the number was adjusted to reflect the 8 to 10 inches of additional evapotranspiration that occurs as a result of irrigation. The BMPTRAINS model was based on average annual nutrient-loading conditions, with water quality data collected at a suitable point within Reach 22, the receiving waterbody. The effects of nutrients from the irrigated pastures on receiving waterbodies is, in terms of the model, best represented by average annual conditions, rather than a single highest-observed nutrient value. Pre-development loading figures were based on the existing use of the property as unirrigated general pasture. The pre-development phosphorus loading figure was calculated at an average event mean concentration (EMC) of 0.421 milligrams per liter (mg/l). The post—condition phosphorus loading figure was calculated at an EMC of 0.621 mg/l. Therefore, in order to achieve pre-development levels of phosphorus, treatment to achieve a reduction in phosphorus of approximately 36 percent was determined to be necessary. The pre-development nitrogen loading figure was calculated at an EMC of 2.6 mg/l. The post—condition nitrogen loading figure was calculated at an EMC of 3.3 mg/l. Therefore, in order to achieve pre-development levels of nitrogen, treatment to achieve a reduction in nitrogen of approximately 25 percent was determined to be necessary. The limiting value for the design of the retention berms is phosphorus. To achieve post-development concentrations that are equal to or less than pre-development concentrations, the treatment volume of the berm system must be sufficient to allow for the removal of 36 percent of the nutrients in water being retained and treated behind the berms, which represents the necessary percentage of phosphorus. In order to achieve the 36 percent reduction required for phosphorus, the retention berm system must be capable of retaining approximately 38 acre—feet of water from the 15 basins. In order to achieve that retention volume, a berm length of approximately 50,000 linear feet was determined to be necessary, with an average depth of retention behind the berms of one foot. The proposed length of the berms is sufficient to retain the requisite volume of water to achieve a reduction in phosphorus of 36 percent. Thus, the post-development/irrigation levels of phosphorus from runoff are expected to be no greater than pre-development/general pasture levels of phosphorus from runoff. By basing the berm length and volume on that necessary for the treatment of phosphorus, there will be storage volume that is greater than required for a 25 percent reduction in nitrogen. Thus, the post-development/irrigation levels of nitrogen from runoff are expected to be less than pre- development/general pasture levels of nitrogen from runoff. Mr. Drummond admitted that the design of the retention berms “shows there is some reduction, potentially, but it's not going to totally clean up the nutrients.” Such a total clean-up is not required. Rather, it is sufficient that there is nutrient removal to pre-development levels, so that there is no additional pollutant loading from the permitted activities. Reasonable assurance that such additional loading is not expected to occur was provided. Despite Mr. Drummond’s criticism of the BMPTRAINS model, he did not quantify nutrient loading on the North Tract, and was unable to determine whether post-development concentrations of nutrients would increase over pre-development levels. As such, there was insufficient evidence to counter the results of the BMPTRAINS modeling. Watershed Assessment Model In order to further assess potential water quantity and water quality impacts to surface water bodies, and to confirm stormwater retention area and volume necessary to meet pre-development conditions, Sleepy Creek utilized the Watershed Assessment Model (WAM). The WAM is a peer-reviewed model that is widely accepted by national, state, and local regulatory entities. The WAM was designed to simulate water balance and nutrient impacts of varying land uses. It was used in this case to simulate and provide a quantitative measure of the anticipated impacts of irrigation on receiving water bodies, including Mill Creek, Daisy Creek, the Ocklawaha River, and Silver Springs. Inputs to the model include land conditions, soil conditions, rain and climate conditions, and water conveyance systems found on the property. In order to calculate the extent to which nutrients applied to the land surface might affect receiving waters, a time series of surface water and groundwater flow is “routed” through the modeled watershed and to the various outlets from the system, all of which have assimilation algorithms that represent the types of nutrient uptakes expected to occur as water goes through the system. Simulations were performed on the North Tract in its condition prior to acquisition by Sleepy Creek, in its current “exempted improved pasture condition,” and in its proposed “post—development” pivot-irrigation condition. The simulations assessed impacts of the site conditions on surface waters at the point at which they leave the property and discharge to Mill Creek, and at the point where Mill Creek merges into the Ocklawaha River. The baseline condition for measuring changes in nutrient concentrations was determined to be that lawfully existing at the time the application was made. Had there been any suggestion of illegality or impropriety in Sleepy Creek’s actions in clearing the timber and creating improved pasture, a different baseline might be warranted. However, no such illegality or impropriety was shown, and the SJRWMD rules create no procedure for “looking back” to previous land uses and conditions that were legally changed. Thus, the “exempted improved pasture condition” nutrient levels are appropriate for comparison with irrigated pasture nutrient levels. The WAM simulations indicated that nitrogen resulting from the irrigation of the North Tract pastures would be reduced at the outflow to Mill Creek at the Reach 22 stream segment from improved pasture levels by 1.7 percent in pounds per year, and by 0.6 percent in milligrams per liter of water. The model simulations predicted a corresponding reduction at the Mill Creek outflow to the Ocklawaha River of 1.3 percent in pounds per year, and 0.5 percent in milligrams per liter of water. These levels are small, but nonetheless support a finding that the berm system is effective in reducing nitrogen from the North Tract. Furthermore, the WAM simulations showed levels of nitrogen from the irrigated pasture after the construction of the retention berms to be reduced from that present in the pre- development condition, a conclusion consistent with that derived from the BMPTRAINS model. The WAM simulations indicated that phosphorus from the irrigated North Tract pastures, measured at the outflow to Mill Creek at the Reach 22 stream segment, would be reduced from improved pasture levels by 3.7 percent in pounds per year, and by 2.6 percent in milligrams per liter of water. The model simulations predicted a corresponding reduction at the Mill Creek outflow to the Ocklawaha River of 2.5 percent in pounds per year, and 1.6 percent in milligrams per liter of water. Those levels are, again, small, but supportive of a finding of no impact from the permitted activities. The WAM simulations showed phosphorus in the Ocklawaha River at the Eureka Station after the construction of the retention berms to be slightly greater than those simulated for the pre-development condition (0.00008 mg/l) -- the only calculated increase. That level is beyond miniscule, with impacts properly characterized as “non- measurable” and “non-detectable.” In any event, total phosphorus remains well below Florida’s nutrient standards. The WAM simulations were conducted based on all of the 15 pivots operating simultaneously at full capacity. That amount is greater than what is allowed under the permit. Thus, according to Dr. Bottcher, the predicted loads are higher than those that would be generated by the permitted allocation, making his estimates “very conservative.” Dr. Bottcher’s testimony is credited. During the course of the final hearing, the accuracy of the model results was questioned based on inaccuracies in rainfall inputs due to the five-mile distance of the property from the nearest rain station. Dr. Bottcher admitted that given the dynamics of summer convection storms, confidence that the rain station rainfall measurements represent specific conditions on the North Tract is limited. However, it remains the best data available. Furthermore, Dr. Bottcher testified that even if specific data points simulated by the model differ from that recorded at the rain station, that same error carries through each of the various scenarios. Thus, for the comparative purpose of the model, the errors get “washed out.” Other testimony regarding purported inaccuracies in the WAM simulations and report were explained as being the result of errors in the parameters used to run alternative simulations or analyze Sleepy Creek’s simulations, including use of soil types that are not representative of the North Tract, and a misunderstanding of dry weight/wet weight loading rates. There was agreement among witnesses that the WAM is regarded, among individuals with expertise in modeling, as an effective tool, and was the appropriate model for use in the ERP application that is the subject of this proceeding. As a result, the undersigned accepts the WAM simulations as being representative of comparative nutrient impacts on receiving surface water bodies resulting from irrigation of the North Tract. The WAM confirmed that the proposed retention berm system will be sufficient to treat additional nutrients that may result from irrigation of the pastures, and supports a finding of reasonable assurance that water quality criteria will be met. With regard to the East Tract, the WAM simulations showed that there would be reductions in nitrogen and phosphorus loading to Daisy Creek from the conversion of the property to irrigated pasture. Those simulations were also conservative because they assumed the maximum number of cattle allowed by the nutrient balance, and did not assume the 30 percent reduction in the number of cattle under the NMP so as to allow existing elevated levels of phosphorus in the soil from the sod farm to be “mined” by vegetation. Pivot 6 The evidence in this case suggests that, unlike the majority of the North Tract, a small area on the western side of the North Tract drains to the west and north. Irrigation Pivot is within that area. Dr. Harper noted that there are some soils in hydrologic soil Group A in the vicinity of Pivot 6 that reflect soils with a deeper water table where rainfall would be expected to infiltrate into the ground. Dr. Kincaid’s particle track analysis suggested that recharge to the surficial aquifer ultimately discharges to Mill Creek, except for recharge at Pivot 11, which is accounted for by evapotranspiration, and recharge at Pivot 6. Dr. Kincaid concluded that approximately 1 percent of the recharge to the surficial aquifer beneath the North Tract found its way into the upper Floridan aquifer. Those particle tracks originated only on the far western side of the property, and implicated only Pivot 6, which is indicative of the flow divide in the Floridan aquifer. Of the 1 percent of particle tracks entering the Floridan aquifer, some ultimately discharged at the St. John’s River, the Ocklawaha River, or Mill Creek. Dr. Kincaid opined, however, that most ultimately found their way to Silver Springs. Given the previous finding that the Floridan aquifer beneath the property is within the Silver Springs springshed for less than a majority of the time, it is found that a correspondingly small fraction of the less than 1 percent of the particle tracks originating on the North Tract, perhaps a few tenths of one percent, can reach Silver Springs. Dr. Bottcher generally agreed that some small percentage of the water from the North Tract may make it to the upper Floridan aquifer, but that amount will be very small. Furthermore, that water reaching the upper Floridan aquifer would have been subject to the protection and treatment afforded by the NMP and the ERP berms. The evidence regarding the somewhat less restrictive confinement of the aquifer around Pivot 6 is not sufficient to rebut the prima facie case that the CUP modification, coupled with the ERP, will meet the District’s permitting standards. Public Interest The primary basis upon which Sleepy Creek relies to demonstrate that the CUP is “consistent with the public interest” is that Florida's economy is highly dependent upon agricultural operations in terms of jobs and economic development, and that there is a necessity of food production. Sleepy Creek could raise cattle on the property using the agriculturally-exempt improved pastures, but the economic return on the investment would be questionable without the increased quality, quantity, and reliability of grass and forage crop production resulting from the proposed irrigation. Sleepy Creek will continue to engage in agricultural activities on its properties if the CUP modification is denied. Although a typical Florida beef operation could be maintained on the property, the investment was based upon having the revenue generation allowed by grass-fed beef production in order to realize a return on its capital investment and to optimize the economic return. If the CUP modification is denied, the existing CUP will continue to allow the extraction of 1.46 mgd for use on the East Tract. The preponderance of the evidence suggests that such a use would have greater impacts on the water levels at Silver Springs, and that the continued use of the East Tract as a less stringently-controlled sod farm would have a greater likelihood of higher nutrient levels, particularly phosphorus levels which are already elevated.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law set forth herein it is RECOMMENDED that the St. Johns River Water Management District enter a final order: approving the issuance of Consumptive Use Permit No. 2-083-91926-3 to Sleepy Creek Lands, LLC on the terms and conditions set forth in the complete Permit Application for Consumptive Uses of Water and the Consumptive Use Technical Staff Report; and approving the issuance of Environmental Resource Permit No. IND-083-130588-4 to Sleepy Creek Lands, LLC on the terms and conditions set forth in the complete Joint Application for Individual and Conceptual Environmental Resource Permit and the Individual Environmental Resource Permit Technical Staff Report. DONE AND ENTERED this 29th day of April, 2015, in Tallahassee, Leon County, Florida. S E. GARY EARLY Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 29th day of April, 2015.

Florida Laws (27) 120.54120.569120.57120.60120.68373.016373.019373.036373.042373.0421373.069373.079373.175373.223373.227373.229373.236373.239373.246373.406373.413373.4131373.414403.067403.087403.9278.031 Florida Administrative Code (12) 28-106.10828-106.21740C-2.30140C-2.33140C-44.06540C-44.06662-302.30062-330.05062-330.30162-4.24062-4.24262-40.473
# 4
WIREGRASS RANCH, INC. vs SADDLEBROOK RESORT, INC., AND SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT, 91-003658 (1991)
Division of Administrative Hearings, Florida Filed:Tampa, Florida Jun. 12, 1991 Number: 91-003658 Latest Update: Oct. 29, 1993

Findings Of Fact The Parties and the Property. The Respondent, Saddlebrook Resorts, Inc. (Saddlebrook), is a corporation organized and existing under the laws of Florida, and is wholly owned by the Dempsey family. Saddlebrook is located on approximately 480 acres in central Pasco County, east of I-75 and south of State Road 54. The Petitioner, Wiregrass Ranch, Inc. (Wiregrass) is a corporation organized and existing under the laws of Florida, and is wholly owned by the Porter family ("the Porters"). Wiregrass owns approximately 5,000 acres of property which extends from Saddlebrook west approximately one mile to State Road 581 and south for approximately four miles. The Respondent, the Southwest Florida Water Management District (SWFWMD), is a political subdivision created pursuant to Chapter 61-691, Laws of Florida, which exists and operates under the Water Resources Act, Fla. Stat., Ch. 373. SWFWMD is charged with regulating, among other things, surface water management systems in Pasco County. Saddlebrook discharges surface water onto Wiregrass at two locations on the southern and western boundaries of Saddlebrook, known as the south outfall and the west outfall. Saddlebrook's property is part of a drainage basin totalling approximately 1400 acres that contributes runoff to Wiregrass' property. Until approximately 1973, the Saddlebrook property was undeveloped and owned by the Porters. In approximately 1973, the Porters sold the Saddlebrook property to the Refram family, which began developing the property. In approximately 1979, Saddlebrook acquired the property from the Reframs. The Saddlebrook property includes residential development, a conference center, and golf course and tennis facilities. Wiregrass' property, which is largely undeveloped and used for ranching, consists of pine-palmetto flatwoods, wetland strands, isolated wetlands, and improved pastures. The Porters' Civil Action Against Saddlebrook. The Porters instituted a civil action against Saddlebrook, Porter, et al. v. Saddlebrook Resorts, Inc., Case No. CA 83-1860, in the Circuit Court of the Sixth Judicial District, Pasco County, complaining that post-development discharges from Saddlebrook exceed pre-development discharges. In the civil litigation, the Porters contended that Saddlebrook's peak flow discharges should be returned to pre-development, or 1973, levels. A primary purpose of Saddlebrook's proposed redesign is to return peak flow discharges to those levels that existed in 1973, in response to the Porters' complaints in the civil action. Saddlebrook's current surface water management system is deemed by SWFWMD to be in compliance with Rule 40D-4, and SWFWMD's regulations do not require redesign or modification of the current system. Prior to Saddlebrook's submission of its application, SWFWMD advised Saddlebrook that, because Rule 40D-4 became effective on October 1, 1984, SWFWMD considered that date to be the "pre-development" condition for purposes of evaluating Saddlebrook's discharges. Saddlebrook requested that SWFWMD evaluate its application using 1973 as the pre-development condition. SWFWMD advised Saddlebrook that it would apply 1973 as the pre-development condition if the Porters consented. By letter from the Porters' counsel to SWFWMD dated January 31, 1990, the Porters provided their express consent to SWFWMD's use of 1973 as the pre- development date for purposes of evaluating those discharges relevant to Saddlebrook's MSSW permit application. Saddlebrook's MSSW Permit Application. On or about February 8, 1990, Saddlebrook submitted its application for MSSW permit no. 497318.00, seeking SWFWMD's conceptual approval of the redesign of Saddlebrook's surface water management system. The proposed redesign calls for modification of most of the existing drainage control structures at Saddlebrook and installation of new control structures at several locations, including the south and west outfalls. After submission of its initial application, Saddlebrook made various subsequent submittals in response to SWFWMD requests for additional information. Saddlebrook's response to SWFWMD's requests culminated in final submittals on March 7, 1991 and April 5, 1991. In its various submittals, Saddlebrook provided, among other things, detailed descriptions of all proposed modifications to its drainage system, engineering reports, and computerized flood-routing analyses of runoff from Saddlebrook under pre-development (1973) and post-modification conditions. Saddlebrook provided all information requested, and SWFWMD thereafter deemed its application complete. SWFWMD's Review of Saddlebrook's Application. In the fifteen months following Saddlwbrook's initial February, 1990, submittal, SWFWMD conducted an intensive review of the application. During the course of this review, SWFWMD staff performed numerous field inspections, made an independent determination of all input data to the computer analyses of Saddlebrook's discharges, and made six separate formal requests for additional information. SWFWMD's requests for additional information required, among other things, that Saddlebrook modify various input data and rerun its computer analyses of discharges under the pre-development and post-modification conditions. In addition, SWFWMD required Saddlebrook to perform computer modelling analyses of discharges from Wiregrass' property onto the property of downstream landowners. Because, unlike the Porters, these downstream owners had not provided consent to use 1973 as the relevant pre-development date, SWFWMD required Saddlebrook to model this downstream discharge using a "pre- development" date of 1984. SWFWMD performed its standard review procedures in connection with Saddlebrooks' application. In addition, SWFWMD also performed its own computer-modelling analyses of Saddlebrook's discharges. This modelling was based on input data independently collected by SWFWMD staff in the field and from other sources. SWFWMD staff also met with the Porters' hydrologist, Dr. Gerald Seaburn, and thoroughly reviewed concerns he expressed in connection with Saddlebrook's application. In addressing these concerns, SWFWMD performed additional work, including conferring with an independent soils expert, performing additional field inspections, and modifying the SWFWMD computer modelling analyses based on alternative input parameters suggested by Dr. Seaburn. In reviewing Saddlebrook's application, SWFWMD applied the design and performance criteria set forth in its "Basis of Review for Surface Water Management Permit Applications" ("Basis of Review"), which is incorporated by reference in F.A.C. Rule Chapter 40D-4. Based upon its review of Saddlebrook's application, SWFWMD concluded that Saddlebrook had demonstrated compliance with the design and performance criteria set forth in SWFWMD's Basis of Review and the conditions for permit issuance under F.A.C. Rule 40D-4.301. By a Staff Report dated April 29, 1991, and Notice of Proposed Agency Action dated May 3, 1991, SWFWMD recommended approval of Saddlebrook's application. Compliance With SWFWMD Permitting Criteria. The design and performance criteria for MSSW permitting set forth in SWFWMD's Basis of Review fall into four categories: (1) water quantity, in terms of peak flow discharges for projects, like Saddlebrook's, located in open drainage basins; (2) flood protection; (3) water quality; and (4) wetlands impacts. Water Quantity. Under the Basis of Review's water quantity standards, SWFWMD requires that projected peak flow discharges during a 25-year, 24-hour storm event under the proposed system be reasonably similar to peak flow discharges under the pre- development condition. The evidence presented at the formal hearing demonstrated that Saddlebrook's application satisfies SWFWMD's water-quantity standards. This evidence demonstrated that peak flow discharges during a 25-year, 24-hour storm event under the proposed system will be less than, but reasonably similar to, pre-development (1973) peak flow discharges. The evidence presented at the formal hearing also demonstrated that, under the proposed system, peak flow discharges during a 25-year, 24-hour storm event from Wiregrass' property onto downstream landowners will be less than, but reasonably similar to, 1984 peak flow discharges. The evidence presented by Saddlebrook further demonstrated that storage will be increased under the proposed redesign versus the pre- development, 1973 condition. On Saddlebrook's property, there will be approximately 35 percent more storage than existed in 1973, and the total storage for Saddlebrook and the contributing drainage basin upstream of Saddlebrook will be increased by approximately 15 percent over that existing in 1973. Flood Protection. Under the flood-protection standards of the Basis of Review, SWFWMD requires that the applicant demonstrate that under the proposed condition the lower floor of all residential and other buildings on-site, and in areas affected by the site, will be above the 100-year flood elevation. SWFWMD also requires that there be no net encroachment into the flood plain, up to that encompassed by the 100-year event, which will adversely affect conveyance, storage, water quality or adjacent lands. The evidence presented at the formal hearing demonstrated that Saddlebrook's application satisfies SWFWMD's flood-protection standards. The testimony of Mr. Fuxan and Wiregrass' related exhibit, Ranch Ex. 35, purporting to show that in a 25-year, 24-hour storm Saddlebrook's proposed redesign will "flood the [Saddlebrook perimeter] roads and just sheet flow onto the Porter property" is not accurate. As part of its redesign, Saddlebrook will construct an additional berm along the southwestern and southern perimeters of its property. This berm will detain water on Saddlebrook's property during a 25-year, 24-hour storm event and prevent it from "sheet-flowing" onto the Wiregrass property. Water Quality. Under the water-quality standards of the Basis of Review, SWFWMD requires, for systems like Saddlebrook's involving wet detention and isolated wetlands, that the applicant provide sufficient storage to treat one inch of runoff from the basins contributing runoff to the site. This volume must be discharged in no less than 120 hours, with no more than one-half of the volume being discharged within the first 60 hours. The evidence presented at the formal hearing demonstrated that Saddlebrook's application satisfies SWFWMD's water-quality standards. Wetland Impacts. Under the wetland-impacts standards of the Basis of Review, SWFWMD requires that the applicant provide reasonable assurance that the proposed system will not adversely impact on-site and downstream wetlands. The evidence presented at the formal hearing demonstrated that Saddlebrook has provided reasonable assurance that the proposed redesign will cause no adverse impacts to on-site wetlands. Saddlebrook's proposed redesign will impact only approximately .167 acres of on-site wetlands, for which Saddlebrook will fully mitigate by creating .174 acres of forested wetlands and buffer area. The evidence presented at the formal hearing also demonstrated that Saddlebrook has provided reasonable assurance that the proposed redesign will cause no adverse impacts to off-site wetlands. Reasonable assurance that off- site wetlands will not be adversely impacted was demonstrated by, among other things, evidence establishing that: (1) discharge points will not change under the proposed condition; (2) discharge elevations will be reasonably similar under the proposed condition; (3) there will be no significant variation in the water fluctuations in the wetlands adjacent to the south and west outfalls as a result of the proposed condition; (4) the drainage basin areas will be reasonably similar under the proposed condition; and (5) the proposed redesign will satisfy SWFWMD's water quality requirements. Wiregrass' Petition. In its Petition for Formal Administrative Hearing, Wiregrass focused primarily on water quality issues and stormwater runoff rates (or peak flow discharges), alleging the following "ultimate facts" which it claimed "entitle [it] to relief": The application, as submitted, contains insufficient storage to meet water quality criteria. The application, as submitted, will result in storage volumes on the project site which will not be recovered within 72 hours [sic] as required by the DISTRICT criteria. The application, as submitted, contains calculations based on erroneous hydraulic gradients. The application, as submitted, will result in storage volumes insufficient to meet water quality criteria as required by DISTRICT criteria. Post development stormwater runoff rates are underestimated in the application, resulting in system design with insufficient retention storage capacity to meet the DISTRICT's water quantity criteria. The failure to store stormwater or irrigation runoff impacts the substantial interest of the RANCH in that it deprives it of groundwater resources necessary for the successful operation of the ranch. Further, the lack of storage of stormwater and irrigation water is a prohibited waste of the water resources. At the formal hearing, Wiregrass presented no evidence to support any of the foregoing allegations of its Petition. Objections Raised by Wiregrass At The Hearing. At the final hearing, Wiregrass' opposition to Saddlebrook's permit application focused on three different grounds: For purposes of evaluating peak flow discharges, SWFWMD does not have jurisdiction to use a pre-development date prior to October 1, 1984. Under F.A.C. Rule 40D-4.301(1)(i), which provides that an applicant must give reasonable assurance that the surface water management systems "is consistent with the requirements of other public agencies," SWFWMD must apply not only its own permitting criteria but also those of other governmental entities, including county planning ordinan Under F.A.C. Rule 40D-4.301(1)(b), which provides that a permit application must give reasonable assurances that the surface water management system "will not cause adverse water . . . quantity impacts", SWFWMD must consider whether the annual volume of runoff will increase as a result of the proposed surface water management system. None of the foregoing objections was raised in Wiregrass' Petition as a basis for denying Saddlebrook's application. (Annual volume was alluded to in the Petition only as being pertinent to the question of Wiregrass' "substantial interest" for purposes of standing.) In any event, for the reasons set forth below, each of these objections was refuted by the evidence presented at the formal hearing. The 1973 Pre-Development Date. In their civil action against Saddlebrook, the Porters took the position that Saddlebrook's surface water management system should be redesigned so that discharges approximate those levels existing in 1973, before development of the Saddlebrook property. Dr. Gerald Seaburn, a hydrologist retained by the Porters, testified in the civil action that 1973 is the appropriate pre-development date for purposes of evaluating Saddlebrook's peak flow discharges. David Fuxan, a civil engineer retained by the Porters, took the position in the civil action that Saddlebrook should modify its surface water management system so as to return peak flow discharges to 1973 levels. At the formal hearing in this proceeding, Mr. Fuxan testified that it is still his position that Saddlebrook should modify its surface water management system so as to return peak flow discharges to 1973 levels. By letter from the Porters' counsel to SWFWMD dated January 31, 1990, the Porters provided their express consent to SWFWMD's use of 1973 as the pre- development date for evaluating those discharges relevant to Saddlebrook's MSSW permit application. Use of a 1984 "pre-development" date would prevent Saddlebrook from making the modifications the Porters claim in the civil litigation that it must make. Saddlebrook's existing system, about which the Porters complain in the civil litigation, is in all material respects the same system that was in place on October 1, 1984. Use of this existing system as the benchmark of comparison for attenuation of peak flows, therefore, would mean that substantial modifications to the existing system could not be made without substantially increasing retention storage on Saddlebrook. Substantially increasing retention storage on Saddlebrook is not possible due to the high water table and proximity of the lower aquifer. See Finding of Fact 70, below. In addition, a primary claim of the Porters in the civil action is that duration of flow under Saddlebrook's existing system exceeds 1973 levels and has resulted in expanded wetlands on the Porter property. But duration of flow and peak flow discharges are inversely related: duration of flow can be decreased only if peak flow discharges are increased. Accordingly, the only way that Saddlebrook can reduce the duration of flow onto Wiregrass to 1973 levels, as the Porters have demanded, other than increasing retention storage on Saddlebrook, is to return peak flow discharges to 1973 levels. Other Governmental Agencies' Requirements. F.A.C. Rule 40D-4.301(1)(i) provides that a permit applicant must give reasonable assurance that the surface water management system "is consistent with the requirements of other public agencies." SWFWMD has consistently interpreted this provision to be "advisory", i.e., to apprise applicants that they must also comply with other applicable laws and that issuance of an MSSW permit by the District does not relieve them of the responsibility to obtain all necessary local and other permits. SWFWMD's long-standing and consistently-applied interpretation and practice is not to require applicants to prove compliance with the regulations of other govermental agencies in order to obtain an MSSW permit. There are two primary reasons for this interpretation and practice. First, the Southwest Florida Water Management District includes 16 counties and 96 municipalities. In addition, other state and various federal agencies have jurisdiction within its territory. It is impracticable for SWFWMD to become familiar with, and to apply, the permitting and other regulations of more than 100 other agencies. Second, SWFWMD has concluded that, under Part 4 of Secton 373 of the Flordia Statutes, it does not have authority to deny a permit application based on its interpretation of another governmental agency's regulations. In any event, the evidence demonstrates that Saddlebrook has provided reasonable assurance that the proposed redesign will be "consistent with the requirements of other public agencies" as provided in F.A.C. Rule 40D- 4.301(1)(i). Limiting Condition No. 3 of the proposed permit requires that Saddlebrook must comply with Pasco County and other local requirements: The Permittee shall comply with all applicable local subdivision regulations and other local requirements. In addition the permittee shall obtain all necessary Federal, State, local and special district authorizations prior to the start of any construction or alteration of works authorized by this permit. In addition, Standard Condition No.3 ensures that SWFWMD approval will not supersede any separate permitting or other requirements imposed by Pasco County: The issuance of this permit does not . . . authorize any . . . infringement of federal, state or local laws or regulations. (Emphasis added.) Finally, the Pasco County ordinance upon which Wiregrass relies imposes requirements that are in substance identical to SWFWMD's with respect to MSSW permit applications. Saddlebrook's compliance with SWFWMD's regulations likewise would satisfy the substance of the requirements of the county ordinance. Annual Volume of Runoff. F.A.C. Rule 40D-4 (incorporating the Basis of Review) does not address, and SWFWMD does not regulate, the annual volume of runoff in open drainage basins. If annual volume of runoff is relevant under Rule 40D-4.301, as Wiregrass contends, that rule requires only that the applicant provide reasonable assurance that "the surface water management system" will not cause adverse quantity impacts. Saddlebrook's existing surface water management system has not caused a significant increase in the annual volume of runoff onto Wiregrass' property. The increase in the annual volume of runoff from Saddlebrook that has occurred over the pre-development 1973 condition has resulted from the urbanization of Saddlebrook's property. The increase in the annual volume of runoff from Saddlebrook over that existing prior to development (1973) is approximately 3.4 inches. This increase is only a small fraction of the natural year-to-year variation in runoff resulting from differences in rainfall alone. Rainfall can vary up to 30 inches on an annual basis, from 40 to 70 inches per year. The resulting year-to-year variations in runoff can total as much as 20 inches. The approximately 3.4 inches increase in the annual volume of runoff from Saddlebrook due to urbanization has caused no adverse impact to Wiregrass. The natural drainage system on the Wiregrass property has in the past and throughout its history received and handled increases in the annual volume of runoff of up to 20 inches due to rainfall differences. Such increases simply flow through Wiregrass' property. Of the approximately 3.4 inch increase in annual runoff due to urbanization, only approximately one-third of an inch is due to the filling in of bayheads by Saddlebrook's prior owner. This increase is insignificant and has not caused a substantial adverse impact to Wiregrass. Any reduction of storage resulting from the filling of bayheads will be more than compensated for under the proposed redesign. Storage on Saddlebrook's property will be increased by approximately 35 percent under the proposed condition over that existing in 1973, before the bayheads were filled. In open drainage basins, like Saddlebrook's, downstream flooding is a function of the rate of peak flow of discharge, not the annual volume of runoff. This is one of the reasons why, in the case of open drainage basins, SWFWMD regulates peak flow discharges and not the annual volume of runoff. Because Saddlebrook's proposed redesign will attenuate peak flow discharges to those levels that existed in the pre-devlopment 1973 condition, Saddlebrook has provided reasonable assurance that there will not be increased flooding on Wiregrass' property in the future. The evidence does not establish that Wiregrass has suffered, or will suffer, any adverse impact due to an increase in the annual volume of runoff from Saddlebrook as a result of the design, or redesign, of the system, or as a result of urbanization, or otherwise. It is not possible to design a surface water management system at Saddlebrook that would reduce the annual volume of runoff. Such a system, which involves the percolation of surface water from retention ponds into a deeper, aquifer system, requires a deep water table. At Saddlebrook, the water table is near the ground surface. As a result, it is not possible to store a significant quantity of water in retention ponds between storm events. In addition, the water levels in the deeper and the shallower aquifer systems at Saddlebrook are approximately the same and, therefore, there is insufficient hydraulic pressure to push the water through the confining layer between the two systems and into the deeper aquifer system.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is recommended that the Southwest Florida Water Management District enter a final order granting Saddlebrook's application for surface water management permit no. 497318.00, subject to the terms and conditions in the SWFWMD Staff Report. RECOMMENDED this 31st day of March, 1992, in Tallahassee, Florida. J. LAWRENCE JOHNSTON Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 31st day of March, 1992. APPENDIX TO RECOMMENDED ORDER, CASE NO. 91-3658 To comply with the requirements of Section 120.59(2), Fla. Stat. (1991), the following rulings are made on the parties' proposed findings of fact: Petitioner's Proposed Findings of Fact. 1.-4. Accepted and incorporated. Rejected as not proven and contrary to the greater weight of the evidence. Accepted and incorporated to the extent not subordinate or unnecessary. 7.-9. Rejected as not proven and contrary to the greater weight of the evidence. First sentence, accepted. Second sentence, rejected as not proven and contrary to the greater weight of the evidence. Accepted but not necessary. 12.-13. Rejected as not proven and contrary to the greater weight of the evidence. Accepted but not necessary. The extent of the wetland expansion is rejected as not proven and contrary to the greater weight of the evidence. The rest is accepted. However, the increased volume is due in large part to urbanization, not to the surface water management system. It also is due in part to alterations to the property done by the Porters. Accepted but subordinate and unnecessary. Accepted. However, this would occur only during a 25-year, 24-hour storm event, and there was no evidence that one has occurred or, if it has, whether Mr. Porter was there to observe it. 18.-20. Accepted but subordinate and unnecessary. Characterization "much of" is rejected as not proven and contrary to the greater weight of the evidence. Otherwise, accepted but subordinate and unnecessary. Accepted and incorporated. Rejected as not proven and contrary to the greater weight of the evidence. Rejected as not proven and contrary to the greater weight of the evidence. Rejected as not proven and contrary to the greater weight of the evidence that lichen lines, by themselves, are ordinarily are sufficient to set jurisdictional lines. 26.-29. Rejected as not proven and contrary to the greater weight of the evidence. Even if it were proven that the wetlands had expanded, it was not proven, and is contrary to the greater weight of the evidence, that Saddlebrook (and, especially, Saddlebrook's surface water management system) caused the expansion. First sentence, accepted but cumulative. The rest is rejected as not proven and contrary to the greater weight of the evidence. Accepted but subordinate and unnecessary. In any event, both factors are undeniably significant. 32.-34. Rejected as not proven and contrary to the greater weight of the evidence. Accepted but subordinate and unnecessary. Rejected as not proven and contrary to the greater weight of the evidence. Accepted but subordinate and unnecessary. Rejected as not proven and contrary to the greater weight of the evidence. 39.-41. Rejected as not proven and contrary to the greater weight of the evidence that SWFWMD does not apply it. The evidence was that SWFWMD interprets it differently than Wiregrass proposes and applies its own interpretation. Under the SWFWMD interpretation, the permit conditions requiring compliance with other legal requirements constitute the necessary "reasonable assurance." In addition, SWFWMD's review and evaluation is not complete until this formal administrative proceeding is completed, and the Pasco County ordinance has been considered as part of this proceeding. Rejected as not proven and contrary to the greater weight of the evidence. Again, SWFWMD's review and evaluation is not complete until this formal administrative proceeding is completed, and annual volume has been considered as part of this proceeding. That consideration has affirmed SWFWMD's position that, at least in this case, the proposed stormwater management system does not cause an increase in annual volume that would result in denial of the application. Accepted but subordinate and unnecessary. Rejected as not proven and contrary to the greater weight of the evidence. First sentence, accepted (although the characterization "far exceed" is imprecise) and incorporated. Second sentence, rejected as not proven and contrary to the greater weight of the evidence. Accepted but subordinate and unnecessary that no "stipulation" was entered into. But the evidence is clear that Wiregrass, Saddlebrook and SWFWMD all agreed to the use of 1973 as the point of comparison for peak flow discharges. Rejected as not proven and contrary to the greater weight of the evidence. Accepted but subordinate and unnecessary. Respondents' Proposed Findings of Fact. The proposed findings of fact contained in the Proposed Recommended Order of Respondents Saddlebrook Resorts, Inc., and Southwest Florida Water Management District are accepted and incorporated to the extent not subordinate or unnecessary. COPIES FURNISHED: Douglas P. Manson, Esquire Foley & Lardner 101 East Kennedy Boulevard Suite 3650 Tampa, Florida 33602 Stephen R. Patton, Esquire Jeffrey A. Hall, Esquire Kirkland & Ellis East Randolph Drive Chicago, Illinois 60601 Enola T. Brown, Esquire Lawson, McWhirter, Grandoff & Reeves East Kennedy Boulevard Suite 800 Post Office Box 3350 Tampa, Florida 33601-3350 Mark F. Lapp, Esquire Edward Helvenston, Esquire Assistant General Counsel Southwest Florida Water Management District 2379 Broad Street Brooksville, Florida 34609-6899 Peter G. Hubbell Executive Director Southwest Florida Water Management District 2379 Broad Street Brooksville, Florida 34609-6899

Florida Laws (2) 120.57373.413 Florida Administrative Code (5) 40D-4.02140D-4.04140D-4.05440D-4.09140D-4.301
# 5
A. DUDA AND SONS, INC. vs ST. JOHN`S RIVER WATER MANAGEMENT DISTRICT, 07-003545RU (2007)
Division of Administrative Hearings, Florida Filed:Altamonte Springs, Florida Aug. 01, 2007 Number: 07-003545RU Latest Update: Sep. 09, 2009

The Issue The issues in this case are set out in the Petition to Determine Invalidity of Agency Rules and Agency Statement filed by A. Duda and Sons, Inc. (Duda): Count I, whether the St. Johns River Water Management District (SJRWMD) has an invalid and unadopted strategy to use various means to negate the agricultural exemption set out in Section 373.406(2), Florida Statutes; Count II, whether Section 3.4.1(b) of SJRWMD's Applicant's Handbook: Management and Storage of Surface Waters (the Handbook), which is incorporated by reference in Florida Administrative Code Rule 40C-4.091, is invalid essentially because it conflicts with the agricultural exemption set out in Section 373.406(2), Florida Statutes, and is vague; Count III, whether Rule 40C-4.041 is invalid essentially because it conflicts with the agricultural exemption set out in Section 373.406(2), Florida Statutes, and is vague; Count IV, whether certain documents--namely, all or part of The Manual of Reference Management Practices for Agricultural Activity (November 1978) (the Manual), excerpts from the Journals of the Florida House of Representatives and Senate (1984), and parts of the Model Water Code Commentary (Univ. of Florida 1972)(the Code Commentary), all of which are referred to in Section 3.4.1 of the Handbook but not filed with the Secretary of State--are invalid because they were not properly incorporated by reference under Rule 1S-1.005(2), because they conflict with the agricultural exemption set out in Section 373.406(2), Florida Statutes, and because they are vague; and Count V, whether Rule 40C-44.041 is invalid because it conflicts with the agricultural exemption set out in Section 373.406(2), Florida Statutes, and is vague.

Findings Of Fact Duda clearly has standing since it is challenging the validity of SJRWMD rules and alleged rules that pertain to an enforcement action SJRWMD is bringing against Duda. As reflected in the Statement of the Issues, Section 373.406(2), Florida Statutes, is at the heart of most of the issues in this case. It states: Nothing herein, or in any rule, regulation, or order adopted pursuant hereto, shall be construed to affect the right of any person engaged in the occupation of agriculture, silviculture, floriculture, or horticulture to alter the topography of any tract of land for purposes consistent with the practice of such occupation. However, such alteration may not be for the sole or predominant purpose of impounding or obstructing surface waters. Section 3.4.1(b) of SJRWMD's Handbook states, in pertinent part, how SJRWMD interprets the exemption set out in Section 373.406(2), Florida Statutes: In determining whether an exemption is available to a person engaged in the occupation of agriculture, silviculture, floriculture or horticulture, the following questions much be addressed: Is the proposed topographic alteration consistent with the practice of agriculture, silviculture, floriculture, or horticulture? Is the proposed topographic alteration for the sole or predominant purpose of impounding or obstructing surface waters? If the first question is answered affirmatively and the second is answered negatively, an exemption under subsection 373.406(2), F.S., is available. The exemption is construed as set forth in the Conference Committee Report on CS/CS/HB 1187, Journal of the House of Representatives, May 29, 1984, page 734 and Journal of the Senate, May 28, 1984, page 475. The District presumes that the following activities are consistent with the practice of silviculture when they are undertaken to place property into silvicultural use or to perpetuate the maintenance of property in silvicultural use. The following activities are also presumed not to be for the sole or predominant purpose of impounding or obstructing surface waters: normal site preparation for planting of the tree crop; planting; and harvesting. If any activity is undertaken to place the property into a use other than silviculture (for example: harvesting which is designed to clear property in preparation for commercial, industrial or residential development rather than regeneration) the activity is not considered to be consistent with the practice of silviculture and will be subject to the permitting jurisdiction of the District. Examples of activities which are considered to be for the sole or predominant purpose of impounding or obstructing surface waters because they have the effect of more than incidentally trapping, obstructing or diverting surface water are activities which create canals, ditches, culverts, impoundments or fill roads. In determining consistency with the practice of agriculture occupations, the District will refer to the following publication: "A Manual of Reference Management Practices for Agricultural Activities (November, 1978)[.]" The following practices described in the manual are considered as having impoundment or obstruction of surface waters as a primary purpose: Diversion, when such practice would cause diverted water to flow directly onto the property of another landowner Floodwater Retarding Structure Irrigation Pit or Regulating Reservoir Pond Structure for Water Control Regulating Water in Drainage Systems Pumping Plant for Water Control, when used for controlling water levels on land Other practices which are described in the manual and which are constructed and operated in compliance with Soil Conservation Service standards and approved by the local Soil and Water Conservation District are presumed to be consistent with agricultural activities. Practices which are not described in the manual are presumed to be inconsistent with the practice of agriculture and a permit is required for the construction, alteration, operation, maintenance, removal, or abandonment of a system, subject to the thresholds. See Appendix H for a complete listing of agricultural practices described in the manual. A copy of the manual may be obtained by contacting the District headquarters. Appendix H to the Handbook sets out brief descriptions of listed soil conservation practices for agriculture and states that those practices are described in detail in the Soil Conservation Service's Field Office Technical Guides; it also sets out several other recognized Best Management Practices (BMPs) for agriculture. Appendix H of the Handbook is a verbatim reproduction of the part of the Manual from which it is taken. While Section 3.4.1(b) of the Handbook advises that a copy of the entire Manual may be obtained from SJRWMD, it only incorporates the parts set out verbatim in it and Appendix H. The conference committee reports referred to in Section 3.4.1(b) of the Handbook recommended enactment of the Warren S. Henderson Wetlands Protection Act of 1984 (the Henderson Act), were voted on, and were approved by the House of Representatives and the Senate. Both reports stated in pertinent part: The language contained in s. 403.913, relating to agricultural activities, shall be construed in conjunction with s. 373.406(2) to exempt from permitting only those activities defined as "agricultural activities" pursuant to this act in accordance with the Commentary to s. 4.02.(2) of the Model Water Code. Section 403.913[now 403.927](4)(a), Florida Statutes, stated: "Agricultural activities" includes all necessary farming and forestry operations which are normal and customary for the area, such as site preparation, clearing, fencing, contouring to prevent soil erosion, soil preparation, plowing, planting, harvesting, construction of access roads, and placement of bridges and culverts, provided such operations do not impede or divert the flow of surface waters. The Commentary to Section 4.02.(2) states in pertinent part: The intent of this subsection is to allow persons engaged in agricultural, floricultural, and horticultural operations to engage in ordinary farming and gardening without obtaining a construction permit under §4.04. Theoretically, such operations may incidentally trap or divert some surface water. For example, by plowing a pasture a farmer is trapping and diverting surface water that would have constituted part of the runoff and eventually would have become part of the surface water of the state. Without this exemption the farmer would have theoretically been required to obtain a permit under §4.04. In addition, it would appear that all changes of topography which would alter natural runoff, such as contour plowing, would also require a construction permit under §4.04. The quantity of the water being diverted and trapped is so small that it would serve no practical purpose to require a permit for such work. In addition, the administrative burden of regulating such operations would be enormous. Rule 40C-4.041 provides in pertinent part: Unless expressly exempt, an individual or general environmental resource permit must be obtained from the District under Chapter 40C-4, 40C-40, 40C-42, 40C-44 or 40C-400, F.A.C., prior to the construction, alteration, operation, maintenance, abandonment or removal of any stormwater management system, dam, impoundment, reservoir, appurtenant work or works, including dredging or filling, and for the maintenance and operation of existing agricultural surface water management systems or the construction of new agricultural surface water management systems. Rule 40C-44.041 provides in pertinent part: Unless expressly exempt by Section 373.406, F.S., or Rule 40C-4.051 or 40C- 44.051, F.A.C., a permit is required under this chapter for the maintenance and operation of existing agricultural surface water management systems which serve an agricultural operation as described in paragraph (a) or (b) below. Other than the argument that certain agency statements are unadopted statements defined as rules, Duda's primary argument is that Section 373.406(2), Florida Statutes, is unambiguous and that SJRWMD's interpretation of it, as reflected in its rules and statements, is contrary to the plain meaning of the unambiguous statutory language. Specifically, Duda focuses on SJRWMD's interpretation of the language "for purposes consistent with the practice of such occupation" and "not for the sole or predominant purpose of . . . obstructing surface waters." But it is concluded that SJRWMD's interpretation of the statutory language is as or more reasonable than Duda's. Section 3.4.1(b) of SJRWMD's Handbook describes seven activities that are not "consistent with the practice of [the listed occupations]," including just one that may be disputed by Duda--namely: "Diversion, when such practice would cause diverted water to flow directly onto the property of another landowner." Since Duda's activities that are subject to SJRWMD's enforcement actions do not "cause diverted water to flow directly onto the property of another landowner," Duda's challenge did not focus on that part of Section 3.4.1(b) of the Handbook but rather on diversions of water that do not "cause diverted water to flow directly onto the property of another landowner." But to the extent that Duda was attacking this part of SJRWMD's interpretation, the evidence presented by Duda did not prove that diversion of water to flow directly on the property of another landowner is consistent with the practice of the listed occupations. The Handbook also describes, through Appendix H, activities "presumed to be consistent with agricultural activities." Duda has no dispute with activities described in Appendix but disputes the Handbook's statement that all other activities are "presumed to be inconsistent with the practice of agriculture." But the presumption is rebuttable, and the impact of the statements in the Handbook is to simply require proof of entitlement to the agricultural exemption for activities not listed in Appendix H in proceedings under Sections 120.569 and 120.57, Florida Statutes. Duda also argues that, by its plain meaning, the word "purpose" as used in Section 373.406(2), Florida Statutes, means the actor's subjective intent, not the action's objective effect --in this case, namely, the more-than-incidental trapping or diversion of water to create canals, ditches, culverts, or fill roads. To the contrary, one of the several accepted meanings of the word "purpose" is: "1a : . . . an object or end to be attained : INTENTION b : RESOLUTION, DETERMINATION 2 : a subject under discussion or an action in course of execution." See Merriam Webster's Collegiate Dictionary 1011 (11th ed. 2005). That dictionary also identifies intention as a synonym of the first sense given for purpose and lists design and end among the additional synonyms in the synonymy paragraph after the entry for intention. See id. at 651. For a list of synonyms of the second main meaning of purpose listed in the dictionary ("an action in the course of execution"), one may turn to the second entry for purpose in the companion thesaurus likewise published by Merriam- Webster. That entry lists use in its fourth sense ("a particular service or end") and function as additional synonyms of purpose. See Merriam Webster's Collegiate Thesaurus 591 (1988). Likewise, the dictionary lists purpose as a synonym of function in its sense as "the action for which a person or thing is specially fitted or used or for which a thing exists." See Merriam Webster's Collegiate Dictionary 507 ("function implies a definite end or purpose that the one in question serves or a particular kind of work it is intended to perform"). Broadly, these potential meanings of purpose describe an action, operation, or effect (or a function, use, or result) of a thing done, which can be observed objectively. Duda also argues that, by its plain meaning, the word "obstructing surface waters" as used in Section 373.406(2), Florida Statutes, cannot mean just more-than-incidentally trapping or diverting surface waters to create canals, ditches, and culverts because those works speed or increase water flow rather than obstruct it. To the contrary, Merriam-Webster defines obstruct as "1 :to block or close up by an obstacle 2 :to hinder from passage, action, or operation : IMPEDE 3 :to cut off from sight." Treating impede as a synonym for hinder and obstruct and listing further synonyms at hinder. See Merriam Webster's Collegiate Dictionary 857. The synonymy paragraph at hinder states that the core meaning shared by obstruct and its synonyms is "to interfere with the activity or progress [of something]." Id. at 588 (emphasis added); accord, The American Heritage Dictionary 960 (defiing obstruct as "1. To block or fill a passage with obstacles or an obstacle. . . . 2. To impede, retard, or interfere with; hinder"). One of these possible meanings of obstruct describes interfering with or hindering something, including its passage, action, or operation. In interpreting the word "purpose" in Section 373.406(2), Florida Statutes, it is reasonable for SJRWMD to choose the alternative meaning of an action, operation, or effect (or a function, use, or result) of a thing done, which can be observed objectively. To choose the other alternative meaning of the word would place the regulator at the mercy of the subjective intent of the person regulated and could lead to absurd results. Also, in interpreting the word "obstructing" in Section 373.406(2), Florida Statutes, it is reasonable for SJRWMD to choose the alternative meaning of interfering with or hindering something, including its passage, action, or operation. First, if the word meant only blocking, obstructing would mean the same thing as impounding and would be redundant. Second, if SJRWMD chose "blocking" as the meaning the latter meaning of the word "obstructing," it would countenance draining wetlands to use the drained land for agricultural purposes. Such a result would be in direct conflict with the intent of Chapter 373 to manage and protect water resources. See Conclusion of Law 23, infra. The extrinsic evidence of legislative intent supports SJRWMD's interpretation of Section 373.406(2), Florida Statutes. For that reason, SJRWMD's interpretation of the statute--as reflected in the Handbook--does not conflict with, exceed, modify, or contravene the statute; does not exceed statutory authority; is not standard-less or vague (so as to give SJRWMD unbridled discretion); is not arbitrary or capricious; and is not unsupported by competent, substantial evidence. It also was not proven that SJRWMD has an invalid and unadopted strategy to use various means to negate the agricultural exemption set out in Section 373.406(2), Florida Statutes. To the contrary, the evidence proved that SJRWMD interprets the statute validly and in accordance with the extrinsic evidence of the legislative intent. Finally, in the nearly 25 years that SJRWMD has interpreted Section 373.406(2), Florida Statutes, essentially as reflected in the Handbook, the Joint Administrative Procedure Committee (JAPC) has never objected to SJRWMD's interpretation as being invalid.

Florida Laws (11) 120.52120.56120.569120.57120.68373.016373.042373.175373.246373.406373.616 Florida Administrative Code (5) 1S-1.00540C-4.04140C-4.05140C-4.09140C-44.041
# 6
JOHN HIGGINS, MAUREEN HIGGINS, LOUIS MITCHELL, BETTY MITCHELL, WILLIAM SPENCE, JUNE SPENCE, ROBERT WERNER, AND LEE WERNER vs MISTY CREEK COUNTRY CLUB, INC., AND SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT, 95-002196 (1995)
Division of Administrative Hearings, Florida Filed:Sarasota, Florida May 05, 1995 Number: 95-002196 Latest Update: Dec. 05, 1995

The Issue The issue in this case is whether the Southwest Florida Water Management District (the District) should grant the application of the Misty Creek Country Club, Inc. (the Club), to modify MSSW Permit No. 400037.

Findings Of Fact Background Petitioners are owners of property adjacent to Lake No. 7 of the Misty Creek Country Club in a development called The Preserves at Misty Creek-- specifically, lot 113 (Robert and Lee Werner), lot 114 (Charles and Rosemary Biondolillo), lots 115 and 115A (Ignatius and Judith Bertola), lots 117 and 117A (Don and Halina Bogdanske), lots 118 and 118A (Louis and Betty Mitchell), lots 119 and 119A (George and Dorothy Holly), lots 120 and 120A (John and Maureen Higgins), and lot 121 (William and June Spence). Respondent, the Misty Creek Country Club (the Club), operates a golf course and country club located at The Preserves at Misty Creek under a 99-year lease with Gator Creek Lands, the developer of The Preserves at Misty Creek. Existing System Design and Application for Permit Modification In 1985, Respondent Southwest Florida Water Management District, issued a surface water management permit for development of a 730-acre residential development and golf course. The District subsequently issued to the Club operation phase authorization for the surface water management system associated with the golf course portion of the development in March of 1992. Under the original permit, Lake No. 7 was part of the overall stormwater management system for the golf course. The lake is approximately seven and half to eight acres in size and is part of a total drainage basin of approximately twenty-eight acres. As originally designed, Lake No. 7 is a detention with filtration system. An underdrain in the side of the bank provides water quality treatment, filtering out oils and greases, fertilizers and other contaminants. A control elevation of 31.02 was established for Lake No. 7 through construction of a weir. Between elevation 31.00 and 31.02, water discharges through the underdrain system providing water quality treatment. Above elevation 31.02, water flows over the control structure into Lake No. 6, and ultimately discharges to Cow Pen Slough, which is Class III waters of the state. The Club presently has a water use permit from the District which allows withdrawal of groundwater for irrigation of the golf course. Groundwater is stored in Lake No. 7 prior to use for irrigation when needed to augment water in the lake. Special Condition Number 2 of the water use permit required the Club to investigate the feasibility of using reclaimed or reuse water in lieu of groundwater for irrigation purposes at the golf course. As a result of the investigation required by Special Condition Number 2 of the water use permit, the Club filed an application with the District to modify its surface water management permit to allow for the introduction of reuse water into Lake No. 7. Under that application, there would have been no significant modifications to the stormwater management system. Reuse water would have replaced groundwater as a source for augmenting water in the lake when needed for irrigation. An eight-inch service line would convey the reuse water to Lake 7, and a float valve would control the introduction of reuse water into Lake No. 7. When water levels in the lake fell below elevation 30.5', the float valve would open the effluent line to allow introduction of reuse water into the lake; when the water elevation in the lake reached 31.0', the float valve would shut off the flow of water. There would be gate valves on either side of the structure that could be manually closed, if necessary, to stop the flow of reuse water into the lake if the float valve malfunctioned. Club personnel would have access to the gate valves and could manually stop the flow of reuse water into the lake if necessary. On August 9, 1995, just days prior to the final hearing in this matter, the Club proposed to modify its application to make certain structural changes in the design of the surface water management system. Specifically, the Club proposed to plug the window in the weir, raise the elevation of the weir or control structure to elevation 33.6, raise the elevation of the berm along the north end of Lake No. 7 adjacent to the weir to elevation 33.6, and plug the underdrain. The purpose of the proposed modifications to the design of the system was to assure that no discharge from Lake No. 7 would occur up to and including the 100-year storm event. A 100-year storm event is equal to 10 inches of rainfall in a 24-hour period. Source and Quality of Reuse Water The Club also entered into an agreement with Sarasota County to accept reuse water from the county's new Bee Ridge wastewater treatment facility. That agreement specifies the terms under which the Club will accept reuse water from the County. The County's Bee Ridge facility is presently under construction and is not yet operating. As permitted by the Department of Environmental Protection, the Bee Ridge wastewater treatment facility will use a Bardenpho waste treatment system which is a licensed process to provide advanced waste treatment. The construction permit establishes effluent limits for the facility that are comparable to a level of treatment known as advanced secondary treatment, but the County Commission for Sarasota County has instructed the County staff to operate the Bee Ridge facility as an advanced waste treatment plant. Advanced waste treatment is defined by the quality of the effluent produced. For advanced waste treatment, the effluent may not exceed 5 milligrams/Liter of biochemical oxygen demand (BOD) or total suspended solids (TSS), 3 milligrams/Liter of total nitrogen, or 1 milligram/Liter of total phosphorus. It also requires high level disinfection. Advanced secondary treatment requires the same level of treatment for TSS but the limit for nitrates is 10 milligrams/Liter. High level disinfection is also required for advanced secondary treatment. In Florida, reuse systems require a minimum of advanced secondary treatment. High level disinfection is the level of treatment that generally is accepted as being a reasonable level of treatment. The Bee Ridge permit issued to Sarasota County identifies the Club as one of the recipients of reuse water for irrigation. Condition Number 21 of that permit provides that the use of golf course ponds to store reuse water is not authorized under the County's permit until issuance of a separate permit or modification of the County's permit. Although the District did not require Misty Creek to submit any information about the modification of the County's permit, there was no basis for assuming that the County permit could not be modified. To the contrary, the permit provides that authorization may be obtained by permit modification. Under the late modification to the Club's application, the reuse water transmission line and float valve system, with backup manual gate valve system, is unchanged. So are the water elevations at which the float valve system will automatically introduce reuse water into Lake 7 and shut off. Sarasota County already has constructed the water transmission system that would deliver reuse water to the Club. At the request of the District, the Club provided copies of the drawings of the float valve structure as permitted by the Department of Environmental Protection. The District did not require certified drawings of that structure. But the District will require the Club to provide as-built drawings following completion of construction prior to the introduction of reuse water into Lake No. 7. Property Ownership Each of the Petitioners owns a residential lot adjacent to Lake No. 7. At the time of the Petitioners' purchase of the individual residential lots, the Club leased certain property immediately west of Lake No. 7 from the developer of The Preserve at Misty Creek. The leased premises included a piece of land extending into the lake known as the 19th green. As a result of negotiations between the Club and the developer, it was determined that the 19th green would be removed and the land between the approximate top of bank of Lake No. 7 and the private residential lots would be released from the Club's lease. The developer subsequently conveyed the property that had been released from the Club's lease to the individual lot owners (the "A" parcels listed in Finding 1). At the time of the conveyance of the additional parcels, the attorney for the developer prepared deeds for each individual parcel with a metes and bounds description off the rear of the residential lots to which they were being added. While the Club's application for modification of its surface water management permit was being processed by the District, counsel for Petitioners provided the District with copies of the individual deeds and questioned whether the Club had ownership or control of the land which was the subject of the application sufficient to meet the District's permitting requirements. In response to a request for information regarding the ownership of the property that was the subject of the application, the Club submitted to the District a topographical survey prepared by Mr. Steven Burkholder, a registered professional land surveyor with AM Engineering. The topographical survey depicted: the elevation of the water in the Lake No. 7 on the day that the survey was conducted, labeled "approximate water's edge"; the elevation of the "top of bank"; and the easternmost line of private ownership by Petitioners. Mr. Burkholder determined the line of private property ownership by reproducing a boundary survey attached to the individual deeds conveying the additional parcels to the Petitioners. He testified that he was confident that the topographical survey he prepared accurately represented the most easterly boundary of the Petitioners' ownership. The elevation of the line of private ownership as depicted on the survey prepared by Mr. Burkholder ranges from a low of approximately 34.5 to 35.2. The elevation of the line labeled "top of bank" ranges from a high of 35.6 to a low of 34.4. The elevation of the water in Lake No. 7 would be controlled by the elevation of the modified control structure which is proposed to be set at elevation 33.6. After modification of the surface water management system to retain the 100-year storm event, at no time would water levels in the lake rise above the existing elevation of the "top of bank." The Petitioners testified that they believed that they owned to the water's edge or edge of the lake, but Mr. Burkholder testified that a property boundary could not be determined based on an elevation depicting the water's edge because that line would change as the level of the water rose and fell. The Petitioners also presented evidence that the developer's attorney made representations to them that their ownership extended to the "approximate high water line." But there appears to be no such thing as an "approximate high water line" in surveying terms. Where the boundary of a lake is depicted on a survey it generally is depicted from top of bank to top of bank. In any event, the legal descriptions of the parcels conveyed to the Petitioners were not based on a reference to either a water line or the water's edge or the lake at all. Instead, the legal descriptions were based solely on a metes and bounds description off the rear of the residential lots. Notwithstanding some contrary evidence, if the Petitioners owned to the water's edge, such ownership would require the Petitioners to consent to or join in the amended application for the modification of the Club's surface water management permit. Information regarding the ownership or control and the legal availability of the receiving water system is required as part of the contents of an application under Rule 40D-4.101(2)(d)6. and 7., Florida Administrative Code. The amended application requires the ability to "spread" Lake 7 in the direction of the Petitioners' property. If the Petitioners own the property on which the Club intends to "spread" Lake 7 in order to make the amended application work, the Petitioners must consent or join. The issue of the legal ownership and control of the Petitioners and the Club currently is in litigation in state circuit court. If the state circuit court determines that the easterly boundary of the "A" parcels lies to the east of the "top of bank," consideration would have to be given to modifying any permit issued to the Club to insure that the designed "spread" of Lake 7 in a storm event up to and including a 100-year storm event does not encroach on the Petitioners' property. District Permit Requirements The District has never before processed an application for a surface water management permit allowing commingling of storm water and reuse water. The District applied Chapter 40D-4, Florida Administrative Code, in reviewing the Club's permit application. There are no specific provisions in Rule 40D-4 or the District's Basis of Review for Surface Water Management Permit Applications that address the commingling of stormwater and reuse water; on the other hand, no rules of the District prohibit the introduction of other types of water into a stormwater treatment pond so long as the requirements of Rule 40D-4 are met. The District has the authority to allow stormwater and reuse water to be commingled. Section 40D-4.301, Florida Administrative Code, contains the conditions for issuance of a surface water management permit. Permitting Criteria In order to obtain a surface water management permit to commingle stormwater and reuse water in Lake 7, the Club must provide reasonable assurances that the proposed modifications to its existing system will provide adequate flood control and drainage; not cause adverse water quality and quantity impacts on receiving waters and adjacent lands; not result in a violation of surface water quality standards; not cause adverse impacts on surface and groundwater levels and flows; not diminish the capability of the lake to fluctuate through the full range established for it in Chapter 40D-8, Florida Administrative Code; not cause adverse environmental impacts to wetlands, fish and wildlife or other natural resources; be effectively operated and maintained; not adversely affect public health and safety; be consistent with other public agency's requirements; not otherwise be harmful to water resources of the District; and not be against public policy. No surface or groundwater levels or flows have been set for this area of the District, so that permit criterion is not applicable to the Club's application. The Club's application will not impact wetlands or fish and wildlife associated with wetlands as described in F.A.C. Rule 40D-4.301(1)(f). There are no wetlands regulated by the District in the project site. The Club has submitted to the District an operation and maintenance plan for the modified surface water management system. The operation and maintenance plan is in compliance with the District's permitting criteria contained in Rule 40D-4.301(1)(g). The District's regulation with respect to the requirement that a project not adversely affect the public health and safety is based on the specific requirements of Chapter 40D-4, Florida Administrative Code, and the Club has complied with this criterion. The permitting criterion that a project must be consistent with the requirements of other public agencies was met by inclusion in the permit of Special Conditions Nos. 5 and 6, Limiting Condition No. 3 and Standard Condition No. 3, which require that the surface water management permit be modified if necessary to comply with modifications imposed by other public agencies. The District's regulation with respect to the requirement that a project not otherwise be harmful to the water resources within the District is based on the specific requirements of Chapter 40D-4, Florida Administrative Code, and the Club has complied with this criterion. The District's regulation with respect to the requirement that a project may not be against public policy is based on the specific requirements of Chapter 40D-4, Florida Administrative Code, and the Club has complied with that criterion. The project will not have an adverse impact on water quality or quantity in receiving waters or adjacent lands. Under the District's regulations, the project would not be permittable if it caused flooding on property owned by other persons. Two concerns regarding off-site flooding were raised by Petitioners: first, the potential for flooding of the Petitioners' property; and, second, the potential for flooding of secondary systems connecting to Lake No. 7 such as private roads in the development. The project would violate the requirements of Section 40D-4.301(1)(a), Florida Administrative Code, which requires that a proposed project provide adequate flood protection and drainage, if raising the weir and berm elevation to 33.6 would cause the level of water in Lake No. 7 to move laterally up the bank and encroach on property owned by Petitioners. However, the Club has given reasonable assurances that the Petitioners own only to the "top of bank" and that raising the weir elevation to 33.6 would not cause water levels to rise above the "top of bank" of the lake. If it is determined in pending state circuit court proceedings that the Petitioners own beyond the "top of bank," any permit for the Club's project might have to be modified to avoid flooding the Petitioners' property. With respect to potential flooding of secondary systems, such as adjacent roadways, raising the elevation of water in Lake No. 7 would decrease the capacity of the storm sewers draining into the Lake. However, the proposed modifications would not increase the area of impervious surface in the drainage basin or decrease the size of the lake, and water levels in the roadways probably would not rise much higher than under present circumstances. The existing storm sewer system is only designed for a 10-year storm event, so the supplemental effect on roadway flooding from retaining a 100-year storm event in Lake No. 7 probably would be negligible. The Club gave reasonable assurances that any increase in water levels on the roadways from the proposed modifications would not be considered a significant adverse effect because it still would not affect public access. Sarasota County's land development regulations allow flooding in streets of up to 12 inches for a 100-year storm event, nine inches for a 25-year storm event, and six inches for a 10-year storm event. No portion of the proposed project area is within the 100-year floodplain. The project will not have an adverse effect on water quantity attenuation or cause flooding of the Petitioners' property or secondary systems, such as adjacent roadways. Petitioners have protested the effect that this project will have on water quality within Lake No. 7, itself. Surface water quality standards do not apply within a stormwater pond. Stormwater ponds are essentially pollution sinks intended to receive polluted runoff. Where there is no discharge from a pond, water quality treatment is irrelevant. Lake 7 is not a "water resource within the District" pursuant to Section 40D-4.301(1)(j), Florida Administrative Code, and potential impact on water quality in Lake No. 7 should not be considered. Section 40D-4.301(1)(j) limits the issues to be considered by the District to downstream water quality, water quantity, floodplain impacts, and wetlands impacts. The commingling of wastewater effluent treated to a level of advanced secondary or advanced waste treatment (reuse water) would improve water quality within a stormwater treatment pond at least 90 to 95 percent of the time. Stormwater is very low quality compared to reuse water. In most respects, reuse water also will be better quality than the well water presently being used to augment the pond. It is expected to be better quality than unimpacted water in the receiving waterbody with respect to nitrogen content and only slightly worse with respect to phosphorus content. The addition of reuse water should not promote more algal growth; rather, it should reduce the likelihood of algal growth. It also should not increase the incidences of fish kills in Lake 7. Nor should it alter the nutrient concentrations in Lake 7 so as to result in an imbalance of the natural population of aquatic flora and fauna. In the draft permit originally proposed to be issued to the Club, permit conditions required that water quality be monitored at the point of discharge to waters of the state. This requirement was eliminated from the revised permit as the District determined that it was not necessary in light of the modification of the system to retain the 100-year storm event. The subject design does not account for recovery of the water quality treatment volume within a specified period of time. However, there is no such requirement in District rules when a pond entirely retains the 100-year storm event, as is the case with this project. Even if there were a discharge from the surface water management system in a storm event up to and including a 100-year storm event, the Club gave reasonable assurances that water quality standards in the receiving waterbody would not be violated because of the effects of dilution. This project will not cause discharges which result in any violations of applicable state water quality standards for surface waters of the state. Based on a number of factors, including the peak rate factor, the curve number and the seasonal high water elevation, the water level in Lake 7 would reach an elevation of 33.57 if a 100-year storm event occurs. This results in the retention of the 100-year storm in Lake 7. The District only considers the 100-year storm event, by itself. It does not consider other rainfall events before or after it. However, the District does presume that ponds are at their seasonal high water level when the 100-year storm event occurs and that the ground is saturated. With respect to the seasonal high water level, there was substantial conflicting testimony. The Club's consultant used a seasonal high water level of 31.0' for Lake No. 7 in his calculations. This was based on a geotechnical engineering report prepared by Ardaman & Associates. A seasonal high water elevation of 31.0' was also used in the original permit application in 1985. In concluding that the seasonal high water level should be 31.0, the Ardaman report relied on several assumptions, including plugging of the underdrain and overflow weir and no discharges into or pumping out of the lake. These assumptions were made to establish an historical water level. The Petitioners' consultant disputed the determination in the Ardaman report that the seasonal high for Lake No. 7 was 31 on the grounds that the report indicated groundwater levels of 32.8 on three sides of the lake. He also felt that water levels would rise in the lake over time as a result of it being, allegedly, a closed system. While he did not have an opinion as to what the appropriate seasonal high should be, he felt it would be higher than 31 but lower than 32.8. However, he did no modeling with respect to calculating a seasonal high water level and would normally rely on a geotechnical engineer, such as Ardaman & Associates, to calculate seasonal high water levels. The District generally does not receive information as extensive and detailed as that included in the Ardaman report when it reviews permit applications. Among other things, the Ardaman report indicates a gradient across Lake No. 7 which makes the determination of the seasonal high for the lake difficult. The groundwater flow gradient results from the fact that the elevation of Lake No. 6 is approximately three feet lower than the elevation in Lake No. 7. The elevation determined by Ardaman may well be conservative in that the seasonal high of 31 is above the midpoint of the gradient. Although Lake 7 will be designed as an essentially closed system, it will have inflow from rainfall, surface runoff, introduction of reuse water and groundwater inflow, and outflows by way of evapotranspiration, withdrawal for irrigation purposes, and groundwater outflows. To alleviate any concerns about the validity of the seasonal high, it would be reasonable to include a permit condition requiring the Club to monitor the water level in Lake 7 on a daily basis, using staff gauges, after modification of the control structure. If such monitoring indicated that the seasonal high water level exceeds 31.0, the District could consider options to address that situation, including reducing the level at which reuse water is introduced into the lake or requiring water quality monitoring at the point of discharge to receiving waters. Groundwater quality is regulated by the Department of Environmental Protection, not by the District. The DEP permit issued to Sarasota County for disposal of reuse water at the Club golf course requires the installation of two groundwater monitoring wells, one in fairly close proximity to Lake No. 7. The Overlooked Pond There is a small retention pond northwest of Lake 7, near lot 113. Neither the Club nor the District considered the effect of the Club's late modification of its application on the retention pond northwest of Lake 7 and adjacent properties. Lake 7 and the retention pond to its northwest are connected by an equalizer pipe. As a result, water levels in the pond will be affected by water levels in Lake 7. There was no evidence as to the elevations of the banks of the retention pond. There was no evidence as to whether the modifications to the Club's application will result in flooding of properties adjacent to the pond. There was no evidence that the Club owns or controls the retention pond or the properties adjacent to it that might be affected by flooding that might result from the modifications to the Club's application.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is recommended that the Southwest Florida Water Management District enter a final order denying the Club's amended application. RECOMMENDED this 19th day of October, 1995, in Tallahassee, Florida. J. LAWRENCE JOHNSTON Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 19th day of October, 1995. APPENDIX TO RECOMMENDED ORDER, CASE NO. 95-2196 To comply with the requirements of Section 120.59(2), Fla. Stat. (1993), the following rulings are made on the parties' proposed findings of fact: Petitioners' Proposed Findings of Fact. 1.-2. Accepted and incorporated. Accepted and incorporated to the extent not subordinate or unnecessary. However, there was other evidence from which it can be determined that Lake 7 is part of the Club's lease. Accepted and incorporated. However, there was other evidence from which it can be determined that Lake 7 is part of the Club's lease and from which the western extent of the Club's leasehold interests in Lake 7 can be determined. Accepted and incorporated. But the topographic survey, together with other evidence, does show the eastern extent of the Petitioners' property in relation to the "top of bank" of Lake 7 and the western extent of the Club's leasehold interests in Lake 7. Rejected as contrary to the greater weight of the evidence that uses must be "specifically authorized" in that the lease authorizes the use of the premises for a "golf course," which is presumed to include uses inherent to the operation of a golf course that may not be further specified in the lease, such as drainage facilities, like Lake 7, and facilities for irrigation of the golf course. Otherwise, accepted and incorporated to the extent not subordinate or unnecessary. Rejected as contrary to the greater weight of the evidence. Accepted but subordinate and unnecessary. Rejected as contrary to the greater weight of the evidence that the Club does not pay for the maintenance of Lake 7, at least as between the Club and its lessor, which is the subject of the pertinent lease provision. (There was evidence as to a dispute between the Club and the Petitioners, or at least some of them, as to who is responsible for maintenance of land in the vicinity of the western extent of Lake 7 and the eastern extent of the Petitioners' property. Rejected as contrary to the greater weight of the evidence. Rejected as contrary to the greater weight of the evidence to the extent that there are "A" parcels between lots 115 through 120 and Lake 7. Otherwise, accepted and incorporated. Accepted and incorporated. Not clear whether all of the activities listed in the second sentence are done in the entire area up to the water's edge but, otherwise, accepted and incorporated. Accepted, but subordinate to facts contrary to those found, and unnecessary. Accepted; subordinate to facts found. Rejected. The intent of the parties is not clear and is the subject of litigation in state circuit court. 17.-18. Accepted that some probably used the words "to the water's edge"; others may have said "to the lake" or "to the approximate high water line." Regardless of what they said, the legal consequences are being litigated in state circuit court. Subordinate to facts contrary to those found, and unnecessary. 19.-20. Accepted and incorporated to the extent not subordinate or unnecessary.. Last sentence, accepted but subordinate and unnecessary. The rest is rejected as contrary to the greater weight of the evidence. Accepted but subordinate and unnecessary. The evidence was sufficient to place on Exhibit M-16 the boundary lines of the "A" parcels, as depicted on the Alberti boundary survey that was attached to the individual deeds to all of the "A" parcels, in relation to the "top of bank" of Lake 7 and other topographical features depicted on Exhibit M-16. The 0.679 acre total for the "A" parcels was merely transcribed from the Alberti boundary survey (probably incorrectly, as the boundary survey seems to indicate the acreage to be 0.674, plus or minus.) Rejected as contrary to the greater weight of the evidence. The modification itself would not cause the water level to rise. If, due to the combined influence of all the pertinent factors, the water level in Lake 7 rises, it will spread more than before the modifications, up to a maximum spread of approximately ten feet. Rejected as contrary to the greater weight of the evidence. The Club gave reasonable assurances that the spread would be contained within its leasehold interest. However, consideration would have to be given to modifying the permit if the state circuit court determines in the pending litigation that the easterly boundary of the "A" parcels lies to the east of the "top of bank." Accepted and incorporated to the extent not conclusion of law. Accepted. Self-evident and unnecessary. Accepted and incorporated. Accepted, but subordinate, and unnecessary. Accepted and incorporated. Rejected as contrary to the greater weight of the evidence. It does not prohibit it; it just does not authorize it. It provides that authorization may be obtained by permit modification. Accepted and incorporated to the extent not subordinate or unnecessary. 32.-36. Accepted but subordinate and unnecessary. (Evidence was presented at final hearing.) 37. Rejected as contrary to the greater weight of the evidence that discharges will be "likely." (Accepted and incorporated that no discharges are expected as a result of storm events up to and including a 100-year storm event unless preceding conditions predispose the system to discharge during a 100-year storm event.) 38.-39. Accepted but subordinate and unnecessary. (As for 39., very little construction will be required for the proposed project.) Rejected as contrary to the greater weight of the evidence. First, Lake 7 will not be "maintained" at 31'; rather, when it falls below 30.5', a half inch will be added. Second, it is not clear that the Ardaman report established an "artificially low seasonal high water level." (There is a hydraulic gradient across Lake 7 from east to west, approximately. The Ardaman report assumed no flow into or out of Lake 7; it also assumed no pumpage into or out of the lake.) Rejected as contrary to the greater weight of the evidence that it is based "solely" on that assumption. Accepted and incorporated that it is based on that and on other assumptions. Accepted and incorporated. Accepted but subordinate and unnecessary. (Evidence was presented at final hearing.) Rejected as not supported by evidence. Rejected as contrary to the greater weight of the evidence to the extent that the impact is obvious--the water level in the pond will be approximately equal to the water level in Lake 7. Rejected as contrary to the greater weight of the evidence. The modification itself would not cause the water level to rise. If, due to the combined influence of all the pertinent factors, the water level in Lake 7 rises, so will the water level in the pond. 47.-48. Accepted and incorporated. 49.-50. Accepted but subordinate and unnecessary. 51.-52. Accepted and incorporated. Respondents' Proposed Findings of Fact. 1.-7. Accepted and incorporated. 8. Rejected as contrary to the greater weight of the evidence in that there was more to the application than just substitution of reuse for well water. 9.-10. Accepted and incorporated. 11. Accepted and incorporated to the extent not subordinate or unnecessary. 12.-22. Accepted and incorporated. Rejected as not proven. (The two District witnesses disagreed.) Even if true, subordinate to facts contrary to those found. Accepted and incorporated. Accepted and incorporated to the extent not subordinate or unnecessary, or conclusion of law. Accepted and incorporated. Accepted and incorporated to the extent not conclusion of law. 28.-29. Accepted; subordinate to facts found, and in part conclusion of law. 30. Accepted. First sentence, incorporated; second sentence, subordinate to facts found, and in part conclusion of law. 31.-35. Accepted and incorporated to the extent not subordinate or unnecessary, or conclusion of law. Accepted and incorporated. Accepted and incorporated to the extent not subordinate or unnecessary, or conclusion of law. Accepted but subordinate to facts contrary to those found. 39.-40. Accepted and incorporated to the extent not subordinate or unnecessary. 41.-43. Accepted and incorporated. Accepted and incorporated to the extent not conclusion of law. Last sentence, accepted and incorporated to the extent not conclusion of law; rest, accepted but subordinate to facts contrary to those found, and in part conclusion of law. Accepted and incorporated to the extent not subordinate or unnecessary. Accepted, but subordinate, and unnecessary. Accepted and incorporated. First sentence, accepted but subordinate to facts contrary to those found; second sentence, accepted and incorporated to the extent not conclusion of law. Accepted and incorporated to the extent not subordinate or unnecessary. 51.-52. Accepted and incorporated. 53.-55. Accepted, but subordinate to facts found, and unnecessary. 56. Accepted and incorporated. 57.-62. Accepted and incorporated to the extent not subordinate or unnecessary. 63. Accepted and incorporated to the extent not conclusion of law. COPIES FURNISHED: Patricia A. Petruff, Esquire D. Robert Hoyle, Esquire Dye & Scott, P.A. 1111 Third Avenue West Bradenton, Flroida 34206 Mary F. Smallwood, Esquire Ruden, Barnett, McClosky, Smith, Schuser & Russell, P.A. 215 South Monroe Street, Suite 815 Tallahassee, Florida 32301 Mark F. Lapp, Esquire Assistant General Counsel Southwest Florida Water Management District 2379 Broad Street Brooksville, Florida 34609-6899 Peter G. Hubbell Executive Director Southwest Florida Water Management District 2379 Broad Street Brooksville, Florida 34609-6899 Edward B. Helvenston,Esq. General Counsel Southwest Florida Water Management District 2379 Broad Street Brooksville, Florida 34609-6899

Florida Laws (3) 120.57373.41390.202 Florida Administrative Code (2) 40D-4.30162-610.450
# 7
STANLEY DOMINICK, VINCE EASEVOLI, KATHERINE EASEVOLI, JOHN EASEVOLI, PAULA EASEVOLI, TOM HODGES, ELAINE HODGES, HANY HAROUN, CATHERINE HAROUN, MARTHA SCOTT, AND MARIANNE DELFINO vs LELAND EGLAND AND DEPARTMENT OF ENVIRONMENTAL PROTECTION, 01-001540 (2001)
Division of Administrative Hearings, Florida Filed:Tavernier, Florida Apr. 25, 2001 Number: 01-001540 Latest Update: Sep. 04, 2003

The Issue The issue in this case is whether Respondent, the Department of Environmental Protection (DEP), should grant the application of Respondent, Leland Egland, for an Environmental Resource Permit (ERP), Number 44-01700257-001-ES, to fill an illegally-dredged trench or channel in mangrove wetlands between Florida Bay and what was a land-locked lake, to restore preexisting conditions.

Findings Of Fact Since 1988, Applicant, Leland Egland, has resided in a home built on property he purchased in Buccaneer Point Estates in Key Largo, Florida, in 1986--namely, Lots 14 and 15, Block 2, plus the "southerly contiguous 50 feet." A 1975 plat of Buccaneer Point shows this "southerly contiguous 50 feet" as a channel between Florida Bay to the west and a lake or pond to the east; it also shows a 800-foot linear canal extending from the lake or pond to the north. Egland's Lot 14 borders Florida Bay to the west; his lot 15 borders the lake or pond to the east; the "southerly contiguous 50 feet" is between Egland's lots 14 and 15 and property farther south owned by another developer. See Finding 10, infra. Buccaneer Point lots in Blocks 1 (to the east) and 2 (to the west) surround the lake or pond and canal. The developer of Buccaneer Point applied to the Florida Department of Environmental Regulation (DER) in 1977 for a permit to dredge a channel, characterized as a flushing channel for the lake or pond, which was characterized as a tidal pond with replanted red mangroves. (There was no evidence as to the character of this pond before the 1977 permit application or if it even existed.) DER denied the permit application because the: proposal . . . to open a pond to Florida Bay . . . will connect an 800 linear foot dead-end canal. The pond and canal will act as a sink for marl and organic debris which will increase Biological Oxygen Demand and lower Dissolved Oxygen. The project is expected to result in substances which settle to form putrescent or otherwise objectionable sludge deposits and floating debris, oil scum, and other materials, in amounts sufficient to be deleterious. Based on the above, degradation of local water quality is expected. * * * Furthermore, your project will result in the following effects to such an extent as to be contrary to the public interest and the provisions of Chapter 253, Florida Statutes: Interference with the conservation of fish, marine life and wildlife, and other natural resources. Destruction of natural marine habitats, grass flats suitable as nursery or feeding grounds for marine life, including established marine soils suitable for producing plant growth of a type useful as nursery or feeding grounds for marine life. Reduction in the capability of habitat to support a well-balanced fish and wildlife population. Impairment of the management or feasibility of management of fish and wildlife resources. As a result, the proposed channel to Florida Bay was not dredged (although some of the lake side of the proposed channel apparently was dredged before the project was abandoned); the building lots surrounding the lake or pond (now known as South Lake) and canal were sold as waterfront lots on a land-locked lake without access to Florida Bay; and the "southerly contiguous 50 feet" was included with the conveyance to Egland, along with the Lots 14 and 15 of Block 2. The evidence was not clear as to the characteristics of the "southerly contiguous 50 feet" in 1977, or earlier. When Egland purchased his property in 1986, it was a mature mangrove slough with some tidal exchange between the lake and Florida Bay, especially during high tides and stormy weather. Some witnesses characterized the area of mangroves as a shallow creek in that general time frame (from about 1984 through 1988). According to Vince Easevoli, at least under certain conditions, a rowboat could be maneuvered between the lake and Florida Bay using a pole "like a gondola effect." But Egland testified to seeing Easevoli drag a shallow-draft boat through this area in this general time frame, and the greater weight of the evidence was that the mangrove slough was not regularly navigable channel at the time. During this general time frame (the mid-to-late 1980's) several Petitioners (namely, Stanley Dominick, John and Katherine Easevoli, and their son, Vince Easevoli) purchased property on South Lake. All but Vince built homes and resided there; Vince did not reside there until after Hurricane Andrew in 1992, but he sometimes stayed at the residence on his parents' property during this general time frame. In the early 1990's, the slough or creek became somewhat deeper, making it increasingly more easily passable by boat. Large storms such as Hurricane Andrew in 1992 and the "storm of the century" in 1993 may have contributed to these changes, but human intervention seems to have been primarily responsible. In 1994, Egland added a swimming pool south of the residence on his lots. During construction, some illegal filling took place. Several witnesses testified that the illegal fill occurred to the north of the creek, which was not affected. Vince Easevoli's lay interpretation of several surveys in evidence led him to maintain that illegal fill was placed in the mangrove slough and that the creek became narrower by approximately four feet and, eventually, deeper. But no surveyor testified to explain the surveys in evidence, which do not seem to clearly support Easevoli's position, and the greater weight of the evidence was that illegal fill was not added to the creek in Egland's "southerly contiguous 50 feet." At some point in time, hand tools were used to deepen the slough or creek and trim mangroves without a permit to enable a small boat to get through more easily. As boats were maneuvered through, the creek got deeper. Eventually, propeller-driven boats of increasing size were used to "prop- dredge" the creek even deeper. According to Petitioner, Tom Hodges, when he and his wife purchased their lot on the lake in 1994, it was possible to navigate the creek in a 22-foot Mako boat (at least under certain conditions), and their lot was sold to them as having limited access to Florida Bay. (There was evidence that access to Florida Bay could increase the price of these lots by a factor of three.) Petitioners Martha Scott and Marianne Delfino also purchased their property on the lake in 1994. Tom Hodges claimed to have seen manatees in the lake as early as 1994, but no other witnesses claimed sightings earlier than 1997, and the accuracy of this estimate is questionable. Even if manatees were in the lake during this time frame or earlier, it is possible that they used an access point other than the creek. At the southeast corner of South Lake in Buccaneer Point, there is a possible connection to a body of water farther south, which is part of a condominium development called Landings of Largo and leads still farther south to access to Florida Bay near a dock owned by Landings of Largo. While this connection is shallow, it may have been deep enough under certain conditions to allow manatees to pass through. Apparently not with manatees but rather with boaters from the lake in Buccaneer Point in mind, Landings of Largo has attempted to close this access point by placement of rebar; Landings of Largo also has placed rip-rap under its dock farther south to prevent boats from passing under the dock. However, there are gaps in the rip-rap, some possibly large enough for manatees to pass. In approximately 1995 or 1996, Egland observed Vince Easevoli and his father, John Easevoli, digging a trench through the mangrove slough with a shovel and cutting mangrove trees with a saw in Egland's "southerly contiguous 50 feet." Others were standing by, watching. Egland told them to stop and leave.6 These actions made the creek even deeper and more easily navigable by boat, which continued to further excavate the trench by such methods as "prop dredging." In 1997 Hany Haroun purchased property adjacent to South Lake where he lives with his wife, Christine. By this time, Florida Bay was easily accessible by boat from the lake, and Haroun paid $260,000 for the property. He estimated that his property would be worth about $150,000 less without boat access to Florida Bay. In approximately 1997, manatees began to appear in South Lake year round from time to time, especially in the winter months. In 1997, the Hodgeses saw one they thought may have been in distress and telephoned the Save Our Manatee Club and Dolphin Research for advice. Following the advice given, they used lettuce to coax the manatee over to their dock to check its condition and videotape the event. The manatee appeared healthy and eventually departed the lake. On subsequent visits, manatees have been seen and videotaped resting and cavorting with and without calves and possibly mating in the lake. Groups of as many as seven to eight manatees have been seen at one time in the lake. Tom Hodges, Vince Easevoli, and Hany Haroun testified that they have enjoyed watching manatees in the lake since 1997. It can be inferred from the evidence that Elaine Hodges also has enjoyed watching manatees in the lake. There was no evidence as to the extent to which other Petitioners enjoy watching manatees in the lake. In 1997, the ACOE began an investigation of the illegal dredging of Egland's "southerly contiguous 50 feet." According to Egland, he was in communication with ACOE; presumably, he told ACOE what he knew about the illegal dredging on his property. According to Egland, ACOE advised him to place posts in the dredged channel to keep boats out. When he did so, Tom Hodges removed the posts. Egland replaced the posts, and Hodges removed them again. When Egland told ACOE what was happening, ACOE asked him to try reinstalling the posts and screwing plywood to the posts to achieve a stronger, fence-like barrier. Hodges also removed these barriers, and Egland did not replace the posts or plywood barrier again. In 1998, ACOE mailed Egland a Cease and Desist Order accusing him of illegal dredging in his "southerly contiguous 50 feet" and demanding that he restore the mangrove slough to its previous conditions. Egland was angry at being blamed for the dredging and initially disputed ACOE's charges and demands. But ACOE and the United States Environmental Protection Agency (EPA), which accepted the role of lead federal enforcement agency on December 18, 1998, was seeking monetary civil penalties. In addition, Egland received legal advice that, if restoration were delayed, he could be sued for damages by someone purchasing property on the lake or canal in the meantime upon the mistaken belief that there was boat access to Florida Bay. For these reasons, Egland agreed to comply with the Cease and Desist Order. However, ACOE and EPA informed Egland that he might have to obtain a permit from DEP to fill the dredged channel in compliance with the Cease and Desist Order. On May 22, 2000, Egland applied to DEP for an ERP to restore a trench about 100 feet long varying from seven to ten feet in width that was illegally dredged on his property. He estimated that a total of 160 cubic yards of fill would be required, to be spread over approximately 900 square feet. He assured DEP that rip-rap would be used to contain the fill and that turbidity screens would be used during construction. During processing of Egland's application, DEP requested additional information, which Egland provided, and DEP's Environmental Manager, Edward Barham, visited the project site in October 2000. Based on all the evidence available to him at that point in time, Barham viewed Egland's proposed fill project as a simple restoration project to correct illegal dredging and return the mangrove slough to its preexisting condition. For that reason, Barham recommended that DEP process the application as a de minimis exemption and not charge a permit application fee. Subsequently, some Petitioners brought it to DEP's attention that manatees were accessing South Lake through the channel Egland wanted to fill. DEP saw no need to verify the accuracy of Petitioners' information or obtain additional information about the manatees use of the lake because DEP still viewed it as a restoration project. However, DEP decided that it would be necessary to include specific conditions in any ERP issued to Egland to ensure that no manatees would be trapped in the lake or otherwise injured as a result of filling the channel. Primarily due to the need for these conditions, and also because of anticipated opposition from Petitioners, DEP decided to charge Egland a permit application fee and not process the application as a de minimis exemption. DEP staff visited the mangrove slough on numerous occasions between October 2000, and final hearing and observed that the trench continued to get deeper over time as a result of continued prop-dredging and digging. In early August 2001, Tom Hodges observed a man walking back and forth with a wheel barrow between a storage shed on Egland's property and the channel. (Hodges was on his property across South Lake but use of binoculars enabled him to see this.) The next day, Hany Haroun discovered a poured- concrete slab forming a plug or dam in the channel on the lake side. Haroun reported his discovery to Tom Hodges, who investigated with his wife, who took photographs of the structure. At some point, the Hodgeses realized that a manatee was trapped in the lake. The manatee did not, and appeared unable to, use the other possible access point towards Landings of Largo to escape. See Finding 10, supra. The Hodgeses telephoned Barham at DEP to report the situation and complain. Tom Hodges then proceeded to break up the concrete, remove the resulting rubble, and place it on the path to the storage shed, freeing the manatee. The incident was reported in the newspaper the next day and prompted Petitioners to file their Motion to Dismiss and for Other Relief on August 9, 2001. See Preliminary Statement. The evidence was inconclusive as to who poured the concrete, or had it poured, and why. Egland testified that he was in Egypt on an extended trip at the time and denied any knowledge of the concrete plug until he saw the rubble on his property upon his return from Egypt. Egland testified that he saw no "aggregate" in the concrete, which would make it relatively easy to break up, and he suspected that Petitioners were responsible for pouring the concrete in order to publicly make false accusations against Egland. Petitioners denied Egland's accusation. Vince testified that the concrete contained rebar for strength. The evidence was inconclusive as to who was responsible for this incident. As pointed out by Petitioners, DEP did not investigate and does not know whether there is any freshwater upwelling in the lake, whether manatees have mated in the lake, or whether calves have been birthed in the lake. DEP also did not investigate and does not know whether South Lake is unlike other manatee habitat in the area. DEP did not investigate or obtain any information as to how many manatees use the lake, or what manatees use the lake for, in addition to the information provided by Petitioners. Carol Knox, an Environmental Specialist III with the Florida Fish and Wildlife Commission, testified as a manatee expert based on her knowledge of manatees and manatee habitat in the area, as well as the information known to DEP. It was her opinion that, regardless what South Lake might offer manatees in the way of habitat, closing the channel (with the specific conditions required by DEP to protect manatees during the filling itself) would have no adverse impact on manatees because it did not appear that manatees made use of the lake before the channel was dug in 1996 or 1997, and ample other manatee habitat of various kinds continued to be available in the area.7 Based on the testimony of Knox and Barham, and the totality of the evidence in this case, it is found that Egland provided reasonable assurance that his proposed restoration project will not harm or adversely affect manatees or their habitats. Petitioners also questioned Egland's assurances as to water quality. Vince Easevoli, Stanley Dominick, and Hany Haroun testified to their concerns that water quality in the lake will decline if the channel is closed. As Petitioners point out, DEP did not require Egland to provide any water quality measurements. This was because the proposal is reasonably expected to reverse the effects of the illegal dredging on water quality and to return both the water in the lake and canal and the water in Florida Bay to the quality that existed prior to the illegal dredging. Without requiring any water quality measurements, it is reasonably expected that the water quality in Florida Bay would not decline in any respect; to the contrary, if anything, Florida Bay's water quality would be expected to improve by reduction of contributions from the lake and canal. Conversely, water quality in the lake and canal would be expected to decline but not below what it was before the illegal dredging. Petitioners also question DEP's failure to require Egland to provide a survey or stake the area to be filled, so as to ensure against filling too much of the mangrove slough. But the proposed ERP contains a specific condition: "The final fill elevation of the fill shall be at the elevation of the substrate within the adjacent mangrove wetlands." Barham testified persuasively that this specific condition is adequate to provide reasonable assurance. Compliance can be ascertained by simply viewing the site after completion of the restoration project, and compliance can be enforced by requiring removal of excess fill as necessary. The proposed ERP also contains a general condition that the permit does not convey or create any property right, or any interest in real property, or authorize any entrances upon or activities on property which is not owned or controlled by Egland.

Recommendation Based upon the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the Respondent, the Department of Environmental Protection, enter a final order granting the application of Leland Egland and issuing ERP Number 44- 01700257-001-ES. DONE AND ENTERED this 25th day of November, 2002, in Tallahassee, Leon County, Florida. ___________________________________ J. LAWRENCE JOHNSTON Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 25th day of November, 2002.

Florida Laws (9) 120.52120.5726.012267.061373.413373.414373.42140.011403.031
# 8
COUNCIL OF CIVIC ASSOCIATION, INC. vs KORESHAN UNITY FOUNDATION, INC., AND DEPARTMENT OF ENVIRONMENTAL PROTECTION, 98-000999 (1998)
Division of Administrative Hearings, Florida Filed:Fort Myers, Florida Mar. 03, 1998 Number: 98-000999 Latest Update: Sep. 17, 1998

The Issue The issue is whether Respondent Koreshan Unity Foundation, Inc., is entitled to a environmental resource permit for the construction of a wooden footbridge over the Estero River east of U.S. Route 41 and authorization to obtain by easement a right to use sovereign submerged lands.

Findings Of Fact Respondent Koreshan Unity Foundation, Inc. (Koreshan) is a not-for-profit corporation dedicated to the preservation of the Koreshan heritage. Koreshan derives its heritage from a largely self-sufficient community that occupied land in south Lee County. For several years, Koreshan has owned a parcel of 14.56 acres at the southeast corner of U.S. Route 41 and the Estero River. This parcel is bounded on the south by Corkscrew Road and contains an amphitheater and historical house, midway between the river and Corkscrew Road. The south end of this parcel contains a museum and parking area with access to Corkscrew Road. The approximate dimensions of the 14.56-acre parcel are 544 feet along the river, 496 feet along Corkscrew Road, and about 1273 feet along the west and the east property lines. The west property line is U.S. Route 41. The right-of-way for U.S. Route 41 is wider at the southern two-thirds of the parcel than the northern one-third of the parcel. A sidewalk runs on the east side of U.S. Route 41 from north of the river, across the U.S. Route 41 bridge, along the west boundary of Koreshan's property, at least to an entrance near the middle of the 14.56-acre parcel. In October 1996, Koreshan acquired 8.5 acres of land at the northeast corner of the U.S. Route 41 and the river. The purpose of the acquisition was to provide parking for persons coming to Koreshan-sponsored events, such as music performances, at the 14.56-acre site. Koreshan rents a small portion of this northerly parcel to a canoe-rental business, which operates where the bridge and river meet. To assist their visitors-some of whom are elderly and disabled--in gaining access to the 14.56-acre site, on November 26, 1996, Koreshan filed an application for a permit and authorization to construct a wooden footbridge across the Estero River about 315 feet east of the U.S. Route 41 bridge. The source of the Estero River is to the east of the U.S. Route 41 bridge and the location of the proposed bridge. After passing under the U.S. Route 41 bridge, the river runs along the Koreshan state park, which is a short distance east of U.S. Route 41, before it empties into the Gulf of Mexico at Estero Bay, which is a state aquatic preserve. The portion of the river at the site of the proposed bridge is an Outstanding Florida Waterway (OFW) and a Class III water. The river is popular with canoeists and kayakers. Persons may rent canoes and kayaks at the canoe rental business operating on the 8.5-acre parcel or the Koreshan state park. Although most canoeists and kayakers proceed downstream toward the bay, a significant number go upstream past the U.S. Route 41 bridge. Upstream of the bridge, the river narrows considerably. Tidal currents reach upstream of the U.S. Route 41 bridge. At certain tides or in strong winds, navigating a canoe or kayak in this area of the river can be moderately difficult. Even experienced canoeists or kayakers may have trouble maintaining a steady course in this part of the river. Less experienced canoeists or kayakers more often have trouble staying on course and avoiding other boats, the shore, vegetation extending from the water or shoreline, or even the relatively widely spaced supports of the U.S. Route 41 bridge pilings, which are about 30 feet apart. Mean high water is at 1.11 feet National Geodetic Vertical Datum. The deck of the proposed footbridge would be 9 feet, 6 inches wide from rail to rail and 16 feet wide in total. The proposed footbridge would extend about 180 feet, spanning 84 feet of water from shore to shore. The bridge- ends would each be about 50 feet and would each slope at a rate of 1:12. The proposed footbridge would rest on nine pilings: four in the uplands and five in the submerged bottom. The elevation of the bottom of the footbridge from the water surface, at mean high water, would be 8 feet, 8 inches. The distance between the centers of the pilings would be 14 feet, and each piling would be of a minimum diameter of 8 inches. According to a special permit condition, the pilings would be treated with chromated copper arsenate, as a preservative, but they would be wrapped in impermeable plastic or PVC sleeves so as, in the words of the proposed permit, "to reduce the leaching of deleterious substances from the pilings." The proposed permit requires that the sleeves shall be installed from at least 6 inches below the level of the substrate to at least 1 foot above the seasonal highwater line and shall be maintained over the life of the facility. The proposed permit also requires that the footbridge be limited to pedestrian traffic only, except for wheelchairs. The permit requires the applicant to install concrete-filled steel posts adjacent to the bridge to prevent vehicles from using the bridge. The proposed permit requires that Koreshan grant a conservation easement for the entire riverbank running along both shorelines of Koreshan's two parcels, except for the dock and boat ramp used by the canoe-rental business. The proposed permit also requires Koreshan to plant leather fern or other wetland species on three-foot centers along the river banks along both banks for a distance of 30 feet. The proposed permit states that the project shall comply with all applicable water quality standards, including the antidegradation permitting requirements of Rule 62-4.242, Florida Administrative Code. Respondents did not raise standing as an affirmative defense. It appears that Petitioners or, in the case of corporate Petitioners, members and officers all live in the area of the Estero River and use the river regularly. For instance, Petitioner Dorothy McNeill resides one mile south of the proposed bridge on a canal leading to the Estero River, which she uses frequently. She is the president and treasurer of Petitioner Estero Conservancy, whose mission is to preserve the Estero River in its natural state. Petitioner Ellen W. Peterson resides on Corkscrew Road, 300-400 feet from the proposed footbridge. For 26 years, she has paddled the river several times weekly, usually upstream because it is prettier. She formerly canoed, but now kayaks. The record is devoid of evidence of the water- quality criteria for the Estero River at the time of its designation as an OFW or 1995, which is the year prior to the subject application. Koreshan has not provided reasonable assurance that the proposed footbridge would not adversely affect the water quality of the Estero River. Although the site of the proposed footbridge is devoid of bottom vegetation and there is no suggestion that this is anything but a natural condition for this part of the riverbottom, there is evidence that the proposed footbridge would adversely affect the water quality in two respects: turbidity caused by the pilings and leaching from the chromated copper arsenate applied to the pilings. The turbidity is probably the greater threat to water quality because it would be a permanent factor commencing with the completion of the installation of the pilings. The leaching of the heavy metals forming the toxic preservative impregnated into the pilings is probable due to two factors: damage to the PVC liner from collisions with inexperienced boaters and high-water conditions that exceed 1 foot over mean high water and, thus, the top of the liner. Both of these factors are exacerbated by flooding, which is addressed below. Koreshan also has failed to provide reasonable assurance that the proposed footbridge is clearly in the public interest under the seven criteria. The proposed footbridge would adversely affect the public health, safety, or welfare and the property of others through exacerbated flooding. South Lee County experienced serious flooding in 1995. In response, Lee County and the South Florida Water Management District have attempted to improve the capacity of natural flowways, in part by clearing rivers of snags and other impediments to flow, including, in the case of the Imperial River, a bridge. One important experience learned from the 1995 floods was to eliminate, where possible, structures in the river, such as snags and pilings, that collect debris in floodwaters and thereby decrease the drainage capacity of the waterway when drainage capacity is most needed. Longer term, the South Florida Water Management District is considering means by which to redirect stormwater from the Imperial River drainage to the Estero River drainage. The addition of five pilings (more as the river rose) would exacerbate flooding. On this basis alone, Koreshan has failed to provide reasonable assurance. Additionally, though, the HEC II model output offered by Koreshan does not consider flooding based on out-of-banks flows, but only on the basis of roadway flows. In other words, any assurances as to flooding in the design storm are assurances only that U.S. Route 41 will not be flooded, not that the lower surrounding land will not be flooded. Koreshan failed to provide reasonable assurance that the proposed activity would not adversely affect the conservation of fish and wildlife, for the reasons already stated with respect to water quality. Koreshan failed to provide reasonable assurance that the proposed activity would not adversely affect navigation or the flow of water. The flow of water is addressed above. Navigation is best addressed together with the next criterion: whether the proposed activity would adversely affect fishing or recreational values or marine productivity in the vicinity of the activity. Despite the presence of only two public launch sites, boating is popular on the Estero River. Reflective of the population growth of Collier County to the south and the area of Lee County to the north, the number of boaters on the Estero River has grown steadily over the years. The canoe- rental business located on the 8.5-acre parcel rented canoes or kayaks to over 10,000 persons in 1996. Many other persons launched their canoes or kayaks for free from this site and the nearby state park. Lee County businesses derive $800,000,000 annually from tourism with ecotourism a growing component of this industry. The Estero River is an important feature of this industry, and the aquatic preserve at the mouth of the river and the state park just downstream from the proposed footbridge provide substantial protection to the scenic and environmental values that drive recreational interest in the river. It is unnecessary to consider the aesthetic effect of a footbridge spanning one of the more attractive segments of the Estero River. The proposed footbridge and its five pilings effectively divide the river into six segments of no more than 14 feet each. This fact alone diminishes the recreational value of the river for the many canoeists and kayakers who cannot reliably navigate the U.S. Route 41 bridge pilings, which are more than twice as far apart. As to the remaining criteria, the proposed footbridge would be permanent and the condition and relative value of functions being performed by areas affected by the proposed activity is high. There is conflicting evidence as to whether the proposed footbridge would adversely affect the remnants of an historic dock, but it is unnecessary to resolve this conflict. The mitigation proposed by Koreshan does not address the deficiencies inherent in the proposed activity.

Recommendation It is RECOMMENDED that the Department of Environmental Protection enter a final order dismissing the petition of Petitioner Council of Civic Associations, Inc., and denying the application of Respondent Koreshan Unity Foundation, Inc., for an environmental resource permit and authorization to obtain an easement for the use of sovereign land. DONE AND ENTERED this 3rd day of August, 1998, in Tallahassee, Leon County, Florida. ROBERT E. MEALE Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 Filed with the Clerk of the Division of Administrative Hearings this 3rd day of August, 1998. COPIES FURNISHED: Kathy Malone Vice President and Treasurer Council of Civic Associations, Inc. Post Office Box 919 Estero, Florida 33919-0919 Reginald McNeill Dorothy McNeill, President Estero Conservancy, Inc. 26000 Park Place Estero, Florida 33928 Mark E. Ebelini Humphrey & Knott, P.A. 1625 Hendry Street, Suite 301 Fort Myers, Florida 33901 Phyllis Stanley, President 12713-3 McGregor Boulevard Fort Myers, Florida 33919 Cathy S. Reiman Cummings & Lockwood Post Office Box 413032 Naples, Florida 34101-3032 Francine M. Ffolkes Department of Environmental Protection Mail Station 35 3900 Commonwealth Boulevard Tallahassee, Florida 32399-3000 Kathy Carter, Agency Clerk Department of Environmental Protection Mail Station 35 3900 Commonwealth Boulevard Tallahassee, Florida 32399-3000 F. Perry Odom, General Counsel Department of Environmental Protection Mail Station 35 3900 Commonwealth Boulevard Tallahassee, Florida 32399-3000

Florida Laws (9) 120.52120.57120.68253.77267.061373.4136373.414373.421403.031 Florida Administrative Code (8) 18-21.00318-21.00418-21.0040118-21.00518-21.005162-302.20062-302.70062-4.242
# 9
KAREN AHLERS AND JERI BALDWIN vs SLEEPY CREEK LANDS, LLC AND ST. JOHNS RIVER WATER MANAGEMENT DISTRICT, 14-002610 (2014)
Division of Administrative Hearings, Florida Filed:Palatka, Florida Jun. 03, 2014 Number: 14-002610 Latest Update: Oct. 24, 2016

The Issue The issue to be determined is whether Consumptive Use Permit No. 2-083-91926-3, and Environmental Resource Permit No. IND-083-130588-4 should be issued as proposed in the respective proposed agency actions issued by the St. Johns River Water Management District.

Findings Of Fact The Parties Sierra Club, Inc., is a national organization, the mission of which is to explore, enjoy, and advocate for the environment. A substantial number of Sierra Club’s 28,000 Florida members utilize the Silver River, Silver Springs, the Ocklawaha River, and the St. Johns River for water-based recreational activities, which uses include kayaking, swimming, fishing, boating, canoeing, nature photography, and bird watching. St. Johns Riverkeeper, Inc., is one of 280 members of the worldwide Waterkeepers Alliance. Its mission is to protect, restore, and promote healthy waters of the St. Johns River, its tributaries, springs, and wetlands -- including Silver Springs, the Silver River, and the Ocklawaha River -- through citizen- based advocacy. A substantial number of St. Johns Riverkeeper’s more than 1,000 members use and enjoy the St. Johns River, the Silver River, Silver Springs, and the Ocklawaha River for boating, fishing, wildlife observation, and other water-based recreational activities. Karen Ahlers is a native of Putnam County, Florida, and lives approximately 15 miles from the Applicant’s property on which the permitted uses will be conducted. Ms. Ahlers currently uses the Ocklawaha River for canoeing, kayaking, and swimming, and enjoys birding and nature photography on and around the Silver River. Over the years, Ms. Ahlers has advocated for the restoration and protection of the Ocklawaha River, as an individual and as a past-president of the Putnam County Environmental Council. Jeri Baldwin lives on a parcel of property in the northeast corner of Marion County, approximately one mile from the Applicant’s property on which the permitted uses will be conducted. Ms. Baldwin, who was raised in the area, and whose family and she used the resources extensively in earlier years, currently uses the Ocklawaha River for boating. Florida Defenders of the Environment (FDE) is a Florida corporation, the mission of which is to conserve and protect and restore Florida's natural resources and to conduct environmental education projects. A substantial number of FDE’s 186 members, of which 29 reside in Marion County, Florida, use and enjoy Silver Springs, the Silver River, and the Ocklawaha Aquatic Preserve, and their associated watersheds in their educational and outreach activities, as well as for various recreational activities including boating, fishing, wildlife observation, and other water-based recreational activities. Sleepy Creek Lands, LLC (Sleepy Creek or Applicant), is an entity registered with the Florida Department of State to do business in the state of Florida. Sleepy Creek owns approximately 21,000 acres of land in Marion County, Florida, which includes the East Tract and the North Tract on which the activities authorized by the permits are proposed. St. Johns River Water Management District (SJRWMD or District) is a water-management district created by section 373.069(1). It has the responsibility to conserve, protect, manage, and control the water resources within its geographic boundaries. See § 373.069(2)(a), Fla. Stat. The Consumptive Use Permit The CUP is a modification and consolidation of two existing CUP permits, CUP No. 2-083-3011-7 and CUP No. 2-083- 91926-2, which authorize the withdrawal of 1.46 mgd from wells located on the East Tract. Although the existing CUP permits authorize an allocation of 1.46 mgd, actual use has historically been far less, and rarely exceeded 0.3 mgd. The proposed CUP modification will convert the authorized use of water from irrigation of 1,010 acres of sod grass on the East Tract, to supplemental irrigation of improved pasture for grass and other forage crops (approximately 97 percent of the proposed withdrawals) and cattle watering (approximately three percent of the proposed withdrawals) on the North Tract and the East Tract. An additional very small amount will be used in conjunction with the application of agricultural chemicals. CUP No. 2-083-3011-7 is due to expire in 2021. CUP No. 2-083-91926-2 is due to expire in 2024. In addition to the consolidation of the withdrawals into a single permit, the proposed agency action would extend the term of the consolidated permit to 20 years from issuance, with the submission of a compliance report due 10 years from issuance. Sleepy Creek calculated a water demand of 2.569 mgd for the production of grasses and forage crops necessary to meet the needs for grass-fed beef production, based on the expected demand in a 2-in-10 drought year. That calculation is consistent with that established in CUP Applicant’s Handbook (CUP A.H.) section 12.5.1. The calculated amount exceeds the authorized average allocation of 1.46 mgd. Mr. Jenkins testified as to the District’s understanding that the requested amount would be sufficient, since the proposed use was a “scaleable-type project,” with adjustments to cattle numbers made as necessary to meet the availability of feed. Regardless of demand, the proposed permit establishes the enforceable withdrawal limits applicable to the property. With regard to the East Tract, the proposed agency action reduces the existing 1.46 mgd allocation for that tract to a maximum allocation of 0.464 mgd, and authorizes the irrigation of 611 acres of pasture grass using existing extraction wells and six existing pivots. With regard to the North Tract, the proposed agency action authorizes the irrigation of 1,620 acres of pasture and forage grain crops using 15 center pivot systems. Extraction wells to serve the North Tract pivots will be constructed on the North Tract. The proposed North Tract withdrawal wells are further from Silver Springs than the current withdrawal locations. The proposed CUP allows Sleepy Creek to apply the allocated water as it believes to be appropriate to the management of the cattle operation. Although the East Tract is limited to a maximum of 0.464 mgd, there is no limitation on the North Tract. Thus, Sleepy Creek could choose to apply all of the 1.46 mgd on the North Tract. For that reason, the analysis of impacts from the irrigation of the North Tract has generally been based on the full 1.46 mgd allocation being drawn from and applied to the North Tract. The Environmental Resource Permit As initially proposed, the CUP had no elements that would require issuance of an ERP. However, in order to control the potential for increased runoff and nutrient loading resulting from the irrigation of the pastures, Sleepy Creek proposes to construct a stormwater management system to capture runoff from the irrigated pastures, consisting of a series of vegetated upland buffers, retention berms and redistribution swales between the pastures and downgradient wetland features. Because the retention berm and swale system triggered the permitting thresholds in rule 62-330.020(2)(d) (“a total project area of more than one acre”) and rule 62-330.020(2)(e) (“a capability of impounding more than 40 acre-feet of water”), Sleepy Creek was required to obtain an Environmental Resource Permit for its construction. Regional Geologic Features To the west of the North Tract is a geologic feature known as the Ocala Uplift or Ocala Platform, in which the limestone that comprises the Floridan aquifer system exists at or very near the land surface. Karst features, including subterranean conduits and voids that can manifest at the land surface as sinkholes, are common in the Ocala Uplift due in large part to the lack of consolidated or confining material overlaying the limestone. Water falling on the surface of such areas tends to infiltrate rapidly through the soil into the Floridan aquifer, occasionally through direct connections such as sinkholes. The lack of confinement in the Ocala Uplift results in few if any surface-water features such as wetlands, creeks, and streams. As one moves east from the Ocala Uplift, a geologic feature known as the Cody Escarpment becomes more prominent. In the Cody Escarpment, the limestone becomes increasingly overlain by sands, shell, silt, clays, and other less permeable sediments of the Hawthorn Group. The North Tract and the East Tract lie to the east of the point at which the Cody Escarpment becomes apparent. As a result, water tends to flow overland to wetlands and other surface water features. The Property The North and East Tracts are located in northern Marion County near the community of Fort McCoy. East Tract Topography and Historic Use The East Tract is located in the Daisy Creek Basin, and includes the headwaters of a small creek that drains directly to the Ocklawaha River. The historic use of the East Tract has been as a cleared 1,010-acre sod farm. The production of sod included irrigation, fertilization, and pest control. Little change in the topography, use, and appearance of the property will be apparent as a result of the permits at issue, but for the addition of grazing cattle. The current CUPs that are subject to modification in this proceeding authorize groundwater withdrawals for irrigation of the East Tract at the rate of 1.46 mgd. Since the proposed agency action has the result of reducing the maximum withdrawal from wells on the East Tract to 0.464 mgd, thus proportionately reducing the proposed impacts, there was little evidence offered to counter Sleepy Creek’s prima facie case that reasonable assurance was provided that the proposed East Tract groundwater withdrawal allocation will meet applicable CUP standards. There are no stormwater management structures to be constructed on the East Tract. Therefore, the ERP permit discussed herein is not applicable to the East Tract. North Tract Topography and Historic Use The North Tract has a generally flat topography, with elevations ranging from 45 feet to 75 feet above sea level. The land elevation is highest at the center of the North Tract, with the land sloping towards the Ocklawaha River to the east, and to several large wet prairie systems to the west. Surface water features on the North Tract include isolated, prairie, and slough-type wetlands on approximately 28 percent of the North Tract, and a network of creeks, streams, and ditches, including the headwaters of Mill Creek, a contributing tributary of the Ocklawaha River. A seasonal high groundwater elevation on the North Tract is estimated at 6 to 14 inches below ground surface. The existence of defined creeks and surface water features supports a finding that the North Tract is underlain by a relatively impermeable confining layer that impedes the flow of water from the surface and the shallow surficial aquifer to the upper Floridan and lower Floridan aquifers. If there was no confining unit, water going onto the surface of the property, either in the form of rain or irrigation water, would percolate unimpeded to the lower aquifers. Areas in the Ocala Uplift to the west of the North Tract, where the confining layer is thinner and discontiguous, contain few streams or runoff features. Historically, the North Tract was used for timber production, with limited pasture and crop lands. At the time the 7,207-acre North Tract was purchased by Sleepy Creek, land use consisted of 4,061 acres of planted pine, 1,998 acres of wetlands, 750 acres of improved pasture, 286 acres of crops, 78 acres of non-forested uplands, 20 acres of native forest, 10 acres of open water, and 4 acres of roads and facilities. Prior to the submission of the CUP and ERP applications, much of the planted pine was harvested, and the land converted to improved pasture. Areas converted to improved pasture include those proposed for irrigation, which have been developed in the circular configuration necessary for future use with center irrigation pivots. As a result of the harvesting of planted pine, and the conversion of about 345 acres of cropland and non-forested uplands to pasture and incidental uses, total acreage in pasture on the North Tract increased from 750 acres to 3,938 acres. Other improvements were constructed on the North Tract, including the cattle processing facility. Aerial photographs suggest that the conversion of the North Tract to improved pasture and infrastructure to support a cattle ranch is substantially complete. The act of converting the North Tract from a property dominated by planted pine to one dominated by improved pasture, and the change in use of the East Tract from sod farm to pasture, were agricultural activities that did not require a permit from the District. As such, there is no impropriety in considering the actual, legal use of the property in its current configuration as the existing use for which baseline conditions are to be measured. Petitioners argue that the baseline conditions should be measured against the use of the property as planted pine plantation, and that Sleepy Creek should not be allowed to “cattle-up” before submitting its permit applications, thereby allowing the baseline to be established as a higher impact use. However, the applicable rules and statutes provide no retrospective time-period for establishing the nature of a parcel of property other than that lawfully existing when the application is made. See West Coast Reg’l Water Supply Auth. v. SW Fla. Water Mgmt. Dist., Case No. 95-1520 et seq., ¶ 301 (Fla. DOAH May 29, 1997; SFWMD ) (“The baseline against which projected impacts conditions [sic] are those conditions, including previously permitted adverse impacts, which existed at the time of the filing of the renewal applications.”). The evidence and testimony in this case focused on the effects of the water allocation on the Floridan aquifer, Silver Springs, and the Silver River, and on the effects of the irrigation on water and nutrient transport from the properties. It was not directed at establishing a violation of chapter 373, the rules of the SJRWMD, or the CUP Applicant’s Handbook with regard to the use and management of the agriculturally-exempt unirrigated pastures, nor did it do so. Soil Types Soils are subject to classifications developed by the Soil Conservation Service based on their hydrologic characteristics, and are grouped into Group A, Group B, Group C, or Group D. Factors applied to determine the appropriate hydrologic soil group on a site-specific basis include depth to seasonal high saturation, the permeability rate of the most restrictive layer within a certain depth, and the depth to any impermeable layers. Group A includes the most well-drained soils, and Group D includes the most poorly-drained soils. Group D soils are those with seasonal high saturation within 24 inches of the soil surface and a higher runoff potential. The primary information used to determine the hydrologic soil groups on the North Tract was the depth to seasonal-high saturation, defined as the highest expected annual elevation of saturation in the soil. Depth to seasonal-high saturation was measured through a series of seven hand-dug and augered soil borings completed at various locations proposed for irrigation across the North Tract. In determining depth to seasonal-high saturation, the extracted soils were examined based on depth, color, texture, and other relevant characteristics. In six of the seven locations at which soil borings were conducted, a restrictive layer was identified within 36 inches of the soil surface. At one location at the northeastern corner of the North Tract, the auger hole ended at a depth of 48 inches -- the length of the auger -- at which depth there was an observable increase in clay content but not a full restrictive layer. However, while the soil assessment was ongoing, a back-hoe was in operation approximately one hundred yards north of the boring location. Observations of that excavation revealed a heavy clay layer at a depth of approximately 5 feet. In each of the locations, the depth to seasonal-high saturation was within 14 inches of the soil surface. Based on the consistent observation of seasonal-high saturation at each of the sampled locations, as well as the flat topography of the property with surface water features, the soils throughout the property, with the exception of a small area in the vicinity of Pivot 6, were determined to be in hydrologic soil Group D. Hydrogeologic Features There are generally five hydrogeologic units underlying the North Tract, those units being the surficial aquifer system, the intermediate confining unit, the upper Floridan aquifer, the middle confining unit, and the lower Floridan aquifer. In areas in which a confining layer is present, water falling on the surface of the land flows over the surface of the land or across the top of the confining layer. A surficial aquifer, with a relatively high perched water table, is created by the confinement and separation of surface waters from the upper strata of the Floridan aquifer. Surface waters are also collected in or conveyed by various surface water features, including perched wetlands, creeks, and streams. The preponderance of the evidence adduced at the final hearing demonstrates that the surficial aquifer exists on the property to a depth of up to 20 feet below the land surface (bls). Beneath the surficial aquifer is an intermediate confining unit of dense clay interspersed with beds of sand and calcareous clays that exists to a depth of up to 100 feet bls. The clay material observed on the North Tract is known as massive or structureless. Such clays are restrictive with very low levels of hydraulic conductivity, and are not conducive to development of preferential flow paths to the surficial or lower aquifers. The intermediate confining unit beneath the North Tract restricts the exchange of groundwater from the surficial aquifer to the upper Floridan aquifer. The upper Floridan aquifer begins at a depth of approximately 100 feet bls, and extends to a depth of approximately 340 feet bls. At about 340 feet bls, the upper Floridan aquifer transitions to the middle confining unit, which consists of finely grained, denser material that separates the interchange of water between the upper Floridan aquifer and the lower Floridan aquifer. Karst Features Karst features form as a result of water moving through rock that comprises the aquifer, primarily limestone, dissolving and forming conduits in the rock. Karst areas present a challenging environment to simulate through modeling. Models assume the subsurface to be a relatively uniform “sand box” through which it is easier to simulate groundwater flow. However, if the subsurface contains conduits, it becomes more difficult to simulate the preferential flows and their effect on groundwater flow paths and travel times. The District has designated parts of western Alachua County and western Marion County as a Sensitive Karst Area Basin. A Sensitive Karst Area is a location in which the porous limestone of the Floridan aquifer occurs within 20 feet of the land surface, and in which there is 10 to 20 inches of annual recharge to the Floridan aquifer. The designation of an area as being within the Sensitive Karst Area Basin does not demonstrate that it does, or does not, have subsurface features that are karstic in nature, or that would provide a connection between the surficial aquifer and the Floridan aquifer. The western portion of the North Tract is within the Sensitive Karst Area Basin. The two intensive-use areas on the North Tract that have associated stormwater facilities -- the cattle unloading area and the processing facility -- are outside of the Sensitive Karst Area Basin. The evidence was persuasive that karst features are more prominent to the west of the North Tract. In order to evaluate the presence of karst features on the North Tract, Mr. Andreyev performed a “desktop-type evaluation,” with a minimal field survey. The desktop review included a review of aerial photographs and an investigation of available data, including the Florida Geological Survey database of sinkhole occurrence in the area. The aerial photographs showed circular depressions suggestive of karst activity west and southwest of the North Tract, but no such depressions on the North Tract. Soil borings taken on the North Tract indicated the presence of layers of clayey sand, clays, and silts at a depth of 70 to 80 feet. Well-drilling logs taken during the development of the wells used for an aquifer performance test on the North Tract showed the limestone of the Floridan aquifer starting at a depth below ground surface of 70 to 80 feet. Other boring data generated on the North Tract suggests that there is greater than 100 feet of clay and sandy clay overburden above the Floridan aquifer on and in the vicinity of the North Tract. Regardless of site-specific differences, the observed confining layer separating the surficial aquifer from the Floridan aquifer is substantial, and not indicative of a karst environment. Aquifer performance tests performed on the North Tract were consistent in showing that drawdown in the surficial aquifer from the tests was minimal to non-detectable, which is strong evidence of an intact and low-permeability confining layer. The presence of well-developed drainage features on the North Tract is further evidence of a unit of confinement that is restricting water from going deeper into the subsurface, and forcing it to runoff to low-lying surface water features. Petitioners’ witnesses did not perform any site- specific analysis of karst features on or around the Sleepy Creek property. Their understanding of the nature of the karst systems in the region was described as “hypothetical or [] conceptual.” Dr. Kincaid admitted that he knew of no conduits on or adjacent to the North Tract. As a result of the data collected from the North Tract, Mr. Hearn opined that the potential for karst features on the property that provide an opening to the upper Floridan aquifer “is extremely remote.” Mr. Hearn’s opinion is consistent with the preponderance of the evidence in this case, and is accepted. In the event a surface karst feature were to manifest itself, Sleepy Creek has proposed that the surface feature be filled and plugged to reestablish the integrity of the confining layer. More to the point, the development of a surficial karst feature in an area influenced by irrigation would be sufficient grounds for the SJRWMD to reevaluate and modify the CUP to account for any changed conditions affecting the assumptions and bases for issuance of the CUP. Silver Springs, the Silver River, and the Ocklawaha River The primary, almost exclusive concern of Petitioners was the effect of the modified CUP and the nutrients from the proposed cattle ranch on Silver Springs, the Silver River, and the Ocklawaha River. Silver Springs Silver Springs has long been a well-known attraction in Florida. It is located just to the east of Ocala, Florida. Many of the speakers at the public comment period of this proceeding spoke fondly of having frequented Silver Springs over the years, enjoying its crystal clear waters through famous glass-bottomed boats. For most of its recorded history, Silver Springs was the largest spring by volume in Florida. Beginning in the 1970s, it began to lose its advantage, and by the year 2000, Rainbow Springs, located in southwestern Marion County, surpassed Silver Springs as the state’s largest spring. Silver Springs exists at the top of the potentiometric surface of the Floridan aquifer. Being at the “top of the mountain,” when water levels in the Floridan aquifer decline, groundwater flow favors the lower elevation springs. Thus, surrounding springshed boundaries expand to take more water to maintain their baseflows, at the expense of the Silver Springs springshed, which contracts. Rainbow Springs shares an overlapping springshed with Silver Springs. The analogy used by Dr. Knight was of the aquifer as a bucket with holes at different levels, and with the Silver Springs “hole” near the top of the bucket. When the water level in the bucket is high, water will flow from the top hole. As the water level drops below that hole, it will preferentially flow from the lower holes. Rainbow Springs has a vent or outlet from the aquifer, that is 10 feet lower in elevation than that of Silver Springs. Coastal springs are lower still. Thus, as groundwater levels decline, the lower springs “pirate flow” from the upper springs. Since the first major studies of Silver Springs were conducted in the 1950s, the ecosystem of Silver Springs has undergone changes. The water clarity, though still high as compared to other springs, has been reduced by 10 to 15 percent. Since the 1950s, macrophytic plants, i.e., rooted plants with seeds and flowers, have declined in population, while epiphytic and benthic algae have increased. Those plants are sensitive to increases in nitrogen in the water. Thus, Dr. Knight’s opinion that increases in nitrogen emerging from Silver Springs, calculated to have risen from just over 0.4 mg/l in the 1950s, to 1.1 mg/l in 2004, and to up to 1.5 mg/l at present,1/ have caused the observed vegetative changes is accepted. Silver River Silver Springs forms the headwaters for the Silver River, a spring run 5 1/2 miles in length, at which point it becomes a primary input to the Ocklawaha River. Issues of water clarity and alteration of the vegetative regime that exist at Silver Springs are also evident in the Silver River. In addition, the reduction in flow allows for more tannic water to enter the river, further reducing clarity. Dr. Dunn recognized the vegetative changes in the river, and opined that the “hydraulic roughness” caused by the increase in vegetation is likely creating a spring pool backwater at Silver Springs, thereby suppressing some of the flow from the spring. The Silver River has been designated as an Outstanding Florida Water. There are currently no Minimum Flows and Levels established by the District for the Silver River. Ocklawaha River The Ocklawaha River originates near Leesburg, Florida, at the Harris Chain of Lakes, and runs northward past Silver Springs. The Silver River is a major contributor to the flow of the Ocklawaha River. Due to the contribution of the Silver River and other spring-fed tributaries, the Ocklawaha River can take on the appearance of a spring run during periods of low rainfall. Historically, the Ocklawaha River flowed unimpeded to its confluence with the St. Johns River in the vicinity of Palatka, Florida. In the 1960s, as part of the Cross-Florida Barge Canal project, the Rodman Dam was constructed across the Ocklawaha River north of the Sleepy Creek property, creating a large reservoir known as the Rodman Pool. Dr. Knight testified convincingly that the Rodman Dam and Pool have altered the Ocklawaha River ecosystem, precipitating a decline in migratory fish populations and an increase in filamentous algae. At the point at which the Ocklawaha River flows past the Sleepy Creek property, it retains its free-flowing characteristics. Mill Creek, which has its headwaters on the North Tract, is a tributary of the Ocklawaha River. The Ocklawaha River, from the Eureka Dam south, has been designated as an Outstanding Florida Water. However, the Ocklawaha River at the point at which Mill Creek or other potential surface water discharges from the Sleepy Creek property might enter the river are not included in the Outstanding Florida Water designation. There are currently no Minimum Flows and Levels established by the District for the Ocklawaha River. The Silver Springs Springshed A springshed is that area from which a spring draws water. Unlike a surface watershed boundary, which is fixed based on land features, contours, and elevations, a springshed boundary is flexible, and changes depending on a number of factors, including rainfall. As to Silver Springs, its springshed is largest during periods of more abundant rainfall when the aquifer is replenished, and smaller during drier periods when groundwater levels are down, and water moves preferentially to springs and discharge points that are lower in elevation. The evidence in this case was conflicting as to whether the North Tract is in or out of the Silver Springs springshed boundary. Dr. Kincaid indicated that under some of the springshed delineations, part of the North Tract was out of the springshed, but over the total period of record, it is within the springshed. Thus, it was Dr. Kincaid’s opinion that withdrawals anywhere within the region will preferentially impact Silver Springs, though he admitted that he did not have the ability to quantify his opinion. Dr. Knight testified that the North Tract is within the Silver Springs “maximum extent” springshed at least part of the time, if not all the time. He did not opine as to the period of time in which the Silver Springs springshed was at its maximum extent. Dr. Bottcher testified that the North Tract is not within the Silver Springs springshed because there is a piezometric rise between North Tract and Silver Springs. Thus, in his opinion, withdrawals at the North Tract would not be withdrawing water going to Silver Springs. Dr. Dunn agreed that the North Tract is on the groundwater divide for Silver Springs. In his view, the North Tract is sometimes in, and sometimes out of the springshed depending on the potentiometric surface. In his opinion, the greater probability is that the North Tract is more often outside of the Silver Springs springshed, with seasonal and year—to—year variation. Dr. Dunn’s opinion provides the most credible explanation of the extent to which the North Tract sits atop that portion of the lower Floridan aquifer that feeds to Silver Springs. Thus, it is found that the groundwater divide exists to the south of the North Tract for a majority of the time, and water entering the Floridan aquifer from the North Tract will, more often than not, flow away from Silver Springs. Silver Springs Flow Volume The Silver Springs daily water discharge has been monitored and recorded since 1932. Over the longest part of the period of record, up to the 1960s, flows at Silver Springs averaged about 800 cubic feet per second (cfs). Through 1989, there was a reasonable regression between rainfall and springflow, based on average rainfalls. The long-term average rainfall in Ocala was around 50 inches per year, and long-term springflow was about 800 cfs, with deviations from average generally consistent with one another. Between 1990 and 1999, the relationship between rainfall and springflow declined by about 80 cubic feet per second. Thus, with average rainfall of 50 inches per year, the average springflow was reduced to about 720 cfs. From 2000 to 2009, there was an additional decline, such that the total cumulative decline for the 20-year period through 2009 was 250 cfs. Dr. Dunn agreed with Dr. Knight that after 2000, there was an abrupt and persistent reduction in flow of about 165 cfs. However, Dr. Dunn did not believe the post-2000 flow reduction could be explained by rainfall directly, although average rainfall was less than normal. Likewise, groundwater withdrawals did not offer an adequate explanation. Dr. Dunn described a natural 30-year cycle of wetter and drier periods known as the Atlantic Multidecadal Oscillation (AMO) that has manifested itself over the area for the period of record. From the 1940s up through 1970, the area experienced an AMO wet cycle with generally higher than normal rainfall at the Ocala rain station. For the next 30-year period, from 1970 up to 2000, the Ocala area ranged from a little bit drier to some years in which it was very, very dry. Dr. Dunn attributed the 80 cfs decline in Silver Springs flow recorded in the 1990s to that lower rainfall cycle. After 2000, when the next AMO cycle would be expected to build up, as it did post—1940, it did not happen. Rather, there was a particularly dry period around 2000 that Dr. Dunn believes to have had a dramatic effect on the lack of recovery in the post-2000 flows in the Silver River. According to Mr. Jenkins, that period of deficient rainfall extended through 2010. Around the year 2001, the relationship between rainfall and flow changed such that for a given amount of rainfall, there was less flow in the Silver River, with flow dropping to as low as 535 cfs after 2001. It is that reduction in flow that Dr. Knight has attributed to groundwater withdrawals. It should be noted that the observed flow of Silver Springs that formed the 1995 baseline conditions for the North Central Florida groundwater model that will be discussed herein was approximately 706 cfs. At the time of the final hearing in August 2014, flow at Silver Springs was 675 cfs. The reason offered for the apparent partial recovery was higher levels of rainfall, though the issue was not explored in depth. For the ten-year period centered on the year 2000, local water use within Marion and Alachua County, closer to Silver Springs, changed little -- around one percent per year. From a regional perspective, groundwater use declined at about one percent per year for the period from 1990 to 2010. The figures prepared by Dr. Knight demonstrate that the Sleepy Creek project area is in an area that has a very low density of consumptive use permits as compared to areas adjacent to Silver Springs and more clearly in the Silver Springs springshed. In Dr. Dunn’s opinion, there were no significant changes in groundwater use either locally or regionally that would account for the flow reduction in Silver Springs from 1990 to 2010. In that regard, the environmental report prepared by Dr. Dunn and submitted with the CUP modification application estimated that groundwater withdrawals accounted for a reduction in flow at Silver Springs of approximately 20 cfs as measured against the period of record up to the year 2000, with most of that reduction attributable to population growth in Marion County. In the March 2014, environmental impacts report, Dr. Dunn described reductions in the stream flow of not only the Silver River, but of other tributaries of the lower Ocklawaha River, including the upper Ocklawaha River at Moss Bluff and Orange Creek. However, an evaluation of the Ocklawaha River water balance revealed there to be additional flow of approximately 50 cfs coming into the Ocklawaha River at other stations. Dr. Dunn suggested that changes to the vent characteristics of Silver Springs, and the backwater effects of increased vegetation in the Silver River, have resulted in a redistribution of pressure to other smaller springs that discharge to the Ocklawaha River, accounting for a portion of the diminished flow at Silver Springs. The Proposed Cattle Operation Virtually all beef cattle raised in Florida, upon reaching a weight of approximately 875 pounds, are shipped to Texas or Kansas to be fattened on grain to the final body weight of approximately 1,150 pounds, whereupon they are slaughtered and processed. The United States Department of Agriculture has a certification for grass—fed beef which requires that, after an animal is weaned, it can only be fed on green forage crops, including grasses, and on corn and grains that are cut green and before they set seed. The forage crops may be grazed or put into hay or silage and fed when grass and forage is dormant. The benefit of grass feeding is that a higher quality meat is produced, with a corresponding higher market value. Sleepy Creek plans to develop the property as a grass- fed beef production ranch, with pastures and related loading/unloading and slaughter/processing facilities where calves can be fattened on grass and green grain crops to a standard slaughter weight, and then slaughtered and processed locally. By so doing, Sleepy Creek expects to save the transportation and energy costs of shipping calves to the Midwest, and to generate jobs and revenues by employing local people to manage, finish, and process the cattle. As they currently exist, pastures proposed for irrigation have been cleared and seeded, and have “fairly good grass production.” The purpose of the irrigation is to enhance the production and quality of the grass in order to maintain the quality and reliability of feed necessary for the production of grass-fed beef. East Tract Cattle Operation The East Tract is 1,242 acres in size, substantially all of which was previously cleared, irrigated, and used for sod production. The proposed CUP permit authorizes the irrigation of 611 acres of pasture under six existing center pivots. The remaining 631 acres will be used as improved, but unirrigated, pasture. Under the proposed permit, a maximum of 1,207 cattle would be managed on the East Tract. Of that number, 707 cattle would be grazed on the irrigated paddocks, and 500 cattle would be grazed on the unirrigated improved pastures. If the decision is made to forego irrigation on the East Tract, with the water allocation being used on the North Tract or not at all, the number of cattle grazed on the six center pivot pastures would be decreased from 707 cattle to 484 cattle. The historic use of the East Tract as a sod farm resulted in high phosphorus levels in the soil from fertilization, which has made its way to Daisy Creek. Sleepy Creek has proposed a cattle density substantially below that allowed by application of the formulae in the Nutrient Management Plan in order to “mine” the phosphorus levels in the soil over time. North Tract Cattle Operation The larger North Tract includes most of the “new” ranch activities, having no previous irrigation, and having been put to primarily silvicultural use with limited pasture prior to its acquisition by Sleepy Creek. The ranch’s more intensive uses, i.e., the unloading corrals and the slaughter house, are located on the North Tract. The North Tract is 7,207 acres in size. Of that, 1,656 acres are proposed for irrigation by means of 15 center- pivot irrigation systems. In addition to the proposed irrigated pastures, the North Tract includes 2,382 acres of unirrigated improved pasture, of which approximately 10 percent is wooded. Under the proposed permit, a maximum of 6,371 cattle would be managed on the North Tract. Of that number, 3,497 cattle would be grazed on the irrigated paddocks (roughly 2.2 head of cattle per acre), and 2,374 cattle would graze on the improved pastures (up to 1.1 head of cattle per acre). The higher cattle density in the irrigated pastures can be maintained due to the higher quality grass produced as a result of irrigation. The remaining 500 cattle would be held temporarily in high-concentration corrals, either after offloading or while awaiting slaughter. On average, there will be fewer than 250 head of cattle staged in those high-concentration corrals at any one time. In the absence of irrigation, the improved pasture on the North Tract could sustain about 4,585 cattle. Nutrient Management Plan, Water Conservation Plan, and BMPs The CUP and ERP applications find much of their support in the implementation of the Nutrient Management Plan (NMP), the Water Conservation Plan, and Best Management Practices (BMPs). The NMP sets forth information designed to govern the day to day operations of the ranch. Those elements of the NMP that were the subject of substantive testimony and evidence at the hearing are discussed herein. Those elements not discussed herein are found to have been supported by Sleepy Creek’s prima facie case, without a preponderance of competent and substantial evidence to the contrary. The NMP includes a herd management plan, which describes rotational grazing and the movement of cattle from paddock to paddock, and establishes animal densities designed to maintain a balance of nutrients on the paddocks, and to prevent overgrazing. The NMP establishes fertilization practices, with the application of fertilizer based on crop tissue analysis to determine need and amount. Thus, the application of nitrogen- based fertilizer is restricted to that capable of ready uptake by the grasses and forage crops, limiting the amount of excess nitrogen that might run off of the pastures or infiltrate past the root zone. The NMP establishes operation and maintenance plans that incorporate maintenance and calibration of equipment, and management of high-use areas. The NMP requires that records be kept of, among other things, soil testing, nutrient application, herd rotation, application of irrigation water, and laboratory testing. The irrigation plan describes the manner and schedule for the application of water during each irrigation cycle. Irrigation schedules for grazed and cropped scenarios vary from pivot to pivot based primarily on soil type. The center pivots proposed for use employ high-efficiency drop irrigation heads, resulting in an 85 percent system efficiency factor, meaning that there is an expected evaporative loss of 15 percent of the water before it becomes available as water in the soil. That level of efficiency is greater than the system efficiency factor of 80 percent established in CUP A.H. section 12.5.2. Other features of the irrigation plan include the employment of an irrigation manager, installation of an on-site weather station, and cumulative tracking of rain and evapotranspiration with periodic verification of soil moisture conditions. The purpose of the water conservation practices is to avoid over application of water, limiting over-saturation and runoff from the irrigated pastures. Sleepy Creek has entered into a Notice of Intent to Implement Water Quality BMPs with the Florida Department of Agriculture and Consumer Services which is incorporated in the NMP and which requires the implementation of Best Management Practices.2/ Dr. Bottcher testified that implementation and compliance with the Water Quality Best Management Practices manual creates a presumption of compliance with water quality standards. His testimony in that regard is consistent with Department of Agriculture and Consumer Services rule 5M-11.003 (“implementation, in accordance with adopted rules, of BMPs that have been verified by the Florida Department of Environmental Protection as effective in reducing target pollutants provides a presumption of compliance with state water quality standards.”). Rotational Grazing Rotational grazing is a practice by which cattle are allowed to graze a pasture for a limited period of time, after which they are “rotated” to a different pasture. The 1,656 acres proposed for irrigation on the North Tract are to be divided into 15 center-pivot pastures. Each individual pasture will have 10 fenced paddocks. The 611 acres of irrigated pasture on the East Tract are divided into 6 center-pivot pastures. The outer fence for each irrigated pasture is to be a permanent “hard” fence. Separating the internal paddocks will be electric fences that can be lowered to allow cattle to move from paddock to paddock, and then raised after they have moved to the new paddock. The NMP for the North Tract provides that cattle are to be brought into individual irrigated pastures as a single herd of approximately 190 cattle and placed into one of the ten paddocks. They will be moved every one to three days to a new paddock, based upon growing conditions and the reduction in grass height resulting from grazing. In this way, the cattle are rotated within the irrigated pasture, with each paddock being used for one to three days, and then rested until each of the other paddocks have been used, whereupon it will again be used in the rotation. The East Tract NMP generally provides for rotation based on the height of the pasture grasses, but is designed to provide a uniform average of cattle per acre per year. Due to the desire to “mine” phosphorus deposited during the years of operation of the East Tract as a sod farm, the density of cattle on the irrigated East Tract pastures is about 30 percent less than that proposed for the North Tract. The East Tract NMP calls for a routine pasture rest period of 15 to 30 days. Unlike dairy farm pastures, where dairy cows traverse a fixed path to the milking barn several times a day, there will be minimal “travel lanes” within the pastures or between paddocks. There will be no travel lanes through wetlands. If nitrogen-based fertilizer is needed, based upon tissue analysis of the grass, fertilizer is proposed for application immediately after a paddock is vacated by the herd. By so doing, the grass within each paddock will have a sufficient period to grow and “flush up” without grazing or traffic, which results in a high—quality grass when the cattle come back around to feed. Sleepy Creek proposes that rotational grazing is to be practiced on improved pastures and irrigated pastures alike. The rotational practices on the improved East Tract and North Tract pastures are generally similar to those practiced on the irrigated pastures. The paddocks will have permanent watering troughs, with one trough serving two adjacent paddocks. The troughs will be raised to prevent “boggy areas” from forming around the trough. Since the area around the troughs will be of a higher use, Sleepy Creek proposes to periodically remove accumulated manure, and re-grade if necessary. Other cattle support items, including feed bunkers and shade structures are portable and can be moved as conditions demand. Forage Crop Production The primary forage crop on the irrigated pastures is to be Bermuda grass. Bermuda grass or other grass types tolerant of drier conditions will be used in unirrigated pastures. During the winter, when Bermuda grass stops growing, Sleepy Creek will overseed the North Tract pastures with ryegrass or other winter crops. Due to the limitation on irrigation water, the East Tract NMP calls for no over-seeding for production of winter crops. Crops do not grow uniformly during the course of a year. Rather, there are periods during which there are excess crops, and periods during which the crops are not growing enough to keep up with the needs of the cattle. During periods of excess, Sleepy Creek will cut those crops and store them as haylage to be fed to the cattle during lower growth periods. The North Tract management plan allows Sleepy Creek to dedicate one or more irrigated pastures for the exclusive production of haylage. If that option is used, cattle numbers will be reduced in proportion to the number of pastures dedicated to haylage production. As a result of the limit on irrigation, the East Tract NMP does not recommend growing supplemental feed on dedicated irrigation pivot pastures. Direct Wetland Impacts Approximately 100 acres proposed for irrigation are wetlands or wetland buffer. Those areas are predominantly isolated wetlands, though some have surface water connections to Mill Creek, a water of the state. Trees will be cut in the wetlands to allow the pivot to pass overhead. Tree cutting is an exempt agricultural activity that does not require a permit. There was no persuasive evidence that cutting trees will alter the fundamental benefit of the wetlands or damage water resources of the District. The wetlands and wetland buffer will be subject to the same watering and fertigation regimen as the irrigated pastures. The application of water to wetlands, done concurrently with the application of water to the pastures, will occur during periods in which the pasture soils are dry. The incidental application of water to the wetlands during dry periods will serve to maintain hydration of the wetlands, which is considered to be a benefit. Fertilizers will be applied through the irrigation arms, a process known as fertigation. Petitioners asserted that the application of fertilizer onto the wetlands beneath the pivot arms could result in some adverse effects to the wetlands. However, Petitioners did not quantify to what extent the wetlands might be affected, or otherwise describe the potential effects. Fertigation of the wetlands will promote the growth of wetland plants. Nitrogen applied through fertigation will be taken up by plants, or will be subject to denitrification -- a process discussed in greater detail herein -- in the anaerobic wetland soils. The preponderance of the evidence indicated that enhanced wetland plant growth would not rise to a level of concern. Since most of the affected wetlands are isolated wetlands, there is expected to be little or no discharge of nutrients from the wetlands. Even as to those wetlands that have a surface water connection, most, if not all of the additional nitrogen applied through fertigation will be accounted for by the combined effect of plant uptake and denitrification. Larger wetland areas within an irrigated pasture will be fenced at the buffer line to prevent cattle from entering. The NMP provided a blow-up of the proposed fencing related to a larger wetland on Pivot 8. Although other figures are not to the same scale, it appears that larger wetlands associated with Pivots 1, 2, 3, and 12 will be similarly fenced. Cattle would be allowed to go into the smaller, isolated wetlands. Cattle going into wetlands do not necessarily damage the wetlands. Any damage that may occur is a function of density, duration, and the number of cattle. The only direct evidence of potential damage to wetlands was the statement that “[i]f you have 6,371 [cattle] go into a wetland, there may be impacts.” The NMP provides that pasture use will be limited to herds of approximately 190 cattle, which will be rotated from paddock to paddock every two to three days, and which will allow for “rest” periods of approximately 20 days. There will be no travel lanes through any wetland. Thus, there is no evidence to support a finding that the cattle at the density, duration, and number proposed will cause direct adverse effects to wetlands on the property. High Concentration Areas Cattle brought to the facility are to be unloaded from trucks and temporarily corralled for inspection. For that period, the cattle will be tightly confined. Cattle that have reached their slaughter weight will be temporarily held in corrals associated with the processing plant. The stormwater retention ponds used to capture and store runoff from the offloading corral and the processing plant holding corral are part of a normal and customary agricultural activity, and are not part of the applications and approvals that are at issue in this proceeding. The retention ponds associated with the high-intensity areas do not require permits because they do not exceed one acre in size or impound more than 40 acre-feet of water. Nonetheless, issues related to the retention ponds were addressed by Petitioners and Sleepy Creek, and warrant discussion here. The retention ponds are designed to capture 100 percent of the runoff and entrained nutrients from the high concentration areas for a minimum of a 24—hour/25—year storm event. If rainfall occurs in excess of the designed storm, the design is such that upon reaching capacity, only new surface water coming to the retention pond will be discharged, and not that containing high concentrations of nutrients from the initial flush of stormwater runoff. Unlike the stormwater retention berms for the pastures, which are to be constructed from the first nine inches of permeable topsoil on the property, the corral retention ponds are to be excavated to a depth of six feet which, based on soil borings in the vicinity, will leave a minimum of two to four feet of clay beneath the retention ponds. In short, the excavation will penetrate into the clay layer underlying the pond sites, but will not penetrate through that layer. The excavated clay will be used to form the side slopes of the ponds, lining the permeable surficial layer and generally making the ponds impermeable. Organic materials entering the retention ponds will form an additional seal. An organic seal is important in areas in which retention ponds are constructed in sandy soil conditions. Organic sealing is less important in this case, where clay forms the barrier preventing nutrients from entering the surficial aquifer. Although the organic material is subject to periodic removal, the clay layer will remain to provide the impermeable barrier necessary to prevent leakage from the ponds. Dr. Bottcher testified that if, during excavation of the ponds, it was found that the remaining in-situ clay layer was too thin, Sleepy Creek would implement the standard practice of bringing additional clay to the site to ensure adequate thickness of the liner. Nutrient Balance The goal of the NMP is to create a balance of nutrients being applied to and taken up from the property. Nitrogen and phosphorus are the nutrients of primary concern, and are those for which specific management standards are proposed. Nutrient inputs to the NMP consist generally of deposition of cattle manure (which includes solid manure and urine), recycling of plant material and roots from the previous growing season, and application of supplemental fertilizer. Nutrient outputs to the NMP consist generally of volatization of ammonia to the atmosphere, uptake and utilization of the nutrients by the grass and crops, weight gain of the cattle, and absorption and denitrification of the nutrients in the soil. The NMP, and the various models discussed herein, average the grass and forage crop uptake and the manure deposition to match that of a 1,013 pound animal. That average weight takes into account the fact that cattle on the property will range from calf weight of approximately 850 pounds, to slaughter weight of 1150 pounds. Nutrients that are not accounted for in the balance, e.g., those that become entrained in stormwater or that pass through the plant root zone without being taken up, are subject to runoff to surface waters or discharge to groundwater. Generally, phosphorus not taken up by crops remains immobile in the soil. Unless there is a potential for runoff to surface waters, the nutrient balance is limited by the amount of nitrogen that can be taken up by the crops. Due to the composition of the soils on the property, the high water table, and the relatively shallow confining layer, there is a potential for surface runoff. Thus, the NMP was developed using phosphorus as the limiting nutrient, which results in nutrient application being limited by the “P-index.” A total of 108 pounds of phosphorus per acre/per year can be taken up and used by the irrigated pasture grasses and forage crops. Therefore, the total number of cattle that can be supported on the irrigated pastures is that which, as a herd, will deposit an average of 108 pounds of phosphorus per year over the irrigated acreage. Therefore, Sleepy Creek has proposed a herd size and density based on calculations demonstrating that the total phosphorus contained in the waste excreted by the cattle equals the amount taken up by the crops. A herd producing 108 pounds per acre per year of phosphorus is calculated to produce 147 pounds of nitrogen per acre per year. The Bermuda grass and forage crops proposed for the irrigated fields require 420 pounds of nitrogen per acre per year. As a result of the nitrogen deficiency, additional nitrogen-based fertilizer to make up the shortfall is required to maintain the crops. Since phosphorus needs are accounted for by animal deposition, the fertilizer will have no phosphorus. The NMP requires routine soil and plant tissue tests to determine the amount of nitrogen fertilizer needed. By basing the application of nitrogen on measured rather than calculated needs, variations in inputs, including plant decomposition and atmospheric deposition, and outputs, including those affected by weather, can be accounted for, bringing the full nutrient balance into consideration. The numeric values for crop uptakes, manure deposition, and other estimates upon which the NMP was developed were based upon literature, values, and research performed and published by the University of Florida and the Natural Resource Conservation Service. Dr. Bottcher testified convincingly that the use of such values is a proven and reliable method of developing a balance for the operation of similar agricultural operations. A primary criticism of the NMP was its expressed intent to “reduce” or “minimize” the transport of nutrients to surface waters and groundwater, rather than to “negate” or “prevent” such transport. Petitioners argue that complete prevention of the transport of nutrients from the property is necessary to meet the standards necessary for issuance of the CUP and ERP. Mr. Drummond went into some detail regarding the total mass of nutrients expected to be deposited onto the ground from the cattle, exclusive of fertilizer application. In the course of his testimony, he suggested that the majority of the nutrients deposited on the land surface “are going to make it to the surficial aquifer and then be carried either to the Floridan or laterally with the groundwater flow.” However, Mr. Drummond performed no analysis on the fate of nitrogen through uptake by crops, volatization, or soil treatment, and did not quantify the infiltration of nitrogen to groundwater. Furthermore, he was not able to provide any quantifiable estimate on any effect of nutrients on Mill Creek, the Ocklawaha River, or Silver Springs. In light of the effectiveness of the nutrient balance and other elements of the NMP, along with the retention berm system that will be discussed herein, Mr. Drummond’s assessment of the nutrients that might be expected to impact water resources of the District is contrary to the greater weight of the evidence. Mr. Drummond’s testimony also runs counter to that of Dr. Kincaid, who performed a particle track analysis of the fate of water recharge from the North Tract. In short, Dr. Kincaid calculated that of the water that makes it as recharge from the North Tract to the surficial aquifer, less than one percent is expected to make its way to the upper Floridan aquifer, with that portion originating from the vicinity of Pivot 6. Recharge from the other 14 irrigated pastures was ultimately accounted for by evapotranspiration or emerged at the surface and found its way to Mill Creek. The preponderance of the competent, substantial evidence adduced at the final hearing supports the effectiveness of the NMPs for the North Tract and East Tract at managing the application and use of nutrients on the property, and minimizing the transport of nutrients to surface water and groundwater resources of the District. North Central Florida Model All of the experts involved in this proceeding agreed that the use of groundwater models is necessary to simulate what might occur below the surface of the ground. Models represent complex systems by applying data from known conditions and impacts measured over a period of years to simulate the effects of new conditions. Models are imperfect, but are the best means of predicting the effects of stresses on complex and unseen subsurface systems. The North Central Florida (NCF) model is used to simulate impacts of water withdrawals on local and regional groundwater levels and flows. The NCF model simulates the surficial aquifer, the upper Floridan aquifer, and the lower Floridan aquifer. Those aquifers are separated from one another by relatively impervious confining units. The intermediate confining unit separates the surficial aquifer from the upper Floridan aquifer. The intermediate confining unit is not present in all locations simulated by the NCF model. However, the evidence is persuasive that the intermediate confining unit is continuous at the North Tract, and serves to effectively isolate the surficial aquifer from the upper Floridan aquifer. The NCF model is not a perfect depiction of what exists under the land surface of the North Tract or elsewhere. It was, however, acknowledged by the testifying experts in this case, despite disagreements as to the extent of error inherent in the model, to be the best available tool for calculating the effects of withdrawals of water within the boundary of the model. The NCF model was developed and calibrated over a period of years, is updated routinely as data becomes available, and has undergone peer review. Aquifer Performance Tests In order to gather site-specific data regarding the characteristics of the aquifer beneath the Sleepy Creek property, a series of three aquifer performance tests (APTs) was conducted on the North Tract. The first two tests were performed by Sleepy Creek, and the third by the District. An APT serves to induce stress on the aquifer by pumping from a well at a high rate. By observing changes in groundwater levels in observation wells, which can be at varying distances from the extraction well, one can extrapolate the nature of the subsurface. In addition, well-completion reports for the various withdrawal and observation wells provide actual data regarding the composition of subsurface soils, clays, and features of the property. The APT is particularly useful in evaluating the ability of the aquifer to produce water, and in calculating the transmissivity of the aquifer. Transmissivity is a measure of the rate at which a substance passes through a medium and, as relevant to this case, measures how groundwater flows through an aquifer. The APTs demonstrated that the Floridan aquifer is capable of producing water at the rate requested. The APT drawdown contour measured in the upper Floridan aquifer was greater than that predicted from a simple run of the NCF model, but the lateral extent of the drawdown was less than predicted. The most reasonable conclusion to be drawn from the combination of greater than expected drawdown in the upper Floridan aquifer with less than expected extent is that the transmissivity of the aquifer beneath the North Tract is lower than the NCF model assumptions. The conclusion that the transmissivity of the aquifer at the North Tract is lower than previously estimated means that impacts from groundwater extraction would tend to be more vertical than horizontal, i.e., the drawdown would be greater, but would be more localized. As such, for areas of lower than estimated transmissivity, modeling would over-estimate off-site impacts from the extraction. NCF Modeling Scenarios The initial NCF modeling runs were based on an assumed withdrawal of 2.39 mgd, an earlier -- though withdrawn - - proposal. The evidence suggests that the simulated well placement for the 2.39 mgd model run was entirely on the North Tract. Thus, the results of the model based on that withdrawal have some limited relevance, especially given that the proposed CUP allows for all of the requested 1.46 mgd of water to be withdrawn from North Tract wells at the option of Sleepy Creek, but will over-predict impacts from the permitted rate of withdrawal. A factor that was suggested as causing a further over-prediction of drawdown in the 2.39 mgd model run was the decision, made at the request of the District, to exclude the input of data of additional recharge to the surficial aquifer, wetlands and surface waters from the irrigation, and the resulting diminution in soil storage capacity. Although there is some merit to the suggestion that omitting recharge made the model results “excessively conservative,” the addition of recharge to the model would not substantially alter the predicted impacts. A model run was subsequently performed based on a presumed withdrawal of 1.54 mgd, a rate that remains slightly more than, but still representative of, the requested amount of 1.46 mgd. The 1.54 mgd model run included an input for irrigation recharge. The simulated extraction points were placed on the East Tract and North Tract in the general configuration as requested in the CUP application. The NCF is designed to model the impacts of a withdrawal based upon various scenarios, identified at the hearing as Scenarios A, B, C, and D. Scenario A is the baseline condition for the NCF model, and represents the impacts of all legal users of water at their estimated actual flow rates as they existed in 1995. Scenario B is all existing users, not including the applicant, at end-of-permit allocations. Scenario C is all existing users, including the applicant, at current end-of-permit allocations. Scenario D is all permittees at full allocation, except the applicant which is modeled at the requested (i.e., new or modified) end-of-permit allocation. To simulate the effects of the CUP modification, simulations were performed on scenarios A, C, and D. In order to measure the specific impact of the modification of the CUP, the Scenario C impacts to the surficial, upper Floridan, and lower Floridan aquifers were compared with the Scenario D impacts to those aquifers. In order to measure the cumulative impact of the CUP, the Scenario A actual-use baseline condition was compared to the Scenario D condition which predicts the impacts of all permitted users, including the applicant, pumping at full end-of-permit allocations. The results of the NCF modeling indicate the following: 2.39 mgd - Specific Impact The surficial aquifer drawdown from the simulated 2.39 mgd withdrawal was less than 0.05 feet on-site and off- site, except to the west of the North Tract, at which a drawdown of 0.07 feet was predicted. The upper Floridan aquifer drawdown from the 2.39 mgd withdrawal was predicted at between 0.30 and 0.12 feet on-site, and between 0.30 and 0.01 feet off-site. The higher off-site figures are immediately proximate to the property. The lower Floridan aquifer drawdown from the 2.39 mgd withdrawal was predicted at less than 0.05 feet at all locations, and at or less than 0.02 feet within six miles of the North Tract. 2.39 mgd - Cumulative Impact The cumulative impact to the surficial aquifer from all permitted users, including a 2.39 mgd Sleepy Creek withdrawal, was less than 0.05 feet on-site, and off-site to the north and east, except to the west of the North Tract, at which a drawdown of 0.07 feet was predicted. The cumulative impact to the upper Floridan aquifer from all permitted users, including a 2.39 mgd Sleepy Creek withdrawal, ranged from 0.4 feet to 0.8 feet over all pertinent locations. The cumulative impact to the lower Floridan aquifer from all permitted users, including a 2.39 mgd Sleepy Creek withdrawal, ranged from 1.0 to 1.9 feet over all pertinent locations. The conclusion drawn by Mr. Andreyev that the predicted impacts to the lower Floridan are almost entirely from other end-of-permit user withdrawals is supported by the evidence and accepted. 1.54 mgd - Specific Impact The NCF model runs based on the more representative 1.54 mgd withdrawal predicted a surficial aquifer drawdown of less than 0.01 feet (i.e., no drawdown contour shown) on the North Tract, and a 0.01 to 0.02 foot drawdown at the location of the East Tract. The drawdown of the upper Floridan aquifer from the CUP modification was predicted at up to 0.07 feet on the property, and generally less than 0.05 feet off-site. There were no drawdown contours at the minimum 0.01 foot level that came within 9 miles of Silver Springs. The lower Floridan aquifer drawdown from the CUP modification was predicted at less than 0.01 feet (i.e., no drawdown contour shown) at all locations. 1.54 mgd - Cumulative Impact A comparison of the cumulative drawdown contours for the 2.36 mgd model and 1.54 mgd model show there to be a significant decrease in predicted drawdowns to the surficial and upper Floridan aquifers, with the decrease in the upper Floridan aquifer drawdown being relatively substantial, i.e., from 0.5 to 0.8 feet on-site predicted for the 2.36 mgd withdrawal, to 0.4 to 0.5 feet on-site for the 1.54 mgd model. Given the small predicted individual impact of the CUP on the upper Floridan aquifer, the evidence is persuasive that the cumulative impacts are the result of other end-of-permit user withdrawals. The drawdown contour for the lower Floridan aquifer predicted by the 1.54 mgd model is almost identical to that of the 2.36 mgd model, thus supporting the conclusion that predicted impacts to the lower Floridan are almost entirely from other end-of-permit user withdrawals. Modeled Effect on Silver Springs As a result of the relocation of the extraction wells from the East Tract to the North Tract, the NCF model run at the 1.54 mgd withdrawal rate predicted springflow at Silver Springs to increase by 0.15 cfs. The net cumulative impact in spring flow as measured from 1995 conditions to the scenario in which all legal users, including Sleepy Creek, are pumping at full capacity at their end-of-permit rates for one year3/ is roughly 35.4 cfs, which is approximately 5 percent of Silver Springs’ current flow. However, as a result of the redistribution of the Sleepy Creek withdrawal, which is, in its current iteration, a legal and permitted use, the cumulative effect of the CUP modification at issue is an increase in flow of 0.l5 cfs. Dr. Kincaid agreed that there is more of an impact to Silver Springs when the pumping allowed by the CUP is located on the East Tract than there is on the North Tract, but that the degree of difference is very small. Dr. Knight testified that effect on the flow of Silver Springs from relocating the 1.46 mgd withdrawal from the East Tract to the North Tract would be “zero.” The predicted increase of 0.15 cfs is admittedly miniscule when compared to the current Silver Springs springflow of approximately 675 cfs. However, as small as the modeled increase may be -- perhaps smaller than its “level of certainty” -- it remains the best evidence that the impact of the CUP modification to the flow of Silver Springs will be insignificant at worst, and beneficial at best. Opposition to the NCF Model Petitioners submitted considerable evidence designed to call the results generated by the District’s and Sleepy Creek’s NCF modeling into question. Karst Features A primary criticism of the validity of the NCF model was its purported inability to account for the presence of karst features, including conduits, and their effect on the results. It was Dr. Kincaid’s opinion that the NCF model assigned transmissivity values that were too high, which he attributed to the presence of karst features that are collecting flow and delivering it to springs. He asserted that, instead of assuming the presence of karst features, the model was adjusted to raise the overall capacity of the porous medium to transmit water, and thereby match the observed flows. In his opinion, the transmissivity values of the equivalent porous media were raised so much that the model can no longer be used to predict drawdowns. That alleged deficiency in the model is insufficient for two reasons. First, as previously discussed in greater detail, the preponderance of the evidence in this case supports a finding that there are no karst features in the vicinity of the North Tract that would provide preferential pathways for water flow so as to skew the results of the NCF model. Second, Dr. Kincaid, while acknowledging that the NCF model is the best available tool for predicting impacts from groundwater extraction on the aquifer, suggested that a hybrid porous media and conduit model would be a better means of predicting impacts, the development of which would take two years or more. There is no basis for the establishment of a de facto moratorium on CUP permitting while waiting for the development of a different and, in this case, unnecessary model. For the reasons set forth herein, it is found that the NCF model is sufficient to accurately and adequately predict the effects of the Sleepy Creek groundwater withdrawals on the aquifers underlying the property, and to provide reasonable assurance that the standards for such withdrawals have been met. Recharge to the Aquifer Petitioners argued that the modeling results showing little significant drawdown were dependent on the application of unrealistic values for recharge or return flow from irrigation. In a groundwater model, as in the physical world, some portion of the water extracted from the aquifer is predicted to be returned to the aquifer as recharge. If more water is applied to the land surface than is being accounted for by evaporation, plant uptake and evapotranspiration, surface runoff, and other processes, that excess water may seep down into the aquifer as recharge. Recharge serves to replenish the aquifer and offset the effects of the groundwater withdrawal. Dr. Kincaid opined that the NCF modeling performed for the CUP application assigned too much water from recharge, offsetting the model's prediction of impacts to other features. It is reasonable to assume that there is some recharge associated with both agricultural and public supply uses. However, the evidence suggests that the impact of recharge on the overall NCF model results is insignificant on the predicted impacts to Silver Springs, the issue of primary concern. Mr. Hearn ran a simulation using the NCF model in which all variables were held constant, except for recharge. The difference between the “with recharge” and “without recharge" simulations at Silver Springs was 0.002 cfs. That difference is not significant, and is not suggestive of adverse impacts on Silver Springs from the CUP modification. Dr. Kincaid testified that “the recharge offset on the property is mostly impacting the surficial aquifer,” and that “the addition of recharge in this case didn't have much of an impact on the upper Floridan aquifer system.” As such, the effect of adding recharge to the model would be as to the effect of groundwater withdrawal on wetlands or surface water bodies, and not on springs. As previously detailed, the drawdown of the surficial aquifer simulated for the 2.39 mgd “no recharge” scenario were less than 0.05 feet on-site and off-site, except for a predicted 0.07 foot drawdown to the west of the North Tract. The predicted drawdown of the surficial aquifer for the 1.54 mgd “with recharge” scenario was 0.02 feet or less. The preponderance of the evidence supports a finding that drawdowns of either degree are less than that at which adverse impacts to wetlands or surface waters would occur. Thus, issues related to the recharge or return flows from irrigation are insufficient to support a finding or conclusion that the NCF model failed to provide reasonable assurance that the standards for issuance of the CUP modification were met. External Boundaries The boundaries of the NCF model are not isolated from the rest of the physical world. Rather, groundwater flows into the modeled area from multiple directions, and out of the modeled area in multiple directions. Inflows to the model area are comprised of recharge, which is an assigned value, and includes water infiltrating and recharging the aquifer from surface waters; injection wells; upward and downward leakage from lower aquifers; and flow across the external horizontal boundaries. Outflows from the model area include evapotranspiration; discharge to surface waters, including springs and rivers; extraction from wells; upward and downward leakage from lower aquifers; and flow against the external model boundaries. Dr. Kincaid testified that flow across the external model boundary is an unknown and unverifiable quantity which increases the uncertainty in the model. He asserted that in the calibrated version of the model, there is no way to check those flows against data. His conclusion was that the inability of the NCF model to accurately account for external boundary flow made the margin of error so great as to make the model an unreliable tool with which to assess whether the withdrawal approved by the proposed CUP modification will increase or decrease drawdown at Silver Springs. The District correlates the NCF model boundaries with a much larger model developed by the United States Geological Survey, the Peninsula of Florida Model, more commonly referred to as the Mega Model, which encompasses most of the State of Florida and part of Southeast Georgia. The Mega Model provides a means to acknowledge that there are stresses outside the NCF model, and to adjust boundary conditions to account for those stresses. The NCF is one of several models that are subsets of the Mega Model, with the grids of the two models being “nested” together. The 1995 base year of the NCF model is sufficiently similar to the 1993-1994 base year of the Mega Model as to allow for a comparison of simulated drawdowns calculated by each of the models. By running a Mega Model simulation of future water use, and applying the change in that use from 1993 base year conditions, the District was able to come to a representative prediction of specific boundary conditions for the 1995 NCF base year, which were then used as the baseline for simulations of subsequent conditions. In its review of the CUP modification, the District conducted a model validation simulation to measure the accuracy of the NCF model against observed conditions, with the conditions of interest being the water flow at Silver Springs. The District ran a simulation using the best information available as to water use in the year 2010, the calculated boundary conditions, irrigation, pumping, recharge, climatic conditions, and generally “everything that we think constitutes that year.” The discharge of water at Silver Springs in 2010 was measured at 580 cfs. The discharge simulated by the NCF model was 545 cfs. Thus, the discharge predicted by the NCF model simulation was within six percent of the observed discharge. Such a result is generally considered in the modeling community to be “a home run.” Petitioners’ objections to the calculation of boundary conditions for the NCF model are insufficient to support a finding that the NCF model is not an appropriate and accurate tool for determining that reasonable assurance has been provided that the standards for issuance of the CUP modification were met. Cumulative Impact Error As part of the District’s efforts to continually refine the NCF, and in conjunction with a draft minimum flows and levels report for Silver Springs and the Silver River, the cumulative NCF model results for the period of baseline to 2010 were compared with the simulated results from the Northern District Model (NDF), a larger model that overlapped the NCF. As a result of the comparison, which yielded different results, it was discovered that the modeler had “turned off” not only the withdrawal pumps, but inputs to the aquifer from drainage wells and sinkholes as well. When those inputs were put back into the model run, and effects calculated only from withdrawals between the “pumps-off” condition and 2010 pumping conditions, the cumulative effect of the withdrawals was adjusted from a reduction in the flow at Silver Springs of 29 cfs to a reduction of between 45 and 50 cfs, an effect described as “counterintuitive.” Although that result has not undergone peer review, and remains subject to further review and comparison with the Mega Model, it was accepted by the District representative, Mr. Bartol. Petitioners seized upon the results of the comparison model run as evidence of the inaccuracy and unreliability of the NCF model. However, the error in the NCF model run was not the result of deficiencies in the model, but was a data input error. Despite the error in the estimate of the cumulative effect of all users at 2010 levels, the evidence in this case does not support a finding that the more recent estimates of specific impact from the CUP at issue were in error. NCF Model Conclusion As has been discussed herein, a model is generally the best means by which to calculate conditions and effects that cannot be directly observed. The NCF model is recognized as being the best tool available for determining the subsurface conditions of the model domain, having been calibrated over a period of years and subject to peer review. It should be recognized that the simulations run using the NCF model represent the worst—case scenario, with all permittees simultaneously drawing at their full end-of-permit allocations. There is merit to the description of that occurrence as being “very remote.” Thus, the results of the modeling represent a conservative estimate of potential drawdown and impacts. While the NCF model is subject to uncertainty, as is any method of predicting the effects of conditions that cannot be seen, the model provides reasonable assurance that the conditions simulated are representative of the conditions that will occur as a result of the withdrawals authorized by the CUP modification. Environmental Resource Permit The irrigation proposed by the CUP will result in runoff from the North Tract irrigated pastures in excess of that expected from the improved pastures, due in large measure to the diminished storage capacity of the soil. Irrigation water will be applied when the soils are dry, and capable of absorbing water not subject to evaporation or plant uptake. The irrigation water will fill the storage space that would exist without irrigation. With irrigation water taking up the capacity of the soil to hold water, soils beneath the irrigation pivots will be less capable of retaining additional moisture during storm events. Thus, there is an increased likelihood of runoff from the irrigated pastures over that expected with dry soils. The increase in runoff is expected to be relatively small, since there should be little or no irrigation needed during the normal summer wet season. The additional runoff may have increased nutrient levels due to the increased cattle density made possible by the irrigation of the pastures. The CUP has a no—impact requirement for water quality resulting from the irrigation of the improved pasture. Thus, nutrients leaving the irrigated pastures may not exceed those calculated to be leaving the existing pre-development use as improved pastures. Retention Berms The additional runoff and nutrient load is proposed to be addressed by constructing a system of retention berms, approximately 50,0004/ feet in length, which is intended to intercept, retain, and provide treatment for runoff from the irrigated pasture. The goal of the system is to ensure that post—development nutrient loading from the proposed irrigated pastures will not exceed the pre—development nutrient loading from the existing improved pastures. An ERP permit is required for the construction of the berm system, since the area needed for the construction of the berms is greater than the one acre in size, and since the berms have the capability of impounding more than 40 acre-feet of water. The berms are to be constructed by excavating the top nine inches of sandy, permeable topsoil and using that permeable soil to create the berms, which will be 1 to 2 feet in height. The water storage areas created by the excavation will have flat or horizontal bottoms, and will be very shallow with the capacity to retain approximately a foot of water. The berms will be planted with pasture grasses after construction to provide vegetative cover. The retention berm system is proposed to be built in segments, with the segment designed to capture runoff from a particular center pivot pasture to be constructed prior to the commencement of irrigation from that center pivot. A continuous clay layer underlies the areas in which the berms are to be constructed. The clay layer varies from 18 to 36 inches below the ground surface, with at least one location being as much as five feet below the ground surface. As such, after nine inches of soil is scraped away to create the water retention area and construct the berm, there will remain a layer of permeable sandy material above the clay. The berms are to be constructed at least 25 feet landward of any jurisdictional wetland, creating a “safe upland line.” Thus, the construction, operation, and maintenance of the retention berms and redistribution swales will result in no direct impacts to jurisdictional wetlands or other surface waters. There will be no agricultural activities, e.g., tilling, planting, or mowing, within the 25-foot buffers, and the buffers will be allowed to establish with native vegetation to provide additional protection for downgradient wetlands. As stormwater runoff flows from the irrigated pastures, it may, in places, create concentrated flow ways. Redistribution swales will be built in those areas to spread any remaining overland flow of water and reestablish sheet flow to the retention berm system. At any point at which water may overtop a berm, the berm will be hardened with rip—rap to insure its integrity. The berms are designed to intercept and collect overland flow from the pastures and temporarily store it behind the berms, regaining the soil storage volume lost through irrigation. A portion of the runoff intercepted by the berm system will evaporate. The majority will infiltrate either through the berm, or vertically into the subsurface soils beneath it. When the surficial soils become saturated, further vertical movement will be stopped by the impermeable clay layer underlying the site. The runoff water will then move horizontally until it reemerges into downstream wetland systems. Thus, the berm system is not expected to have a measurable impact on the hydroperiod of the wetlands on the North Tract. Phosphorus Removal Phosphorus tends to get “tied up” in soil as it moves through it. Phosphorus reduction occurs easily in permeable soil systems because it is removed from the water through a chemical absorption process that is not dependent on the environment of the soil. As the soils in the retention areas and berms go through drying cycles, the absorption capacity is regenerated. Thus, the retention system will effectively account for any increase in phosphorus resulting from the increased cattle density allowed by the irrigation such that there is expected to be no increase in phosphorus levels beyond the berm. Nitrogen Removal When manure is deposited on the ground, primarily as high pH urine, the urea is quickly converted to ammonia, which experiences a loss of 40 to 50 percent of the nitrogen to volatization. Soil conditions during dry weather conditions are generally aerobic. Remaining ammonia in the manure is converted by aerobic bacteria in the soil to nitrates and nitrites. Converted nitrates and nitrites from manure, along with nitrogen from fertilizer, is readily available for uptake as food by plants, including grasses and forage crops. Nitrates and nitrites are mobile in water. Therefore, during rain events of sufficient intensity to create runoff, the nitrogen can be transported downstream towards wetlands and other receiving waters, or percolate downward through the soil until blocked by an impervious barrier. During storm events, the soils above the clay confining layer and the lower parts of the pervious berms become saturated. Those saturated soils are drained of oxygen and become anaerobic. When nitrates and nitrites encounter saturated conditions, they provide food for anaerobic bacteria that exist in those conditions. The bacteria convert nitrates and nitrites to elemental nitrogen, which has no adverse impact on surface waters or groundwater. That process, known as denitrification, is enhanced in the presence of organic material. The soils from which the berms are constructed have a considerable organic component. In addition to the denitrification that occurs in the saturated conditions in and underlying the berms, remaining nitrogen compounds that reemerge into the downstream wetlands are likely to encounter organic wetland-type soil conditions. Organic wetland soils are anaerobic in nature, and will result in further, almost immediate denitrification of the nitrates and nitrites in the emerging water. Calculation of Volume - BMPTRAINS Model The calculation of the volume necessary to capture and store excess runoff from the irrigated pastures was performed by Dr. Wanielista using the BMPTRAINS model. BMPTRAINS is a simple, easy to use spreadsheet model. Its ease of use does not suggest that it is less than reliable. The model has been used as a method of calculating storage volumes in many conditions over a period of more than 40 years. The model was used to calculate the storage volumes necessary to provide storage and treatment of runoff from fifteen “basins” that had a control or a Best Management Practice associated with them. All of the basins were calculated as being underlain by soils in poorly-drained hydrologic soil Group D, except for the basin in the vicinity of Pivot 6, which is underlain by the more well-drained soil Group A. The model assumed about percent of the property to have soil Group A soils, an assumption that is supported by the evidence. Soil moisture conditions on the property were calculated by application of data regarding rainfall events and times, the irrigation schedule, and the amount of irrigation water projected for use over a year. The soil moisture condition was used to determine the amount of water that could be stored in the on-site soils, known as the storage coefficient. Once the storage coefficient was determined, that data was used to calculate the amount of water that would be expected to run off of the North Tract, known as the curve number. The curve number is adjusted by the extent to which the storage within a soil column is filled by the application of irrigation water, making it unable to store additional rainfall. As soil storage goes down, the curve number goes up. Thus, a curve number that approaches 100 means that more water is predicted to run off. Conversely, a lower curve number means that less water is predicted to run off. The pre-development curve number for the North Tract was based on the property being an unirrigated, poor grass area. A post-development curve number was assigned to the property that reflected a wet condition representative of the irrigated soils beneath the pivots. In calculating the storage volume necessary to handle runoff from the basins, the wet condition curve number was adjusted based on the fact that there is a mixture of irrigated and unirrigated general pasture within each basin to be served by a segment of the retention berm system, and by the estimated 15 percent of the time that the irrigation areas would be in a drier condition. In addition, the number was adjusted to reflect the 8 to 10 inches of additional evapotranspiration that occurs as a result of irrigation. The BMPTRAINS model was based on average annual nutrient-loading conditions, with water quality data collected at a suitable point within Reach 22, the receiving waterbody. The effects of nutrients from the irrigated pastures on receiving waterbodies is, in terms of the model, best represented by average annual conditions, rather than a single highest-observed nutrient value. Pre-development loading figures were based on the existing use of the property as unirrigated general pasture. The pre-development phosphorus loading figure was calculated at an average event mean concentration (EMC) of 0.421 milligrams per liter (mg/l). The post—condition phosphorus loading figure was calculated at an EMC of 0.621 mg/l. Therefore, in order to achieve pre-development levels of phosphorus, treatment to achieve a reduction in phosphorus of approximately 36 percent was determined to be necessary. The pre-development nitrogen loading figure was calculated at an EMC of 2.6 mg/l. The post—condition nitrogen loading figure was calculated at an EMC of 3.3 mg/l. Therefore, in order to achieve pre-development levels of nitrogen, treatment to achieve a reduction in nitrogen of approximately 25 percent was determined to be necessary. The limiting value for the design of the retention berms is phosphorus. To achieve post-development concentrations that are equal to or less than pre-development concentrations, the treatment volume of the berm system must be sufficient to allow for the removal of 36 percent of the nutrients in water being retained and treated behind the berms, which represents the necessary percentage of phosphorus. In order to achieve the 36 percent reduction required for phosphorus, the retention berm system must be capable of retaining approximately 38 acre—feet of water from the 15 basins. In order to achieve that retention volume, a berm length of approximately 50,000 linear feet was determined to be necessary, with an average depth of retention behind the berms of one foot. The proposed length of the berms is sufficient to retain the requisite volume of water to achieve a reduction in phosphorus of 36 percent. Thus, the post-development/irrigation levels of phosphorus from runoff are expected to be no greater than pre-development/general pasture levels of phosphorus from runoff. By basing the berm length and volume on that necessary for the treatment of phosphorus, there will be storage volume that is greater than required for a 25 percent reduction in nitrogen. Thus, the post-development/irrigation levels of nitrogen from runoff are expected to be less than pre- development/general pasture levels of nitrogen from runoff. Mr. Drummond admitted that the design of the retention berms “shows there is some reduction, potentially, but it's not going to totally clean up the nutrients.” Such a total clean-up is not required. Rather, it is sufficient that there is nutrient removal to pre-development levels, so that there is no additional pollutant loading from the permitted activities. Reasonable assurance that such additional loading is not expected to occur was provided. Despite Mr. Drummond’s criticism of the BMPTRAINS model, he did not quantify nutrient loading on the North Tract, and was unable to determine whether post-development concentrations of nutrients would increase over pre-development levels. As such, there was insufficient evidence to counter the results of the BMPTRAINS modeling. Watershed Assessment Model In order to further assess potential water quantity and water quality impacts to surface water bodies, and to confirm stormwater retention area and volume necessary to meet pre-development conditions, Sleepy Creek utilized the Watershed Assessment Model (WAM). The WAM is a peer-reviewed model that is widely accepted by national, state, and local regulatory entities. The WAM was designed to simulate water balance and nutrient impacts of varying land uses. It was used in this case to simulate and provide a quantitative measure of the anticipated impacts of irrigation on receiving water bodies, including Mill Creek, Daisy Creek, the Ocklawaha River, and Silver Springs. Inputs to the model include land conditions, soil conditions, rain and climate conditions, and water conveyance systems found on the property. In order to calculate the extent to which nutrients applied to the land surface might affect receiving waters, a time series of surface water and groundwater flow is “routed” through the modeled watershed and to the various outlets from the system, all of which have assimilation algorithms that represent the types of nutrient uptakes expected to occur as water goes through the system. Simulations were performed on the North Tract in its condition prior to acquisition by Sleepy Creek, in its current “exempted improved pasture condition,” and in its proposed “post—development” pivot-irrigation condition. The simulations assessed impacts of the site conditions on surface waters at the point at which they leave the property and discharge to Mill Creek, and at the point where Mill Creek merges into the Ocklawaha River. The baseline condition for measuring changes in nutrient concentrations was determined to be that lawfully existing at the time the application was made. Had there been any suggestion of illegality or impropriety in Sleepy Creek’s actions in clearing the timber and creating improved pasture, a different baseline might be warranted. However, no such illegality or impropriety was shown, and the SJRWMD rules create no procedure for “looking back” to previous land uses and conditions that were legally changed. Thus, the “exempted improved pasture condition” nutrient levels are appropriate for comparison with irrigated pasture nutrient levels. The WAM simulations indicated that nitrogen resulting from the irrigation of the North Tract pastures would be reduced at the outflow to Mill Creek at the Reach 22 stream segment from improved pasture levels by 1.7 percent in pounds per year, and by 0.6 percent in milligrams per liter of water. The model simulations predicted a corresponding reduction at the Mill Creek outflow to the Ocklawaha River of 1.3 percent in pounds per year, and 0.5 percent in milligrams per liter of water. These levels are small, but nonetheless support a finding that the berm system is effective in reducing nitrogen from the North Tract. Furthermore, the WAM simulations showed levels of nitrogen from the irrigated pasture after the construction of the retention berms to be reduced from that present in the pre- development condition, a conclusion consistent with that derived from the BMPTRAINS model. The WAM simulations indicated that phosphorus from the irrigated North Tract pastures, measured at the outflow to Mill Creek at the Reach 22 stream segment, would be reduced from improved pasture levels by 3.7 percent in pounds per year, and by 2.6 percent in milligrams per liter of water. The model simulations predicted a corresponding reduction at the Mill Creek outflow to the Ocklawaha River of 2.5 percent in pounds per year, and 1.6 percent in milligrams per liter of water. Those levels are, again, small, but supportive of a finding of no impact from the permitted activities. The WAM simulations showed phosphorus in the Ocklawaha River at the Eureka Station after the construction of the retention berms to be slightly greater than those simulated for the pre-development condition (0.00008 mg/l) -- the only calculated increase. That level is beyond miniscule, with impacts properly characterized as “non- measurable” and “non-detectable.” In any event, total phosphorus remains well below Florida’s nutrient standards. The WAM simulations were conducted based on all of the 15 pivots operating simultaneously at full capacity. That amount is greater than what is allowed under the permit. Thus, according to Dr. Bottcher, the predicted loads are higher than those that would be generated by the permitted allocation, making his estimates “very conservative.” Dr. Bottcher’s testimony is credited. During the course of the final hearing, the accuracy of the model results was questioned based on inaccuracies in rainfall inputs due to the five-mile distance of the property from the nearest rain station. Dr. Bottcher admitted that given the dynamics of summer convection storms, confidence that the rain station rainfall measurements represent specific conditions on the North Tract is limited. However, it remains the best data available. Furthermore, Dr. Bottcher testified that even if specific data points simulated by the model differ from that recorded at the rain station, that same error carries through each of the various scenarios. Thus, for the comparative purpose of the model, the errors get “washed out.” Other testimony regarding purported inaccuracies in the WAM simulations and report were explained as being the result of errors in the parameters used to run alternative simulations or analyze Sleepy Creek’s simulations, including use of soil types that are not representative of the North Tract, and a misunderstanding of dry weight/wet weight loading rates. There was agreement among witnesses that the WAM is regarded, among individuals with expertise in modeling, as an effective tool, and was the appropriate model for use in the ERP application that is the subject of this proceeding. As a result, the undersigned accepts the WAM simulations as being representative of comparative nutrient impacts on receiving surface water bodies resulting from irrigation of the North Tract. The WAM confirmed that the proposed retention berm system will be sufficient to treat additional nutrients that may result from irrigation of the pastures, and supports a finding of reasonable assurance that water quality criteria will be met. With regard to the East Tract, the WAM simulations showed that there would be reductions in nitrogen and phosphorus loading to Daisy Creek from the conversion of the property to irrigated pasture. Those simulations were also conservative because they assumed the maximum number of cattle allowed by the nutrient balance, and did not assume the 30 percent reduction in the number of cattle under the NMP so as to allow existing elevated levels of phosphorus in the soil from the sod farm to be “mined” by vegetation. Pivot 6 The evidence in this case suggests that, unlike the majority of the North Tract, a small area on the western side of the North Tract drains to the west and north. Irrigation Pivot is within that area. Dr. Harper noted that there are some soils in hydrologic soil Group A in the vicinity of Pivot 6 that reflect soils with a deeper water table where rainfall would be expected to infiltrate into the ground. Dr. Kincaid’s particle track analysis suggested that recharge to the surficial aquifer ultimately discharges to Mill Creek, except for recharge at Pivot 11, which is accounted for by evapotranspiration, and recharge at Pivot 6. Dr. Kincaid concluded that approximately 1 percent of the recharge to the surficial aquifer beneath the North Tract found its way into the upper Floridan aquifer. Those particle tracks originated only on the far western side of the property, and implicated only Pivot 6, which is indicative of the flow divide in the Floridan aquifer. Of the 1 percent of particle tracks entering the Floridan aquifer, some ultimately discharged at the St. John’s River, the Ocklawaha River, or Mill Creek. Dr. Kincaid opined, however, that most ultimately found their way to Silver Springs. Given the previous finding that the Floridan aquifer beneath the property is within the Silver Springs springshed for less than a majority of the time, it is found that a correspondingly small fraction of the less than 1 percent of the particle tracks originating on the North Tract, perhaps a few tenths of one percent, can reach Silver Springs. Dr. Bottcher generally agreed that some small percentage of the water from the North Tract may make it to the upper Floridan aquifer, but that amount will be very small. Furthermore, that water reaching the upper Floridan aquifer would have been subject to the protection and treatment afforded by the NMP and the ERP berms. The evidence regarding the somewhat less restrictive confinement of the aquifer around Pivot 6 is not sufficient to rebut the prima facie case that the CUP modification, coupled with the ERP, will meet the District’s permitting standards. Public Interest The primary basis upon which Sleepy Creek relies to demonstrate that the CUP is “consistent with the public interest” is that Florida's economy is highly dependent upon agricultural operations in terms of jobs and economic development, and that there is a necessity of food production. Sleepy Creek could raise cattle on the property using the agriculturally-exempt improved pastures, but the economic return on the investment would be questionable without the increased quality, quantity, and reliability of grass and forage crop production resulting from the proposed irrigation. Sleepy Creek will continue to engage in agricultural activities on its properties if the CUP modification is denied. Although a typical Florida beef operation could be maintained on the property, the investment was based upon having the revenue generation allowed by grass-fed beef production in order to realize a return on its capital investment and to optimize the economic return. If the CUP modification is denied, the existing CUP will continue to allow the extraction of 1.46 mgd for use on the East Tract. The preponderance of the evidence suggests that such a use would have greater impacts on the water levels at Silver Springs, and that the continued use of the East Tract as a less stringently-controlled sod farm would have a greater likelihood of higher nutrient levels, particularly phosphorus levels which are already elevated.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law set forth herein it is RECOMMENDED that the St. Johns River Water Management District enter a final order: approving the issuance of Consumptive Use Permit No. 2-083-91926-3 to Sleepy Creek Lands, LLC on the terms and conditions set forth in the complete Permit Application for Consumptive Uses of Water and the Consumptive Use Technical Staff Report; and approving the issuance of Environmental Resource Permit No. IND-083-130588-4 to Sleepy Creek Lands, LLC on the terms and conditions set forth in the complete Joint Application for Individual and Conceptual Environmental Resource Permit and the Individual Environmental Resource Permit Technical Staff Report. DONE AND ENTERED this 29th day of April, 2015, in Tallahassee, Leon County, Florida. S E. GARY EARLY Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 29th day of April, 2015.

Florida Laws (27) 120.54120.569120.57120.60120.68373.016373.019373.036373.042373.0421373.069373.079373.175373.223373.227373.229373.236373.239373.246373.406373.413373.4131373.414403.067403.087403.9278.031 Florida Administrative Code (12) 28-106.10828-106.21740C-2.30140C-2.33140C-44.06540C-44.06662-302.30062-330.05062-330.30162-4.24062-4.24262-40.473
# 10

Can't find what you're looking for?

Post a free question on our public forum.
Ask a Question
Search for lawyers by practice areas.
Find a Lawyer