Findings Of Fact Petitioner, John H. Phipps Broadcasting Stations, Inc., owns approximately 10,600 acres of land bordering on Lake Jackson. The corporation owns roughly seventy percent of the waterfront property around Lake Jackson. The corporation's land is used for agriculture. Less than ten percent of the land is used in a minor grain operation involving the interspersion of cover via several small grain fields. Most of these grain fields are in self-contained basins creating no erosion or runoff problems. These fields are conducive to the propagation of wildlife, particularly quail and deer. The grain produced by these fields is used, at least in part, in the corporation's cattle operation. Approximately twenty-five percent of the corporation's land is used in a cattle breeding operation involving three to five hundred head of cattle. No feed lot operation is involved. The cattle are in pastures, the majority of which are bounded by the waters of Lake Jackson. The corporation fences to and into the water because of the fluctuating level of Lake Jackson and the necessity to contain their cattle. This practice has been ongoing for more than twenty-nine years. The corporation presently has no permits of an environmental nature in connection with the cattle operation. The testimony by Petitioner's witnesses is that the pasture cattle operation is very conducive to good water quality because it captures runoff and allows it to percolate. The remainder of the corporation's land is used in a timber operation which includes controlled burning to help contain erosion. Witnesses for Petitioner corporation testified that the water quality of Lake Jackson bordering the corporation's land is excellent. A high priority of the agricultural operation of the corporation is the maintenance of good water quality in Lake Jackson. Activities are not permitted on the corporation's land that degrade the water quality of the lake. Attempts are made to keep runoff from the lake. The evidence indicates that there are no discharges of water from the corporation's lands into Lake Jackson other than natural runoff. The testimony presented by Petitioner corporation at the final hearing was that the corporation intends to continue using the property as it is presently used and has no tentative plans for a different use of the property. Petitioner, Colin S. Phipps, owns approximately 1,000 acres bordering in part on Lake Jackson. He is also president of John H. Phipps Broadcasting Stations, Inc. Colin S. Phipps rents his acreage and shooting rights to an individual who farms the acreage. He testified that nothing was done on the property that presently requires permits from the Department of Environmental Regulation. John H. Phipps and John E. Phipps personally own parcels of land bordering on Lake Jackson. The three individual petitioners in this cause are officers of the corporate Petitioner. No evidence was presented to show activities on behalf of the petitioners on their property other than that set forth above. Further, it was the position of the petitioners that they did not foresee a change in the activities presently occurring on their property. It was their position that they had no tentative future plans for the property. They did indicate that they did not know what the future might bring. An experienced and qualified appraiser appeared on behalf of petitioners and testified that he had read the rules being challenged in this cause, was familiar with the subject property, and that in his opinion the vagueness of the proposed rules would dramatically and adversely affect the value of Petitioners' land. There are several problems with this opinion testimony. The witness did not testify that he had appraised the property. Rather, he testified that he was very familiar with the property. Thus, his testimony on the value of the land is speculation, albeit knowledgeable speculation, rather than the considered expert opinion of an appraiser. Further, the witness' opinion was based on his reading as a layman of the proposed rules and his speculation of their effect on the real estate market in which the subject lands might be offered for sale. The Hearing Officer found that the witness was a qualified appraiser with experience in appraising the economic impact of environmental regulations on waterfront property. Nevertheless, his interpretation of the proposed rules carries with it no aura of correctness for he is not, and, perhaps as all of us, cannot be, an expert in the interpretation of rules. The rules must speak for themselves and the witness can only speculate on the effect of different interpretations which might be given the rules. Therefore, the Hearing Officer concludes that the opinion of the witness is so speculative that his testimony is incompetent to support findings of fact as to the effect of the proposed regulations on the market value of Petitioners' real property.
Findings Of Fact The proposed project is a six-lane, combination low and high level bridge crossing Mill Cove and the St. John's River in Duval County, Florida. The project entails construction of approximately 6,000 feet of low level trestle-type bridge structure and approach spans beginning on the south side of Mill Cove and extending across the Cove to the northern edge of Quarantine Island, an artificial spoil island; 3,000 feet of high level bridge crossing the main channel of the St. John's River; and northern approach spans touching down on Dame Point on the northern shore of the St. John's River. In order to construct the proposed project, JTA is required to obtain a water quality permit and certification from DER. JTA filed its application with DER, accompanied by supporting data, including several studies performed by professional consultants. After review of the application, DHR filed notice of its intent to issue the requested water quality permit and certification, and Petitioners filed a timely request for a hearing pursuant to Section 120.57(1) Florida Statutes, to oppose the issuance of the permit and certification. Petitioners are various groups and individuals concerned about water quality in the St. John's River and the Jacksonville area. Petitioners' standing to seek relief in this proceeding was stipulated by all parties. Construction of the project will result in: filling of approximately .07 acres of wetlands to construct the south abutment on the shore of Mill Cove; dredging of approximately 185,000 cubic yards of material from Mill Cove to create a 4,400 foot long, 190 foot wide barge access channel, with a five foot navigation control depth parallel to the low level portion of the project; temporary filling of approximately .3 acres of wetlands above mean high water on the south shore of Quarantine Island to provide construction access to the island, which area is to be restored upon completion of construction; construction of a diked upland spoil containment site approximately 31 acres in size above mean high water on Quarantine Island to retain all dredge spoil associated with the project; construction of a temporary dock at the northern end of Quarantine Island for access and staging purposes, which is to be removed on project completion; and filling of approximately 16,000 cubic feet of material waterward of mean high water for rip-rap protection around main piers in the St. John's River. Dredged materials will be removed by hydraulic dredges. The St. John's River and its tributaries have been designated Class III waters by DER in the project area. The project involves dredging below mean high water and filling above mean high water, and is a dredge-and-fill project for purposes of Chapters 403 and 253, Florida Statutes, and Chapters 17-3 and 17-4, Florida Administrative Code, and is regulated by DER. The project is an element in a proposed eastern bypass around the City of Jacksonville. It is expected that, as a result of the project, existing area industry will receive more efficient transportation service, commuter trip miles from southeastern Jacksonville to northern Jacksonville will be reduced, transportation routes to education facilities will be improved, and tourist traffic will be routed around downtown Jacksonville, reducing miles traveled to nearby beach resorts and thereby relieving downtown congestion. The benefits to costs ratio of the project appears positive and beneficial to Duval County and Jacksonville, in that for every dollar spent to construct the project, $2.80 could be returned to the community in the form of increased economic activity and more efficient transportation. Testimony clearly established that the state waters in the project area are currently severely degraded and are not likely to meet Class III water quality standards. Violations of Class III standards for dissolved oxygen and some heavy metals, such as mercury, presently exist as background conditions in the St. John's River and Mill Cove. Further, a water quality analysis performed by DER in the project area indicates high background concentrations of heavy metals and PCB's in both the water column and sediments in the project area. When the pro posed project is analyzed within the context of these existing background water quality conditions, it appears highly unlikely that any impact from the project will further degrade existing conditions. The project as currently designed includes plans for total containment of spoil material resulting from dredging activity on the upland portions of Quarantine Island. There will be no direct discharge of dredge $materials from this containment area into the receiving waters of the state. JTA performed a water and sediment analysis of the project area, the purpose of which was to determine the existence and concentrations of specific pollutants that could adversely impact Class III waters if reintroduced into the aquatic system. JTA employed a consultant whose analytical program was designed in consultation with DER and complied with all standard testing procedures required by Rule 17-3.03, Florida Administrative Code. This analysis identified three primary-project activities where control of toxic and deleterious materials was critical: turbidity control; upland spoil containment; and direct discharge of spoil water to state waters. Sediments in the Mill Cove area are extremely fine and may be resuspended in the water column in quantities that could violate state water quality standards if dredging is done improperly. It appears from the evidence that any turbidity problem can be avoided by employing silt curtains and hydraulic dredging during channel excavation. Silt curtains should adequately retain turbidity below levels which would violate state water quality standards, in view of the fact that the JTA study hypothesized a "worst-case" condition for projecting turbidity and pollutant concentration by assuming no upland spoil containment, silt curtains or reasonable mixing zone. Although use of silt curtains and hydraulic dredging cannot absolutely guarantee zero-discharge of suspended sediments from the dredging area, the proposed system of turbidity control is adequate to provide reasonable assurance of non-violation of state water quality standards. Due to the existing toxic background conditions in Mill Cove, DER imposed a permit condition requiring spoil from dredging activities to be completely contained in an upland landfill-type site, with no overflow that could allow effluent to return to waters of the state. The upland dike system proposed in the project application is designed to retain all spoil material and water without direct discharge into state waters. Testimony established that the proposed dike system is designed to hold far more spoil material than the proposed project will generate. Although the dike system is to be constructed from dredged material previously deposited on Quarantine Island, it appears from the testimony that these materials were dredged from the main channel of the St. John's River and are cleaner and sandier in character than sediments in the Mill Cove area. The dike system, in conjunction with natural percolation and evaporation, is adequately designed to retain dredge spoil on the upland portion of Quarantine Island, and can reasonably be expected not to release toxic and deleterious substances into receiving waters of the state. It is also significant that a condition of the requested permit requires project water quality monitoring to afford continuing assurance that the project will not violate standards contained in Chapter 17-3, Florida Administrative Code. These standards and the conditions required to achieve them have been included in DER's letter of intent to issue the permit for this project. It is specifically concluded from the evidence that project dredging will not release toxic and deleterious substances into Class III waters in violation of state water quality standards, and that project dredging in Mill Cove incorporates reasonable safeguards for spoil disposal and turbidity control so as to assure non-violation of state water quality standards. JTA plans to use a direct discharge method to dispose of storm water from the bridge. Storm water will fall through 4-inch screened holes called "scuppers" placed at regular intervals along the bridge surface directly into either Mill Cove or the St. John's River. JTA was required to provide in its application reasonable assurance that storm water runoff from the Project would not exceed applicable state standards for turbidity, BOD, dissolved solids, zinc, polychlorinated biphenols, lead1 iron, oils or grease, mercury, cadmium and coliform. To this end, JTA submitted a study entitled Effect of Rainfall Runoff from Proposed Dame Point Bridge on Water Quality of St. John's River. This study analyzed the chemical composition of storm water runoff from an existing bridge, comparable in both size and design, to the proposed project, which crosses the St. John's River south of the City of Jacksonville. This study adequately established that storm water runoff into the St. John's River across the length of the proposed bridge will not degrade the water quality of the St. John's River below current water quality standards. All but three of the parameters tested in the study were within standards contained in Chapter 17-3, Florida Administrative Code. The remaining three pollutants were either not automobile-related, or would not violate applicable water quality standards after a reasonable opportunity" for mixing with receiving waters. One of these pollutants, mercury, is not automobile-related, and the concentration of mercury discovered in bridge runoff test samples was essentially the same as that measured in rainfall samples. The sampling for mercury was performed using the ultrasensitive "atomic absorption" method, which is capable of measuring tenths of a part per billion of mercury. Another method, the "Dithizone" method, is a technique recognized as effective by DER, and would have, if utilized, yielded a result within the "none detectable" standard contained in Rule 17-3.05(2) , Florida Administrative Code. As to the remaining two pollutants, coliform and lead, testimony established that a dilution rate of 400 to 1, after mixing with receiving waters, would not result in violation of applicable Class III water standards. Testimony also clearly established that water circulation in the project area would result in the requisite dilution ratio of approximately 400 to 1. The storm water runoff study was performed on a bridge similar in all important characteristics to the proposed project, and therefore validates the scientific methodology utilized to determine the expected impact of runoff from the proposed project on water quality in the St. John's River. The applicant has provided in its permit application the best practicable treatment available to protect state waters in the design of both the low and high level portions of the proposed bridge. Extensive research and analysis of design alternatives for both the low and high level portions of the bridge were undertaken by JTA and its consultants prior to selecting the proposed design for the bridge. JTA prepared and submitted to DER, as part of the application process, a document entitled Summary of Construction Techniques in Mill Cove, Dame Point Expressway. This document analyzed and summarized the available construction and design alternatives for the low level trestle portions of the project. The analysis included consideration of overhead construction, construction from a temporary wooden structure parallel to the project, and construction from barges using a shallow channel parallel to the project. The design chosen will cost more than one million dollars less than the next alternative, and will cut construction time by two years over the next alternative design. Given the demonstrated need for the proposed project, the already degraded water quality in the project area, the safeguards for water quality contained-in the project design, and the savings to be realized in both cost and time of construction, the design presently contained in the application is the best practicable. Both Petitioners and JTA have submitted proposed findings of fact. Petitioners' Proposed Findings of Fact numbered 1 through 4 have been substantially adopted herein. JTA's Proposed Findings of Fact numbered 1 through 7 have also been substantially adopted. To the extent that proposed findings of fact submitted by either Petitioners or JTA are not adopted in the Recommended Order, they have been specifically rejected as being either irrelevant to the issues in this cause, or as not having been supported by the evidence.
Findings Of Fact As planned, Phase I of Foxwood Lake Estates will consist of 300 mobile homes, which would require treatment of up to 45,000 gallons of sewage per day. The proposed sewage treatment plant would have a capacity of 46,000 gallons per day and would be capable of expansion. It would discharge treated, chlorinated water into a completely clay-lined polishing pond that has been designed for the whole of Foxwood Lake Estates at build-out; capacity of the polishing pond would be three times the capacity necessary for Phase I by itself. From the polishing pond, water is to flow into one or both of two evaporation-percolation ponds, either of which would be big enough for all the sewage expected from Phase I. The sides of these ponds would be lined with clay and a clay plug would constitute the core of the dike on the downslope side of each pond. According to the uncontroverted evidence, effluent leaving the treatment plant for the polishing pond would have been effectively treated by the latest technology and would already have been sufficiently purified to meet the applicable DER water quality requirements. The applicant proposes to dig the triangular polishing pond in the northwest corner of the Foxwood Lake Estates property, some 400 feet east of the western property line. The evaporation-percolation ponds would lie adjacent to the polishing pond along an axis running northwest to southeast. Their bottoms would be at an elevation of 164.5 feet above mean sea level and they are designed to be three feet deep. The evaporation-percolation ponds would lie some 300 feet east of the western property line at their northerly end and some 400 feet east of the western property line at their southerly end. A berm eight feet wide along the northern edge of the northern evaporation-percolation pond would be 50 feet from the northern boundary of the applicant's property. Forrest Sawyer owns the property directly north of the site proposed for the evaporation-percolation ponds. He has a house within 210 feet of the proposed sewage treatment complex, a well by his house, and another well some 300 feet away next to a barn. Two or three acres in the southwest corner of the Sawyer property are downhill from the site proposed for the ponds. This low area, which extends onto the applicant's property, is extremely wet in times of normal rainfall. Together with his brother and his sister, Charles C. Krug owns 40 acres abutting the applicant's property to the west; their father acquired the property in 1926. They have a shallow well some 100 feet from the applicant's western property boundary, and farm part of the hill that slopes downward southwesterly from high ground on the applicant's property. Sweetgum and bayhead trees in the area are also a money crop. Charles C. Krug, whose chief source of income is from his work as an employee of the telephone company, remembers water emerging from this sloping ground in wet weather. Borings were done in two places near the site proposed for the ponds. An augur boring to a depth of six feet did not hit water. The other soil boring revealed that the water table was 8.8 feet below the ground at that point. The topsoil in the vicinity is a fine, dark gray sand about six inches deep. Below the topsoil lies a layer of fine, yellow-tan sand about 30 inches thick. A layer of coarser sand about a foot thick lies underneath the yellow-tan sand. Beginning four or five feet below the surface, the coarser sand becomes clayey and is mixed with traces of cemented sand. Clayey sand with traces of cemented sand is permeable but water percolates more slowly through this mixture than through the soils above it. The applicant caused a percolation test to be performed in the area proposed for the ponds. A PVC pipe six feet long and eight inches in diameter was driven into the ground to the depth proposed for the evaporation-percolation ponds and 50 gallons of water were poured down the pipe. This procedure was repeated on 14 consecutive days except that, after a few days, the pipe took only 36 gallons, which completely drained into the soil overnight. There was some rain during this 14-day period. Extrapolating from the area of the pipe's cross-section, Vincent Pickett, an engineer retained by the applicant, testified that the percolation rate of the soils was on the order of 103 gallons per square foot per day, as compared to the design assumption for the ponds of 1.83 or 1.87 gallons per square foot per day. Water percolating down through the bottoms of the evaporation- percolation ponds would travel in a southwesterly direction until it mixed with the groundwater under the applicant's property. It is unlikely that the ponds would overflow their berms even under hurricane conditions. Under wet conditions, however, the groundwater table may rise so that water crops out of the hillside higher up than normal. The proposed placement of the ponds makes such outcropping more likely, but it is impossible to quantify this enhanced likelihood in the absence of more precise information about, among other things, the configuration of the groundwater table.
Recommendation Upon consideration of the foregoing, it is RECOMMENDED: That DER grant the application on the conditions specified in its notice of intent to issue the same. Respectfully submitted and entered this 17th day of December, 1980, in Tallahassee, Florida. ROBERT T. BENTON, II Hearing Officer Division of Administrative Hearings Room 101, Carlton Building Tallahassee, Florida 32301 Telephone: 904/488-9675 FILED with the Clerk of the Division of Administrative Hearings this 17th day of December, 1980. COPIES FURNISHED: Andrew R. Reilly, Esquire Post Office Box 2039 Haines City, Florida 33844 Walter R. Mattson, Esquire 1240 East Lime Street Lakeland, Florida 33801 David M. Levin, Esquire Department of Environmental Regulation Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32301
Findings Of Fact Harold Click and Harold Peterson, Petitioners, are sole owners of property which borders Dunn's Creek, one of the largest tributaries to the St. John's River in Putnam County, and which is described as Lots 80, 88, and 89, Section 38, Township 11 South, Range 27 East. Dunn's Creek is a Class III water body of the state. Petitioners applied for a dredge and fill permit initially in 1980 but Respondent issued an Intent to Deny in January, 1981. A second permit application was submitted in 1982 on behalf of Petitioners following a site visit by representatives of Respondent in June, 1981, but again an Intent to Deny was issued in September, 1982. A third application was submitted on or about May 3, 1984, following another site visit by Respondent's representatives, but the Intent to Deny which resulted in this hearing was issued on December 5, 1984. During these site visits, Respondent's representatives offered suggestions about what might be an acceptable project but gave no assurances that the application, as submitted on May 3, 1984, would be permitted. The project which Petitioners now propose would include the placement of pilings and other fill materials within the waters and landward extent of the waters of the state which would result in the alteration of at least 10,000 square feet of the swamp floodplain community of Dunn's Creek. This proposed filling will degrade the water quality of the areas affected by replacing periodically inundated wetlands with uplands. Although the project also includes construction of a fill road with a bridge over a natural slough on Click's lot, Respondent's expert witness Tyler testified that this portion of the project alone would not have resulted in the Intent to Deny. According to Tyler, the key area of objection was the .23 acres Petitioners proposed to fill which was within Respondent's jurisdiction and which would have widened an already existing berm. This widening would have allowed the placement of two septic tanks and two, dwellings on pilings on the property and an access driveway through Click's portion of the property to Peterson's. As proposed, fill was to be placed over a total of .35 acres, with .23 acres being in the waters of the state or to the landward extent of waters of the state. Bald cypress trees or other species listed in Rule 17-4.02(17), Florida Administrative Code, are present in part of the wetland area occupied by the project site in greater numbers, biomass, and aerial extent than competing plant species or communities. Without appropriate pollution control measures, the proposed project could reasonably be expected to result in an adverse change in the biological integrity, bacteriological quality, biochemical oxygen demand and the concentration of dissolved oxygen, turbidity and nutrients in some of the waters on the project site, in Dunn's Creek, and in discharge areas elsewhere. The filling associated with the project can be expected to have a long- term detrimental impact on water quality and biological resources, according to Respondent's expert witness Deuerling. Natural habitats and rainwater storage areas would be destroyed or detrimentally altered, as would the natural filtration function performed by the swamp areas to be filled. In the immediate vicinity of Petitioners' lots, Respondent has denied two dredge and fill permits and there are an additional two permit applications which are pending. Deuerling has also performed site visits at three other locations along Dunn's Creek in the immediate vicinity of Petitioners' lots, and it can be expected that other permit applications for similar projects will be submitted if Petitioners are granted a permit.
Recommendation Based upon the foregoing it is recommended that Respondent enter a Final Order denying Petitioners' application for a permit. DONE and ENTERED this 5th day of September, 1985, at Tallahassee, Florida. DONALD D. CONN, Hearing Officer Division of Administrative Hearings The Oakland Building 2009 Apalachee Parkway Tallahassee, Florida 32301 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 5th day of September, 1985. COPIES FURNISHED: Peter B. Heebner, Esquire 523 North Halifax Avenue Daytona Beach, Florida 32018 Ross S. Burnaman Esquire Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32301 Victoria Tschinkel Secretary Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32301
Findings Of Fact On June 27, 1979, Respondent Department of Environmental Regulation's St. Johns River District office received an application from Petitioner John W. McPhail, Deland, Florida, for a permit to conduct dredge and fill activities on his property at Lake Johnson, DeLeon Springs, Florida. The application reflected that Petitioner desired to dredge 100 cubic yards of material Waterward of the lake mean high Water line and 100 cubic yards landward of the mean high water line, and then fill an adjacent cove area on his Property with the 200 cubic yards of material. (Respondent's Exhibit 1) Lake Johnson is a small privately owned lake about fifteen acres in area. There are two distinct "lobes" of the lake which are joined by a narrow band of water. Each of these lobes is approximately seven acres in area. Some four or five houses, including, Petitioner's, are located around the lake. In the early Seventies, Petitioner dredged part of his shoreline and, in the process, too much material was inadvertently removed from the present cove area and placed in the middle of the property, which left a hump of land in the middle. The shoreline now is irregular with steep ungraded banks, and the cove area is somewhat stagnant. Petitioner wishes to restore the property by dredging the "hump" created by prior filling, and return the material to its Original location by filling the cove area. This will produce an even, sloped shoreline extending some 200 feet and improve the appearance of the lakefront. It will also reduce present maintenance Problems. (Testimony of Petitioner, Vause, Petitioner's Exhibits 1-3) A field biologist in Respondent's District Dredge and Fill Permitting Section conducted an on-site inspection on August 28, 1979, and rendered a report of the inspection on October 2, 1979. He found that the dominant plant community along the banks of the shoreline consisted primarily of upland weeds and grasses such as broomsedge and bahaia grass. Additionally, primrose willow was found in that location. The vegetation along the shoreline includes maidencane and a small amount of bullrush while the open water area is predominately vegetated with water lilies. Primrose willow is a species of vegetation found in the transitional zone of a submerged land, and bullrush, maidencane, and water lily are also fresh water species of vegetation found in submerged lands, as defined in Chapter 17-4, Florida Administrative &ode. The water depth in the lake is approximately eight feet and the depth the water at the steep banks of the Petitioner's property is approximately three feet. Wetlands vegetation of the above types are conducive to the improvement of water quality by increasing dissolved oxygen levels after removal of polluting nutrients from the water. The removal of a significant amount of such vegetation may have a measurable adverse effect on water quality. Although Lake Johnson, a Class III body of water, presently has excellent Water quality, the vegetation along the shoreline has been removed to a degree of about ten to fifteen percent. The removal of fifteen to twenty percent or more of a shoreline in such a lake normally produces a measurable adverse effect on water quality. The dredging of material along a shoreline can produce short-term turbidity of the water. (Testimony of Vause, Respondent's Exhibits 2-3) Respondent's inspector found that although filling the cove would remove some beneficial aquatic and land vegetation, would most likely reestablish if proper sloping was maintained on the shoreline. He also noted in his report that the proposed project would restore approximately one-half acre of open water to the lake. He therefore interposed no objection to the filling aspect of the project, but believed that dredging should not be undertaken waterward of the ordinary high water line, and that the shoreline should be merely contoured without dredging. By letter of October 4, 1979, Respondent's district manager advised Petitioner of its intent to deny his application for permit for the reason that the proposed work would eliminate approximately .5 acres of wetland community and thereby degrade water quality in the areas of BOD, turbidity, and dissolved oxygen. (Testimony of Vause, Respondent's Exhibits 2-4)
Recommendation That Petitioner be issued the requested permit, subject to standard conditions. DONE and ENTERED this 13th day of February, 1980, in Tallahassee, Florida. THOMAS C. OLDHAM Hearing Officer Division of Administrative Hearings Room 101, Collins Building Tallahassee, Florida 32301 (904) 488-9675 COPIES FURNISHED: Segundo J. Fernandez Assistant General Counsel Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32301 John W. McPhail Route 1, Box 692H Deland, Florida 32720 ================================================================= AGENCY FINAL ORDER ================================================================= BEFORE THE STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION JOHN W. MCPHAIL, Petitioner, vs. CASE NO. 79-2174 STATE OF FLORIDA, DEPARTMENT OF ENVIRONMENTAL REGULATION Respondent. /
The Issue The issues to be determined in this proceeding are: whether the challengers have standing; and (2) whether Proposed Rule 40E-8.221(2) is an invalid exercise of delegated legislative authority.
Findings Of Fact Based on the parties' stipulations and the evidence adduced at the final hearing, the following findings of fact are made: The Parties The District is a government entity existing and operating pursuant to chapter 373, Florida Statutes, as a multi- purpose water management district. The District has the power and duty to adopt MFLs consistent with the provisions of part I of chapter 373. Sanibel is a barrier island sanctuary in Lee County and a duly-formed municipality with a population of more than 6,000. Sanibel is situated at the mouth of the Caloosahatchee River, within the Caloosahatchee's greater estuarine area. Sanibel is known primarily for its natural beauty, including clear blue waters, shell beaches, world-class sport fisheries, and wildlife refuges. That is why tourists come from around the globe to visit Sanibel, and why Sanibel's residents move and remain there. Sanibel actively participated in the rulemaking process for the Proposed Rule from its inception. Sanibel submitted two technical comment letters to the District during the development of the Proposed Rule. Sanibel's natural resources director, James Evans, attended numerous public and technical meetings associated with the development of the Proposed Rule, speaking on the record at each of the public meetings prior to the adoption hearing by the District's governing board. The Town, located on Estero Island in Lee County, is also a barrier island community and duly-formed municipality with a population of more than 6,000. The Town is situated just south of the mouth of the Caloosahatchee River and on the southeastern edge of the Caloosahatchee River's greater estuarine area. The Town is known primarily for its natural beauty, including clear blue waters, shell beaches, world-class sport fisheries, and wildlife refuges. Cape Coral is a duly-formed municipality in Lee County and is the largest city between Tampa and Miami, with a population in excess of 150,000. Cape Coral is bordered on the south by the Caloosahatchee River and has over 400 miles of navigable canals and waterways, all of which are within the Caloosahatchee River's greater estuarine area. In addition, Cape Coral has an assigned load reduction allocation under the Basin Management Action Plan (BMAP) for the Caloosahatchee River Estuary (CRE) due to it being designated as impaired for dissolved oxygen and nutrients. Maintaining sufficient flow in the Caloosahatchee River would have a direct impact on Cape Coral's ability to meet its assigned load reduction allocation. In addition to living on or near the water, a substantial number of the residents of Sanibel, Cape Coral, and the Town engage in water-based recreational activities such as swimming, fishing, boating, kayaking, paddle boarding, bird watching, and nature observation in and around the Caloosahatchee River's greater estuarine area. Fort Myers is a duly-formed municipality in Lee County and has a population of approximately 80,000. Fort Myers is bordered by the CRE throughout its entire jurisdictional boundary. Fort Myers owns and maintains a yacht basin (Ft. Myers Yacht Basin), which includes a mooring field and an anchorage field in the Caloosahatchee River. Fort Myers presented testimony that commercial crabbing and recreational fishing have declined and that it has suffered economic harm due to water quality issues. Fort Myers owns the submerged land in the Caloosahatchee River from Marker 39 to Marker 58, and islands in the river. One such island will be used as a park for recreational activities such as canoeing, kayaking, and hiking for visitors to enjoy the Caloosahatchee River. Fort Myers also owns and operates piers and a public boat ramp within the Caloosahatchee River. Fort Myers' dock master has observed declines in seagrasses in the Caloosahatchee River during his 19-year career working at the Ft. Myers Yacht Basin. Fort Myers has adopted a Harbor Management Plan for the management of its mooring and anchorage fields in the Caloosahatchee River. Fort Myers has also been assigned a load reduction allocation under the BMAP for the CRE, and is responsible for a certain amount of pollution reduction over time. Bonita Springs is a municipality of more than 50,000 in Lee County. The borders of Bonita Springs include portions of Estero Bay, which, along with San Carlos Bay and the Caloosahatchee River, is part of the greater Lower Charlotte Harbor Estuary. Bonita Springs includes wildlife refuges, such as the Estero Bay Aquatic Preserve and Lovers Key State Park and Recreation Area. While Bonita Springs' strategic priorities include environmental protection and water quality, it does not have environmental staff or test water quality. Bonita Springs participates in Estero Bay Management and the Charlotte Harbor National Estuary Program (CHNEP). Bonita Springs provides financial assistance to the Caloosahatchee Citizen Sea Grass Gardening Project. Concerns regarding harm to the CRE and tape grasses are shared by a significant number of residents in Bonita Springs and Estero, including injury to the quality of life and recreational uses such as swimming, boating, and kayaking in the waterways. Estero is a municipality of more than 30,000 in Lee County. Estero borders the eastern portion of Estero Bay. Estero includes wildlife refuges, such as Estero Bay Aquatic Preserve and Koreshan State Park. While Estero has environmental policies, it does not have environmental staff or test water quality. Estero makes financial contributions to CHNEP. Estero is concerned that the Proposed Rule will affect its water quality, which could affect its residents' quality of life. Estero believes it could be harmed by poor water quality because its residents are portable retirees who can move away, or tourists who can choose not to visit. Captiva Island is situated at the mouth of the Caloosahatchee River, within the Caloosahatchee's greater estuarine area. CCP is a Florida not-for-profit corporation representing property owners, businesses, and the community of Captiva Island. Captiva Island is part of unincorporated Lee County and is located north of Sanibel. CCP has 200 financial contributors comprised of property owners, businesses, and residents on Captiva Island. CCP's mission includes protection of clean off-shore water, diverse and healthy marine life, and robust native vegetation along with the protection of mangrove fringe and water quality. CCP works with Lee County on provisions of the County's comprehensive plan, which include the quality of adjacent waters. CCP relied on the expertise of James Evans, the director of natural resources for Sanibel, and on the Sanibel- Captiva Conservation Foundation (SCCF). CCP was advised that the Proposed Rule was not sufficient to protect the environment and Vallisneria americana (Vallisneria) or tape grass during the dry season. Caloosahatchee River and Estuary The watershed of the Caloosahatchee River covers approximately 861,058 acres. The watershed consists of four sub-watersheds, three of which are upstream of the S-79 structure. The Tidal Caloosahatchee Basin sub-watershed (estuarine system) is downstream of the S-79 structure. The S-79 structure captures all the upstream discharges of fresh water that go into the estuarine system through the S-79 structure. Major tidal tributaries of the Tidal Caloosahatchee Basin are the Orange River and Telegraph Creek, which drain into the upper estuary downstream of the S-79 structure. Fresh water inflows from these and other tributaries also contribute fresh water into the estuarine system. The Caloosahatchee River was originally a natural watercourse running from its origin at Lake Flirt to San Carlos Bay. It is currently defined as the "surface waters that flow through the S-79 structure, combined with tributary contributions below S-79 that collectively flow southwest to San Carlos Bay." Fla. Admin. Code. R. 40E-8.021(2). Man-made alterations to the Caloosahatchee River began as early as 1884, but major alterations began in the 1930s with the authorization and construction of the C-43 Canal. The C-43 Canal runs 41.6 miles from Lake Okeechobee at Moore Haven, i.e., from the S-77 structure, to Olga, i.e., the S-79 structure. The C-43 Canal serves as a conveyance feature to drain water from the three sub-watersheds located upstream of the S-79 structure and convey regulatory discharges of water from Lake Okeechobee. In 1957, the United States Army Corps of Engineers (USACOE) prepared a report focused on drainage, flood control, and navigation needs of the Caloosahatchee River Basin, and one recommendation was construction of the S-79 structure. The key objectives of the S-79 structure were to eliminate undesirable salinity in the lower Caloosahatchee River, prevent the rapid depletion of water supplies, and raise the prevailing dry weather water table levels. The S-79 structure was constructed in 1965. It is a lock and dam structure that is also known as the Franklin Lock and Dam. The S-79 structure captures all upstream fresh water discharges that go into the CRE. The S-79 structure demarcates the head of the CRE, which extends 26 miles downstream to Shell Point, where it empties into San Carlos Bay in the southern portion of the greater Lower Charlotte Harbor Estuary. Most of this surface water flow takes a southerly route, flowing to the Gulf of Mexico under the Sanibel Causeway that crosses San Carlos Bay. When fresh water inflows are high, tidal action pushes some of this water back up into Matlacha Pass and Pine Island Sound. Additionally, some water exits to the south and flows into Estero Bay through Matanzas Pass. Salinity exhibits a strong gradient in the CRE. Changes in the watershed upstream of the S-79 structure have profoundly influenced the delivery of fresh water to the CRE. Runoff is now more variable with higher wet season flows and lower dry season discharges. Large volumes of fresh water during the wet season can flush salt water from the tidally-influenced sections of the water body, resulting in low salinity conditions throughout most of the CRE. In contrast, fresh water inflow at the S-79 structure can stop entirely during the dry season, especially during significant drought events. This results in saline intrusion that can extend upstream to the S-79 structure. Fluctuations of this magnitude at the head and mouth of the system cause mortality of organisms at both ends of the salinity gradient. Downstream of the S-79 structure, the CRE was significantly altered by multiple dredging activities, including the removal of extensive shoals and oyster bars. Seven automobile bridges, a railroad trestle, and the Sanibel Causeway were built between the 1880s and 1960s. A large canal network was built along the northern shoreline of the CRE in Cape Coral. To provide navigational access from the canal network to deeper water, multiple access channels were dredged within the CRE. Alterations to the delivery of fresh water combined with structural changes to the tidally-influenced sections of the water body have had lasting ecological consequences. These include the loss of extensive shoals and oyster bars, loss of a flourishing bay scallop fishery, and significant decline in seagrass cover in deeper areas. MFLs An MFL is the limit at which further withdrawals would be significantly harmful to the water resources or ecology of the area. The District's rules define significant harm as the "temporary loss of water resource functions, which results from a change in surface or ground water hydrology, that takes more than two years to recover, but which is considered less severe than serious harm." Fla. Admin. Code R. 40E-8.021(31). The rule further specifies that a water body's specific water resource functions addressed by an MFL are defined in the MFL technical support document. Id. MFLs are calculated using the best information available. The regulatory agency is required to consider changes and structural alterations to watersheds, and the constraints such changes or alterations placed on the hydrology of an affected watershed. Certain waterbodies may not serve their historical hydrologic functions and recovery of these waterbodies to historical hydrologic conditions may not be economically or technically feasible. Accordingly, the regulatory agencies may determine that setting an MFL for such a water body based on its historical condition is not appropriate. Caloosahatchee MFL For the CRE, MFL criteria were designed to protect the estuary from significant harm due to insufficient fresh water inflows and were not guidelines for restoration of estuarine functions to conditions that existed in the past. The MFL criteria consider three aspects of the flow in terms of potential significant harm to the estuary: (1) the magnitude of the flow or the volume of fresh water entering the estuary; (2) the duration of time that flows can be below the recommended level before causing significant harm; and (3) the return frequency, or the number of times the MFL can be violated over a number of years before it results in significant harm, recognizing that natural climatic variability will be expected to cause fresh water inflows to fall below recommended levels at some natural frequency. The CRE MFL initially adopted in 2001 was primarily based on the salinity tolerance of one valued ecosystem component (VEC). The VEC was Vallisneria americana or tape grass, a fresh water aquatic plant that tolerates low levels of salinity. A major assumption of this approach was that flow and salinity conditions that protect Vallisneria would also protect other key organisms in the estuary. The 2001 CRE MFL was based on a regression model for estimating the relationship between surface salinity measured at the Ft. Myers monitoring station located in the Ft. Myers Yacht Basin and discharge at the S-79 structure. Although the District monitors surface and bottom salinity at multiple stations in the CRE, the Ft. Myers monitoring station is located centrally in the CRE and at the historical downstream extent of the Vallisneria habitat. The Ft. Myers monitoring station also has the most comprehensive period of record of monitoring data available. The fixed data sondes that monitor surface and bottom salinity are located at 20 percent and 80 percent of total river depth measured at mean low water. The data sondes continuously measure temperature and specific conductivity and, depending on the manufacturer, contains programs that calculate salinity. Those calculations are based on standards recognized and used worldwide by estuarine, marine, and oceanographic scientists.1/ The regression model only implicitly included inflows from the Tidal Caloosahatchee Basin sub-watershed downstream of the S-79 structure. To address this, during the 2003 re-evaluation, a linear reservoir model of Tidal Caloosahatchee Basin inflows was developed. The regression model results showed that a total inflow from S-79 plus the Tidal Caloosahatchee Basin of about 500 cubic feet per second (cfs) was required to produce a salinity of 10 at the Ft. Myers monitoring station. Thus, the 2001 CRE MFL of 300 cfs measured at the S-79 structure would produce a salinity of 10 at the Ft. Myers monitoring station only with additional inflow from the downstream Tidal Caloosahatchee Basin sub- watershed. However, that additional inflow estimate was highly uncertain. The conclusion was that actual flow measurements over a period of time were needed in order to perform more robust calibrations for the new models that were being developed. The Re-evaluation The District's re-evaluation effort began in 2010 after the Conservancy of Southwest Florida filed a petition requesting review of the Caloosahatchee MFL. At the time, the governing board denied the petition but directed staff to undertake additional research and monitoring to ensure a future revision would be supported by the best information available. The first step was to review the September 2000 Final Peer Review Report (PRR) for the initial adoption. The 2000 PRR identified several items the District should consider, including a hydrodynamic salinity model, a numerical population model for Vallisneria, quantification of habitat value for Vallisneria, and documentation of the effects of minimum flows on downstream estuarine biota. The 2000 PRR documented concerns that the current MFL was based solely on the salinity tolerance of Vallisneria and recommended using multiple indicator species. To address those recommendations, the District conducted studies to evaluate multiple ecological indicators, such as zooplankton, aquatic vegetation, oysters, benthic communities, and blue crabs, in the Caloosahatchee from the S-79 structure to beyond Shell Point. In addition, the District collected flow data from the Tidal Caloosahatchee Basin sub-watershed for at least five years to develop watershed, flow, and hydrodynamic models that could properly simulate inflows and salinity responses. When the initial research was complete in 2016, the District published the Draft Science Document containing 11 component studies. In September 2016, the District held a two- day Science Symposium to present the 11 component studies and gather public comment. In response to public comment, the District performed additional evaluations, modeling, and updated the component studies to produce a Draft Technical Document. A Peer Review Panel reviewed the Draft Technical Document, which included the Draft Science Document. The Peer Review Panel has over 150 years of combined relevant scientific experience. The Peer Review Panel toured the CRE by air and water. The District also held a Peer Review Session to engage the public and obtain feedback. The Peer Review Panel's 2017 report (PRP report) stated that the District had "crafted a well-executed and well- documented set of field and laboratory studies and modeling effort" to re-evaluate the CRE MFL. The PRP report supported the 11 component studies, the modeling, the evaluations, and the initial proposed rule language. The Final Technical Document published in January 2018 incorporated five different models and additional science, examining the entire watershed and the criteria itself. The Final Science Document was Appendix A to the Final Technical Document and contained the scientific research and analysis that was done for the 11 component studies, the modeling, and the additional scientific analyses performed in response to public and stakeholder input. The District initiated rule development in December 2017. Rule development workshops were held in February and June 2018 and a stakeholder technical meeting was held in May 2018. The District validated the comments after each workshop and meeting, and revised the proposed rule language. The District published its Notice of Proposed Rule on July 23, 2018.2/ At its September 13, 2018, meeting, the District's governing board held a public hearing on the Proposed Rule. The mayors of Sanibel, Cape Coral, and the Town publicly commented at the hearing. After considering public comments, the governing board adopted the Proposed Rule. The District documented and responded to each public comment, memorializing the information in the Final Technical Document. Later, after the rule workshops and May 2018 technical meeting, the District prepared and presented all of the updated information, including public comment, at the September 2018 adoption hearing. Thus, the District's re-evaluation process was open and transparent. The Re-evaluated Caloosahatchee MFL The science supporting the re-evaluation involved a comprehensive assessment of the effects of diminished dry season fresh water inflows on the CRE. The dry season was chosen for two reasons. First, because it is well-established that the upstream migration of salt combined with reduced fresh water inflow alters the health and productivity of estuarine habitats. Second, because the dry seasons are the times when the current MFL criteria are likely to be exceeded or violated. The 11 component studies targeted specific concerns regarding physical and ecological characteristics. Together they offered a holistic understanding of the negative effects of diminished fresh water inflow on estuarine ecology. The re-evaluated MFL criteria were developed using a resource-based approach. The approach combined the VEC approach and the habitat overlap concept. The habitat overlap approach is based on the idea that estuaries serve a nursery function and salinity determines the distribution of species within an estuary, including distribution during different life stages. The combined approach studied the minimum flow requirements of the various indicator species in terms of magnitude, duration, and return frequency, resulting in the following three aspects of the flow: (1) for magnitude, a 30-day moving average flow of 400 cfs measured at the S-79 structure; for duration, an MFL exceedance occurs during a 365-day period when the 30-day moving average flow at S-79 is below 400 cfs and the 30-day moving average salinity exceeds 10 at the Ft. Myers salinity monitoring station; and (3) for return frequency, an MFL violation occurs when an exceedance occurs more than once in a five-year period. The magnitude component is based on the salinity requirements of Vallisneria, along with results from the 11 studies modeling salinity and considering the salinity requirements of the other VECs. The duration component is based mainly on the estimates of rate of loss of Vallisneria shoots when salinity rises above 10 and the recovery rate of the shoots when salinities fall back below 10. Return frequency was determined based on long-term rainfall records rather than flow measurements from the S-79 structure, which the PRP report felt was well justified. In addition to the component studies, the re-evaluated MFL criteria and existing recovery strategy were evaluated using a suite of hydrologic and ecological models simulating long-term fresh water inflow to the CRE associated with varying management options, the resulting salinity in the CRE, and the ecological response of indicator species that are sensitive to low fresh water inflows. Five models were utilized. Three models simulated fresh water inflows to the CRE: two for S-79 flows; and one for Tidal Caloosahatchee Basin sub-watershed flows. The other two models were a three-dimensional hydrodynamic salinity model and a Vallisneria model. Tidal Caloosahatchee Basin sub-watershed has a number of tributaries that drain fresh water into the CRE. The flow at several of the tributaries was monitored for a five-year period. The measured flow was used to calibrate a watershed model and conduct a long-term simulation. The results showed an average fresh water inflow for all seasons of approximately 430 cfs. The average fresh water inflow during the dry season was 245 cfs while the wet season average fresh water inflow was 613 cfs. Fresh water inflow from the Tidal Caloosahatchee Basin sub- watershed was approximately 20 percent of total fresh water inflow to the CRE while 80 percent was released through the S-79 structure. Petitioners' and Intervenors' Objections 400 cfs Is Too Low Sanibel relied on a memorandum prepared by Dr. David Tomasko (Tomasko report) concerning his company's review of the January 2018 Final Technical Document supporting the Proposed Rule. The Tomasko report, dated October 23, 2018, was in the form of a "technical memorandum" outlining "preliminary findings." The Tomasko report was admitted as a joint exhibit; however, Dr. Tomasko did not testify at the final hearing. The Tomasko report is hearsay that was not used to supplement or explain competent direct evidence. Although hearsay is admissible in this proceeding, it cannot be the sole basis for a finding of fact.3/ See § 120.57(1)(c), Fla. Stat. The District's expert witnesses, who testified at the final hearing, explained that ten of the 11 component studies identified average indicator flows at S-79 ranging from 237 to 545 cfs with standard deviations ranging from plus or minus 57 to plus or minus 774 cfs.4/ The District's experts performed three different evaluations of those flow results. They identified the mean of all the means, calculated the median of the means, and performed a probability density function. The flow results for each of the three evaluations were 381 cfs, 400 cfs, and 365 cfs, with standard deviations that ranged from plus or minus 277 cfs to plus or minus 706 cfs. The District's experts testified that the three flow results are indistinguishable from a statistical point of view. The District chose 400 cfs because it was the highest flow result, and, therefore, the most protective of the three. The Petitioners and Intervenors failed to present evidence that showed any deficiencies in the District's component studies, hydrologic, hydrodynamic, or statistical modeling, or analysis of compliance data. The preponderance of the evidence established that the District used the best available science to calculate the MFL criteria. The District did not act arbitrarily or capriciously when it chose 400 cfs as the magnitude component of the MFL criteria. Inclusion of Salinity in the MFL Criteria The preponderance of the evidence also established that Vallisneria continues to be a particularly useful indicator of environmental conditions in the CRE. It supports essential ecological goods and services, is sensitive to salinity fluctuations at the ecosystem scale, and has value to a variety of stakeholders. The location of Vallisneria habitat in the upper CRE and its negative response to increased salinity made it an excellent candidate as an ecological indicator for fresh water inflow. A combination of field monitoring, mesocosm studies, and modeling results allowed the application of Vallisneria responses as a platform to quantify the effects of high salinity duration in the upper CRE. Component Study Eight reviewed the development and initial application of a simulation model for Vallisneria in the CRE. The Vallisneria model was used to evaluate the salinity conditions that led to net annual mortality, or, in other words, the duration of high salinity exposure that led to decreased Vallisneria shoots versus the duration of low salinity conditions required for recovery. Component Study Seven included an analysis of the relationship between the number of consecutive days where salinity at the Ft. Myers monitoring station was greater than 10 and the percentage of initial Vallisneria shoots remaining at the end of each high salinity period. To further evaluate the duration element associated with the MFL criteria, the field monitoring data contained in Component Study Seven was evaluated with the mesocosm and modeling results. All three sources were analyzed similarly to derive a combined curve showing high salinity exposure duration that is significantly harmful to Vallisneria. The model also provided information that was used to quantify the duration of low salinity conditions required for Vallisneria to recover a relative fraction of shoots after high salinity exposure. Merging the exposure and recovery evaluations facilitated a determination of the unfavorable salinity duration that could significantly harm Vallisneria habitat. With significant harm defined as the environmental harm from which two years are required to recover, the determination was that Vallisneria should experience no more than 55 consecutive days of salinity greater than 10. However, stakeholders expressed concerns regarding the percentage loss of Vallisneria habitat after 55 days of high salinity exposure. In response, the District conducted further analysis of modeling results and revised the duration component to accept the stakeholder recommendation, now expressed in the Proposed Rule, of a 30-day moving average salinity greater than 10. The Petitioners and Intervenors argued that by expressing the MFL as a "flow plus salinity component" the Proposed Rule enlarges, modifies, or contravenes the specific provisions of law implemented. However, the duration component is part of compliance and represents the duration of time that flows can be below the recommended level before causing significant harm to the indicator species Vallisneria. The MFL in the Proposed Rule is a 30-day moving average flow of 400 cfs measured at the S-79 structure. Flow is both measured and operationally controlled at the S-79 structure. However, as previously found, there are other sources of fresh water entering the CRE downstream of the S-79 structure. The District does not control and cannot control these downstream sources, which modeling reveals contribute approximately 20 percent of total fresh water inflow to the CRE. By including salinity, the District can account for fresh water inflows coming from the tidal basin when there are low or no flows at S-79 since the significant harm threshold in the CRE is directly related to salinity tolerance of the indicator species Vallisneria. The District's experts also testified that salinity can be used as a flow component because it is not affected by chemical or biological processes and is an indicator of how much fresh water is entering the system.5/ Salinity is included in the duration component of the MFL criteria and is an exceedance criterion because the science established that the salinity gradient is crucial to the overall health of the CRE. Including salinity in the duration component of the MFL criteria achieves the purpose of the statutory mandate to set MFLs that are designed to avoid significant harm to the water resources and ecology of the area. No Unit of Measurement for Salinity The Petitioners and Intervenors argued that the Proposed Rule is vague because the language does not contain any units for salinity. The UNESCO calculation is the standard equation used by the estuarine and marine science community to convert specific conductivity and temperature data to salinity. The District's experts testified that the UNESCO calculation reports salinity as a ratio, which is a dimensionless number and has no units. The District uses the UNESCO calculation and performs the conversion in a spreadsheet that it maintains. In some instances, certain brands of data sondes are programmed to perform the calculation and provide the salinity number. The preponderance of the evidence established that use of the practical salinity unit (PSU) is not technically correct. PSU is a misnomer, a pseudo-unit equivalent to a unitless salinity number. The Petitioners' and Intervenors' expert witness, Dr. Anthony Janicki, conceded there is no difference between reporting salinity as unitless or as PSU. And although technically incorrect, he suggested that placing the word "practical" or putting "PSU" in the Proposed Rule would reduce confusion and vagueness. However, since the preponderance of the evidence established that use of PSU is not technically correct, the use of a pseudo-unit would actually cause confusion instead of reduce confusion. The Petitioners and Intervenors also argued that the Proposed Rule is vague because the language does not state that the method of measuring salinity is specific conductivity, or that the equation used to convert specific conductivity and temperature data to salinity is the standard developed by UNESCO. The Petitioners and Intervenors essentially argued that members of the public and those who may be regulated by the Proposed Rule are left to guess about the method or methods used to measure salinity. Because the Proposed Rule identifies and locates by latitude and longitude coordinates the Ft. Myers salinity monitoring station as the location where salinity would be measured for compliance, the Proposed Rule language is not vague. The Proposed Rule is not vague because it does not describe the data sondes, what parameters are measured by the data sondes, and how those parameters are converted to a salinity number. Salinity Monitoring Location and Mean Low Water The Petitioners and Intervenors argued that the Proposed Rule is vague for failing to define the phrase "20% of the total river depth at mean low water," and is arbitrary or capricious for failing to include more than one salinity monitoring station. Total river depth or the water column depth is a standardized measurement that is made from the surface down to the bottom of the river bed. Mean low water is commonly understood in the oceanographic and coastal sciences community as the average of all low tides over the time period defined as the national tidal datum epic. The District's expert witness, Dr. Cassondra Armstrong, testified that mean low water can be determined by using two documents prepared by the National Oceanographic and Atmospheric Administration (NOAA), i.e., the NOAA tide charts and glossary. The District's expert witnesses testified that "20% of the total river depth at mean low water" is the location of the data sonde at the Ft. Myers monitoring station that measures surface salinity. This is also the depth at which Vallisneria is located in the CRE. Since, the Proposed Rule language simply identifies the location of the existing data sonde at the Ft. Myers salinity monitoring station, the language is not vague. The preponderance of the evidence established that the Ft. Myers salinity monitoring station has two salinity data sondes, the one at 20 percent of the total river depth and the other at 80 percent. The data sonde at 20 percent of the total river depth was identified in the Proposed Rule for the following reasons. First, this is the depth where Vallisneria grows and is representative of the salinity exposure for Vallisneria. Second, it guarantees the data sonde is always submerged and able to record data. Third, it has the most comprehensive period of record of monitoring data available. As previously found, Vallisneria continues to be a particularly useful indicator of environmental conditions in the CRE. The location of Vallisneria habitat in the upper CRE and its negative response to increased salinity made it an excellent candidate as an ecological indicator for fresh water inflow. Because the preponderance of the evidence established that Vallisneria continues to be a particularly useful indicator of environmental conditions in the CRE, the choice of the Ft. Myers monitoring station is not arbitrary or capricious. Water Resource Functions vs. Environmental Values The District's MFL rule specifies that a water body's specific water resource functions addressed by an MFL are defined in the MFL technical support document. See Fla. Admin. Code R. 40E-8.021(31). The Final Technical Document identified the relevant water resource functions of the CRE as fish and wildlife habitats, estuarine resources, water supply, recreation, navigation, and flood control. The Petitioners and Intervenors argued that the environmental values listed in Florida Administrative Code Chapter 62-40, also known as the Water Resource Implementation Rule, were not adequately addressed in the Final Technical Document. A proposed rule challenge is not the proper forum to determine whether a proposed rule is consistent with the Water Resource Implementation Rule. Such a determination is within the exclusive jurisdiction of the Department of Environmental Protection under section 373.114(2), Florida Statutes. Consistency of the District's Proposed Rule with the Water Resource Implementation Rule of the Department of Environmental Protection is not a basis in this proceeding for a finding that the Proposed Rule is an invalid exercise of delegated legislative authority. Other Issues The Petitioners and Intervenors raised other issues during the hearing, although not specifically argued in their proposed final order. Since those issues were identified as disputed issues in the Joint Pre-hearing Stipulation, they are addressed below. 1. Elimination of Single-day Exceedance Criterion During the rulemaking process, Sanibel and SCCF sent the District a letter requesting justification for eliminating the single-day exceedance salinity criterion in the current rule. The District staff evaluated the available Caloosahatchee River MFL compliance record, dating back to when the MFL was adopted in September 2001. The District maintains a historical record of MFL monitoring data and reviewed it to determine if the single-day exceedance salinity criterion was exceeded before the 30-day moving average criterion. The compliance record showed five exceedance events of the single-day salinity criterion have occurred. However, the compliance record also showed that the 30- day moving average salinity criterion had already been exceeded before the five events occurred. In other words, the single-day criterion was never exceeded before the 30-day moving average criterion. Based on this evaluation, the District eliminated the single-day exceedance salinity criterion because it did not provide any additional resource protection. The District's decision was not arbitrary or capricious. 2. Not Using the Latest Model Evaluation of recommended MFL criteria and a recovery strategy for the CRE were greatly aided by integration of a suite of hydrologic and ecological models simulating (1) long-term fresh water inflow associated with varying management options, (2) the resulting salinity in the estuary, and (3) ecological response of indicator species that are sensitive to low fresh water inflows. Five models were specifically utilized, including three models for simulations of fresh water inflows to the CRE, a three-dimensional hydrodynamic salinity model, and a Vallisneria model. The three models simulating fresh water inflows included (1) the South Florida Water Management Model (SFWMM) to simulate fresh water discharges at S-79, which includes regional operations of Lake Okeechobee and incorporates Caloosahatchee River irrigation demands; (2) the C-43 Reservoir Model, which uses the SFWMM-simulated daily S-79 flow as input and simulates the management benefit of the C-43 Reservoir; and (3) the Watershed (WaSh) Model to simulate tidal tributary inflow from the Tidal Caloosahatchee Basin sub-watershed. The Caloosahatchee Hydrodynamic/Salinity Model was based on the Curvilinear Hydrodynamic Three-dimensional Model (CH3D) modeling framework with the functionality of simulating the spatial salinity structure across the entire estuary. The Vallisneria Model took the CH3D modeled salinity as input to simulate Vallisneria growth at critical locations in the estuary. The District did review the more recent Environmental Fluid Dynamic Code (EFDC) model developed for the Caloosahatchee Total Maximum Daily Load (TMDL) and being used by the Department of Environmental Protection. The District's expert witness, Dr. Detong Sun, testified that until 2014, the hydrodynamic part of the EFDC model was not working well. He testified that in 2016, the District still had concerns and suggested the use of the District's continuous monitoring data from seven locations across the CRE rather than grab samples for model calibration. Dr. Sun's opinion was that the EFDC model has improved in recent years, but was still behind the CH3D model in terms of performance. The District's expert witness, Dr. Amanda Kahn, testified that the water quality component of the EFDC model was not appropriate for this re-evaluation because the MFL is about water quantity, not water quality. The water quality component of the EFDC model addresses nutrient loadings, not minimum flows. Dr. Kahn also testified that in setting MFL criteria for the CRE, salinity was not a water quality component. Salinity was used as a water quantity component because it does not change with biological processes and can be a measure of how much fresh water is coming into the system. Based on a preponderance of the evidence, the District's decision not to use the EFDC model was not arbitrary or capricious. 3. Seasonality The Petitioners and Intervenors argued that the District is required to set an MFL that varies by season. For the CRE, the District set MFL criteria that protect the system from low flow that would occur in either the wet or dry season. As previously found, the re-evaluation studies focused on the dry season for two reasons: first, because it is well-established that the upstream migration of salt combined with reduced fresh water inflow alters the health and productivity of estuarine habitats; and second, because the dry seasons are the times when the current MFL criteria are likely to be exceeded or violated. The MFL statute states that "when appropriate, [MFLs] may be calculated to reflect seasonal variations." § 373.042(1)(b), Fla. Stat. The preponderance of the evidence showed that for the CRE, it was not necessary to set an MFL that varied by season. Improper Purpose The Petitioners, Sanibel, Cape Coral, and the Town, did not participate in this proceeding primarily to harass or to cause unnecessary delay or for frivolous purpose or to needlessly increase the cost of litigation. The Petitioners did not participate in this proceeding for an improper purpose. The Intervenors, Fort Myers, Estero, Bonita Springs, and CCP, did not participate in this proceeding primarily to harass or to cause unnecessary delay or for frivolous purpose or to needlessly increase the cost of litigation. The Intervenors did not participate in this proceeding for an improper purpose.
The Issue The issues are whether Respondent, Mosaic Fertilizer, LLC (Mosaic), has provided reasonable assurances that the proposed mining and reclamation of the South Fort Meade Mine in Hardee County can be conducted in a manner that comports with the applicable statutes and rules such that the proposed Environmental Resource Permit (ERP), Conceptual Reclamation Plan (CRP), variance from minimum standards for dissolved oxygen, and variance from littoral zone percentage provisions for the Project should be issued by Respondent, Department of Environmental Protection (Department).
Findings Of Fact Based upon all of the evidence, the following findings of fact are determined: Mosaic is a limited liability company authorized to do business in the State of Florida and is the applicant in these proceedings. It was formed by the merger of IMC Phosphates Company and Cargill, Inc., in 2004. Mosaic has applied for permits to mine, reclaim, and conduct associated activities on property in Hardee County, Florida, known as the South Fort Meade Hardee County tract. These activities are referred to in this Recommended Order as the "Project" or "site." The Department is a state agency with jurisdiction over ERP permitting under Part IV, Chapter 373, Florida Statutes, for phosphate mining activities with jurisdiction over phosphate mining reclamation under Part III, Chapter 378, Florida Statutes, and with jurisdiction over variances associated with phosphate mining under Section 403.201, Florida Statutes. Pursuant to that authority, the Department reviewed the ERP, CRP, DO Variance, and Zone Variance applications for the Project. Lee and Sarasota Counties are political subdivisions of the State of Florida. Both Counties have filed challenges to other mining applications and have been found to have standing in those cases. The site is located within the Greater Charlotte Harbor Basin, approximately sixty percent of which lies within Lee County. In this case, Lee County is concerned about the potential destruction of stream and wetlands in the mine area and the impact of mining and its effects on Charlotte Harbor and the Peace River. Sarasota County is a member of the Peace River Manasota Regional Water Supply Authority, and they jointly hold a water use permit, which authorizes them to withdraw water from the Peace River for potable supply. Sarasota County operates a water treatment plant on the Peace River downstream from the site and is concerned with potential impacts to water quality and wetlands. After three years of data collection and site analysis, on October 13, 2006, Mosaic filed applications with the Department's Bureau of Mine Reclamation for an ERP/Water Qualify Certification for the disturbance of approximately 7,756 acres of uplands, wetlands, and other surface waters within a 10,856– acre area which makes up the site; a CRP for the same parcel; and the associated Zone and DO Variances. Three sets of additional information were requested by the Department, and on January 31, 2008, the applications were deemed to be complete. On June 30, 2008, the Department issued Notices of Intent to issue the permits and grant the variances. The Project is located within the Peace River Basin. Little Charlie Creek, a tributary to the Peace River, enters the site in the northeast part of the tract and flows diagonally across the tract in a general southwest direction. The Project is located to the east of the Peace River, east of the town of Bowling Green, northeast of the City of Wauchula, and just south of the Polk-Hardee County Line in Hardee County, Florida. The Project site is twenty-nine miles from the Sarasota County line and fifty-three miles from the Lee County line. The Peace River eventually empties into Charlotte Harbor near Port Charlotte in Charlotte County. The Project consists of approximately eighty percent of upland land cover types, including large acreages converted to agricultural uses, such as cattle grazing, citrus production, and row crop production. The Project site consists primarily of citrus groves and pasture. Richard W. Cantrell, Deputy Director of Water Resources for the Department, has extensive experience and knowledge concerning agricultural parcels of this size in Central Florida. Based on his familiarity with the site, he indicated that all the streams have been impacted, the impacts to some areas of the site are severe, and the "site contains some of the most polluted streams with respect to sedimentation that I have ever seen." The other Mosaic and Department ecological experts familiar with the site concurred in that assessment, and the substantial data collections and application information support that assessment of the site. Of the 2,590.7 acres of wetlands on the property, approximately 751 acres of wetlands and other surface waters will be impacted. Of that 751, 91 are upland cut ditches or cattle ponds, 108 acres are other surface waters, and 274 acres are herbaceous wetlands. Virtually all of the native upland vegetation on the site has been destroyed due to the agricultural activities that have been undertaken on the site over time. Only remnant patches of native upland remain on the site. These comprise approximately nine percent of the site and are predominantly within the riparian corridors of Little Charlie Creek and the Peace River and are proposed to be preserved. The evidence established that the majority of the wetlands and streams proposed for impact are lower in quality; the higher quality wetlands are typically associated with the riparian stream corridors and are proposed to be preserved. The preserved uplands are primarily pasture but also include one hundred thirty-nine acres of upland forest. Twenty-nine distinct vegetative communities were mapped on the site during approximately two years of evaluation and assessment utilizing the Florida Land Use, Cover and Classification System (FLUCCS). There are numerous natural stream segments that were mapped on the parcel including the primary drainage systems on site, consisting of the Peace River, Little Charlie Creek, Lake Dale Branch, Parker Branch, and Max Branch. Substantial portions of the natural streams and their flood plains will be preserved; sixty-two natural stream segments totaling 58,769 linear feet will be mined. No sovereign submerged lands are proposed to be impacted by the activities. The Peace River to its ordinary high water line is sovereign submerged lands; however, no other streams on site are claimed as sovereign. Therefore, no authorization to utilize or impact sovereign submerged lands is required. The field work assessing the ecological condition of the site's wetlands, streams, and surface waters consisted of detailed quantitative and qualitative assessments using FLUCCS, the Wetland Rapid Assessment Procedure, and the Uniform Mitigation Assessment Methodology (UMAM) codified in Florida Administrative Code Rule Chapter 62-345. The level of assessment expended in evaluating the native upland and wetland habitats on the site was considerable and provided reasonable assurances that the current condition and relative value of the systems were adequately considered in the permitting process. From 2002 to 2004, Mosaic conducted intense ecological evaluations of the site, evaluating historical and aerial photography and other site documentation and conducting extensive examinations in the field, including vegetative, macroinvertebrate, and fish sampling and surveying, surface and ground water quality and quantity monitoring, wildlife observations, surveys and trapping, stream mapping and evaluation, soil analysis, and other efforts, both in areas to be mined and areas to be preserved, and in both uplands and in wetlands. The ecological assessments were primarily conducted prior to the hurricane events of 2004, although additional field work was conducted following the hurricanes. Mosaic and the Department's experts revisited the site in the fall of 2008 and agreed that the various ecological and biological assessments conducted prior to the hurricanes would tend to overstate the quality of the site as compared to its current condition. The hurricanes caused a significant amount of damage to the remaining forested habitats on the site. A formal wetland jurisdictional determination was issued and published without challenge in 2007 and therefore conclusively establishes the boundaries of the wetlands and surface waters on the site for permitting purposes. Seasonal surveys for wildlife on the site were conducted in 2003-2004 using the wildlife survey methodology prescribed and approved by the Florida Fish and Wildlife Conservation Commission. Specialized wildlife surveys and night-time surveys were also conducted. A total of 4,600 man hours of effort were expended to evaluate the presence of fish and wildlife, including threatened and endangered species, on the site. The entire site was surveyed, with over 2,600 miles of wildlife transects, to assess the presence of wildlife, and detailed information was recorded for all wildlife observations, including anecdotal observations by the ecologists performing the wetland assessments. Mosaic also engaged in an extensive effort to identify the natural stream channels proposed for impacts on the site. After discussion with the Department staff, Mosaic distinguished the natural streams in accordance with FLUCCS codes 511, 512, 513, and 514, as required by Florida Administrative Code Rule 62C-16.0051(4). Streams are a subset of the term "other surface waters" for ERP purposes. Although streams are defined in Section 373.019(18), Florida Statutes, as are other watercourses and surface waters, there is no operative use of, or reference to, streams in Part IV, Chapter 373, Florida Statutes, governing ERP permits. Also, there are no specific ERP mitigation requirements applicable to streams. Thus, the only specific regulatory use of the word "stream" occurs in the context of Florida Administrative Code Rule 62C-16.0051, and not the ERP rules. The Department and Mosaic established that the delineation of streams proposed for impact by mining on the site was sufficient and adequate for purposes of the CRP rules. In addition, Mr. Cantrell stated that, for purposes of the acre- for-acre, type-for-type (for wetlands) and linear foot (for streams) reclamation requirements in Florida Administrative Code Rule 62C-16.0051, the Department required Mosaic to delineate a stream as such until the point it enters or after it leaves a wetland area and to delineate the wetland polygon itself as a wetland, not a stream. This is true even if water continues to flow through the wetlands and reform as a stream at the other side. If the stream will not be impacted, then nothing in either the ERP or CRP rules requires its precise delineation, because the CRP rules apply only to reclamation of impacted areas. Thus, Lee County's assertion that "streams" has some special status by virtue of the definition in Section 373.019(18), Florida Statutes, has not been accepted. Mr. Cantrell further testified that the Department utilizes a substantially similar definition to delineate "streams" pursuant to Florida Administrative Code Rule 62C-16.0051(4), but as noted in Findings of Fact 44-46, subsection (5) of the rule requires restoration on a linear foot basis only of natural streams. Lee County contended that over 12,000 feet of natural streams were omitted or misidentified in the application. However, based upon the evidence presented, both historical and current, and applying the applicable regulations and statutes, this argument has been rejected. This contention was based on after-the-fact approximation of stream locations and lengths plotted from memory in a desktop analysis. Further, during his site visit to mark stream locations, Lee County's expert failed to use a handheld GPS device or maps. Therefore, the evidence submitted by Mosaic and the Department as to the location and length of the streams proposed for impact has been credited. Mr. Cantrell testified that even the best of the streams proposed for impact have been subjected to at least sixty years of agricultural disturbance and manipulation. For example, the system 22 series of stream segments will be impacted and replaced by the clay settling areas. While the witness characterized segment 22(o) as the most stable and least impacted of the streams to be mined, that segment is 376 feet long and located at the uppermost reach of the 22 systems. It is an extremely small percentage of the overall 12,000 plus feet of less stable and more severely impacted parts of system 22. Mosaic and the Department analyzed the origins and current condition of the streams to be impacted, most of which are less than three-to-four feet wide and one foot or less deep and flow only intermittently and seasonally. The ecological and hydrologic conditions of the site and its fish and wildlife populations and habitat values were assessed for purposes of the ERP and CRP regulatory criteria. Respondents' characterization of the functional value of the wetlands, streams, and surface waters is supported by a preponderance of the evidence. Lee and Sarasota Counties' assertion that the site wetlands and streams are in "good" condition and can be easily restored is not credited in light of the lack of empirical data to support this contention. The only way to recover the phosphate ore is through mining to remove the overburden layer and expose the phosphate matrix with a dragline. The first step prior to any land disturbance associated with phosphate mining is the installation of a "ditch and berm" system, which is recognized as a best management practice (BMP) by the Department and the United States Environmental Protection Agency. Installation of the ditch and berm system proceeds in phases to protect unmined wetlands and habitats from mining impacts as mining progresses; it is not constructed all at once. The ditch and berm remains in place around an individual mining unit until mining and reclamation have been completed and monitoring indicates the revegetation is sufficiently established such that no violations of water quality standards will occur upon re-connection to adjacent and downstream waters. It is then removed in accordance with the reclamation plan. The system serves a number of purposes described below. Berms are required to be constructed in accordance with specific design criteria. The height of the berm will be designed in accordance with rules specific to such structures to prevent water from overtopping the berm during a 25-year, 24- hour storm event, even if the ditch becomes blocked. Following installation of a ditch and berm system, bulldozers clear the mining area of vegetation. Up to three large electrically powered draglines operate generally in parallel rows to remove the overburden layer (the upper layer of sand and clay soil), which is approximately 23.6 feet thick on average, to expose the phosphate matrix, which is approximately 13-to-15 feet thick on average. The overburden is cast to the side in piles to be later reused in reclamation. The phosphate matrix is a mixture of sand, clay, and phosphate, which must be separated after mining. At the beneficiation plant, washing, screening, and flotation processes are used to separate the phosphate rock from the sand and clay. After washing and screening, the sand is pumped back to the mine cuts for use in reclamation, and the clay is pumped to clay settling areas (CSAs) in slurry form to decant. Both the transport of sand back to the mine areas for use in reclamation and the transport of clays to CSAs are considered "mining operations," not "reclamation." See Peace River/Manasota Regional Water Supply Authority, et al. v. IMC Phosphates Company, et al., DOAH Case No. 03-0791 (DOAH June 16, 2006; DEP July 31, 2006); Fla. Admin. Code R. 62C-16.0021(10) and (15). Thus, contrary to Lee County's allegation, the transportation of clays and sand is not a valid consideration in the financial responsibility required for mitigation. Through testimony and its materials balance tables, which are part of the application, Mosaic demonstrated that it has sufficient sand tailings and other waste materials to meet all of its reclamation requirements mine-wide, including both the Polk side and the Project site. However, while there is sufficient sand available to create the proposed reclamation topography and contours, the tables and testimony demonstrated a need, on a mine-wide basis, for lakes, as voids will remain otherwise. There will be only a very small pile of available sand remaining after all reclamation obligations on both the Polk side and the Project are met, an insufficient amount to eliminate the need for deep lakes as proposed. Mr. Myers, Mosaic's Vice-President of Mining, testified as to the three basic ways the waste materials generated by the beneficiation plant are disposed of on-site to facilitate reclamation. Sand tailings will be utilized in areas to be reclaimed as native habitats, wetlands, and streams. Clays will be disposed of in CSAs. However, based on the materials balance and logistical issues, the "land and lakes" reclamation method, which utilizes only the available overburden material remaining on-site after mining, will be used for the lake reclamation. This method allows sand tailings preferential use in reclamation of native habitats and use of shaped and contoured overburden in areas not proposed for wetland mitigation. Such is the case for the proposed reclaimed lakes. A CSA is an above-grade impoundment to hold clay slurry pumped from the beneficiation plant. This clay slurry is pumped into one side of a CSA in the form of muddy water. The clay settles to the bottom, and the clear water remains at the top. The clear water is drawn out from the opposite side of the impoundment, where it is recycled back to the beneficiation plant and mine for reuse. Over time, the clay consolidates and solidifies to form a solid soil, the surface area is drained, and the impoundment reclaimed. Three CSAs will be constructed on the northern portion of the site to hold the clay that cannot be stored in already- permitted CSAs in Polk County. The use of stage filling has allowed Mosaic to have additional usable space in its CSAs, minimizing the footprint of new CSAs in Hardee County. In addition, approximately fifty percent of the clay waste from the site will be disposed of at the Polk site to further minimize the clay disposal footprint and eliminate and reduce impacts. To evaluate the number of CSAs required, Mosaic asked Ardaman & Associates, a consulting firm, to examine different clay generation scenarios when predicting the CSAs required by mining and beneficiation. The life of mine waste disposal plan, most recently updated in September 2008, indicated that, in all but one scenario (the seventy percent clay containment scenario), all three CSAs would be required. However, Mosaic witness Garlanger established that all three CSAs in Hardee County would be necessary based on the best available information as to the amount of clays reasonably likely to be generated by mining; the seventy percent scenario is not likely. No evidence was presented to rebut that testimony. A diversion system was also voluntarily included for the CSAs by Mosaic. In the highly unlikely event of a dam failure, this system will re- direct any escaped water and/or clay materials to adjacent open mining cuts where they can be safely stored. The diversion system will be reclaimed when the CSAs are reclaimed. The evidence established that the ditch and berm system, CSAs, and diversionary structure are capable of being constructed and functioning as designed. The reclamation plan includes avoidance (no mining) of approximately 3,100 acres, or twenty-nine percent, of the site, including more than seventy-one percent of the total wetlands on-site. Of this, 2,100 acres will be placed in a perpetual conservation easement. There is a wide gamut of habitat types on the site that will be preserved and not mined, including both streams and wetlands. The most complex and least impacted habitats on the site have generally been included in the preserve area. The project includes disturbance of 751.3 acres of wetlands and other surface waters, which include non-wetland floodplains, cattle ponds, and upland-cut ditches, and mining of 58,769 linear feet of natural and modified natural streams. An additional 1,661 linear feet of stream channel will be disturbed but not mined for six temporary crossings for dragline/utility/ pipeline corridors. To mitigate for impacts to streams and wetlands under the ERP rules, Mosaic will create 641 acres of wetlands and other surface waters and 67,397 feet of stream channel and will also provide a conservation easement to the Department on 2,100 acres of unmined wetland and upland habitat associated with the major riparian systems. The conservation easement area will be permanently preserved and protected from secondary impacts. The UMAM rule is applied to ERP applications to measure the functional loss to wetlands and other surface waters proposed for impact and the functional gain associated with the proposed mitigation. Functional loss is compared to functional gain to determine whether sufficient mitigation has been offered that offsets the proposed impacts. The proposed preservation and wetland and surface water creation, along with certain upland enhancements, will provide more than enough UMAM mitigation "lift" (with 48 excess credits) to satisfy the ERP mitigation obligations and offset those wetland impacts that cannot be eliminated or reduced. The UMAM scores for the reclaimed areas are conservative, that is, using higher risk factors by assuming muck or other appropriate topsoil will not be available, and take into account the risk or difficulty associated with creation of a particular system, based on actual UMAM scores for existing reclaimed systems. Time lag, which is normally a factor considered in the UMAM mitigation equation, expressly does not apply to phosphate mines pursuant to Florida Administrative Code Rule 62-345.600. Thus, Lee County's attempt to argue that some greater amount of mitigation of streams is required to account for the time required to construct and reinstate flow and vegetation to the streams is not credited. Mr. Cantrell confirmed that "fat" was built into the foot-for-foot stream reclamation because 7,000 more feet of stream will be reclaimed beyond the amount impacted; some "stream" segments, specifically, stream segment 18(i), probably should not have been required to be reclaimed at all. Under Florida Administrative Code Rule 62C-16.0051, the 511 and 512 classified "natural" streams are the only streams warranting reclamation as streams under the Department's reclamation rules. Only natural streams currently existing immediately prior to mining are required to be reclaimed on a linear foot basis. Reclamation meeting the requirements of Florida Administrative Code Rule 62C-16.0051 is adequate mitigation under the ERP program in Part IV, Chapter 373, Florida Statutes, if it maintains or improves the functions of the biological systems currently existing onsite. See § 373.414(6)(b), Fla. Stat. Mr. Cantrell established that, under subsection (5) of the rule, the Department has discretion to request the applicant to restore wetlands and streams to a different type of system than existing on the site if "mitigating factors indicate that restoration of previously modified streams as a different type of lotic system would produce better results for the biological system and water quality." The evidence established that the rules do not require reclamation of artificially created water courses or remnant stream segments that lack the functions or landscape position one normally associates with natural streams. Instead, a better lotic system will be created that will improve existing functions and water quality, consistent with Section 373.414(6)(b), Florida Statutes, and the CRP rules. In addition to the wetlands and surface waters created to meet mitigation requirements, the Project will also reclaim uplands and will include what is known as "land and lakes" reclamation in the southeastern portion of the site. Utilizing shaped and contoured overburden, Mosaic will create four lakes totaling 180 acres and 43 acres of associated herbaceous littoral zone as CRP reclamation. This is based predominantly on the mine-wide materials balance showing a need for reclaimed lakes to account for mine voids on the Hardee site, the Polk site, or both. As a result, Mosaic has proposed 180 acres of reclaimed lakes in Hardee County in lieu of 500 acres of reclaimed lakes in Polk County, as this results in eliminating overall reclaimed lake acreage while satisfying Hardee County's request for deep lakes. In addition, timing and property logistics in that portion of the site make transport of tailings to the area from the beneficiation plant problematic. As the site is an extension of the existing South Fort Meade Mine in Polk County, Mosaic possesses permits that are not at issue in this proceeding, but are relevant to the project. Discharges from a mine recirculation system require a National Pollutant Discharge Elimination System (NPDES) permit. Discharges may only occur at specified discharge points upon verification that the discharge meets stringent water quality conditions in the permit, which are set to ensure that water quality standards in the receiving water are met at the point of discharge (without mixing) and that downstream water quality will be protected. A separate NPDES permit is not needed for the Project, because Mosaic already has a valid NPDES permit for the Polk County beneficiation facility, which will serve the site. Mosaic currently has a Water Use Industrial Permit (WUP) issued by the Southwest Florida Water Management District (SWFWMD). The WUP includes both the Polk County and Hardee County portions of the South Fort Meade mine and governs both dewatering of the mine area prior to mining and operation of water supply wells located in Polk County that will be used to provide supplemental water to the recirculation system. Mosaic's evidence demonstrated that the Project will not cause adverse water quantity impacts, consistent with Florida Administrative Code Rules 40D-4.301(1)(a), 40D-4.302(1), and 62C-16.0051 and related BOR provisions. Mosaic presented evidence concerning the potential long term impacts of the proposed project on surface and ground water quantities and flows both during active mining and reclamation activities, and after reclamation is complete. Extensive analyses were presented by Mosaic's expert witnesses and evaluated by the Department. Such analyses showed no adverse impacts to water quantity on the site, adjacent properties, or in the Peace River or Charlotte Harbor. The site was studied extensively by Mosaic, and detailed hydrology characteristics were assessed as part of the preparation of the ERP and CRP applications. Various surface water stations, topographic maps, and ground water sampling points were utilized and geologic information was developed by evaluation of various borings across the site. Mosaic witness Burleson, a professional engineer, further considered soil types, land use and vegetative cover, and existing site hydrologic factors such as culverts, bridges, and other such changes to the site by the prior owners. Mosaic's modeling expert, Dr. Mark Ross, considered these factors on a regional scale in his integrated modeling for the 360 square mile regional basin. In the region of Florida that encompasses the site, there are three major hydrogeologic layers that are significant to a hydrologic analysis: (1) the surficial aquifer system, comprised of the overburden (the top layer of soil) and the phosphate matrix; (2) the confining layer and intermediate aquifer system; and (3) the Floridan, or deep, aquifer system. The confining layer separates the surficial from the intermediate and Floridan aquifer systems. By understanding the surface and ground water systems and physical characteristics of the site, the Mosaic experts were able to apply appropriately-calibrated hydrologic models to assess (1) pre-mining and post-reclamation floodplains and storm event runoff comparisons; (2) base flows to reclaimed streams; (3) potential hydrologic impacts of stream crossings; (4) effectiveness of the perimeter "recharge ditches"; (5) hydroperiod of reclaimed wetlands; and (6) potential impacts of the project on flows in the Peace River. These models were used to predict with reasonable certainty the effect of the Project on water quantity on-site, off-site, and on a regional scale. As set forth below, the evidence established that water quantity and flows in adjacent unmined wetlands and streams will be maintained during mining activities as a result of the installation of the ditch and berm system as proposed. Before the ditch and berm system is constructed, Mosaic will refine the design of the system based on actual geological data and gradient information to assure the ditch and berm will function as proposed and modeled. The ditch and berm system is inspected regularly. Recharge wells within the recharge ditch are not required unless localized conditions dictate use of the wells. Contrary to Lee County's assertions, this site is distinguishable from the Ona mine site (which is also in Hardee County), and the depth of mining is far more shallow with relatively few areas mined to a depth of fifty feet, which was common at the Ona mine site. Additionally, Mosaic must install perimeter monitor wells at regular intervals adjacent to and downgradient of the ditch and berm system prior to mining. These wells are monitored prior to mining to establish a baseline and regularly throughout mining in accordance with the requirements of Mosaic's WUP and the ERP to assure that the water table in adjacent areas is not adversely affected by mining activities. The water in the ditch portion of the perimeter system must be maintained at levels sufficient to maintain groundwater levels in undisturbed areas. Maintaining water in the ditch at appropriate levels precludes drainage of groundwater from adjacent sites into open mine cuts. Mosaic witness Pekas, a professional engineer, conducted modeling to determine whether adequate base flow will be provided to protected streams and reclaimed streams during mining. Provided the ditch and berm system is operated properly, proper base flows will be maintained. All of the hydrologic experts agreed that proper operation of a ditch and berm system assures that adequate groundwater outflow, or base flow, is available to support adjacent streams and wetlands during mining. During active mining operations, the ditch and berm system collects rainfall on areas within the system. The ditch and berm system temporarily detains this rainfall, preventing the direct discharge of untreated, turbid runoff to adjacent wetlands and waters, but does not permanently retain the rainfall. The evidence demonstrated that most of the rainfall that falls on areas disturbed by mining and mining-related activities is detained by the perimeter ditches, routed to the mine recirculation system, and is subsequently discharged, when it meets water quality standards, through NPDES-permitted outfalls to waters of the state. This will serve to attenuate surface water flows, allowing surface water retained during storm events to be discharged during extreme low flow events, providing for less "flashiness" in the streams. Lee County's assertion that runoff will be permanently retained is not credited; the evidence clearly established that controlled releases of treated stormwater occur through the permitted NPDES outfalls. The evidence shows that Mosaic will re-connect mined and reclaimed areas at the mine in Polk County at a rate exceeding the rate at which the Project's mine areas will be diverted by the ditch and berm system. Thus, any potential downstream impact of the ditch and berm construction on the site will be offset and buffered beyond the safeguards incorporated in the project design. The evidence demonstrated that the proposed ditch and berm recharge and monitoring system described here is capable, based upon generally accepted engineering principles, of being effectively performed and functioning as proposed and will preclude any adverse impact on the surficial aquifer beneath the preserved areas and adjacent properties and on adjacent surface waters and wetlands. The Department will apply the relevant BOR criteria concerning water quantity impacts on a pre-mining/post- reclamation basis consistent with the application of these same criteria to other non-mining ERP applicants. In this case, the Department reviewed Mosaic's submittals, assessed the impacts, and determined no adverse impacts to water quantity would occur during mining. Mosaic submitted a detailed analysis of potential surface water quantity impacts that may occur after reclamation is complete. This analysis included evaluation of post- reclamation floodplains and storm event run-off compared to pre- mining patterns, and characteristics of reclaimed natural systems. Floodplains, run-off, and reclaimed natural systems were assessed in the manner described below. Mosaic modeled potential impacts of the project on surface water flow using existing site conditions to calibrate and verify the model. Mr. Pekas developed a water balance hydroperiod spreadsheet model calibrated using existing, on-site wetlands to evaluate the expected hydroperiods of various types of wetland systems proposed to be reclaimed at the site. The evidence shows that the Pekas spreadsheet model was an appropriate model for predicting hydroperiods for reclaimed wetlands. Appropriate ranges for the expected hydroperiods and other hydrological characteristics needed for the different types of wetland systems to be created in the post-reclamation landscape were established. In order to reflect natural conditions, the Department specifically requested that the targets for expected hydroperiods of reclaimed wetlands vary across the established range of the hydroperiod for the type of wetland at issue, and these target hydroperiods are summarized in Table E-6 to the draft ERP. Mosaic demonstrated and verified that the Pekas spreadsheet reasonably predicts the hydroperiods to be expected from a given design for a proposed reclaimed wetland. After mining, site-specific conditions such as hydraulic conductivity will be reassessed and final design parameters will be developed accordingly. Lee County's witness Jonas demonstrated the importance of hydraulic conductivity when she adjusted the value for wetland 2-1C (one of Mr. Pekas' verification wetlands) from 0.5 to 30, based on a value not from the Project site, but from an off-site reclamation project. Not surprisingly, she concluded that a conductivity of 30 would not provide hydrology to support the wetland functionality. Her analysis demonstrates the importance of requiring reclamation of subsurface hydrology not based on an off-property conductivity value, but on site- specific hydraulic conductivity information. In his own analysis, Mr. Pekas relied on actual soil borings on-site, and at wetland 2-1C the average hydraulic conductivity was 0.5, which when modeled, provided appropriate hydrology for that wetland. Furthermore, ERP Specific Condition 11 requires Mosaic to reclaim wetlands with functionally equivalent hydraulic conditions based on verified field information as to site- specific hydrologic properties existing after mining, and the wetlands will not be released until functioning as required. The preponderance of the evidence demonstrates that reclaimed wetland can be designed and built in a manner that will achieve the required hydroperiods for each wetland type proposed to be disturbed and reclaimed at the site, including the bay swamps. In addition, each of the wetlands must be individually evaluated immediately prior to construction to provide additional verification of site-specific hydrologic conditions to assess, re-model, and verify the final wetland designs prior to construction. Condition 11c of the draft ERP also requires Mosaic to mimic the existing hydraulic conductivity and gradients near streams to ensure that base flows will be present post-reclamation. All of this will ensure that reclaimed streams will be hydrologically supported, and wetlands with the target hydroperiods requested by the Department will be constructed. The contrary testimony of Lee County's hydrologists does not credibly rebut this evidence. In performing their calculations, they utilized unrealistic numbers. The claim of Lee and Sarasota Counties' experts that they lacked sufficient information to form an opinion as to the accuracy of the modeling is not sufficient to overcome the evidence submitted by Mosaic to meet this criterion. See, e.g., National Audubon Society, et al. v. South Florida Water Management District, et al., DOAH Case No. 06-4157, 2007 Fla. ENV LEXIS 164 at *21 (DOAH July 24, 2007, SFWMD Sept. 13, 2007). Mr. Burleson determined that the original drainage patterns of the site would be restored post-reclamation. Mosaic provided reasonable assurances that the proposed reclamation is capable of being constructed and functioning as proposed. The preponderance of the evidence demonstrated that the proposed mining and reclamation of the site will not cause adverse water quantity impacts post-reclamation, as addressed by Florida Administrative Code Rules 40D-4.301(1)(a) and (c), associated BOR provisions, and Florida Administrative Code Rule 62C-16.0051(8)(b). Mosaic presented evidence demonstrating reasonable assurances that the proposed project will not cause adverse flooding to on-site or off-site property, consistent with Florida Administrative Code Rules 40D-4.301(1)(b) and 62C- 16.0051(8) and associated BOR provisions. During mining, there is no reasonable likelihood that active mining and reclamation activities at the site will result in any increased flooding conditions upstream of, on, or downstream of the site. The ditch and berm system reduces direct surface water runoff from areas disturbed by mining operations during peak rainfall events. Subsequent NPDES discharges of water typically lag slightly behind the rainfall events. This lag during mining decreases peak discharges in adjacent streams while augmenting lower flows slightly, thereby attenuating peak flows. Mr. Burleson evaluated the pre-mining and post- reclamation peak flow analyses for the project site to determine whether the post-reclamation topography, soils, and vegetative cover would result in flooding, using the Interconnected Pond Routing program or "ICPR" model, an accepted model for stormwater modeling, as required by the BOR. Mosaic's evidence established that the Project will not adversely impact existing surface water storage and conveyance capabilities, consistent with Florida Administrative Code Rule 40D-4.301(1)(c) and related BOR provisions. Additionally, Mosaic proposes to preserve from mining the 100-year flood plain of Little Charlie Creek and the Peace River and most of the higher quality small tributaries on the site. The smaller streams to be mined will be restored in a way that maintains or improves pre-mining conditions and will not cause harmful or erosional flows or shoaling. The federal Hydrologic Engineering Center Reservoir Analysis System and the National Flood Frequency Program were used by Mr. Burleson to verify the floodplains are accurately mapped and also that there will not be an increase in flood risk in the post-reclamation condition. The preponderance of the evidence demonstrates reasonable assurances that the proposed mining and reclamation activities at the site will not result in adverse flooding impacts, consistent with Florida Administrative Code Rules 40D- 4.301, 40D-4.302(1)(a)3., and 62C-16.0051(8), and the BOR, including water quality standards in Chapter 4. The evidence presented by Dr. Ross established that the proposed mining and reclamation activities on the site will not adversely impact flows in the Peace River. No adverse effects of the Project will be observable at the Zolfo Springs United States Geological Survey (USGS) gauging station. A minimum flow for the Upper Peace River has been established pursuant to Section 372.042, Florida Statutes. A minimum low flow of 45 cfs from April to June (Upper Peace MFL) was established at Zolfo Springs by the SWFWMD; since the MFL has not been met since adoption, a recovery plan has been instituted. See Fla. Admin. Code R. 40D-8.041(7). Lee County asserts that the Project will violate the Upper Peace MFL and the recovery plan, arguing that a reduction in average annual flow, regardless of how infinitesimal, constitutes a violation of Florida Administrative Code Rule 40D-4.301(1)(g). This argument was refuted by Dr. Ross, who established that the project would increase flows during low flow periods. The Department concurred with, and the evidence supports, Dr. Ross' assessment that the project would not exacerbate the Upper Peace MFL or interfere with the recovery plan. Dr. Ross created a regional-scale integrated model utilizing public domain computer programs in an iterative fashion that coupled surface water and ground water to comprehensively evaluate the effects of the project on the flows in the Peace River post-reclamation. The regional approach included a full range of upstream and downstream influences on the site, not simply mining, that could affect the hydrologic evaluation of any impacts from the Project on the Peace River. The model domain included 360 square miles. To account for site-specific impacts in the model, Dr. Ross increased the refinement and discretization over the site. Thus, the model was capable of considering impacts from the site in its entirety within the region as measured at the Zolfo Springs USGS gauging station. Zolfo Springs is the first USGS gauging station directly downstream of the site and is the point of compliance for minimum flows adopted for the Upper Peace River system. The regional model predicted virtually no change in flows at the Zolfo Springs gauging station after the project as proposed is reclaimed, and that both the high and low flows observed at Zolfo Springs would be maintained post-reclamation. Dr. Ross concluded that there would not be any reduction of low flows at Zolfo Springs due to the Project. He further concluded that the Project will not impact or affect the recovery of minimum flows. Dr. Ross calculated the differences between the model- predicted high flows and low flows from the observed flows and found that the modeled high flows were slightly attenuated and the modeled low flows were slightly augmented at Zolfo Springs. The attenuation is consistent with the increased storage for water in the post-reclamation system. Consistent with Florida Administrative Code Rule Chapter 40D-8, the Department considered potential impacts to low flows as the determining factor in determining whether a minimum low flow requirement like the one set for the Upper Peace MFL will be met. It concluded that the project is consistent with the Upper Peace MFL and its recovery strategy. The recovery strategy discusses projects which, like the one proposed, would yield a long-term increase in low flow conditions by storing some peak flow volumes and releasing them in low flow conditions. The Department's interpretation of its ERP rules and BOR provisions regarding MFLs, as well as other governing rules, is reasonable and has been accepted. Lee County's experts based their MFL testimony on an inappropriate use of annual average flow information and improper interpretation of Mosaic's data. Further, they inappropriately attempted to reach conclusions by estimates and extrapolation, and the overall weight of the evidence supports Mosaic's evidence that mining and reclamation will not cause a violation of the Upper Peace MFL. Accordingly, Mosaic has provided reasonable assurances that the requirements of Florida Administrative Code Rule 40D- 4.301(1)(g) and associated BOR provisions have been satisfied. The ditch and berm system and other proposed BMPs, such as silt fences, at the site will provide water quality protection to adjacent undisturbed surface waters and wetlands during mining and reclamation activities. The actual construction of the ditch and berm and stream crossings will be conducted using BMPs to avoid adverse construction-related impacts. During mining, the ditch and berm system will preclude uncontrolled releases of turbid water to adjacent un-mined areas. The evidence established that the proposed Project will not cause a violation of water quality standards, either in the short-term or long-term. Dr. Durbin, an ecologist, evaluated water quality data from the existing South Fort Meade mine in Polk County and compared data from the 10-year period before the mine opened against the 10-year period after the mining began, finding water quality to be equivalent or better after mining began in Polk County. This allowed him to conclude that water quality on the site will not be adversely affected and, in light of existing agricultural activities, will be maintained or improved both during mining and post-reclamation; water quality in reclaimed systems will be sufficient to maintain designated uses of the systems. Dr. Durbin opined that the ERP contains detailed water quality monitoring requirements that, based on his long experience, are sufficient to establish a baseline, assess compliance, and detect significant trends. Sarasota County's witness has no experience in ERP or CRP permitting and his suggestion for far more frequent monitoring is not credited. No additional monitoring conditions or criteria are warranted. For the above reasons, Mosaic has demonstrated by a preponderance of the evidence that reasonable assurances that water quality standards will not be violated either during mining, while reclamation is underway, or post-reclamation. The evidence further established that accepted BMPs will be used during mining to protect the water quality of adjacent and downstream waters, and that these measures can be expected to be effective to prevent any violations of water quality standards. Dr. Durbin provided unrebutted evidence that water quality standards in waters of the state and downstream of the project will be met post-reclamation and existing water quality in the unmined and reclaimed wetlands and waters will be maintained or improved post-reclamation. Thus, no adverse water quality impacts to the Peace River or Charlotte Harbor will occur during mining or post-reclamation. Therefore, reasonable assurances have been given that the requirements of Sections 373.414(1) and 373.414(6)(b), Florida Statutes, Florida Administrative Code Rules 40D- 4.301(1)(e) and 62C-16.0051(7), and associated BOR provisions are satisfied as to water quality. There is a wide range of habitat types on the site that will be preserved and not mined, including both streams and wetlands. The most complex and least impacted habitats on the site have generally been included in the no-mine and preserved areas. Mosaic does not propose to mine all or even most of the jurisdictional wetland and surface waters. In fact, seventy-one percent will be avoided. When developing a mining plan, Mosaic considers how to eliminate or reduce proposed impacts to waters and wetlands. The evidence established that Mosaic and the Department engaged in a protracted elimination and reduction discussion throughout the review process associated with the site's ERP/CRP applications. BOR Section 3.2.1 emphasizes the effort required to assess project design modifications that may be warranted to eliminate and reduce impacts to ecological resources found on the site. This effort was undertaken with the Department as early as 2004 during the DRI pre-application conferences. The major project design modifications involved the preservation of the named stream channels, the 100-year floodplain of the Peace River and Little Charlie Creek, and the 25-year floodplain of the other named tributaries. These areas will be permanently preserved by a 2,100-acre conservation easement; 1,000 additional acres will remain unmined. Also, the project design was modified and developed to maximize resource protection by integrating the Polk and Hardee mining operations. The testimony established how the activities at the Hardee operation will be greatly facilitated by relying upon and using the beneficiation plant and infrastructure already in place and permitted at the Polk site. Almost fifty percent of the clays generated at the Hardee mine will be disposed of in the existing Polk County CSAs, thereby eliminating one CSA altogether and substantially reducing the footprint needed for CSAs on the site. Likewise, the Department established that mine-wide, approximately 320 acres of lakes were eliminated. The Department discussed further modifications to the mine plan with Mosaic throughout the lengthy review process, doing a wetland and stream-by-stream assessment of the functions provided and the reclamation capability to maintain or improve the functions of the biological systems present prior to mining. The balance was struck between temporary resource extraction, recognized by Florida law as inextricably related to wetland disturbance, and the significantly altered natural resource features found on the site. In light of the 3,100 acres already eliminated and reduced from impact consideration, the Department in its discretion did not find it necessary to pursue economic data or analysis on the "practicability" of any further reductions. The highly disturbed nature of the wetlands and other surface waters being impacted gave the Department a high degree of confidence that mitigation and reclamation of these areas would in fact maintain and improve the functions provided prior to mining. Specifically, Mosaic has eliminated impacts to stream systems to the greatest extent practicable. Based on a Department field evaluation in late August 2008, Mosaic was directed to revise the no-mine line in the 3A stream system to more accurately reflect the floodplain of the stream draining the two bay heads north of the stream. In October 2008, Mosaic made the revision to add approximately 2.7 acres to the no-mine area. The majority of the streams proposed for impact by mining cannot be avoided, given the location of the three CSAs that are required for clay disposal associated with mining. The evidence established that there is no other location for the three CSAs that will have a lesser ecological or public health, safety, or welfare impact than the proposed location, given the site topography. As noted above, the volume of clays to be disposed of on the site has been reduced by half, and three CSAs are still needed. The location was chosen to move the CSAs as far from the Peace River and Little Charlie Creek as possible in light of the site topography, and this location avoids all impacts to named stream systems. As set forth above, Mosaic has demonstrated by a preponderance of the evidence that the best and most complex habitats on the site have been preserved at the expense of a loss of a significant amount of phosphate reserves in the preserved areas. All significant stream systems have been avoided to the extent practicable in light of the necessary CSAs. Both Mosaic and Department witnesses testified that the proposed no-mine area was the result of design modifications to eliminate or reduce impacts to wetlands to the greatest extent practicable. This satisfies the requirements of applicable rules and Section 373.414(1)(b), Florida Statutes. Florida Administrative Code Rule 62C-16.0051(4) and (5) provides specific guidance on the classification and reclamation of natural streams. The Department provided direction to the applicant through the review process in the identification of natural streams and the design guidance manual to ensure foot-for-foot replacement and functional replacement or improvement. The permit reflects the 58,769 feet of the streams identified as numbers 511 and 512 to be impacted, and Mosaic has proposed approximately 65,700 feet of restored stream. Lee County's assertion that 2.3 miles of additional unmapped streams should be added to the reclamation obligation has been rejected. It is clear many of the areas alleged to be unmapped streams were depressions, low lying areas, or standing water within wetland areas more accurately identified as marshes or swamps. The fact that a discernible natural stream channel exists upstream and downstream of a wetland did not change the accuracy of acknowledging the different structure, form, and functional attributes that result in the wetland being distinct from the stream. Also, many of the alleged unmapped streams were located in the no-mine areas, and thus the alleged lack of delineation is of no consequence. Lee County's witness Erwin admittedly took no measurements of the alleged streams. Also, he provided no evidence that he or his staff delineated the alleged streams on- site. Rather, he reconstructed where they were located as a desktop exercise from memory, without any aids or tools used in the field. He then superimposed an alignment and put it on a GIS layer over an aerial photograph, resulting in an electronically generated approximation. The witness offered no physical evidence of depth, width, length, or bankfull width of stream function, but merely an assertion as to areas that appeared to have a bed or channel, even if dry, and the attributes or functions of a stream were immaterial or irrelevant to his analysis. No other independent witness attested to the alleged stream discrepancy, whereas both Mosaic's expert, Mr. Kiefer, a recognized fluvial geomorphologist, and the state's expert on jurisdictional delineations, Mr. Cantrell, who was the author of the applicable rules, expressly disagreed with these allegations. The testimony of Mosaic and the Department is found to be the most persuasive on this issue. Mosaic and the Department established that the proposed stream restoration plan is more than adequate to meet the requirements of Florida Administrative Code Rule 62C- 16.0051(5) and will ensure the reclaimed streams maintain or improve the biological function of the streams to be impacted. Dr. Janicki, a scientist who testified on behalf of Lee County, was critical of the stream restoration plan. However, he acknowledged he was not an expert in stream restoration and that part of his job was to "look at how we might improve . . . on some of those shortcomings in the [stream] restoration plan." Dr. Janicki incorrectly assumed the design curve numbers were based on regional curves from north and northwest Florida rather than site-specific measurements. He stated that the guidance document was generalized and lacking specificity, but Table 4 contained in the guidance document contains nineteen stream morphological parameters for all forty- nine of the stream segments to be reclaimed. Dr. Janicki has never designed nor implemented a stream restoration project, and he acknowledged that he is not a fluvial geomorphologist. Conversely, Mosaic witnesses Boote and Kiefer, both accepted in this area, stated unequivocally that the plan was sufficiently detailed and that a qualified restoration and construction contractor could implement the plan in the field with appropriate field adjustments and construction level refinements based on site conditions. The allegation that the plan does not comport with ERP and CRP requirements because it lacks sufficient specificity is not credited. First, the ERP rules do not contain stream-specific restoration criteria. Second, the CRP stream rules adopted in May 2006 have never been applied in a prior case, and in this case the Department determined in its discretion that the plan as proposed meets the stream reclamation requirements of the CRP rules. Similarly, the stream restoration plan was criticized because measurements from every single segment or reach of stream were not used to develop the post-mining stream. However, Mr. Boote and Mr. Kiefer confirmed that only the most stable and least impacted of the stream segments on site were used as templates for stream reclamation. None of the recognized stream experts suggested that erosive, unstable "F" and "G" classified stream segments should be replaced in that unstable form or used as the template for reclamation. By a preponderance of the evidence, Mosaic has established that the reclamation plan for the site will more than offset any adverse impacts to wetlands resulting from the mining activities, because it will maintain or improve water quality and the functions of biological systems present on the site today, as required by Sections 373.414(1) and 373.414(6)(b), Florida Statutes. The evidence established that applicable Class III water quality standards will not be violated and that the water in wetlands and surface waters on-site post-reclamation will maintain or improve and be sufficient to support fish and wildlife in accordance with Florida Administrative Code Rules 62C-16.0051 and 40D-4.301(1)(e) and relevant BOR provisions. The proposed mitigation will also restore a more appropriate or more natural hydrologic regime that will allow for a better propagation of fish and invertebrates in reclaimed systems. The reclamation plan will maintain the function of biological systems of wetlands to be mined on-site by replacing the wetlands to be impacted with wetlands of the same type and similar topography and hydrology in the post-reclamation landscape. In many cases, it will enhance the function of those systems by improving the landscape position of the wetlands, relocating them closer to the preserved Little Charlie Creek corridor, and moving cattle ponds and pasture away from the corridor. Likewise, the existing streams proposed for mining will be replaced with stream reaches modeled on streams that are comparable or better than the existing, unstable, and eroded streams. The Department has determined that Mosaic can reclaim the streams and wetlands to at least as good as or better than existing condition on the site. Mosaic has provided reasonable assurances that the proposed reclamation plan will maintain or improve the existing function of biological systems. Mosaic's reclamation plan for the site therefore satisfies the mitigation requirements of Part IV, Chapter 373, Florida Statutes, and the implementing regulations and the BOR, as applied to phosphate mining activities through Section 373.414(6)(b), Florida Statutes. Through the testimony of witnesses Durbin, Kiefer, and Simpson, as well as documentary evidence, Mosaic has established that the proposed project, as reclaimed, will cause no adverse impacts on the value of functions provided to fish and wildlife and will not adversely affect the conservation of fish and wildlife, including endangered or threatened species and their habitats, as required by Section 373.414(1)(a)2., Florida Statutes, Florida Administrative Code Rules 40D- 4.301(1)(d) and 40D-4.301(1)(a)2., as well as the associated BOR Section 3.2.2 provisions. Likewise, the CRP criteria pertaining to fish and wildlife will be met. See Fla. Admin. Code R. 62C- 16.0051(11). Mosaic's reclamation and site habitat management plan will maintain or improve the functions of the biological systems on the site with respect to fish and wildlife, including threatened and endangered species and their habitat. Mosaic witness Simpson provided unrebutted testimony that the proposed mining and reclamation will not have adverse impacts on wildlife populations or conservation of wildlife including threatened or endangered species and their habitats and that proposed reclamation would maintain or improve wildlife habitat values. The evidence shows that the mining and reclamation will not have adverse impacts on fish populations or conservation of fish. The fish habitat on the site will either be preserved or, if mined, will be replaced with in many cases superior habitat. There will be a net increase in suitable fish habitat post-reclamation. The wetland and stream fish habitats on the site will provide appropriate habitat for the fish and wildlife that can be expected to occur in the region. The sampling described above can be expected to reflect the majority, if not all, of the fish species reasonably expected to be present on the site. Mosaic witness Durbin further confirmed that the fish species collected on-site are consistent with similar sites in the immediate vicinity with similar agricultural usage with which he is familiar. In August and September 2008, verification of that fish sampling effort was performed by Dr. Durbin, an outside consulting firm (ECT), and the Department. They confirmed that the fish collection efforts reasonably reflect the native and exotic fish species that are likely to occupy the site. Through the testimony of Dr. Fraser, Lee County compared two streams on the Ona mine site with three stream segments on the Project site. However, the sole basis of the witness' comparison was recollections of field work he participated in over four years ago and photos taken at that time compared with photos taken at the new site. The witness conceded that he did not consider or compare sedimentation levels in the two stream systems. On the other hand, Department witness Cantrell established that the streams compared by Dr. Fraser were dissimilar. In fact, one of the streams Dr. Fraser held up as an apparent example of prime aquatic habitat was Stream 20C, which Mr. Cantrell demonstrated is nearly completely choked by sand and sedimentation. All of the streams proposed for impact are first or second order streams; most of them are intermittent, carrying flow only seasonally and therefore are only periodically occupied by fish and macroinvertebrate communities. The fish that do tend to utilize such systems in the wet season tend to be very small, usually less than one inch in size. The proposed preservation will preserve the best aquatic habitat on the property; the streams to be preserved are the main pathways and aquatic habitats utilized by fish. Mosaic witnesses Durbin, Keenan, and Kiefer all testified that the reclamation plan will restore better aquatic habitat for fish and other aquatic organisms than exists presently on site on a greater than acre- for-acre, type-for-type and linear foot basis. They further testified that the proposed reclamation will provide better aquatic habitat for fish and wildlife than currently provided, consistent with both ERP and CRP requirements. In addition, Dr. Fraser's suggestion that the fish sampling done on the site was insufficient and that the ERP should be modified to require fish collection as a success criterion for the reclaimed streams is not credited. This is because such a proposal is not a requirement of the ERP or CRP rules. Dr. Fraser's comparisons of reclaimed to unmined streams were inconsistent with his own anecdotal fish observations, and he testified as to the difficulty of ensuring adequate fish sampling or knowing where fish will be on any given day, given their mobility. Also, he provided no comparisons as to how the reclaimed streams sampled are constructed compared to the plan for the site and admitted he did not know how or when they were built. Dr. Fraser's discussion of fish in basins where mining has occurred was discredited by his own data showing that no reduction in the number of native fish species has occurred over time in those basins. Mosaic's reclamation plan, which consolidates the native upland and wetland habitats along the Little Charlie Creek corridor, will improve the fish and wildlife function of those systems and increase fish and wildlife abundance and diversity, as set forth above. There will be no adverse impacts to fish and wildlife and their habitat or to the conservation of fish and wildlife, including listed species, post-reclamation, because the fish and wildlife function of the tract will be maintained and in many cases improved by the reclamation and habitat management plans. This is particularly true in light of the existing condition, hydrologic connection, location, and fish and wildlife utilization of the wetlands and surface waters on site. Therefore, Mosaic has provided reasonable assurances that the requirements of Section 373.414(1)(a)2., Florida Statutes, Florida Administrative Code Rules 40D-4.301(1)(d) and 40D- 4.302(1)(a)2., and the relevant BOR provisions have been satisfied. Mosaic demonstrated that it has reclaimed wetlands, uplands, and streams consistent with the regulatory requirements and permit conditions in place at the time the area was reclaimed. Indeed, many of these reclaimed areas, whether or not under different ownership and control or whether released from further regulatory requirements, continue to demonstrate that they are successful and functioning ecosystems. The reclamation proposed for the site is state-of- the-art, reflecting the most recent evolution of reclamation techniques for uplands, wetlands and streams, with more planning and detail that should achieve the reclamation goals faster. Many older wetland projects were designed to meet a +/- 1-foot contour and were designed with older generations of equipment and survey techniques. However, Mosaic's third party contractor's bulldozers/tractors are now equipped with GPS and sensors to enable grade tolerances within two inches, allowing for much more accurate backfilling and wetland construction. Accordingly, Mosaic's newer wetlands contain both deep and shallow areas with gradation/zonation in between. Hydrologic regimes and hydroperiods can thus be effectively created to target and achieve more specific hydrologic conditions required by certain wetland systems such as seepage slopes and wet prairies. Nonetheless, the projected UMAM scores for the reclaimed systems take into account a higher risk factor for systems that historically were more difficult to reclaim. Mosaic has provided reasonable assurances of its ability to restore the hydrology and types of vegetation found on the site and of its ability to create ecosystems that will maintain or improve the function of the biological systems proposed for mining on the site. Mosaic has restored wetlands in a variety of configurations ranging from small round depressions of less than a few acres to large complex polygons in excess of two hundred acres, as well as wetlands with low slope gradients. For example, Mr. Kiefer described and depicted Mosaic's ability to restore a bay swamp at point 84(5) at the Fort Green Mine and at Alderman Bay. Lee and Sarasota Counties focused on bay swamps in particular, but failed to acknowledge that Mosaic will be reclaiming 98.5 acres of bay swamps while only impacting 62.1 acres. Mosaic demonstrated that herbaceous and forested wetlands can be and have been restored by Mosaic and its predecessors. Mosaic has demonstrated that it can restore the various zones and depths of freshwater marshes, including shrub marshes, from the deep emergent zone to the wet prairie fringe, and has demonstrated that these zones in reclaimed marshes are providing important and key wetland functions, such as water quality, food chain support, habitat, and other functions, similar to those functions provided by site marshes. This evidence was not effectively rebutted by Lee or Sarasota Counties. In fact, Sarasota County witness Lipstein acknowledged Mosaic is proposing to mitigate for all impacts. When asked if the proposed bay swamps will be successful or unsuccessful, she replied that she did not know and, "you will have to just wait and see if it reaches that success criteria." There have been different success criteria applied in Department permits over the years, and Mosaic has demonstrated the ability to meet those changing and more stringent criteria. In the past, stream restoration was accomplished relatively simply by contouring the stream valley and floodplain to support wetland vegetation, then allowing a flow channel to self-organize. While this technique has resulted in successful streams that met Department permit criteria, it can take many years to occur. For example, Dogleg Branch (which is located on the site of another mining operation) took almost twenty years to achieve success. Mosaic has previously developed successful stream restoration projects which have been documented to provide flow regimes similar to that of natural flatwoods streams, with in- stream aquatic habitat diversity similar to or better than the stream segments proposed for mining at the site and which met reclamation criteria. Mosaic witness Kiefer demonstrated this with evidence of the functions that various reclaimed streams provided. He also showed that, in newer stream restoration projects, like Maron Run, certain functions and form, such as habitat availability, bank stability, meander, and pool-riffle sequence, are developing rapidly. Also, Department witness Rivera testified to Mosaic's commitment to achieving stream success in its efforts to retrofit certain of these earlier reclaimed streams to achieve greater function and habitat diversity. Using an average sinuosity of 1.35, over 65,700 linear feet of streams will be created as part of the mitigation plan. The foot-for-foot requirement for the reclaimed streams will be exceeded by 7,000 feet. Mosaic's mitigation proposal incorporates state-of- the-art stream restoration techniques and the post-reclamation topography to be used as guidance for the final construction plans. The guidance is based on extensive data collected from twenty-one cross sections of reference reaches within the project area, including measurements for channel dimensions, sinuosity, bankfull, and entrenchment ratios. Snags, debris, and other woody material will be placed at appropriate intervals within the channel to provide in-stream habitat and aid in-channel stabilization and development. Restored streams will have primarily forested riparian zones. Trees will be planted using techniques that will assist rapid canopy closure and aid in rapid bank stabilization. Biodegradable erosion control blankets will be used to control erosion. The streams will be designed such that the stream morphology fits within the Rosgen Stream Classification System (Rosgen) described in the reference reaches. To create a design template, Mosaic's experts carefully measured the important geomorphic characteristics of the stream segments to be disturbed. The plan incorporates, among other factors, design specifications for meander patterns, longitudinal valley and bed slopes, bank slopes, cross-sectional area, widths, depths, large woody debris, pools, riffles, bends, and sediment composition. It is the second known low-order stream creation plan in Florida to provide this level of detail. The stream plan represents an overall improvement upon the existing conditions at the site, as Mosaic is generally only mining small, shallow, intermittent stream segments of significantly lower ecological value and will create streams that are less erosive and will have greater in-stream habitat diversity and availability than the segments to be mined. Accordingly, the reclaimed streams segments will at least maintain and in many cases improve the ecological functions served by the existing segments. Special emphasis has been placed on assuring that post-reclamation soils are a suitable growing medium for the proposed reclaimed habitat. Soils will be used to closely mimic the native Florida soils profile. Mosaic witness Schuster established that proposed reclaimed soil conditions do not pose limitations on Mosaic's ability to create upland and wetland ecosystems. The soil reclamation plan uses parent materials available after mining in a sequence similar to the textural or horizon sequence in soils present at the site before mining. This soil profile will have a created topsoil layer as a suitable growing medium and subsurface layers whose thicknesses can be adjusted to achieve the drainage class, that is, hydraulic conductivity or permeability, that is needed to support the post-reclamation hydrology. The overburden used to form the lower part of the reclaimed soil sequence is native Florida soil and underlying geologic material. The overburden is excavated so that the matrix can be mined, but then the material is put back in the mined areas in a sequence that resembles native soil horizons. Where available, the top layer of the soil sequence will be a direct transfer of muck/topsoil pursuant to the permit conditions. Where donor topsoil is not available, other appropriate materials can be used if approved by the Department. Possible methods may include establishment of cover crops, green manuring, mulching, and sod placement, all of which have been demonstrated to provide organic matter and a suitable growing medium for reclaimed wetlands and will facilitate success of the wetlands. These methods comport with the requirements of Florida Administrative Code Rule 62C-16.0051(3). For reclamation, Mosaic will use various thicknesses of materials including sand tailings and overburden, depending on the area to be reclaimed and the needed hydraulic conductivity as dictated by the modeling that is required. Sand tailings will be utilized in native habitats. Sand tailings have a much higher rate of hydraulic conductivity than overburden, which is low, but not impermeable. Reclaimed soils behave similarly to native soils. On site development of soil morphology at reclaimed sites has occurred, including organic matter accumulation in the topsoil formation of redox concentrations, and other components of soil structure, which evidence that the same natural processes are present in both reclaimed and native soils. Lee County's witnesses incorrectly assumed an overburden cap that will not be present. Mosaic has provided appropriate cost estimates for financial assurances of reclamation and has satisfied the BOR requirements of providing third-party estimates and draft financial assurance documentation. The first three years of mitigation at one hundred ten percent is $3,957,356.00. This amount is determined to be sufficient. Lee and Sarasota Counties' witnesses could provide no contrary cost estimates of actual comparable large-scale projects. The proffered costs of Lee County witness Erwin were rejected in another mining case (the Ona case), they ignore the definitions of "waste" and "mining operations," and they assume mitigation requirements not found in the BOR. The evidence supports a finding that all adverse impacts, including any secondary impacts, associated with the Project will be temporary and will be offset by the proposed reclamation. All of the proposed impacts from the Project will occur within the Peace River Basin, and Mosaic's proposed mitigation will all occur within the Peace River Basin as well. Therefore, the cumulative impacts review requirements of Section 373.414(8)(a), Florida Statutes, and Florida Administrative Code Rule 40D-4.302(1)(b) are satisfied. The BMPs put into place will prevent adverse secondary impacts from occurring during mining, and no adverse secondary impacts are expected from the project post- reclamation. No secondary impacts to listed wildlife are reasonably expected to occur, based on the buffers and on the post-reclamation habitat that will exist. In summary, Mosaic has demonstrated by a preponderance of the evidence that the proposed project meets the permitting criteria of Florida Administrative Code Rule 40D-4.301 and associated BOR provisions. Florida Administrative Code Rule 40D-4.302(1)(a) requires reasonable assurances the proposed activities "will not be contrary to the public interest" as determined by balancing seven factors. See also § 373.414(1), Fla. Stat. For the reasons set forth below, the preponderance of evidence supports a finding that the public interest factors set forth in the statute and rule weigh in favor of issuing the permit. The Florida Legislature has recognized that phosphate mining "is important to the continued economic well-being of the state and to the needs of society." See § 378.202(1), Fla. Stat. Mosaic has demonstrated by a preponderance of evidence that both the public and the environment will benefit from the project as described above. Mining of the site will also result in a more general benefit to the public, including local residents. It is estimated that mining of the site will result in fifty million tons of recoverable phosphate rock reserves, which will be used to make fertilizer. Mosaic employs 272 people at its South Fort Meade facility and spends approximately $75,000.00 per employee per year for direct wages, benefits, and compensation. In addition, it has been estimated there are four to five persons employed in support industries for each direct Mosaic employee, considering contractors, vendors, and suppliers. The site project is expected to generate up to $23 million in severance taxes, tangible taxes, property taxes, and other benefits to Hardee County over the life of the mine. The evidence shows that the proposed activities will not cause adverse impacts to the public health, safety, or welfare or to the property of others. Fla. Admin. Code R. 40D- 302(1)(a)1. Witness Burleson established that the water quantity criteria in BOR Chapter 4 have been satisfied and that no flooding problems will occur. No environmental hazards or public health and safety issues have been identified. Section 373.414(1)(a)1., Florida Statutes, Florida Administrative Code Rule 40D-4.302(1)(a)1., and BOR Section 3.2.3.1 have accordingly been satisfied. The evidence established that the proposed mining and reclamation will not cause adverse impacts to the conservation of fish and wildlife or their habitat, including endangered or threatened species, satisfying Florida Administrative Code Rule 40D-4.302(1)(a)2. and BOR Sections 3.2.2, 3.2.2.3, and 3.2.3.2. The evidence shows that the proposed activities will not cause adverse impacts to navigation or flow and will not cause harmful erosion or shoaling. Fla. Admin. Code R. 40D- 4.302(1)(a)3. The evidence shows that the proposed activities will not cause adverse impacts to fishing or recreation or marine productivity, and the lakes will enhance fishing and recreation. Fla. Admin. Code R. 40D-4.302(1)(a)4. As a matter of law, Section 378.202(1), Florida Statutes, provides that phosphate mining is a temporary activity. Fla. Admin. Code R. 40D-4.302(1)(a)5. The parties have stipulated that there will be no adverse impacts on historical or archaeological resources. Fla. Admin. Code R. 40D-4.302(1)(a)6. The evidence shows that the current condition and relative value of functions of the site landscape have been significantly affected over time by agricultural activities, causing alteration of natural streams and wetlands and low fish and wildlife utilization. A preponderance of the evidence established that these negative impacts will be ameliorated by the proposed reclamation. Fla. Admin. Code R. 40D-4.302(1)(a)7. In light of the above, Mosaic has provided reasonable assurances that Section 373.414(1)(a), Florida Statutes, Florida Administrative Code Rule 40D-4.302(1)(a), and associated BOR requirements for the public interest test have been satisfied, and those criteria weigh in favor of issuing the permit. Section 373.414(6)(b), Florida Statutes, establishes the appropriate mitigation for wetland and surface water impacts associated with phosphate mines as follows: "Wetlands reclamation activities for phosphate and heavy minerals mining undertaken pursuant to chapter 378 shall be considered appropriate mitigation for this part if they maintain or improve the water quality and the function of the biological systems present at the site prior to the commencement of mining activities." Part III of Chapter 378, Florida Statutes, addresses phosphate land reclamation, and the Department has adopted specific regulations pursuant to this part, which are found in Florida Administrative Code Rule 62C-16.0051. For the reasons set forth below, Mosaic has demonstrated by a preponderance of the evidence that the reclamation and restoration standards in Florida Administrative Code Rule 62C-16.0051 have been met. The parties stipulated the Project will meet the safety standards in subsection (1) of the rule. Any temporary structures will be removed following mining and the area then reclaimed. Appropriate BMPs will also be installed. The Project will meet the backfilling and contouring requirements of subsection (2). Specifically, the evidence shows that the area will be backfilled and contoured to achieve the desired landforms; slopes will be no steeper than a 4:1 ratio; bank stabilization techniques will be used; and post- reclamation contouring and topography will help ensure that the reclamation plan and hydrologic response is successful. The reclamation will meet the requirement in subsection (3) that Mosaic use good quality topsoil when available and other suitable growing media to achieve the planned vegetative communities. The Project will meet the acre-for-acre requirement for wetlands because more acres of wetlands and surface waters are being proposed to be restored than will be impacted. The Department uses FLUCCS Category II to determine whether the minimum type-for-type requirement is met. Thus, the type-for-type requirement is met by looking at the forested wetlands acreage overall and the herbaceous wetlands acreage overall. Subsection (4) has been satisfied by the proposed CRP. While the herbaceous wetland fringe of the lakes is included in the acre-for-acre, type-for-type calculation, the open waters of the lake are not. The Project will meet the type-for-type requirement in the rule because, category-by- category, type-for-type, more than a 1:1 ratio of forested and herbaceous wetlands are being restored. As noted above, the wetlands and streams were mapped during the application process in accordance with the directives of the Department and the requirements of subsection (4). Where wetlands are directly associated with or adjacent to streams, restoration of both is integrated and included in the restoration plan. Non-wetland and wetland floodplains will be restored as directed by the Department in accordance with this rule. No natural lakes or ponds exist on site, thus the portion of this rule related to natural lakes does not apply. All natural streams proposed for impact will be restored foot-for-foot based on Rosgen Level II. More stream linear feet (65,700 feet) are being replaced than are being mined (58,769 feet). Therefore, the requirements of subsection (5) have been met. Subsection (6) has been satisfied after accounting for the Littoral Zone Variance described below authorized by Florida Administrative Code Rule 62C-16.0051(13). The design of the reclaimed wetlands and lakes will maximize beneficial drainage, provide fish and wildlife habitat, maintain downstream water quality, and incorporate a variety of vegetation and hydraulic zones. Greenbelts of vegetation are incorporated. Subsection (7) has been satisfied. There will be no water quality concerns either during mining or post-reclamation with the reclaimed streams, lakes, wetlands or other surface waters. Subsection (8) has been met; the Project is not expected to cause flooding, and the original drainage pattern will be restored to the extent possible. Subsection (9) has been satisfied with respect to waste disposal. Areas used for clay settling will be minimized, and only three CSAs are proposed for the site, as fifty percent of the clays generated at the site will be disposed of in previously-permitted CSAs in Polk County. Backfilling of mine cuts is the highest priority use for the site's sand tailings. No tailings will be sold. The evidence showed that sand tailings will not be permanently stored above natural grade, although temporary stock piles are authorized to facilitate reclamation. Reclamation of CSAs will occur as expeditiously as possible. Solid waste was not an issue in this proceeding. The revegetation proposed for the Project will succeed to achieve permanent revegetation and meets the requirements of subsection (10). Mosaic has submitted a plan for revegetation that lists species by species what will be replaced through planting or seeding into each of the different types of wetlands. The revegetation plan and planting tables provide clear guidance to the entire reclamation plan and will minimize erosion, conceal the effects of mining, and recognize the requirements for fish and wildlife habitat. Upland cover and forested upland requirements in the rule will be met under the CRP; the appropriate forested densities are set forth in the CRP and can reasonably be expected to be established within one year. Likewise, the wetland vegetative cover requirements in the CRP meet the rule requirements and can be easily met. As set forth above, the wetlands to be created are of the types Mosaic has successfully recreated in the past, and advances in reclamation and maintenance techniques will further ensure the vegetation plan is successfully implemented. The vegetative plans, including the stream plan, provide appropriate habitat for fish and wildlife. The best available technologies will be used to restore and revegetate wetlands. Furthermore, the vegetation plan meets and exceeds the requirements for the use of indigenous species. Native plants and grasses will be used in all native habitats. As required by subsection (11), measures have been identified and incorporated into the CRP to offset fish and wildlife values lost as a result of mining operations. Special programs to restore and/or reclaim particular habitats, especially for endangered and threatened species have been identified. A Site Habitat Management Plan has been incorporated to prevent adverse impacts to threatened and endangered species, and the proposed conservation easement and reclamation plan will protect and restore currently impaired habitat to a better condition. Specifically, Dr. Durbin testified with respect to the CRP requirements for aquatic species, including fish and macroinvertebrates; the best fish and wildlife habitat onsite will be preserved. Mr. Simpson testified regarding habitat preservation and reclamation activities, the proposed wildlife management plans, and the proposed enhancements to habitat that will benefit wildlife, including listed wildlife. Mosaic has sufficiently addressed the requirements of subsection (11) of the rule in the CRP. Subsection (12) has been satisfied. The proposed mining and reclamation schedule in the application documents comports with the rule requirements by including time schedules for mining, waste disposal, contouring, and revegetation, and the completion dates for such activities comport with the rules. Mosaic has proposed, and the DEP has indicated an intent to issue, the Littoral Zone Variance as an experimental technique to improve the quality of the reclaimed lakes pursuant to this subsection and Section 378.212(1)(e), Florida Statutes. Given the depth of the proposed reclamation lakes, Mosaic applied for, and the Department has proposed to grant, a variance from the water quality standard for DO in the lower portions of the lakes. The DO Variance from Florida Administrative Code Rule 62-302.530(31) is being sought pursuant to Sections 373.414(6)(a), 373.414(17), and 403.201(1)(a), Florida Statutes, which provide the minimum standards for DO levels in surface waters. Class III freshwater water quality standards apply to those portions of the site that constitute surface waters as defined by Florida law. For at least those reclaimed lakes that will connect offsite to downstream waters or wetlands (Lakes 1, 3, and 4), there is no dispute that Class III water quality standards would apply. The minimum water quality standard for DO in freshwater systems is 5.0 milligrams per Litre (mg/L). The evidence demonstrated that alternatives to the lakes in terms of both size and location were considered. The Department considered the proposed lakes as part of the elimination and reduction of overall wetland impacts on both South Fort Meade Polk and Hardee. On balance, it is a preferable alternative to use the available sand resulting from mining of the Hardee County portion of the South Fort Meade mine to eliminate lakes and create additional wetlands on the Polk County portion of the mine rather than utilize that sand to eliminate all lakes on the Hardee County portion of the site. This is especially true given the desire of Hardee County for recreational lakes and the Department's preference to reduce the overall acreage of the reclaimed lakes at the South Fort Meade mine. It is not feasible to make the lakes shallower given the available materials. There is no practicable means known or available for increasing DO in the deep pockets of lakes of the proposed depths that would not have a potential negative effect. This fact has been established and recognized by the Florida Legislature in Section 373.414(6)(a), Florida Statutes, which provides that the deep pits left by mining operations may not meet the DO criteria below the surficial layers of the lakes. The Legislature has further provided that a variance from the DO standard can be issued where deep lakes must be left as part of the reclamation plan. Id. The evidence established that lower DO levels may at times occur in the deep pockets of some of the reclaimed lakes to the same extent and effect as those lower levels occur in natural lakes of similar depths. This effect will occur only in the hypolimnion, or lower levels, of the lakes in the hotter summer months. The evidence likewise established that it is very unlikely that DO levels below 1.0 mg/L will occur at any time in any of the proposed reclaimed lakes. Provided the DO levels do not drop below 1.0 mg/L for any extended period of time, the only expected effect of the occasional seasonal reduction in DO in the lowest level of the reclaimed lakes will be to temporarily exclude fish from those lower portions of the lake during the summer months, which is also true of natural deep lakes. The evidence established that reclaimed lakes function well and provide habitat for fish and wildlife. Water quality standards will be met in all of the lakes other than occasional seasonal DO violations in the lower portions of the deepest lake. All water quality standards, including DO, will be met at all lake outlets and discharge points. All other applicable regulatory criteria will be met in the reclaimed lakes. Dissolved oxygen levels in the upper layers of the lakes are expected and required to meet the minimum DO criteria in Florida Administrative Code Rule 62- 302.530 and will be adequate to support healthy fish populations. The evidence showed no downstream impacts will occur due to the DO Variance for the lakes. The evidence showed reclaimed lakes support healthy fish and macroinvertebrate communities and provide recreational fishing opportunities. Even older lakes, such as the Tenoroc lakes (located in an old mining area in Polk County), provide substantial recreational fishing and wildlife utilization opportunities. This testimony was not rebutted. The evidence offered by Lee and Sarasota Counties as a means to increase DO levels in the reclaimed lakes actually demonstrated that artificially attempting aeration of a deeper lake can have negative environmental effects. Therefore, the testimony of witnesses Janicki and Merriam has not been credited. By a preponderance of the evidence, Mosaic proved entitlement to the DO Variance for the lakes pursuant to Sections 373.414(6)(a) and 403.201(1)(a), Florida Statutes. Given the location of the reclaimed lakes and as a means of experimenting with different reclamation planting techniques to create a variety of shorelines, Mosaic also applied for, and the Department has proposed to grant, a variance from the reclamation requirements in Florida Administrative Code Rule 62C-16.0051 pertaining to the planting of littoral shelves or zones around reclaimed lakes. The Littoral Zone Variance is being sought under Section 378.212(1)(e), Florida Statutes, from Florida Administrative Code Rule 62C-16.0051(6)(a) and (b), which provides minimum water zones for emergent and submerged vegetation, known as the littoral zones of the lakes. Subsection (6) of the rule provides for a twenty-five percent high-water zone of water fluctuation to encourage emergent and transition zone vegetation, and that a twenty percent low water zone between the annual low water line and six feet below the annual low water line to provide fish bedding areas and submerged vegetation zones. These vegetative zones are collectively known as the littoral zone of a lake. Traditionally, these percentages have been met in reclaimed lakes by sloping and creation of a uniform fringe of herbaceous wetland vegetation completely encircling the lake; however, such uniform fringes are not typical around natural lakes, which vary in composition and width. Rather than create a uniform band of vegetation around the lakes, Mosaic has proposed to reclaim the littoral zones around the reclaimed lakes by concentrating them in several broad, shallow areas, including the outlets of the lakes where such outlets occur (Lakes 1, 3 and 4). Of the proposed lakes, one will meet the littoral zone requirement, two will have over twenty percent of the total area in littoral zone, and the remaining lake will have a littoral zone of just under fourteen percent of the total area. The littoral zones will be reclaimed by constructing broad shelves of differing depths and planting the shelves with herbaceous wetland plant species. This design provides the environmental benefit of herbaceous vegetation at the outlet to provide increased filtration of nutrients or sediments of any water overflowing from the lakes during other high water events. This increases environmental benefits at the outlet of the lakes and has the potential to improve water quality downstream. Further, the proposed clustering of the littoral zones in several broad shallow shelves, rather than creation of a thin fringe around the lakes as is customary, will benefit wildlife and fish by creating a more extensive wetland ecosystem in lieu of the monoculture typically created by the thin littoral fringe. The proposed littoral zone clustering also creates more useable shoreline for boating, fishing, and recreational activities in the areas where the littoral zones are not clustered, with the added benefit of tending to separate the wildlife usage in the littoral zone clusters from the human usage in the upland forested areas of the shoreline where minimal littoral zones are planned. This is an experimental technique that advances reclamation methods by balancing habitat, water quality, and recreational considerations. Mosaic has demonstrated that the Littoral Zone Variance comports with Section 378.212(1)(e), Florida Statutes, and may be issued.
Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the Department of Environmental Protection enter a final order granting Mosaic's applications for the requested permits and variances. DONE AND ENTERED this 18th day of December, 2008, in Tallahassee, Leon County, Florida. S DONALD R. ALEXANDER Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 18th day of December, 2008.
The Issue The central issue in this case is whether the application for a surface water management permit (permit no. 4-009-0077AM) filed by the Respondent, David A. Smith (Applicant), should be approved.
Findings Of Fact Based upon the prehearing stipulations of the parties, the testimony of the witnesses, and the documentary evidence received at the hearing, the following findings of fact are made: The Applicant is the owner of the subject property. The Applicant filed an application for a permit to construct a stormwater management system which was proposed to serve a residential and golf course development to be known as Sabal Hammocks. The site of the proposed project is approximately 720 acres in size and is located in township 24 south, sections 28, 29, 30, 32, 33, and 34, range 35 east, Brevard County, Florida. The entire project site for the Sabal Hammocks development is located within the boundaries of the St. Johns River Water Management District. To the west of the project site is an 140 acre public park that treats its own stormwater and releases pre-treated stormwater during some storm events into the canals on the Sabal Hammocks site. The Applicant's site is located adjacent to Lake Poinsett and prior uses of the land have included cattle grazing and the cultivation of rye and oats. The Applicant filed his application for the stormwater management permit (permit NO. 4-009-0077AM) on December 22, 1989. That application was deemed complete by the District on June 19, 1990. The District issued a notice of its intended action to approve the permit application on June 28, 1990. Save timely filed a petition challenging the proposed action. By law the District is the appropriate agency charged with the responsibility of reviewing applications for stormwater management permits within the subject area. Save is an association of individual persons and representatives from groups who utilize the waters of Lake Poinsett and its surrounding areas for recreational and business purposes. The receiving waters for stormwater discharge from the proposed Sabal Hammocks development will be Lake Poinsett. That water body is classified as Class III waters. Currently, a dike system exists along the southern boundary of the subject property. That dike system separates the internal grazing lands of the parcel from the lower marsh and flooded areas external to the dike. A series of ditches cross the parcel to drain the interior areas. Two agricultural discharge pumps are currently in use at the site. The operation of those pumps has been authorized pursuant to a consent order approved by the District's governing board on December 13, 1990. The dike system on the subject site has been in place since the 1970s. The original construction specifications of the dike are unknown. Sometime in the 1980s, several openings or breaches were cut in the dike system. Those breaches were opened pursuant to permits issued by the District and the Department of Environmental Regulation (DER) . The breaches were cut to a sufficient width and depth to allow boats to navigate through to interior areas of the subject property during those times when the water levels outside the dike would allow such entrance. The breaches were not cut to ground level and the original dike remained intact and uncompromised by the breaches. That is, the dike has not failed to impede water movement and the integrity of the dike was not weakened by the breaches. The original outline, dimension of the dike, remained visible despite the breaches. In 1986, the Applicant requested permission from the District staff in order to close or restore the dike breaches. At that time, the District staff advised David Smith that a permit would not be required to restore the dike since such improvements would be considered a maintenance exemption. Subsequently, and in reliance upon the representations made by the District's director,, the Applicant closed the breaches and restored the continuity of the dike system of the subject property. The Applicant's work to close the breaches was performed in an open manner, would have been visible to persons using the adjacent marsh or water areas for recreational purposes, and was completed at least one year prior to the application being filed in this case. Neither the District nor DER has asserted that the work to complete the original dike in the 1970s, nor the breaches completed in the 1980s, nor the restoration of the breaches in 1986 was performed in violation of law. Further, the District had knowledge of the subject activities. Save contends that the restoration of the dike system was contrary to law and that it was not afforded a point of entry to contest the closure of the breaches. Additionally, Save infers that the original construction of the dike system in the early 1970s was without authorization from authorities. Save's contention is that the prior condition of the property, ie. the parcel with breached openings, must be considered the correct pre- development condition of the land. The District, however, considered the pre- development condition of the parcel to be that of a diked impoundment separated from Lake Poinsett. The same assumption was made regarding the pumping of water from the area enclosed by the dike via an existing 36 inch pump which discharges to Bass Lake (and then to Lake Poinsett) and an existing 12 inch pump that discharges into the marsh areas adjacent to the property (between it and Lake Poinsett). The District's consideration of the site and the application at issue was based upon the actual condition of the land as it existed at the time this application was filed. The pre-development peak rate and volume of discharge from the site was calculated based upon the maximum discharge capacity of the two existing pumps (described above). Accordingly, the maximum pre-development rate of discharge from the two existing pumps is in the range of 90-107 cubic feet per second. The pre-development volume of discharge, based upon actual pump records, was calculated as 710 acre-feet for a 25 year, 96 hour storm event. The total areas encompassed by the Applicant's proposal are the 720 acre site where the golf course and residential homes will be located together with 140 acres from an adjacent public park. The runoff entering the stormwater system from that public park will have already been treated in its own stormwater management system. The Applicant's proposed stormwater system will consist of a series of lakes and interconnected swales. This wet detention system will capture the runoff and direct its flow through the series of swales and lakes via culverts. The waters will move laterally from the northwestern portion of the parcel to she southeastern end of the site. From the final collecting pond, she waters will be pumped to Bass Lake and ultimately flow to Lake Poinsett. Wet detention systems generally provide greater pollutant treatment efficiencies than other types of stormwater treatment systems. The maintenance associated with these systems is also considered less intensive than other types of treatment systems. The wet detention system proposed for Sabal Hammocks accomplishes three objectives related to the flow of stormwater. The first objective, the collection of the. stormwater, requires the creation of several lakes or pools into which water is directed and accumulates. The size and dimension of the lakes will allow the volume of accumulated water to be sufficient to allow stormwater treatment. The capacity of the lakes will also provide for a sufficient volume to give adequate flood protection during rainfall events and storms. The second objective, the treatment of the stormwater, requires the creation of a littoral zone within the system. The littoral zone, an area of rooted aquatic plants within the lakes or ponds, provide for the natural removal of nutrients flowing into the system. The plants serve as a filtering system whereby some nutrients are processed. The proposed littoral zone in this project constitutes approximately 37 percent of the detention system surface area and therefore exceeds District size requirements. The depth of the treatment volume for the proposed system will not exceed 18 inches. A third objective accomplished by the creation of the series of lakes is the provision for an area where pollutants flowing into the detention system may settle and through sedimentation be removed from the water moving through the system. The average residence time estimated for runoff entering the Sabal Hammocks detention system is 48 days. The permanent pool volume will, therefore, be sufficient to assure the proposed project exceeds the District's requirements related to residence time. The design and volume of the Sabal Hammocks system will also exceed the District's requirements related to the dynamic pool volumes. In this case the Sabal Hammocks system will provide for approximately 65 acre-feet of runoff. Thus, the proposed system will adequately control and detain the first 1 inch of runoff from the site. The length to width ratio for the proposed lakes, 18:1, exceeds the District's minimum criteria (2:1). The final lake or pond into which the stormwater will flow will be 17 acres and will have 15 acres of planted wetland vegetation. Before waters will be released into Bass Lake, the site's runoff will pass through 3100 linear feet of this final lake before being discharged. The proposed project will eliminate the two agricultural pumps and replace them with one pump station. That station will contain four pumps with a total pumping capacity of 96 cubic feet per second. Under anticipated peak times, the rate of discharge from the proposed single station is estimated to be less than the calculated peak pre-development rate of discharge (90-107 c.f.s.). The estimated peak volume of discharge will also be lower than the pre-development discharge volumes for the comparable storm events. The proposed pump station is designed to be operated on electrical power but will have a backup diesel generator to serve in the event of the interruption of electrical service. Additionally, the pumps within the station will be controlled by a switching device that will activate the pump(s) only at designated times. It is unlikely that all four pumps will activate during normal rainfall events. The Applicant intends to relinquish maintenance responsibilities for the stormwater system including the pump station to Brevard County, Florida. Finished floor elevations for all residential structures to be built within the Sabal Hammocks development will be at a minimum of 18.2 mean sea level. This level is above that for a 100 year flood. The floor elevations will be at least one foot above the 100 year flood elevation even in the event of the dike or pump failure or both. Finished road elevations for the project will be set at 17.5 feet mean sea level. This elevation meets or exceeds the County's requirements regarding the construction of roadways. It is estimated that the Sabal Hammocks system will retain at least 26 percent of all storm events on site. If the lake system is utilized to irrigate the golf course the proposed system could retain 45 percent of all storm events on site. Of the 31.27 acres of wetlands within the proposed site, only 4.73 acres of wetlands will be disturbed by the construction of this project. Some of the wetlands are isolated and presently provide minimal benefits to off-site aquatic and wetland dependent species. No threatened or endangered species are currently utilizing the isolated wetlands. The areas of wetlands which are productive and which will be disturbed by the development will be replaced by new wetlands to be created adjacent to their current location at a lower elevation. The new wetlands should provide improved wetland function since those areas will be planted with a greater diversity of wetland plant species. Additionally, other wetland areas will be enhanced by the removal of invader species and increased hydroperiod in the area. The integrated pesticide management plan for the proposed project will be sufficient with the additional condition chat use of Orthene, Subdue, and Tersan LSR will be authorized when approved insecticides or fungicides have not been effective. In this case, the estimates regarding the water quality for the proposed project were based upon data from studies of multifamily residential projects. Data from single family/ golf course developments was not available. Therefore, based upon the data used, the projected runoff concentrations for this project should over estimate pollutants and are more challenging to the treatment system than what is reasonably expected to occur. In this regard, the overall treatment efficiencies are estimated to be good for all of the parameters of concern with the exception of nitrogen. The projected increase in nitrogen, however, will not adversely impact the receiving water body. The projected average concentration for each constituent which may be discharged is less than the state standard with the exceptions of cadmium and zinc. In this regard, the District's proposed conditions (set forth in the District's exhibits 4 and 9) adequately offset the potential for a violation of state water quality standards. More specifically, the use of copper-based algaecides in the stormwater management system should be prohibited; the use of galvanized metal culverts in the stormwater management system, or as driveway culverts, should be prohibited; and the use of organic fertilizers or soil amendments derived from municipal sludge on the golf course should be prohibited. Additionally, a water quality monitoring plan should be implemented by the Applicant. The monitoring plan mandates the collection of water samples from areas in order to adequately monitor the overall effectiveness of the treatment facility. The source of cadmium is not be expected to be as great as projected since the most common source for such discharge is automobiles. It is unlikely that the golf course use will generate the volume of discharge associated with automobile use that the multifamily data presumed. The projected quality of the discharges from this project should be similar to the ambient water quality in Lake Poinsett. In fact, the post- development pollutant loading rates should be better than the pre-development pollutant loading rates. The discharge from the proposed Sabal Hammocks project will not cause or contribute to a violation of state water quality standards in Lake Poinsett nor will the groundwater discharges violate applicable state groundwater quality standards. The floodways and floodplains, and the levels of flood flows or velocities of adjacent water courses will not be altered by the proposed project so as to adversely impact the off- site storage and conveyance capabilities of the water resource. The proposed project will not result in the flow of adjacent water courses to be decreased to cause adverse impacts. The proposed project will not cause hydrologically-related environmental functions to be adversely impacted The proposed project will not endanger life, health, or property. The proposed project will not adversely affect natural resources, fish and wildlife. The proposed project is consistent with the overall objectives of the District.
Recommendation Based upon the foregoing, it is RECOMMENDED: That the governing board of the St. Johns River Water Management District enter a final order approving the application for permit number 4-009-0077AM with the conditions outlined within the District's exhibits numbered 4, 8, and 9 and as previously stated in the notice of intent. DONE and ENTERED this 2 day of July, 1991, in Tallahassee, Leon County, Florida. Joyous D. Parrish Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32301 (904)488-9675 Filed with the Clerk of the Division of Administrative Hearings this 2 day of July, 1991. APPENDIX TO CASE NO. 90-5247 RULINGS ON THE PROPOSED FINDINGS OF FACT SUBMITTED BY THE APPLICANT: Paragraphs 1 through 3 are accepted. Paragraph 4 is rejected as irrelevant. Paragraphs 5 and 6 are accepted. The first sentence of paragraph 7 is accepted the remainder is rejected as irrelevant. Paragraph 8 is accepted. Paragraphs 9 through 11 are accepted. Paragraph 12 is rejected as irrelevant. 8 Paragraphs 13 through 21 are accepted. Paragraph 22 is rejected as irrelevant. Paragraphs 23 through 25 are accepted. The last two sentences of paragraph 26 are accepted, the remainder is rejected as irrelevant. Paragraph 27 is accepted. Paragraph 28 is rejected as comment, irrelevant, or unnecessary to the resolution of the issues of this case. Paragraph 29 is accepted. Paragraph 30 is rejected as irrelevant. Paragraph 31 is rejected as argumentative. Paragraphs 32 and 33 are accepted. With regard to paragraph 34 it is accepted that compensating storage was not required. Otherwise, unnecessary, irrelevant, or comment. With regard to paragraph 35, it is accepted the proposed system meets the first 1 inch of runoff requirement otherwise, unnecessary or irrelevant or comment. Paragraph 36 is accepted. Paragraphs 37 through 41 are rejected as irrelevant, argumentative or comment. Paragraphs 42 and 43 are accepted. With the deletion of the last sentence which is irrelevant, paragraph 44 is accepted. Paragraphs 44 through 49 are accepted. The second sentence of paragraph 50 is accepted, the remainder of the paragraph is rejected as irrelevant or contrary to the weight of the evidence. The first sentence of paragraph 51 is accepted, the remainder is rejected as irrelevant or contrary to the weight of the evidence. Paragraphs 52 through 56 are rejected as irrelevant, comment, or recitation of testimony. Paragraph 57 is accepted. Paragraph 58 is accepted. Paragraphs 59 and 60 are rejected as irrelevant, comment, or argumentative. Paragraphs 61 and 62 are accepted. The first sentence of Paragraph 63 is accepted. The remainder of the Paragraph is rejected as contrary to the weight of the evidence. The proposed project will benefit the wetland areas in an unquanitifiable measure due to the enhancements to prior wetlands and the creation of new wetlands. The first sentence of paragraph 64 is accepted. The remainder is rejected as contrary to the weight of the evidence. Paragraph 65 is accepted. Paragraph 66 is rejected as argument or irrelevant. Paragraph 67 is accepted. Paragraphs 68 and 69 are accepted. Paragraph 70 is rejected as irrelevant or contrary to the weight of the evidence. Paragraphs 71 through 73 are accepted. Paragraph 74 is rejected as irrelevant or unnecessary. Paragraphs 75 through 78 are rejected as argument, irrelevant, or unnecessary to the resolution of the issues of this case. Paragraphs 79 through 82 are accepted. Paragraph 83 is rejected as irrelevant. Paragraphs 84 and 85 are rejected as argument or comment. It is accepted that the Corp and DER are aware of the restoration of the dike and that neither has asserted such work was performed contrary to law. Paragraph 86 is rejected as comment on the evidence or irrelevant. It is accepted that the District advised Applicant that he could restore the dike system and that the District was apprised of the completion of that work. With regard to paragraph 87, it is accepted that the restoration of the dike entailed filling the breaches to conform to the dike's original design; otherwise, rejected as irrelevant. Paragraphs 88 and 89 and the first sentence of Paragraph 90 are accepted. The remainder of paragraph 90 and Paragraphs 91 through 93 are rejected as irrelevant, argument, or comment. Paragraph 94 is accepted. RULINGS ON THE PROPOSED FINDINGS OF FACT SUBMITTED BY THE DISTRICT: Paragraphs 1 through 78 is accepted. Paragraph 79 is rejected as argumentative. Paragraph 80 is accepted. RULINGS ON THE PROPOSED FINDINGS OF FACT SUBMITTED BY SAVE: None submitted. COPIES FURNISHED: Mary D. Hansen 1600 S. Clyde Morris Boulevard Suite 300 Daytona Beach, Florida 32119 Brain D.E. Canter HABEN, CULPEPPER, DUNBAR & FRENCH, P.A. 306 North Monroe Street Tallahassee, Florida 32301 Wayne Flowers Jennifer Burdick St. Johns River Water Management District Post Office Box 1429 Palatka, Florida 32178