Conclusions An Administrative Law Judge of the Division of Administrative Hearings has entered an Order Closing File following the Notice of Voluntary Dismissal filed by the Petitioner. A copy of the Order is attached as Exhibit A.
Other Judicial Opinions REVIEW OF THIS FINAL ORDER PURSUANT TO SECTION 120.68, FLORIDA STATUTES, AND FLORIDA RULES OF APPELLATE PROCEDURE 9.030(b)(1)(c) AND 9.110. TO INITIATE AN APPEAL OF THIS ORDER, A NOTICE OF APPEAL MUST BE FILED WITH THE DEPARTMENT’S AGENCY CLERK, 2555 SHUMARD OAK BOULEVARD, TALLAHASSEE, FLORIDA 32399-2100, WITHIN 30 DAYS OF THE DAY THIS ORDER IS FILED WITH THE AGENCY CLERK. THE NOTICE OF APPEAL MUST BE SUBSTANTIALLY IN THE FORM PRESCRIBED BY FLORIDA RULE OF APPELLATE PROCEDURE 9.900(a). A COPY OF THE NOTICE OF APPEAL MUST BE FILED WITH THE APPROPRIATE DISTRICT COURT OF APPEAL AND MUST BE ACCOMPANIED BY THE FILING FEE SPECIFIED IN SECTION 35.22(3), FLORIDA STATUTES. YOU WAIVE YOUR RIGHT TO JUDICIAL REVIEW IF THE NOTICE OF APPEAL IS NOT TIMELY FILED WITH THE AGENCY CLERK AND THE APPROPRIATE DISTRICT COURT OF APPEAL. MEDIATION UNDER SECTION 120.573, FLA. STAT., IS NOT AVAILABLE WITH RESPECT TO THE ISSUES RESOLVED BY THIS ORDER. Final Order No. DCA10-GM-056 CERTIFICATE OF FILING AND SERVICE THEREBY CERTIFY that the original of the foregoing has been filed with the undersigned designated Agency Clerk, and that true and correct copies have been furnished to the persons listed below in the manner described, on this 23-4 day of March, 2010. U.S. Mail: The Honorable D.R. Alexander Administrative Law Judge Division of Administrative Hearings 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 Melvin Wolfe, Esq. Town of Medley 7777 N.W. 72nd Avenue Medley, Florida 33166 Jeffrey S. Bass, Esq. Shubin & Bass, P.A. 46 S.W. First Street, 3rd Floor Miami, Florida 33131 Hand Delivery: Richard Shine, Esq. Assistant General Counsel Department of Community Affairs 2555 Shumard Oak Blvd. Tallahassee, Florida 32399 Paula Ford Agency Clerk Douglas M. Halsey, Esq. White & Case, LLP Wachovia Financial Center 200 South Biscayne Boulevard, Suite 4900 Miami, Florida 33131 Barbara J. Riesberg, Esq. 1000 Brickell Avenue, Suite 200 Miami, Florida 33131
Findings Of Fact At final hearing, the parties stipulated to the following facts: The Department of Environmental Regulation is an administrative agency of the State of Florida created by Chapter 75-22, Laws of Florida, and vested with the power and duty to implement and enforce the provisions of the Florida Air and Water Pollution Control Act, Part I, Chapter 403, Florida Statutes. Pursuant to these Acts, the Department is authorized to regulate the construction and operation of solid waste disposal facilities and stationary installations reasonably expected to be sources of pollution. Respondent, City [of North Miami], owns the property on which is located a solid waste facility known as "Munisport Sanitary Landfill" located at 14301 Biscayne Boulevard, North Miami, Dade County, Florida; latitude 25 degrees 54' 9" North, longitude 80 degrees 9' 5" West in Sections 21 and 22, Township 52 South, Range 42 East. Respondent, Munisport, operates a solid waste disposal facility under contract with the City. On March 7, 1977, the Department issued to the City of North Miami permit/certification number 13-31-028GM (hereinafter "dredge and fill permit") which modified and superseded permit/classification number 13-31-0286. The permit was issued under the provisions of Sections 253.123, 253.124, and 403.087, Florida Statutes, and Chapter 17-4, Florida Administrative Code. The permit also provided water quality certification required by Public Law 92-500. The dredge and fill permit was issued for the purpose of constructing a continuous 5,000 foot-long earthen dike with a modified top width of 12 feet aligned waterward of the mean high water line such that the waterward toe of the dike would be on or landward of the property line. Approximately 6,000 cubic yards of material would be dredged from the 63-acre tract located behind the dike and waterward of the mean high water line. Portions of the tract would be excavated to minus 35 feet mean low water to form nontidal lakes. Approximately 1,000,000 cubic yards of fill material would be enplaced as follows: Clean fill to be utilized to produce an elevation of a minimum of two feet above the calculated ground water table, after which fresh refuse and a two-foot final cover of clean fill would be placed. Within a zone of 100 feet from the landward crest of the dike, yard trash and construction debris would be the only types of solid waste acceptable as fill, and A ten-foot wide by three-foot deep circulation canal would be dredged on the outside perimeter of the dike. General condition 13 of the dredge and fill permit provides that the permit does not indicate an endorsement or approval of any other Department permit/approval that may be required for other aspects of the total project. A solid waste operation permit would also be required. On June 8, 1979, the City and Munisport received from the Department Operation Permit No. SWO-13-5152 (hereinafter "solid waste operation permit"). The purpose of the solid waste operation permit was to allow and regulate the placement of solid waste (refuse, yard trash and construction debris) in the area behind the dike described above and on adjacent uplands in order to generate an appropriate elevation for a golf course. General condition number two of the solid waste operation permit states that: This permit is valid only for the specific processes and operations indicated in the attached drawings or exhibits. Any authorized deviation from the approved drawings, exhibits, specifications, or conditions of this permit shall constitute grounds for revocation and enforcement action by the Department (emphasis added). Specific condition number six of the solid waste operations permit provides that the subject facility be operated at all times at the maximum level of efficiency so as to minimize the adverse effect on the environment of contaminated storm water runoff or leachates which cause degradation of surface or ground waters. Specific condition number nine of the solid waste operation permit provides that "no solid waste shall be placed within thirty feet of any existing or future lake". Prior to the issuance of the solid waste operation permit, Respondents' permit application was subjected to a de novo review during a Section 120.57(1), Florida Statutes, hearing requested by the Florida Audubon Society and others. The record of these proceedings explained and expanded upon the application and, therefore, became a part thereof. Respondents' consultant testified in these proceedings as follows: We have an agreement with the Department of Environmental Regulation that goes back several years that we would not dig up any old land fill material nor would we place any land fill material in an area that would eventually become a lake. Testimony of Mr. Thomas Joseph Checca on October 18, 1978; Transcript of proceedings in Florida Audubon Society, et al. v. State of Florida, Department of Environmental Regulation, City of North Miami, Florida and Munisport, Inc., DOAH Case No. 78-316. On October 25, 1979, an inspection of the above-described facility was made by Mr. Scott Quaas, an employee of the Department, who observed that two lakes had been constructed in old waste on the site without the required 30-foot setback as required by the aforementioned permit conditions. A letter of notice was issued by the Department regarding that and other violations on November 16, 1979. On December 18, 1979, a follow-up inspection of the subject facility was made by Mr. Quaas, at which time it was observed that two more lakes had been excavated through waste previously deposited at the site, thereby causing such waste to come in direct contact with the water in the lakes adjacent thereto. It was also observed that no 30-foot setback was provided at the new lakes. Notice of these additional violations was provided to Munisport on January 16, 1980. An on-site meeting regarding the above-described violation was held on January 24, 1980, at which time it was agreed that Respondents would reply by February 1, 1980, as to whether corrective actions would be taken regarding the aforementioned violations. As of the date of final hearing in this cause, corrective action had been taken to eliminate these violations. Specific condition number 13 of the solid waste operation permit requires the posting of a performance bond or other security acceptable to the Department which adequately covers the cost of monitoring and final closing procedures required under the permit and Chapter 17-7, Florida Administrative Code, and procedures listed in the application for permit which may become necessary to correct any pollution detected at the site in violation of Department rules. No such bond or security has been posted with the Department. Extensive discussions between the Department and representatives of the City and Munisport have failed to produce agreement regarding the terms of a performance bond or security. The parties were notified of this violation and were given an opportunity to respond. Leachate (runoff containing pollutants) has been allowed to enter lakes on the site. A leachate plume containing ammonia has been detected beneath the subject sanitary landfill site, which plume has reached ground waters of the State and is being observed to be moving off the site in an east- southeast direction, toward Biscayne Bay. This leachate plume contains total Ammonia-Nitrogen (NH3-N) in amounts which are substantially in excess of the water quality standards of .5 milligrams per litre for Dade county, Florida. See, Chapters 24-11(4), Dade County Code. It was not anticipated when Operation Permit Number SWO-13-5152 was issued that leachate would be allowed to enter the lakes or that a leachate plume would form in the manner which is presently being observed. In addition to being a pollutant, Ammonia-Nitrogen is the first substance generally observed when a leachate plume forms. There exists a significant possibility that other pollutants contained in solid waste deposited at the site will also begin to reach ground waters of the State and the waters of Biscayne Bay. General condition number eight of the solid waste operation permit states that: This permit does not relieve the permittee from liability for harm or injury to human health or welfare, animal, plant, or aquatic life or property and penalties therefore caused by the construction or operation of this permitted source, nor does it allow the permittee to cause pollution in contravention of Florida Statutes and department rules, except where specifically authorized by an order from the department granting a variance or exception from department rules or state statutes. Specific condition number 15 of the solid waste operation permit states that: These permit conditions do not exempt the applicant from complying with pollution control requirements of other Federal, State, Municipal, County or Regional water pollution control rules, regulations, ordinances or codes, nor does it authorize any violation thereof.
Recommendation Based upon the foregoing findings of fact and conclusions of law, it is RECOMMENDED that a Final Order be entered revoking the permits and certification which are the subject of this proceeding in their entirety or such lesser action as may be deemed appropriate by the Department in the exercise of its discretion as the State agency charged with the power and duty to control and prohibit the pollution of air and water under Section 403.061, Florida Statutes, and as the agency responsible for the implementation and enforcement of the provisions of the Florida Resource Recovery and Management Act which regulates the appropriate disposal of solid waste and landfill operation in this State. DONE and ENTERED this 24th day of February, 1981, in Tallahassee, Leon County, Florida. WILLIAM E. WILLIAMS, Hearing Officer Division of Administrative Hearings The Oakland Building 2009 Apalachee Parkway Tallahassee, Florida 32301 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 24th day of February, 1981. COPIES FURNISHED: William P. White, Jr., Esq. Deputy General Counsel Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, FL 32301 Willard K. Splittstoesser, Esq. 776 N.E. 125th Street North Miami, FL 33161 Marvin P. Sadur, Esq. 2000 L. Street, N.W., Suite 612 Washington, D.C. 20036
The Issue Whether WACOC has given reasonable assurance that the landfill it proposes to build would comply with applicable requirements of Chapter 403, Florida Statutes (1987), and rules promulgated thereunder?
Findings Of Fact A mile east of the intersection of U.S. Highway 90 and State Road 393, south of Dorcas in eastern Okaloosa County, WACOC has assembled some 1,760 acres on U.S. Highway 90 --- only 160 acres shy of three square miles. WACOC proposes to use as much of the land as possible for the disposal of solid waste, and "would like to use the proposed landfill as a regional landfill." Prehearing Stipulation, p.8. (T.68) The company does not own all the land outright but, with the conveyance of a parcel on the morning the final hearing began (T.77), WACOC had obtained (an encumbered) fee interest in the 55 acres on which it proposes to put Phase I, "a hole-in-the-ground landfill which can come into contact with the groundwater table," (T.737) and the subject of the pending application. WACOC has a "whole lot of option money out there," (T.86) although none of WACOC's stockholders has previous experience in the landfill business. Private Enterprise Chris Cadenhead owns stock individually and "is 100 percent owner of SRD, Incorporated" (T.93), itself an owner of WACOC stock. Serving with Chris Cadenhead and Larry Anchors on WACOC's board of directors, at the time of the hearing, was James Ward, formerly a legislator and chairman of the House Natural Resources Committee. (T.48) Like Mr. Anchors, Mr. Ward originally owned 24% of WACOC's stock. The only shareholder who testified at the hearing was Arthur Frederick Schneider. Before he succeeded Mr. Cadenhead as president of WACOC, Mr. Schneider had had a distinguished career as a naval officer, and later tried his hand at farming, but this venture ended in bankruptcy. "SRD has been funding this thing." (T.86) Where SRD, Inc. obtained more than three-quarters of a million dollars is not clear from the record. As far as the evidence showed, Chris Cadenhead's father, Rhett, had no interest in WACOC, although he did appear on behalf of the company at a county commission meeting in June of 1987. Larry Anchors, a WACOC shareholder and formerly an Okaloosa County Commissioner, contributed $35,000 a few days after the Okaloosa County Commission awarded the waste disposal contract. (T.87) Nothing has been paid the company under the agreement WACOC entered into with Okaloosa County on June 18, 1987, Citizens' Exhibit No. 1, which was reduced to writing on or before July 10, 1987. WACOC's Exhibit No. 1, App. 1. Under the contract, WACOC undertakes to move solid waste from transfer points in the southern part of the county and deposit them in the landfill it proposes for a per ton "tip fee of $17.70 (Present value as of 6/16/87)," WACOC's Exhibit No. 1, App. 1, p. 13 (emphasis in original), which is to be "adjusted automatically upward or downward to reflect the change in Consumer Price Index." Id. The County guarantees WACOC 275 tons per day and pledges to "exercise its best efforts to insure that all the Solid Waste generated within the County will be delivered to one of the designated transfer stations or the landfill," WACOC's Exhibit No. 1, App. 1, p. 8, for the next thirty years. At present, the County generates "including the municipality . . . about 525-550 tons a day." (T. 61) The County agrees to cooperate "to obtain financing of the real property and equipment necessary [for WACOC] to perform . . . by a proposed bond issue." WACOC's Exhibit No. 1, App. 1, p. 14. To this end, the county commission adopted a resolution authorizing issuance of industrial revenue bonds in accordance with Chapter 159, Florida Statutes, in an amount not to exceed $8,000,000. Alternatively, and perhaps more in keeping with current tax law, "it's going to one of the larger financial institutions like Merrill Lynch Pierce Fenner & Smith or someone like that and actually a bond issue through them, non-industrial," (T.74) or so WACOC intends. Phase I Designed to receive Okaloosa County's solid waste for five years, Phase I is to occupy a site on the eastern slope of a small hill between the east and west branches of Mare Creek, which converge in Fawn Lake, north of the property on which WACOC has options. Water flows out of Fawn Lake into a no longer bifurcated Mare Creek (which was dammed to create the lake), and ultimately into the Shoal River, more than 3,000 feet from the site. By rule, DER has designated Shoal River outstanding Florida waters. Fawn Lake and Mare Creek are Class III surface waters. The Phase I site is "zoned for agricultural uses, which was determined by the Okaloosa County attorney to be appropriate for a landfill." Prehearing Stipulation, p. 7, No. 5. "The county attorney's determination has not been ratified by the County Commissioners." Id. Site Geology "Subsurface conditions have obviously a tremendous effect on the design of the landfill." (T.592) "[A] site's geological and hydrological characteristics are relevant to its potential for contamination." Prehearing Stipulation, p.7, No.4. Throughout the 1760-acre site, beneath a thin topsoil and root mat layer, the site soils consist of clean loose sands to an average depth of about 8 feet below ground surface. . . . From a depth of about 8 feet to 18 feet, a layer of dense orange clayey medium to fine sand (with some coarse sand and fine gravel) covers most of the proposed landfill site. . . . Beneath the clayey sand unit are loose and dense . . . sands . . . . WACOC's Exhibit No. 1, Appendix B. The clayey sand unit occurring underneath the loose, Pliocene sands on the surface is part of the Citronelle formation, which "characteristically changes abruptly over very short distances." (TB. 29) The Citronelle consists "principally of quartz sand, with numerous beds, stringers and lenses of clay and gravel." CCE's Exhibit No. 21, p. 33. "The soils on the site standing alo[ne] would not be sufficient for a liner." I.T. 559 WACOC's expert reported an "average vertical hydraulic conductivity for [the upper Citronelle of] . . . 6.2 x 10-7 cm/sec (1.7 x 10-3 feet/day)." Laboratory tests on soil samples, taken more than eight and less than 18 feet below the surface of the site proposed for Phase I, demonstrated the variability of the sands making up the upper portion of the Citronelle formation on site. The percent finer than the U.S. No. 200 mesh sieve (silt and clay size fraction) . . . ranges between 17.5% to 41.7% . . . . "Vertical hydraulic conductivities for . . . [deeper] sands [on which waste disposal cell liners are to be laid] range from approximately 2.7 x 10-5 cm/sec to 5.8 x 10-4 cm/sec (0.08 to 1.62 feet/day)." Id. The variability of fines contents among samples reflects variability in hydraulic conductivity in the upper Citronelle, as well. This variability explains why an average permeability or vertical conductivity figure for the clayey sands in the upper Citronelle is of limited use in predicting how quickly rainwater will move through it, if these sands are used to cap the landfill after its completion, as proposed. Samples taken from eleven borings made throughout the entire 1,760-acre site were the basis for the applicant's average vertical hydraulic conductivity number. Only one of the borings was done on the Phase I site itself. If a ten-foot thick, continuous layer of clayey sands with a vertical conductivity of 6.2 x 10-7 centimeters per second occurred eight feet beneath the surface, the overlying Pliocene sands would hold a water table year round, given the high rainfall in the area. In fact, the applicants' consultants reported a water table on the Phase I site 21 to 30 feet down, beneath or within, but not above, the clayey sands in the upper Citronelle, in February of 1988. (T.595) The higher water tables observed in October of 1988 were also below the loose surficial sands. This demonstrates a vertical hydraulic conductivity for the upper Citronelle beneath the site proposed for Phase I well above the reported average. A borrow pit, off site but nearby, illustrates the fallacy of relying on average conductivity values to predict the movement of water. At the upper end of the excavation, a seep emerges from the sand to form a stream that flows 40 or 50 feet across red clayey materials resembling those on site, then sinks, disappearing into the earth. Even the value assigned to a particular split spoon sample may be a misleading average. B.T.126-7. Preliminary Plans Drawn In Phase I, WACOC proposes to excavate three different areas or cells for solid waste disposal "to approximately 20 feet below natural grade." (T.116) Accepting information they were furnished, the design engineers made the important (T.172) but erroneous assumption that the water table on site fluctuates only within a range "from five to fifteen feet" (T.132) below that. The plan is to fill each cell with solid waste and covering layers of various soils to a height 90 feet above existing grade. Trees growing within the 300- foot green belt planned for the perimeter of the 1,760-acre site would shield the landfill from the view of motorists on U.S. Highway 90. Separated from each other by berms, cells 1 (520' x 520') and 2 (520' x 650') would abut each other south of cell 3 (480' x 1170'), with another set of berms circumscribing all three cells. The bottom of each cell is to have a gradual V-shape, sloping "approximately one percent in the longitudinal direction and two percent in the traverse direction[s]," (T.116) toward the centerline. The plans call for compaction of the soils, once excavation has been accomplished, and for "root pickers" to remove rocks, roots and any other sharp objects. The plans do not contemplate the use of sieves. WACOC proposes to line these pits by covering the naturally occurring, compacted soils with a 1.5 millimeter (60 mil) layer of high density polyethylene, a plastic which has been manufactured for use in land fill liners at least since 1982. (T.401) The purpose of lining landfills is to contain contaminated water that would otherwise escape into the environment. Rain percolating through solid waste, together with moisture already in the solid waste at the time it is deposited in the landfill, leaches chemicals from the waste, producing a toxic solution called leachate. Products of industry make their way into household garbage and the municipal waste stream. About two percent of waste that reaches municipal sanitary landfills consists of materials which, if generated industrially in quantity could not lawfully be disposed of, except as hazardous waste. Scientists have "found municipal waste landfill leachates that were as toxic as those from Love Canal." (IT.696) Gundle Liner WACOC has decided to obtain a liner which meets minimum requirements of the National Sanitation Foundation Standard Number 54, Flexible Membrane Liners, November, 1983, from Gundle Lining Systems, Inc. (Gundle). "All Gundle materials are available in 22 1/2' widths with no factory seams " WACOC's Exhibit No. 7. Gundle's own employees would unroll the plastic, position it using "tack welding" to form a continuous sheet, join the strips with extrusion welds, inspect the seams visually, perform destructive "shear and peel tests . . . by random selection no less than the [to be] agreed [but unspecified at hearing] frequency . . . . [and conduct v]acuum testing [which] follows no specific standard." WACOC's Exhibit No. 7, Enclosure 6. (T.403, 411- 2) As a condition of the permit (No. 26), DER would require that an independent third party, a registered professional engineer, participate in quality assurance. High density polyethylene's "chemical resistance and durability. . . . enable[ Gundle] . . . to offer a 20-year warranty . . . for both the product and installation." (T.404) Gundle's liability under the warranty depends on how many years remain under warranty and "shall in no event exceed the amount of the sale price." (IT.434) The warranty excludes "any liability for consequential damages arising from the loss of . . . product owing to the failure of the material or installation," id.; CCE's Exhibit No. 3, and any liability whatsoever in the event of acts of God, including floods, and "excessive pressure or stress from any source." CCE's Exhibit No. 3; (IT.432). While the material may well outlast the warranty, perhaps by decades, in "geological time," it will inevitably fail. In the short term, too, the integrity of liners like that proposed is highly problematic. Past problems have included "mechanical damage . . . of one form or another such as with the bulldozer, or if somebody drops something." (IT.429) Here, before the first lift of solid waste (which would not include construction or demolition debris) is placed, four feet of sand (stockpiled during excavation) would be piled on top of the disposal cell liner. A bulldozer's gash might not go unnoticed, but small holes along seams can be missed, despite rigorous quality control measures. At the Ocean County landfill in New Jersey, "there was more liquid . . . than would have been true from the calculated moisture vapor transmission data," (IT.427) but Gundle's chemist testified this might have been "condensation on the soils on the back side of the liner." Id. Leachate Collection Embedded within the sand layer, in the crotch of the V, six-inch, perforated, schedule 80 PVC pipe, wrapped in filter cloth, is designed to collect leachate. The top of the pipe is to be eight inches above the liner, according to the leachate underdrain detail on sheet 15 of WACOC's Exhibit No. One pipe running the length of cell 3 and another running through cells 1 and 2 would move leachate to the leachate trunk line, another (intact) PVC pipe which would, in turn, empty into a paved flume in the leachate collection pond. The pond has been sized to contain the amount of leachate WACOC's consultants originally predicted a 25 year return 24-hour storm would generate, together with the rainfall such an event would deposit in the leachate collection pond, and still leave a foot of freeboard. "You have room below that major storm elevation that holds 60 to 70,000 cubic feet of leachate." I.T. 127. Except for the flume, the leachate pond is to be lined, like the disposal cells, with high density polyethylene. In the leachate collection pond, only 18 inches of sand would overlie the synthetic liner. From time to time, leachate would be pumped from the pond into tank trucks for removal to the Garnier wastewater treatment plant, which has a capacity of 6,500,000 gallons per day. Garnier is specifically permitted to receive only domestic wastewater, but the permit does not forbid industrial wastewater, and the plant now accepts leachate from the Wright landfill. DER has not classified landfill leachate either as domestic or as industrial wastewater. Before accepting it for treatment, the plant might require pretreatment of the leachate, whether on account of its anticipated acidity or for other reasons. If leachate causes sludge from Garnier to exceed standards for heavy metals, the sludge can be deposited in a Class 1 landfill like the one proposed here. WACOC has not yet entered into a contract with Garnier's operator for treatment of leachate. Not until leachate is removed from the leachate collection pond are pumps to be employed. Leachate would have to accumulate on the waste disposal cell liners and enter a pipe, in order to leave the cells. The design specifies perforations along the whole length of leachate collection pipe, around the bottom of the pipe. If the pipes clogged west of the cell walls, leachate could flow through sand and reenter the pipe further downslope. Outside the waste disposal cells, manholes have been planned, to afford access for cleaning the pipes out. The applicant did not demonstrate with calculations that gravity would induce flow through the pipes at a rate sufficient to remove leachate deeper than 12 inches. In the leachate collection pond, which is to be roughly 200 by 500 feet, leachate might attain a depth of several feet, before being pumped into a tank truck. The pond sides are to be lined with high density polyethylene to a height nine feet above the pond bottom. As far as the evidence showed, the depth of leachate in the pond would never fall below 18 inches anywhere on the pond bottom, once leachate began filling the leachate collection pond. Only if leachate were extracted from the sand covering the liner could the leachate head in the pond fall below one foot. The plan is for tank truck operators to place their hoses on "a concrete flume on top of that sand." I.T. 127. Stormwater Management Berms encircling the solid waste disposal cells, together with a series of ditches and culverts, are intended to direct stormwater away from the solid waste to a retention pond for temporary storage and treatment, before discharge offsite. To the extent stormwater which would otherwise flow into solid waste disposal cells can be diverted elsewhere, the volume of leachate can be diminished. The berms also serve to prevent rain falling on solid waste from reaching the stormwater retention pond, or polluting stormwater that does. Lined with relatively impermeable soils, the stormwater retention pond, "a football field wide and two and a half football fields long," (T.201) is designed to be big enough to hold the runoff from a 100 year return storm, leaving two feet of freeboard. In practice, some stormwater would percolate into the ground through unlined ditch bottoms, never reaching the pond. Stormwater that did reach the pond would either evaporate or drain through sidedrains, which are to consist of perforated six-inch PVC pipe, encased in gravel and covered with permeable sand excavated on site. Lining most of the pond's perimeter, this sand would filter water seeping through it from the pond into the side drains. After collecting in an outfall pipe, water draining from the pond would travel 300 or 400 feet, before discharging above grade, near the east branch of Mare Creek. If, as would be likely, sea gull droppings regularly end up in the stormwater retention pond, phosphorous and nitrogen levels in the east branch of Mare Creek and downstream would increase in time. Other Measures Decomposing solid waste produces methane gas. When cell I is completed, vents are to be installed to direct methane gas into the atmosphere above the center of the cell. I.T.140; WACOC's Exhibit No. 1, p.23 and No.9, p.15. "[T]he wind will disperse any gas within the site." I.T.191,221. If sufficient quantities were generated, a gas collection system would be installed. I.T.140. 31 Spotters will try to divert hazardous or infectious waste, and should succeed in the event a hauler tries to dispose of an accurately labelled 55- gallon drum of a hazardous liquid or red-bagged waste from a hospital, but small quantities of gasoline, paint, paint thinners, cleaning fluids and other hazardous materials cannot practically be diverted. At the end of every working day, solid waste is to be covered with a six inch layer of soils from the site. Fences are planned downwind from the working face to collect windblown debris. Closure A landfill is a long-term proposition. Pollutants still leak from Roman landfills dating to 400 A.D. Contemporary landfills and their regulators recognize the importance of capping landfills to minimize infiltration by rainwater (and so production of leachate.) Even though the plans may be revised later, DER requires applicants for landfill construction permits to make plans for closure, before a construction permit is issued. Landfill operators must also make annual contributions to a trust fund to be used to close the landfill and to bear post-closure expenses, which include trucking leachate and monitoring groundwater. WACOC has already established the trust fund and deposited $100. As a condition of operating the landfill over the five years it proposes, WACOC must deposit one fifth of estimated closure and post-closure costs in the trust fund 60 days before beginning to fill, and another fifth annually (30 days after the anniversary date of the initial payment). The cost estimates are subject to revision annually. (I.T. 384, 843-4) Before closing a landfill, the operator must obtain a closure permit. The trust fund is not expected to absorb the costs of cleaning up polluted groundwater, if that should prove necessary. Local governments, which operate many landfills themselves, sometimes step in when problems with privately run landfills develop. ...A leak develops or something that would cost millions of dollars to address it and you don't have the insurance, you're out of business instantly. ...[WACOC's ability] to address a catastrophic situation that could develop with this is limited to how much capital they have. * * * ...[I]f you don't have some insurance, even if its $500,000 deductible,...if the problem occurs, you're gone. And if you don't have the capital to handle it, it will fall back in the taxpayer's lap which is typically what happens... . (II.T. 70-71) As WACOC's proposed finding of fact No. 12 concedes, WACOC's "liabilities are considerably in excess of its assets." Landfill operators are under no obligation to contract for environmental liability insurance, which is not readily available, in any event. WACOC proposes to cap Phase I with clayey sands excavated on site. The clay required to cap Phase I amounts to "ten acres of the surface by four feet deep, or one acre 41 feet deep." (II.T. 36) WACOC proposes to spread this quantity over all three cells, covering them with an 18-inch clayey sand blanket. On top of that, WACOC would place 18 inches of surficial sand and, finally, six inches of topsoil. The sands are readily available on site, but there is no topsoil to speak of. The clayey sand WACOC proposes to use as a foundation for the cap is too permeable to constitute an effective barrier. (B.T. 149,158), but WACOC could mix it with clay from off site or some other agent to render it less conductive of rainwater. The present plans do not call for mixing, however. High Density Polyethylene WACOC is proposing the synthetic liner underneath waste disposal cells and the leachate collection pond not as one component of a composite liner, (T.158) but as "the state of the art," (T.153) in and of itself. But "flaws in liners are a common occurrence." (IT. 698) After a liner has been laid down and covered with sand, "inadvertent cuts and nicks of unexplained origin" (IT.699) can and do occur. However conscientious, laborers hired as "root pickers" may miss an occasional rock. The plans only call for removal of objects larger than a quarter inch. High density polyethylene is a plastic. If laid over stone or other protuberances, "the plastic will flow away from that pressure point and eventually you will have a hole in the plastic." Id. An investigator examining 60 mil high density polyethylene used as landfill liner "found six pin-holes per acre, mostly associated with the seams, [an] average of 9.4 cuts [per acre] of unexplained origin, [and] 110 [perforations attributable to] rock protu[bera]nces per acre." (IT.705) In an EPA sponsored study, a liner manufacturer installed and third parties "did a careful job of inspecting," id., twelve "rather small" (IT.706) waste disposal cells. Eight of the twelve leaked. Even if holes did not let leachate escape, several carcinogenic, teratogenic, and mutagenic organic constituents of municipal waste leachate dissolve in liners like the one WACOC proposes, "diffuse through and are released on the other side." (IT.699) High density polyethylene is practically impervious to water: water vapor can move through it only at a rate of 1 x 10- 13 centimeters per second. But certain hydrophobic substances, including chlorinated hydrocarbons such as trichloroethylene and vinyl chloride, move readily through high density polyethylene, itself a "very hydrophobic material." (T.807) William T. Cooper, a chemistry professor who participated in developing DER's drinking water standards, appearing in this case as a witness for the objectors, testified: [O]ne of the major problems in doing this work [concerning organic pollutants in groundwater] is establishing . . . standards. In other words, we had to pollute water in a well defined way so that our machines would tell us there was a certain amount of pollution in the water. . . . . . . [W]e started using [p]olyethylene tubes into which we would put several different organic molecules for the very reason that these molecules diffuse so readily through the [p]olyethylene tubes that we could control the rate in which we were contaminating water for laboratory purposes. (IT.806) In order to calibrate their instruments, the scientists who developed drinking water standards for Florida relied on polyethylene containers' ability to transmit organic pollutants in solution inside a container to the water outside at a steady, predictable rate. Chemists think of polyethylene "as a condensed liquid . . . . [because] it has the ability to absorb molecules." (T.807) Water and polyethylene do not mix, however, just as oil and water do not; they are said to be immiscible and to form separate phases. When a third substance is dissolved in either of two immiscibles occurring together, the additive's molecules move between the two phases until equilibrium is reached. The concentration in one phase will differ from the concentration in the other, and both concentrations will depend on the amount of the additive introduced (until saturation), but the ratio of the two concentrations (the "distribution ratio" or "partition coefficient") will always be the same, at equilibrium. A chemist in Gundle's employ testified that any "organic solvents in the leachate . . . would tend to float on the aqueous phase." (T.406) But some hydrophobic organics, including trichloroethylene, are denser than water and would not float. (IT.831) Mr. Cadwallader, Gundle's chemist, conceded that organic materials are soluble in water "to a point of saturation, which typically is not very high . . . ." (T.425) The leachate's nonaqueous phase would occur to some extent, perhaps entirely, within the polyethylene liner. In this connection, the objectors' chemists' opinion, which Dr. Brown also shared, has been credited. For the same reasons Mr. Cadwallader "agree[d] that a liner would gain weight when it is immersed in a pure organic solution," (T423) the liner would swell, as a variety of organic pollutants diffused into it from the leachate. Such swelling has been reported in low density polyethylene. WACOC's Exhibit No. 18. With groundwater in contact with the outside of the liner, the organic pollutants with which the liner was swollen would diffuse into the groundwater, until groundwater touching the liner acquired organic pollutants in the same concentrations in which they occurred in the aqueous phase of the leachate standing on the liner. It is even possible that concentrations of certain hydrophobic organics would be higher outside the liner than inside. (IT.818) If indeed a nonaqueous phase floated on top of the leachate, it would serve to replenish the aqueous phase, as hydrophobic organics diffused into the liner to replace those diffusing out of the liner into the groundwater or soils on the other side. (IT.831) Site Hydrogeology Groundwater flow "mirrors the topography of the site." WACOC's Exhibit No. 1, Appendix B, p.6. On the Phase I site, it flows to the north and the northeast, toward the east branch of Mare Creek. At monitoring well 1, the flow is "about a 45-degree angle down and to the east northeast." B.T.119. Lining the disposal cells and the leachate collection pond with high density polyethylene would curtail recharge (and evapotranspiration) under the cells and the pond. The plan is to line the stormwater retention pond with the same clayey sands that fail to hold a water table. B.T.175 Percolation from stormwater ditches or, despite its lining, even from the retention pond might cause slight mounding of the groundwater under those structures. But construction of Phase I would not appreciably alter the general direction of the groundwater flow. To the extent mounding occurs beneath the stormwater retention pond, groundwater table elevations under proposed cell 3 would be higher than they otherwise would have been. Elsewhere, the cell liners should have the effect of lowering groundwater elevations below what they would otherwise have been, ignoring infiltration from stormwater ditches. Any changes may be very slight, since groundwater from recharge areas upslope apparently flows under the site. In February of 1988, piezometers were used to measure water table elevations on the Phase I site. Distance between elevations proposed for liners and the February 1988 water table varied, but were no less than nine feet at any point measured. Based on the February 1988 measurements, the design engineers assumed an unsaturated zone 25 to 30 feet thick. But, on October 11, 1988, the second day of hearing, the same piezometers (B.T. 19) disclosed much higher water table elevations. Near the creek, the water table had risen only 4.92 feet higher than it had been in February, but in the wells closest to cell 1, the October water table exceeded the February elevations by 11.33 and 11.41 feet. (B.T. 40) On October 11, 1988, the water table was "above the bottom of the liner of the proposed landfill in cell two, portions of cell two, a lot of it, portions of cell one and a corner of cell three," (B.T. 44) with "about two feet of water above the proposed liner in the corner of cell two." Id. The levels may have been considerably higher in September. Since periodic measurements have not been taken over the requisite year or two, the seasonal high water table on the Phase I site has not been determined. The height of the groundwater table depends on how quickly rainwater percolates down to the water table to replace groundwater lost to evapotranspirtation or subterranean flow offsite. Groundwater under the Phase I site discharges into the east branch of Mare Creek. The timing as well as the amount of rainfall figure in, because once the soils are saturated, rain runs off instead of infiltrating. Still monthly rainfall is a good indicator of how much water has percolated down to recharge an aquifer. No records of rainfall on the site itself exist, but statistics from sites not far away show that extraordinarily high rainfall in September of 1988 contributed to the groundwater elevations measured on October 11, 1988. At one or more wells on site, the water table dropped another foot between October 18 and October 26, 1988. CCE's Exhibit No. 36. Rainfall data suggest that in most years, "the actual peak high for a water table probably would be towards the end of August." (B.T. 95) At present, the surficial aquifer beneath the proposed landfill site contains potable water. People living in the area draw water from the surficial aquifer for drinking water purposes, in one case from a well only some 30 feet deep. The nearest well to Phase I is 3,000 feet away, on the other side of the east branch of Mare Creek. The surficial aquifer goes all the way down to the Alum Bluff group, 75 feet below ground. Saltwater intrusion threatens in southern Okaloosa County. By 1995, if its growth continues at the present rate, the City of Destin will require another, supplementary water supply. Plans to tap the Floridan in northern Okaloosa County include well fields in the Eglin Air Force Base area and north of Freeport. But the Floridan "won't supply all the future projected needs." (II.T. 16) Desalinization is expensive. Eventually Okaloosa County is "going to have to look further toward the use of surficial water," (II.T. 13) as a public water supply. Leachate Characteristics Leachate from municipal landfills has high biological oxygen demand, high salt content, and significant concentrations of metals and organics. (I.T. 699) Cleaning solvents, oil-based paint, furniture polish, spot removers, xylene, toluene and benzene are among common constituents of municipal waste. Lisa Stewart, who picks up garbage in northern Okaloosa County four days a week, has noticed "containers containing a substance" (II.T.137) bearing such labels as naphtha, methylene chloride, toluol, burnt motor oil, insecticides, fungicides, trichloroethane, oxalic acid, xylol, petroleum distillates, polyglycol ether, plasticizers, sulfuric acid, methanol, ethanol and sodium hydroxide. Scientists have found every chemical DER lists on its "primary or secondary water quality standard numeric list" (I.T. 697) in municipal leachate, as well as "about 20 chemicals that are known to [b]e carcinogenic, mutagenic or teratogenic which are not on that list." Id. At least some of this latter group can be anticipated at the proposed landfill, if it is built. The organic materials degrade only slowly; they have half-lives ranging from 20 to 50 years. (I.T. 698) Biochemical oxygen demand accounts for most of the stench to be expected from leachate standing in the leachate collection pond. The "combination . . . of hazardous waste from small quantity generators and from households we would expect to be somewhere in the range of five to 10,000 tons per year." (T.T.148) In order to predict the amount of leachate to expect, experts on both sides resorted to a mathematical model, known acronymically as HELP, for "Hydrological Evaluation Landfill Program." (T.689) These experts made assumptions about annual rainfall, the permeability of the cap materials which, after their initial excavation and stockpiling are destined to do double duty as a final cover for the landfill, and other factors, in order to calculate the amount of leachate likely to accumulate above the liner. WACOC's consultants calculated a head of 2.4 inches, assuming annual rainfall of 68 inches, and an unrealistically low permeability for the clayey sands under the Phase I site which are to be used for capping the Phase I cells as they attain their design heights of 90 feet above grade. Using WACOC's average vertical conductivity figure for the clayey sands of 6.2 X 10-7, without changing any other assumptions WACOC made in running the HELP model, yields a leachate head of 8.5 inches. Even if it were appropriate to use an average, this figure is low, because the permeability of materials recompacted in a laboratory is ordinarily ten times less than when the same material is compacted in the field. Here compaction "in the field" would occur on top of a mound of garbage. "[T]he system will be spongy." (I.T. 752) The HELP model makes no allowance for cracks in the cap, which are bound to occur, if WACOC closes the landfill as it proposes. As garbage degrades, it settles and sinks. This would cause shear planes or faults in the clayey sand cap, which cannot readily be detected, buried beneath sand, topsoil and vegetation. Estimating conservatively, "we could be dealing with twice as much water as we're calculating from the HELP model due simply to cracks in the facility." (I.T. 692) During those periods when the groundwater table is above the bottom of the disposal cell liners, groundwater infiltration through such imperfections as exist in submerged portions of the liners will increase leachate volume. Ignoring groundwater intrusion, cell 1 alone should produce 5,000 gallons a day of leachate the first year after closure. (I.T. 510-1). The applicant's own revised HELP model calculations put the leachate head at more than eight inches in a year in which rainfall on the site exceeded the annual average at Crestview by only eight percent (68 inches vs. 63 inches). A foot or more of head annually can be expected, taking into account cracks in the clay cap. Water Quality Monitoring WACOC's groundwater monitoring plan calls for a single well south and upgradient of the Phase I site to monitor "background" groundwater conditions, and a series of monitoring wells east and north of the site designed to detect any groundwater contamination the landfill may cause. WACOC's Exhibit No. 9, Sheet 11. Four of these downgradient wells would be placed by the eastern perimeter of the zone of discharge to measure compliance with DER's numeric water quality standards at that edge of the zone. Four other wells are planned within the zone of discharge. In addition, surface waters are to be monitored at seven points, five on the east branch of Mare Creek and two on the west branch, but none further south than the berm separating cell three from cells one and two. WACOC's own employees would take samples, arrange for their analysis and report the results to DER. Among the specified parameters are iron and chloride. As far as the record reveals, testing for sodium in addition would not make for earlier or more reliable leak detection. CCE's Exhibit No. 20. The suggestion that groundwater be tested for calcium assumed montmorillonite in the clayey sands, which the evidence did not show to be present. I.T. 988. According to a DER chemist, however, groundwater samples near landfills should be tested for volatile organic compounds (VOCs) by EPA method 601/602. Since VOCs always appear to be present in landfill leachate and they can be detected in the subparts per billion (ppb) range, the test is a particularly sensitive indicator for the presence of organics in landfill leachate. (CCE's Exhibit No. 20, p.2.) Also among the specified parameters is fecal coliform, which makes any other routine testing for bacteria superfluous. Given the economic consequences for WACOC if a leak is discovered, it might be well to require WACOC to contract with an independent third party to monitor, in the event the landfill is built. Since groundwater flow on site has a vertical as well as a horizontal component, monitoring requires appropriate placement not only of wells, but also of screens. One approach is to cluster wells so that a succession of screens covers the entire thickness of the aquifer. Monitoring well screens should not exceed 15 feet in length, in order to avoid dilution that might render contaminants indetectable. CCE's Exhibit No. 2. But a hydrogeologist with sufficient information could place screens within transmissive zones through which groundwater flowing underneath the disposal cells or the leachate pond is likely to move. B.T. 136 With respect at least to leachate constituents that do not diffuse through liners, monitoring groundwater to detect pollution is more difficult if a landfill is lined than if it is not, because contaminant plumes are larger if they emanate from larger sources. CCE's Exhibit No. 19. Unless monitoring wells were sunk at ten-foot intervals east and north of where leachate is to collect, it would be easy to miss the plume from a small leak, which might be destined to become a large leak. But even the objectors' experts do not "consider that very practical financially." (B.T. 135) Groundwater Pollution Both through imperfections in the synthetic liner and, as regards hydrophobic organic pollutants with low molecular weights, by diffusion directly through even flawless portions of the liner, pollutants in the leachate will escape into the environment, if WACOC builds the landfill it has proposed for Phase I. As far as can be told from the evidence, the groundwater table would never reach the bottom of the leachate collection pond, so that adsorption and diffusion in soils underneath the pond would attenuate the effect of any leakage there, before it could enter the groundwater. But the soils on site have very low adsorption capacity and very low biological activity. I.T.719 Leachate leaving unlined, northwest Florida landfills five feet above the water table have caused serious pollution problems. The evidence showed that the groundwater table would rise above portions of the lined bottoms of all three waste disposal cells, on which leachate will also be standing. This may occur infrequently, would not necessarily happen every year, and would last for only a few weeks and days at a time, but it was the condition that obtained at the time of the hearing, two months later than seasonal high groundwater should normally occur. When it does happen, "it's entirely possible the leachate will be the same concentration as the groundwater in contact with the bottom of the liner." I.T. 701. In any case, carcinogenic, mutagenic or teratogenic agents (I.T. 697), including up to 20 for which DER has not established numeric limits, would occur in the leachate, and some would enter the groundwater, violating the DER "free from" requirement. I.T. 777. Precise concentrations have not been forecast but, at least at times, over the course of the landfill's existence, the leachate would contain certain mutagenic substances for which no safe lower limit has been established. Nor did the evidence give reasonable assurance that violations of DER's numeric standards pertaining to the trichloroethylenes, the tetrachloroethylenes and vinyl chloride would be unlikely outside the zone of discharge. I.T. 771,781-2. It depends in part on the volume or rate at which leachate or these constituents leak. B.T. 94. The evidence showed they will leak at some rate, even where there are no flaws in the liner. In a test involving higher concentrations of trichlorethylene and other organics than are anticipated here, experimenters observed a "flow rate . . . on the order of 125 gallons per acre per day from concentrated organics." I.T. 702. In 27 acres of plastic, flaws are to be expected. Good intentions notwithstanding, the evidence showed holes in the synthetic liner should be anticipated, and taken into account in designing a landfill. The rate at which leachate will leak through these imperfections depends on their number, shape and size; and, as to each, the depth of the leachate above it and the permeability of the medium below it. A circular hole with a diameter of one- sixteenth of an inch will discharge liquid, standing on top of it a foot deep, at the rate of 70 gallons a day, into air, gravel or porous sand. The rate for a similar hole with a diameter of one-eighth of an inch is 192 gallons per day. In the event of a leak above or near an area like the one into which the seep sank in the borrow pit, the soil would not slow the rate of leakage. (I.T. 718) Otherwise, for a given leachate head, the conductivity of the soil (if unsaturated) would determine the leakage rate. "[T]here will be less depth higher up the liner." I.T.760. But where the liner is lowest and the leachate deepest, the liner will lie over the loose sands that occur beneath the clayey sands. Rating tests demonstrated considerable variability in the hydraulic conductivity of all of the sands tested. Piezometer readings on October 18 and 26, 1988, showed how they transmit water as a unit. In eight days the water table (which is only at atmospheric pressure) fell a foot. The clayey sands would not prevent leachate's leaving the waste disposal cells and entering the groundwater, although in some places (where the leachate has less depth), they would slow the rate of leakage. "We could get tens of thousands of gallons [annually] leaking out of a 27-acre site which this is through holes." (I.T. 707) With groundwater in contact with portions of the liners, the leakage rate there would depend on the relative elevations of the groundwater table and the leachate standing on the liners. If the groundwater table were higher, upward pressure might push groundwater into the disposal cells, disminishing or even preventing leachate leakage until the water table fell below the height of the surface of the leachate. But, when that happened, direct discharge of undiluted leachate can be expected, directly to the groundwater, as long as groundwater abutted a flaw in the liner. DER's rules do not apply the numeric standards underneath or within 100 feet of waste disposal cells, which the rules denominate a "zone of discharge." Whether numeric standards are violated at the edge of the zone of discharge depends not only on the leakage rate, but also on where the leak occurs, on the velocity of the groundwater, and on pollutant concentrations in the leachate. Calculations taking all these factors into account have not been done for WACOC's Phase I. But credible expert testimony predicted such violations would eventually occur outside the zone of discharge. I.T.771. Synthetic liners like the one WACOC proposes are usually placed on top of three feet of highly impermeable, mineralogically suitable clay. "A clay liner...will retain organics to a greater extent than a synthetic liner." I.T. 823. Using it as proposed here, where it would come into direct contact with groundwater, does not give reasonable assurance that groundwater pollution will not occur.
Recommendation It is, accordingly, RECOMMENDED: That DER deny WACOC's application for a permit to construct a class I landfill in Okaloosa County. DONE AND ENTERED this 14th day of April, 1989, in Tallahassee, Florida. ROBERT T. BENTON, II Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904)488-9675 Filed with the Clerk of the Division of Administrative Hearings this 14th day of April, 1989. APPENDIX DER's proposed findings of fact Nos. 1, 7, 11, 12, 14, 15, 17, 18, 21, 22 except for the last sentence, which is rejected, 23, 24, 25, 32 except for the last sentence, which is rejected, 38, 45, 46, 48, 49 except for the last sentence, which is rejected, 50, 52, 54, 56 except for the last sentence, which is rejected, 57, 58, 59, 60, 62 except for the sentence "DER has no rule prohibiting contact of the liner with ground water," 63, 65, 66 except for the second clause which is rejected, 67, 69, 72, 73, 78, 79, 80, 81, 83 and 85 have been adopted, in substance, insofar as material. With respect to DER's proposed finding of fact No. 2, the intent to issue is dated April 1, 1988. With respect to DER's proposed finding of fact No. 3, financial feasibility was not demonstrated but is not material under the rules. With respect to DER's proposed findings of fact Nos. 4, 5 and 6, closure cost estimates assume the suitability of the clayey sands on site as a cap, which the weight of the evidence did not establish to be the case. With respect to DER's proposed finding of fact No. 8, the use of a high density polyethylene membrane, without more, to keep hydrophobic organic materials out of abutting groundwater is not proven technology, as far as the evidence showed. With respect to DER's proposed finding of fact No. 9, the rules do not require environmental liability insurance. DER's proposed findings of fact Nos. 10, 19, 20, 26, 35, 37, 44, 55, 61, 71, 74, 75, 77, 82, 86 and 87 are rejected as unsupported by the weight of the evidence, without comment. With respect to DER's proposed finding of fact No. 13, the fact that a synthetic liner separates solid waste from the groundwater does not make it permissible to deposit solid waste in groundwater. While the October readings did not prove that groundwater would rise above the sand in which the leachate will collect to touch the solid waste itself, September's rainfall, the rate at which the water table dropped between October 18 and 26, 1988, and the probability of defects in the liner showed that this was a realistic possibility. With respect to DER's proposed finding of fact No. 16, two percent of the materials disposed of in municipal sanitary landfills are hazardous in a chemical, if not legal, sense. With respect to DER's proposed finding of fact No. 27, the "state of the art" use of high density polyethylene liners is as one component of a composite liner, or even as part of a double liner system, at a hydrogeologically suitable location. This material works well for some purposes and not at all for others. With respect to DER's proposed finding of fact No. 28, there was no showing that any other Florida landfill has been placed so as to come into contact with the groundwater table, or that a synthetic liner has ever been used for a landfill without clay; synthetically lined landfills have only recently been installed in Florida, and detection of leaks from lined landfills is difficult. With respect to DER's proposed finding of fact No. 29, since uncontaminated water is not a pollutant, it is not a permeant of concern. With respect to DER's proposed finding of fact No. 30, the evidence showed that under ideal, test conditions, 8 of 12 liners leaked. Under actual field conditions leaks exceeded 100 per acre. The weight of the evidence makes it unreasonable to conclude that 27 acres of plastic can be laid down in Okaloosa County without any flaws. With respect to DER's proposed finding of fact No. 31, the rate of 192 gallons per day assumed gravel or porous sand which offers essentially the same resistance as air; there is no sandy clay anywhere on site, as far as the evidence showed; more than 18 feet below the surface, where most of the liner is to be laid, there are not even clayey sands, according to WACOC's own expert; the sands that do occur there include loose sands with a permeability greater than 4.9 X 10-4; and include numerous gravel beds; the .00022 gallons per day calculation assumes a hole a quarter as large (half the radius of Dr. Brown's) and ignores horizontal hydraulic conductivity. The fact that the water table dropped a foot in about a week demonstrates that the soils cannot be counted on to contain the leachate underneath flaws in the liner. With respect to DER's proposed findings of fact Nos. 33 and 34, Haxo's results were consistent with their conclusions but explicitly not the only basis for them. Gundle's chemist conceded that hydrophobic organic materials diffuse through high density polyethylene. His opinion that an accumulation in the soils on the other side would equalize concentrations and stop further diffusion did not take into account groundwater abutting the liner, and flushing the soils. The liner absorbs materials; but adsorption does not take place there. Transportation and dispersion need not be known as to "free froms." On page I.T. 777, Dr. Brown testified that diffusion would cause violations of DER's regulations, and this testimony has been credited. With respect to DER's proposed finding of fact No. 36, the swelling of the liner with organic materials is evidence of the diffusion which would result in organic materials' entering the groundwater. With respect to DER's proposed findings of fact Nos. 39 and 41, one inch of leachate in all three cells amounts to 2.25 acre feet, which is more than a "little." Calculations have not been done. With respect to DER's proposed findings of fact Nos. 40 and 42, no allowance was made for cracks in the cap material (which cannot be seen under the vegetation, topsoil and drainage sand layer.) With respect to DER's proposed finding of fact No. 43, a much greater leachate head than within the waste disposal cells may occur depending on where the marker is placed, but hydrophobic organics diffusing through the liner and absorbing in the soils would not be flushed out by groundwater. Except for the last sentence, this proposed finding of fact reflects the weight of the evidence. With respect to DER's proposed finding of fact No. 47, some water will evaporate. With respect to DER's proposed finding of fact No. 51, monitoring wells 8 and 9 are both more than 100 feet from waste disposal areas. The evidence did not show that the monitoring wells "can be expected to detect any contamination." With respect to DER's proposed finding of fact No. 53, DER's experience also suggested testing for volatile organic chemicals. With respect to DER's proposed finding of fact No. 64, the rate of decline also suggests that the water table was as higher elevations than those measured. An applicant must give reasonable assurance that pollution in violation of DER rules will not occur under foreseeable, recurring conditions, including during those times the liner is submerged. With respect to DER's proposed finding of fact No. 65, the proposed finding is adopted, as regards physical tears. With respect to DER's proposed finding of fact No. 68, the proposed finding is adopted, except for leakage through the liner, sometimes directly to groundwater. With respect to DER's proposed finding of fact No. 76, clayey sands were not reported below 18 feet. The difficulty with the groundwater monitoring plan is not the soil characterization, but the number of wells. Because synthetic liners leak, clay mineralogy is important to know. No clay is proposed here, however. With respect to DER's proposed finding of fact No. 84, effective odor control would also entail emptying the leachate pond regularly. WACOC's proposed findings of fact Nos. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 17, 19, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 37, 38, 42, 43, 45 50, 58, 61, 64, 66, 70, 71, 72, 75, the first sentence of No. 76, Nos. 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94, 96, 97, 99, 100, 101, 102, 103, 104, 105, and the first sentence of 113 have been adopted in substance, insofar as material. With respect to WACOC's proposed finding of fact No. 11, the current tonnage figures appear in the application but their accuracy has not been established by competent evidence. With respect to WACOC's proposed finding of fact No. 12, projected profits depend on various problematic assumptions. With respect to WACOC's proposed finding of fact No. 16, the initial payment was $100. With respect to WACOC's proposed finding of fact No. 18, the cost estimate's reasonableness depends largely on what it would cost to obtain suitable material for a cap, which is not clear. With respect to WACOC's proposed finding of fact No. 20, Scott had independent knowledge of the availability and cost of clay. With respect to WACOC's proposed finding of fact No. 21, the proposed finding accurately reflects the evidence, with the qualification that the layer of dense orange clayey medium to fine sand also contains some coarse sand and fine gravel. With respect to WACOC's proposed finding of fact No. 22, the water table will be below the liner most, but not all, of the time. With respect to WACOC's proposed finding of fact No. 28, see the discussion of DER's proposed finding of fact No. 13. WACOC's proposed findings of fact Nos. 29, 59, 63 and 78 are rejected as contrary to the weight of the evidence, without comment. With respect to WACOC's proposed finding of fact No. 30, hazardous materials will end up in the landfill. With respect to WACOC's proposed finding of fact No. 39, the liner's permeability depends on the permeant. Although it is almost impervious to water, hydrophobic organics move readily through. Clay is a much better liner for those materials. With respect to WACOC's proposed finding of fact No. 40, the Gundle liner by itself is not the state of the art in Florida or anywhere else for municipal sanitary landfills. Proposed conclusions of law are addressed elsewhere. With respect to WACOC's proposed finding of fact No. 41, in the puncture test, the liner withstood a probe exerting 270 ponds of pressure. With respect to WACOC's proposed finding of fact No. 44, there are no clayey sands at the depth proposed for the deeper portions of the waste disposal cell liners, as WACOC's proposed findings of fact Nos. 21 and 27, taken together reflect. With respect to WACOC's proposed finding of fact No. 46, as the manufacturer's representative said, "these liners are a part of the quote unquote state of the art requirement for lined hazardous waste facilities." I.T. 404 (emphasis supplied). The other part is three feet of clay, not sand, underneath. With respect to WACOC's proposed finding of fact No. 47, it depends on the hazardous waste facility. A DER chemist, Mr. Watts, recommended monitoring groundwater near a municipal landfill for volatile organic chemicals. While most municipal garbage is not toxic, leachate from municipal waste is toxic. With respect to WACOC's proposed finding of fact No. 48, the testimony was that the groundwater pollution at Wright landfill was "most likely" from unlined cells. No lined landfill in DER's Northwest District has been built below the groundwater table as far as the evidence showed. With respect to WACOC's proposed finding of fact No. 49, While municipal leachate constituents should not corrode the liner, many can diffuse through it. With respect to WACOC's proposed finding of fact No. 50, some two percent of the waste stream will still be hazardous materials. With respect to WACOC's proposed finding of fact No. 51, some organic materials will sink, rather than float. The sand within which the leachate will accumulate will not extract or absorb organic constituents of the leachate, as far as the evidence showed. With respect to WACOC's proposed finding of fact No. 52, removal is first to the leachate collection pond, also lined with high density polytheylene. With respect to WACOC's proposed finding of fact No. 53, it is wholly improbable that 27 acres of plastic will be installed "without physical flaws." Leakage could exceed 10,000 gallons a year. With respect to WACOC's proposed finding of fact No. 54, not all organic materials diffuse though high density polyethylene. Dr. Haxo's views on WACOC's proposal are not a matter of record. The 448-page EPA Study discusses containment techniques. With respect to WACOC's proposed finding of fact No. 55, the Haxo studies are pertinent although they do not purport to replicate a landfill precisely. In some studies he used concentrations of a single organic that were comparable to the concentrations of organics as a whole in municipal leachate. With respect to WACOC's proposed finding of fact No. 56, direct discharge of leachate into the groundwater, even in small quantities could violate the "free from" standards as could diffusion into the groundwater of carcinogenic, teratogenic or mutagenic, hydrophobic organic materials. With respect to WACOC's proposed finding of fact No. 57, CCE's experts' views about synthetic liners coincided in important respects with those of Gundle's chemist. There is no clayey layer where much of the waste disposal cells' liners are supposed to go. Given the certainty of leakage directly to the groundwater, it is the applicant's burden to do quantative analysis. With respect to WACOC's proposed finding of fact No. 60, there are no data for the site itself. The available data are incomplete. With respect to WACOC's proposed finding of fact No. 62, the February water level is likely to be more common than the October water level. The weight of the evidence did not establish that "under normal conditions the water level should fluctuate no more than five feet." With respect to WACOC's proposed finding of fact No. 64, the proposed finding reflects the evidence except for the final sentence. *** With respect to WACOC's proposed findings of fact Nos. 67, 68 and 69, it is inappropriate to schedule pumpout times at this stage. But it is appropriate to consider above average annual rainfall. Annual leachate production differs from the amount of head at any one time. With respect to WACOC's proposed finding of fact No. 73, the design engineer suggested Roto-Rooter. With respect to WACOC's proposed finding of fact No. 74, intersection should not occur. With respect to WACOC's proposed finding of fact No. 77, municipal landfills are not viewed as hazardous waste generators under federal law. With respect to WACOC's proposed finding of fact No. 82, the second sentence was not proven. With respect to WACOC's proposed finding of fact No. 84, there may be some infiltration. With respect to WACOC's proposed finding of fact No. 89, it would be very expensive to place enough monitoring wells to assure detection of any leaks. Placement of screens should be less of a problem than sinking enough wells. With respect to WACOC's proposed finding of fact No. 91, the Watts memo's suggestion of testing for volatile organic chemicals should give additional assurance. With respect to WACOC's proposed finding of fact No. 95, two percent of the waste stream can be anticipated to consist of hazardous materials. With respect to WACOC's proposed findings of fact Nos. 106, 107, 108 and 109, the proposed clayey sand materials used in the thickness proposed would not create the barrier claimed. Modifications not proposed in the application are possible. With respect to WACOC's proposed findings of fact Nos. 110, 111 and 112, WACOC has not given reasonable assurance that pollution of the groundwater in violation of DER water quality standards would not occur; or that no more than a foot of leachate would stand on the liner. COPIES FURNISHED: Herbert H. Huelsman Anna M. Huelsman 608 Ironwood Drive Fort Walton, FL 32548 Debra Swim, Esquire 1323 Diamond Street Tallahassee, Florida 32301 Bruce A. McDonald, Esquire Post Office Box 887 Mary Esther, Florida 32569 William L. Hyde, Esquire Roberts, Baggett, Laface & Richard Post Office Drawer 1838 Tallahassee, Florida 32302 Chris McGuire, Esquire Department of Environmental Regulation Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32399-2400 Dale H. Twachtmann, Secretary Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, FL 32399-2400 =================================================================
Findings Of Fact On November 1, 1985, Broward County filed an application with the Department of Environmental Regulation (Department) for a solid waste construction permit, and on August 23, 1985, an application for a dredge and fill permit. The permits would have allowed Broward County to construct a Class I landfill in southwestern Broward County, Florida. On April 19, 1986, the Department gave notice of its intent to issue the requested solid waste permit, and on November 13, 1986, gave notice of its intent to issue the dredge and fill permit. Petitioners filed a timely request for formal hearing on each permit, and their petitions were consolidated for hearing.
Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED: That the solid waste permit and the dredge and fill permit sought by Broward County be ISSUED. DONE AND ORDERED this 18th day of May, 1987, in Tallahassee, Florida. WILLIAM J. KENDRICK Hearing Officer Division of Administrative Hearings The Oakland Building 2009 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 18th day of May, 1987.
The Issue Whether the costs incurred by the Department of Environmental Protection, Bureau of Emergency Response (Department) in connection with its response to Incident Number 95-SE-0248 may be recovered from Petitioners pursuant to Chapters 376 and 403, Florida Statutes.
Findings Of Fact The Department is a state regulatory agency charged with the responsibility of administering and enforcing the provisions of Chapters 376 and 403, Florida Statutes. Spill Response, Inc. (Spill Response) is a corporation which was formed in approximately 1986 or 1987, and is presently inactive and without any assets. At all times material to the instant case, George Gordon has been the sole owner, president and director of Spill Response, and, as such, has directed the operations of the corporation. Spill Response was previously in the oil spill response business, as its name suggests. At such time, it had an office in Port Everglades and stored its equipment on fenced and gated property located at 3211 Southwest 50th Avenue, Davie, Florida, on which approximately a dozen large aboveground petroleum storage tanks (surrounded by concrete containment areas) also were situated. At all times material to the instant case, the property located at 3211 Southwest 50th Avenue, Davie, Florida (FPR site) has been owned by Florida Petroleum Reprocessors, Inc. (FPR), an inactive corporation that previously was in the waste oil recovery business. The FPR site, which is presently FPR's only asset, is the subject of a pending foreclosure action initiated by Charles Green, who, at all times material to the instant case, has held a first mortgage on the property. At all times material to the instant case, George Gordon has been the president and director of FPR, and, as such, has directed the operations of the corporation. In the latter part of 1994, the storage tanks on the FPR site were no longer in commercial use. At that time, Gordon, on behalf of FPR, hired Fred Rice to clean and maintain the site in preparation for its closure. Rice was instructed to remove the petroleum residue and sludge from the tanks and from the containment areas. Rice engaged in these petroleum and sludge-removal activities on a part-time basis until the spring of 1995, when he stopped working on the project after not having received timely payment for work he had performed. Rice placed the petroleum residue and sludge that he had removed, as well the rags and other materials that he had used in the removal process, in 55-gallon drums. He filled approximately six or seven such drums. A number of other 55-gallon drums containing petroleum residue and sludge (that some person or persons other than Rice had filled) were already on the FPR site. Rice put the six or seven drums that he had filled on a truck that was parked on the site and had “Spill Response, Inc.” and “Florida Petroleum Reprocessors, Inc.” markings on its sides. The truck was owned by Spill Response and had been on the site for some time. It had no battery and was inoperable. Rice told Gordon that he had put the drums he had filled with petroleum residue and sludge on the Spill Response truck. The next time Gordon went the FPR site, in late May of 1995, he discovered that the locks on the gates had been changed and that there were vehicles and equipment on the property that did not belong there. Gordon telephoned the Davie Police Department to complain about the unauthorized use of the FPR site. A police officer was dispatched to the site to investigate. When the officer arrived on the scene, he encountered Gordon outside one of the gates. Although the gate was locked, Gordon and the officer gained access to the site by squeezing through an opening in the gate. Upon entering the site, they looked around. Based upon what they saw, they correctly "figured out" that Certified Crane and Rigging, Inc., d/b/a Certified Equipment Management Company (Certified) was storing its crane equipment and trucks on the site. At all times material to the instant case, Certified has been owned and operated by William "Skip" Walton. Walton is an acquaintance of the aforementioned Charles Green, the holder of the first mortgage on the FPR site. Certified's telephone number was painted on the equipment and vehicles it was storing on the FPR site. The police officer called the number and spoke with Walton. Following his telephone conversation with Walton, the officer informed Gordon that Walton had indicated, during the conversation, that he was leasing the FPR site from Green. Gordon advised the officer that he did not want to press criminal charges (for trespassing) against either Certified or Walton. Gordon subsequently telephoned Green. Green told Gordon that it was true that he had leased the FPR site to Walton. Green explained to Gordon that he "needed to earn some money from the property." (It had been some time since Green had received any mortgage payments from FPR or Gordon.) Gordon contacted his attorney to discuss with her what legal action, if any, he could take to regain possession of the FPR site and be compensated for the unauthorized use of the property. Gordon's attorney advised him that he "would have recourse if [he] wished to pursu[e] the matter in court," but that it might not be cost-effective for him to do so. Gordon took no action, "in court" or otherwise, to regain possession and control of the FPR site; nor did he take any action to retake possession and control of the Spill Response truck or the filled drums that were in the truck and elsewhere on the site. Furthermore, he made no effort to make sure that the drums and their contents were stored and disposed of properly, believing that the proper storage and disposal of these items were now the responsibility of the new occupant of the site. He did not return to the FPR site for over a year. On or about June 6, 1995, the Department was notified (after its regular business hours) that the Spill Response truck had been discovered abandoned on the side of the road a few blocks from the FPR site. The following day,1 Ann Meador, an Environmental Specialist III with the Department, went to the location where the truck had been abandoned and served as the Department's on- scene coordinator. The truck was in poor condition and still inoperable. It had been brought (not driven) to the location by someone other than Gordon. The truck contained 37 sealed 55-gallon drums, which were in poor condition (but not yet leaking) and had oil residue on the outside. It could not be reliably determined exactly what was in the drums without removing them from the truck and examining and analyzing their contents. Meador made arrangements for OHM Remediation Services Corporation (OHM), with whom the Department had a contract to perform such services on an emergency basis, to assist in the removal of the drums from the truck. OHM personnel (with "Level B" protective clothing and equipment) responded to the scene and removed all 37 drums from the Spill Response truck. After the drums were unsealed, their contents were examined and sampled to the extent possible2 (as were the contents of three additional drums which were filled with the "Level B" protective clothing and equipment that OHM personnel had used during the cleanup operation and then discarded). Each of the drums was assigned a number for identification purposes. To save time and money, samples from some of the drums were composited. The drums were then overpacked and taken to the Department’s hazardous waste storage facility in West Palm Beach, Florida. The Department paid OHM $7,046.93 from the Water Quality Assurance Trust Fund for the services OHM performed. In requesting OHM to perform these services and in paying OHM $7,046.93 for having done so, the Department acted reasonably and prudently. The amount it paid OHM was not excessive. The Department hired Laidlaw Environmental Services (Laidlaw) to analyze the samples that OHM had collected and to then properly dispose of the drums and their contents. Laidlaw's analysis revealed the following: drums numbered 1, 2, 3, 4, 5, 9, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 34, 35, 36, 37, and 38 contained oily sludges, oil, oil mixed with water, or oily residues; drum numbered 6 contained benzene and had a flash point between 73 and 140 degrees Fahrenheit; drum numbered 29 contained benzene and lead and had a flash point of less than 73 degrees Fahrenheit; drums numbered 10 and 11 contained benzene and lead; drums numbered 7, 8, 31, 32, 33 and 39 contained benzene, lead, and cadmium. Laidlaw properly disposed of the drums based upon the results of its analysis. The Department paid Laidlaw $21,163.90 from the Water Quality Assurance Trust Fund for the services it performed. In requesting Laidlaw to perform these services and in paying Laidlaw $21,163.90 for having done so, the Department acted reasonably and prudently. The amount it paid Laidlaw was not excessive. The Department reasonably incurred other expenses (also paid from the Water Quality Assurance Trust Fund) totaling $129.82 in connection with its response to the report it had received concerning the abandonment of the Spill Response truck. The total amount the Department paid from the Water Quality Assurance Trust Fund to have the drums on the truck properly removed and disposed of was $28,340.65. It was not until Gordon received a letter from the Department advising him of the costs the Department had incurred and requesting that Spill Response and he reimburse the Department for these costs that Gordon became aware of the fact that the truck and the drums had been moved from the FPR site.
Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that a Final Order be entered by the Department finding that it is entitled to recover from Petitioners, pursuant to Chapters 376 and 403, Florida Statutes, the $28,340.65 in costs the Department reasonably incurred in connection with its response to Incident Number 95-SE-0248. DONE AND ENTERED this 8th day of June, 1998, in Tallahassee, Leon County, Florida. STUART M. LERNER Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 Filed with the Clerk of the Division of Administrative Hearings this 8th day of June, 1998.
The Issue The issue presented is whether Respondents, Holmes Dirt Service, Inc., and William J. Holmes, are in violation of various rules and regulations as alleged in the Notice of Violation issued by Petitioner, Department of Environmental Protection (Department).1
Findings Of Fact The Parties The Department is charged with the duty to administer and enforce the provisions of Chapter 403, Florida Statutes, and the rules promulgated thereunder in Chapter 62, Florida Administrative Code. Respondent, Holmes Dirt Service, Inc. (Holmes, Inc.), is a Florida corporation authorized to do business in the State of Florida. Holmes, Inc., along with William J. Holmes (Holmes), is responsible for the operation and management of a solid waste facility permitted by the Department under the name "Holmes Fill Dirt Landfill" (Facility). Holmes is a citizen of the State of Florida. Holmes was also the Director of Holmes Dirt Service, Inc. Background On or about August 24, 1998, the Department issued Permit/ Certification No. SO42-0133361-001 to Holmes Fill Dirt Landfill for the operation and management of a C & D disposal facility. The permit was sent to the attention of Holmes and had an expiration date of August 24, 2003. This was a renewal permit, with the initial permit issued in or around 1993. On or about June 26, 2000, Respondents notified the Department that the facility was temporarily closed. The Facility has remained closed since that time. Holmes, Inc., and Holmes own and operate the Facility known as Holmes Fill Dirt Landfill Holmes testified by deposition that he received a Conditional Use Permit from Marion County to operate the Facility. This permit expired on June 1, 2000. The Facility has been closed since at least June 1, 2000, although it has not been officially closed pursuant to Department rules.2 The Facility has not received any additional C & D material after June 1, 2000. On December 17, 2001, the Department issued a Notice of Violation to Holmes, Inc., and Holmes. On June 3, 2002, Respondents requested an administrative hearing before the Division. Count I-Failure to Provide Department with Adequate Financial Assurance Documentation In Count I, the Department alleges "that from June 2000, to the present, Respondents have failed to provide the Department with adequate financial assurance documentation." On June 4, 2001, the Department sent Respondents a letter advising that the financial assurance documentation was inadequate. (Respondents admit the letter was sent, but deny their documentation was inadequate.) The Department specifically contends that Respondents did not provide an annual update of the closing costs to the Department and that the assurance bond, previously issued in 1998, see Finding of Fact 11, was no longer acceptable to the Department. Rule 62-701.730(11), Florida Administrative Code, requires an owner or operator of an off-site construction and demolition debris disposal facility to provide to the Department proof of financial assurance "issued in favor of the State of Florida in the amount of the closing and long-term care cost estimates for the facility." This information is required to be submitted with the permit application for the facility. Financial assurance is required should the State of Florida have to take over closure or long term care of a facility. On May 29, 1998, Holmes, Inc., and Holmes (as Vice President of Holmes Inc.) entered into a Trust Agreement with United Southern Bank, as Trustee, to provide financial assurance for the Facility. This agreement contained a cost estimate of $76,551.72 for closure and post-closure of the Facility. On April 29, 1998, a bond was executed between Holmes, Inc., and Frontier Insurance Company (Frontier) in this amount. Thus, when the C & D permit was renewed in 1998, Respondents obtained financial assurance in the form of a closure cost/long-term care bond from Frontier. Rule 62-701.630(3), Florida Administrative Code, pertaining to "cost estimates for closure," provides that the owner or operator shall estimate the total closure cost for the permitted potions of the landfill for the period in the operation "when the extent and manner of its operation make closing costs most expensive." Rule 62-701.630(4)(a)-(d), Florida Administrative Code, pertaining to "cost adjustments for closure," requires the financial assurance to be updated annually to account for the inflation factor of 1.01. Once a bond is in place, as here as of 1998, these subsections require the permittee, here Holmes Inc., to provide the Department, on an annual basis, with an update to the closure cost, which includes the inflation factor. Additionally, the Department requires notification from the owner or operator that the annual update has been made. Prior to 2001, there was no set time for a facility to report this information. As of 2001, each facility was required to report by March 1 of each year. In 2000, the Department's Tallahassee office notified its Central District Office that the financial assurance for the Holmes Fill Dirt Landfill was inadequate. On June 14, 2000, the Central District Office mailed a letter to the Holmes facility notifying Respondents that there was a problem with financial assurance in that as of June 1, 2000, Frontier was no longer listed as an acceptable surety and, as a result, Respondents were requested to "submit proof of alternate financial assurance," or risk an enforcement action. A letter dated November 15, 2002, from Frontier to Judith Holmes, who is listed in the letter as the President of Holmes Dirt Service, Inc., was sent to Respondents to notify them that premiums were still due and outstanding on their closure/long-term care financial assurance bond for the past two years. This letter also informs that it was the position of Frank Hornbrook of the Department "that all of the requirements covered by our bond have not been satisfied and our bond has not been officially closed by the obligee. As a result, this bond still carries liability and premiums due." (The Department does not release a bond until a facility is officially closed and the Facility is not officially closed.) Invoices for "01/02 and 02/03 renewal premium due" were enclosed with the letter. Holmes admitted that the premium is past due and that he has no money to pay the premium. Even though the bond renewal premiums are past due, there is no persuasive evidence that Frontier has been relieved of its obligations under the bond issued in 1998. Rather, the Department wants a replacement bond from Respondents, but the original bond will remain in place until a replacement bond is furnished by Respondents. In fact, the Department will look to Frontier for potential payment under the 1998 bond, if necessary. However, Respondents have not provided the Department with the inflation update financial assurance in 2001. As a result, the current financial assurance for Holmes Fill Dirt Landfill is inadequate. Count II- Failure to Provide Ground Water Monitoring Reports The Department alleged that from "June 2000 to June 2001, Respondents failed to sample and analyze the ground water in accordance with the approved ground water monitoring plan for two consecutive sampling events." Respondents admit these allegations. Apparently, the last report was submitted to the Department in 2000. The Department does not allege that the ground water on and off-site violate Department rules. Holmes testified during a deposition that "the water tests have been clean. . . . until he stopped the sampling process." Holmes says he does not have "any money"--"[he is] broke." Count III-Objectionable Odors The Department alleged that "[d]uring the period June 2000 to the present, the Department has received numerous complaints from residents in the area, alleging objectionable odors emanating from the landfill." Respondents deny that there have been "objectionable odors." Chapter 62-701, Florida Administrative Code, pertains to "Solid Waste Management Facilities." Rule 62-701.730(7)(e), Florida Administrative Code, provides that C & D debris disposal facilities "shall be operated to control objectionable odors in accordance with Rule 62-296.320(2), F.A.C. If objectionable odors are detected off-site, the owner or operator shall comply with the requirements of paragraph 62-701.530(3)(b), F.A.C."3 Rule 62-701.200(84), Florida Administrative Code, incorporates the definition of "objectionable odors" found at Rule 62- 210.200(181), Florida Administrative Code. "Odor" is defined as "[a] sensation resulting from stimulation of the human olfactory organ." Rule 62- 210.200(182), Florida Administrative Code. Rule 62- 210.200(181), Florida Administrative Code, defines an "objectionable odor" as "[a]ny odor present in the outdoor atmosphere which by itself or in combination with other odors, is or may be harmful or injurious to human health or welfare, which unreasonably interferes with the comfortable use and enjoyment of life or property, or which creates a nuisance." Rule 62-296.320(2), Florida Administrative Code, provides that "[n]o person shall cause, suffer, allow or permit the discharge of air pollutants which cause or contribute to an objectionable odor." See also Rule 62-210.200(19)-(20), Florida Administrative Code. Joint Exhibit I is a study currently being done by Professor Timothy Townsend, Ph.D., of the University of Florida, Department of Environmental Services, which states that disposal of drywall, which contains gypsum, has caused hydrogen sulfide generation ("rotten egg" smell) at numerous C & D landfills in Florida. (Dr. Townsend is recognized as an authority on landfills.) Further, the primary constituents in the gas creating the problem is, among other reduced sulfur compounds, hydrogen sulfide. The main ingredient for these compounds is gypsum drywall. The study finds that hydrogen sulfide possesses a very strong odor at very low concentrations and is known to be toxic at high concentrations. The discussion of human health impact with regard to odor problems is raised and culminates with the observation that while hydrogen sulfide concentrations in ambient air surrounding C & D waste landfills are less than those thought of as harmful, some studies indicate that long- term exposure even to low concentrations can have a health impact.4 Holmes admitted that there is an odor problem at the Facility caused by gypsum and drywall and that the odor is worse in rainy weather. Holmes also admitted attempting to correct the problem by previously inviting individuals from the University of Florida to the facility, but reported that there was nothing they could do at that time, except for keeping the area covered with dirt. Individuals residing near the Facility offered opinion testimony that they suffered various problems resulting from the odor emanating from the Facility. Neighbor Charles F. LaBell, who resides 500 to 600 feet from the landfill, testified that the odor began as a rotten egg smell and evolved into what they "assumed was a hydrogen sulfide" odor. Mr. LaBell testified to being familiar with the odor of hydrogen sulfide due to his work experience at a wastewater treatment plant. Mr. LaBell further stated that the odor was unpredictable and not constant, but he equated rainy periods and "foggy mornings" with times when the odor would occur. The neighbors have found that outdoor activities have been severely impacted, resulting in a loss of use of portions of their property and diminished enjoyment of their outdoor life. Neighbor Donald L. Strickland confirmed Mr. LaBell's testimony, stating, in part, "You can't go outdoors, you can't stand it." James Bradner, an employee with the Department for twenty-three years and current manager of the Department's solid and hazardous waste program, offered opinion and expert testimony on the issue of odor problems at C & D debris disposal facilities. Mr. Bradner has served in a technical advisory capacity to a technical awareness group on odors caused by gypsum drywall in C & D debris facilities and has had experience at various C & D debris facilities in the State of Florida contending with odor problems. Mr. Bradner has experienced hydrogen sulfide odors at water treatment plants and would characterize the odor as a rotten egg odor. He has also had experience with C & D debris disposal facilities dealing with gypsum-related odor problems and testified that there are various methods to deal with the odor problems, such as putting an impervious cap (excluding water and liquids) of a clay liner and actually closing the Facility. Mr. Bradner has never been on the Facility site. The Department's rules do not define "health." Odor is a subjective measure, according to Mr. Bradner. Department employee John Turner was responsible for taking air samples in order to assess the odor problems at the Facility. Mr. Turner has been with the Department for 26 years, and in his experience with the Department, has smelled the rotten egg odor of hydrogen sulfide at sewage treatment plants and municipal solid waste facilities. Mr. Turner met with neighbors residing near the Facility as a results of complaints of odor. He visited the Facility five times to collect air samples. He detected an odor during his initial three visits, but did not take any samples because the aired smelled was not representative of a strong odor. For Mr. Turner, during each visit, the odor was the same in quality. There was some variation in strength. "It was periodic in some cases and less periodic in other cases." He collected samples during his fourth and fifth visits, but the "samples were below the minimum detection levels for the method." Mr. Turner offered no scientific evidence that would indicate that the air was harmful on the dates when samples were taken and analyzed. Nevertheless, Mr. Turner opined that the odor was objectionable in accordance with the definition found in Rule 62-210.200(181), Florida Administrative Code, on all five occasions. Count IV-Failure to Control Access The Department alleged that "access to the Facility was not completely controlled." Respondents deny the allegation. Rule 62-701.730(7)(c), Florida Administrative Code, provides: "Operation requirements. Owners and operators of construction and demolition debris disposal facilities shall comply with the following requirements by May 1, 1997, or at the time of permit issuance, whichever is sooner: . . .(c) Access to the disposal facility shall be controlled during the active life of the facility by fencing or other effective barriers to prevent disposal of solid waste other than construction and demolition debris." Department employee Gloria-Jean DePradine testified that Florida Rules require that all C & D facilities have an effective barrier so as to prevent unauthorized disposal of waste. An effective barrier could be fencing, although the Department does not require a specific type of fencing. It depends on the situation. Holmes originally owned a 46-acre tract (the property). The Facility is located on 13 acres of this property. Holmes resided on the property until he sold his residence in 2000 to Valentina Ellis. The property has an earthen berm along Highway 42, the southern boundary of the property, which is a barrier. The entrance to the property is controlled by a gate, which provides access to the property. There is no fence separating the Facility from the residence. A fence exists along the perimeter of the property. The property is in the same condition today as when the Department originally issued the permit in 1993. When the Facility was permitted and operated by Holmes, the Department found the access control to be acceptable. However, when a portion of the property (10 acres) was sold to Ms. Ellis, access was no longer being controlled completely because Holmes had provided the necessary security for the Facility, being the owner of the entire 46-acre tract. Because there are two separate property owners, Ms. Ellis can now directly enter the Facility property, or any other members of the public that entered her property, could enter the Facility and dump unauthorized waste. Randall Cunningham has been employed with the Department since May 1999, and has been working in the solid waste section since October 2000. On November 19, 2001, Mr. Cunningham conducted an inspection of the Facility site in response to an odor complaint and found that there was no barrier between the property owned by Ms. Ellis and the Facility. Mr. Cunningham was able to drive from Ms. Ellis’ property onto the landfill. Mr. Cunningham saw a fence leading onto Ms. Ellis' driveway with a swinging gate attached to a post, which was attached to a fence. Mr. Cunningham did not visit the Facility while it was in operation. There is no effective barrier between Ms. Ellis' property and the Facility. Additionally, the Facility is not yet officially closed. Count V-Investigative Costs The Department alleged that it incurred expenses of not less than $500 while investigating this matter. Investigative costs are recoverable pursuant to Section 403.141(1), Florida Statutes, which states: "Whoever commits a violation specified in s. 403.161(1) is liable to the state for . . . reasonable costs and expenses of the state in tracing the source of the discharge, [and] in controlling and abating the source and the pollutants. " Mr. Bradner’s salary is approximately $35.00 per hour. He spent approximately 20 to 30 hours on this case which would total approximately $700.00. Mr. Turner’s salary is approximately $25.00 per hour. Mr. Turner visited the Facility on five separate occasions in order to attempt to collect an air sample. It took him an hour and a half, to one hour and 45 minutes to get to the Facility. He usually spent approximately one half hour at the Facility. The Department conducted the two sampling events referred to above, which were sent to a lab in Los Angeles for analyses. Each analysis cost $250.00.
Conclusions Based on the foregoing Findings of Fact and Conclusions of Law, it is, therefore ORDERED: Respondents shall forthwith comply with all Department rules regarding solid waste management as related to the disposal of C & D debris. Respondents shall correct and redress all violations in the time periods required below and shall comply with all applicable rules in Chapters 62-296 and 62-701, Florida Administrative Code. Within 30 days of the effective date of this Final Order, Respondents shall prevent unauthorized waste disposal at the Facility, and shall provide access control by the use of fencing, gates, or other effective barriers on the portion of property that is contiguous with property owned by Ms. Valentina Ellis. Within 30 days of the effective date of this Final Order, Respondents shall obtain adequate financial assurance and shall provide the Department with proof of financial assurance issued in favor of the State of Florida, in the amount of the closing and long-term care cost estimates for the Facility, if the 1998 renewal bond is no longer in full force and effect. (If the renewal bond is in full force and effect, Respondents shall provide the Department with an appropriate financial update.) Otherwise, proof of financial assurance shall consist of one or more of the following instruments which, comply with the requirements of Rule 62-701.630(6), Florida Administrative Code: trust fund agreement; certificate of deposit; surety bonds guaranteeing payment; surety bonds guaranteeing performance; irrevocable letter of credit; closure insurance; or financial test and corporate guarantee. Respondents shall continue to monitor and analyze the ground water at the Facility in accordance with the approved monitoring plan through the active life of the Facility, and for five years after closure activities are completed. The ground water monitoring results shall be submitted to the Department for review within 45 days of each sampling event. Respondents shall control any objectionable odors emanating from the Facility in accordance with Rule 62- 296.320(2), Florida Administrative Code. Since strong odors have been detected off-site, beyond the disposal area boundary, Respondents shall comply with the requirements of Rule 62- 701.530(3)(b), Florida Administrative Code. See Endnote 3. Therefore, within 30 days of the effective date of this Final Order, Respondents shall implement a routine monitoring program to determine the timing and the extent of any off-site odors. If the monitoring program confirms the existence of objectionable odor, Respondents shall submit to the Department for approval an Odor Remediation Plan (Plan) within 60 days of confirmation of objectionable odors. The Plan shall describe the nature and extent of the problem and the proposed remedy. The Plan shall be implemented within 30 days of approval. Upon review of the Plan, the Department may request additional information. Any additional information shall be submitted to the Department within 30 days of receipt of the Department’s written request. If additional information is not submitted in a timely manner, the Department will approve or deny the Plan as submitted. Upon approval, the Plan shall be incorporated herein and made part of this Final Order and the Respondents shall implement the conditions in the Plan pursuant to an approved schedule. If the proposal is denied, Respondents shall submit a new plan or modifications to the plan within 30 days and the review process shall continue as detailed herein. Respondents shall submit monthly reports to the Department. The reports shall include all data collected during the monitoring. The first report shall be submitted to the Department within 45 days of the implementation of the plan and shall continue every 30 days thereafter. Respondents are ordered to close the Facility within 60 days of this Final Order, unless the time is extended by the Department. Respondents shall implement closure activities in accordance with Rule 62-701.730(9)(b)(c)(d) and (10), Florida Administrative Code. Closure activities shall include, but not be limited to the following: Grade and compact the disposal area to eliminate ponding, promote drainage and minimize erosion. Establish and maintain side slopes no greater than three feet horizontal to one foot vertical rise in all above-grade disposal areas. Establish and maintain final cover consisting of a 24-inch thick layer of clean soil, the upper six inches of which shall be capable of supporting vegetation. Seed and/or plant vegetative cover over the disposal area. Respondents shall monitor the effectiveness of the cover for a minimum of five years following completion of closure activities, and acceptance by the Department. Within 30 days of the completion of the closure activities, Respondents shall provide the Department with "Certification of Closure Construction Completion" and a final survey report, conducted by a Professional Land Surveyor in accordance with Rule 62-701.610(3) Florida Administrative Code, if the disposal operation has raised the elevation higher than 20 feet above natural land surface. Within 60 days of the effective date of this Order, Respondents shall pay $3,000.00 to the Department for the administrative penalties assessed above. Payment shall be made by cashier's check or money order payable to the "State of Florida Department of Environmental Protection" and shall include thereon the OGC Case No.: 01-1946 and notation "Ecosystem Management and Restoration Trust Fund." The payment shall be sent to the Department of Environmental Protection, Central District Office, 3319 Maguire Boulevard, Suite 232, Orlando, Florida 32803-3767. In addition to the administrative penalties, within 60 days of the effective date of this Final Order, Respondents shall pay $500.00 to the Department for costs and expenses. Payment shall be made by cashiers check or money order payable to "State of Florida Department of Environmental Protection" and shall include OGC Case No. 01-1946 thereon with the notation "Ecosystem Management and Restoration Fund." The payment shall be sent to the Department of Environmental Protection, Central District Office, 3319 Maguire Boulevard, Suite 232, Orlando, Florida 32803-3767. Respondents will remain liable to the Department for any damages resulting from the violations alleged herein and for the correction, control, and abatement of any pollution emanating from Respondents' Facility. Respondents may request and the Department may extend the time limits imposed by this Final Order. DONE AND ORDERED this 24th day of December, 2002, in Tallahassee, Leon County, Florida. CHARLES A. STAMPELOS Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings, this 24th day of December, 2002.
Findings Of Fact On January 31, 1979, Respondent Okaloosa County Board of County Commissioners filed an application with the Northwest Florida District Office of Respondent Department of Environmental Regulation (DER) to construct a solid waste resource recovery and management facility near Baker, Florida at the intersection of State Road 4 and State Road 4B. The proposed facility would be a sanitary landfill approximately 36 acres in size which would receive solid waste for disposal from the municipalities of Baker, Milligan, Holt, Crestview, and Blackman. Approximately six to eight additional acres at the site were previously used by the County as a dump for household trash and garbage for a period of approximately eight years. Some of the waste was burned and the remainder was buried. (Testimony of Rogers, Long, Exhibit 1) The proposed landfill is located in a rural area primarily used for agriculture which is sparsely populated. The site is surrounded by forested lands but some recent removal of trees has opened a portion of the site to public view from State Road 4. The land at the site slopes gradually in a west- east direction, and the slope is more pronounced on county land adjoining the east border of the site for a distance of about 900 feet. At this location, several springs form the headwaters of Mill Creek which flows cast through two lakes located on about 224 acres of private property owned by Petitioners Donald C. and Mary Ann Long. Mill Creek becomes a defined water course after leaving the Long property and flows into the Yellow River which is approximately two and one-half miles from the Mill Creek headwaters. The Yellow diver flows some 10 to 20 miles into Blackwater Bay near Milton. A shallow well from which potable water 15 obtained is located on the Long property but not within 1,000 feet of the landfill site. (Testimony of Rogers, Long, Exhibits 1-2) The applicant intends to use the trench method in disposing of solid waste. Trenches will be excavated to a depth of about 15 feet, but in no case will the bottom of a trench be underlain by less than two feet of the "fine sandy loam" which occurs in a layer of varying depth beneath the overlying Lakeland sand soil. Test holes dug in the landfill site indicate that the bottom of the "fine sandy loam" layer in depths of some three to twelve feet is located about eighteen feet below the surface of the ground. The applicant intends to check at 100 foot intervals while digging trenches to insure that at least two feet of that material underlies the trench bottom. If not, sufficient additional amounts of the material will be placed in the trench and compacted to make a two-foot thick layer. There will be a distance of 50 feet between centers of trenches. The trenches will be 30 feet wide at the top and 15 feet wide at the bottom. The bottom of each trench will have a slope of less than 5 percent designed to drain the trenches and lifts of rainwater before they are filled. The upper lift will vary in depth from 5 to 7 feet depending upon the final contour desired. Wastes will be deposited either at the top or bottom of the working face of the trench and will be spread by a crawler tractor in two foot layers and then compacted. Compacted waste will be covered daily with one foot of soil and a final cover of at least two feet of sandy clay material will be obtained from a county borrow pit adjacent to the landfill and placed over trenches to prevent the movement of water into the buried solid waste. (Testimony of Rogers, Edmisten, Exhibits 1-2) The applicant plans to construct a barrier to contain the movement of leachate along the eastern border of the landfill which will be a minimum of five feet wide and as deep as necessary to "tie-in" with the existing layer of "fine sandy loam" beneath the site. The barrier is designed to prevent leachate from moving horizontally downslope toward Mill Creek. The barrier material will be compacted, but not the sides of the trenches. (Testimony of Rogers, Edmisten) The groundwaters under the site are from 55 to 65 feet below the surface of the land. Although the elevation of groundwaters normally will follow the contour of the land surface, borings at the site have not been made to the depth of the watertable. The approximation of the depth of the groundwaters was obtained from data of two monitoring wells located on county land directly east of the proposed landfill site. Twenty-four holes were dug across the site to determine the location of the "fine sandy loam" soil layer which exists below the surface. Eight additional holes were dug to obtain samples of the material for a texture analysis. In its natural state, this material has a permeability rate of about 2.5 to 5 inches per hour. After compaction, the permeability rate will be about .02 to .2 inches per hour. No permeability rate is required by pertinent DER regulations for liner material. Recent soil tests of material taken from the county borrow pit some 200 yards west of the landfill site showed a permeability rate of .004 inches to .0027 inches per hour. A recent sample taken from the bottom of an existing pit at the landfill reflected a permeability rate of .01 inch per hour. Proposed guidelines of the U.S. Environmental Protection Agency contemplate a permeability rate of only .00014 inches per hour for liner materials to restrict the rate of flow of leachate from the bottom of a landfill. The material proposed to be used by the applicant for liner material therefore will permit fairly rapid movement of leachate through the sides and bottoms of trenches, and under the eastern barrier. Further, the coarser sand underlying the "fine sandy loam" liner layer has a much higher permeability rate. As a result, an unknown amount of leachate will eventually reach the groundwater table and flow laterally downslope in an easterly direction. Leachate generation will be impeded by the vegetated, relatively impervious final top layer over the landfill, the wedge of soil located between each trench, and the eastern barrier. These measures will serve also to attenuate suspended solids in the leachate, but not organic materials and most metals. There will also be a certain amount of dilution after any leachate reaches the groundwater table. (Testimony of Rogers, Edmisten, Meister, Tomlinson, Exhibits 1-2, 5, 7) Water samples taken from in and around the area of the springs located both on county and private property to the east and from wells in the general area show that the water generally is of high quality. There is no indication that past landfill operations at the site have degraded the water quality in the vicinity of the nearby creeks, ponds and wells. (Testimony of Meister, Rogers, Long, Exhibits 1-2, 8-9) The applicant plans to control surface runoff and any consequent erosion by means of terraces, berms, and swales. However, other than notations on engineering plans of provision for a highway drainage swale, no design of such items is shown in the application. Prior erosion in the area has been satisfactorily corrected in the past by the county by the use of similar methods to those planned for the landfill site. (Testimony of Rogers, Long, Exhibit 2) The application was reviewed by DER's Southwest District permitting engineer. He found that the application and supporting documents met the statutory and regulatory criteria for the issuance of a construction permit. However, soil borings did not extend at least ten feet below the proposed excavations. (Testimony of Diltz, Exhibit 2) By letter of March 27, 1979, the Northwest District Manager of DER issued a Notice of Intent to issue a construction permit for the proposed sanitary landfill under standard and special conditions. The special conditions required construction of two approved monitoring wells east of the landfill and analysis of water samples from the wells and from a surface water sampling point in the headwaters of Mill Creek prior to issuance of an operation permit. A further condition required the applicant to submit verification that the bottoms of trenches contained at least two feet of the material specified in the application. At the hearing, DER and Okaloosa County submitted a stipulation wherein they agreed that additional monitoring wells should be placed upgradient from the site, at the downstream boundary of the first trench, at the north end of the clay barrier, and immediately east of boring number 8 prior to issuance of an operation permit. The conditions further required that well logs will be kept on all monitoring wells and reports on soils, geology and groundwater elevation he submitted to DER prior to issuance of an operating permit. Further, any identification of leachate contamination in the wells by a method to be spelled out in any operation permit will require extension of the earthen barrier west to State Road 4. Finally, a special condition required that the bottom lining material of all trenches and the barrier must be compacted prior to the issuance of an operating permit. (Exhibit 4)
Recommendation That the requested permit be issued to the Okaloosa County Board of County Commissioners as herein specified. DONE and ORDERED this 28th day of March, 1980, in Tallahassee, Florida. THOMAS C. OLDHAM Hearing Officer Division of Administrative Hearings 101 Collins Building Tallahassee, Florida 32301 (904) 488-9675 COPIES FURNISHED: Honorable Jacob Varn Secretary, Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32301 Douglas H. MacLaughlin, Esquire Assistant General Counsel Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32301 Wright Moulton, Esquire Post Office Box 591 Pensacola, Florida 32593 John R. Dowd, Esquire Okaloosa County Attorney Post Office Box 1964 Ft. Walton Beach, Florida 32548
The Issue The issue is whether Respondent Department of Environmental Protection (DEP) may issue to Respondent Republic Services of Florida, L.P. (Republic), permits to construct and operate a Class III landfill, pursuant to Permit Numbers 266830-003-SC/01 and 266830-004-SO/01, as modified as set forth below.
Findings Of Fact Background On June 30, 2009, Republic filed with DEP an application for a permit to construct and operate a Class I landfill (Application). In response to DEP's request for additional information dated July 30, 2009 (RAI), Republic filed a response dated September 14, 2009 (RRAI), upon receipt of which, DEP deemed the Application to be complete. References to the Application typically include the Application, RRAI, and other materials, such as reports, plans, and drawings, that are part of the Application, as well as three subsequent modifications, which are detailed below. Republic revised several reports, plans, and drawings in the RRAI; references to these items, such as the Engineering Report and Operation Plan, are to the versions contained in the RRAI. On November 13, 2009, DEP filed its intent to issue construction permit #266830- 003-SC/01 (Construction Permit) and intent to issue operation permit #266830-004-SO/01 (Operation Permit; collectively, the Permit). Republic Services, Inc. and its affiliates constitute the second largest waste-management operator group in the United States. Their market capitalization is just over $11 billion. The capitalization of the affiliate formed to operate the subject landfill is doubtlessly less than $11 billion, as the record does not suggest that any significant part of the overall capitalization of Republic Services, Inc., and its affiliates would be at risk in the operation of the proposed landfill. Republic presently owns and operates a Class III landfill in the City of Bartow, Polk County, known as the Cedar Trail Landfill. The oldest part of this landfill is an unlined Class III landfill of 52.5 acres in the center of the property owned by Republic. Immediately west of this unlined landfill is a 30.7-acre lined Class III landfill, which comprises cells 1-4. The Cedar Trail Landfill is located at 2500 West State Road 60, about three miles west northwest of the intersection of State Road 60 and State Road 98, which marks the center of Bartow. The landfill is immediately west of E.F. Griffin Road. Petitioners Frost live on E.F. Griffin Road, about one mile north of the Cedar Trail Landfill. Petitioner Highland Lakes Estates Homeowner's Association serves a residential subdivision known as Highland Lakes Estates. Highland Lakes Estates occupies a notch at the southeast corner of Republic's property. Aerial photographs reveal the changing land use of the land on which Cedar Trail Landfill is situated. Fifty years ago, the land was vacant with indications of agricultural uses. At the site of the proposed landfill were mostly citrus groves on the west side and some rangeland or vacant land on the east side. Ten years later, a large area immediately northeast of the subject land reveals the effects of strip mining for phosphate. Three years later, in 1971, the mined area had greatly expanded to encompass all or nearly all of the subject site and much of the surrounding area, including the western half of what would become Highland Lakes Estates. By 1980, the pits had been refilled and active mining had ceased, and the streets had been constructed for what is now known as Highland Lakes Estates. By 1993, about three dozen homes had been built in this residential, large-lot subdivision. 9. The Cedar Trail Landfill was constructed in the early 1990s as an unlined construction and demolition debris landfill. Now designated an approved landfill for Class III waste, this facility accepts such waste as is defined by Florida Administrative Code Rule 62-701.200(14) (2010), which includes construction and demolition debris, yard trash, processed tires, asbestos, carpet, paper, glass, furniture (but not white goods), plastic, and other materials not expected to produce leachate that presents a risk to the public health or environment. A zoning/land use map reveals that the land for which the proposed landfill is proposed is designated "sewage/borrow pits/spray fields." Highland Lakes Estates occupies land that is designated single-family residential with a density of one dwelling unit on up to 2.49 acres. The Cedar Trail Landfill has been the subject of three recent environmental resource permits (ERPs). Appendix R to the Application is an individual ERP issued in April 2009, and Appendix R to the RRAI is a conceptual ERP issued in March 2005. The April 2009 ERP mentions that the entire stormwater project was conceptually approved by an ERP issued on September 10, 2008, but this ERP is not part of the record. In any event, these ERPs approve the construction of a comprehensive stormwater or surface water management system for the entire Republic property. In particular, the April 2009 ERP permits the construction of a borrow pit at the southeast corner of the Republic property and a modification of the perimeter ditch/wet retention system. The April 2009 ERP states that the permitted stormwater management system will provide total onsite retention for runoff from the 100-year, 24-hour storm. The April 2009 ERP requires 2.8 acres of compensation for 2.8 acres of encroachment in the 100-year floodplain. Specific Condition 14 prohibits excavation of the borrow pits to a clay confining layer or limestone bedrock layer. Specific Condition 20 prohibits the mixing of leachate with stormwater and provides that, if leachate enters stormwater, the stormwater becomes leachate. Presumably reflecting this permitting activity, Application Drawing 4, as revised in the RRAI, is the site plan, including the unlined Class III landfill, the four-cell lined Class III landfill immediately to the west of the unlined landfill, and the eight cells proposed to accept Class I waste. These eight cells are immediately south of the four cells of the lined Class III landfill. The two northernmost of these eight cells abut, on their east boundary, the unlined Class III landfill. The remaining six cells abut, on their east boundary, an 800-foot wide borrow pit, which lies between these cells and Highland Lakes Estates. Immediately north of Highland Lake Estates is a second borrow pit, and west of this borrow pit is the unlined Class III landfill. The other major feature on the site plan is a third borrow pit running, from west to east, along the north border of the lined Class III cells, the unlined Class III landfill, and the second borrow pit. Bearing no signs of ambitious reclamation activity, the backfilled mining cuts host large water storage areas and, as described in the application for the March 2005 ERP, wetlands of "very poor quality." The backfilled soils are best described as complex surficial soils, consisting mostly of fine sands with varying amounts of organics, silts, and clays. Geotechnical investigations of the Cedar Trail Landfill suggest that mining depths, although variable, probably averaged 40 feet. Petitioners and Intervenor are substantially affected by the Permit and the construction and operation of the proposed landfill, which will stand nearly 200 feet above grade and will be the focus of substantial activity six days per week during its years of operation. Like Petitioners, Intervenor owns land in the immediate vicinity of the Cedar Trail Landfill, which is in the jurisdiction of Intervenor, and Intervenor's various municipal operations are much affected by whether the proposed Class I landfill is permitted. Among other things, Intervenor has agreed to accept untreated leachate from the proposed landfill. Petitioners Frost built their home in 1980 or 1981. During the hours of operation of the existing landfill, Petitioners Frost constantly hear the beeping noise of heavy- duty equipment, presumably a safety device when the equipment is moved. Over a dozen lots in Highland Lakes Estates abut the property line of the Cedar Trail Landfill, and the closest residence is about 1000 feet from the nearest proposed Class I cell. At present, the existing landfill subjects the Highland Lakes Estates to constant noise during operating hours and a coating of dust inside their homes. Several residents of Highland Lakes Estates testified. Hard-working people, some of whom are now retired, these residents decided to purchase homes in Highland Lakes Estates because it was a sunny, healthy place to live. Over time, most of these residents, by varying degrees, have come to accept the fact of the Class III operations at Cedar Trail Landfill, but they object to the substantial intensification of land use that will result from a regional Class I landfill. One resident testified that she finds in her pool dirt that has escaped from the existing landfill, and she has become concerned about her grandchildren coming over to swim. Another resident testified that he only began closing his windows five or six years ago when the noise levels at the existing landfill increased; he eventually had to install a window air- conditioner. The same resident testified that the green herons and snowy egrets that he used to see around his house have not returned for five years, and his wife, who has health problems, including respiratory distress, would suffer from the expanded landfill operations. Application, RRAI, and Permit, Including Modifications The Permit incorporates the Application, including the RRAI, Engineering Report, Operation Plan, and drawings. Thus, all of the documents are part of the Permit. In the Application, Republic proposes to convert cells 5-8, which are not yet constructed, from a Class III to a Class I landfill and add four new cells adjacent to the unused cells. The unfilled portion of Cells 1-4 would continue to receive only Class III waste. Pursuant to Florida Administrative Code Rule 62-701.200(13) (2010), Class I waste is all solid waste, other than hazardous waste, that is not otherwise prohibited by rule. The Application states that the proposed landfill will serve communities within 100 miles. The service area of this regional landfill will thus extend in central Florida from Marion to Osceola counties, along the Gulf Coast from Pasco to Lee counties, and along the Atlantic Coast from Volusia to Martin counties. As stated in the Application, this service area is populated by 9.7 million persons, who would daily account for 3000 tons of waste at the Cedar Trail Landfill. Initially, according to the Engineering Report, the proposed landfill will receive 1600 tons per day of Class I waste, but, once the existing Class III cells are filled, the proposed landfill will receive 1600 tons per day of Class I waste plus the 1400 tons per day of the Class III waste that is currently going into the existing landfill. As revised by the RRAI, the life expectancy of the proposed landfill is seven years. The Application states that Republic will employ an attendant, a trained operator, and 3-5 spotters at the landfill. The Application reports that the landfill would operate Monday through Saturday from 7:00 a.m. to 6:00 p.m. and that the working face would be covered daily. The Application reports that Republic would install seven new detection wells and use 17 existing wells for monitoring groundwater and would use two existing staff gauges for monitoring surface water, evidently at a single location, as discussed in the next paragraph. 23. Application Appendix V is the Water Monitoring Plan. Appendix V states that surface water will be monitored every time that the stormwater pond for the leachate storage area discharges offsite, but not more frequently than weekly. Application Drawing 4, as revised in the RRAI, shows that the sole surface water monitoring location is close to the leachate storage tanks, which are described below. 23. Appendix V also requires leachate monitoring, "at least annually," for five field parameters--specific conductivity, pH, dissolved oxygen, colors, and sheens; eight laboratory parameters--including chloride, mercury, and total dissolved solids; and the parameters listed in 40 CFS Part 258, Appendix II, which includes a comprehensive list of volatile organic compounds; persistent organic pollutants, including 2,3,7,8-TCDD (a major dioxin) and Dibenzofuran; and metals, including lead and chromium. Fourteen days prior to all sampling events, Republic is required to notify DEP, so that it may obtain split samples for its own analysis. Republic is required to report the results of the groundwater monitoring quarterly and to analyze the groundwater data in a technical report filed with DEP every two years. Appendix V also requires monitoring for odors and combustible gases, mostly methane. Republic will monitor combustible gas quarterly at various ambient locations, such as the office buildings and to monitor combustible gas quarterly in the soil down to the seasonal high water table. The purpose of this monitoring is to determine combustible gas concentrations and, if they exceed 25%, take "all necessary steps to ensure protection of human health." Some confusion in the Application arises as to the issue of whether the Cedar Trails Landfill will be subject to, or voluntarily implement, the more elaborate provisions applicable to a landfill covered under Title V of the federal Clean Air Act, as amended in 1990. Regulated emissions for a new source might include particulate matter, sulphur dioxide, nitrogen oxides, volatile organic compounds (VOCs), and specified hazardous air pollutants. Appendix V states that the landfill will become a Title V landfill once permitted to receive Class I waste, and, at that time, it will be subject to a "more comprehensive system of landfill gas collection and monitoring." Appendix V assures that these items "will be addressed in separate documentation from this monitoring plan"--and, apparently, separate from the present record. By contrast, the Operation Plan concedes only that, based on the nature of Class I waste and the design capacity of the proposed landfill, Cedar Trail Landfill "may" become a Title V facility. The Operation Plan states: "If the regulatory thresholds at [Cedar Trail Landfill] are met [under Title V] requiring an active gas collection and control system (GCCS), [Cedar Trail Landfill] will submit as required the GCCS design plans for approval and install an active gas extraction system within the regulatory timeframes specified by Title 40, Code of Federal Regulations, Part 60, Subpart WWW." More specific provisions in the Operation Plan identify best management practices to prevent objectionable odors. Four practices are identified, including an "active gas collection and extraction system." On the DEP form application, which is a cover sheet to the more elaborate application materials, Republic checked boxes indicating that the landfill would use active gas controls with gas flaring and gas recovery, which is probably what is meant by an "active gas collection and extraction system." The Application provides that the landfill liner would be double composite; the leachate collections system would consist of collection pipes, geonets, and a sand layer; the leachate would be stored in tanks; some of the leachate would be recirculated as spray on the working face; and the remainder of the leachate would be stored onsite and periodically transferred to a wastewater treatment center for treatment. The Engineering Report states that the waste disposal footprint will not be located where geological formations or other subsurface features will not provide support for the waste. The Engineering Report identifies appendices addressing the slope-stability analysis and foundation analysis and relies on a March 12, 1997, report by Ardaman & Associates, Inc. (Ardaman Report), January 23, 2004, report by Golder Associates, Inc. (Golder Report), and June 26, 2009, report by Hanecki Consulting Engineers, Inc. (Hanecki Report). These items are discussed in greater detail below in connection with the sinkhole issue. The Engineering Report assures that the waste disposal footprint will not be within 500 feet of an existing or approved potable water well, nor will it be within 1000 feet of an existing or approved potable water well serving a community water supply. The Engineering Report adds that the minimum horizontal distance between waste deposits and the property line is 100 feet. The Engineering Report assures that the landfill footprint will not be in a dewatered pit, as the installation elevations are at least 2-3 feet higher than the seasonal high water table. The Engineering Report acknowledges that a small part of the eastern end of the four southernmost cells lies within the 100-year floodplain, as depicted by the Flood Insurance Rate Map effective December 29, 2000, and as shown in Application Appendix A, Drawing 1. Claiming that the relevant map was not revised in 2000, the Engineering Report asserts that the last update to the FIRM map was in 1975, and the depicted floodplain was filled during the mine reclamation process. The Engineering Report notes that the floodplain concerns were addressed in the April 2009 ERP. 34. The Engineering Report discloses two enforcement actions against Republic at the Cedar Trail Landfill. In a letter dated October 19, 2001, DEP warned Republic about noncompliant items at the site, and, in a notice of noncompliance dated January 30, 2006, DEP warned Republic not to use a new cell prior to construction certification of the cell's stormwater system. Both matters were reportedly resolved, and Republic has not been the subject of other enforcement actions for the Cedar Trails Landfill. At DEP's urging, the RRAI elaborates on enforcement actions against Republic or, evidently, Republic affiliates at a variety of Florida facilities, not just landfills. The additional information reveals that DEP imposed a fine of $61,300 for the October 2001 violations, which included disposing of unacceptable waste, storing an excessive number of tires and exceeding groundwater standards without notifying DEP, and a fine of $1000 for the January 2006 notice of noncompliance. The other enforcement actions against Republic or affiliates concerning landfills involved consent orders about the Nine Mile Road Landfill (Seaboard Waste): in February 2003, DEP imposed a fine of $13,000 in settlement of charges that employees were not removing all unacceptable waste from the site and, in November 2005, DEP imposed a $285 fine for a failure to submit required stormwater monitoring reports. There were many other enforcement actions, generally resulting in modest fines, but they involved hauling facilities, transfer stations, and materials recovery facilities, not landfills. The Engineering Report states that the proposed landfill is within six miles of, but greater than 10,000 feet from, the Bartow Municipal Airport. Airport safety is addressed in more detail below. The Engineering Report describes in detail the double composite liner system, which uses materials whose physical, chemical, and mechanical properties prevent failure due to contact with Class I waste and leachate, climactic conditions, installation stress, and other applied stresses and hydraulic pressures. The Engineering Report performs no contingency sinkhole analysis. The report does not suggest that the liner system could withstand the stresses and pressures resulting from any size sinkhole, so the necessary inference is that the liner will fail if any sinkhole forms directly beneath it. The Engineering Report states that waste placement will remain within the lined containment berm. The Engineering Report describes in detail the double composite liner system for use at the proposed landfill. The primary liner system and secondary liner system each comprises three layers with the top layer consisting of a composite drainage net, the middle layer consisting of a high-density polyethylene geomembrane with a minimum average thickness of 60 ml, and the bottom layer consisting of a geosynthetic clay liner with a maximum hydraulic conductivity of 5 x 10-9 cm/second. The Engineering Report describes in detail the leachate collection and removal system, which, sitting atop the primary liner, includes a 24-inch thick sand drainage layer with a minimum hydraulic conductivity of 1 x 10-3 cm/second, a composite drainage net, and a single perforated 8-inch diameter lateral pipe in each cell. The collection lateral pipes will gravity drain to the east to a header pipe that gravity drains to the primary leachate collection pump stations--one station for the four converted cells and one station for the four new cells. A smaller leachate collection and removal system will handle the leachate that penetrates to the leak detection layer by routing it to a secondary leachate collection pump station. Based on calculations derived from the HELP groundwater model, the leachate collection and removal system is designed to prevent leachate head from exceeding the thickness of the composite drainage net (about 1 cm) over the secondary geomembrane and from exceeding one foot over the primary geomembrane. According to the Engineering Report, flow meters will be installed at each of the pump stations to allow daily readings of the amount of leachate being pumped. At one foot of head over the primary liner, the Engineering Report expects just over three gallons per day collected at each secondary leachate collection pump station--significantly less than the leakage rate typical of a double liner system without a geosynthetic clay liner beneath the primary liner. However, the Engineering Report provides a standard action leakage rate of 100 gallons/acre/day, meaning that Republic is required to report to DEP liner leakage only when this leakage rate is attained. The pump stations will transmit the leachate to one of two above-ground, 150,000-gallon storage tanks. From these tanks, most of the leachate will be transported to an offsite location for treatment. However, up to 12,000 gallons per day of the untreated leachate will be recirculated to be sprayed on the working faces of the landfill. This is to control dust and possibly to assist with the degradation of the waste. The Engineering Report states that the Cedar Trail Landfill implements a facility-wide water quality monitoring plan. Upon completion of the pump stations for the eight cells that are the subject of the Application, Republic will expand its leachate sampling program to include annual sampling of the leachate collected in the primary and secondary leachate collection pump stations. The groundwater monitoring wells would be installed as closely as possible to the outer edge of the roadway that, with a stormwater ditch, will run the perimeter of the proposed Class I landfill. In the revised Engineering Report contained in the RRAI, Republic proposes a surface water discharge point in the stormwater pond located near the leachate storage tanks. The Engineering Report adds that Republic will continue to comply with the following prohibitions: No waste will be knowingly burned on site; Hazardous waste will not knowingly be accepted; PCB contaminated waste will not knowingly be accepted; Untreated biomedical waste will not knowingly be accepted. Please note that treated biomedical waste may be accepted at [Cedar Trail Landfill]'s Class I Landfill provided that the waste containers are marked "Treated Biomedical Waste.;" No waste disposal at the proposed Class I Landfill will occur within 3,000 feet of a Class I surface water body; [Cedar Trails Landfill] will not knowingly accept liquid waste within containers, excluding leachate and gas condensate derived from solid waste disposal operations. [Cedar Trails Landfill] will comply with the requirements of Rule 62- 701.300(10), FAC regarding the handling of liquid wastes; Neither oily waste nor commingled oily waste will knowingly be accepted; and Lead-acid batteries, used oil, white goods, and whole-waste tires will not knowingly be disposed of in the Class I waste disposal system. The Joint Stipulation to Permit Modification, identified above, adds four items to this list of operational prohibitions: i. Garbage will not be knowingly accepted; Household Waste, except waste from residential sources generated as Class III waste, will not be knowingly accepted; Animal carcasses will not be knowingly accepted; and Aluminum dross will not be knowingly accepted. Capitalized terms are generally defined in the Florida Administrative Code. Florida Administrative Code Rule 62-701.200(39) defines "Garbage" as " all kitchen and table food waste, and animal or vegetative waste that is attendant with or results from the storage, preparation, cooking, or handling of food materials." Application Appendix H is the Operation Plan, which also identifies the types of wastes to be permitted at the proposed landfill. Section 3(b) of the Operation Plan authorizes the proposed landfill to accept: Commercial waste Ash residue Incinerator by-pass waste Construction and demolition debris, including from a residence Treated biomedical waste Agricultural waste Industrial waste Yard trash, including from a residence Sewage sludge Industrial sludge Water/air treatment sludges Waste tires De minimis amounts of non-hazardous waste from incidental residential sources Section 5 of the Operation Plan provides, in relevant part: [Cedar Trail Landfill] will accept waste included in any of the waste categories identified under Section 3(b) of this Operation Plan[, but] will . . . NOT knowingly accept any hazardous waste, untreated biomedical waste, liquid waste (including paint), explosive waste, toxic waste, or radioactive waste for disposal at the [Cedar Trail Landfill.] Unacceptable types of refuse are listed below and will not be knowingly accepted for disposal. --Hazardous waste --Explosive waste --Radioactive waste --Drums that have not been opened and Emptied --Refrigerators, freezers, air Conditioners (white goods) --Any toxic or hazardous materials, i.e. batteries, solvents, oil, etc. --Automobiles or parts that contain fuel, lubricants, or coolants --Untreated Biomedical waste The original Application prohibited the acceptance of septic tank pumpage, but the application form accompanying the original Application indicated that the proposed landfill would accept industrial sludge and domestic sludge. After modification by the RRAI, the prohibition against accepting septic tank pumpage was deleted, and the Operating Plan added, among acceptable wastes, sewage sludge, industrial sludge, and water- and air-treatment sludge. Florida Administrative Code Rule 62-701.200(101) (2001) defines "sludge" to include solid waste pollution control residual from an industrial or domestic wastewater treatment plant, water supply treatment plant, air pollution control facility, septic tank, grease trap, portable toilet, or other source generating a waste with similar characteristics. Florida Administrative Code 62-701.200(64) (2001) defines "liquid waste" as any waste with free liquids, according to the "Paint Filler Liquids Test." As modified by the Joint Stipulation to Permit Modification, Section 5 of the Operation Plan was amended to add the following items to unacceptable types of refuse that will not be knowingly accepted for disposal: --Garbage --Household Waste, except waste from residential sources generated as Class III waste --Animal carcasses --Aluminum dross At the hearing, Republic and DEP agreed to an additional condition to the Operation Plan that unacceptable waste would include Garbage contained in commercial, industrial or agricultural waste. According to the Operation Plan, the initial waste screening occurs at the gate house where the attendant interviews the driver and inspects the incoming waste load. If the attendant sees more than a negligible amount of unauthorized wastes, he will reject the load and will contact the hauler to identify the source of the waste. Additionally, Republic will notify DEP if anyone tries to dispose of hazardous waste at the proposed landfill. As modified by the Joint Stipulation to Permit Modification, the Operation Plan was amended to provide a new paragraph between the paragraph addressing the initial waste screening at the gate house and, as discussed below, the second screening at the working face. The new paragraph provides: Any malodorous waste will be covered with mulch and/or additional soil or other approved cover materials to control odors promptly, within one (1) hour from the time of unloading, except in the event of exigent circumstances, such as extreme weather. Cedar Trail Landfill will promptly cover any sludge deposited on the landfill working face within one (1) hour from the time of the unloading, except in the event of exigent circumstances, such as extreme weather. At the hearing, Republic and DEP agreed to an additional condition to the Operation Plan, which would prohibit Republic from accepting malodorous waste or sludge that, due to exigent circumstances, it would not be able to cover within one hour from the time of unloading. If the load passes the initial waste screening, it will proceed to the working face of the landfill, according to the Operation Plan. At least one spotter will be stationed at the working face at all times that the landfill receives waste. Her job will be to detect unauthorized wastes. Republic is to assure that it has a sufficient number of spotters to find and remove unauthorized waste prior to compaction. The Operation Plan allows the spotter to work from ground level or the cab of a compactor. If the operator of a piece of heavy equipment is trained as a spotter, she may also serve as a spotter. During periods of higher waste traffic, the equipment operator will, according to the Operation Plan, "likely" need the assistance of another operator or spotter to screen the higher waste volumes. When finding unauthorized wastes in manageable volumes, the spotter or operator will remove these wastes by hand and place them into nearby containers for removal to an appropriate facility. The third waste screen occurs as the equipment operator spreads the waste, pursuant to the Operation Plan. The equipment operator is required to place any unacceptable observed wastes into containers, which will be located "within the lined area." These wastes will also be removed to an appropriate facility. In the RAI, DEP questioned the proximity of the containers to the working face, as the lined area consists of 72 acres, but, in the RRAI, Republic ignored the comment, restating only that the containers would not be located outside the lined area. The Operation Plan specifies a filling sequence. Republic will assure that the first layer of waste placed above the liner in each cell will be a minimum of four feet in compacted thickness and will be free of rigid objects that could damage the liner or leachate collection and removal system. Republic will maintain the working face to minimize the amount of exposed waste and initial cover necessary at the end of each day. The filling sequence will proceed until the permitted final grade elevations have been reached, less three feet for the final cover. The Operation Plan states that the initial cover at the Class I landfill will consist of a six-inch layer of soil that is transferred from onsite borrow pits or offsite sources. This soil will be compacted and placed on top of the waste by the end of each work day. At Republic's option, subject to DEP's approval, it may use a spray-on or tarpaulin cover, instead of a soil cover. The Operation Plan requires Republic to apply at least one foot of intermediate cover within seven days of cell completion, if additional waste will not be deposited within 180 days of cell completion. Republic may remove all or part of this intermediate cover before placing additional waste or the final cover. Through the placement of initial, daily, and intermediate cover, Republic will minimize the occurrence of moisture infiltration, fires, odors, blowing litter, and animals and other disease vectors. 59. The Operation Plan requires Republic to control litter primarily by daily waste compaction and cover. However, at least daily, if needed, employees will collect litter along the entrance and access roads and around the working face. Complaints about litter must be logged. In addition to the inspections detailed above, the Operation Plan establishes a random load-checking program to detect unauthorized wastes. Each week, Republic employees will examine at least three random loads of solid waste by requiring drivers to discharge their loads at a designated location within the landfill where the employees may undertake a detailed inspection. All random inspections will be logged. Notwithstanding the daily limit of 12,000 gallons per day, the Operation Plan prohibits Republic from spraying leachate during rain events. To apply the recirculated leachate, the lead operator will drive the leachate tanker truck on the working face, so that it can spray leachate over waste as it is being compacted, but after it has been screened by spotters. The spraying will be done to avoid causing leachate to pond atop the waste and will not be done within 50 feet of an outside slope. No restrictions apply to wind conditions. The Operation Plan states that, if the annual sampling of leachate water quality at the two pump stations reveals a contaminant in excess of the permissible limits listed in 40 CFR Part 261.24, Republic will start monthly sampling and notify DEP in writing. Also, the Cedar Trail Landfill will maintain a recording rain gauge. The Operation Plan requires Republic employees to conduct daily surveys for objectionable odors and take immediate corrective action, if odors are found at the property line. As modified by the Joint Stipulation to Permit Modification, this portion of the Operation Plan was amended to add two odor- remediation actions and another form of odor inspection. The two additional actions to prevent odors are to 1) provide additional cover using mulch, additional soil, or other approved cover material and 2) use odor masking or neutralizing agents. The new inspection provision states: Internal inspection will be performed on a weekly basis by a properly trained odor ranger or equivalently trained person. Such individual will tour the facility, property boundary, and the subdivision of Highland Lakes Estates . . . to identify any odors leaving the Landfill's property boundaries. The results of each weekly inspection will be document, and any odors identified will be mitigated. Another new provision from the Joint Stipulation for Permit Modification applies to the handling of sludge. As amended, the Operation Plan states: When accepting sludge from a new source or distributor, [Republic] will obtain information regarding the characteristics and constituents of the sludge, including a description of the industrial process or circumstances that resulted in the generation of the sludge. Upon delivery of the sludge, [Republic] will mix lime, sodium hydroxide, or any other suitable agents to eliminate objectionable odors as required during disposal of the sludge before the material is covered. Furthermore, [Republic] will obtain advance notice from contributors prior to delivery of any sludge and shall promptly cover any sludge unloaded on the landfill working face within one (1) hour from the time of unloading, except in the event of exigent circumstances, such as severe weather. [Republic] shall use its best efforts to avoid accepting or disposing of sludge on Saturdays, Sundays, or public holidays. Additionally, with respect to sludge received from wastewater treatment facilities only, such sludge shall not exceed the lesser of (1) twenty percent (20%) of the total volume of waste disposed in the landfill on an average monthly basis, determined annually on the prior calendar year, or (2) two-hundred (200) tons per day, averaged over the prior 12-month calendar year. Republic is required to monitor combustible gases quarterly and transmit the results to DEP, according to the Operation Plan. If Republic detects methane above the limits specified in Florida Administrative Code Rule 62-701.530 (2010), Republic must submit a gas remediation plan to DEP within seven days. The Operating Plan indicates that the separation of the waste from the groundwater prevents the saturation of the waste and, thus, the generation of odor. Sloping and compacting will promote stormwater runoff, again to discourage the generation of odor. The Construction Permit authorizes construction of the proposed landfill in accordance with the "rules[,] . . . reports, plans and other information" submitted by Republic "(unless otherwise specified)." This parenthetical reference provides that the provisions of the Construction Permit control over any contrary provisions in the other documents that are part of the Permit due to incorporation by reference. In addition to the original Application, RRAI, and drawings, the Construction Permit also incorporates Florida Administrative Code Chapter 62-701 (2001). The Construction Permit states that Republic may not violate the prohibitions set forth in Florida Administrative Code Rule 62-701.300, which is discussed in the Conclusions of Law. Construction Permit Specific Condition A.9.a requires notification to DEP of the discovery of limestone during excavation or discovery. Specific Condition A.9.b requires notification to DEP of any surface depressions or other indications of sinkhole activity onsite or within 500 feet of the site. Specific Condition A.9.c prohibits open burning. Construction Permit Specific Condition C.1.b prohibits the discharge of leachate, during construction or operation, to soils, surface water, or groundwater outside the liner and leachate management system. Specific Condition C.4 prohibits the acceptance of hazardous waste and does not condition this prohibition on Republic's knowledge that the waste is a hazardous waste. Specific Condition C.5 requires Republic to "control . . . odors and fugitive particulates (dust)" and "minimize the creation of nuisance conditions on adjoining property." "Nuisance conditions" include "complaints confirmed by [DEP] personnel upon site inspection." Specific Condition C.5 orders Republic to "take immediate corrective action to abate the nuisance" and to "control disease vectors so as to protect the public health and welfare." Construction Permit Specific Condition C.6.b requires immediate notice to DEP of any sinkholes or other subsurface instability. Specific Condition C.8 requires Republic to manage leachate in accordance with the Operating Permit and Florida Administrative Code Rule 62-700.500(8). The Operating Permit incorporates the same materials that are incorporated into the Construction Permit, again "(unless otherwise specified)." Like the Construction Permit, the Operating Permit incorporates Florida Administrative Code Chapter 62-701 (2001) and requires immediate notice to DEP in the event of a sinkhole or subsurface instability. The Operating Permit specifies that the action leakage rate is 100 gallons per acre per day and the leachate recirculation rate is 12,000 gallons per day. As modified by the Joint Stipulation to Permit Modification, Operating Permit Specific Condition A.1.b states: This Facility is not authorized to accept Garbage; untreated Biomedical Waste; animal carcasses; liquids and non-liquid PCB containing materials or wastes with a PCB concentration greater than or equal to 50 parts per million; Liquid Waste; and aluminum dross. Additionally, this facility is not authorized to accept Household Waste, except waste from residential sources generated as Class III waste. Class III waste means yard trash, construction and demolition debris, processed tires, asbestos, carpet, cardboard, paper, glass, plastic, furniture other than appliances, or other materials approved by [DEP] that are not expected to produce leachate which are a threat to public health or the environment as defined in Rule 62-701.200(14), F.A.C. Based on this authorization to allow certain wastes as described above from residential sources, and since the landfill design, including liner and leachate collection systems, meets the requirements of Chapter 62-701, F.A.C., for Class I landfills, the facility will be entitled to [the] household hazardous waste exemption pursuant to 40 C.F.R. 261.4(b)(1). Specific Condition A.9.c prohibits open burning. Operating Permit Specific Condition C.1.b prohibits the discharge of leachate to soils, surface water, or groundwater outside the liner. Specific Condition C.1.c prohibits the discharge of "residual contaminants," such as gasoline, oil, paint, antifreeze, and polychlorinated biphenyls (PCBs), onto the ground or into surface water or groundwater. Operating Permit Specific Condition C.1.k(1) provides that authorized waste types are those listed in Section 3(b) of the Operations Plan, and unacceptable wastes shall be removed from the site as described in Sections 3(a) and 7. As modified by the Joint Stipulation to Permit Modification, Operating Permit Specific Condition C.1.k(1) provides: "Waste types authorized for management at this site are those listed in Section 3(b) of the Operations [sic] Plan. Unacceptable wastes are those listed in Section 5 [of the Operation Plan] " Operating Permit Specific Condition C.1.k(2) requires the use of a sufficient number of spotters to remove unacceptable wastes, but allows Republic to direct its equipment operators to serve as spotters from the equipment. This condition allows DEP to require that spotters work from the ground, if DEP determines that spotting from equipment is not effective. Specific Condition C.1.k(3) requires Republic to remove unacceptable wastes immediately and not to unload additional wastes in the immediate vicinity until placing unacceptable wastes in the designated waste containers" "near the working face" and within the lined landfill area. Operating Permit Specific Condition C.1.l(2) requires Republic to inspect on each operating day the property boundary for objectionable odors and, if any are detected, abate them in accordance with Specific Condition C.5. Specific Condition C.5.a requires Republic to control odors, disease vectors (insects and rodents), and fugitive particles (dust and smoke) to protect the public health and welfare. Control is defined as "minimiz[ing]" the creation of nuisance conditions on adjoining property. Odors confirmed by DEP personnel are a nuisance condition, and Republic must take immediate corrective action to "abate" the nuisance. Specific Condition C.5.b provides that, if odor control measures do not "sufficiently abate" objectionable odors within 30 days, Republic will submit an odor remediation plan to DEP for approval. Operating Permit Specific Condition C.8.e requires monthly reports to DEP of leachate quantities. Specific Condition C.8.h(1) prohibits recirculation of leachate at rates that result in seepage that may discharge outside the lined area. Leachate may not be sprayed when the application area is saturated or during a rainfall event. There is no prohibition against spraying during windy conditions. Operating Permit Specific Condition E details the extensive water quality monitoring requirements. However, Specific Condition E.9.b requires only annual testing of the five field parameters, eight laboratory parameters, and the comprehensive list of Appendix II parameters set forth in 40 CFR Part 258, all of which are identified below. Specific Condition E.9.c provides that, if a contaminant listed in 40 CFR 261.24 exceeds the level listed therein, Republic will notify DEP and take monthly leachate samples until no exceedances are detected for three consecutive months. Operating Permit Specific Condition F.1.a states: "This solid waste permit will meet the statutory requirement to obtain an air construction permit before . . . constructing a source of air pollution, except for those landfills that are subject to the prevention of significant deterioration (PSD) requirements of Chapter 62-212, F.A.C." Such facilities are required to obtain an air construction permit from the Bureau of Air Regulations prior to construction. Specific Condition F.1.b requires Republic to comply with Title V of 40 CFR 60, Subparts WWW and CC. This section notes that Title V permit applications must be submitted to the District Air Program Administrator or County Air Program Administrator responsible for the landfill. Aviation Safety Landfills attract birds in search of food. Flying birds may interfere with aviation safety. Thus, landfills are typically not located in close proximity to airfields to minimize the risk that flying birds will interfere with airborne aircraft approaching or departing from an airport. The nearest airport to the Cedar Trail Landfill is the Bartow Municipal Airport, which is operated by the Bartow Aviation Development Authority. This airport is over five miles from the footprint of the active landfill and 4.6 miles from the boundary of the proposed site. Republic provided notice of the Application to all airports within six miles of the proposed landfill, the Federal Aviation Administration, and the Florida Department of Transportation. None of these entities objected to the proposed landfill. When Republic gave the Bartow Aviation Development Authority notice of an earlier application, which sought a permit for a landfill that would accept garbage, the authority objected to the proposal due to concerns posed by birds to aviation safety. When asked about the Application, the authority's executive director testified that she still has concerns about the proposed landfill, but she did not specify the nature of her concerns or her analysis. As explained in the Conclusions of Law, these are the only facts required for a determination of whether Republic has provided reasonable assurance of aviation safety. The record provides no basis for finding that Republic has failed to provide reasonable assurance of aviation safety. Neither the FAA nor the Bartow Aviation Development Authority has objected to the proposed landfill. The executive director's unspecified concerns do not override the absence of a formal objection from these agencies. Petitioners assign too much weight to the earlier objection submitted by the authority. The composition of the authority may have changed or some authority members may have decided they were wrong in their earlier analysis. This earlier objection does not outweigh the absence of objection to the present proposal from any of the aviation agencies and the absence of any evidence of the expected nature or extent of bird usage of the proposed landfill and the extent to which these birds would interfere with existing and expected flight paths of aircraft using the Bartow Municipal Airport. Public Health Petitioners' expert witness on public-health issues, Dr. David Carpenter, is a medical doctor with a long, prestigious history of public service, including with the Department of Defense, the National Institutes of Mental Health, the United States Public Health Service, and the New York Department of Health, where he served as director from 1980-85. At that time, Dr. Carpenter started the School of Public Health at the University of Albany. Republic's expert witness on public-health issues, Dr. Christopher Teaf, is an expert in the evaluation of environmental contamination, waste management, and toxicology, but not a medical doctor. Dr. Teaf is a professor at Florida State University and owns a small consulting firm. The major part of Dr. Carpenter's career has been devoted to research. For the past ten years, he has focused more on human health, especially human disease from exposure to environmental contaminants. Dr. Carpenter has considerable experience with the adverse effects of landfills on human health, but his experience has been mostly with older landfills, where containment measures were few and offsite releases were many. Clearly, Dr. Carpenter's experience does not extend to the role of landfill design, construction, and operation in the transmission of human disease. Thus, Dr. Carpenter is qualified to opine on the effects of pollutants that may escape landfills, but not on the relationship of landfill design, construction, and operation on the probability that a landfill will transmit pollutants. For the most part, Dr. Carpenter did not attempt to address matters outside of his expertise. However, Dr. Carpenter testified that the risk of disease or injury increased in relationship to the proximity of the person to the landfill. This testimony can only be credited if one assumes that the landfills are identical in terms of design, construction, and operation and in terms of the environmental conditions of the landfill site. In other words, in real-world applications, it is impossible to credit this element of Dr. Carpenter's testimony, especially to the extent of his implicit suggestion that public health is unreasonably endangered by the construction of a landfill, in compliance with all rules, that satisfies all of the separation criteria and design criteria set forth in the rules, as discussed below. By contrast, Dr. Teaf focused on the details of the proposed landfill. Applying his knowledge of toxicology, Dr. Teaf determined that the proposed landfill adequately protects public health. In making this determination, Dr. Teaf analyzed the effects of various design and operational characteristics of the proposed landfill, including the double liner system, the leachate collection and management system, the selection of appropriate waste types, the procedures for the evaluation and covering of sludges, the prohibition against municipal garbage, the restrictions on household items, the monitoring of groundwater and surface water, the stormwater management system, and the plans to control dust and odors. Dr. Carpenter's testimony and the literature that he sponsored suggested important links between older landfills and a wide range of human disease. But the recurring problem with Dr. Carpenter's testimony and the research articles that he sponsored was the inability to link this information to the proposed landfill. All of the landfills studied in his research articles were older, and most of them appeared to have been designed, constructed, and operated under far more relaxed regulatory regimes than exist today. Nothing in Dr. Carpenter's testimony or sponsored literature attempted to delineate the design or operational characteristics of these landfills, such as whether they were double- or even single-lined, served by leachate circulation and recovery systems, limited as to materials that they could accept, or required to install stormwater management and water monitoring systems. 93. Analysis of the risk to public health posed by the proposed landfill requires consideration of the various means of transmission of the pollutants received by the landfill: water, land, and air. Of these, water requires little analysis, on this record. Even Dr. Carpenter conceded that the proposed landfill does not appear to pose a threat to groundwater. The double liner, leachate collection and recovery system, and groundwater monitoring plan support the finding that groundwater transmission of pollutants from the proposed landfill is unlikely. Transmission by surface water is also unlikely. Compared to groundwater monitoring, surface water monitoring is limited. For instance, there is only a single monitoring site. Also, as noted above, the stormwater pond for the leachate storage area is expected to discharge stormwater offsite during excessive storm events, at which time surface water samples will be taken. However, a comprehensive surface water management system is in place at the landfill and will prevent offsite discharges in all but a few excessive rain events. Transmission by land is also unlikely. The Application contains engineering analysis of the proposed stability of the side slopes and a determination that they will be stable. The discussion of sinkholes, below, does not affect this finding. Treating dust as transmission by air, the only other means by which pollutants may transmit by land is by animals, such as insects, rodents, and birds. An important factor limiting the activity of animals in spreading pollutants offsite is the fact that the proposed landfill will not receive garbage. Although putrescible waste may be received within other categories of waste, the prohibition against receiving garbage will greatly reduce the amount of potential food sources for animals and thus the utilization rate of the proposed landfill by these animals. A further reduction in animal utilization will be achieved through the daily and intermediate cover requirements. Thus, transmission of pollutants by animals is also unlikely. Transmission by air takes several forms. Pollutants may be transmitted as or on dust, with water in the form of aerosol, or as gas. In terms of how transmission by air is addressed by the Permit, this means of transmission potentially represents a greater threat than transmission by water or land for four reasons. First, the explicit focus of the Permit, as to gas, is to avoid explosive concentrations of methane and objectionable odors, but not the transmission of other pollutants by air. Second, the effect of the Permit is to prohibit the release of pollutants into the groundwater or offsite surface water and to prohibit the release of pollutant-bearing land offsite, but no such flat prohibition applies to the offsite release of pollutants by air. Third, the leachate recirculation system provides a good opportunity for the release of certain pollutants into the air by aerosol or evaporation, but similar releases to offsite land, surface water, or groundwater are prohibited. Fourth, scientific understanding of the effects of exposure, especially by inhalation, to pollutants, especially in the form of organic compounds, is continuing to develop: with the use of chemicals increasing three fold in the 50 years preceding 1995 and approximately 80,000 chemicals in use in 2002, only a few hundreds of these chemicals have been subjected to long- or short-term study, resulting in the discovery that about 10% of the chemicals in use in 2002 were carcinogens. Transmission by dust appears to be limited by the frequent covering and spraying of the working faces. Although nearby residents complain of dust in their homes, the practices of the less-regulated Class III landfill cannot be extrapolated to the proposed Class I landfill. Thus, the prospect of dust transmission of chemicals contained in the fill received by the proposed landfill appears also to be slight. The use of untreated leachate as the spray medium to control the dust itself raises two risks, however. First, spraying leachate will release chemicals in aerosol. The potential range of aerosol is great, especially as the landfill ascends toward its design height of 190 feet. However, the risk of transmission by aerosol is reduced to insubstantial levels by adding a Permit condition that prohibits spraying during windy conditions. Second, depositing leachate on the landfill face will release chemicals through evaporation. The point of spraying the landfill face is to control dust between the addition of the waste materials to the pile and the application of the cover. Between these two events, dry conditions will sometimes intervene and may cause the evaporation of certain, but not all, pollutants. The leachate acquires pollutants as it percolates down the waste column and into the leachate collection system. As Dr. Teaf noted, the leachate becomes more concentrated as it recirculates, but, otherwise, this record is largely silent as to the likely composition of the recirculated leachate. However, for landfills accepting sludge, higher levels of mercury may be present in the leachate. As reported by the Florida Center for Solid and Hazardous Waste Management at the University of Florida, in a report issued March 2007, and titled, "Design and Operational Issues Related to Co-Disposal of Sludges and Biosolids and Class I Landfills--Phase III," one study found that the concentration of mercury in the leachate of landfills that receive sludge is almost three times greater than the concentration of mercury in the leachate of landfills that do not accept sludge. The same study reported that total dissolved solids and chlorides were present at greater concentrations at the landfills that did not accept sludge and that other parameters--unidentified in the cited article--were not significantly different between the two types of landfills. Republic proposes to recirculate substantial volumes of leachate--sufficient, for instance, to raise the moisture content of the fill from 25 percent to 28.9 percent. The Permit allows the proposed landfill to operate six days per week, for a total of 312 days annually. The Operation Plan prohibits the application of leachate during rain, but the number of days annually during which rain extends for the entire day is few, probably no more than a dozen. These numbers suggest that Republic may apply as much as 3.6 million gallons annually of untreated leachate to the landfill face. The 12,000 gallon-per-day limit and restrictions on head in the leachate collection and removal system effectively limit the quantities of leachate that may be recirculated, but the sole provision addressing leachate water quality is the annual monitoring event described above. Given the time required to analyze the many parameters included in the EPA regulation, for most of the year between tests, Republic will be applying over three million gallons of leachate whose pollutant concentrations will be completely unknown. Some assurances emerge, though, when considering air transmission of pollutants by class. In general, on this record, as to transmission by gas, there appears to be an inverse relationship between a compound's volatility, which is a measure of its ability to enter the air, and a compound's persistence. VOCs are one of the most dangerous classes of pollutants to public health and include such carcinogens as benzene, tolulene, xylene and, the most dangerous of all VOCs, vinyl chloride, which is released upon the degradation of such common substances as plastics, carpets, and upholstery. Biogas, which is generated by the anerobic decomposition of organic compounds in a landfill, contains mostly methane and carbon dioxide, but also significant levels of VOCs. When inhaled, the primary results of exposure to VOC are respiratory irritation and allergenic effects. Volatility is measured by vapor pressure, which is a measure of a chemical's ability to get into the air. As their name suggests, VOCs enter the air easily. They are also capable of traveling great distances due to their light molecule. However, VOCs are easily destroyed by sunlight and diluted by wind. Other organic compounds common to landfills are only semi-VOCs, such as PCBs. Although less volatile, these chemicals, too, are hazardous to public health--in the case of PCBs, in any amount. Due to this fact and their persistence in the environment, the United States has prohibited the manufacture of PCBs for over 30 years. However, not only are PCBs considerably less likely to enter the air than VOCs, they also travel shorter distances than VOCs due to a heavier molecule. Dr. Carpenter opined that there is little evidence that PCBs are an issue in the proposed landfill. Another class of organic compound, 1000 times less volatile than even PCBs, is phthalates, which are used in the production of plastics. Phthalates pose significant threats to public health, especially reproductive health. However, the exceptionally low volatility of this compound renders transmission by evaporation highly unlikely. Much of the regulatory framework imposed on landfill design, construction, and operation arises out of concerns for the control of human pathogens, which are infection-causing organisms, such as bacteria, viruses, protozoa, and parasitic worms. One of the great advances in human longevity in the United States occurred in the early 1900s--not with the development of antibiotics or improved medical care--but with the implementation of basic sanitation control and the removal of pathogens from the drinking water. For the proposed landfill, sludge will be the primary source of pathogens. Sludge is nutrient-rich organic matter, which will be received at the proposed landfill without any treatment except possibly dewatering. Even with the acceptance of sludge, the proposed landfill presents little risk for the transmission of pathogens. Pathogens communicate disease only when a person is exposed to an effective dose and are better transmitted by direct contact or animal than air. Bacterial pathogens are themselves killed by wind, as well as sunlight, temperature, and humidity differentials, so the preferred means of air transmission would be aerosol versus gas. The record permits no findings as to the persistence of pathogenic viruses, protozoa, and parasitic worms. However, as noted above in connection with the land transmission of pathogens, the immediate application of lime and cover to the sludge will tend to prevent the release of effective doses of pathogens by air, as well. The last major class of pollutant that could be transmitted by air is heavy metals, such as mercury or lead. Although these metals produce a wide range of neurological diseases and generally interfere with cognition and behavior, Dr. Carpenter admitted that heavy metals were not as much of a concern as VOCs, presumably due to their resistance to vaporization. Even though transmission by air is not as tightly controlled as transmission by water or land, for the four reasons noted above, there is little risk of transmission by air--i.e., dust, aerosol, or gas--when the specific properties of likely pollutants are considered. In all but five respects, then, Republic has provided reasonable assurance that public health will not be endangered by pollutants released from the landfill by water, land, or air. First, to provide reasonable assurance concerning public health, the Permit needs a condition that prohibits spraying leachate during windy conditions, which DEP may define as it reasonably sees fit. As noted in the Conclusions of Law, this is a requirement in the rules and, due to its importance, should be restated explicitly in the Permit, which restates numerous other rule requirements. Second, to provide reasonable assurance concerning public health, the Permit needs more frequent monitoring of leachate water quality, at least at the frequency, as noted in the Conclusions of Law, set forth in the rules. Large volumes of untreated leachate will be recirculated through the landfill. Even if aerosol transmission is controlled, transmission by evaporation of some pollutants, although not the heavy metals, is possible. Also, pollutants are concentrated in recirculated leachate and thus the consequences of transmission into groundwater or surface water, however unlikely, become greater. At the same time, the action leakage rate is generous--to Republic, not the groundwater. At 100 gallons per acre per day, Republic is not required to report to DEP possible liner leakage until about 7300 gallons per day are lost to the surficial aquifer. Suitable for the detection of catastrophic failures associated with most sinkholes, this action leakage rate is too high to trigger action for small liner leaks. If Republic is to be allowed this much leakage into the groundwater, it must identify the leachate's constituents and their concentrations at least semi-annually. Third, to provide reasonable assurance concerning public health, the Application must extend the right of split testing to all of the parties in these cases, if DEP fails to exercise its right to take a split sample. The spraying of untreated leachate and generous limit applied to liner leakage before reporting and remedial action are required underscore the importance to public health of independent leachate testing. There is no reason to allow budgetary constraints or administrative oversight to preclude Petitioners and Intervenor, who are uniquely situated to suffer from the escape of excessive pollutants in the leachate, from providing, at their expense, this independent leachate testing. Fourth, to provide reasonable assurance concerning public health, the Permit needs to restate accurately the language of the rules concerning the extent of knowledge required of Republic, if it is to be liable for the acceptance of certain prohibited wastes. Fifth, to provide reasonable assurance concerning public health, the Permit needs to be modified to ensure that at least one spotter, whose sole responsibility is spotting, will be assigned to each working face while the landfill is receiving waste. Sinkholes The sinkhole issue arises in the geotechnical analysis of the sufficiency of the foundation to support the considerable loads of a landfill and also in the stability of the side slopes of the landfill. This analysis starts with consideration of the geology of the area, of which Republic's property is a part, and, among other things, the potential for sinkhole formation in the area. The Cedar Trail Landfill lies within the Bartow Embayment and along the eastern slope of the Lakeland Ridge of the Central Lake District Physiographic Province. This embayment is a large erosional basin partially backfilled with phosphatic sand and clayey sand of the Bone Valley Member. At this location, the top of the Floridan Aquifer is formed by Suwannee Limestone, which consists of white to tan, soft to hard, granular, porous, very fossiliferous limestone with interbedded dolomite. This rock unit is 110-140 feet thick. Atop the Suwannee Limestone sits the Hawthorne Group, which comprises the Arcadia Formation, at the base of which is the Nocatee Member, which is a relatively impermeable sand and clay unit. Atop the Nocatee Member is the Tampa Member, which consists of hard, dense, sandy, locally phosphatic, fossiliferous limestone. The top of this member, which is the top of the Arcadia Formation, is locally referred to as the "bedrock complex," which marks the lower limit of phosphate mining. Atop the Arcadia Formation, still within the Hawthorne Group, sits the Peace River Formation, which consists of phosphatic clayey sand and clayey sand. The lower portion of the Peace River Formation is a relatively impermeable, undifferentiated clayey unit locally known as "bedclay." The Bone Valley Member of the Peace River Formation is mined for phosphate and is locally known as "matrix." Atop of the Peace River Formation are undifferentiated surficial soils, typically consisting of silty sand, clayey sand, and some hardpan and organic soils. These materials are locally known as "overburden." Phosphate mining is prevalent in the area, including, as noted above, much or all of the Cedar Trail Landfill site. Strip mining for phosphate normally removes the entire surficial aquifer, just into the bedclay. Mined areas are then backfilled with overburden spoil soils, clay, waste clay, and sand tailings. After backfilling, the soil strata bear little resemblance to premining strata. Sinkholes are prevalent in the general area surrounding the Cedar Trail Landfill. A sinkhole is a surface depression varying in depth from a few feet up to several hundreds of feet and in area from several square feet to several acres. Sinkholes are typically funnel-shaped and open broadly upward. Sinkholes form when weakly acidic groundwater creates cavities in the calcium carbonate within limestone. Soils above these cavities erode into the cavities. In the area that includes the Cedar Trail Landfill, cover-collapse and cover- subsidence sinkholes predominate among sinkhole types. A cover-collapse sinkhole, which is typically steep- sided and rocky, forms when cohesive soils over a limestone cavity can no longer bridge the cavity under the weight of overlying soil and rock. At this point, the cohesive soils suddenly collapse into the cavity. These are more common in the part of the state in which the Cedar Trail Landfill is located. A cover-subsidence sinkhole occurs due to the gradual lowering of the rock surface as solutioning occurs in the subsurface rocks. This type of sinkhole develops as subsurface soluble rock is dissolved and overlying soils subside into the resulting shallow surface depressions. Regardless of the type of sinkhole, borings into sinkholes will reveal zones of very loose soil sediments that have washed downward into the cavernous voids within the bedrock. This very loose soil zone is called a raveling zone, which starts at the limestone layer, as the overlying soils begin to collapse into the solution features within the limestone. As the loosening works its way upward toward the surface, it eventually results in the subsidence of the ground surface and formation of a sinkhole. Considerable sinkhole activity has taken place in the immediate vicinity of Republic's property. Most visibly, a sinkhole formed in 2006 in 285-acre Scott Lake, 4.5 miles northwest of the landfill. This sinkhole drained the entire lake and destroyed several structures. The Florida Geological Service sinkhole database, which consists of anecdotal reports of sinkhole activity, some of which are unverified, includes 49 sinkholes within five miles of the proposed landfill. Two documented sinkholes have occurred within .17 mile of the landfill--one of which is reported to be 125 feet in diameter and 80 feet deep. Based upon the information contained in the preceding paragraph, Clint Kromhout, a professional geologist with the Florida Geological Survey, opined on August 23, 2009, that the potential for sinkhole formation "within the proposed site and surrounding area" is "low to moderate." Mr. Kromhout does not provide a definition of "low," but part of his opinion is shared by the Golder Report, which agrees that the sinkhole potential on the proposed site is "low." The potential for sinkhole formation in the general area surrounding the proposed landfill, as distinguished from the site itself, is at least moderate. In their Proposed Recommended Order, Republic and Intervenor necessarily concede: "All parties acknowledge that the proposed landfill site is in a general region that has a relatively high frequency of sinkholes as compared with the rest of the state of Florida." It is misleading to characterize the area surrounding the proposed landfill as of low potential for the formation of sinkholes, unless there is another category, like "nonexistent." But characterizing the sinkhole potential of the surrounding area as moderate is not determinative of the likelihood of sinkholes at the landfill's footprint, nor is a site-specific geotechnical investigation mooted by such a characterization. Rather, characterizing the sinkhole potential of the surrounding area as moderate dictates the intensity and scope of the ensuing geotechnical investigation, if the investigation is to provide reasonable assurance of the structural integrity of the proposed landfill. Acknowledging moderate potential for sinkhole formation in the surrounding area, Republic has appropriately relied on three geotechnical reports, including three sets of boring data. The final of these reports, the Hanecki Report, is based on the collection and analysis of boring data, as well as a review of the data and analysis contained in the two earlier geotechnical reports, the Ardaman Report and Golder Report. The boring data reveal that the proposed landfill site features four units. Nearest the surface is Unit 1, which is brown to dark brown, medium- to fine-grained sand with minor amounts of clayey silt. Unit 1 is 0-10 feet thick. Next down is Unit 2, which is tan to gray, medium- to fine-grained sand with increasing silty clay or clayey silt. Unit 2 is 5-10 feet thick and generally marks the upper limit of fine-grained, granular soils (i.e., clayed sands and silty sands). Unit 3 is orange brown to yellow brown, gray and tan silty clay to clayey silt or fine sand and silty clay. Unit 3 is 5-15 feet thick. Unit 4 is gray and tan clayey silt or silty clay with minor amounts of fine sand. This material is very stiff or very dense, and most borings terminated in this unit. The few borings that penetrated this unit suggest that it may consist of dolomitic sandy clays and silts and dolomitic limestone to depths greater than 100 feet below grade. Units 3 and 4 generally mark the upper limits of low permeability/low compressibility soils. The Hanecki investigation comprised two main steps. First, Hanecki retained a subconsultant to perform electrical resistivity imaging (ERI) along 100-foot-wide transects run across the site. Any anomalies revealed by the ERIs were to be followed by standard penetration test (SPT) borings, which permit soil testing at predetermined intervals, as well as a measure of the compressibility of the soils. Compressibility is measured during the soil-testing intervals, during which the drill bit is replaced by a soil sampler. The driller records the number of blows required for a 140-pound hammer falling 30 inches to produce 12 inches of penetration. The value is expressed in N-values, where N represents the number of such blows. Looser soils produce lower N values. Another important piece of information obtained during SPT boring is the partial or total loss of circulation fluid during drilling. While the drill is penetrating soil, a slurry circulates through the borehole to prevent the collapse of the sides of the hole. This slurry is recycled during drilling, but, if the drill encounters a void, all or part of the circulation fluid is lost. The ERI survey revealed no real anomalies because of a narrow range of resistance values. However, taking relatively small differences in resistivity as an anomalies, Hanecki identified 14 features of interest. At each of these locations, Hanecki performed an SPT boring. Because the ERI transects were unable to span the two onsite ponds, Hanecki added two locations for SPT borings adjacent to each side of each pond, for a total of four additional SPT borings. At the request of DEP, Hanecki added a nineteenth SPT boring at Golder site G-11, which had revealed low N-values during Golder's borings. Hanecki extended the borings into "refusal" quality soil, which was defined as soils requiring more than 50 blows of the 140-pound hammer to achieve six inches or less of penetration. All of Hanecki's SPT borings encountered very hard limestone. Among the most significant findings of Hanecki's borings, only one boring, G-11, experienced any circulation fluid loss, and this was estimated at 50 percent. However, it is more likely that this partial circulation fluid loss is due to loosely deposited sands than a void that might be indicative of conditions suitable for sinkhole formation. Not all circulation losses indicate voids that that will result in sinkhole formation. Also significant among Hanecki's findings is a clayey soil, or bedclay, at every SPT boring, which severely limits hydraulic recharge to the limestone. By impeding vertical migration of surface and shallow subsurface water to the limestone layer, this bedclay "greatly inhibits limestone erosion." This bedclay also supports the looser soils above the bedclay and thus prevents raveling, without which sinkholes cannot form. Two borings--G-11 and F3-1--lacked a layer of Unit 3 or 4 soil above the limestone, but Hanecki concluded that the Unit 2 layers above the limestone at these locations contained sufficient clay or clayey sand to serve the same functions of impeding the downward movement of groundwater and preventing the downward movement of loose soils. This conclusion appears reasonable because Unit 2 is the uppermost reach of the finer- grained materials, of which clays and silts are examples when compared to sands. There is obviously some variability in the distribution of finer- and coarser-grained materials within each occurrence of Unit 2 soils. Hanecki's findings indicated intervals of loose soils, sometimes at depth, which typically would suggest raveling zones. At the proposed location, though, these findings do not support raveling due to the underlying bedclay layer and the history of mining, which probably introduced looser soils typically found closer to the surface through the entire 40-foot depth of the mine cut. Based on these findings, the Hanecki Report concludes that, regardless of at least moderate potential for sinkhole potential in the area, the footprint of the proposed landfill has an acceptably low risk of sinkhole development to permit development of the proposed landfill. This is a reasonable conclusion because it is supported by the data collected by Hanecki and his reasoned analysis of these data. Hanecki's conclusion is also supported by the data and analysis contained in the Golder Report and Ardaman Report, which are based on an additional 84 SPT borings, post- reclamation. Only about 12 percent of these SPT borings reached the limestone, and they cover all of Republic's property, not merely the footprint of the proposed landfill. Even so, these borings confirm two important findings of the Hanecki Report. First, they produced data indicative of an extensive bedclay layer intact on Republic's property. Second, the Ardaman and Golder borings reveal only two or three instances of partial circulation loss that, like the sole occurrence of partial circulation loss in the Hanecki borings, are located on Republic's property, but outside the footprint of the proposed landfill. Republic has provided reasonable assurance that the site will provide an adequate foundation for the proposed landfill and sinkholes are unlikely to undermine the structural integrity of the proposed landfill.
Recommendation It is RECOMMENDED that the Department of Environmental Protection enter a final order granting the Construction Permit and Operation Permit, but only if the Operation Permit is modified by the addition of the five items identified in paragraphs 172, 174, 175, 181, and 187. DONE AND ENTERED this 8th day of October, 2010, in Tallahassee, Leon County, Florida. S ROBERT E. MEALE Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 8th day of October, 2010. COPIES FURNISHED: Lea Crandall, Agency Clerk Department of Environmental Protection Douglas Building, Mail Station 35 3900 Commonwealth Boulevard Tallahassee, Florida 32399-3000 Tom Beason, General Counsel Department of Environmental Protection Douglas Building, Mail Station 35 3900 Commonwealth Boulevard Tallahassee, Florida 32399-3000 Mimi A. Drew, Secretary Department of Environmental Protection Douglas Building, Mail Station 35 3900 Commonwealth Boulevard Tallahassee, Florida 32399-3000 Ronald L. Clark, Esquire Clark, Campbell & Mawhinney, P.A. 500 South Florida Avenue, Suite 800 Lakeland, Florida 33801-5271 William D. Preston, Esquire William D. Preston, P.A. 4832-A Kerry Forest Parkway Tallahassee, Florida 32309-2272 Jennings Kemp Brinson, Esquire Clark, Campbell & Mawhinney, P.A. 500 South Florida Avenue, Suite 800 Lakeland, Florida 33801 Sean R. Parker, Esquire Boswell & Dunlap, LLP 245 North Central Avenue Bartow, Florida 33830-4620 Ralph A. DeMeo, Esquire Hopping, Green, & Sams, P.A. 119 South Monroe Street, Suite 300 Tallahassee, Florida 32301 Stanley M. Warden, Esquire Department of Environmental Protection 3900 Commonwealth Boulevard, Mail Station 35 Tallahassee, Florida 32399-3000 Paula L. Cobb, Esquire Hopping Green & Sams, P.A. Post Office Box 6526 Tallahassee, Florida 32314 John W. Frost, Esquire Frost Sessums Van den Boom & Smith, P.A. Post Office Box 2188 Bartow, Florida 33831 John Stanley Fus Highland Lakes Estates HOA 2190 Boardman Road Bartow, Florida 33830
Findings Of Fact The Department (DER) is the regulatory agency of Florida charged with the duty and authority to administer and enforce Chapter 403 and Sections 376.30-376.319, Florida Statutes, and rules and regulations promulgated thereunder. Hendry is a Florida corporation that has been conducting business in excess of 60 years. The two main aspects of its business are the dredging operation and the shipyard. Hendry's site can be loosely described as an industrial site. The shipyard division performs approximately one-half its work for governmental entities, particularly the U.S. Coast Guard, which operations are largely ship refurbishing. Hendry has a Coast Guard certificate enabling it to receive mixtures containing oil and oily water waste. A significant portion of Hendry's ship refurbishing work involves repairing/replacing steel on ships which has deteriorated due to salt water exposure. That work frequently requires cutting, welding and burning. Prior to commencing the refurbrushing work, the ships must be certified as safe. In certifying a ship as being safe, the bilge area is pumped of used oil or waste oil which collects in standing waste water and oil. Also, before that works commences, the ship is defueled. Currently, Hendry's practice is to subcontract the pumping of waste oil from the ships bilge, which waste oil is pumped directly into the tanker truck of the subcontractor. Hendry no longer pumps or stores waste oil on site. In the past, the waste oil and water from the ship's bilge was pumped from the ship through a pipeline from the dry dock across the property to a 10,000 gallon above-ground storage tank. During December 1987, the U.S. Coast Guard observed a fuel spill on the water at Petitioner's facility. Based on that observation, Respondent conducted site inspections of Petitioner's facility during March and April 1988. The fuel spill was occasioned by Petitioner's refurbishment of a tuna boat at its site. Petitioner subsequently received a warning notice regarding alleged violations in its petroleum storage tanks and contamination. The transfer pipeline is of steel construction. Between 1980 and 1984, the pipeline leaked. In 1984, the pipeline was rerun with PVC line and in 1986, it was refitted with 4 inch steel pipe. The 10,000 gallon above-ground tank is located in Area 1. The removal of waste oil occasionally resulted in accidental spills. After 1985, a smaller, above-ground tank was installed adjacent to the 10,000 gallon tank to provide a storage tank for draining off water from the 10,000 gallon tank. The small tank was used to receive only water drained from the 10,000 gallon tank. Prior to installation of the small tank, a retention pond was used to drain water from the 10,000 gallon tank. The retention pond had a 2 foot berm with a visqueen liner. In October 1988, Hendry submitted an EDI Program Notification Application, a prerequisite for EDI reimbursement eligibility, under the program for costs associated with cleanup of certain petroleum contamination. In May 1989, Hendry submitted a document entitled Preliminary Contamination Assessment III Specific Areas--Task IV Rattlesnake Terminal Facility--Westshore Boulevard, Hillsborough County prepared by Mortensen Engineering, Inc. That document included reports of analysis of oil and groundwater samples taken from the site in January, March and April 1989, demonstrating extensive contamination of soil and groundwater including "free product" in monitoring wells MW-2, MW-4 and MW-4A. By letter dated November 9, 1989, the Department informed Hendry of its determination that the facility had been denied EDI reimbursement based on specific enumerated findings. Hendry entered into a stipulation with the Department on October 16, 1990, "regarding the conduct of this case and the basis for denial. " Attached to the stipulation is a sketch of the facility grounds showing a rough division of the area into four separate areas. Area 1 has two waste tanks. One was a large 10,000 gallon closed tank approximately 20 feet high and 12 feet in diameter; the other contained a volume of approximately 1,500-2,000 gallons and was an open tank. Petitioner's practice was to pump bilge in the dry dock area, located west of "Area 2" and direct the waste through underground pipes to the 10,000 gallon tank. The smaller tank was used to "bleed" water from the larger tank. Bilge waste is approximately two-thirds water. Area 2 was the location of Hendry's diesel tank farm. In the stipulation, the Department agreed to withdraw two of the seven specific grounds for the denial, namely denial of site access and failure to report discharges. Likewise, Hendry agreed to withdraw "Area 4" from its application for EDI eligibility. In the stipulation, Hendry was informed of a then recent amendment to Section 376.3071(9), which offered certain applicants who had been earlier determined ineligible for participation in the EDI program, standards and procedures for obtaining reconsideration of eligibility. The amendment required the facility to come into compliance, certify that compliance and request reconsideration prior to March 31, 1991. Additionally, compliance was to be verified by a Department inspection. Pursuant to paragraph 5(b) of the stipulation, these standards and procedures were specifically to be applied to Areas 2 and 3 at the facility. Hendry did not make a written request for reconsideration of the denial of eligibility with respect to Areas 2 and 3 on or before March 31, 1991 or at anytime subsequently. Hendry also did not come into compliance with the underground or above-ground storage tanks system regulations on or before March 31, 1991 in that Hendry failed to register a 560-gallon above-ground diesel storage tank which was onsite on that date as required by Rule 17-762.400, Florida Administrative Code. Hendry also failed to notify the Department of the Hillsborough County Environmental Protection Commission (HCEPC), as the administrator of a designated local program at least thirty days prior to closure of the storage tank system, pursuant to Subsection 376.3073, Florida Statutes. These determinations were made on April 1, 1991 by Hector Diaz, inspector in the HCEPC tanks program. Hendry submitted a registration form for the 560-gallon tank on November 18, 1991, which was of course subsequent to the March 31, 1991 deadline. Hendry stored petroleum products and waste material including petroleum constituents in the above-ground tanks until approximately March 25, 1991 when it initiated tank removal. Hendry's above-ground storage tanks, which were in use at its facility for approximately three years after extensive soil contamination was documented, were without secondary containment. In November 1991, Hendry submitted a document entitled Supplemental Preliminary Contamination Assessment Report, prepared by Keifer-Block Environmental Services, Inc. (Supplemental PCAR). The stated purpose of the study was solely to determine whether hazardous constituents were present in groundwater in Areas 2 and 3. The report included laboratory analysis of groundwater samples taken from the site in August 1991 including monitoring wells located in Area 3. The results of these analysis reflect that Area 3 is contaminated solely with heavy metals, lead and chromium. No petroleum hydrocarbon contamination was detected in Area 3. In the area adjacent to Area 2, seven of eight monitoring wells show chromium or lead contamination. Hendry had, and continues to have, a practice of removing paint from vessels by blasting them with a gritty material known as "black beauty." This practice takes place in the dry dock area near Areas 2 and 3. The waste blast grit/paint chip mixture is vacuumed or shoveled into wheelbarrels or a frontend loader and dumped into an open pile. Occasionally, the waste blast grit/paint mixture is blown about or spilled. Waste "black beauty" has been observed scattered on the ground throughout the facility. Paints sometime contain heavy metals, specifically, lead and chromium. The concentrations and distribution of lead and chromium contamination at the site are consistent with Hendry's long-standing practice of grit-- blasting paint from ships and other vessels and allowing the metal-contaminated paint and waste mixture to fall to the ground. Areas 2 and 3 are contaminated with substances other than petroleum or petroleum products, namely heavy metals. Costs associated with cleanup of lead and chromium are not reimburseable under the EDI program. Paragraph 5(c) of the stipulation allowed Hendry an opportunity to establish eligibility for Area 1 by providing information regarding operating practices at two above-ground storage tanks and a retention pond in that area demonstrating that contamination in that area is predominantly from leaks or unintentional spills of petroleum products from the tanks in that area. Hendry did not provide the required information. On January 27, 1992, Hendry submitted to the Department an affidavit executed by its principal, Aaron Hendry, which Hendry contends fulfills the requirements of paragraph 5(c) of the stipulation. Hendry, the principal who executed the affidavit, is an affiant with a legal and financial interest in the outcome of the EDI eligibility determination. The executed affidavit did not contain specific information with respect to "operating practices at the tanks and retention ponds as required by the stipulation." Specifically, the affidavit is silent as to: What the tanks were made of; When, how and by whom they were installed; What piping, leak detection or overfill protection was associated with them; What repairs or alterations had been made to them; What inventory reconciliation methods were used; Where the materials came from which was put into the tanks; In what manner, how often, and by whom material was put into the tanks; In what manner, how often, and by whom material was removed from the tanks; Disposition of material removed from the tanks; When, how, by whom and why the retention pond was dug; How and for what period of time the retention pond was used; How, often and by whom inspections of the tanks were conducted; When and how leaks occurred and were discovered at the tanks; When and how spills occurred and were discovered at the tanks; What records, including reports to state or local agencies, insurance claims, newspaper accounts, and so forth were kept with respect to leaks or spills at the tanks; What cleanup efforts were made at the time of any leaks or spills; Documentation related to registration of the tanks with state or local agencies; and Documentation with respect to any removal of the tanks, including any description of the condition of the tanks when, or if, removed. For years, the facility's retention pit was used as a "waste pit" namely, a rectangular hole in the ground, approximately 30 feet by 120 feet by 3 feet, for direct discharge of bilge waste piped from vessels at the dry dock area to the waste pit, prior to installation of the storage tank systems. After installation of the large tank in Area 1, the retention pit was used to bleed water from the bilge tank. In the past, the Department has denied eligibility to facilities where a retention pond was used for disposal of petroleum related waste and cleanup of contamination resulting from use of a retention pond. Hendry's affidavit nor other documentation submitted to the Department prior to the EDI redetermination or at hearing establishes that the bilge waste taken from the storage tanks was "a liquid fuel commodity" or recycled into such a commodity. By letter dated June 9, 1992, the Department notified Hendry that reconsideration of its EDI eligibility request for Areas 2 and 3 was denied and that the affidavit of Aaron Hendry submitted with respect to Area 1 did not satisfy the requirements of the stipulation. Thereafter, Hendry challenged the Department's denial of reconsideration and EDI eligibility which joins the issue for this proceeding. The hazardous waste allegation discovered during an inspection of Hendry's facility on April 14, 1988, resulted in a consent order which was entered as a final order of the Department on November 21, 1990. The consent order allowed Hendry an opportunity to demonstrate that not all areas at the facility were hazardous waste disposal areas and, thus, not all areas would be subject to closure and cleanup under the permitting requirements of Subsection 403.722, Florida Statutes and the remediation standards set forth in Chapter 17-730, Florida Administrative Code. To establish appropriate remediation standards and procedures which would be applicable to various areas, Hendry was required to prepare a property diagram designating areas at the property exhibiting any of the following types of contamination: Areas contaminated solely by petroleum or petroleum products or used oil which is not hazardous waste; Areas contaminated by materials which are not hazardous waste; Areas contaminated by the past or present disposal of hazardous waste. The consent order allows contamination assessment and remediation pursuant to the standards and procedures set forth in Chapter 17-770, Florida Administrative Code, for areas contaminated solely by petroleum or petroleum products. (Petitioner's Exhibit 5, paragraph 11.) The consent order requires contamination assessment and remediation pursuant to the Department's corrective action and groundwater contamination cases for all areas at the facility contaminated by used oil which is not hazardous waste or by hazardous material. (Petitioner's Exhibit 5, paragraph 12.) The consent order requires contamination assessment and remediation pursuant to a closure permit with a contingent post-closure plan to close the areas at the facility contaminated by the disposal of hazardous waste. In response to the consent order to delineate areas on the property exhibiting various types of contamination, Hendry submitted the supplemental PCAR. By letter dated March 19, 1992, the Department responded to the supplemental PCAR with a determination that: Area 1 can be assessed and remediated through the standards set forth in Chapter 17-770, Florida Administrative Code. Contamination in Areas 2 and 3 includes heavy metals, which are hazardous materials. Thus, Areas 2 and 3 should be assessed and remediated through the corrective action process for groundwater contamination cases. A hazardous waste facility closure permit application should be submitted for assessment and remediation of Area 4, which, because of the presence of Dichloroethylene, a hazardous substance and chlorinated solvent, should be expanded to include the location of monitoring well MW KBMW-2. Hendry had a practice of cleaning electrical motors by placing such motors on the ground outside the electrical repair shop near Area 4. The motors were sprayed with Trichloroethylene, a waste solvent, which was allowed to runoff into the soil. At the time of this practice, the intention was to leave the solvent contamination unchecked. The Department, pursuant to directives from the United States Environmental Protection Agency (EPA), characterizes the disposition of hazardous waste to the environment as a result of intentional, ongoing industrial practices as "disposal of hazardous waste" within the meaning of Subsection 475.703(21), Florida Statutes and 40 CFR 260.10. The consent order allowed Hendry an opportunity to challenge the Department's determination with respect to delineation of the various areas by filing a petition per paragraph 21 of the order for formal administrative hearings. Hendry filed its petition with respect to the March 19, 1992 letter, which petition is the subject of DOAH Case No. 92-2312.
Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that: Respondent, Department of Environmental Regulation, issue a Final Order in these consolidated cases concluding that 1) the contamination areas at issue herein are not eligible for EDI reimbursement under Subsections 376.3071(9) and (12), Florida Statutes; 2) that Petitioner cleanup the contamination in Areas 1, 2 and 3 under the guidance document entitled "Corrective Actions for Groundwater Contamination Cases"; and 3) that Area 4 be expanded to include the location of monitoring well MW KBMW-2 and closed through a hazardous waste closure/post closure permit application process. DONE AND ENTERED this 26th day of April, 1993, in Tallahassee, Leon County, Florida. JAMES E. BRADWELL Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 26th day of April, 1993. APPENDIX Rulings on Petitioner's proposed findings of fact: Paragraph 14, partially adopted in Paragraph 13, Recommended Order. Paragraph 19, rejected, contrary to the greater weight of evidence and speculative. Paragraph 20, rejected, unnecessary. Paragraph 21, rejected, contrary to the greater weight of evidence, Paragraphs 24-28, Recommended Order. Paragraph 22, partially adopted, Paragraphs 13 and 14, Recommended Order. Paragraph 23, partially adopted, Paragraph 15, Recommended Order. Paragraph 29, partially adopted, Paragraph 18, Recommended Order. Paragraphs 31, 32, 35, 48, 49, 51, 52, 60, 62 and 73 rejected, unnecessary. Paragraph 33, adopted in part, Paragraph 23, Recommended Order. Paragraph 38, adopted in part, Paragraph 23, Recommended Order. Paragraph 41, rejected, contrary to the greater weight of evidence and the two cases cited at hearing where Respondent exercises his discretion are distinguishable from Petitioner's failure to timely apply. Paragraph 43, rejected, unnecessary and/or argument. Paragraph 45, rejected, contrary to the greater weight of evidence. Paragraph 50, rejected, contrary to the greater weight of evidence, Paragraphs 37-39, Recommended Order. Paragraph 54, rejected, not probative. Paragraph 55, rejected, not probative. Paragraphs 56 and 57, rejected, contrary to the greater weight of evidence, Paragraphs 30 and 31, Recommended Order. Paragraphs 58 and 59, rejected, contrary to the greater weight of evidence, Paragraphs 23 and 24, Recommended Order. Paragraph 61, rejected, speculative and unnecessary. Paragraph 63, rejected, speculative. Paragraph 67, rejected, not probative. Paragraph 68, rejected, contrary to the greater weight of evidence, Paragraphs 30 and 31, Recommended Order. Paragraph 69, rejected, not probative. Paragraph 70, adopted in part, Paragraph 23, Recommended Order. Paragraph 72, rejected, irrelevant and not necessary to the issues posed. Paragraph 74, rejected, contrary to the greater weight of evidence and unnecessary. Paragraph 75, rejected, contrary to the greater weight of evidence, Paragraph 53, Recommended Order. Paragraph 76, rejected, contrary to the greater weight of evidence, Paragraph 53, Recommended Order. Paragraph 77, rejected, contrary to the greater weight of evidence, Paragraph 53, Recommended Order. Paragraphs 78 and 79, rejected, irrelevant and unnecessary. Paragraph 80, rejected, not probative. Rulings in Respondent's proposed findings of fact: Paragraphs 2 and 3, adopted in part, Paragraph 9, Recommended Order. Paragraph 12, adopted in part, Paragraph 23, Recommended Order. Paragraph 23, adopted in part, Paragraph 32, Recommended Order. Paragraph 27, adopted in part, Paragraphs 38 and 39, Recommended Order. Paragraph 30, rejected, unnecessary. COPIES FURNISHED: Thomas J. Patka, Esquire Rory C. Ryan, Esquire HOLLAND & KNIGHT 200 South Orange Ave - Suite 2600 Post Office Box 1526 Orlando, Florida 32802 Agusta P. Posner, Esquire Lisa Duchene, Esquire Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32399 2400 Virginia B. Wetherell Secretary Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32399 2400 Daniel H. Thompson, Esquire Acting General Counsel Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32399 2400