Elawyers Elawyers
Ohio| Change
Find Similar Cases by Filters
You can browse Case Laws by Courts, or by your need.
Find 49 similar cases
BILL AND PENNY HALSELL, BARBARA WAYNE, ROBERT BECHIN, JUDY D. BORST, BEN ANDERSON, ROBERT NASIFE, EDWIN K. MARTIN, J. STEPHEN ALEXANDER AND TORIM V. ALEXANDER, JERRY PRATER AND JAMES L. PRATER, JACKIE A. KELLY, CAROL SCHAEFER, FRANK A. SCHAEFER, vs HOMECOMERS, INC., AND DEPARTMENT OF ENVIRONMENTAL REGULATION, 89-005270 (1989)
Division of Administrative Hearings, Florida Filed:St. Augustine, Florida Sep. 28, 1989 Number: 89-005270 Latest Update: Jun. 07, 1990

The Issue Whether or not Applicant Homecomers, Inc. should be issued a dredge and fill permit upon reasonable assurances that the proposed project meets the requirements of Chapter 403 F.S. and Chapter 17-3 F.A.C.

Findings Of Fact The following Petitioners were represented at formal hearing by J. Stephen Alexander, Esquire: Bill and Penny Halsell Barbara Wayne D. Judy D. Borst Edwin K. Martin J. Stephen Alexander and Torim V. Alexander M. Jerry Prater and James L. Prater Jackie A. Kelly Carol Schaefer Frank A. Schaefer David B. Hoar Lawrence S. Hoar The following Petitioners did not appear for, and were not otherwise represented at, either the formal prehearing conference or the final formal evidentiary hearing: C. Robert Bechin Ben Anderson Resident (signature unintelligible) [possibly also known as Charlie Blitch] Robert Nasife Marie D. Nasife and Robert G. Nasife Kathleen R. Pile and Kevin D. Pile Beverly S. Smith and Greg Smith N. James Hoffner and Bonnie Hoffner 0. Marie D. Nasife Betty Wiant Helen Morgan U. Laura Hoar Y. Rita M. Hoar Neither did any of the foregoing Petitioners listed in this paragraph comply with the terms of either the Order to Show Cause or the Order of Prehearing Instructions entered herein on January 12, 1990. Accordingly, Petitions C, E, F, G, H, K, L, N, O, Q, R, U, and Y should be dismissed. The parties stipulated that the waters of the state which give DER jurisdiction over this project are Class II waters, as defined in Rule 17-3.111 F.A.C. The parties stipulated that the proposed project will not adversely affect the public health, safety or welfare. The parties stipulated that the proposed project will not adversely affect the property of Petitioners. The parties stipulated that the proposed project will not adversely affect navigation in the vicinity of the project. The parties stipulated that the proposed project will not adversely affect recreational values in the vicinity of the project. The parties stipulated that the proposed project will not adversely affect significant historical or archeological resources under the provisions of Section 276.061 F.S. The parties stipulated that the proposed project will not result in adverse cumulative impacts. Applicant Homecomers, Inc. owns a rectangular- shaped piece of property approximately 6.8 acres in size which lies immediately to the south of Palmetto Road in St. Augustine, Florida. It is approximately one-half mile from the Matanzas River. A perimeter ditch runs parallel to three sides of Applicant's property. Water in the perimeter ditch rises and falls with the tides. The eastern boundary of Homecomers' property abuts the westernmost lots in Hawaiian Isles subdivision, except where an elongated pond separates the subdivision lots from Homecomers' property line. Another elongated but smaller pond is more central to the Homecomers parcel. The northeast corner of the property contains another small T-shaped pond. At high tide, the ditch may overflow to one or more of these ponds, further increasing the flow considerably. Neighbors who have had the opportunity to observe the property at high and "`noon" tides describe the property as completely or nearly completely under water at normal high tide. Best estimates appear to show that two-thirds of the 6.8 acres is underwater three or four days in a row, six or seven times per year. No one who testified on behalf of the Applicant had visited the property at high tide. For all practical purposes, Homecomers' entire piece of property is completely within the landward extent of the Matanzas River, a Class II water of the state. The property is connected to the Matanzas River by a 48-inch- diameter culvert. Vegetation on the piece of property includes submerged species, which form a marsh over most of the property, and transitional species, which form a "high marsh." The high marsh area is elevated above the rest of the marsh because of spoil having been placed there in the past. There is also a small area where the spoil is high enough to support upland vegetation. This upland area is next to the location where construction is planned. Homecomers proposes to construct a permanent 40 foot by 40 foot pile- supported house approximately 150 feet south of the center line of Palmetto Road and approximately 90 feet west of the eastern property boundary. The project proposal/permit application calls for the house to be 15 feet above grade. The house and an associated parking area will be connected to Palmetto Road by a 10- foot wide driveway. However, no one who testified on behalf of the Applicant was able to provide any topographical surveys or other plans with researched elevations. The plans provided had been prepared by an engineer only "roughly to scale." Some concerns over precisely how the Applicant could make adequate provisions for utility and sewage connections were raised by Mr. Nock, a local St. Johns County contractor, but these problems were not insurmountable, even by Mr. Nock's estimation. The driveway and parking area will replace an existing jeep trail which, after leveling, will be covered with six inches of coquina. DER's Intent to Grant specifies that all fill be stabilized. The ditch which the driveway crosses has been viewed to regularly contain twelve to fourteen inches of standing water. The evidence of Mr. Tyler is to the effect that a driveway on pilings would be preferable to, but more expensive than, a coquina-based driveway, but the coquina driveway as proposed meets DER's assessment that there will be no significant negative environmental impact from the driveway. The vegetation on the existing jeep trail is of the high marsh variety and is sparse. The driveway and parking area will not be surfaced with asphalt or any other impervious material. An 18-inch diameter culvert, 18 feet long, will be placed beneath the driveway at the point at which it crosses over the perimeter ditch. Existing culverts in the vicinity are 16 inches in diameter. The Applicant's proposal is comparable or slightly preferable to these existing culverts which are functioning satisfactorily without adding to road or property flooding. After some temporary construction damage to the ground vegetation, which may reasonably be expected to "grow back" or otherwise correct itself in time, construction of the proposed driveway and parking area will permanently eliminate only approximately 1900 square feet of high marsh wetlands, and construction of the house will shade, to varying degrees, 1600 square feet of high marsh wetlands. The permanent shade under the completed house may be expected to permanently destroy certain ground vegetation directly under the house, but equally acceptable ground vegetation may be reasonably expected to take its place as the ecosystem naturally adjusts to the man-made intrusion. Because of the natural passage of the sun from east to west, the shade around the house caused by the house will also move in a shifting east-to-west pattern each day, and this type of shade is not considered significantly damaging to vegetation. At present, the daily tidal water flow moves over the existing jeep trail between the perimeter ditch and "T" pond. The 18-inch culvert will not obstruct this flow. Rather, it should allow a more direct connection. During "moon tides," approximately six or seven times a year, the high marsh and upland areas of Homecomers' property are covered with water. At these times, water will flow directly from the "T" pond to the large, elongated, narrow pond and then to the perimeter ditch which lies to the south of Homecomers' property. The proposed project will not impede that flow since it is not to be constructed in the usual flow-way. The proposed project will not cause harmful erosion or shoaling. Erosion and shoaling result from the rapid flow of water which lifts material from one point (erosion) and deposits it at a different point (shoaling). Since the flow of water around Homecomers' property is tidal, it moves very slowly, and no erosion or shoaling, much less harmful erosion or shoaling, is expected. Although some disruption is inevitable, no wildlife will be destroyed by construction of the proposed project. Many types of birds feed in the ponds and perimeter ditches, but the proximity of these areas to Palmetto Road and to existing houses does not affect such feeding at the present time, and the evidence presented was insufficient to show that the addition of the proposed house and driveway will have an ecologically significant impact on the feeding habits of the birds actually observed, and it is unclear if any of the birds observed are officially classified as either "endangered" or "threatened." Thus, the proposed project will have no discernible effect upon wildlife or its habitat. Disruption to the fish in the area is probable but unquantified. It is the "low marsh," not the "high marsh," which is considered to constitute a fish "nursery" in the ecosystem, but when high or "moon" tides cover the high marsh to a depth in which fish can swim, the high marsh can be considered to serve as fish habitat. However, since such flooding is infrequent, and since the vegetation to be destroyed by the driveway is sparse, the impact upon fish habitat will be minimal. The effect of the proposed project on marine productivity is unquantified and predicted to be minimal. A project can negatively impact marine productivity by either damaging water quality or by eliminating wetland areas which, as plants disintegrate, provide marine life with tiny organic food particles. Since the area to be covered with coquina is sparsely vegetated and infrequently flooded, its contribution to the food chain is not significant. Although Dr. Tropino-Rosenthaul testified as an expert marine biologist that larval forms are susceptible to petroleum products, the degree of impact of oil and grease that might be discharged from motor vehicles using the driveway and parking area would be small, and their impact is subject to a lot of variables, including but not limited to dilution, runoff quantity and velocity, and whether or not the surface is pervious or impervious. Petitioners concede that high tides increase the flow in the ditch, and it must be inferred that such greater velocity and dilution with such increased flow would continue. To date, there is no data to quantify what amount or concentration of oil and grease would harm the larvae present in this location, but in order to minimize impacts from any oil and grease leaks on the property, the driveway and parking area are to be constructed of coquina (pervious or porous material), rather than asphalt (impervious material), so that any drips will proceed downward into the soil rather than laterally into surface waters. Oil and grease which does not adhere to the coquina or ground beneath it would be washed into the surface water only on those occasions when the driveway and parking area are flooded. During such flood tides, the greater volume of water will help dilute any oil or grease which is washed into the water. Dr. Tropino-Rosenthaul candidly described most of the damage to be feared as already having occurred when impervious public roadways were cut through the area. In comparison, this project's potential damage is extremely small. For the foregoing reasons, the project will have a slight, but unmeasurable negative impact on water quality and an unquantified effect on marine production. For the foregoing reasons, this is a "borderline case" in the opinion of DER's Mr. Tyler, who felt that the Applicant's willingness to give DER a conservation easement in mitigation of the sporadic and unquantified potential harm this project might cause made granting of this permit in the State's best interest. The proposed conservation easement agreement is made pursuant to Section 704.06, F.S. and is a condition of the Intent to Grant. It is intended to offset any adverse impacts resulting from the proposed project. The easement will ensure that 280,640 square feet of the parcel's 283,400 square feet (1 acre 43,560 square feet) will remain unaltered and continue to function as a productive wetland.

Recommendation Upon the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the Department of Environmental Regulation enter a Final Order: (l) Dismissing Petitions C, E, F, G, H, K, L, N, O, Q, R, U, and Y; Denying the relief sought in Petitions A, B, D, L, J, M, P, S, T, V, W, and X; and Approving the Homecomers Application by issuance of a dredge and fill permit as conditioned by the Intent to Grant. DONE and ENTERED this 9th day of June, 1990, at Tallahassee, Florida. ELLA JANE P. DAVIS Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 7th day of June, 1990. APPENDIX TO RECOMMENDED ORDER CASE NO. 89-5270 The following constitute specific rulings pursuant to Section 120.59(2) F.S. upon the parties' respective proposed findings of fact (PFOF): PFOF of Petitioners A, B, D, I, J, J, S, T, V, X, and W: 1 The stipulation as orally modified at formal hearing is accepted and incorporated in the Recommended Order (RO) as appropriate. 2-3 Rejected as COL, not FOF, as cumulative, and because there was no proof that the species proved to be present were listed as "endangered" or "threatened" by any recognized authority. 4 Rejected as not supported by the record as a whole. 5,8 Rejected as COL, not FOF, as cumulative, and because not supported by the record as a whole. 6-7 Accepted that water quality standards would be minimally adversely affected as set forth in the RO but these are COL, not FOF as stated. Also, Dr. Rosenthal testified that he was unfamiliar with the standards to be applied in this type of proceeding. 9-11 Rejected as COL, not FOF, and as not supported by the record as a whole. Respondent' s PFOF: 1-6 Accepted as modified to better reflect the credible, competent, substantial evidence as a whole. 7-16 Accepted as modified to exclude COL and to better reflect the credible, competent, substantial evidence as a whole. No other proposals have been received to date. COPIES FURNISHED: Rita M. Hoar 15 Hawaiian Boulevard St. Augustine, Florida 32084 F. Resident (possibly also known as Charlie Blitch] 330 Palmetto Road St. Augustine, Florida 32084 K. Kathleen R. Pile Kevin D. Pile 32 Hawaiian Boulevard St. Augustine, Florida 32084 G. Robert M. Nasife 5494 Fourth Street St. Augustine, Florida 32084 B. Kuehn 72 Aloha Circle St. Augustine, Florida 32084 Betty Wiant 64 Kon Tiki Circle St. Augustine, Florida 32084 H. Marie D. Nasife Robert G. Nasife 270 Palmetto Road St. Augustine, Florida 32084 E. Ben Anderson 5443 Fourth Street St. Augustine, Florida 32084 C. Robert H. Bechin 101 Hawaiian Boulevard St. Augustine, Florida 32084 U. Laura Hoar 7 Hawaiian Boulevard St. Augustine, Florida 32084 O. Marie D. Nasife 5489 Third Street St. Augustine, Florida 32084 P. R. M. Kuehn 5494 Atlantic View St. Augustine, Florida 32084 R. Helen Morgan 20 Hawaiian Boulevard St. Augustine, Florida 32084 L. Beverly S. Smith Greg Smith 5495 Fourth Street St. Augustine, Florida 32084 N. James Hoffner Bonnie Hoffner 5536 Sunset Landing Circle St. Augustine, Florida 32084 J. Stephen Alexander, Esquire [for Petitioners, A, B, D, I, J, M, S, T, V, X, and W] Upchurch & Alexander P.A. 200 First Union Bank Building Post Office Box 3956 St. Augustine, Florida 32085-3956 Homecomers, Inc. c/o J. M. Moore Harbor Engineering Co., Inc. 1615 Huffingham Road Jacksonville, Florida 32216 William H. Congdon, Esquire Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32399-2400 Dale H. Twachtmann, Secretary Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32399-2400

Florida Laws (3) 120.57267.061704.06
# 1
ROYAL PROFESSIONAL BUILDERS, INC. vs CRESTWOOD LAKES ASSOCIATES AND SOUTH FLORIDA WATER MANAGEMENT DISTRICT, 96-002890 (1996)
Division of Administrative Hearings, Florida Filed:West Palm Beach, Florida Jun. 17, 1996 Number: 96-002890 Latest Update: Feb. 12, 1999

The Issue The issue is whether Respondent Crestwood Lakes Associates provided reasonable assurance that a modification to a conceptual surface water management permit complies with the permit criteria contained in statutes and rules.

Findings Of Fact Background This case involves a 900-acre parcel in the Loxahatchee Slough, west of the Florida Turnpike in Palm Beach County (County). Although the property occupies part of a slough, all of the wetlands in this case are isolated wetlands. Respondent Crestwood Lakes Associates (Applicant) owns the south 503 acres, Petitioner owns the north 287 acres, and the Village of Royal Palm Beach (Village) owns the remaining 115 acres, which abut the southwest boundary of the north parcel. The acreages do not total 900 acres because the numbers are approximate. The 900-acre parcel is generally bounded on the south by Okeechobee Boulevard and the north and east by the M-1 canal. The west boundary of the south part of the parcel adjoins a residential development known as Loxahatchee Groves, and the 115-acre parcel adjoins a County-owned preserve of at least 600 acres. Applicant’s land is undeveloped except for some landclearing. Petitioner’s land is partly developed, mostly in the south next to the boundary with Applicant’s land. The Village's 115 acres are a preserve, divided equally between wetlands and uplands. On February 11, 1988, Respondent South Florida Water Management District (District) issued surface water management (SWM) permit No. 50-00618-S-02 to Royal Palm Homes, Inc. for conceptual approval of a SWM system serving a residential development on the 900-acre parcel (1988 Permit). References to the Original Developer shall include Royal Palm Homes, Inc., its agents, lenders, and assigns, except for Petitioner and Applicant. The permitted development, which was known as the Royal Palm Homes PUD, comprises single-family and multifamily residences, wetland preserve areas, two 18-hole golf courses, and a park area. On August 3, 1994, Applicant filed SWM application number 940803-6 to modify the 1988 Permit to show the change in ownership and obtain conceptual approval of a modification to the permitted SWM system. The application was not complete when the new Environmental Resource Permit (ERP) rules replaced the old Management and Storage of Surface Water (MSSW) permit rules. On May 24, 1996, the District transmitted the staff report, which proposed the issuance of a permit modification. On June 13, 1996, the District approved the issuance of the proposed permit modification. On the same date, Petitioner filed its petition challenging the proposed agency action. Permits The first relevant SWM permit for the 900-acre parcel involved a larger parcel that includes the 900-acre parcel. On September 14, 1978, the District issued a two-page permit authorizing the “construction of a water management system serving 2073 acres of residential lands by waterways discharging into canal C-51.” This 1978 permit, which is identified as number 50-00618-S, contains a special condition calling for a minimum finished floor elevation of 18.0 feet National Geodetic Vertical Datum (NGVD). The next permit is the 1988 Permit, which is a substantial modification to the 1978 permit. The 1988 Permit covers only the previously described 900 acres and, as modified, currently remains in effect. The 1988 Permit requires the preservation of two large wetlands in the north parcel, just north of the 115-acre preserve; one wetland is about 30 acres and the other is about ten acres. The 1988 Permit requires the preservation of no other wetlands in the north parcel, but, in addition to the wetlands in the 115-acre preserve, the 1988 Permit requires the preservation of several much smaller wetlands in the south parcel. The staff report for the 1988 Permit divides into three basins the drainage area for the 900-acre parcel: a north basin of 98.9 acres, a central basin of 525.7 acres, and a south basin of 270.8 acres. The staff report states that basin runoff will pass through a system of inlets and culverts into a series of interconnected lakes, from which, through control structures, the runoff will pass into the M-1 canal and eventually into the C-51 canal. The staff report notes that the control elevations will be 17.25 feet NGVD for the north basin, 17.55 feet NGVD for the central basin, and 17.75 feet NGVD for the south basin. Under the discussion of environmental impacts, the staff report observes that the 1978 permit proposed for protection only 30 acres of wetlands among the 281 acres of isolated wetlands on the site. The staff report notes that “extensive” melaleuca invasion has taken place since the 1978 permit and only 160 acres of wetlands remain in “relatively good” condition, with much of this subject to melaleuca encroachment. Due to the “extensive seed source” and “seasonal drying of the wetlands,” the staff report predicts eventual melaleuca dominance of the “entire site.” The staff report asserts that the proposed development plan includes the protection of about 100 acres of the “best quality wetlands,” plus eight acres of wetlands created in conjunction with the golf courses and 15 acres of wetlands created as littoral zones in conjunction with the lakes to be constructed. The staff report calls a program “to eradicate all melaleuca from the site” “[t]he major environmental feature” of the proposed development plan. But this major environmental feature of the 1988 Permit is presently in jeopardy. One major component of the present case is that, following the conveyances of the three parcels by the Original Developer, the District has evidently concluded that no one is responsible to perform certain obligations under the 1988 Permit and no remedies are available for the nonperformance of these obligations. It appears that these conclusions are largely driven by the vagueness of the plan to eradicate the melaleuca. This plan is called the "Melaleuca Eradication Plan." The Melaleuca Eradication Plan is incorporated into the 1988 Permit. The Melaleuca Eradication Plan, which is dated December 11, 1987, recounts that the Original Developer and regulatory bodies agreed that the melaleuca should be “eradicated and a program for this should be developed and included as a part of the permit application.” The plan states that the eradication plan will cover the entire 900- acre site with the Original Developer performing the “initial . . . program” on the entire site, including the 115-acre preserve to be deeded to the Village. The Melaleuca Eradication Plan calls for the Original Developer to create a bonded authority to conduct the “ten-year melaleuca eradication program.” The program is phased to coincide with the projected 10-year buildout of the 3000-unit parcel. The Melaleuca Eradication Plan describes in detail the three phases of the program and exactly how the Original Developer will proceed to remove the melaleuca and restore wetlands by planting native wetland species in disturbed areas. The plan promises a yearly inspection followed by hand-removal of any seedlings discovered on the site. This last phase will terminate ten years after commencement of the first phase. A “Wetlands Monitoring/Maintenance Program” is also incorporated into the 1988 Permit. The Wetlands Monitoring/Maintenance Program, which is dated December 8, 1987, states that Dr. Dwight Goforth performed a wetlands survey of the 900-acre site in 1985 and divided wetlands into three categories based on their quality. The Wetlands Monitoring/Maintenance promises the preservation of 112.71 acres of wetlands comprising 98.81 acres of “large wetlands totally preserved” and nine wetlands totaling 13.9 acres that will be “partially preserved.” Also, the program will create golf course wetlands of 6.93 acres and littoral-zone wetlands around the lakes of 15 acres. Thus, the program summarizes, the “total wetland acreage preserved, enhanced and created will [be] 134.64 acres.” The Wetlands Monitoring/Maintenance Program describes a three-year monitoring program using transects to assist in the vegetative mapping of the site. The program also promises semiannual observations of birds, small rodents, and larger mammals using the wetlands and adjacent preserved uplands, as well as semiannual sampling for fish, macroinvertebrates, and amphibians. The Wetlands Monitoring/Maintenance Program outlines a plan to remove melaleuca and control algae buildup in the lakes. The program promises to contain algae through the use of “biological controls” and, when needed, hand-raking. The program also assures that the Original Developer will use a “conservative fertilization program” for the golf course and landscaped areas to reduce eutrophication in the created lakes. On February 18, 1988, the District issued its conceptual approval of the 1988 Permit. Among the special conditions of the 1988 Permit are Special Condition 15, which requires wetland monitoring and maintenance in accordance with the Wetlands Monitoring/Maintenance Program, and Special Condition 16, which requires melaleuca removal in accordance with the Melaleuca Eradication Plan. Also, Special Condition 17 requires low berms around protected or created wetlands, including littoral zones, to protect against sheetflow runoff from the golf course or other areas of intense development. The references in the preceding paragraphs to the responsibilities of the "Original Developer" imply greater clarity than is present in the Melaleuca Eradication Plan or Wetlands Monitoring/Maintenance Program. The passive voice predominates in both these documents, so it is sometimes difficult to determine on whom a particular responsibility falls. The Melaleuca Eradication Plan states clearly that "[the Original Developer] will conduct the initial melaleuca eradication on the entire site including the dedicated park area [i.e., the 115 acres]." The next sentence of the plan contemplates the conveyance of the 115 acres to the County. But, after these clear provisions, the Melaleuca Eradication Plan lapses into the passive voice almost invariably. The next two sentences read, "A bonded authority will be created to conduct the ten-year melaleuca eradication program" and "The eradication program will be carried out through a bonded agreement with the [Original] Developer to remove the melaleuca . . .." Alluding to the several phases of melaleuca eradication, the plan states only "[t]he eradication program will be completed in stages " Only two other sentences establishing responsibility for melaleuca eradication identify the responsible party. The end of the plan states that the "bonded authority responsible for initial eradication clearance will likewise provide a yearly inspection." One of the final sentences of the plan adds: "the bonding authority's crew will hand remove entire seedlings found on site." The Wetlands Monitoring/Maintenance Program is similar except that it does not once name the entity responsible for the monitoring and maintenance duties or hiring the firm or individual to conduct the actual work. The two special conditions incorporating these two documents likewise are in the passive voice, implying only that the responsibility belongs to the Original Developer. Given the vagueness of the melaleuca-eradication and wetlands-maintenance documents, it is not surprising that they fail entirely to address the issue whether these responsibilities run with the land, remain the responsibility of the Original Developer, or, for the eradication of melaleuca, remain the duty of the "bonded authority," if the Original Developer ever created such an entity, which appears highly doubtful. The documents likewise do not disclose the penalties for noncompliance. On June 16, 1988, the District issued a modification to the 1988 Permit for the construction and operation of a 110.9-acre residential development in Phase I, which occupies the central basin. On October 1, 1988, the United States Army Corps of Engineers (Army Corps) issued the Original Developer a permit to destroy 164 acres of wetlands on the 900-acre parcel. Special conditions of the 1988 Army Corps permit require the preservation of "115 acres of high quality wetlands," the creation of 18 acres of wetlands and 15 acres of littoral shelf, and the implementation of a "Melaleuca Eradication Program," which is the same program as is incorporated in the 1988 Permit. The 1988 Army Corps permit contains an attachment dated October 24, 1987. This attachment identifies the protected wetlands as the two large wetlands in the north parcel totaling about 40 acres, 58 acres in the 115-acre preserve, and 53.5 acres in the south parcel. The 1988 Army Corps permit protects several wetlands in the south parcel, including wetland numbers 14 (3.04 acres), 16 (1.6 acres), 23 (0.53 acres), 30 (2.6 acres), 44 (0.8 acres), 29 (1.08 acres), and 46 (3.0 acres). These wetlands, which total 12.65 acres, are seven of the nine wetlands partially preserved in the 1988 Permit, although some of the acreages vary from those preserved in the 1988 Permit. Unlike the District's permits (except for the subject proposed permit modification), the 1988 Army Corps permit addresses conveyances by the developer. The 1988 Army Corps permit states: "If you sell the property associated with this permit, you must obtain the signature of the new owner in the space provided and forward a copy of the permit to this office to validate the transfer of this authorization." Below the signature line of the 1988 Army Corps permit is language stating: When the structures or work authorized by this permit are still in existence at the time the property is transferred, the terms and conditions of this permit will continue to be binding on the new owner(s) of the property. To validate the transfer of this permit and the associated liabilities associated with compliance with its terms and conditions, have the transferee sign and date below. On March 1, 1989, the Original Developer conveyed the 115-acre preserve to the Village, which later leased the preserve to the County. The Original Developer had not eradicated the melaleuca at the time of the conveyance, nor has anyone since done so. On August 17, 1990, water elevations in the wetlands in Phase I reached 19.4 feet NGVD, washing out construction pads, roads, and in-ground utilities. On September 7, 1990, the District issued a stop-work request because the SWM system was not working as required. On September 28, 1990, the District approved interim measures to preserve the wetland hydroperiod and allow for wetland overflow. These measures include berming the residential areas in Phase I/Plat I adjacent to wetlands. On June 13, 1991, the District approved additional modifications to the 1988 Permit and the construction and operations permit for Phase I and issued a conceptual approval for works in the north and central basins. The revisions to the conceptual approval include adding two control structures to the north wetland that connect to the water management system in the north basin and adding a berm around the smaller of the two preserved wetlands in the north parcel. The construction approval was for a perimeter berm along the south wetland and park areas. On June 24, 1992, the District issued a staff report recommending issuance of another modification of the 1988 Permit for the conceptual approval of a SWM system to serve the 900-acre parcel and approval of construction and operation of a SWM system to isolate and control the existing onsite wetlands and revise the control structure for the central basin. The staff report explains that this modification proposes berming the wetlands to the 100-year, three-day peak elevation. The staff report notes that the wetlands basin consists of 295.18 acres of wetlands, including 155.85 acres of “wetlands/uplands.” The staff report notes that the north basin contains 107.41 acres of “good quality wet prairie wetlands” with “minimal” melaleuca encroachment. The staff report restates that the purpose of the modification is to berm all of the wetlands and uplands not planned for development. Special Condition 19 requires the Original Developer to dedicate as conservation and common areas in deed restrictions the “wetland preservation/mitigation areas, upland buffer zones, and/or upland preservation areas," so that these areas are the “perpetual responsibility” of a named property owners’ association. Special Condition 22 states that “a wetland monitoring and maintenance program” and “a melaleuca eradication program” “shall be implemented,” but the condition does not expressly state by whom. Special Condition 22 requires that the work implementing these programs conform to these “approved environmental programs as outlined in the [1988 Permit].” Special Condition 25 provides that, on submittal of an application for construction approval in the south basin (Phase II), the "permittee shall submit a detailed wetland construction mitigation, monitoring and maintenance plan.” In evaluating the plan for approval, the District shall apply the “environmental criteria in effect at the time of construction permit application.” Although the approval of the District is not attached to the staff report, the District approved the June 24, 1992, staff report and proposed permit. The 1992 permit modification did not address the issue of who was responsible for melaleuca eradication after the sale of the property. On November 10, 1993, the staff report accompanying another request for a permit modification restates the special conditions of earlier permit modifications. Special Condition 23 restates the requirement that a melaleuca eradication program “shall be implemented,” again not stating by whom. Special Condition 23 now requires the completion of the melaleuca eradication program by February 25, 1994. The omission of a referenced exhibit to the permit from the exhibit filed in this case prevents a determination that this is the same as the Melaleuca Eradication Plan incorporated in the 1988 Permit and restated in the 1992 modification, although it probably is. In any event, Special Condition 23 concludes in another sentence lacking a stated or implied subject: “Maintenance of the preserved wetlands and berm planting areas shall be conducted in perpetuity to ensure that the conservation areas are maintained free from exotic vegetation (Brazilian pepper, Australian pine and melaleuca) . . ..” Although the record does not contain the written approval of the District to the staff report, the District approved the staff report dated November 10, 1993. On November 12, 1993, the Original Developer conveyed by special warranty deed the north to Petitioner. The deed is subject only to "easements, declarations, restrictions and reservations of record . . .." The record does not provide recording information for the deed. The Original Developer probably conveyed the south parcel to Applicant in the same fashion and at the same approximate time. Almost five months later, on March 29, 1994, the Army Corps issued another permit for the 900-acre parcel. Although the Original Developer had conveyed at least the north parcel, the Army Corps issued the 1994 permit to the Original Developer. The 1994 Army Corps permit authorizes the destruction of 158 acres. The general conditions governing transfers are the same as those in the 1988 Army Corps permit. The special conditions of the 1994 Army Corps permit require the permittee to preserve and enhance only 110 acres of high quality wetlands, instead of preserving 115 acres of such wetlands, as was required in the 1988 Army Corps permit. The 1994 Army Corps permit drops the requirement of creating eight acres of wetlands and 15 acres of littoral zone, as was required in the 1988 Army Corps permit, but requires the preservation of what appears to be the 39.5-acre preserve that is proposed by Applicant in the subject permit modification, as described below. Special Condition 3 of the 1994 Army Corps permit adds that all preserved areas "will be maintained in perpetuity free of Melaleuca. The permittee agrees to develop a bonded Melaleuca eradication program for the entire 906 acres. Copies of the bonded agreement will be provided to this office for approval before development can commence." The next permit activity affecting the 900-acre parcel is the subject application filed by Applicant on August 3, 1994, for its 503-acre parcel. On May 24, 1996, the District issued a staff report for conceptual approval of a SWM system proposed by Applicant for its 503-acre parcel. On June 13, 1996, the District issued an addendum to the staff report that contains another special condition that is not especially relevant to this case. In the background section, the staff report mentions the flooding of Phase I of the north parcel and states that the District had “assumed the adjacent wetlands would flow away from the development.” The staff report outlines the modifications implemented to eliminate the flooding; these modifications include connecting the M-1 canal, through inlets, with several wetlands located in the north and central basins. According to the staff report, Petitioner’s north parcel, which totals 287.34 acres, includes the Phase I/Plat 1 area, north basin, and part of central basin south of Phase I. Describing Applicant’s proposal, the staff report states that a preserve of 39.5 acres will be located in the northwest corner of the south parcel, adjoining the east boundary of the 115-acre parcel. The staff report states that the 39.5-acre preserve will sheetflow through cuts in the berm to wetlands in the 115-acre preserve. The 115-acre preserve is connected to the SWM system permitted on November 10, 1993, to eliminate flooding from these wetlands, whose control elevation is 19 feet NGVD. The staff report describes the south parcel as “dominated by flatwood habitat,” within which are stands of Australian pine and other exotic plant species that have recently been spreading across the site. The onsite wetlands are 4.93 acres of wet prairies, 18.4 acres of pond cypress strands, 1.56 acres of isolated marsh, 3.5 acres of cypress mixed with pine flatwood, and 163.91 acres of melaleuca. The staff report finds that only the 4.93 acres of wet prairies and 18.4 acres of cypress are in good condition, but melaleuca has become established in many of the wet prairies. The 1.56 acres of freshwater marshes and 163.91 acres of melaleuca are in poor condition. The 3.5 acres of cypress mixed with pine flatwoods are in fair condition. As for listed species, the staff report mentions only the possibility that herons might forage onsite during periods of standing water. Summarizing the impact of the proposed project on wetlands preservation, the staff report endorses the hydrologic reconnection of the 39.5-acre wetland/upland site with the 115-acre wetland. The staff report notes that water levels in the 115-acre preserve, which has been bermed to 21 feet NGVD, have stabilized at 19 feet NGVD. The staff report asserts that the “proposed wetland impacts (183.54 acres) were previously permitted under the conceptual permit application” for the original 1988 Permit. The staff report adds that this modification is to “change a portion of the original mitigation requirements . . . and includes impacts to a 6.78 acre wetland area that was previously permitted to be preserved.” But the staff report does not recommend the preservation of this wetland “[d]ue to the reduced hydrology and proximity to the proposed upland development” and the mitigation and compensation provided by the 39.5-acre preservation area. The staff report states that 8.76 acres of the 39.5- acre preserve are wetlands, and the remainder are uplands. As for the 8.76 acres of wetlands, the staff report lists 0.67 acres of mixed cypress and pine flatwoods, 4.93 acres of wet prairies, and 3.16 acres of cypress. Applicant would also restore 4.95 acres of pine flatwoods. As for the 183.54 acres of wetlands to be destroyed, the staff report lists 2.83 acres of mixed cypress and pine flatwoods in fair condition, 15.24 acres of cypress in fair condition, 1.56 acres of freshwater marshes in poor condition, and 163.91 acres of melaleuca in poor condition. Addressing the mitigation and monitoring elements of the current proposal, the staff report states that the modification would eliminate the creation of 15 acres of littoral wetlands around SWM lakes and 7.99 acres of marshes in golf courses in return for the creation of the 39.5-acre preservation area. The staff report assures that Applicant will perpetually manage and maintain the 115-acre preserve. Conceding that the 1988 Permit also required long-term maintenance of the 115-acre parcel, the staff report notes that the initial eradication effort was never completed. The staff report mentions an “access agreement” giving Applicant the authority to enter the 115-acre preserve for mitigation and monitoring, but “anticipat[es]” that Applicant will submit an application for another permit modification, on behalf of the two governmental entities, so that Applicant can “assume future maintenance responsibilities for this area.” As is clarified by the maintenance and monitoring plan, which is part of the proposed permit, Applicant's expectation is that the County and Village, not Applicant, will assume future maintenance responsibilities for the 115-acre preserve. The staff report concludes that the District should issue the permit subject to various conditions. Special Condition 1 is that the minimum building floor elevation is 20 feet NGVD. Special Condition 16 requires the implementation of a wetland mitigation program and requires Applicant to create 4.95 acres of marsh; restore 3.16 acres of cypress, 4.93 acres of marsh, and 0.67 acres of mixed forest; and protect 25.79 acres of uplands. Special Condition 17 sets performance criteria for the mitigation areas in terms of percentage and length of survival of vegetation. Special Condition 17 supplies completion dates for monitoring reports. Special Condition 21 addresses listed species. Noting that listed species have been seen onsite or the site contains suitable habitat for such species, Special Condition 21 requires Applicant to coordinate with the Florida Game and Fresh Water Fish Commission or the U. S. Fish and Wildlife Service for guidance, recommendations, or permits to avoid impacts to such species. The monitoring and maintenance plan does not address direct and contingent liabilities for maintenance and generally is a poor candidate for enforcement. In addition to the vagueness of the passive voice, the plan is, at times, simply unreadable, as, for example, when it concludes boldly, but enigmatically: The site as a whole is evolving hydrologic trends which permits successional seres development toward communities with shorter hydroperiods and ultimately, toward more upland transitional and/or exotic species dominance of historically wetland habitats. Long-term prospectives infer that successional deflection has become a severe detriment for natural environmental control to alter the present scenario. Active management coupled with graduated balanced in hydrologic restoration and created habitat elements will become the processes engineered to obtain an infusion of probabilities fashioned to inscribe a regenerative adaptation to the present site condition while fostering in situ processes, to optimize derived functions, for the maintenance of both habitat and wildlife over the long-term existence of the Preserve. (Sic.) Water Quality Impacts Petitioner does not contend in its proposed recommended order that the proposed project fails to meet applicable requirements regarding water quality. Applicant has provided reasonable assurance that the proposed permit modification would not violate State water quality standards. Flooding Petitioner contends in its proposed recommended order that the proposed permit modification would not meet applicable requirements regarding water quantity and flooding. However, Applicant has provided reasonable assurance that the project would not violate these requirements. There are several aspects to a SWM system. Undeveloped land stores and conveys rainfall through soil and surface storage. An artificial SWM system alters the undeveloped land’s storage capacity by the addition of a storage and drainage system, such as, in this case, conveying water through the soil into storm drains and then to lakes to store surface runoff prior to release, through an outfall structure, into a receiving body of water--in this case, the M-1 canal. The SWM system hastens the conveyance of stormwater runoff offsite. The control elevation of a SWM system is the height at which water in the lakes will flow through the outfall structure into the receiving body of water. Except during the dry season, the control elevation tends to establish not only the water level of the SWM lakes, but also of the nearby water table. The hastening of drainage offsite with the establishment of control elevations produce the drawdown effect of SWM systems. As to flooding, the basic underlying dispute between Petitioner and Respondents is whether to use the pre- or post- development depth to water table. In determining whether an applicant has provided reasonable assurance as to the impact of a proposed development on wetlands, one would project the effect of any post-development drawdown on the wetlands themselves and their functions and inhabitants. It would be illogical not to do the same in determining whether an applicant has provided reasonable assurance as to the impact of a proposed development on flooding. Pre-development, the average depth to water table on Applicant’s property is as little as two feet. Post- development, the average depth to water table on Applicant’s property will be five feet, which is the difference between the control elevation of 14 feet NGVD and ground elevation of 19 feet NGVD. Petitioner’s evidence concerning flooding is flawed because its expert witness based his calculations on an average depth to water table of two feet on Applicant’s property. He did not adjust for the considerable drawdown effect of the SWM system. The District table allows for no more than four feet between the water table and ground, so there is an added margin of safety in the ensuing flooding calculations. Another important factor in the flooding calculations is the soil type in terms of permeability. The District properly characterized the prevailing soils as flatwoods, and the soils onsite are in the category of “good drainage.” Applicant’s suggestion that flooding calculations use the post-development soils is rejected. Post-development depths to water table are used because they can be calculated to predict post-development conditions accurately. Applicant produced no proof that it would replace such massive amounts of soil from the site with more permeable soils so as to justify reclassifying the soil type. The District's flooding calculations probably overstate the risk of flooding in the three-day, 100-year design storm because they ignore lake bank storage, which is the additional amount of water that a lake can store in its sloped banks above the typical water elevation. The District could have relied on the effect of lake bank storage for additional assurance that the proposed project will not result in flooding. The proposed project contains a large number of long, narrow lakes, which will thus have a relatively high percentage of lake banks to lake area. Additionally, the District has raised the minimum floor elevation at this site by two feet over 18 years. Whatever other effects may follow from this trend, the higher floor elevation offers additional protection to onsite improvements. The flooding of Petitioner’s property seven years ago understandably is a matter of concern to Petitioner. Applicant proposes to change the configuration of drainage basins, but the District has adequately addressed the drainage issue, and this is not the first time in the 20-year permitting history of this property that the District has approved a reconfiguration of basins. Also, in the 1988 Permit, the District incorrectly projected the direction of runoff under certain conditions. However, the flooding was partly due to inadequate road- drainage facilities. Following the flooding, the Original Developer enlarged these features and bermed the flooding wetlands, so as to eliminate the flooding of developed areas due to design storm events. On balance, Applicant has proved that the proposed permit modification would not adversely affect flooding or water quantity. Environmental Impacts A. Wetlands Petitioner contends in its proposed recommended order that the proposed permit modification would not meet applicable requirements regarding environmental impacts to wetlands. Applicant has failed to provide reasonable assurance that the proposed work would not violate these requirements. There are two major deficiencies in the District's analysis of wetland impacts and mitigation or compensation. First, the proposed permit modification includes mitigation or compensation in the form of melaleuca removal. But prior permits have already required the same work, no one has ever done the work, and the District does not know if these permit requirements are still enforceable. Second, the proposed permit modification ignores 13.9 acres of preserved wetlands in the 1988 Permit, allowing their destruction without mitigation or compensation. The permitting process requires the District to balance the impacts of development and mitigation or compensation on the natural resources under the District's jurisdiction. Balancing these impacts in issuing the 1988 Permit, the District required the complete eradication of melaleuca in return for permitting the residential, institutional, and recreational development proposed by the Original Developer. District staff, not the Original Developer or Petitioner, called the Melaleuca Eradication Plan “the major environmental feature” of the development plan approved by the 1988 Permit. The major environmental feature of the 1988 Permit clearly justified significant development impacts on natural resources. To justify additional development impacts on natural resources, the District now proposes to count again another developer’s promise to eradicate the melaleuca. The District claims that the term of the original melaleuca protection plan was only ten years, not perpetual as is presently proposed. However, the District's claim ignores Special Condition 23 in the 1993 permit modification. This condition set a deadline of February 25, 1994, for the eradication of melaleuca and made perpetual the requirement that one or more of the potentially responsible parties--the Original Developer, Petitioner, Applicant, the bonded authority, the property owners' association, or transferees-- maintain the wetlands free of melaleuca and other exotics. Unfortunately, this “major environmental feature” of the 1988 Permit, as well as subsequent permit modifications, was so poorly drafted as to leave potentially responsible parties unsure of their legal obligations. The District tacitly suggests that it cannot enforce the obligations imposed by the 1988 Permits and later modifications for the eradication of melaleuca. But there is presently no reason for the District to resort again to permitting without first reviewing carefully its enforcement options. The District should first determine whether anyone will voluntarily assume these obligations. As a business consideration, Petitioner may choose to eradicate the melaleuca from the north parcel and 115-acre preserve to prevent Applicant from providing this service and claiming that it should receive compensation credit against additional environmental impacts permitted by a modification of the 1988 Permit. Maybe the County or Village has already budgeted funds for this work. If no party offers to perform the necessary work, the District must next determine its legal rights and the legal obligations of these parties. Depending on the results of this research, the District may need to consider litigation and the cessation of the issuance of construction and operation permits on the 900-acre parcel or either the north or south parcel. At this point, the District should discuss joint litigation or permit revocation with the Army Corps, whose 1994 permit requires the permittee to develop a bonded melaleuca-eradication program and apparently imposes on the permittee the responsibility to maintain all preserved areas free of melaleuca. Only after having exhausted these options may the District legitimately conclude that melaleuca eradication on any part of the 900 acres represents fair compensation for the development impacts on jurisdictional natural resources. The second major problem as to wetlands impacts concerns the calculation of wetlands acreages to be destroyed by the proposed permit. The 1988 Permit expressly incorporates the Wetlands Monitoring/Maintenance Program. This program, as an operative part of the 1988 Permit, represents that the developer will “partially preserve. . .” nine wetlands totaling 13.9 acres. The partial preservation of wetlands does not mean that a five-acre wetland will remain a five-acre wetland, except that its function will be impaired. Partial preservation means that, for instance, two acres of a five- acre wetland will be preserved. It is impossible for the District to have required mitigation to offset the destruction of these 13.9 acres of wetlands because the District denies that the 1988 Permit required the partial preservation of these nine wetlands. As noted below, neither the District nor Applicant can identify all of the wetlands that make up the 13.9 acres. Rather than account for these wetlands that were to have been partially preserved, the District instead contends that this undertaking by the Original Developer was ineffective or nonbinding because it was overriden by contrary statements in the staff report. Not so. The specific provisions delineating the preserved wetlands area in the Wetlands Monitoring/Maintenance Program, which was prepared by the Original Developer, override more general statements contained in the staff report accompanying the permit. There is not necessarily a conflict between the staff report and the Wetlands Monitoring/Maintenance Program. The staff report states that the plan “includes the protection of approximately 100 acres of the best quality wetlands,” together with the creation of eight acres of golf course wetlands and 15 acres of lake littoral zones. The plan “includes” these wetlands among those preserved or created; the word suggests that the list is not exhaustive, but only illustrative. Alternatively, if the list were exhaustive, the preservation of “approximately” 100 acres reasonably encompasses the 112.71 acres of partially or totally preserved wetlands cited in the Wetlands Monitoring/Maintenance Program. More to the point, on October 26, 1987, Donald Wisdom, the engineer handling the 1988 Permit, prepared a memorandum for the file stating that the total acreage of wetlands to be preserved or created was 134.45. This figure represents an insignificant deviation of 0.19 acres from the total listed in the Wetlands Monitoring/Maintenance Program, which was dated six weeks later, on December 8, 1987. In the October 26 memorandum, Mr. Wisdom describes the preserved wetlands as 111.46 acres of A- and B-quality wetlands. This is 1.25 acres less than the acreage in the Wetlands Monitoring/Maintenance Program. These small discrepancies were eliminated by November 18, 1987, when Mr. Wisdom wrote a memorandum noting that the program called for the total preservation of 98.81 acres and partial preservation of 13.9 acres. Adding the created wetlands, the new total for preserved or created wetlands was 134.64 acres. A month later, a District employee wrote a memorandum to the file, expressing his “main concern” that the proposed development would protect only 99 acres of wetlands. It is unclear why the employee mentioned only the 98.81 acres slated for preservation. Perhaps he was confused or mistaken. But the misgivings of a single employee do not constitute the rejection by the District of a developer's proposal to preserve nearly 14 acres of high-quality wetlands. The staff report for the 1988 Permit notes that the 900-acre site contained about 281 acres of wetlands. If the 1988 Permit required the preservation, as an entire wetland or part of a larger wetland, of 112 acres of wetlands, then the 1988 Permit allowed the destruction of 169 acres, which is consistent with the 164 and 158 acres allowed to be destroyed by the 1988 and 1994 Army Corps permits. However, by the 1996 permit modification, the staff report refers, without explanation or justification, to the permitted destruction of 183.54 acres of wetlands--evidently adding the 13.9 acres to the 169 acres previously permitted to be destroyed. Tab 13 of the Wisdom bluebook identifies the nine wetlands constituting the 13.9 acres, which are entirely in Applicant's south parcel. Except for three, all of these wetlands were characterized as A-quality, meaning that they are in good to excellent condition and “have not been stressed significantly from the biological viewpoint.” B-quality wetlands are in disturbed condition and “are in various stages of biological stress caused primarily by a lowered water table and/or melaleuca invasion.” C-quality wetlands are highly disturbed and “are substantially degraded biologically.” The 13.9 acres of wetlands comprise wetland numbers 23 (0.5 acres), 46 (0.4 acres), 44 (0.6 acres), 37 (0.4 acres), 29 (1.1 acres), 20 [sometimes misreported as 21] (3.9 acres), 30 (2.6 acres), 16 (1.5 acres), and 14 (2.9 acres). Wetland numbers 46 and 29 are B-quality, and wetland number 20 is C-quality. The wetlands shown in District Exhibit 4 and Applicant Exhibit 3 inaccurately portray the wetlands constituting the missing 13.9 acres. A internal memorandum to the file notwithstanding, the District predicated the 1988 Permit in part on the preservation of 112.71 acres of functioning wetlands, including the 13.9 acres that the District now disclaims. The mitigation and compensation required of Applicant in the present case ignored the destruction of these wetlands. The District's analysis of mitigation and compensation in this case was fatally flawed by these two deficiencies. But more deficiencies exist in the District's analysis of wetland impacts. The District relied on faulty data in reviewing Applicant's request for a permit modification. Undercounting the extent of wetlands by at least 21 acres and their condition by an indeterminable amount, Applicant presented to the District a materially inaccurate picture of the wetland resources on the south parcel. Despite disclaimers to the contrary, the District relied on this inaccurate data in reviewing Applicant's request for a permit modification. There are possible problems with 39.5-acre preserve offered by Applicant. This parcel contains less than nine acres of wetlands, including two wetlands that Applicant may already be required to preserve under the 1994 Army Corps permit. At the same time, Applicant's proposal may include the destruction of a third wetland that is to be preserved under the 1994 Army Corps permit. The best rendering in the record of the 1994 Army Corps permit may be Applicant Exhibit 4, which shows eight large wetland areas to be “preserved/enhanced/created.” Two of these are the 10- and 30-acre wetlands on Petitioner’s property, which were preserved in the 1988 Permit. Three of the eight wetlands are in the 115-acre preserve; these were also preserved in the 1988 Permit. The remaining three wetlands to be preserved, enhanced, or created under the 1994 Army Corps permit are in the north end of Applicant’s property. It is difficult to estimate acreage given the scale of the drawing, but the two westerly wetlands are about 4-5 acres each and the easterly wetland is 3-3.5 acres. Subtracting the total preserved acreage of 110 from the acreage identified in the preceding paragraph, the total acreage of these remaining three wetlands is about 12. The two westerly wetlands are in the 39.5-acre preserve that Applicant offers as mitigation in the present case. According to Applicant Exhibit 6, the easterly wetland, or at least the most valuable part of it--the center--is slated for destruction if the District grants the subject permit modification. The proposed destruction of the third wetland is a matter of greater interest to the Army Corps than to the District, but the offer to preserve the other two wetlands really does not provide anything in return for the permitted development impacts because these two wetlands are already preserved under the 1994 Army Corps permit. As the District and Applicant contend, golf course marshes and littoral zones are typically of little environmental importance. Although the 1988 Permit addresses some of these problems, although without supplying any performance standards, golf courses themselves are often conduits of fertilizers and pesticides into the groundwater and nearby surface water. The District and Applicant justifiably question the value of the golf courses approved in the 1988 Permit as wildlife corridors. It is unclear what wildlife would use the corridor, which is surrounded by residential development and bounded by Okeechobee Boulevard. Other factors also militate in favor of Applicant's proposal. But, as the record presently stands, there is no way to find that Applicant has provided reasonable assurance that the proposed development and related mitigation and compensation, as described in the subject permit modification, meet the applicable criteria. The District substantially undervalued the environmental impacts of the proposed modification while substantially overvaluing the environmental impacts of Applicant's proposed contributions in the form of mitigation and compensation. To find adequate assurance as to wetland impacts in these circumstances, where the District did not perform an informed balancing of various impacts in a large-scale development, would permit the District to transform the unavoidably imprecise task of balancing wetland impacts into an act of pure, unreviewable discretion. Listed Species The only relevant listed species onsite is the gopher tortoise, which is a species of special concern. Gopher tortoises use the site to an undetermined extent. Applicant's suggestion that someone brought the tortoises to the site is rejected as improbable. However, due to the resolution of the wetlands issue, it is unnecessary to determine whether Applicant provided reasonable assurance as to the value of functions provided to wildlife and listed species by wetlands. Procedural Issues A. Standing Petitioner has standing due most obviously to flooding considerations. Additionally, the SWM system permitted in 1988 is for the entire 900-acre parcel, of which Petitioner’s parcel is a part. Applicability of ERP Rules The proposed permit modification would substantially affect water resources. The proposed permit modification would substantially increase the adverse effect on water resources. Requirement to Delineate Wetlands Due to the resolution of the wetlands issue, it is unnecessary to determine whether Applicant met applicable requirements concerning the delineation of wetlands. Improper Purpose Petitioner did not challenge the proposed permit modification for an improper purpose. Relevant Provisions of Basis of Review The District revised its Basis of Review after the adoption of ERP rules. Although the order concludes that the District should have applied the ERP rules, and thus the ERP Basis of Review, the order shall discuss both versions of the Basis of Review because the District ignored numerous provisions of both documents in approving Applicant's request for a permit modification. Section 4.6 MSSW Basis of Review requires the District to consider "actual impact" to the site by "considering the existing natural system as altered by the proposed project[,]" including "positive and negative environmental impacts." Section 4.6 requires the District to "balance" these impacts "to achieve a reasonable degree of protection for significant environmental features consistent with the overall protection of the water resources of the District." The proposed permit modification fails to comply with several provisions of Appendix 7 of the MSSW Basis of Review, such as Sections 4.2 requiring a detailed description of the isolated wetlands to be destroyed; 5.1.1(d) favoring the protection of isolated wetlands over their destruction, mitigation, and compensation, which are considered "only when there are no feasible project design alternatives"; and 5.1.6 prohibiting the alteration of water tables so as to affect adversely isolated wetlands. The proposed permit modification also violates various provisions of the ERP Basis of Review. Section 4.0 of the ERP Basis of Review sets the goal of permitting to be "no net loss in wetland . . . functions." Sections 4.2 and following generally require balancing. Section 4.2.1 predicates District approval on a showing that the SWM system does not cause a "net adverse impact on wetland functions . . . which is not offset by mitigation." The ERP provisions first require that the District "explore" with an applicant the minimization of impacts prior to considering mitigation. Section 4.2.2.4(c) specifically imposes monitoring requirements for SWM systems that "could have the effect of altering water levels in wetlands." Sections 4.3.2.2 and following discuss mitigation ratios under the ERP Basis of Review. If the District can explicate a policy to count as mitigation wetlands acreage already preserved under Army Corps permits, the ratios in this case might warrant further consideration, assuming Applicant resubmits an application for permit modification. But it would be premature to consider the ratios on the present record for several reasons. The District has not proved such a policy. If such a policy counts such wetland acreage, on the theory that the District protects function and the Army Corps protects merely the wetland, the record is insufficiently developed as to the functions of the wetlands proposed for protection, as well as the functions of the 13.9 acres of wetlands proposed for destruction. Also, the District has not sufficiently explored project minimization, as is now required under the ERP Basis of Review.

Recommendation It is RECOMMENDED that the District enter a final order denying Applicant's request for a permit modification. ENTERED in Tallahassee, Florida, on June 13, 1997. ROBERT E. MEALE Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (904) 488-9675 SUNCOM 278-9675 Fax Filing (904) 921-6847 Filed with the Clerk of the Division of Administrative Hearings on June 13, 1997. COPIES FURNISHED: Jeffrey D. Kneen John F. Mariani J. Barry Curtain Levy Kneen 1400 Centrepark Boulevard, Suite 1000 West Palm Beach, Florida 33401 Ronald K. Kolins Thomas A. Sheehan, III Moyle Flanigan Post Office Box 3888 West Palm Beach, Florida 33402 John J. Fumero Marcy I. LaHart Office of Counsel South Florida Water Management District 3301 Gun Club Road West Palm Beach, Florida 33406 Samuel E. Poole, III Executive Director Post Office Box 24680 West Palm Beach, Florida 33416

Florida Laws (7) 120.569120.57120.59517.2517.55373.414373.4211 Florida Administrative Code (2) 40E-4.30140E-4.302
# 2
SANTA FE PASS INC. vs. DEPARTMENT OF ENVIRONMENTAL REGULATION, 86-001445 (1986)
Division of Administrative Hearings, Florida Number: 86-001445 Latest Update: Nov. 24, 1986

The Issue The basic issue in this case is whether the Petitioner is entitled to the issuance of an individual construction permit for a proposed stormwater management system intended to serve Phase II of the Petitioner's land development project.

Findings Of Fact Based on the admissions and stipulations of the parties, on the exhibits received in evidence, on the testimony of the witnesses at the hearing, and on the matters officially recognized, I make the following findings of fact. On October 8, 1985, the applicant filed a notice of intent to utilize a general permit for the construction of a new stormwater discharge facility. This request was denied by the Department of Environmental Regulation by letter of November 7, 1985. Subsequently, on November 21, 1985, the applicant filed an individual construction permit application, which was later supplemented with additional information which was requested by the Department. This original application was the subject of an April 9, 1986, notice of an intent to deny. The basis for proposed denial was that the discharge elevation from the proposed stormwater management system was too low in relation to predicted stage elevations of Little Lake Santa Fe and Lake Santa Fe and thus efficient operation of the stormwater management system would be prohibited when the discharge elevation was lower than the elevation of the lakes. In response to the Department's concerns and suggestions, the applicant modified its application on August 26, 1986, and submitted the modification to the Department and provided a copy to SFLDA. Upon review of the August 26, 1986, modifications to the application, the Department changed its position and at the time of the hearing in this case, the Department proposed to grant the application, as modified. The proposed stormwater management system is designed to serve all of Phase II of the Santa Fe Pass development, which consists of approximately 20 acres. Phase II contains an access road, tennis and racquet ball facilities, 50 cabanas or villas (constructed as duplexes) which will serve as overnight accommodations for a private club, a restaurant and other common buildings for recreational use, and a dry boat storage facility. These light intensity uses proposed for Phase II should result in relatively low concentrations of pollutants in the stormwater runoff. The impervious surface resulting from the construction of Phase II will involve less than 5% of the overall surface area contained in this phase of the development. In addition to serving Phase II, the proposed stormwater management system will also treat approximately 26,000 cubic feet of runoff generated from 43 acres of the Phase I residential development in a basin to be constructed in the northwest corner of Phase II. This Phase I acreage contains infrastructure and a few residential units but many of the one-acre, single-family lots have yet to be constructed. The treatment of runoff from this Phase I acreage is not required pursuant to Chapter 17-25, F.A.C. The construction of the holding facility will have the effect of improving stormwater runoff which currently discharges directly through a swale into Santa Fe Lake. This proposed improvement to the existing system is the result of an agreement between the developer and Alachua County. There are basically four types of treatment being provided in the proposed stormwater management system: Runoff from the tennis/racquet ball facility will be provided in the detention/filtration basin; The first 1 1/2 inches of runoff from the roadway which provides access to the project will be retained in eight-foot gravel shoulders underlain with sand; Retention basins will also be constructed in association with each of the overnight residential structures with treatment being provided by infiltration of runoff generated from the roofs of these structures; and One and one-half inches of runoff from 4.56 acres of Phase II will be treated (via extended settling biological uptake and adsorption) within a wet detention facility consisting of a man-made lake and a natural wetland/transitional area. Every aspect of the proposed stormwater management system exceeds the Department's design and performance criteria, and the evidence clearly establishes that the facilities comply with the best management practices and performance standards outlined in Chapter 17-25, F.A.C. The recreational facilities, roads, and residential units are treated by facilities which will provide adequate detention with filtration volumes or retention volumes. Section 17-25.04(5), F.A.C., specifies that an applicant must provide treatment for the first 1/2 inch of runoff or runoff from the first 1 inch of rainfall. In the instant case, the storage volume is increased by 50% because the receiving waters are designated Outstanding Florida Waters. Thus, runoff from the first 1 1/2 inch of rainfall from the tennis/racquet ball courts must be detained and filtered before being discharged to Lake Santa Fe. The required treatment will be provided in the proposed compensation basin and additional treatment will be provided in a 150-foot swale which will convey these treated waters to Santa Fe Lake. Similarly, in the case of the road surfaces and impervious roofs, the system is designed to collect and retain 1 1/2 inches of runoff from these facilities and treat that water through percolation into the soils before it moves laterally to the lake. The wet detention system is an innovative equivalent treatment proposal authorized in the equivalent treatment provisions in Section 17-25.04(5), F.A.C., and the design criteria for the proposed system has been promulgated by the Department based on the successful experiences of the South Florida Water Management District, which has for a number of years successfully permitted wet detention facilities. The proposed man-made lake has been properly sized and designed so as to maximize the physical, biological, and chemical processes which result from detaining stormwater runoff and promoting contact between the runoff and natural substrates. In the instant case, the man-made lake will provide the first form of treatment. It will then discharge at a specified elevation into a 19,000 square foot wetland/transitional area where natural polishing filtration functions will be performed by existing macrophytes and vegetation before being discharged through a control structure to Little Lake Santa Fe. In order to insure no threat of water quality degradation in the use of wet detention systems, the Department has promulgated policies and design criteria which require a doubling of the storage volumes which would otherwise be required should a more traditional retention or detention with filtration approach be utilized. For purposes of the instant case, this doubling results in the applicant treating 1 1/2 inches of runoff before it allows discharge into Little Lake Santa Fe, and that storage volume is twice (.75 inches) that which would otherwise be required even with the additional 50% treatment required for waters discharging into Outstanding Florida Waters. By employing the wet detention equivalent treatment approach and raising the control discharge elevation to 141.25 feet, the applicant has satisfactorily addressed the concerns that were previously expressed by the Department's original proposed agency action. The Petitioner's proposal, as modified, complies with all Department permitting criteria and there are no constraints or limitations which would preclude the system from operating as designed. The design for this system includes ample considerations for sediment, turbidity, and erosion controls during the construction phase of this project, and the operation and maintenance schedule will ensure continuing compliance with Department criteria. The design is sound, as demonstrated by the fact that analogous facilities have functioned as claimed. The biological and chemical interaction of the runoff with macrophytes contained in the littoral zones of the man-made lake and in the wetland/transitional polishing area will provide valuable nutrient assimilation and uptake. These natural treatment processes ensure that water quality standards will be satisfied and that no adverse water quality degradation will occur with respect to the receiving waters. The concentrations of pollutants in the waters discharged from the stormwater management facility would not exceed Class III water quality standards and would, in fact, be better than the ambient water quality documented in Little Lake Santa Fe and Lake Santa Fe. Even though the proposal, as modified, meets all of the Department permitting criteria, the proposal would be even better if the following changes were made to it. The oil skimmer device should be metal rather than wood. The littoral zone planting should be at 1 1/2 foot centers for the limited area east of the man-made lake where it connects to the natural wetland/transitional area. Reasonable storm event related monitoring should be conducted for one year following the completion of construction of the impervious surfaces specified in the application. Parameters to be tested should include suspended solids, turbidity, pH, conductivity, dissolved oxygen, nutrients, lead, zinc, and hydrocarbons. Samples (time weighted composite) should be collected at the outfall structure while the system is operating following four storm events during the year. The applicant does not object to making the changes described in this paragraph. The SFLDA's concerns were limited largely to the prospects of a washout due to an extraordinary storm event and doubts it possesses relative to the maintenance required for the system. There was no evidence presented, however, which indicate that a washout or severe disruption to the management system would occur except in extremely rare circumstances such as those attending a 100-year storm. The Department's rules and permitting criteria governing stormwater management systems do not, however, require an applicant to prevent discharges from stormwater management systems during extraordinary events, such as a 100-year storm. The applicant has, in this case, provided the necessary reasonable assurances that this facility will function as designed. The maintenance schedule presented by the applicant is facially sound, and the experts agreed that maintenance of the wet detention system would be minimal. The maintenance and operational features of this proposal are important; however, they are straightforward and the property owners association, which shoulders the burden of compliance, is properly equipped with the powers and authorities to insure successful implementation.

Recommendation Based on all of the foregoing, it is recommended that the Department of Environmental Regulation issue the requested stormwater discharge construction permit with the Department's standard permit conditions and with special conditions requiring the changes described in paragraph 7 of the findings of fact, above. DONE AND ENTERED this 24th of November 1986 at Tallahassee, Florida. MICHAEL M. PARRISH, Hearing Officer Division of Administrative Hearings The Oakland Building 2009 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 24th day of November 1986. APPENDIX TO RECOMMENDED ORDER IN CASE NO. 86-1445 The following are my specific rulings on each of the findings of fact proposed by the parties. Findings proposed by Petitioner and Respondent Paragraphs 1, 2, and 3: Accepted in substance with some unnecessary details deleted. Paragraph 4: Accepted. Paragraphs 5, 6, and 7: (There are no paragraphs 5, 6, and 7 in the proposed findings submitted by the Petitioner and Respondent.) Paragraphs 8, 9, and 10: Accepted. Paragraphs 11 and 12: Accepted in substance with some unnecessary details and editorial remarks deleted. Paragraph 13: The first sentence of this paragraph is rejected as constituting argument rather than proposed findings. The remainder of the paragraph is accepted in substance. Findings proposed by Intervenor Paragraphs 1, 2, and 3: Accepted in substance with some unnecessary details omitted. Paragraph 4: Rejected as subordinate, unnecessary details (much of the material from this paragraph has been included in the introductory portion of this Recommended Order.) Paragraphs 5, 6, the seven unnumbered paragraphs following paragraph 6, and 7: Accepted in substance. Paragraph 8: Rejected as constituting primarily summaries of conflicting evidence and argument rather than proposed findings of fact. Further, portions of this paragraph are contrary to the greater weight of the evidence. Paragraph 9: Rejected as irrelevant. Paragraph 10: Rejected as irrelevant or as subordinate unnecessary details. Paragraph 11: Rejected as constituting a summary of testimony rather than proposed findings of fact. Also rejected as being inconsistent with the greater weight of the evidence. Paragraph 12: Rejected as irrelevant or as subordinate unnecessary details. Paragraphs 13 and 14: First sentence rejected as unnecessary commentary about the record. The remainder is for the most part accepted in substance with deletion of some unnecessary details and with modification of some details in the interest of accuracy and clarity. COPIES FURNISHED: Frank E. Matthews, Esquire Kathleen Blizzard, Esquire HOPPING BOYD GREEN & SAMS Post Office Box 6526 Tallahassee, Florida 32314 Bradford L. Thomas, Esquire Assistant General Counsel 2600 Blair Stone Road Tallahassee, Florida 32301 Timothy Keyser, Esquire Post Office Box 92 Interlachen, Florida 32048 Victoria Tschinkel, Secretary Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32301

Florida Laws (2) 120.57403.088
# 3
WILLIAM E. AND MARIA GREENE vs TAYLOR COUNTY COMMISSION AND DEPARTMENT OF ENVIRONMENTAL REGULATION, 91-004858 (1991)
Division of Administrative Hearings, Florida Filed:Perry, Florida Aug. 02, 1991 Number: 91-004858 Latest Update: Apr. 24, 1992

The Issue The issue to be determined in this proceeding concerns whether the applicant has provided reasonable assurances that the proposed bridge project will meet the requirements of Chapter 403, Florida Statutes, and the various provisions contained in Title 17, Florida Administrative Code, so that a dredge and fill permit should be issued. More specifically, the issues concern whether the various water quality standards embodied in Title 17 of the Code and Section 403.918(1), Florida Statutes, will be complied with and whether the public interest standards in Section 403.918(2), Florida Statutes, will be met in the sense that the project can be assured not to be contrary to those standards.

Findings Of Fact Taylor County, through its duly-elected representative body, the Taylor County Commission, has filed an application seeking authority, by the grant of a "dredge and fill permit", to place fill material and to perform construction of a bridge across an unnamed canal in Taylor County, Florida, in the vicinity of Keaton Beach. The proposed bridge would connect Balboa Road and Marina Road on Pine Island in the community of Keaton Beach. Pine Island is an elongated strip of land separated from the Taylor County mainland by water and lying generally in a north/south direction. It is an artificial island created by dredge spoil from dredging activities by which certain canals were constructed during the decade of the 1950's. It is bounded on the west by what is known as "Main Canal", on the north by an unnamed canal, and on the east by what is known as "Back Canal". South of Pine Island is an inlet of the Gulf of Mexico. The canals involved in this proceeding, named above, are Class III waters of the State of Florida. Marina Road runs down the center of Pine Island. Lots to the west of Marina Road abut Main Canal and lots to the east of that road abut the Back Canal. Pine Island has been platted into approximately 110 lots. There were 47 homes and two (2) trailers on Pine Island at the time of the hearing. Only 17 full-time residents live there. Keaton Beach Road, also known as County Road 361, runs in a north/south direction generally and relatively parallel to Marina Road on land lying across Main Canal from Pine Island. In the past, Pine Island Drive connected Keaton Beach Road and Marina Road. It traversed Main Canal over what was known as the "humpback bridge", a wooden structure. The bridge ultimately became decayed and hazardous so that it was removed by the County in 1983. East of Pine Island, forming a continuation of Pine Island Drive, is a limerock road. This road presently provides the only vehicular or pedestrian access to Pine Island. It crosses the Back Canal over a culverted-fill area, making a 90 degree turn to the north and runs north along Back Canal. It then turns in an easterly direction until it meets Balboa Road. The property to the east of the center line of Back Canal and to the east of Balboa Road belongs to Dr. William Kohler. Other than the one-half of the culverted-fill area that lies west of the center line of Back Canal, the limerock road is on Dr. Kohler's land. In 1974, Taylor County was concerned about the use of the humpback bridge by school buses. It asked Dr. Kohler to grant it an easement over the limerock road for use by school buses. That limerock road passes over portions of Lots 44 and 45. Although Lots 44 and 45, east of Balboa Road, were not included in the written easement, Dr. Kohler has allowed use of the limerock road that passes over portions of Lots 44 and 45 since that time. Balboa Road presently terminates in a cul-de-sac at the edge of the unnamed canal that bounds the north end of Pine Island. On Pine Island, Marina Road is paved at the present time past the front of and to the northern property boundary of Lot 13, Petitioner Brumbley's residence lot. At that point, Marina Road ends at the south side of an unnamed dirt road. Between the north side of that unnamed dirt road and the unnamed canal lie Lots 2-6. The proposed Balboa bridge will start at the end of Balboa Road, cross the unnamed canal, cross a portion of Lot 2 and 3 on Pine Island, and tie into the existing grade at the "T" intersection where Marina Road deadends into the unnamed dirt road. The unnamed canal runs approximately east and west at the location of the proposed bridge. The bridge would be constructed on top of revetted fill material that will be placed to the north and south of a 15-foot wide span over the middle of the unnamed canal. The bridge construction shall be according to the Florida Department of Transportation specifications for road and bridge construction. The bridge will have a DOT approved guard rail on each side. No water quality violations will result from the proposed project. Turbidity violations may occur on a temporary basis during construction and so turbidity screens and silt barriers will be installed by the applicant to prevent such turbidity from migrating away from the site itself. A condition on the grant of the proposed permit has already been agreed to by the Respondent parties which will require turbidity and erosion-control devices prior to any excavation or placement of fill material. Specific condition eight also requires that these control devices remain in place until the fill has been vegetatively stabilized after construction is over. The proposed project will have a positive impact on public safety and welfare by providing proper and appropriate access to Pine Island by a more stable, safe roadway to which the bridge will be connected. During periods of high water, the present limerock access road floods, limiting emergency access to the Island. On one occasion, an injured person had to be carried down the limerock road to meet an ambulance at another location because the ambulance was unable to traverse the flooded limerock road. It is Dr. Kohler's intention to terminate use of the limerock road by members of the public since it is on his property. When that occurs, there will be no access to Pine Island unless the proposed bridge is built. The present limerock access road can be dangerous and slippery when wet, and persons using the limerock road often travel "dangerously fast", as testified to by Petitioner, Doris D. Brumbley. The 90-degree turn of the limerock road has no guardrails. The proposed project will, to a minimal, temporary degree, adversely impact fish or wildlife and their habitats, marine productivity and the current condition and relative value of functions being performed by the area affected by the proposed bridge. The canal system was originally excavated out of the salt marsh. Being man-made structures, their sides have slumped somewhat and have established a small, littoral zone where vegetation grows. Mud flats at the bottom of the canal bank allow the growth of oysters. The fill area associated with the proposed bridge, however, will have a surface area and volume comparable to the culverted fill that will be removed at the point where the road presently crosses Back Canal. When the culverted-fill area or plug across Back Canal is removed, the lost vegetation and oysters will become re- established at that location, offsetting the loss that will occur at the location of the bridge. Various marine species will also become established on and benefit from the shelter of the bridge and its structure, as well. The project will not cause harmful erosion or shoaling. The banks that will result from the removal of the culverted fill and the sides of the filled areas associated with the bridge will be protected from erosion with vegetation and revetments. The proposed project will enhance the flow of water in Back Canal and will improve navigation and flushing. Water flow through the existing culvert is presently considerably restricted when compared to the water flow beneath the proposed Balboa bridge area. The existing culvert is not at the bottom of the filled area. Therefore, at low water, most of the culvert is exposed, precluding the culvert from functioning at maximum capacity to aid in flushing with the water quality benefits caused by flushing being thus retarded. The lack of water flow has caused a portion of Back Canal, south of the culverted-fill area, to fill up with sediment. At low tide, parts of the Back Canal are without water. The increased flow that will result from removal of the fill plug and culvert where the road presently crosses Back Canal will allow property owners along Back Canal to navigate their boats out into the Gulf of Mexico, thus improving the recreational value of Back Canal and the navigation in the canal system. There are no similar fill projects planned for or expected in the Keaton Beach area. All three Petitioners are concerned that storm water runoff from the proposed bridge will flood their property, however. At the present time, the road in front of the Petitioners' lots is paved, with the pavement ending at the northernmost end of the Brumbley property. Since the Petitioners' lots already receive roadway runoff from the existing paved road, any increase in runoff to their lots would have to come from storm water flowing along the length of the road from the proposed project. The road which is to cross the proposed bridge will be composed of a 20-foot wide strip of asphalt, with 5-foot shoulders on each side. The slope from the crown of the road to the outer edge of the pavement will be one-quarter inch per one foot. The shoulders will have a slope of one-half inch per foot. Thus, rain water will flow off the sides of the road and down the shoulders, rather than down the length of the road towards the Petitioners' lots. Moreover, no additional water should be directed to the Petitioners' lots since the proposed road extension between the end of the bridge and the Petitioners' lots would be flattened. Water flowing off the bridge due to gravity will be shed toward the revetment which extends down to the canal, rather than towards the Petitioners' property. Storm water impacts will be addressed again by the Suwannee River Water Management District. A storm water permit application has been submitted to the Suwannee River Water Management District and is required before the proposed project construction can start. In that storm water permit application, the applicant acknowledged its obligation and responsibility to obtain all required permitting before construction starts. The draft permit reinforces this at specific condition six: "This permit does not constitute any approval of the storm water management system which must be obtained separately from the appropriate agency." All of the Petitioners are concerned about the increase in vehicular traffic which would pass in front of their lots and the Brumbley's particularly are concerned that light from headlights of increased traffic will be cast upon and into their house at night. It is clear that traffic passing the Petitioners' lots will increase due to the proposed project. It is equally clear from the angle of the bridge shown on Joint Exhibit 2 and the elevations of the bridge, shown on Joint Exhibit 3, that light from the headlights of vehicles approaching Pine Island after dark will illuminate, at least momentarily, portions of the Brumbley home.

Recommendation Having considered the foregoing Findings of Fact, Conclusions of Law, the evidence of record, the candor and demeanor of the witnesses, and the pleadings and arguments of the parties, it is therefore, RECOMMENDED that the application of the Taylor County Commission for the dredge and fill permit at issue, as described in the above Findings of Fact and Conclusions of Law, be granted on the terms and conditions set forth in the Department's draft permit, in evidence as Joint Exhibit 7. DONE AND ENTERED this 3rd day of April, 1992, in Tallahassee, Leon County, Florida. P. MICHAEL RUFF Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, FL 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 3rd day of April, 1992. APPENDIX TO RECOMMENDED ORDER Respondent DER's Proposed Findings of Fact: 1-24. Accepted. Petitioners' Proposed Findings of Fact: None filed. Respondent Taylor County Commission's Proposed Findings of Fact: The County adopted the proposed findings of fact filed by the Department. COPIES FURNISHED: Carol Browner, Secretary Department of Environmental Regulation Twin Towers Office Building 2600 Blair Stone Road Tallahassee, FL 32399-2400 Daniel H. Thompson, Esq. General Counsel Department of Environmental Regulatin Twin Towers Office Building 2600 Blair Stone Road Tallahassee, FL 32399-2400 William & Maria Greene P.O. Box 38 Madison, FL 32340 Doris S. Brumbley P.O. Box 742 Monticello, FL 32344 William H. Congdon, Esq. Department of Environmental Regulation Twin Towers Office Building 2600 Blair Stone Road Tallahassee, FL 32399-2400 Conrad C. Bishop, Jr., Esq. P.O. Box 167 Perry, FL 32347

Florida Laws (2) 120.57267.061 Florida Administrative Code (1) 40B-4.1020
# 5
PEACE RIVER/MANASOTA REGIONAL WATER SUPPLY AUTHORITY vs IMC PHOSPHATES COMPANY AND DEPARTMENT OF ENVIRONMENTAL PROTECTION, 03-000791 (2003)
Division of Administrative Hearings, Florida Filed:Tampa, Florida Mar. 04, 2003 Number: 03-000791 Latest Update: Mar. 26, 2008

The Issue The issues are whether IMC Phosphates Company is entitled to an environmental resource permit for phosphate mining and reclamation on the Ona-Ft. Green extension tract, approval of its conceptual reclamation plan for the Ona-Ft. Green extension tract, and modification of its existing wetland resource permit for the Ft. Green Mine to reconfigure clay settling areas, relocate mitigation wetlands, and extend the reclamation schedule.

Findings Of Fact Parties, Phosphate Mining, and Physiography Respondent IMC Phosphates Company, a Delaware general partnership authorized to do business in Florida (IMC), has applied to Respondent Department of Environmental Protection (DEP, which shall include predecessor agencies) for an environmental resource permit (ERP) to mine phosphate rock at the Ona-Ft. Green extension tract (OFG), approval of a conceptual reclamation plan (CRP) to reclaim the mined land at OFG, and modification of a previously issued wetland resource permit (WRP) to relocate and shrink clay-settling areas (CSAs), relocate mitigation wetlands, and extend the reclamation schedule at the Ft. Green Mine, which is an existing mine that is immediately west and north of OFG. Except for the submerged bottom of Horse Creek, which is sovereign submerged land, IMC owns all of the land on which OFG will be located, except for a 1.8-acre parcel owned by Valerie Roberts in Section 16, which is described below with the other sections forming OFG. IMC is negotiating with Ms. Roberts to purchase her land, and she has authorized IMC to pursue mining permits for the entire parcel, including her land. IMC Global, Inc., owns 80 percent of IMC. IMC Phosphates MP Inc., a Delaware corporation, is the managing general partner of IMC. As a successor to International Mining and Chemical Corporation, IMC has been in business for over 100 years. IMC is the largest producer of phosphate in the world. References in this Recommended Order to phosphate mining companies include all forms of business organizations. At present, IMC is operating four phosphate mines in Florida. The largest is the Four Corners Mine, which extends into Hillsborough, Polk, Manatee, and Hardee counties and three river basins. IMC also operates the Hopewell Mine in Hillsborough County, the Kingsford Mine in Hillsborough and Polk counties, and the Ft. Green Mine. Petitioner Charlotte County is located south of Sarasota and DeSoto counties and west of Glades County. The majority of Charlotte Harbor lies within Charlotte County. Charlotte Harbor is a tidal estuary at the mouths of the Peace and Myakka rivers. An Outstanding Florida Water and an Aquatic Preserve, Charlotte Harbor provides critical habitat for a variety of species. Charlotte Harbor is now an estuary of national significance under the U.S. National Estuary Program. Directly or indirectly, Charlotte Harbor supports 124,000 jobs and generates $6.8 billion in sales annually. To protect this unique natural resource, Charlotte County has adopted a local government comprehensive plan directing residential densities away from Charlotte Harbor. Charlotte County has also expended over $100 million in sanitary sewer capital expenditures for, among other things, the protection of Charlotte Harbor, such as by replacing private residential septic tanks with central sewer. Charlotte County's opposition to phosphate mining and reclamation in the Peace River basin is based on concerns about reduced river flows, reduced abundance and diversity of fish species, the loss of wetlands and first-order streams, and degraded water quality. Petitioner Peace River/Manasota Regional Water Supply Authority (Authority) is an agency authorized by Section 373.196(2), Florida Statutes, and created by interlocal agreement among Charlotte, Sarasota, DeSoto, and Manatee counties. The purpose of the Authority is to supply potable water to several suppliers in southwest Florida. Relying exclusively on the Peace River as its source of raw water, the Authority withdraws water from the Peace River two miles downstream of the point that Horse Creek empties into the Peace River. This point is about midway between Arcadia and Charlotte Harbor. As discussed below, the Authority's permit to withdraw water from the Peace River is dependent upon flows at a point upstream of the confluence of Horse Creek and the Peace River. The Authority's current water use permit expires in 2016. From its water treatment plant, which is located near the withdrawal point, the Authority pumps finished water to Charlotte, Sarasota, and DeSoto counties and the City of North Port. Approximately 250,000 persons rely on these suppliers, and, thus, the Authority, for their potable water. At present, the Authority is obligated to supply 18 million gallons per day (mgd), but anticipates demand to increase to 32 mgd by 2015. Petitioner Sarasota County (Sarasota County) owns and operates a water utility system, which currently supplies 24 mgd of potable water to 125,000 persons. Sarasota County obtains potable water from its wellfields, Manatee County, and the Authority, from which it may take up to 3.6 mgd. By 2017, Sarasota County plans to take 13.7 mgd of potable water from the Authority, partly to offset anticipated reductions in the amount of potable water presently being supplied by Manatee County. By 2017, the Authority will supply over half of Sarasota County's potable water. Sarasota County also shares Charlotte County's concerns about the overall environmental integrity of Charlotte Harbor, a small part of which is in Sarasota County. Intervenor Lee County (Lee County) is immediately south of Charlotte County. Nearly half of Charlotte Harbor lies within Lee County. Tourism produced an estimated $1.8 billion to Lee County's economy in 2002. Tourists are attracted to Lee County in part due to the high quality of Charlotte Harbor and its unique chain of barrier islands, passes, sounds, and bays that are integral to local fishing and boating. Lee County shares Charlotte County's concerns about the overall environmental integrity of Charlotte Harbor. Lee County is concerned about, among other things, degraded water quality from the discharge of turbid water, increased pollutant loads to the Peace River and Charlotte Harbor, adversely affected freshwater flows in the Peace River, and the consequences of the phosphate mining industry's inability to restore secondary tributaries, which provide base flow and environmental benefits to Charlotte Harbor. Petitioner Alan R. Behrens (Behrens) resides in Wimauma, Florida, which is in Hillsborough County. He has owned two five-acre tracts along Horse Creek since 1985 and owns a 2.5-acre lot in DeSoto County that fronts Horse Creek for 100-200 feet. The Horse Creek property is 10-15 miles downstream from OFG. Behrens has canoed the entire main stem of Horse Creek from the Peace River to OFG. On May 9, 2004, Behrens canoed up Stream 4w, which is a tributary of Horse Creek on OFG and is described in detail below. Behrens is a founder of Petitioner DeSoto Citizens Against Pollution, Inc. (DCAP), which was incorporated in 1990 as a Florida not-for-profit corporation and has operated in that status continuously since that time. DCAP's purpose is to protect fish, wildlife, and air and water resources; promote public health and safety; increase public awareness of potential environmental hazards; and discourage activities that may be adverse to public health or the environment. DCAP has 52 members, of whom 27 reside in Hardee County, 23 reside in DeSoto County, and two reside in Sarasota County. A substantial number of DCAP's members use Horse Creek for swimming, boating, canoeing, and fossil hunting. At least nine DCAP members own property abutting Horse Creek. Behrens and many DCAP members use wells on their property for potable water. Behrens and DCAP members are concerned that the clay- settling areas described below will increase flooding, the project will adverse affect the timing and volume of the flow and degrade the water quality of Horse Creek, the project will destroy wildlife habitat that--even if reclaimed--will be lost for many years, and the project will cause spills that will destroy fish and wildlife and adversely affect the ability of Behrens and DCAP to enjoy Horse Creek. OFG is in northwest Hardee County, about one-half mile east of the Manatee County line. OFG is about six miles south- southeast of the Four Corners, where Hardee, Manatee, Polk, and Hillsborough counties meet. OFG is about 35 miles east of Bradenton, 12 miles west of Wauchula, several miles south of State Road 62, and 2000 feet north of State Road 64. OFG represents the southernmost extent of phosphate mining in the Peace River basin to date. A nonrenewable resource for which no synthetic substitutes exist, phosphate is an essential nutrient and a major component of manufactured fertilizer. Less important uses of phosphate are for animal feed, soft drinks, and cosmetics. Mining phosphate rock and processing it into phosphoric acid or phosphorus make possible high-yield agriculture, which, by producing more food crop on less land, may reduce worldwide pressure to convert native habitat to improved agricultural land uses. Phosphate is available in limited quantities. Three- quarters of the recoverable phosphate rock in the United States is found in Florida, mostly in discrete deposits ranging from north-central Florida to Charlotte Harbor. Ten to fifteen million years ago, when peninsular Florida was submerged marine bottom, dead marine organisms accumulated as bone and shell on the ocean floor. These accumulations formed the Bone Valley Formation, which, as the seas withdrew and the peninsula emerged, occupies the lower part of the surficial aquifer at the site of OFG. Briefly, the main elements of the proposed activities in these cases, roughly in the order in which they will take place, are relocating wildlife; constructing a ditch and berm system around the area to be mined; removing topsoil from certain donor areas; removing the overburden and depositing it in rows of spoil within the mine cut; removing the underlying phosphate matrix and slurrying it to a nearby beneficiation plant at the Ft. Green Mine for processing to separate the phosphate rock from the sand and clay tailings; slurrying the clay tailings from the beneficiation plant to two CSAs at the southern end of the Ft. Green Mine; slurrying the sand tailings from the beneficiation plant back to the mine cut to backfill the excavation; applying topsoil to certain areas or green manuring areas for which topsoil is unavailable; applying muck to certain areas; contouring the reclaimed land to replicate pre-mining topography; analyzing the post-reclamation hydrology; reclaiming wetlands, streams, and uplands on the reclaimed landscape of OFG; maintaining and monitoring the reclaimed wetlands, streams, and uplands until DEP releases IMC from its ongoing reclamation obligations; correcting any problems in reclaimed areas; and removing the ditch and berm system and reconnecting the reclaimed mined area to the areas adjoining it. In the Findings of Fact, this Recommended Order uses "reclaim" to describe the process by which, post-mining, IMC and its reclamation scientists will construct wetlands, other surface waters, and wetlands at OFG. Likewise, in the Findings of Fact, this Recommended Order uses reclamation and mitigation interchangeably. In the Conclusions of Law, this Recommended Order discusses distinctions in these terms. IMC plans to use multiple draglines to dig a series of long, linear trenches in the mined areas of OFG. Each dragline will first remove overburden and place it in piles parallel to the trench being excavated. After removing the overburden, each dragline will remove the phosphate matrix, which consists of phosphate rock, sand, and clay, and deposit it in shallow depressions. Adding water from the mine recirculation system to the phosphate matrix, IMC will slurry the phosphate matrix to the Ft. Green beneficiation plant, which is about 12 miles from OFG. At the beneficiation plant, the phosphate rock will be separated from the sand and clay tailings, again using water from the mine recirculation system. After recovering the phosphate rock, IMC will slurry the sand tailings, which do not retain water, from the Ft. Green beneficiation plant to OFG for backfilling into the mined trenches with the overburden. Not used in the reclamation at OFG, the clay tailings, which retain water for an extensive period of time, will be slurried to the CSAs O-1 and O-2 on the Ft. Green Mine. CSAs O- 1 and O-2 are the subject of the WRP, which is discussed below. The volume of the clay leaving the beneficiation plant is greater than the clay in situ, pre-mining, because the slurrying process has saturated the clay. The CSAs provide a place to store the saturated clay while it drains and decreases in volume. The clay-settling process takes a long time, extended by IMC's intention to fill the CSAs by stages to make the most efficient use of the areas designated for the settling of clay. By stage-filling the CSAs, IMC will initially install the clay to a considerable height, using an embankment of approximately 50-60 feet. The water that separates from the clay will then drain across the sloped CSA until it enters the mine recirculation system for reuse. The remaining clay will dry and consolidate. After refilling each CSA approximately three times over about ten years, IMC will allow the clay to settle and consolidate a final time. When the clay has consolidated sufficiently to support agricultural equipment, IMC will regrade the area, reduce the side slopes, and remove the embankments, leaving the CSAs at a finished elevation 20-25 feet above the surrounding grade. Given the ongoing nature of IMC's phosphate mining operations, it is likely that some sand and clay tailings from OFG will go elsewhere, rather than return to the OFG mine cuts and CSAs O-1 and O-2, and that some sand and clay tailings from non-OFG mining operations will go to the OFG mine cuts and CSAs O-1 and O-2. However, these facts are irrelevant to the issues raised in these cases, except for consideration of IMC's sand- tailings budget, which is discussed below. Phosphate mining and reclamation practices have changed dramatically in the past 40 years. Although mining operations and reclamation practices are discussed below in detail, one development in mining and one development in reclamation bear emphasis due to the resulting reductions in water losses to the drainage basin. As explained below, mining operations are dependent upon large volumes of water, which flow through the mine recirculation system. Before 1963, phosphate mining pumped roughly 3000 gallons of water for each ton of mined phosphate rock. By the mid-1970s through 1990, the industry had reduced its groundwater consumption to 1500 gallons per ton of mined rock. From 1991 to 1999, the industry again reduced its groundwater consumption from 1200 gallons per ton to 650 gallons per ton, partly by achieving a 97 percent rate of water- recycling in the mine recirculation system. During roughly the same period, phosphate reclamation activities have expanded considerably. Prior to July 1, 1975, reclamation of mined land was voluntary, encouraged only by the availability of state funds to offset reclamation costs. Today, post-mining reclamation is required by law. As a consequence, post-mining reclamation 30 years ago was relatively modest in scope and intensity. One important development in reclamation practices is the phosphate mining industry's transition from early reclamation techniques that relied on relatively inexpensive contouring of the overburden that remained in the mine cuts following the extraction of the phosphate ore. These reclamation practices--aptly called Land-and-Lakes reclamation-- yielded post-reclamation excavations, such as reclaimed lakes or deep marshes, that, compared to pre-mining conditions, retained considerable volumes of surface water. The resulting increase in surface water area, compared to pre-mining surface water area, meant substantial loss of water from the drainage basin due to increased evapotranspiration. More recent reclamation practices, such as those proposed for OFG, feature more extensive backfilling of the mine cuts with tailings to restore pre-mining topography. The result is that less water is lost to evapotranspiration by retention in newly created lakes and deep marshes and more is timely held and passed by the natural drainage conveyances through detention, attenuation, runoff, and base flow--eventually entering the main basin river in volumes, rates, and times (relative to storm events) comparable to pre-mining conditions. Located near the western divide of the Peace River basin, OFG is near a topographical high point marking the divides among five drainage basins. From north to south, the four other basins are drained by the Alafia River, Little Manatee River, Manatee River, and Myakka River. OFG is located toward the bottom of an escarpment where the Polk Uplands descends into the DeSoto Plain. OFG is located almost entirely within a portion of the Horse Creek basin or sub-basin within the Peace River basin. This Recommended Order shall refer to the drainage basins that form the larger Peace River basin as sub-basins. A small portion of the western edge of OFG is within the West Fork Horse Creek (West Fork) sub-basin, and a small portion of the eastern edge of OFG is within the Brushy Creek sub-basin. OFG is toward the upper end of the Horse Creek sub-basin. The West Fork and Brushy Creek sub-basins within OFG contain no streams or stream segments and only, between them, about a half dozen wetlands of one-half acre in size or greater. Obviously, as separate sub-basins, these two areas on OFG are relatively far from Horse Creek. West Fork joins Horse Creek a couple of hundred feet south of OFG and just north of State Road 64. Brushy Creek joins Horse Creek six miles southeast of OFG. Horse Creek joins the Peace River at Ft. Ogden, about 40 miles south of OFG and 15 miles northeast of the mouth of the Peace River at Charlotte Harbor. The Peace River basin comprises about 2350 square miles and extends from its headwater lakes in north Polk County to Charlotte Harbor. By comparison, the Horse Creek sub-basin comprises about 241 square miles, or roughly ten percent of the Peace River basin. At Charlotte Harbor, the average flow of the Peace River is about 1700 cubic feet per second (cfs). By comparison, Horse Creek, at its confluence with the Peace River, flows at an average rate of about 170 cfs--again ten percent of the average rate of flow of the Peace River. West Fork, at its confluence with Horse Creek, flows at an average rate of about 10 cfs. The largest tributary on OFG flows at an average rate of about 0.75 cfs. Forming a little south of Four Corners, Horse Creek is one of five major tributaries of the Peace River. An ecological backbone of this region of Florida, Horse Creek is the only long-term, reliable flowing water system between the Manatee River on the west and Peace River on the east. OFG occupies the upper reaches of Horse Creek. Horse Creek is in good condition, notwithstanding 100 years of nearby cattle ranching. Most of Horse Creek is Class III waters, although a segment near the Peace River is Class I waters. Horse Creek is a moderately incised stream at OFG, especially over its southern two-thirds running through the mine site. Over the little more than three miles that Horse Creek flows through OFG, the streambed drops from nearly 120 feet National Geodetic Vertical Datum (NGVD) at the north end to about 75 feet NGVD at the south end. Within OFG, the valley that Horse Creek occupies is also relatively well-defined. The northern half of the streambed of Horse Creek within OFG is mostly around 100 feet NGVD. The highest adjacent elevations on OFG are about 120 feet NGVD. At least partly for this reason, most of the tributary streams, except in the flat northern portion of OFG, are also well-incised. OFG extends about 4 1/2 miles north to south, and ranges from 2/3 to 2 1/2 miles from east to west, for a total area of about 6 1/2 square miles. Lying entirely within Township 34 South, Range 23 East, OFG, from its northernmost border, occupies three sections, which are, from north to south: Sections 4, 9, and 16. Immediately west of the southern half of Section 9, OFG occupies most of the southern half of Section 8. Immediately west of Section 16, OFG occupies Section 17, as well as, immediately south of Section 17, all of Section 20 and most of the northern half of Section 29. OFG also extends to parts of four other sections: Sections 10 and 15 east of Sections 9 and 16, respectively, and Sections 18 and 19, west of Sections 17 and 20, respectively. The existing surface waters and nearly all of the existing wetlands are on the two columns of sections running north and south: on the east, Sections 4, 9, and 16 and, on the west, Sections 17, 20, the south part of Section 8, and the north part of Section 29. The northernmost extent of OFG, which consists of Section 4 and the north half of Section 9, is known as the Panhandle. Horse Creek enters OFG at the southwest corner of the Panhandle, at a point midway along the west border of Section 9. The stream flows south through the approximate center of OFG for about 1 1/2 miles until it leaves OFG for a very short distance at the southwest corner of Section 16, as it crosses a corner of property owned by the Carlton-Smith family (Carlton cutout). Horse Creek re-enters OFG at the northeast corner of Section 20 and runs just inside the eastern border of Section 20 and the portion of Section 29 within OFG. Horse Creek leaves OFG near the midpoint of the east border of Section 29. Numerous tributary streams enter Horse Creek within OFG, from the east and west sides of the creek. IMC and DEP have assigned to each of these streams or stream segments a number, followed by a letter to indicate if the stream or stream segment enters Horse Creek from the east or west. To the west of Horse Creek, proceeding from south to north, the streams are 0w, 1w, 2w, 3w, 4w, 5w, 6w, 7w, 8w, and 9w. To the east of Horse Creek, proceeding from south to north, the streams are 12e, 11e, 10e, 5e, 9e, 4e, 8e, 7e, 6e, 2e, 3e, and the Stream 1e series, consisting of Streams (sometimes referred to as stream segments) 1ee, 1ed, 1ec, 1eb, and 1ef. All of the streams join Horse Creek on OFG except Stream 2e, which joins Horse Creek a few hundred feet upstream of the point at which Horse Creek enters OFG, and Stream 7w, which empties into a backwater swamp (G185/G186) that, in turn, empties into either Horse Creek or the lower end of Stream 6w immediately before it empties into Horse Creek. The alphanumeric designation of the backwater swamp in the preceding paragraph is based on the Map F-2 series, which assign such a designation to each existing wetland community and then identifies the wetland community. For example, the backwater swamp consists of a wet prairie (G185) surrounded by a mixed wetland hardwoods (G186). If a wetland consists of more than one wetland community, this Recommended Order will refer to it either as a wetland complex with its lowest-numbered wetland community--here, wetland complex G185--or the combination of wetland communities--here, G185/G186. Reclaimed wetlands are identified by Figure 13A5-1, which assigns each wetland an alphanumeric designation and identifies its community. The letter indicates if the reclaimed wetland is east ("E") or west ("W") of Horse Creek. Table 13A5-1 2AI identifies each reclaimed wetland by its alphanumeric designation, community, acreage, and status as connected, isolated, or isolated and ephemeral. Table 13A5-1 2AI identifies 110 wetlands to be reclaimed. The largest wetland is E003, which is a 23.8-acre mixed wetland hardwoods that constitutes the riparian wetland of the Stream 1e series. The next largest is W003, which is a 20.7-acre wet prairie at the headwaters of Stream 9w. Only three other reclaimed wetlands will be at least ten acres: E018, an 11.3-acre wet prairie fringe on the east side of Section 4; E020, an 11.5-acre freshwater marsh at the center of E018; and W039, an 11.2-acre bay swamp at the headwater of Stream 1w. Thirteen reclaimed wetlands are at least five acres, but less than ten acres, and 30 reclaimed wetlands are less than one acre. Table 13A5-1 2AI identifies 44 reclaimed ephemeral wetlands totaling 101 acres. Reclaimed uplands are identified by Map I-2. Although the scales of Map I-2 (one inch equals about 820.5 feet) and the Map F-2 series (one inch equals about 833.3 feet) are larger than the scales of nearly all of the other maps and figures in these cases, acreages derived from these maps for uplands and existing wetlands are very rough approximations and do not approach in accuracy the acreages derived from Table 13A5-1 2AI for reclaimed wetlands. These maps and figures omit one stream segment to be reclaimed. IMC and DEP restricted the designation scheme to streams and stream segments that had once been natural systems, thus excluding artificially created waterways, such as those created by agricultural ditches cut into swales to drain upslope wetlands and uplands. During the hearing, older aerial photographs revealed that, under this scheme, the parties had omitted one stream segment, which they designated Stream 3e?. Stream 3e? is northeast of Stream 3e, from which it is separated by a wetland (G133/G134/G135/G136). Besides the streams, two other areas within OFG require early identification due to their prominence in these cases. The northerly area is the Heart-Shaped Wetland (G138/G139/G140/G141/G143/G143A), which is the large wetland in Section 4 into which the Streams 1e series and Stream 3e empty. The other area of heightened importance is in the center of OFG in Sections 17 and 16 and is called the East Lobe, Central Lobe, and West Lobe or, collectively, the Lobes. Dominated by large bayhead headwaters (West Lobe--G197; Central Lobe--G179; East Lobe--G178), the Lobes and the streams connecting them to Horse Creek are entirely within the no-mine area. The West and Central Lobes connect to the west bank of Horse Creek by Streams 6w and 8w, respectively. The East Lobe connects to the east bank of Horse Creek by Stream 9e. The no-mine areas of the West and East Lobes are much larger than the no-mine area of the Central Lobe, and the East Lobe contains a large area of uplands extending east of, and supporting, the large bayhead. Most OFG wetlands are connected or contiguous, and many of these wetlands are riparian wetlands within the 100-year floodplain of Horse Creek or a floodplain of one of the tributaries of Horse Creek. (As used in this Recommended Order, the floodplain of Horse Creek runs roughly parallel to the banks of Horse Creek and excludes any portion of the floodplain more directly associated with Horse Creek's tributaries or their connected wetlands.) All or nearly all of the isolated wetlands on OFG are ephemeral and permanent, except in very low rainfall periods. The scale of mining is large. The phosphate matrix, which contains the phosphate rock, is overlaid by a layer of sand and clay overburden, which, with topsoil, is projected to range from 20-40 feet, averaging 27 feet, in thickness. The phosphate matrix is projected to range from 25-35 feet, averaging closer to 25 feet, in thickness, although as much as four feet of the matrix may consist of interburden, such as sand, clay, limerock, or gravelly materials. Thus, mining will remove, on average, 52 feet of the earth's surface. In no area will mining extend deeper than the top of the limey clay bed, which is the confining layer dividing the surficial aquifer from the intermediate aquifer, of which the limey clay bed is a part. (Technically, the matrix is part of the confining layer, but it provides so little confinement that it is easier to consider it part of the surficial aquifer. A consequence of this fact is that the removal of the matrix does not increase the rate of deep recharge, at least where the matrix is replaced with cast overburden.) At OFG, the thickness of the surficial aquifer varies from 65-70 feet at the basin divide to 50 feet or less at the riparian wetlands and averages 55 feet. Beneath the intermediate aquifer, which is about 300 feet thick at OFG, lies the Floridan Aquifer. IMC projects OFG to yield 24 million tons of phosphate rock, 26 million tons of clay tailings, and 68 million tons of sand tailings. IMC projects that the no-mine areas, which are discussed below, will result in five million tons of phosphate rock reserves remaining in the ground post-mining. The scale of the environmental impact of mining is correspondingly large. Mining removes all flora and fauna, all the topography, soils, and upper geology, in the path of the electric dragline, which, as long as a football field (including one end zone), removes the uplands, wetlands, streams, and soils covering the matrix. At the depths at which mining will take place, IMC will be removing the entire surficial aquifer. Applications, ERP, CRP Approval, and WRP Modification Preliminary Matters These cases involve permits and an approval of the phosphate mining and reclamation processes. These cases do not involve the processes by which IMC transforms phosphate into end products, mostly fertilizer. With one exception, these cases do not involve the processes by which IMC separates the phosphate ore from the sand and clay (i.e., the beneficiation process). (The exception is that IMC is seeking to extend by ten years the life of the Ft. Green beneficiation plant to separate the phosphate from the matrix slurried from OFG.) These other post- mining processes, which are separately permitted, are not directly involved in these cases because IMC will slurry the phosphate matrix mined from OFG to the existing Ft. Green beneficiation plant, which is already permitted and operating. Even though the WRP modification will authorize the relocating of already-permitted CSAs at the Ft. Green Mine, the WRP modification will not authorize the design or construction of the embankments that retain the water within these CSAs while they are essentially clay ponds. DEP will separately permit the construction and operation of CSAs O-1 and O-2. Application and Proposed Agency Action On April 24, 2000, IMC filed a Consolidated Development Application for an ERP to mine phosphate from the proposed 20,675-acre Ona Mine, approval of the CRP for the Ona Mine following the completion of mining, and modification to the existing WRP for the Ft. Green Mine to install three CSAs in the area of the Ft. Green Mine immediately west of the Ona Mine and extend the life of the Ft. Green beneficiation plant by ten years to process the matrix from the Ona Mine. On January 17, 2003, DEP issued an Intent to Issue an ERP and proposed approval of the CRP. Petitioners in several of the above-styled cases challenged this proposed agency action, and the parties embarked upon an energetic prehearing process of preparation, including extensive discovery and prehearing telephone conferences with the Administrative Law Judge, in anticipation of a final hearing in the fall of 2003. IMC and DEP entered into a Team Permitting Agreement, pursuant to 1996 legislation creating the concept of Ecosystem Management. The Team Permitting Agreement incorporates the concept of "net ecosystem benefit," but, on its face, is not binding on IMC. The obvious purpose of the Team Permitting Agreement was to induce the permitting agencies (i.e., DEP, Florida Fish and Wildlife Conservation Commission (FWC), Southwest Florida Water Management District (SWFWMD), two regional planning councils, the Florida Department of Community Affairs, the Florida Department of Transportation (DOT), Hardee County, DeSoto County, and the U.S. Army Corps of Engineers) to use a common development application and coordinate, to the greatest practical extent, their respective reviews of the proposed activities of IMC. Three weeks prior to the start of the final hearing, on September 15, 2003, DEP issued the Final Order in Charlotte County et al. v. IMC Phosphates Company and Department of Environmental Protection, 2003 WL 21801924, 4 ER FALR 42 (Altman Final Order). The Altman Final Order denies IMC's application for a WRP/ERP and disapproves IMC's proposed CRP for the Altman tract, which is a short distance northwest of OFG. Although the final and recommended orders are detailed and complex, the Altman Final Order essentially concludes that IMC's CRP was inconsistent with applicable law because its basic reclamation concept was "to replace an existing system of high-quality wetlands . . . with a deep freshwater marsh." On the same date of the Altman Final Order, DEP Deputy Secretary Allan Bedwell ordered DEP's Bureau of Mine Reclamation (BMR) to re-examine IMC's application for an ERP and request for approval of the CRP for the Ona Mine to assure consistency between the proposed agency action approving the ERP, CRP, and WRP modification and the Altman Final Order. The Bedwell memorandum specifically directs BMR to verify IMC's classification and characterization of the extent and quality of wetlands on the site; verify that IMC's proposed reclamation activities, including its proposed control of nuisance or exotic species, "maintain or improve the water quality and function" of the biological systems present at the site prior to mining; and verify that IMC meets the financial assurance requirements of law. The memorandum concludes by directing BMR to modify any proposed agency action, if necessary. By memorandum dated January 5, 2004, Richard Cantrell and Janet Llewellyn, Deputy Directors of DEP's Division of Water Management Resources, responded to the memorandum from Deputy Secretary Bedwell. With respect to IMC's classification and characterization of wetlands, the January 5 memorandum states that DEP staff had conducted additional review of available aerial photographs, reviewed field notes from previous field inspections, conducted new field inspections, and received comments from IMC and Charlotte County. To describe better onsite habitats and communities, DEP staff had also revised the DOT Florida Land Use, Cover, and Forms Classification System (FLUCFCS) for use at OFG. The FLUCFCS codes are a three-digit numbering system to classify and identify individual vegetative communities or land uses. With respect to the ability of the proposed reclamation to maintain or improve the water quality and function of biological systems, the January 5 memorandum states that Deputy Directors Cantrell and Llewellyn had recommended to IMC that it consider phasing the mining on Ona, so that it could apply its experience in reclaiming OFG to the remainder of the original Ona Mine; preserving additional onsite natural stream channels and proposing more detailed reclamation plans for mined streams; preserving additional onsite bay-dominated wetland systems; providing additional assurances that upgradient sand/scrub areas will continue to support hydrologically, through seepage, preserved and restored bayheads; providing a plan to control nuisance and exotic species in the uplands, which, if infested, would degrade adjacent wetlands post-mining; and providing assurances that groundwater flows to Horse Creek and its preserved tributaries will be maintained during mining and post-reclamation. With respect to financial responsibility, the January 5 memorandum states that Deputy Directors Cantrell and Llewellyn had advised IMC that it must provide its financial responsibility for the mitigation of all wetlands authorized to be mined, rather than providing its financial responsibility on a phased basis, as it had previously proposed. On January 30, 2004, IMC filed a voluminous amendment to the Consolidated Development Application in a package known as the January submittal. The most evident change made by the January submittal is the reduction of the Ona Mine to OFG, which was the westernmost one-fifth of the original Ona Mine. The introduction to the January submittal highlights the changes that IMC made to the original application. The introduction explains that IMC has employed a revised mapping protocol to ensure that all waters of the State, including wetlands delineated by Florida Administrative Code Rule 62-340.300 and other surface waters delineated by Florida Administrative Code Rule 62-340.600, are classified as wetlands or water, pursuant to the modified FLUCFCS codes. Rejecting the nomenclature of the January 5 memorandum regarding the phasing of mining at the Ona site, the introduction to the January submittal identifies OFG as a 4197- acre, "free-standing" mining tract, not in any way "coupled to or dependent on the development of the remainder of the Ona Tract," from which it was taken. The introduction explains that "free-standing" means that OFG is a "complete mining, reclamation, and mitigation proposal" and that the OFG ERP will be "for a single-phase project." The introduction to the January submittal notes that IMC has enlarged the no-mine area to include "nearly all of the natural stream channel tributaries to Horse Creek present in the portions of the Parcel that have not been converted to improved pasture." The amendments thus avoid disturbing four additional natural stream segments. The introduction explains that IMC considered a series of factors in determining whether to mine a stream segment: "stream segments length, the existing land cover adjacent to the stream and its watershed, the complexity of the channel geometry[,] and historical agricultural impacts." The introduction adds that IMC has added a "state-of-the-art" stream restoration plan for mined natural streams. The introduction to the January submittal states that IMC responded in two ways to the suggestions about bay swamps in the January 5 memorandum. First, IMC modified the conventional mapping protocol for bay swamps. Rather than require that the canopy of the subject community be dominated by loblolly bay, sweetbay, red bay, and swamp bay trees, as prescribed by the FLUCFCS codes, IMC designated as bayheads "depressional, seepage-driven forested headwater wetlands, surrounded, at least in part, by moderately to well drained upland soils, with a defined outlet connection to waterways such that the 'bay head' soils are perennially moist but infrequently inundated." This new mapping protocol did not require the presence of bay trees in the canopy. Second, IMC enlarged the no-mine areas to avoid disturbing all but nine percent of existing bay swamps at OFG, totaling less than ten acres. IMC based its mine/no-mine decisions for particular bayheads on analysis of the hydrological, water quality, and relative functional value provided by these communities to fish and wildlife. The introduction concludes that IMC has also developed detailed plans to mitigate for the few mined bayheads. The introduction to the January submittal states that IMC has added new protections for the sand/scrub areas upgradient from, and providing seepage into, the bayheads in the West and East Lobes. First, IMC will avoid mining certain of these areas, presumably adjacent to the East Lobe. Second, IMC will employ special mining techniques and schedules to reclaim these upland areas quickly and effectively. Additionally, the introduction notes that IMC is proposing to: align the dragline "cut patterns" such that the spoil piles will be aligned with the groundwater seepage path where feasible or, where not feasible, to grade the spoil piles prior to backfilling the mine voids with sand so as not to impede post- reclamation groundwater flow; accelerate the sand backfilling schedule of the mined voids adjacent to avoided "bay heads" to one year following mining disturbance; and create a reclaimed stratigraphy that results in post-reclamation seasonal high and normal water table elevations and hydraulic conductivities in the seepage slopes that will provide the hydrologic support required to sustain these communities. As explained in a later section of the introduction to the January submittal, "stratigraphy" refers to the soil layers or horizons, which are described in detail below. The introduction states: "The majority of the overburden will be placed at depths below the surface soil horizons. As a result, the surface soils will either be comprised of translocated surface soils or a loose mixture of 'green manure organics,' overburden, and sand that both resembles the native soils and provides a suitable growing medium for the targeted vegetative communities." The introduction adds that, at final grade, sand tailings will always overlie overburden by at least 15 inches. The introduction asserts that the overburden underlying the backfilled sand tailings will be "comprised of and have properties which are similar to B horizons (subsoils) and C horizons (substratums) of native Florida soils." The introduction to the January submittal identifies a Habitat Management Plan (also known as the Site Habitat Management Plan) that, with the Conservation Easement and Easement Management Plan discussed below, will guide the revegetation of upland natural systems, control nuisance and exotic species in uplands, and manage all potential listed species that may be present, whether or not observed, in areas to be mined. The introduction also mentions habitat enhancements "to relocate Florida mice" and to manage gopher tortoises. The introduction concludes with IMC's undertaking to ensure that exotic/nuisance cover does not exceed ten percent in all reclaimed wetlands and to provide a 300-foot buffer around wetlands where cogongrass--a highly invasive nuisance exotic described in more detail below--will not exceed five percent coverage. The introduction to the January submittal notes that the proposed activities will maintain groundwater flows to Horse Creek and tributaries in the no-mine areas during mining and post-reclamation. The introduction again mentions IMC's commitment, where feasible, to align spoil piles with groundwater flow and, where not feasible, grade spoil piles before backfilling so as to add a thicker band of sand to these areas. The introduction also cites the ditch and berm system as a means to maintain groundwater seepage during mining. The introduction to the January submittal states that IMC will meet its financial-responsibility requirements for the entire cost of wetland-mitigation at OFG. The January submittal contains a discussion of community-mapping protocol. IMC's methodology for mapping bay swamps is discussed above. The most common vegetative communities and land uses are described in the following paragraphs. Improved pasture is actively grazed pasture dominated by cultivated pasture grasses, such as bahiagrass, but may support native grasses. Improved pasture may contain sporadic shrubs and trees. Pine flatwoods occupy flat topography on relatively poorly drained, acidic soils low in nutrients. The overstory is discontinuous with areas of dense, species-rich undergrowth or groundcover. Longleaf pine and slash pine predominate. Pine flatwoods require frequent fires, which are carried by grasses, and the pines' thick bark helps prevent fire damage to the trees. At one time, about three-quarters of Florida was covered by pine flatwoods. Palmetto prairies typically represent the undergrowth of pine flatwoods. Once the trees are removed, such as by timbering, the resulting community is a palmetto prairie, which is characterized by an often-dense cover of saw palmettos with no or scattered pines or oaks. Occupying dry, sandy, well-drained sites, sand live oak communities feature a predominance of sand live oaks and often succeed in relatively well-drained pine flatwoods after the removal of the pines, conversion to palmetto prairie, and suppression of fire. Sand live oak may also occupy xeric oak communities. Moister soils may support live oak communities, which also may succeed pine flatwoods after the removal of the pines, conversion to palmetto prairie, and suppression of fire. Hardwood-conifer mixed is a blend of hardwoods and pines with trees of both categories forming one-third to two- thirds of the cover. Hardwoods are often laurel oak and live oak, and pines are often slash pine, longleaf pine, and sand pine. The midstory is typically occupied by younger individuals of the overstory communities and wax myrtle. If sufficient light reaches the ground, groundcover may exist. Temperate hardwoods are often a forested uplands transition to a wetland. Temperate hardwoods are usually dominated by laurel oak, but other canopy species may include cabbage palm, slash pine, live oak, and water oak. Mixed hardwoods is a similar community, except that water oak is predominant in the canopy. Two of the three most prevalent forested wetlands on OFG are bay swamps, which have been discussed, and hydric oak forest, which, because of their location in the Horse Creek floodplain, will not be mined. At DEP's request, IMC remapped some of the floodplain that was uplands (and already in the no- mine area) to hydric oak forest. The other prevalent forested wetlands on OFG is mixed wetland hardwoods, which consists of a variety of hardwood species, such as the canopy species of red maple, laurel oak, live oak, sweetbay, and American elm. Slash pines may occur, but may not constitute more than one-third of the canopy. Suitable shrubs include primrose willow, wax myrtle, and buttonbush. Ferns are often present as groundcover. Often immediately downgradient of bay swamps, mixed wetland hardwoods are typically in the hydric floodplains of small streams. Transitioning between uplands, such as palmetto prairies, and the wetter soils hosting bay swamps and mixed wetland hardwoods, wetland forested mixed communities (also known as wetland mixed hardwood-coniferous) often occupy wet prairies from which fire has been suppressed for at least 20 years and, as such, "are largely or entirely an artifact of land use practices during the past sixty years or so that have allowed the conversion of wet prairies . . . to this cover type." The canopy of wetland forested mixed is slash pine, laurel oaks, live oaks, and other hardwoods that tolerate or prefer wetter soils. Wet prairies are a dense, species-rich herbaceous wetland, usually dominated by grasses. Wet prairies occupy soil that is frequently wet, but only briefly and shallowly inundated. Similar to freshwater marshes, but with shorter hydroperiods, wet prairies often fringe marshes, and their border will shift in accordance with rainfall levels over several years. Freshwater marshes consist predominantly of emergent aquatic herbs growing in shallow ponds or sloughs. Typical marsh herbs include pickerelweed, maidencane, and beakrushes. Hydroperiod and water depth drive the presence of species in different locations within a freshwater marsh. Marshes may be isolated or may occupy a slough in which their water flow is unidirectional. Heavily grazed or drained marshes may suffer dominance of primrose willow. Abundant softweed may indicate ditching, and soft rush, which cattle avoid, may indicate heavy grazing. Shrub marshes succeed stillwater freshwater marshes from which fire has been excluded. Shrub marshes form after agricultural ditching or culverted fill-road building. Common shrub species include buttonbush, southern willow, and primrose willow. Hydric trees, such as red maple and swamp tupelo, may occupy the edges of shrub marshes. IMC supplemented the January submittal with submittals dated February 26 and 27, 2004. Collectively, these are known as the February submittal. The February submittal is much less- extensive than the January submittal, although it includes substantive changes. After examining the January and February submittals, on February 27, 2004, DEP issued a Revised Notice of Intent to Issue an ERP for OFG, approved a revised CRP for OFG, and issued a revised WRP modification for the Ft. Green Mine, which now authorizes two CSAs--O-1 and O-2--that have the effect of relocating the previously approved CSAs farther away from Horse Creek and reducing their size due to the reduced scale of OFG as compared to the original Ona Mine; reconfiguring certain mitigation wetlands, necessitated by the relocation of CSAs O-1 and O-2, with a net addition of 2.7 acres of herbaceous wetland area; and changing the reclamation schedule to conform to the already-approved CRP for the Ft. Green Mine. IMC supplemented the January and February submittals with submittals dated March 30, April 18, and April 21, 2004. These submittals, which are known as the Composite submittal, are much less-extensive than the February submittal. DEP expressly incorporated the February submittal into the ERP, CRP approval, and WRP modification dated February 27, 2004. DEP has impliedly incorporated the changes in the Composite submittal into the ERP, CRP approval, and WRP modification. Thus, this Recommended Order uses the latest version of these documents when discussing the relevant permit or approval. The March 30, 2004, submittal updates the following maps, figures, and tables: Map F-2 (to correct legend), Map I-2 (to correct the post-reclamation vegetation in the vicinity of Streams 3e, 1w, 2w, 3w, and 4w), Figures 13A5-1 and 13B-8 (to reflect changes to Map I-2), Tables 12A1-1 and 13A1-1 (revised land uses in several stream locations), and Tables 13A5-1, 345A-1, and 26O-1 (to reflect above changes). The March 30, 2004, submittal also includes the Draft Study Plan for Burrowing Owls and Amphibians and revised Tables A and B for the Financial Responsibility section of the ERP. No material revisions are included in the submittals after March 30, 2004. Submittals after March 30, 2004, include financial responsibility forms, including a draft escrow agreement, and updated information on the temporary wetland crossing at the point that Stream 2e forms at the downstream end of the Heart-Shaped Wetland. The last item, dated April 20, 2004, is a revision of Figure 13B-8, but solely for the purpose of showing that the Heart-Shaped Wetland remains connected to Stream 2e, despite the temporary presence of a crossing. This is the last revision to the CDA prior to the commencement of the hearing. During the hearing, IMC submitted modifications of the mining and reclamation activities, and DEP agreed to all of these modifications. During the hearing, DEP proposed modifications of the mining and reclamation activities, and IMC agreed to all of these modifications. These modifications, such as identifying the annual hydroperiod of bay swamps as 8-11 months and the final changes to post-reclamation topography, are identified in this Recommended Order and incorporated into all references to the ERP or CRP approval. In general, the ERP addresses wetlands, surface waters, and species dependent upon either, and the CRP addresses uplands and species dependent exclusively upon uplands. Later sections of the Recommended Order will discuss the ERP, the CRP approval, and the WRP modification. All of the maps, figures, and tables incorporated into the ERP, CRP approval, or WRP modification are contained in the CDA. Overview of Mined Areas, No-Mine Areas, and Reclaimed Areas The ERP permits IMC to mine 3477 acres and requires IMC to reclaim 3477 acres. The ERP recognizes that IMC will not mine 721 acres, which is about 17 percent of the 4197-acre site. (Most acreage figures are rounded-off in this Recommended Order, so totals may not always appear accurate.) Although various exhibits and witnesses sometimes refer to the no-mine area as the preserved area, this label is true only insofar as IMC will "preserve" the area from mining. However, post-reclamation, the area is not preserved. After the property reverts to the Carlton-Smith family, it will return to its historical agricultural uses, subject to a Conservation Easement that is discussed below. Table 12A1-1 is the Mine Wide Land Use Analysis. Table 12A1-1 identifies, by acreage, each use or community presently at OFG, such acreage proposed to be mined, and such acreage proposed to be reclaimed. When not listed separately, this Recommended Order combines all non-forested wetlands, including mostly herbaceous wetlands and shrub marshes, into the category of herbaceous wetlands. Shrub marshes presently account for only 4.7 acres at OFG and will account for only 10.3 acres, post-reclamation. Ignoring 35 acres that presently are barren or in transportation or urban uses, the present uses or communities of OFG are agricultural (2146 acres), upland forests (904 acres), rangeland (510 acres), forested wetlands (380 acres), herbaceous wetlands (208 acres), and open water (15 acres). Nearly all of the existing agricultural uses are improved pasture (1942 acres); the only other use of significance is 165 acres of citrus. Well over half of the area to be mined is agricultural. Over half of the area to be mined is improved pasture (1776 acres, or about 51 percent of the mined area). Adding the citrus groves, woodland pasture, and insignificant other agricultural uses to the area to be mined, the total of agricultural uses to be mined is 1976 acres, or 57 percent of the mined area. The two most prevalent upland forest communities presently at OFG are sand live oak and pine flatwoods; the next largest community, hardwood-conifer mixed, accounts for about half of the size of sand live oak or pine flatwoods. These upland forests contribute about one-fifth of the area to be mined (731 acres, or 21 percent of the mined area). Cumulatively, then, agricultural land and upland forests constitute 78 percent of the mined area. For all practical purposes, all of the rangeland presently at OFG is palmetto prairie. This unimproved rangeland contributes a little less to the mining area that do upland forests; mining will consume 475 acres of rangeland, which is 14 percent of the mined area. Cumulatively, then, agricultural land, upland forests, and native rangeland will constitute 92 percent of the mined area. The addition of the remaining upland uses--25 acres of roads, 5 acres of barren spoil areas, and one acre of residential--results in a total of 3213 acres, or still 92 percent, of the 3477 acres to be mined. This leaves eight percent of the mined area, or 264 acres, as wetlands and other surface waters. As noted above, the wetlands are divided into forested and herbaceous wetlands. Forested wetlands will contribute 82 acres, or about two percent, of the mined area. Nearly all of the forested wetlands presently at OFG are divided almost equally among mixed wetland hardwoods, hydric oak forests, and bay swamps. Bay swamps total 104 acres. In terms of the forested wetlands present at OFG, mining will consume mostly mixed wetland hardwoods, of which 43 acres, or 36 percent of those present at OFG, will be mined. Mining will eliminate only nine acres, or nine percent, of bay swamps and six acres, or six percent, or hydric oak forests. Mining will eliminate a large percentage-- 67 percent--of hydric pine flatwoods present at OFG, but this is 12 acres of the 18 existing acres of this wetland forest community. Herbaceous wetlands will contribute 168 acres, or about five percent, of the mined area. Nearly all of the herbaceous wetland communities are wet prairies (108 acres) and freshwater marshes (81 acres). Mining will eliminate 95 acres, or 88 percent, of the wet prairie present at OFG, and 67 acres, or 83 percent, of the freshwater marshes present at OFG. IMC will mine 13.5 acres of open water, which consists primarily of cattle ponds and ditches. The only natural water habitat is natural streams, which total 2.2 acres. IMC will mine 0.9 acres of natural streams. Also incorporated into the ERP, Table 13A1-5, provides another measure of the impact of mining upon natural streams. According to Table 13A1-5, IMC will mine 2.8 acres of the 25.6 acres of natural streams. As noted in Table 13A1-5, reclamation of streams, which is discussed in detail below, is based on length, not acreage, and, under the circumstances, a linear measure is superior to an areal measure. Table 12A1-1 also provides the acreage of reclaimed community that IMC will construct. These habitats or uses are listed in the order of the size of the area to be reclaimed, starting with the largest. For agriculture, IMC will reclaim 1769 acres after mining 1976 acres. Adding the 170 acres of agriculture in the no-mine area, agricultural uses will total, post-reclamation, 1939 acres. For upland forest, IMC will reclaim 1055 acres after mining 731 acres. Adding the 173 acres of upland forest in the no-mine area, upland forest habitat will total, post- reclamation, 1227 acres. For rangeland, IMC will reclaim 323 acres after mining 475 acres. Adding the 35 acres of rangeland in the no- mine area, rangeland will total, post-reclamation, 358 acres. For herbaceous wetlands, IMC will reclaim 217 acres after mining 168 acres. Adding the 39 acres of herbaceous wetlands in the no-mine area, herbaceous wetlands will total, post-reclamation, 256 acres. For forested wetlands, IMC will reclaim 106 acres after mining 82 acres. Adding the 298 acres of forested wetlands in the no-mine area, forested wetlands will total, post-reclamation, 404 acres. ERP ERP Specific Condition 3 requires IMC to provide to DEP for its approval the form of financial responsibility that IMC chooses to use to secure performance of its mitigation costs. IMC may not work in any wetland or surface water until DEP has approved the method by which IMC has demonstrated financial responsibility. DEP shall release the security for each individual wetland that has been released by BMR, pursuant to Specific Condition 17. The escrow agreement is a two-party contract between IMC and J.P. Morgan Trust Company, as escrow agent. The escrow agreement acknowledges that IMC will transfer cash or securities to the escrow agent in the stated amount, representing IMC's obligations to perform ERP mitigation plus the ten percent add- on noted in the Conclusions of Law. If IMC fails to comply with the ERP or Section 3.3.7 of the SWFWMD Basis of Review, the escrow agent is authorized to make payments to DEP, upon receipt of DEP's written certification of IMC's default. The escrow agreement may be amended only by an instrument signed by IMC, DEP, and the escrow agent. ERP Specific Condition 3 requires IMC to calculate the amount of the security based on Table B, which is the Wetland Mitigation Financial Summary. Table B lists each forested and wetland community from Table 12A1-1, the acreage for each community, and the unit costs per acre of mitigation. The acreage figures are the acreage figures on Table 12A1-1. The unit costs per acre are as follows with the FLUCFCS codes in parentheses: herbaceous (641, 643)--$7304; forested bay wetland (611)--$11,692; other forested wetland (613, 617, 619, 630)--$11,347; shrub (646)--$8780; hydric palmetto prairie (648)--$9231; and (hydric) pine flatwoods (625)--$10,568. Table B also shows 10,141 feet of streams to be reclaimed at a cost per foot of $37, stream macroinvertebrate sampling at a total cost of $48,100, and water quality/quantity monitoring at a cost of $293,000. Adding the costs of wetland and stream reclamation, sampling, and monitoring, plus ten percent, Table B calculates the mitigation liability of IMC as $3,865,569. IMC has agreed to increase this amount for the reclamation of Stream 3e?. ERP Specific Condition 4 requires IMC to submit to BMR annual narrative reports, including the actual or projected start date, a description of the work completed since the last annual report, a description of the work anticipated for the next year, and the results of any pre-mining surveys of wildlife and endangered or threatened species conducted during the preceding year. The reports must describe any problems encountered and solutions implemented. ERP Specific Condition 5 requires IMC to submit to BMR annual hydrology reports. Relative to initial planting, IMC shall submit to BMR vegetative statistic reports in year 1, year 2, year 3, year 5, and every two years after year 5, IMC must submit to BMR vegetation statistic reports. ERP Specific Condition 6 addresses water quality in wetlands or other surface waters adjacent to, or downstream of, any site preparation, mining, or reclamation activities. Specific Condition 6.a requires, prior to any clearing or mining, IMC to sever the areas to be disturbed from adjacent wetlands. IMC severs or isolates the mining area when it constructs the ditch and berm adjacent to, but upland of, the adjacent wetlands not to be mined. Figure 14E-1 portrays the elements of the ditch and berm system as all outside of the no-mine area (or OFG property line, where applicable). In the illustration, from the mine cut toward the no-mine area (or OFG property line), IMC will construct the ditch, the 15-foot wide berm, the monitoring wells, and the silt fence. ERP Specific Condition 6.b requires the ditch and berm system to remain in place until IMC has completed mining and reclamation, monitoring indicates that no violation of "State Water Quality Standards" are expected, and DEP has determined that "the restored wetlands are adequately stabilized and sufficiently acclimated to ambient hydrological conditions." DEP's decision to allow the removal of the ditch and berm system shall be based on a site inspection and water quality monitoring data. Upon removal of the ditch and berm system, the area that had been within the ditch and berm system shall be restored to grade and revegetated according to the methods and criteria set forth in Specific Condition 14. ERP Specific Condition 6.c requires IMC to use best management practices for turbidity and erosion control to prevent siltation and turbid discharges in excess of State water quality standards, under Chapter 62-302, Florida Administrative Code. Specific Condition 6.d requires IMC daily to inspect and maintain its turbidity-control devices. If the berm impounds water above grade, IMC must daily visually inspect the integrity and stability of the embankment. ERP Specific Condition 7 requires that IMC implement a baseline monitoring program for surface water and groundwater and continue the program through the end of the mine life. The data from this program shall be included in the annual narrative reports described in Specific Condition 4. The locations of the sampling sites are depicted on Map D-4. ERP Specific Condition 7.a identifies three monitoring stations, which are in Horse Creek just upstream of the stream's entrance onto OFG (and possibly just upstream of the offsite confluence of Stream 2e with Horse Creek), in Horse Creek at State Road 64, and in West Fork a short distance upstream of its confluence with Horse Creek. Before and during mining, IMC must monthly monitor 18 parameters, including temperature, pH, dissolved oxygen, total suspended solids, conductivity, turbidity, color, total phosphorous, ammonia, nitrate/nitrite, and chlorophyll a. During mining, IMC must semi-annually monitor 11 additional parameters, including alkalinity, biological oxygen demand, chloride, and iron. ERP Specific Condition 7.b identifies one monitoring station, which is at the junction of Stream 6w and Horse Creek. Before and during mining, IMC must monthly monitor ten parameters, including temperature, pH, dissolved oxygen, total suspended solids, conductivity, and color. During mining operations, IMC must semi-annually monitor the same 11 additional parameters described in Specific Condition 7.a. ERP Specific Condition 7.c identifies two clusters of monitoring wells, one located near the offsite confluence of Stream 2e with Horse Creek and one located near the collecting station on West Fork near its junction with Horse Creek. During mining operations, IMC must semi-annually monitor 23 parameters, including pH, temperature, conductivity, alkalinity, total phosphorous, color, turbidity, chloride, iron, and nitrate/nitrite. ERP Specific Condition 8 requires IMC immediately to cease all work contributing to turbidity violations of "State Water Quality Standards established pursuant to Chapter 62-302, F.A.C." Specific Condition 8 requires IMC to stabilize all exposed soils contributing to the violation, modify work procedures that were responsible for the violation, repair existing turbidity-control devices, and install more such devices. Specific Condition 8 requires IMC to notify BMR within 24 hours of the detection of any turbidity violation. ERP Specific Condition 9 requires IMC to report all unauthorized releases or spills of wastewater or stormwater in excess of 1000 gallons per incident to BMR, as soon as practicable, but not later than 24 hours after detection. ERP Specific Condition 10 addresses water levels and flows in wetlands and other surface waters adjacent to, and downstream of, any site preparation, mining, and reclamation activities. Prior to any clearing or mining activities adjacent to no-mine wetlands and other surface waters, Specific Condition 10.a requires IMC to install monitoring wells and staff gauges and commence monitoring water levels, as required by ERP Monitoring Required, which is a part of the ERP that is discussed below. IMC shall monitor water levels in each of the no-mine streams at the point that it intercepts the 100-year floodplain of Horse Creek. ERP Specific Condition 10.a provides: During mining, recharge ditches adjacent to no-mine areas shall be charged with water or recharge wells shall be installed to maintain base flows and/or minimize stress to the vegetation in the preservation areas. Water levels in the recharge ditches shall be maintained at levels sufficient to support the normal seasonal water level fluctuations in the wetlands as determined from the baseline monitoring included in Table MR-1. Under ERP Specific Condition 10.a, prior to any clearing or mine activities, IMC must install monitoring wells and staff gauges and monitor water levels, as specified in the ERP Monitoring Required. IMC must daily monitor water levels in each of the no-mine streams at the point of its interception with the 100-year floodplain of Horse Creek. During mining, IMC shall charge recharge ditches with water or install recharge wells to maintain base flows and minimize stress to vegetation in no-mine areas. IMC must maintain water levels in the recharge ditches at levels sufficient to support the normal seasonal water level fluctuations in the wetlands, as determined from the baseline monitoring included in Table MR-1, which is described below. IMC must daily check the water levels in the recharge ditches, record this information in logs, and make these logs available to BMR during its quarterly inspections. IMC shall monthly inspect the water levels in adjacent no-mine wetlands and notify BMR in writing if these wetlands show signs of stress. If adjacent no-mine wetlands become stressed, upon DEP's approval, IMC will take additional actions, such as altering mining and reclamation procedures, modifying the recharge ditch, providing additional sources of water, and conducting additional monitoring. During the hearing, IMC hydrologist and engineer Dr. John Garlanger testified: "[IMC] will install a recharge well system along the preserved areas." (Tr., p. 2800) The parties treated recharge wells as a part of the ditch and berm system, both at the hearing and in their proposed recommended orders (DEP, paragraph 75; Charlotte County, paragraph 575; and IMC, paragraph 339.) However, Specific Condition 10.a imposes no such obligation upon IMC, nor does any other provision in the ERP or the CDA. The above-quoted provision of Specific Condition 10.a identifies recharge wells as an alternative. The other option in Specific Condition 10.a is to charge the ditches with water. This condition is confusing because it poses, as alternative requirements, one option of a specific effect--i.e., recharged ditches--and the other option of a means of achieving that effect--i.e., recharge wells. The objective is sufficient water in the ditch. The means of charging the ditch would appear to be limited to direct rainfall, pumping water from the mine cuts, diverting water from the mine recirculation system, or pumping water from the intermediate or Floridan aquifer through recharge wells; at least the first two of these charging options are already incorporated into the OFG ditch and berm system. Confirming that recharge wells are optional is Figure 14E-1, which labels the recharge well depicted at the bottom of the ditch as "Alternate--Recharge Well." Figure 14E-1 illustrates a pump forcing the water from the bottom of the deeper mine cut to the bottom of the recharge ditch. (Figure 14E-1 also illustrates that--in order, running from the mine cut toward the no-mine area (or OFG property line)--the ditch, the 15-foot wide berm, the monitoring wells, and the silt fence will all be located outside of the no-mine area (or within OFG).) ERP Specific Condition 10.b prohibits reductions in downstream flows from the project area that will cause water quality violations in Horse Creek or the degradation of natural systems. IMC shall monitor surface water levels continuously at the above-described points at State Road 64 and West Fork and monthly near the above-described junction of Stream 2e and Horse Creek. IMC shall monitor monthly at the above-described clusters of monitoring well locations and at piezometers located across Section 9 from the no-mine area into the uplands to the east, in the West Lobe and the adjacent uplands to the west, in the East Lobe and the adjacent uplands to the east, and in Horse Creek about one-quarter mile from the southern border of OFG. IMC shall daily monitor rainfalls at a rain gauge near the junction of Stream 2e and Horse Creek. IMC shall report the results of the monitoring in the reports required in Specific Condition 4. ERP Specific Condition 11 requires IMC to obtain authorization from FWC before relocating gopher tortoises or disturbing their burrows. ERP Specific Condition 11 also requires IMC to relocate gopher frogs and other commensals to FWC-approved sites before clearing. At the time of the hearing, FWC had not yet approved IMC's plan to relocate gopher tortoises, but this approval was expected shortly. ERP Specific Condition 12 requires IMC to complete mining, filling, and reclamation activities generally in accordance with the schedule stated in this condition. Specific Condition 12.a prohibits IMC from commencing severance or site preparation more than six months prior to mining, except as approved by DEP for directly transferring topsoil or muck to a contoured mitigation site. IMC must complete final grading, including muck placement, not later than 18 months after the completion of mining operations, which include the backfilling of sand tailings. IMC must conduct its hydrological assessment in the first year after contouring. ERP Specific Condition 12.a provides a timetable for work in wetlands and other surface waters. IMC may not commence severance or site preparation more than six months prior to mining. IMC shall complete final grading, including muck placement, not more than 18 months after the completion of mining operations, including backfilling with sand tailings. IMC shall complete Phase A planting, which is of species that tolerate a wide range of water levels, not more than six months after final grading or 12 months after muck placement. IMC shall conduct the hydrological assessment in the initial year after coutouring. IMC shall complete Phase B planting, which is of species that tolerate a narrower range of water levels, within 12 months after the hydrological assessment and Phase C planting, which is shade-adapted groundcover and shrubs, as well as additional trees and shrubs required to meet the density requirements of ERP Specific Condition 21 [sic; probably should be ERP Specific Condition 16], at least two years prior to release of forested wetlands. ERP Specific Condition 12.b provides that IMC shall clear, contour, revegetate, and reconnect wetlands and watersheds as shown in Tables 3AI-6A and 3AI-10A, Maps H-1, H-9, and I-6, and Figures 13B-8, 13A5-1, and CL-1. Table 3AI-6A lists each reclaimed wetland by number, the last year in which it will be disturbed, the last year in which it will be mined, the year in which grading will be completed, the year in which revegetation will be completed, and the number of years between mining or disturbance and reclamation and revegetation. The span of years between mining or disturbance and reclamation ranges from three (two wetlands) to eight (six wetlands). Table 3AI-10A is the Reclamation Schedule Summary. The table identifies four reclamation units in the Horse Creek sub-basin, one reclamation unit in the West Fork sub-basin, and one reclamation unit in the Brushy Creek sub-basin. For each reclamation unit, Table 3AI-10A shows the period of mining, period of mine operations, period for contouring, and period for revegetation. These years are relative: mining runs four years, mine operations run seven or eight years (starting one year after mining starts), contouring runs seven or eight years (starting within one year of the end of mining), and revegetation runs five or six years (starting one year after the start of contouring). Map H-1 is the Mine Plan. Map H-1 assumes four draglines will operate in OFG for five years of active mining. IMC's tentative plan is first to mine the west side of OFG, which is nearer the Ft. Green Mine at which the draglines are presumably deployed at present, and then to mine adjacent mining blocks. For instance, IMC would mine the northwest corner of Section 4 in Year 1, the southwest corner of Section 4 in Year 2, the northeast corner of Section 4 in Year 3, and the southeast corner of Section 4 in Year 4 before removing the dragline south of Section 4 to mine an unmined area in Year 5. Map H-1 depicts the ditch and berm system running continuously along the edge of the no-mine area from the north end of OFG, south along the no-mine borders that trace the east and west edges of the 100-year floodplain of Horse Creek, to their southern termini. On the east floodplain, the ditch and berm system turns east at the northwest corner of Section 21, near the Carlton cutout, runs to the easternmost extent of OFG, turns north to the northeast corner of Section 4, and runs to the northwest corner of Section 4, where the ditch and berm system ends. On the west floodplain, the ditch and berm system runs to the southernmost extent of OFG near its confluence with West Fork, turns west and north, as it traces the border of OFG along Sections 29, 20, and 19, where it ends at a point about one-quarter mile from the northern boundary of Section 19. For the areas closest to the no-mine area, Map H-1 also depicts the direction of the mine cuts and, inferentially, the spoil piles. These cuts and piles are generally perpendicular to the direction of Horse Creek. Figure 2AI-24 displays the locations of the six reclamation units identified in Table 3AI-10A. The West Fork and Brushy Creek reclamation units occupy the sub-basins bearing their names, so they are at the western and eastern edges, respectively, of OFG. The HC(1) reclamation unit is almost all of Section 4. According to Table 3AI-10A, IMC will mine this reclamation unit from 2006-09, contour it from 2009-15, and revegetate it from 2010-15. Combining the information from Map H-1 for the Stream 1e series, all of it but Stream 1ee, which is the most-downstream stream, will be mined in the first year of the sequence, and Stream 1ee will be mined in the second year. However, Stream 1ee will be disrupted longer because a 200 foot- wide dragline access corridor runs across it, just upstream of the Heart-Shaped Wetland, as shown on Map H-1 and Figure RAI 514-1. Map H-9 is the Tailing Fill Schedule. The tailings are the sand tailings; the clay tailings, which are called waste clays, are deposited in the CSAs. Sand tailings are backfilled into mine cuts starting in year 3, and the process is completed in year 7. Map H-9 reproduces the blocks shown on Map H-1, except for one change in Section 20, and adds two years to each block. An explanatory note on Map H-9 states that IMC will backfill and grade the upland areas immediately west of the West Lobe and east of the East Lobe with sand tailings within one year of mining. Map I-6 is the Post-Reclamation Streams. This Recommended Order addresses streams in detail below. As already noted, at the hearing, DEP identified Stream 3e? as another stream eligible for restoration under the eligibility criterion used in these cases, and IMC has agreed to restore this stream and add it to Map I-6. Figure 13B-8 is the Post-Reclamation Connection Status of the reclaimed wetlands. A map, Figure 13B-8 depicts connected wetlands, isolated wetlands, isolated wetlands that are ephemeral, and cattle ponds. Figure 13A5-1 is the Identification of Created Wetlands. Also a map, Figure 13A5-1 assigns numbers to each reclaimed wetland and identifies the habitat to be reclaimed. These two figures provide a good basis for comparing the reclaimed wetlands to the existing wetlands by type, location, size, and proximity to streams. These two figures confirm the removal of cattle ponds to points considerable distances from Horse Creek, streams, riparian wetlands, or even most isolated wetlands. Thirteen cattle ponds totaling 7.6 acres will be reclaimed on OFG. Generally, these cattle ponds are located as far away as possible from the 100-year floodplain of Horse Creek. Except for the cattle ponds and three connected reclaimed wetlands that drain to the West Fork or Brushy Creek, all of the connected reclaimed wetlands will be connected to Horse Creek, usually by streams, but in several cases directly to the 100-year floodplain of Horse Creek. Connected reclaimed wetlands include the headwater and intermittent wetlands of the Stream 1e series (E003/E006/E007/E008/E009/E013/E015/E016), the headwater wetlands of Stream 3e (E022/E023/E024), and the headwater wetlands of Stream 3e? (E018/E019/E020). The decision at the hearing to reclaim Stream 3e? is not reflected on Figure 13A5-1 or 13B-8, which depicts as isolated the large wetland to the northeast of the headwater wetland of Stream 3e. The Stream 1e series reclaimed wetlands complex totals 44.9 acres. The Stream 1e series existing wetlands complex covers a smaller area, perhaps 10 fewer acres. However, the reclaimed wetlands will be somewhat simpler. IMC will reclaim one freshwater marsh (E006) where five presently exist (G108, G115, G125, G126, and G129). IMC will replace two gum swamps (G123 and G121) and two wetland forested mixed (G102 and G132) with the predominant mixed wetland hardwoods (E003). IMC will replace one of the freshwater marshes with hydric oak forest. Just west of the riparian corridor, IMC will replace a wet prairie (G119) with a little hydric flatwoods (G119A) with another freshwater marsh (E014) and will mine a small wet prairie (G028) to the east of the corridor and not replace it with any wetland. On the plus side, IMC will add two very small bayheads (E008--0.7 acres and E013--0.7 acres) to the west side of the corridor and will relocate and expand a large hydric flatwoods (G107) that is beside a small unreclaimed community--a hydric woodland pasture (G105). The reclamation of the headwater of Stream 3e better re-creates the existing wetlands, in size and type of community. The only change is the conversion of a shrub marsh (G134) in the center of the wetland to a freshwater marsh (E023), essentially enlarging the freshwater marsh (G135) presently in the center of this wetland. The size of the existing and reclaimed wetlands associated with the riparian corridor of Stream 3e and its headwater wetland appear to be the same. The reclamation of the headwater of Stream 3e? provides a more complicated complex of wetland communities than presently exists at that location. The ditch (G019) will be replaced with a natural stream, whose riparian corridor is not depicted due to the fact that IMC agreed to reclaim Stream 3e? at the hearing; however, the reclaimed wetland corridor undoubtedly will be more functional than the present ditch. Presently, the headwater wetland is a large freshwater marsh (G016) fringed by mixed wetland hardwoods (G014) and a wet prairie (G105). A cattle pond (G017) is in the wet prairie, and another cattle pond is at the point where Stream 3e? forms. The north side of this wetland is heavily ditched. The reclaimed headwater wetland, which will be about the same size as the present wetland, will consist of an interior shrub marsh (E019) and freshwater marsh (E020) and a wet prairie fringe (E018). A replacement cattle pond (E026) is moved farther away from the headwater wetland. Reclamation around the Heart-Shaped Wetland results in a more complicated array of wetlands than presently exists. Three ephemeral wet prairies (E021, E026, and E031) will be reclaimed north and west of the Heart-Shaped Wetland and Stream 2e where no wetland exists presently. An isolated freshwater marsh (E034) will be reclaimed south of the Heart-Shaped Wetland where no wetland exists today. Two ephemeral wet prairies (E026 and E037) totaling 4.5 acres will be reclaimed south and east of Stream 2e, close to the no-mine area surrounding Streams 6e and 7e, again where no wetland exists presently. However, IMC will not reclaim a hydric flatwoods (G157) connected to the south border of the headwater wetland of Stream 8e. Reclamation will relocate the headwater wet prairie of Stream 9w closer to Horse Creek. Mining two wet prairies (G047 and G048) and reclaiming them with a single wet prairie of at least the same size (W003--20.7 acres), IMC will also reclaim the downstream portion of Stream 9w with a mixed wetland hardwoods and add a gum swamp (W005--2.4 acres) at the end of Stream 9w, as it enters the no-mine corridor of Horse Creek. IMC will also reclaim an ephemeral wet prairie (W002) just north of the reclaimed segment of Stream 9w. Across Horse Creek from its junction with Stream 9w, IMC will mine the eastern half of a roughly five-acre bayhead (G166), reclaiming the mined part of the bayhead with a mixed wetland hardwoods (E048--6.0 acres). However, where no wetlands presently exist, IMC will reclaim an ephemeral wet prairie (E044) and a larger wetland consisting of a freshwater marsh (E047--9.0 acres) fringed by an ephemeral wet prairie (E046--7.1 acres). In RAI-173 in the CDA, IMC explains that no-mine lines initially ran through some wetlands due to the limited level of detail available in the small scale maps used at the time. IMC representatives have discussed each such bifurcation with DEP biologist Christine Keenan, and IMC made adjustments that satisfied DEP, obviously not eliminating all of the bifurcated wetlands. Alluding to the impracticability of eliminating all bifurcated wetlands, IMC notes in its response to the request for additional information: "A small feature protruding into a mining area is one of the more difficult features to effectively mine around. It requires significant extra distance of ditch and berm systems, which both increases costs and results in greater losses of phosphate ore recovery." Subject to two exceptions, the southernmost extent of reclaimed ephemeral wetlands will be close to the Lobes, especially the West and Central Lobes. Eight such wetlands (W021, W015, W017/W018, W019/W020, W012, W013, W016 and W011) will be west of Horse Creek, and three such wetlands will be east of Horse Creek (E057, E061, and E053). (Although the headwater wetland of Stream 7w, W012 is depicted as ephemeral in Figure 13B-8.) Most of these wetlands will be wet prairies. Three of these reclaimed ephemeral wetlands appear to be in the location of existing wetlands (G093/G094, G091/G092, and G090), and the existing wetlands are freshwater marshes fringed with wet prairies, except that the smallest, G090, is a wet prairie. The last reclaimed wetland on the east side of Horse Creek is just north of the Carlton cutout. In reclaiming Stream 5e, IMC will reclaim a small bayhead (E063--1.3 acres) in the middle of the stream's OFG segment. This replaces a wet prairie/hydric oak forest (G204/G205) in the same location and of the same size. On the other side of Horse Creek and to the south of Stream 5e, IMC will reclaim the headwater wetlands of Streams 5w, 4w, 3w, and 2w. The headwater wetland of Stream 5w is a long freshwater marsh (G210) with a small shrub marsh (G207) that drains an elaborate array of agricultural ditches to the west. These ditches shifted some of the drainage that historically entered Stream 4w into Stream 5w. Reclaiming the stream with a wider wetland forested mixed corridor, as it will do for Streams 4w, 3w, and 2w, IMC will expand the headwater wetland by reclaiming a long freshwater marsh (W024--7.9 acres) fringed on its upgradient side by a small wet prairie (W023--2.2 acres). IMC will also remove a cattle pond (G209) presently abutting the center of the freshwater marsh. IMC will reclaim an ephemeral wet prairie (W026) between Streams 5w and 4w, relatively close to the Horse Creek floodplain. Except for a very small ephemeral wet prairie just west of the headwater wetland of Stream 4w and an ephemeral, largely mixed wetland hardwoods reclaimed in the West Fork sub- basin (W041/W042/W043), W026 is the southernmost reclaimed ephemeral wetland on OFG. The pattern of the reclamation of Streams 4w, 3w, and 2w is otherwise identical: each reclaimed stream, in a reclaimed wetland forested mixed corridor, will receive water from reclaimed freshwater marshes of 3.5 to 5.1 acres in size. Presently, Stream 4w has no headwater marsh, instead receiving water from the elaborate ditching scheme described in connection with Stream 5w. Streams 3w and 2w presently receive water from small headwater wetlands, although Stream 2w also receives water from an agricultural ditch. The last major reclamation on the west side of Horse Creek relates to Stream 1w. Alone of all the streams, Stream 1w is an agricultural ditch throughout its length, except for a short segment just upstream from the no-mine area. However, alone of all the streams at OFG, Stream 1w drains a primarily seepage-supported wetland. This well-defined headwater wetland complex comprises, from upstream to downstream, a cattle pond (G505), freshwater marsh (G506), mixed wetland hardwoods (G507), bay swamp (G513), wetland forested mixed (G512), wet prairie (G514), hydric oak forest (G511), and ditch (G512A). Reclaimed, this headwater will be the largest reclaimed bay swamp (W0399-1.2 acres). In addition to the two small bay swamps in the wetland corridor of Stream 1e series, the small bay swamp in Stream 5e, and the Stream 1w headwater bay swamp, the only other bay swamp to be reclaimed on OFG will be a part of a wetland (W037/W036) that will be in the center of Section 19 and drain into the West Fork. The bay swamp component of this wetland will be 4.4 acres and will replace a similarly sized wetland (H008/H009/H009A) with a smaller bay swamp core. Map CL-1 is the Reclamation Schedule. This map identifies the year in which specific areas within OFG will be reclaimed. With two exceptions, Map CL-1 tracks Map H-9, which is the Tailing Fill Schedule, by identifying the same blocks and adding two years to each of them. One exception may be due to the February 19, 2004, and February 26, 2004, revisions of Map H-9. The latter revision changed the year of backfilling part of northwestern Section 20 from year 7 to year 5. Map CL-1 tracks the older version of Map H-9 and provides for reclamation of this area within Section 20 for year 9, not year 7. This means that part of the northwestern Section 20 would remain backfilled, but not revegetated, for four years. This may be an oversight in Map CL-1 because it was last revised January 22, 2004. The other exception concerns the uplands immediately east of the East Lobe. Map H-9 provides for sand tailings for the northern half of this area in year 6 and for the southern half of this area in year 5, but Map CL-1 provides for both areas to be reclaimed in year 7, so the southern half would remain backfilled, but not revegetated, for two years. This may be intentional, as ERP Specific Condition 12.d requires that IMC backfill and contour the two areas upslope of the bayheads in the West and East Lobes within one year after the completion of mining, but nothing in the ERP requires expedited revegetation of these upland areas. ERP Specific Condition 12.b requires IMC to include mining and reclamation schedule updates in the annual reclamation report that it files, pursuant to Chapter 62C-16, Florida Administrative Code. Specific Condition 12.b warns that "significant changes" to these schedules may require a permit modification. ERP Specific Condition 12.c states, in its entirety: "Mine cuts shall be oriented in the direction of ground water flow, generally perpendicular to Horse Creek as shown on Map H-1." The introduction to the January submittal, witnesses, and parties agree that IMC is required to orient the spoil piles in the direction of groundwater only to the extent practicable, so the unconditional language of ERP Special Condition 12.c is inadvertent. ERP Specific Condition 12.d provides that sand tailings placement and final contouring shall be completed within one year after the completion of mining, as shown on Map H-9, in the two areas upslope from the unmined bayheads (G178 and G197), which are in the East and West Lobes. ERP Specific Condition 13 addresses the construction, removal, and revegetation of the pipeline corridor shown on Figure RAI 514-1. This figure depicts a narrow "Mine Access Corridor (Pipelines, Road, Powerlines)" passing at the point that Stream 2e forms at the downgradient end of the Heart-Shaped Wetland. Specific Condition 13 contains seven subsections governing the pipeline corridor to minimize its impact on the wetlands and other surface waters that it crosses. Figure RAI 514-1 also depicts a 200-foot wide "Dragline Walkpath Corridor" that crosses Stream 1ee and Stream 3e within 100 feet of the Heart-Shaped Wetland. No conditions attach to the construction, operation, removal, and reclamation of this area because, unlike the pipeline corridor as it crosses Stream 2e, all of this portion of the dragline corridor will be mined. ERP Specific Condition 14 states that IMC shall restore as mitigation 322 acres of wetlands, as shown in Maps I-1, I-2, I-3, and I-6; Figure 13A5-1; and the post-reclamation cross-sections. Map I-1 is the Post Reclamation Topo. IMC updated this map with several limited changes at the end of the hearing, and DEP accepted the new Map I-1. Comparing Map I-1 with Map C-1, which is the Existing Topography, the post-mining topography substantially replicates the pre-mining topography, although Table 26M-1 reveals a lowering of some of the highest pre-mining elevations, including the highest elevation by eight feet. Maps I-2 and I-3 are, respectively, Post Reclamation Vegetation and Post Reclamation Soils. As noted above, Specific Condition 14 references these maps, but only in connection with the restoration of 322 acres of wetlands. Maps I-2 and I-3 cover all of OFG, so they cover wetlands and other surface waters, which are properly the subject of an ERP, and uplands, which are properly the subject of a CRP approval. Naturally, the ERP does not incorporate the all of Maps I-2 and I-3 because they include all of the uplands. Unfortunately, as discussed in the next section, the CRP approval likewise fails to obligate IMC to reclaim the uplands in accordance with Map I-2 and the upland soils in accordance with Map I-3. This omission is inadvertent, so the Recommended Order will assume that IMC will reclaim the uplands as depicted in Map I-2 and the upland soils as depicted in Map I-3. Although the upland portions of Maps I-2 and I-3 should be discussed in the next section, they will be discussed in this section because the CRP approval fails to incorporate them and discussing both maps in one place allows for a more coherent presentation. Map I-2 is the Post Reclamation Vegetation. Map I-2 depicts the post-reclamation upland and wetland vegetation on OFG. This map reveals wide edges of roughly one-quarter to one- half mile of reclaimed improved pasture on the east and west edges of OFG. The core of OFG is Horse Creek and its 100-year floodplain, which are always within, but do not always define, the no-mine area. Between the no-mine area and the reclaimed improved pasture are the reclaimed wetlands described above and larger area of reclaimed uplands described below. Map I-2 and Map F-1, which is Pre Mining Vegetation, allow a comparison, by community, location, and area, of reclaimed uplands with existing uplands. In broad overview, IMC will reclaim everything in Section 4 outside the Heart-Shaped Wetland, which is the northernmost extent of the no-mine area, and Stream 2e. From the point that Horse Creek enters OFG, IMC will reclaim a broad area between the no-mine area and reclaimed improved pasture, south to the Carlton cutout. From this point, reclamation will be limited to the west side of Horse Creek, and the area between the no-mine area and reclaimed improved pasture will narrow progressively for the remaining 1 1/2 miles that Horse Creek runs in OFG. The width of the core, or no-mine area, is generally about 750 feet, but widens considerably at different points. Where Horse Creek enters OFG, the no-mine area is approximately 1750 feet wide, but narrows south of Stream 8e to about 750 feet. From the Central Lobe to the East Lobe, the no-mine area expands to nearly 4000 feet across. Except for another expansion at the West Lobe, the width of the no-mine area south of the Lobes remains at about 750 feet until Horse Creek exits OFG. The riparian wetlands of Horse Creek, which are within the no-mine area, are mixed wetland hardwoods for the first mile that Horse Creek flows in OFG and hydric oak forest for the remainder of Horse Creek's passage through OFG. The width of the non-pasture uplands adjacent to the no-mine area also varies. In describing the width of these upland areas between the no-mine area and the reclaimed improved pasture, this Recommended Order will include the reclaimed wetlands described above. These wetland areas are small, except for the headwater wet prairie of Stream 9w, the headwater freshwater marshes of Streams 5w, 4w, 3w, and 2w, and a few isolated wetlands. On both sides of Stream 2e, IMC will reclaim a band of hardwood conifer mixed of about one-half mile in width. At present, this area is occupied by a smaller area of hardwood conifer mixed and nearly a one-half mile wide band of pine flatwoods or, to the south, pine flatwoods and sand live oak. East of Streams 6e, 7e, and 8e, IMC will reclaim a band 1500-3000 feet wide of hardwood conifer mixed, shrub and brushland, and sand live oak, between the no-mine area and the reclaimed improved pasture. This replaces a broader area of pine flatwoods, sand live oak, palmetto prairie, and xeric oak. From Stream 8e south, IMC will reclaim uplands on both sides of Horse Creek. At this point, the reclaimed area between the no-mine area and the reclaimed improved pastures measures about 1750 feet wide on the west of Horse Creek and about 2000 feet wide on the east of Horse Creek. Including the no-mine area in the center, these reclaimed areas average about one-mile wide south to the Lobes. From Stream 8e south to the East Lobe, IMC will reclaim largely hardwood conifer mixed. This replaces a large citrus grove, a larger area of improved pasture, and three smaller areas of palmetto prairie. On the west side of Horse Creek, the vegetation is more varied, both at present and as reclaimed. North of Stream 9w, IMC will reclaim a large palmetto prairie, a sizeable area of sand live oak, and a small area of temperate hardwood. South of Stream 9w, IMC will reclaim a large area of hardwood conifer mixed, areas of pine flatwoods, sand live oak, and palmetto prairie, and a small area of temperate hardwood. The uplands surrounding Stream 9w presently consist of improved pasture along the downstream half of the conveyance and palmetto prairie and sand live oak along and near its upstream reach. South of Stream 9w are a large area of improved pasture, pine flatwoods, and sand live oak and two smaller areas of palmetto prairie. The combination of no-mine area and reclaimed area, exclusive of reclaimed improved pasture, attains its greatest width--about 10,000 feet--from the western edge of the West Lobe to the eastern edge of the East Lobe, although this includes a 1000-foot strip of improved pasture between the bayhead in the East Lobe and sand live oak east of the bayhead. This area narrows to less than 6000 feet, just north of the Carlton cutout. South of this point, at which the reclaimed upland habitat will be found only on the west side of Horse Creek, the total width of the no-mine area and reclaimed area east of the reclaimed improved pasture tapers down from a little over 3000 feet to less than 1500 feet at the south end of OFG. Map I-2 also discloses the communities or habitats that will exist, post-reclamation, on OFG. These communities or habitats include those that will be in the no-mine area and those that will be reclaimed. At present, the West Lobe is mostly bayhead, wet prairie, and wetland forested mixed with smaller areas of hydric woodland pasture and shrub marsh. The West Lobe also includes upland communities of palmetto prairie, temperate hardwoods, and pine flatwoods. A large wet prairie extends from the northwest corner of the West Lobe. IMC will reclaim this wet prairie as improved pasture with a small strip of hardwood-conifer mixed. To the west of the West Lobe is a small strip of improved pasture and a large area of hardwood-conifer mixed. IMC will reclaim the improved pasture with hardwood-conifer mixed and sand live oak and most of the hardwood-conifer mixed with sand live oak. The areas surrounding the no-mine area associated with Stream 6w are currently improved pasture; IMC will reclaim these areas as hardwood-conifer mixed. The Central Lobe is mostly bayhead with small areas of wetland forested mixed and wet prairie. Palmetto prairie is also within the Central Lobe, nearer to Horse Creek. IMC will reclaim the areas around the Central Lobe and Stream 7w with hardwood-conifer mixed and some palmetto prairie. At present, the Central Lobe and Stream 7w are surrounded by palmetto prairie and some pine flatwoods with an area of sand live oak to the northwest of the Central Lobe. Unlike the no-mine areas forming the West and Central Lobes, which incorporate insubstantial areas of uplands, the no- mine area forming the East Lobe, like the no-mine area around Streams 6e, 7e, and 8e, incorporates a substantial area of uplands. Upgradient of the large bayhead forming the western half of the East Lobe is the 1000-foot strip of improved pasture, and upgradient of the pasture is a large sand live oak area. IMC will mine the eastern half of this sand live oak area and reclaim it as xeric oak. IMC will mine a small wet prairie presently at the southern tip of the bayhead in the East Lobe and reclaim the area as hardwood-conifer mixed. From the East Lobe south to the Carlton cutout, the reclaimed uplands will consist of a long area of temperate hardwoods abutting the no-mine area and a wider area of hardwood-conifer mixed abutting the temperate hardwoods. This area is presently improved pasture. On the west side of Horse Creek, south of the Carlton cutout, the area outside the no-mine area is presently improved pasture, except for a large palmetto prairie around and south of the headwater wetland of Stream 1w. Between the no-mine area and reclaimed improved pasture, IMC will reclaim palmetto prairie and a small area of hardwood-conifer mixed between the headwater wetlands of Streams 5w and 3w. Map I-3 is the Post Reclamation Soils. The legend classifies the soils by "[moderately well-drained]--greater than 30"; "[poorly drained]--greater than 30"; "[poorly drained]-- less than 30"; "[poorly drained]--stream"; "[very poorly drained]--muck"; and "[very poorly drained--mineral depression]." The references to "30" are the thicknesses, in inches, of sand tailings over overburden. Maps E-1 and E-2 are, respectively, Detailed Existing Soils and General Existing Soils. Comparisons between these two maps, on the one hand, and Map I-3, on the other hand, reveal specifics of the soil-reclamation process. The most distinctive feature of soils present at OFG is the thin band of Felda Fine Sand, Frequently Flooded, that runs down the center of OFG. As always, this reinforces the most distinctive feature of OFG--Horse Creek. However, the Felda Fine Sand extends beyond the Horse Creek floodplains to Stream 2e, the Stream 1e series, and the headwater wetland of Stream 5w. All of these soils are in the no-mine area except at the Stream 1e series and headwater wetland of Stream 5w. A closely related soil underlies the floodplain of the lower end of Stream 6w, which is also in the no-mine area. These are the only locations on OFG with these soils. The Felda Fine Sand is a "poorly drained soil having layers of loamy and/or spodic materials underlying sandy surfaces at least 20 inches thick on streams terraces and floodplains." Exclusive of the loamy or spodic materials, Map I-3 shows that IMC will reclaim the drainage characteristics of this type of soil at the Stream 1e series, but not at the headwater wetland of Stream 5w. IMC will also reclaim this type of soil at Streams 9w, 5w, 4w, 3w, 2w, and 1w. Another distinctive soil, pre-mining, is "moderately well to excessively drained soils having layers of loamy and/or spodic materials underlying sandy surfaces greater than 30 inches thick on gentle upland slopes and rises." Except for a couple of areas at the eastern end of the East Lobe, these soils presently are all outside of the no-mine area. IMC will reclaim these soils, generally in the areas previously described as sand live oak or xeric oak, as well as in a long band along the southern border of the slough associated with Stream 9w and a large area on the west sides of Sections 29 and 20. These areas correspond reasonably well in area and location to the existing soils with the same drainage characteristics. The two most poorly drained soils, pre-mining, are "very poorly drained to poorly drained mineral soils in depressions" and "very poorly drained soils with organic surfaces on low gradient seepage slopes." The latter are exclusively mucky soils, and the former range from mucky fine sand to fine sand. Most of the mucky soils are in the no-mine area, such as in each of the Lobes and along Streams 6e and 7e. IMC will not reclaim with similar soils the three areas with these mucky soils that are outside the no-mine area. The mucky fine soils are more widely distributed outside the no-mine area. The only significant areas of fine mucky sand presently at OFG underlie the Heart-Shaped Wetland, the headwater wetland of Stream 8e, and parts of the West Lobe. IMC will reclaim these mucky fine soils generally in accordance with their present areas and locations. The most significant reductions in area are from the slough of Stream 9w and the northeast corner of Section 4. Except for another category of poorly drained soil and four small areas of a somewhat poorly drained soil--all within the no-mine area--the remaining soil is "poorly drained soils having layers of loamy and/or spodic materials underlying sandy surfaces predominantly greater than 30 inches thick primarily on gently sloping uplands." The reclaimed counterpart of this poorly drained soil occupies the largest part of OFG, post-reclamation. This represents a substantial expansion of coverage of this type of soil, mostly at the expense of "poorly drained soils having layers of loamy and/or spodic materials underlying sand surfaces less than 30 inches thick primarily on gently sloping uplands." Map I-6 is the Post Reclamation Streams. These are addressed below. Figure 13A5-1 is the Identification of Created Wetlands. These wetlands have already been discussed. ERP Specific Condition 14 states that IMC shall reclaim wetlands in accordance with the schedule contained in Table 3AI-6A, which has been discussed. Specific Condition 14 lists various requirements applicable to the wetlands that IMC will create. ERP Specific Condition 14.a requires IMC to remove "suitable topsoil" prior to mining wetlands. IMC must time the clearing of topsoil donor sites and reclaiming of other sites so that it optimizes the opportunities for the direct transfer of topsoil, without any intervening storage time. If IMC must remove wetland topsoil more than six months before it will be spread at a reclamation site, IMC must store the topsoil in such a way as to minimize oxidation and colonization by nuisance species. Specific Condition 14.a encourages IMC to relocate any endangered or threatened plant species to appropriate mitigation sites. ERP Specific Condition 14.b requires IMC to grade reclaimed forested wetland areas after backfilling them with sand tailings and/or overburden and cap them with "several inches of wetland topsoil." IMC shall use direct transfer of topsoil and live materials, such as stumps, shrubs, and small trees, where feasible. However, Specific Condition 14.b states in boldface: "All reclaimed bay swamps shall receive several inches of muck directly transferred from forested wetlands approved for mining." Specific Condition 14.b provides that wetland topsoil should be reasonably free of nuisance and exotic plant species before application to wetland mitigation areas. ERP Specific Condition 14.c requires IMC to grade reclaimed herbaceous and shrub marsh wetland areas after backfilling them with sand tailings and/or overburden and cap them with "several inches of wetland topsoil when available." Specific Condition 14.c provides that wetland topsoil should be reasonably free of nuisance and exotic plant species before application to wetland mitigation areas. ERP Specific Condition 14.d requires IMC to design marshes and wet prairies "to maintain the diversity of community types that existed prior to mining in order to support a wide range of wildlife species including birds, reptiles, and amphibians." Specific Condition 14.d requires IMC to reclaim marshes and wet prairies with variations in hydroperiod and slope "to provide the greatest diversity of available habitat," with marsh hydroperiods ranging from ephemeral through permanently flooded. Specifying a range of slope values, Specific Condition 14.d adds that most marshes shall have slopes gradual enough to support wide transition zones with a diversity of vegetation. ERP Specific Condition 14.d provides that IMC shall construct ephemeral marshes and wet prairies as identified in Figure 13B-8, which, discussed above, addresses the status of individual wetlands as connected, isolated, or isolated and ephemeral. Although not incorporated into the ERP, Table 13A1-4 indicates that IMC will mine 27 of the 29 ephemeral wetlands or 22 of the 27 acres of ephemeral wetlands, but will reclaim 44 ephemeral wetlands totaling 101 acres, as indicated on Table 13A5-1 2AI discussed above. ERP Specific Condition 14.e provides that at least half of all herbaceous and shrub marshes shall be rim mulched with several inches of wet prairie, pine flatwoods, or palmetto prairie topsoil, and IMC shall use direct transfer, where feasible. ERP Specific Condition 14.f requires IMC to use "several inches" of wet prairie, hydric pine flatwoods, or hydric palmetto prairie topsoil for all wet prairie and hydric palmetto prairie areas, and IMC shall use direct transfer, where feasible. However, instead of topsoiling, IMC may use "[o]ther innovative methods" that are likely to produce the same diversity of wet prairie forbs and grasses. ERP Specific Condition 14.g requires IMC to construct, in forested wetlands, hummocks several inches above the wet-season high water line. The hummocks shall be 8-12 feet long and 3-6 feet wide. To increase habitat heterogeneity, IMC shall place brushpiles, logs, and tree stumps in the reclaimed area, which it shall roughly grade in some areas. ERP Specific Condition 14.h requires IMC to construct streams in accordance with the Stream Restoration Plan. Specific Condition 14.h also requires IMC to employ an experienced stream restoration scientist, subject to BMR approval, to provide project oversight and conduct regular inspections during construction and planting. First appearing in the January submittal, the Stream Restoration Plan is a design document that specifies, in detail, the physical characteristics of each reclaimed stream. For each reclaimed stream or stream segment, the Stream Restoration Plan provides detailed information of physical structure; channel planform or shape; hydrologic characteristics in terms of such factors as storage, conveyance, and attenuation; geomorphic characteristics such as the substrate and floodplain soil types and the effects of flows upon these materials; vegetation along the stream corridor, including the addition of snags and debris dams to re-create natural microhabitats; construction supervision; and monitoring. The Stream Restoration Plan focuses upon the design of the basin, reach, and microhabitat of each reclaimed stream. For microhabitat, the Stream Restoration Plan promises that: the ecology of most of the reaches is expected to be improved through reclamation. For all reaches except 1e and 3e (which are wholly situated in generally native land cover), the forested riparian zone will be substantially increased since improved pasture adjacent to the stream channels will [be] replaced with forested canopy. Acknowledging the importance of small headwater streams to the overall integrity of a large watershed, the Stream Restoration Plan recognizes the hydrological and biological functions of the tributaries and their riparian wetlands--namely, flood conveyance, attenuation, and storage and aquatic and wetland habitat. Among other things, the Stream Restoration Plan repeatedly stresses the importance of achieving "rapid closure of the riparian canopies." In addition to providing habitat, a riparian canopy reduces solar heating of the stream, thus lowering the water temperature and minimizing weedy vegetation on the stream banks. Among the effects of lowering the water temperature is lowering the amount of water lost to evaporation. The installation of trees along and sometimes within the reclaimed channels will facilitate the rapid development of root systems to stabilize the substrate and provide submerged root structure, which is an important microhabitat for macroinvertebrates and fish. Mature trees in the floodplain also provide additional attenuation. In addition to serving as a design document to govern the reclamation of mined streams on OFG, the Stream Restoration Plan is also a descriptive document, detailing the relevant characteristics of the streams presently at OFG. The Stream Restoration Plan uses several classifications that are useful in analyzing streams and their functions. These classifications include the Rosgen classification of stream shape (the Rosgen classification of bottom sediment is irrelevant because all existing and reclaimed streams at OFG have sandy bottoms), the Strahler convention of stream orders, the duration of flow, and the channel morphology. The Rosgen classification of stream shape divides the streams at OFG into type E and type C. Type E streams are well- incised and hydraulically efficient; their width-to-depth ratios are less than 12:1. Shallower and wider than type E streams, as these values relate to each other, type C streams at OFG are often associated with small wetland riparian zones and depressions, which are absent from type E streams at OFG. The Strahler convention classifies streams based on their relative location in the upstream order of conveyances with the most-upstream streams classified as first-order streams. Except for Stream 2e and the Stream 1e series downstream of Streams 1eb and 1ef, all of the tributary streams on OFG are first-order streams, meaning essentially that they are the most upstream channelized conveyance receiving runoff or groundwater flow. Streams 2e, 1ec, 1ed, and 1ee are second- order streams, meaning that they receive flow from at least two first-order streams. In terms of flow, perennial streams receive groundwater flow throughout the year in most years, ephemeral streams flow sporadically in response to rain and typically lack groundwater inputs, and intermittent streams flow during the wet season in response to groundwater and rain inputs and during the dry season sporadically in response to rain inputs only. Most, if not all, of the tributary streams on OFG are intermittent. However, almost all of the streams cease to flow due to low rainfall and overflow their banks due to very high rainfall. Even Horse Creek dried up at State Road 64 during the low-rain conditions in 2000. In terms of morphology, all streams at OFG are either in uninterrupted channels or interrupted channels. Interrupted channels mean that the stream passes through flow-through marshes and swamps. Describing the existing streams in a slightly larger setting, the Stream Restoration Plan divides them into three groups, based on channel morphology and the vegetation and land uses adjacent to the channel. First, Streams 3e and 1e series are "surrounded by native habitat used for low-intensity cattle grazing. These are type C streams with a more diffuse riparian canopy and associated wetlands along the stream channel." Second, the portions of Streams 5e, 1w, 2w, 3w, 4w, 5w, 7w, and 9w within the floodplain forest of Horse Creek are type E streams with oaks and palmettos along, and often crowding, the channel. Third, the portions of the same eight streams that are outside of the floodplain forest of Horse Creek are type E streams, devoid of riparian vegetation and degraded by agricultural land uses, such as improved pasture and cattle grazing. The Stream Restoration Plan describes the Stream 1e series as follows: Reach 1e provides drainage for a series of interconnected flow-through wetlands punctuated by five relatively short stream segments. The segments represent a total of some 2,039 linear feet of channel. They have shallow, sandy banks with little vegetation in the stream channel. A wide riparian canopy of slash pine, laurel oak, dahoon holly and wax myrtle is present along most of this reach. The palmetto edge of the floodplain varies in width, but is generally more than 100 feet from either bank, suggesting frequent inundation. The channel substrate is sandy except where near a swamp, where it becomes increasingly more organic. Each flow-through wetland occurs in shallow depressions which overflow into C-type channels that are typically several hundred feet long. Key components of this conveyance type include the lip elevation at which wetland flow enters the channel and the elevation at which the streams dissipate their discharge to the downstream flow- through wetland. Most of the stream segments in this conveyance system appear to be in good geomorphic condition. Most of these channels typically have wetland and/or upland hardwood trees in the riparian zone with little understory. The Stream Restoration Plan reports that the channel of Stream 3e is in good geomorphic condition. The upper part of the channel flows through a scattered open canopy of trees with herbaceous cover in the riparian zone. The lower part of the channel mostly flows through treeless banks lined with palmettos. The channel has vegetation in it where it is exposed to sunlight. In other respects, Stream 3e is like Stream 1e series, except that the channel is uninterrupted and shorter. The length of Stream 3e is 611-630 feet. Stream 1eb is 486 feet, Stream 1ef is 223 feet, Stream 1ec is 315 feet, Stream 1ed is 283 feet, and Stream 1ee is 732 feet. The 2039-foot length of the Stream 1e series is exclusive of the system's headwater and flow-through wetlands. The Stream 1e series has the most linear feet of any tributary stream on OFG. In addition to the Stream 1e series and Stream 3e, the only other stream on the east side of Horse Creek to be mined is Stream 5e, which is an agriculturally disturbed stream with a narrow riparian canopy. The Stream Restoration Plan states that the lower portion of Stream 5e, which is within OFG, is in better condition than the upper portion, which is frequented by cattle and leads to a cattle pond and agriculturally altered wetland. However, in contrast to the Stream 1e series and Streams 6e, 7e, and 8e, Stream 5e is isolated in a vast monocommunity of improved pasture. The streams on the west side of Horse Creek have all been impacted by agricultural practices, mostly cattle ranching, ditching streams, sloughs, and other wetlands, and excavating cattle ponds in wetlands. The only streams entirely in the no- mine area on the west side of Horse Creek are Streams 8w and 6w, which are part of the Central and West Lobes, respectively. Relative to their surrounding communities, the streams on the west side of Horse Creek fall into three groups. Streams 6w and 8w are integrated into diverse communities of uplands and wetlands. Like Stream 5e, Streams 5w, 4w, 3w, and 2w are lonely departures from the monocommunity of improved pasture and, thus, attractors of thirsty or hot cattle. All of these streams have been impacted, to varying degrees, by ditching, which, with cattle disturbances, has led to unstable banks and erosion. Functionally, Streams 9w, 7w, and 1w are between these two groups. As a stream, Stream 9w is surrounded by improved pasture; however, it drains a large wet prairie surrounded by large areas of palmetto prairie to the south and west and sand live oak to the north and east. Prior to agricultural disturbance, Stream 9w was much higher functioning, at least with respect to flood conveyance, attenuation, and storage. At one time, this stream led upgradient to a long slough. After the slough was ditched to hasten drainage, the channel of Stream 9w suffered from excessive hydraulic forces, resulting in bank instability and a curious channel formation that fits the type E stream, even though the valley slope is consistent with other type C streams at OFG. Stream 9w is the second-shortest stream on OFG at 472 feet. Draining the smallest area of all tributaries on OFG (30 acres), Stream 7w lies between a large palmetto prairie to the north and improved pasture to the south. Stream 7w is the shortest stream on OFG at 456 feet. Stream 7w's upper section is characterized by unstable banks vegetated by pasture grasses. Stream 1w runs from Horse Creek through improved pasture, but enters a large palmetto prairie before draining a wetland that includes a relatively small bayhead. The upper half and extreme lower portions are in good condition with appropriate vegetation, but the channel is eroded in areas where it runs through pasture. IMC will reclaim the headwater wetland of Stream 1w with a large bayhead. ERP Specific Condition 14.i requires IMC to survey the final contours of each mitigation wetland to the precision of a one-foot contour. Within 60 days of final grading, IMC shall submit to BMR, for its approval, a topographic map and representative cross sections for each wetland and extending at least 200 feet into the adjacent uplands. IMC must also submit surveyed profiles and cross sections for all reclaimed streams. All topographic maps must meet the minimum technical standards of Chapter 472, Florida Statutes. ERP Specific Condition 14.j states that IMC shall assess the hydrology of the modeled wetlands through the installation of monitoring wells and staff gauges at mutually agreed-upon sites in these reclaimed wetlands. For at least two years after the final contouring of each wetland, IMC shall monitor the hydrology for the parameters listed in Table MR-2, which is described below. IMC shall submit the analysis to BMR within 30 days of its completion. If BMR does not approve the hydrology, IMC shall have 60 days to submit a remedial plan. ERP Specific Condition 14.k requires that freshwater marsh and ephemeral marsh vegetation shall develop from direct placement of donor topsoil or planting of herbaceous marsh species in the densities and numbers specified in the Freshwater Marsh and Wet Prairie/Ephemeral Marsh planting tables, so as to meet the requirements of ERP Specific Condition 16. Both tables require plantings on three-foot centers, or 4840 plants per acre, and specify suitable water levels for each species. The Freshwater Marsh planting table lists 22 approved species, and the Wet Prairie/Ephemeral Marsh planting table lists 35 approved species. ERP Specific Condition 14.l requires IMC to plant the uplands surrounding wet prairies with collected native grass seed, such as creeping bluestem, sand cordgrass, blue maidencane, bluestem, lovegrass, and eastern gamma grass, to prevent invasion by non-native or range grasses. ERP Specific Condition 14.m provides that IMC shall develop shrub marsh vegetation by directly placing donor topsoil at the location of the reclaimed shrub marsh and planting herbaceous and shrub marsh species in the densities and numbers specified in the Shrub Marsh planting table, so as to meet the requirements of ERP Specific Condition 16. The Shrub Marsh planting table requires IMC to plant herbaceous species on three-foot centers, or 4840 plants per acre, and shrub species at an average density of 900 plants per acre. The planting table lists 18 approved species and requires IMC to plant at least five different shrub species. The planting table also specifies suitable water levels. ERP Specific Condition 14.n provides that IMC shall plant forested wetlands in the densities, species richness, and dominance specified in the Bay swamp/Gumswamp/Hydric Oak Forest/Wet Pine Flatwoods/Mixed Wetland Hardwood/Mixed Forest Swamp, "as appropriate for each community type" to meet the requirements of ERP Specific Condition 16. IMC shall plant appropriate species based on the design elevations, hydrology monitoring, and mitigation goals. ERP Specific Condition 14.o provides that IMC shall plant shade-tolerant herbaceous species after establishing suitable shade, by year 7, in hardwood swamps, mixed forest swamps, and bay and gum swamps. Specific Condition 14.o states: "At least 5 of the species listed in the Tables in n above and others like goldenclub . . . and swamp lily . . . shall be planted." The items listed in Specific Condition 14.n, however, are communities, not species. ERP Specific Condition 15 requires IMC to implement a monitoring and maintenance program to promote the survivorship and growth of desirable species in all mitigation areas. ERP Specific Condition 15.a requires IMC to conduct "quarterly or semi-annual" inspections of wetlands for nuisance and exotic species. IMC shall control these species by herbicide, fire, hydrological, or mechanical means "to limit cover of nuisance species to less than ten (10) percent and to remove exotic species when present in each created wetland." IMC must annually use manual or chemical treatment of nuisance and exotic species when their cover in any area of at least one acre is greater than ten percent or any exotic species are present. IMC must use manual or chemical treatment if cogongrass covers more than five percent within 300 feet of any reclaimed wetland. ERP Specific Condition 15.b allows IMC to control water levels with outflow control structures and pumps, as needed to enhance the survivorship and growth of sensitive taxa. However, IMC must remove all water management structures at least two years prior to requesting release. ERP Specific Condition 15.c requires IMC to make supplemental tree and shrub plantings, pursuant to Specific Condition 14, when tree/shrub densities fall below those required in ERP Specific Condition 16. Specific Condition 15.d requires IMC to make supplemental herbaceous plantings, pursuant to ERP Specific Condition 14, when cover by a "diversity of non- nuisance, non-exotic wetland species as listed in Chapter 62-340.450, F.A.C.," falls below that required in ERP Specific Condition 16. ERP Specific Condition 16 provides the conditions for DEP to release IMC of further obligation for reclaimed wetlands. DEP shall release the 105 acres of reclaimed forested wetlands and 217 acres of herbaceous wetlands when IMC has constructed them in accordance with the ERP requirements; IMC has not intervened, for two consecutive years (absent BMR approval), by irrigating, dewatering, or replanting desirable vegetation; and the remaining requirements of ERP Specific Condition 16 have been met. IMC must indicate in its annual narrative, which is required by Specific Condition 5, the start date for the non- intervention period. ERP Specific Condition 16.A requires that the water quality meet Class III standards, as described in Florida Administrative Code Chapter 62-302. ERP Specific Condition 16.B addresses water quantity. ERP Specific Condition 16.B.1 requires each created wetland to have hydroperiods and inundation depths sufficient to support wetland vegetation and within the range of conditions occurring in the reference wetlands of the same community for the same period, based on the monitoring data developed in accordance with ERP Specific Condition 14.j. Tributary wetlands must have seasonal flow patterns similar to specified reference wetlands for the same period. ERP Specific Condition 16.B.2 states that IMC modeled 24 representative reclaimed wetlands that IMC has modeled during the application process to predict subsurface conditions after excavation and backfilling. Figure 13-3 depicts these modeled wetlands, which are within 13 wetland complexes, and the proposed transects. All of the modeling transects are aligned east-west, which is the direction of groundflow. As discussed in detail below, the primary hydrological model used by Dr. Garlanger requires an input for the length of the upland in terms of the distance from the basin divide to the riparian wetland. Therefore, the transects probably must run in the direction of groundwater flow. Absent an ability to model the hydroperiod and inundation depth of a wetland across a sand tailings valley and cast overburden plateau--i.e., in a north-south direction-- multiple east-west transects in wetlands with long north-south dimensions would better reveal whether the wetland design were adequately accounting for the alternating pattern of sand tailings valleys and cast overburden plateaus. For all the areas for which Map H-1 provides probable orientations of spoil piles--basically, for present purposes, everywhere but Section 4--the spoil piles are oriented in the same alignment as the transects, so the transects will not cross the sand tailing valleys/cast overburden peaks. In other words, each of the transects will run along the portion of each wetland for which the relative depths of sand tailings and cast overburden remain constant, avoiding the potentially more problematic situation of alternating rows of sand tailing valley and cast overburden peak. As noted below, the north-south dimension of W039 assures that one cast overburden spoil pile and part of another will underlie W039. The north-south dimensions of W003 and E046/E047 also are long enough to guarantee significant alterations in geology. ERP Specific Condition 16.B.2 requires that, prior to the construction of the modeled 24 wetlands, IMC shall reassess and, if necessary, modify their design. The modifications shall be based on the targeted hydroperiods and inundation depths set forth in Table 1, which is described below, and updated analysis from an "integrated surface and ground water model that has been calibrated to actual field conditions at the location of the wetland to be constructed." Lastly, ERP Specific Condition 16.B.2 requires IMC to use a similarly calibrated model to design the other reclaimed wetland, so that they achieve the targeted hydroperiods and inundation depths set forth in Table 1. For the 24 modeled wetlands, Table 1 identifies eight types of wetland community, prescribes hydroperiods and inundation depths for each wetland habitat, and projects a hydroperiod for each of the 24 modeled wetlands. As amended at the hearing for bay swamp hydroperiods, the hydroperiods and inundation depths for the wetland communities are: bay swamps-- 8-11 months with inundation depths of 0-6 inches; gum swamps-- 3-12 months with inundation depths of 0-12 inches; mixed wetland hardwoods and wetland forested mix--3-9 months with inundation depths of 0-6 inches; hydric pine flatwoods--1.5-4.5 months with inundation depths of 0-6 inches; freshwater marshes--7-12 months with inundation depths of 6-30 inches; wet prairies--2-8 months with inundation depths of 0-6 inches; and shrub marshes--7-12 months with inundation depths of 6-24 inches. The 24 reclaimed wetlands to be modeled include three bay swamps: W039, which is the headwater wetland of Stream 1w; E008, which is a small part of the wetland into which Streams 1eb and 1ef drain; and E063, which is a small bay swamp in the middle of Stream 5e. The only other bay swamps to be reclaimed are E007, which is a small part of the wetland into which Stream 1ec drains, and W036, which is in the center of Section 19 and drains offsite into West Fork. The only other modeled wetlands that are part of the riparian wetlands of Stream 1e series are E007 and E009, which are near E008 and are the only hydric pine flatwoods to be modeled. The only other hydric pine flatwoods to be reclaimed is E015, which is also part of the riparian wetlands of Stream 1e series. Other modeled wetlands of particular importance are W003, which will be a large wet prairie wetland serving as the headwater wetland of Stream 9w; W031, which will be the freshwater marsh serving as the headwater wetland of Stream 3w; E018, E046, and E057, which are wet prairie fringes; E018, E042, E046, and E057, which are ephemeral wetlands (E042 is the only modeled ephemeral wet prairie that is not a fringe wetland); and all of the connected wetlands of Streams 3e and 3e?: E024, which is a wetland forested mix that is the riparian wetland along Stream 3e; E023, which is a freshwater marsh immediately upstream of E024; E022, which is a mixed wetland hardwoods joining the upstream side of E023; E018, which is a wet prairie fringing the headwater wetland of Stream 3e?; E019, which is a shrub marsh (the only modeled shrub marsh) fringed by E018; and E020, which is a freshwater marsh joining E019 and also fringed by E018. ERP Specific Condition 16.B.3 states the IMC shall monitor the 24 modeled wetlands, as prescribed by ERP Monitoring Required Section D and Table MR-2, which are discussed below. ERP Specific Condition 16.B.4 requires that the ephemeral wetlands shall remain inundated no more than eight months per year during a normal water year, which is between the 20th and 80th percentiles of historical record in terms of total rainfall and major storm occurrence. ERP Specific Conditions 16.C.1 and 2 apply to all mitigation areas within the scope of the ERP. Specific Condition 16.C.1 requires that non-nuisance, non-exotic wetland species listed in Florida Administrative Code Rule 62-340.450 cover at least 80 percent of the groundcover or attain the range of values documented in specific reference wetlands of the target community. Desirable groundcover plant species must be reproducing naturally. ERP Specific Condition 16.C.2 provides that nuisance vegetation species, such as cattail, primrose willow, and climbing hemp vine, shall cover less than 10 percent of the total wetland area. Invasive exotic species, such as melaleuca, Chinese tallow, and Brazilian pepper, shall not be considered as an acceptable component of the vegetative community. For herbaceous marshes, ERP Specific Condition 16.C requires that native species typical of the reference marshes dominate the cover and that they be distributed in zonation patterns similar to reference marshes. Species richness and dominance regimes shall be within the range of values documented within the reference marshes. For wet prairies, ERP Specific Condition 16.C requires that native species typical of the reference wet prairies dominate the cover. Species richness and dominance regimes shall be within the range of values documented within the reference wet prairies. Range grasses, such as bahiagrass and Bermuda grass, shall cover, in total, less than 10 percent of the wet prairie. For shrub marshes, ERP Specific Condition 16.C requires that native species typical of the reference shrub marshes dominate the cover. Carolina willow and wax myrtle shall cover, in total, less than 30 percent of the marsh. For all forested wetlands, ERP Specific Condition provides that the forested canopy shall have an average of at least 400 live trees per acre that are at least 12 feet tall, except for cabbage palms, which shall have a leaf, including the stalk, that is at least three feet long. In the alternative, the forested canopy shall meet or exceed the range of canopy and sub-canopy tree densities in specified reference wetlands. No area greater than an acre shall have less than 200 trees per acre. Hydric pine flatwoods shall average 50 trees per acre. For all forested wetlands, ERP Specific Condition provides that the shrub layer shall average at least 100 shrubs per acre or shall meet or exceed the range of shrub densities in specified reference wetlands. Early successional species, such as Carolina willow, saltbush, and wax myrtle, do not count in meeting this density requirement, but the monitoring reports shall include such species. Hydric pine flatwoods shall have an average density of 350 shrubs per acre, and the primary species shall be typical of hydric pine flatwoods, such as saw palmetto, gallberry, and fetterbush. For all forested wetlands, ERP Specific Condition states that the canopy and shrub strata shall each have the species richness values and dominance regimes within the range of values in specified reference wetlands/floodplains of the target community. Canopy and shrub measurements are limited to those indigenous species that will contribute to the appropriate strata of the mature forested wetlands/floodplains. Up to half of the trees and shrubs in the upper transitional zone may consist of appropriate upland and facultative species, as found in specified reference wetlands. Desirable canopy and shrub species shall be reproducing naturally. For all forested wetlands, ERP Specific Condition provides that herbaceous vegetation shall have the species richness values and dominance regimes within the range of values in specified reference wetlands/floodplains of the target community. In making this evaluation, DEP shall consider the relative age of the mitigation site, as compared to specified reference wetlands. ERP Specific Condition 16.D.1 requires that all stream banks be stable, subject to normal erosion and deposition zones, as evidenced by the conformance of the stream with the applicable Rosgen type C or E, as described in the appropriate reference streams. ERP Specific Condition 16.D.2 requires that the physical characteristics of the reclaimed stream conform to its design. ERP Specific Condition 16.D.3 requires that tree roots, log jams, snags, and other instream structure shall be present at desirable intervals along the reclaimed stream. ERP Specific Condition 16.D.4 provides that species diversity and richness of the macroinvertebrate community shall be within the range of values documented in the reference streams or reported values of similar streams systems in central Florida. Also, all functional feeding guilds of macroinvertebrates found in the reference streams shall be present in the reclaimed streams. In the alternative, IMC may show that the reclaimed stream has met the minimum thresholds for the "good" classification in DEP's Stream Condition Index for macroinvertebrates and habitat quality. ERP Specific Condition 16.E provides that, throughout OFG, at least 105 acres of reclaimed forested wetlands and 217 acres of reclaimed herbaceous wetlands shall be determined to be wetlands or other surface waters. IMC shall achieve the minimum acreage for each wetland, as indicated on Map I-2 and associated figures and tables. However, IMC may make minor changes in the size, shape, or location of individual reclaimed wetlands, subject to BMR's approval. ERP Specific Condition 17 provides that DEP shall release IMC from further obligation regarding mitigation when ERP Specific Condition 16 has been met. IMC initiates the release procedure by notifying DEP that IMC believes the mitigation is ready for release, but this notice may not be earlier than two years after the completion of mitigation. DEP must respond within 120 days. ERP Specific Condition 17.d provides: "[DEP] may release the mitigation wetlands based on a visual evaluation, notwithstanding that all the requirements of Specific Condition 16 have not been met." ERP Specific Condition 18 applies to the surface water management system. The system must conform to the plans, specifications, and performance criteria approved by the ERP. ERP Specific Condition 19 requires IMC clearly to identify all no-mine areas in the field within two years of the issuance of the ERP. ERP Specific Condition 20 states that BMR will review the ERP at the end of the first five-year term after its issuance and at the end of each succeeding five-year term, if any. The purpose of the review is to determine compliance with general and specific conditions, including monitoring requirements. BMR staff shall quarterly inspect the mine for compliance with these requirements. ERP Specific Condition 21 requires IMC to provide a phased Conservation Easement, in favor of DEP, on 525 acres of OFG, as depicted on Figure F-6. Figure F-6 shows two easement areas. Phase A, which is 372 acres, corresponds to the 100-year floodplain of Horse Creek. Phase A is in the no-mine area. Phase B, which is 153 acres, is a wider band running along both banks of the northernmost 1 1/2 miles of Horse Creek and mostly on only the west bank for the southernmost 2 miles of Horse Creek. Phase B consists of part of the reclaimed area. The corridor covered by both phases of the Conservation Easement is generally not wider than 1000 feet and thus does not capture all of the non-improved pasture upland communities reclaimed on either side of Horse Creek and described above. IMC is required to grant the Conservation Easement on the Phase A lands within six months of the issuance of the ERP. IMC is required to grant the Conservation Easement on the Phase B lands within six months of the release by DEP of IMC from further obligations regarding reclamation and mitigation. ERP Specific Condition 21 incorporates the Conservation Easement and Easement Management Plan. The Conservation Easement implicitly acknowledges the fact that IMC is contractually obligated to convey OFG back to the Carlton- Smith family, after IMC has been released from further obligations regarding reclamation and mitigation. Thus, post- mining, OFG will return to its historic agricultural uses-- mostly, cattle ranching. The restrictions and encumbrances included in the Conservation Easement are designed to provide some protection to the wetlands, streams, and uplands within the Phase A and Phase B areas. Granted to the Board of Trustees of the Internal Improvement Trust Fund of the State of Florida, for which DEP serves as an agent, the Conservation Easement allows IMC and its successors, including the Carlton-Smith family, to use the encumbered property for cattle ranching, but only to the extent consistent with "sustainable native range management practices." These sustainable native range management practices require, among other things, the natural renewal of the grazing capacity of the land by allowing native grasses and other native forage species to regenerate. The Easement Management Plan contemplates prescribed burns of portions of the corridor. The Conservation Easement also allows IMC and its successors, upon obtaining the necessary permits, to construct a commodious 200-foot wide accessway across the encumbered property for a road, pipelines, draglines, and/or utilities. ERP Specific Condition 22 requires IMC to enhance 80 acres of existing pastureland within several areas of the Horse Creek floodplain, as indicated on Figure F-5, which is Habitat Enhancements. Most of the depicted enhancement areas are on OFG, but two of them are a short distance from OFG. ERP Specific Condition 22 requires IMC to plant 100 longleaf pines and/or oaks per acre within several sites, covering 80 acres of existing pastureland, adjacent to the 100-year floodplain of Horse Creek. Most of the sites are on the west bank of Horse Creek, mostly south of the Lobes, but a couple of sites are on the east bank in the vicinity of the East Lobe. ERP Specific Condition 23 requires that IMC plant these areas within one year of the issuance of the ERP and that the overall survival rate be at least 80 percent, as of the time of the release of the last mitigation parcel. ERP Specific Condition 23 requires IMC to enhance existing xeric and scrub habitats within areas designated as ACI (Area of Conservation Interest)-2, ACI-4, and ACI-6, as depicted on Figure F-5. Specific Condition 23 states that IMC shall enhance the wildlife habitat of these areas by performing controlled burns, cutting overgrown trees, planting desirable species, and controlling nuisance and exotic species. Specific Condition 23 obligates IMC to complete these enhancements within three years of the issuance of the ERP. ACI-2 is about 1 1/2 miles west-southwest of the southern end of OFG, between State Road 64 and the West Fork. ACI-2 consists of about 60 acres of overgrown xeric habitat, featuring 40 acres of sand scrub, predominantly sand live oak. Gopher tortoises occupy ACI-2 at a density of about 1.6 reptiles per acre. Florida mice occupy ACI-2 at a density of 0.4 rodents per acre, meaning that only 15-25 Florida mice may occupy ACI-2. By fence-posting overgrown sand pine and sand live oak and conducting a prescribed burn, IMC will reduce the heavy canopy existing on ACI-2 and enhance the suitability of ACI-2 for gopher tortoises and Florida mice. IMC will also apply herbicides to nuisance exotic species, such as bahiagrass, after which IMC will direct seed the flatwoods on the site with suitable vegetative species. Following this work, IMC may relocate Florida mice from OFG to ACI-2, upon approval from the FWC. ACI-6 is about one mile east of the southern end of OFG. ACI-6 consists of about 421 acres of a mixture of open land and overgrown oak scrub. Gopher tortoises occupy ACI-6 at densities ranging from 0.7 to 1.8 animals per acre. After fence-posting overgrown oaks and sand pine, conducting prescribed burns, installing fencing to exclude cattle and feral hogs, applying herbicide to kill exotic species, and direct seeding appropriate vegetation, IMC may relocate Florida mice from OFG to ACI-6, upon approval from FWC. ACI-4 consists of about 82 acres at the eastern end of the East Lobe and is within the no-mine area. The western end of ACI-4 slopes to the west through a bahia pasture before it enters a large bay swamp at the western end of the East Lobe. This area has been impacted by partial clearing and the depositing of animal carcasses--the latter practice yielding the name assigned to this area, the "boneyard" scrub. ACI-4 is dominated by mature scrub oaks. Gopher tortoises occupy ACI-4 at the rate of 0.85 terrestrial turtles per acre, and gopher frogs frequent the mouths of tortoise burrows at the site, although no signs of Florida mice exist. After conducting enhancement activities similar to those to be conducted on the other ACIs, IMC intends to create and maintain more suitable habitat for Florida mice. Specific Condition 23 states that IMC shall enhance 25 acres of pasture on ACI-4 by planting 100 longleaf pines and/or oak trees, and IMC shall manage these areas to achieve an overall survival rate of 80 percent through release of the final reclamation parcel. ERP Specific Condition 24 notes that IMC has committed to initiate the management and evaluation of amphibians, including the Florida gopher frog, and shall adhere to the management plans outlined in the IMC Minewide Gopher Tortoise and Burrow Conceptual Management Plan that FWC has examined, but not yet approved. IMC shall expend at least $30,000 to compare amphibian use of reclaimed and unmined wetlands. IMC shall include progress reports as to this study with its annual narrative reports required under Specific Condition 4. ERP Specific Condition 25 incorporates Tables 2AI-1 and 2AI-2 to provide assurance that IMC has sufficient sand tailings for the timely reclamation of wetlands contemplated in the ERP. Table 2AI-1 is the IMC Overall Sand Balance. Table 2AI-2 is the [OFG] Sand Balance. Table 2AI-1 shows the sand tailings production of IMC's Four Corners and Ft. Green mines from 2004-2014 and assumes an initial mining year of 2006 for OFG. For each of these 11 years, Four Corners produces 27,000,000 tons of sand tailings. For the first seven of these years, Ft. Green produces 17,000,000 tons of sand tailings. During these 11 years, IMC needs anywhere from 13,300,000 to 54,900,000 tons of sand tailings to meet all of its reclamation obligations. The closest that IMC will come to exhausting its sand tailings stockpile will be in year 6 of the OFG mining operation (2011, if OFG mining starts in 2006). For this and the following year, the sand tailings stockpile will total 300,000 tons. By this time, IMC's requirements for sand tailings begin to taper off, so that, by the final year on the schedule (2014), the sand tailings stockpile increases to 20,600,000 tons. Table 2AI-2 shows that IMC can meet its reclamation obligations for the Ft. Green Mine and OFG without using any stockpiled sand tailings. The next section of the ERP is Monitoring Required. The designations for this section start with a letter. As its name suggests, ERP Monitoring Required describes the monitoring program. The presence of monitoring does not imply the presence of standards or criteria applicable to what is monitored or the presence of a remedy or sanction for noncompliance with any standard or criterion. The existence of this section of the ERP does not mean that other sections of the ERP may impose monitoring requirements, applicable standards and criteria, and remedies or sanctions for noncompliance. ERP Monitoring Required A.1 requires IMC to submit annual narrative reports to BMR detailing the progress of the restoration program identified in ERP Specific Condition 4. As required in ERP Specific Condition 5, IMC shall submit to BMR hydrology reports annually and vegetation reports annually for the first three years and every other year thereafter, until release. At least 60 days prior to sampling, ERP Monitoring Required A.2 requires IMC to submit, for agency approval, vegetation, hydrology, and macroinvertebrate monitoring plans detailing sampling techniques and locations. ERP Monitoring Required A.3 requires IMC to include in its annual hydrology reports the daily rainfall amounts for the Ft. Green and OFG gauges shown on Map D-4. ERP Monitoring Required A.4 states that, if BMR determines that restoration efforts are not trending toward achievement of the release conditions set forth in ERP Specific Condition 16, IMC shall have 30 days from notification to submit proposed corrective actions. IMC shall implement corrective actions within 90 days of their approval. ERP Monitoring Required B states that data compiled in the CDA will be the primary source of reference wetland information. IMC shall then collect additional stage and hydroperiod data from the modeled wetlands. Within one year of the issuance of the ERP, IMC shall submit to BMR, for approval, a proposed sampling plan, including locations, frequencies, and vegetation, hydrology, and macroinvertebrate sampling methods. ERP Monitoring Required B provides that IMC shall select several wetlands of each community and submit them to BMR for approval. It appears that this process has already been completed, and DEP should updated ERP Monitoring Required B by incorporating into the ERP Figure RF-1, which, although not presently incorporated into the ERP, identifies 26 reference wetlands on OFG and nine reference wetlands on the original Ona Mine to the east of OFG. These reference wetlands include the most important components of the Lobes, the Heart-Shaped Wetland, Stream 2e's riparian wetlands, several wetlands in the Stream 1e series, the headwater wetland of Stream 3e, isolated wetlands south and east of the headwater wetland of Stream 3e, parts of the headwater wetland of Stream 1w, and the riparian and headwater wetlands of Stream 8e. As noted below, the riparian and headwater wetlands of Stream 8e, which are selected as reference wetlands, are moderate functioning, but the riparian and headwater wetlands of Stream 7e, which are not selected as reference wetlands, are high and very high functioning. ERP Monitoring Required C is Compliance Monitoring. Monitoring Required C.1 provides that IMC shall submit water quality data with the annual narrative reports submitted pursuant to ERP Specific Condition 7. All monitoring reports must include specified information, such as the dates of sampling and analysis and a map showing sampling locations. ERP Monitoring Required C.2 states that IMC shall submit hydrology data with its annual narrative reports. ERP Monitoring Required C.3 states that IMC shall monitor water levels in wetlands in no-mine areas in accordance with Table MR-1, which is described below. ERP Monitoring Required C.4 notes that IMC shall measure and report surface water flows in accordance with ERP Specific Condition 10. IMC must include in its reports to BMR all U.S. Geologic Service data collected at State Road 64 and State Road 72, which is south of State Road 64, and rainfall data collected by the U.S. Geologic Service, Southwest Florida Water Management District, and IMC. The annual hydrographs for Horse Creek at State Road 64 and State Road 72 "should" be similar. IMC must obtain and report hydrological data from 30 days after the issuance of the ERP until three years after the hydrological reconnection of the last reclaimed area upstream of a water level monitoring location. Within 60 days of the receipt of such data, BMR shall notify IMC of any changes to mining or reclamation that are necessary, and IMC shall have 60 days to respond to this notice. ERP Monitoring Required C.5 grants IMC a 50-meter temporary mixing zone adjacent to construction and in waters of the state; provided, however, this mixing zone is in effect only during the construction of the pipeline crossing just downstream of the Heart-Shaped Wetland. IMC must halt construction if monitoring reveals that turbidity at the site is more than 29 NTUs above upstream locations. ERP Monitoring Required C.6 states: "Compliance Monitoring Summary--See Table MR-1." Table MR-1 is discussed below, in connection with Table MR-2. ERP Monitoring Required D is Release Criteria Monitoring. Applying to vegetation, Monitoring Required D.1 provides that IMC shall conduct all monitoring of herbaceous vegetation during or immediately after the summer growing season. Monitoring Required D.1 requires the reports to include a description of collection methods and location maps. IMC must report data separately for individual wetlands. IMC must report separate density and cover information for trees, shrubs, and groundcover, as well as information about any supplemental planting. Applying to water quantity, ERP Monitoring Required D.2 provides that IMC shall submit water quantity data with its annual narrative reports, as required in ERP Specific Condition 4. IMC shall collect onsite daily rainfall data at OFG. ERP Monitoring Required D.3 requires: "Soils, macroinvertebrates and stream channel integrity/morphology shall be monitored as described in Table MR-2." ERP Monitoring Required D.4 states: "Release Monitoring Criteria Summary--See Table MR-2." Tables MR-1 and MR-2 refer to the monitoring required for compliance and release, respectively. The identification of these tables as "summaries" and the vague references to them in ERP Monitoring Required C.6 and D.4 suggest that the tables do not contain any performance standards and may imply that, except for the asterisked notes in Table MR-1, they summarize all of the performance standards and criteria contained in the ERP. If summaries, the tables should not introduce new elements, but they do just that with respect to the methods, sampling schemes, and frequency of monitoring. For water quantity monitoring, for instance, Table MR-2's promise of weekly readings of monitoring wells and piezometers for part of the year conflicts with the monthly reading required in ERP Specific Condition 10.b. If summaries of performance standards and criteria, the tables should capture all of the compliance and release criteria, but they do not. For water quality, for example, Table MR-2, which is limited to five parameters, potentially conflicts with ERP Specific Condition 16.A's broad assurance of compliance with Class III water quality standards, which encompass a broad range of parameters, including iron. For water quantity, Table MR-2 also omits the enforceable streamflow criteria of ERP Specific Condition 10.b. For soil, Table MR-2 includes one parameter--litter accumulation--for which no corresponding criterion exists and includes substrate-- for which important criteria exist as to the depths of sand tailings, topsoil, green manure, and muck--but omits any release criteria. Addressing two of the most important parts of the ERP--monitoring and performance criteria--these tables must be interpreted as subordinate to the remainder of the ERP, so that if they conflict with another ERP provision, the other ERP provision controls, but if they add a requirement not elsewhere found in the ERP, the requirement applies to the proposed activities. Table MR-1 is the Compliance Monitoring Criteria Summary. Table MR-1 identifies two monitoring parameters: water quality and water quantity. Asterisked notes state that the Table MR-1 requirements for water quality are in addition to those set forth in Specific Condition 7, which are discussed above, and the Table MR-1 requirements for water quantity are in addition to those set forth in Specific Condition 10.b, which are discussed above. For water quality, Table MR-1 addresses only turbidity. The compliance criterion is the Class III standard. The "proposed methods" are for IMC to monitor water, at mid- depth, 50 meters upstream and downstream from the point of severance and reconnection of each wetland. The frequency of monitoring is daily during severance or reconnection or during pipeline corridor construction or removal. The duration of monitoring is at least one wet season prior to mining, during mining, and through contouring. For water quantity, Table MR-1 addresses water levels, flow, hydrographs, soil moisture, and plant stress. The compliance criteria are soils sufficiently moist to support wetland vegetation and prevent oxidation and water levels in recharge ditches sufficient to simulate normal seasonal fluctuations of water in adjacent wetlands and other surface waters. The "proposed methods" are for IMC to install staff gauges, monitoring wells, piezometers, and flow meters in recharge ditches and wetlands in the no-mine area and at the point that the 100-year floodplain of Horse Creek intercepts the unmined portions of Streams 2e, 6e, 7e, 8e, 9e, 6w, and 8w. The frequency of monitoring is to check rainfall and recharge ditches daily, staff gauges in streams "continuously," and monitoring wells and piezometers weekly. The duration of monitoring is at least one wet season prior to mining, during mining, and through contouring. Table MR-2 is the Release Monitoring Criteria Summary. Table MR-2 identifies five monitoring parameters: water quality, water quantity, stream channel integrity and morphology, soils, and vegetation. For water quality, Table MR-2 addresses dissolved oxygen, turbidity, temperature, pH, conductivity, and, for all streams, all of the parameters in ERP Specific Condition 7.a. The compliance criteria are Class III standards. The locations are at or near the connection of wetlands in the no-mine area and at or near vegetative transects in streams and representative wetlands. The frequency is monthly from May to October prior to the reconnection to wetlands in the no-mine area and monthly from May through October of the year prior to the release request. The duration of monitoring is at least two years after the completion of contouring. For water quantity, Table MR-2 addresses water levels, flow, hydroperiod, rainfall, and hydrographs. The release criteria are values within the range of values documented in specified reference wetlands for each community type and, for hydroperiods and water levels, within the range of values predicted by modeling. The "proposed methods" are the same instruments identified for water quantity in Table MR-1. The locations for sampling are at or near the connection to wetlands in the no-mine area and at representative locations, including the deepest depths, of several representative wetlands of each community type. The frequency of monitoring is to check rainfall daily, staff gauges in streams "continuously," monitoring wells and piezometers weekly from May through October and monthly from November through April, and flow at sufficiently frequent intervals to generate rating curves for the streams. The duration of monitoring is at least two years after the completion of contouring. For stream channel integrity and morphology, Table MR-2 addresses channel stability and erosion, channel sinuosity channel profile, and cross sections. The release criteria are: "Stable channel and banks, no significant erosion, or bank undercutting, stream morphology within the range of values appropriate for the designed stream type (Rosgen C or E)." The location of sampling is over the entire channel length and representative cross sections. The frequency of monitoring for channel stability and erosion is after "significant" rain events for at least the first two years after contouring. The frequency of monitoring for channel sinuosity, channel profiles, and cross sections is years 2, 5, and 10. For soils, Table MR-2 addresses substrate description, litter accumulation, and compaction, but lists no release criteria. For vegetation, Table MR-2 addresses the species list and percent cover, FLUCFCS Level III map, percent bare ground and open water, nuisance species cover, upland species cover, tree density, shrub density, tree height, tree breast height diameter starting in year 5, and fruit and seedlings (starting in year 7). The release criteria are 400 trees per acre that are 12 feet tall, 100 shrubs per acre, species richness and diversity within the range of reference forested and herbaceous wetlands, 80 percent groundcover, and less than ten percent nuisance species. The location of sampling is randomly selected sites along several transects across each wetland, and the frequency of monitoring is years 1, 2, 3, 5, and every other year through the year prior to release. For macroinvertebrates, Table MR-2 addresses the number and identity of each taxon, diversity, functional feeding guilds, and the DEP Stream Condition Index. The release criteria are: "Species diversity, richness within range of reference wetlands, all functional feeding guilds or qualify as 'good' or better in the SCI." The location of sampling is in at least one representative 100-meter reach in each stream, and the frequency is at least twice yearly for at least the year prior to the release request for a stream. CRP The introductory CRP narrative describes IMC's plans to reclaim uplands, but does not impose any obligations upon IMC. Instead, the narrative introduces the reclamation project and summarizes the provisions of the general and specific conditions of the CRP. The failure to incorporate Map I-2, whose wetlands were incorporated by the ERP, and Map I-3 is material. CRP General Conditions 8, 9, and 10, discussed below, impose upon IMC certain requirements when reclaiming certain communities, but do not themselves impose the requirement of reclaiming these communities. The same is true for CRP Specific Condition 8. The only subcondition mentioning Map I-2 is Specific Condition 8.c, which alludes to Map I-2 while imposing upon IMC the reclamation technique of backfilling at least 15 inches of sand tailings upon those areas to be reclaimed as temperate hardwoods, live oak, and hardwood-conifer mixed. If this indirect reference imposes upon IMC the obligation of reclaiming these three upland forests pursuant to their depiction on Map I- 2, it is odd that Specific Conditions 8.a and 8.b fail even to mention Map I-2 in their discussion of the sand tailing and topsoil requirements for reclaimed pine flatwoods and sand live oak and xeric oak, especially when these three upland forest communities account for over 400 acres of reclaimed uplands, according to Table 12A1-1, which is also not incorporated into the CRP. The narrative portion of the CRP states that IMC's reclamation plan is to create 1769 acres of pasture, 50 acres of herbaceous, shrub, and mixed rangeland, 273 acres of palmetto prairie, 194 acres of pine flatwoods, 33 acres of xeric oak, 43 acres of temperate hardwood forest, 39 acres of live oak forest, 196 acres of sand live oak forest, and 550 acres of hardwood- conifer mixed forest. The CRP notes that most of the communities in the no-mine area, enhanced areas, and reclaimed communities will form part of a "larger mosaic of diverse upland and wetland habitat associated with Horse Creek and will serve as important wildlife corridors." The failure of the CRP approval to incorporate Map I-2 is an oversight. In the introduction to the January submittal, IMC proposed to reclaim the uplands, by community and area, as enumerated in Table 12A1-1, and, by community and location, as depicted on Map I-2. The failure to incorporate Map I-3 is probably an oversight, based on the second CRP narrative quoted below. The CRP narrative states that IMC has developed a Habitat Management Plan (HMP), which includes detailed pre- mining wildlife surveys and relocation programs. The narrative states that IMC will relocate, disturb the habitat of, and reclaim habitat for Florida mice, gopher tortoises, gopher frogs, and other commensals, pursuant to approvals from FWC. The narrative reports that IMC's Indigo Snake Management Plan has already received approval from the required agencies. Also, IMC will spend at least $30,000 to fund research on the potential of relocating burrowing owls onto reclaimed landscapes and at least $30,000 to analyze amphibian use of natural and reclaimed wetlands. However, the ERP and CRP approval incorporate only parts of the HMP. The CRP narrative adds: In addition to wetlands, a significant portion of the reclamation plan will focus on wildlife habitat through the creation of a diversity of upland habitat types adjacent to the Horse Creek corridor. This will provide a contiguous corridor averaging half a mile wide. IMC has committed to reclaim significant areas of pine flatwoods, palmetto prairie, sand live oak, and other upland habitats well beyond what is required by existing reclamation rules. This will be accomplished mainly through topsoiling and planting of a diversity of native species including shrubs and groundcover species. The use of exotic forage grasses will be minimized and native grass species will be emphasized in the groundcover of reclaimed upland habitat areas. A diversity of shrubs will also be planted in reclaimed upland forest areas. In addition, most of the mitigation wetlands will be created with diverse upland habitats surrounding them, resulting in enhanced wildlife and water quality functions. The CRP narrative addresses reclaimed soils: Special emphasis has also been placed on improving post reclamation soils. . . . Emphasis has been placed on restoring soils to more closely mimic native soils and existing soil horizons by making greater use of native topsoil and incorporating a greater percentage of sand at the surface. Green manure will be incorporated into surface soils where native topsoil is not used. In most cases, existing overburden spoil piles will be graded down and then capped with several feet of sand tailings. The thickness of the sand layer will be determined based on the targeted reclaimed land use with some wetlands requiring additional overburden to restore appropriate hydrology. The CRP narrative acknowledges that IMC has developed an Integrated Site Habitat Management Plan that includes plans for the reclamation of uplands, control of nuisance and exotic species in uplands, and management of all listed species. The CRP narrative asserts that IMC will reclaim and manage over 1378 acres of uplands, such as by removing cogongrass and maintaining it to less than 10 percent coverage, except less than 5 percent coverage within 300 feet of wetlands. The CRP narrative mentions that IMC has "volunteered" the Conservation Easement and Easement Management Plan to encumber not less than 525 acres associated with Horse Creek. CRP General Condition 7 states: "[IMC] is encouraged to implement the Integrated Habitat Network (IHN) concept (where possible) when establishing reclaimed upland and wetland forested areas." As overlaid on OFG, the IHN, which is developed by DEP, is depicted in Figure 12-5. The IHN covers almost all of the no-mine area; the floodplains and headwater wetlands of the Stream 1e series, Stream 3e, and Stream 3e?; much of the non-pasture reclaimed uplands; and a large area of reclaimed improved pasture south and west of the reclaimed sand live oak area immediately west of the West Lobe. The backbone of the IHN is the network of rivers and streams, with their floodplains, that provide multifunctional habitat for wildlife. As noted in the introduction to the January submittal, the HMP helps implement the portion of the IHN located at OFG. Although only selectively incorporated into the ERP and CRP approval, the HMP describes IMC's overall plan for reclaiming OFG. The stated goal of the HMP is "to maintain or improve the biological functions of the wetlands and uplands . . . as an integrated component of the mining and reclamation plans." The HMP adds: "By preserving and managing the highest quality habitats on [OFG], these reserves will serve as source populations to recolonize the remainder of the site following completion of reclamation." Overall, the reclamation plan and HMP try to restore a functional interrelationship of uplands, wetlands, and surface water to replace the reduced functions that result from the agricultural alterations to uplands, wetlands, and most of the surface water, leaving large areas of a patchwork fragmentation of habitats. The HMP covers habitat management prior to land clearing, species-specific management techniques immediately prior to land clearing, species-specific management techniques during mining, habitat management in no-mine areas, reclamation goals for habitat, reclaimed habitat management after release, and, in the second part of the HMP, specific actions for each listed wildlife and plant species. Prior to land clearing, IMC will engage in little active habitat management, apart from surveys, as the Carlton- Smith family continues its agricultural uses of the land, which it is entitled to do under its contract with IMC. Immediately prior to land clearing, IMC will relocate each species, after obtaining the necessary permits, either by capture or, for the more mobile species, controlled burns or directional clearing to encourage wildlife migration into an adjoining refuge area. For listed bird species, IMC will protect their nesting areas or restrict land clearing to non-nesting season. During mining, aquatic- and wetland-dependent species will continue to have access to Horse Creek and its riparian wetlands, which are never isolated by the ditch and berm system. The only permitted direct disturbance of the no-mine area is outside Horse Creek's direct floodplain. During mining, the vast water recirculation system will provide incidental, temporary habitat for many aquatic- or wetland-dependent species. The second part of the HMP identifies management techniques for specific listed species of vertebrates. The HMP states that no listed plants exist on OFG. The HMP addresses 15 listed species observed on OFG and nine listed species that could potentially use OFG. The HMP mistakenly lists the Florida panther in the latter category, rather than the former category, but the error is harmless given the limited use of OFG by the Florida panther and the apparent lack of a breeding population north of the Caloosahatchee River. The following paragraphs describe the HMP's treatment of several listed species using OFG. Noting that the American alligator, which is a species of special concern, occupies freshwater habitats throughout Florida, plenty of such habitats exist around the mining areas, and the alligator is mobile, IMC expects that the American alligator will move out of the way of mining activities, so no management measures will be used for alligators. Presumably well-served by former Land-and-Lakes reclamation and an opportunistic inhabitant of deep wetland reclamation, alligator management is of no importance in these cases. The HMP reports two possible observations on OFG of the Florida panther, which is an endangered species. There is no doubt about one of these observations. On the other hand, there is no doubt that OFG is far from prime panther habitat. Thus, IMC will check for panther signs during pre-clearing surveys and anticipates that the unmined floodplains that are part of the IHM will maintain suitable habitat--presumably, for travel. IMC has already mapped the distribution on OFG of the gopher tortoise, which prefers well-drained, sandy soils characteristic of xeric and mesic habitats. IMC has already prepared a management plan for gopher tortoises, which are a species of special concern, and, upon DEP approval, will engage in several measures to reduce mortality due to mining activities, including, upon receipt of an FWC permit, relocating gopher tortoises, as well as other commensal species found in or near the tortoises' burrows, to appropriate locations, including one or more of the above-described ACIs. The Sherman's fox squirrel, which is a species of special concern, prefers sandhill communities and woodland pastures, and many of these squirrels use suitable areas of OFG. They are mobile, and, during mining operations, they will move to the no-mine areas adjacent to Horse Creek. Prior to land clearing, IMC will survey each area, and, if it finds active nests, these areas will be avoided until the young squirrels have left the nests, pursuant to FWC requirements. The Florida Mouse, which is a species of special concern, inhabits sand pine scrub and other xeric communities and is a commensal of the gopher tortoise. Prior to land clearing of suitable Florida Mouse habitat, IMC will conduct live-trapping. If any such mice are captured, IMC will relocate them to a suitable relocation site, such as to ACI-2, ACI-4, or ACI-6 or to xeric or pine flatwoods/dry prairie habitat that will be reclaimed on OFG. IMC will employ similar procedures for the Florida gopher frog, which is another commensal of the gopher tortoise. A species of special concern, the Florida gopher frog will also be the subject, with other amphibians, of research regarding use of reclaimed habitats and funded by IMC with at least $30,000. The Audubon's crested caracara, which is a threatened species, prefers dry prairie with scattered marshes and improved pasture. They typically nest in cabbage palms or live oak trees. Observers have seen a pair of caracaras on OFG, but attempts to locate a nest onsite have been unsuccessful. Prior to clearing cabbage palms, IMC will again survey the area for nests. If IMC finds a nest onsite or within 1500 feet of OFG, it will develop an FWC-approved management plan. The post- reclamation palmetto prairie and pine flatwoods are good caracara habitat. One of the few listed species whose habitat needs have been well-served by agricultural conversions to improved pasture, the burrowing owl occupies numerous areas on OFG. IMC intends to schedule land clearing in areas with active burrows during non-nesting season, but, if this is impossible, IMC will attempt to empty the burrow prior to clearing the land. Additionally, IMC will spend at least $30,000 to fund research to improve the technology to relocate onto reclaimed land burrowing owls, which are a species of special concern. Although IMC found on OFG no nests of sandhill cranes, which are threatened, or little blue herons, which are a species of special concern, sandhill cranes nest in reclaimed wetlands on the Ft. Green Mine, and IMC expects sandhill cranes to nest in the reclaimed wetlands at OFG. Prior to mining, IMC will survey marshes for sandhill crane and little blue heron nests, and, if it finds any, it will disturb those areas in non- nesting season. Wood storks, which are endangered, use OFG for foraging, but IMC found no evidence of wood stork rookeries on or nearby OFG. The nearest known active rookery is 22 miles from OFG. Prior to landclearing during wood stork nesting season, IMC will survey each wetland with the potential to support stork nesting sites. If IMC finds any nests, it will follow the latest guidelines from FWC or U.S. Fish and Wildlife Service for protecting the site. For the white ibis, snowy egret, and tricolored heron, which are species of special concern, IMC will survey those wetlands that are suitable nesting site prior to landclearing. If any active nests are found, IMC will schedule landclearing during non-nesting season. CRP General Condition 8 provides that groundcover in all upland forests shall include one or more of the following native plants: fruit-bearing shrubs, low-growing legumes, native grasses, and sedges. CRP General Condition 9 provides that IMC shall use native grasses and shrubs when reclaiming grasslands and shrub and brushlands. CRP General Condition 10 provides that IMC shall incorporate clumps of trees in reclaimed improved pasture so that each ten acres has "some trees." CRP General Condition 11 states that IMC shall make "every effort" to control nuisance and exotic species within the mine. CRP Specific Condition 1 is ERP Specific Condition CRP Specific Condition 2 is ERP Specific Condition 23. CRP Specific Condition 3 is ERP Specific Condition 11. CRP Specific Condition 4 is for IMC to obtain authorization from the FWC to trap and relocate Florida mice. Specific Condition 4 requires the trapping and relocation of Florida mice prior to clearing areas inhabited by them. CRP Specific Condition 5 requires IMC to make "every effort" to relocate listed plant species to suitable reclamation sites when such species are encountered prior to or during land clearing. CRP Specific Condition 6 is ERP Specific Condition 12.c. CRP Specific Condition 7 is ERP Specific Condition 12.d. CRP Specific Condition 8.a provides: Areas designated as pine flatwoods . . . and palmetto prairie shall be reclaimed by placing a minimum layer of fifteen (15) inches of sand tailings over the overburden and topsoiling with three (3) to six (6) inches of direct transferred or stockpiled native topsoils from pine flatwoods or palmetto prairie areas as that topsoil is available and feasible to move. Feasible means of good quality, relatively free of nuisance/exotics species, and within 1.5 miles of the receiver site. If topsoil is not available or feasible to move, a green manure crop will be seeded and disked in after it has matured before applying a flatwoods or palmetto prairie native ground cover seed mix to this site. In flatwoods, longleaf pine . . . or slash pine . . . shall be planted in the appropriate areas to achieve densities between 25 and 75 trees per acre. In flatwoods and palmetto prairie, shrubs typical of central Florida flatwoods and palmetto prairies will be recruited from the topsoiling, planting, and/or seeding to achieve a minimum average density of 300 shrubs per acre. The total vegetation covered by hydric flatwoods will be greater than 80 percent, in mesic flatwoods and palmetto prairies will be greater than 60 percent, and in scrubby flatwoods, greater than 40 percent. CRP Specific Condition 8.b provides: Areas designated as sand live oak or xeric oak scrub . . . shall be reclaimed by placing several feet of sand tailings over the overburden and topsoiling with three (3) to six (6) inches of direct transferred or stockpiled native topsoil from scrubby flatwoods or scrub areas. Feasible means of good quality, relatively free of nuisance/exotics species, and within 1.5 miles of the receiver site. If topsoil is not available or feasible to move, a green manure crop will be seeded and disked in after it has matured before applying a scrubby flatwoods or scrubby native ground cover seed mix to this site. Trees and shrubs typical of central Florida scrubs will be recruited from the topsoil, planted, and/or seeded to achieve a minimum density of 600 plants per acre. Vegetative cover in these areas will be greater than 40 percent. CRP Specific Condition 8.c provides: Other upland forest areas, including [temperate hardwoods, live oak, and hardwood-conifer mixed], shall be reclaimed, as illustrated by Map I-2, by placing a minimum layer of fifteen (15) inches of sand tailings over the overburden, capping the area with approximately three (3) inches of overburden and disking the surface to reduce compaction of the upper soil layer prior to revegetation. Other uplands shall be revegetated with a native ground cover, planted with trees to achieve a density of 200 plants per acre, and planted with shrubs to achieve a density of 200 shrubs per acre. CRP Specific Condition 8.d provides that IMC shall incorporate native grass species into the groundcover of all reclaimed uplands. CRP Specific Condition 8.e allows IMC to use bahia grass, Bermuda grass, and exotic grass species as groundcover in native habitats only in "limited amounts" needed for "initial stabilization in areas highly prone to erosion." When using these grasses, IMC must maintain them to prevent their proliferation. CRP Specific Condition 9 is ERP Specific Condition CRP Specific Condition 10 is ERP Specific Condition 21. CRP Specific Condition 11 resembles ERP Specific Condition 11, but requires more of IMC. CRP Specific Condition 11 states that IMC "has committed" to initiate the management and evaluation of amphibians, including the Florida gopher frog, and shall adhere to the provisions of the IMC Minewide Gopher Tortoise and Burrow Conceptual Management Plan. IMC shall pay at least $30,000 to conduct a study of amphibian use of reclaimed and unmined wetlands. IMC shall report its progress in the annual narrative reports that it must file, pursuant to Florida Administrative Code Rule 62C-16.0091. CRP Specific Condition 12 contains similar provisions for the burrowing owl. Related to ERP Specific Condition 15.a, CRP Specific Condition 13 requires IMC to make "every effort" to control cogongrass by eradicating it prior to mining, removing it after it colonizes spoil piles during mining, inspecting donor topsoil sites to prevent infestation by it, and regularly treating it on reclaimed sites to maintain coverage below 10 percent, or 5 percent within 300 feet of any reclaimed wetland. WRP The WRP at issue is for the Ft. Green Mine, not OFG. The basic purpose of the WRP is to permit IMC to dispose of the clay tailings extracted from OFG in CSAs O-1 and O-2, which are located at the southern end of the Ft. Green Mine. In an unchallenged action, DEP, on March 20, 2001, approved a requested modification of the CRP approval for the Ft. Green Mine to permit the changes sought in these cases for the Ft. Green Mine WRP. Thus, the WRP modification sought in these cases is merely a conforming modification. Normally, a WRP/ERP would take precedence over a CRP approval because mining may not start without a WRP/ERP, but may start without a CRP approval. In the unusual situation at the Ft. Green Mine, where the mining has been completed, the analysis of the WRP modification is limited to, primarily, the sufficiency of the changes in mitigation to offset the already- completed mining and, secondarily, the relevant impacts of the mitigation itself. DEP issued the WRP on May 1, 1995. This permit allowed IMC to mine 524.6 acres of wetlands at the Ft. Green Mine. On February 3, 1997, DEP issued an ERP to allow IMC to disturb 1.39 acres of surface water for a utility corridor. Following the receipt of a request by IMC for a major modification of the WRP to permit the mining of 7.6 acres of wetlands, DEP consolidated this request, the utility-corridor ERP, and the original WRP into a new WRP issued July 28, 1999. After a modification to the new WRP in 2000 that is irrelevant to the present cases and other irrelevant permitting activity, IMC has requested the modification that is at issue in these cases. Because this WRP modification follows the completion of mining and the near-completion of backfilling of sand tailings into the mine cuts, a denial would not spare the wetlands and other surface waters from the impacts of mining. Rather, a denial would leave the Ft. Green Mine with greater impacts and less mitigation. In simplest terms, a denial would harm the water resources of the District. Strengthening the already-approved mitigation and diminishing the impacts of the already-approved CSAs, this WRP modification will authorize IMC to reduce the size of the two CSAs (O-1 and O-2) in the southern end of the Ft. Green Mine and relocate them farther from Horse Creek; to relocate several reclaimed wetlands in the vicinity of CSAs O-1 and O-2 and expand their area by 2.7 acres with minor changes to some sub- basin boundaries; and to modify the reclamation schedule to conform to a modification already approved without challenge for the Ft. Green Mine CRP. The record demonstrates that the reduction in size and relocation of the CSAs away from Horse Creek will reduce the hydrological and biological impacts from those already permitted. The record demonstrates that the expansion of the area of reclaimed wetlands will add mitigation to offset the hydrological and biological impacts from already-completed mining activities. The record demonstrates that the relocation of the reclaimed wetlands and modification of the reclamation schedule will not affect the impacts or mitigation. Other Mitigation/Reclamation Projects Introduction The formation of wetlands vegetation, according to IMC biologist Dr. Andre Clewell, is a function of topography, hydrology, soils, and physical environment--to which should be added time. The formation of soils, according to Charlotte County soil expert Lewis Carter, is a function of parent material, time, relief, vegetation, and climate. Hydrology is dependent upon, among other things, topography, soils, geology, vegetation, and climate. Successful reclamation must thus account for the complex interdependency of the dynamic processes involving vegetation, soil, and hydrology. Although actual reclamation follows a clear order-- geology, soils, contouring, and planting--the order of the design process is not so clear. Presumably, in designing a reclamation plan, the biologist, soil scientist, and hydrologist would each prefer to have the final--as in last and authoritative--word. In general, the comparison of older mitigation sites to newer mitigation sites requires caution due to two factors, which somewhat counterbalance each other. The vegetation of the older sites has had longer to establish itself. The importance of this factor varies based on the type of vegetation. Groundcover establishes more quickly than shrubs, and shrubs establish more quickly than trees, but groundcover that requires protection from the tree canopy may not be able to colonize an area until the trees are well-established. Soils take a longer time to recover, generally longer than the timeframes involved in phosphate mining reclamation in Florida. The soils present in Hardee County took 5000 to 10,000 years to form. The A horizon, or topsoil layer, at OFG formed over 300-500 years. However, if the soil and hydrology are suitable at a reclaimed site, an A horizon may start to reform in as little as 10 years, but, even under ideal conditions, it will take several hundred years to reform to the extent and condition in existence prior to mining. The mucky soils underlying bay swamps form at the rate of about one inch per 1000 years. Offsetting the advantage of age for vegetation and soils, the older reclamation sites may suffer from less advanced designs and construction techniques. Newer sites benefit from advances in science and technology that have enabled phosphate mining companies to design and implement reclamation projects that more successfully replace the functions of the natural systems and communities lost to mining. Some of these advances have resulted in dramatic, sudden improvements in reclamation. The assessment of past reclamation projects must account, not only for the age of each project, but also the willingness of the phosphate mining company at the time to employ the then-available science and technology. The ratio of the cost of reclamation to projected revenues depends on the variables of specific mitigation expenses, mining expenses, and the value of the phosphate rock. These economic factors operate against the backdrop of a dynamic regulatory environment. In these cases, for example, IMC's willingness to reduce its mining impacts and expand its mitigation was a direct result of the Altman Final Order and DEP's decision to revisit its earlier decision to permit the Ona Mine. Uplands The uplands at OFG are more amenable to successful reclamation than the wetlands or streams at OFG. Uplands provide crucial functions. Certain uplands, such as those that provide seepage to wetlands or prime recharge to deep aquifers, provide hydrological functions as complex as the hydrological functions of many wetlands. Certain uplands provide irreplaceable habitat. Certain uplands vegetation is as vulnerable to climactic or anthropogenic disturbance as any wetlands vegetation. However, for the most part, the functions of uplands are not as complex or important as the functions of wetlands and other surface waters, when examined from the perspective of the water resources of the District, and these functions are more easily reclaimed. Over 77 percent of OFG and over 90 percent of the uplands at OFG are agricultural (2146 acres) or pine flatwoods, palmetto prairie, or sand live oak (1120 acres). (As noted above, palmetto prairie and sand live oak share many attributes of pine flatwoods, which they often succeed.) In terms of function, tolerance to ranges of hydrology and soils, and robustness of post-reclamation vegetation, these 3266 acres of uplands communities will be easier to reclaim than all of the proposed streams and wetlands, except for deep marshes, although pine flatwoods and palmetto prairies present the greatest difficulties in uplands reclamation due to their soil and hydrological requirements, including access to the post- reclamation water table. Impacts to uplands include the disappearance--even temporarily--of critical habitat for listed species, the susceptibility of uplands to post-disturbance nuisance exotics, and, for upland forested communities, the relatively long period required for restoration of the canopy. However, these impacts can be offset in most cases. Management plans can mitigate the temporary or permanent loss of specific upland habitat, depending on the availability of habitat and the robustness and abundance of the species requiring the habitat. Absent the presence of rare uplands habitat and/or rare species requiring the habitat, a greater problem with uplands reclamation is controlling nuisance exotics. Various grass species, including Bahia, Bermuda, torpedo, centipede, Natal, and cogon, impede progress in the development of a healthy uplands community. One of the world's ten worst weeds, cogongrass is limited to uplands, although it may extend into the higher parts of wet prairies and drier areas within forested wetlands. Although nuisance and exotic species may invade undisturbed areas, the removal of existing upland vegetation exacerbates the problem by removing native competitors and stimulating unwanted germination. However, ongoing maintenance, through a combination of herbicides, manual removal, and fire, controls the nuisance exotics long enough that the native vegetation can colonize the disturbed area. Upland forested communities require protection from grazing and mowing to permit their establishment. Canopy development takes years for any upland forested community and, for slower-growing xeric systems, at least a decade. The timely restoration of an appropriate fire regime is also important for the health of many upland communities. Not surprisingly, the record demonstrates the successful reclamation of uplands at several mitigation sites. In recent years, reclamation scientists have restored uplands structure of uplands by restoring the understory and midstory. Uplands restoration has improved with the introduction of new, more effective reclamation techniques, such as topsoiling and seeding. Until 1987, for instance, restoration biologists did not know that wiregrass--a key component of the understory of pine flatwoods--produced seeds. This knowledge has assisted in the reclamation of a proper understory of pine flatwoods. The favorable prognosis of uplands reclamation means that extensive areas of OFG uplands may be mined. Their functions will be substantially replaced, in a reasonable period of time, upon the establishment of the reclaimed upland community, although the destruction of xeric communities means their absence for relatively long periods of time and the destruction of uplands providing seepage support to wetlands requires the close-tolerance hydrology and soils associated with the most difficult wetlands reclamation. Approved in 1989 and amended in 1994, constructed by 1986, and released in 1994, Best of the West (NP-SWB(1D)) was targeted for 15-18 acres of xeric habitat. Best of the West was constructed on sand tailings overlaying overburden, although this site exhibits some stunted vegetative growth where the sand tailings may not be very thick and the roots of trees may have encountered the hardened overburden. FWC assisted the phosphate mining company in designing the reclamation plan for this site, which has resulted in the successful reclamation of 10 acres of xeric habitat. The CDA provides some background on Best of the West. The West Noralyn Xeric Scrub Reclamation (N-5), which was constructed by 1986, contained "mulched overburden plots" and 60 acres of unmined scrub. Containing a total of 462 acres of reclaimed and unmined land, Noralyn was the first attempt to create a large-scale xeric community. About 120 acres of Noralyn received 12 inches of donor topsoil from a comparable xeric community. Due to a lack of representation in the donor site, supplemental plantings of longleaf pine, sand pine, and rosemary followed. The overall project has been "moderately successful," but the 18 acres that yielded "exceptional results" were dubbed "Best of the West." Best of the West thus illustrates a recurrent feature of much reclamation activity, in which successful projects are actually small parts of the original project area, the rest of which is substantially less successful. The CDA states that, in January 2000, IMC initiated a land management program for Noralyn that includes herbicide applications and prescribed burns. After herbicide was applied to kill cogongrass, IMC conducted the first burn in March 2001. Noralyn is now being managed for four to five families of Florida scrub jays, a listed species. Four Eastern Indigo snakes, 225 gopher tortoises, numerous gopher frogs, and 119 Florida mice have been relocated to Noralyn. Approved in 1988, constructed in 1991, and released in 1992, Hardee Lakes topsoil (FG-PC(1A)) has a 7.9-acre uplands component that was topsoiled with one inch over overburden. Despite receiving no maintenance, the site displays few weeds or nuisance exotics, although cogongrass has invaded the site. The reclaimed site displays saw palmetto, gallberry clumps, creeping bluestem grass, and, in topsoiled areas, flowering milkwood. The site includes an ecotone between pine flatwoods and a wet prairie, which developed due to the appropriate slope and soil. The CDA identifies two one-acre demonstration projects with Hardee Lakes topsoil. The Ft. Green-Hardee Lakes Pine Flatwoods Project, a topsoiled site, has achieved a lower ratio of saw palmetto to pines than is presently typically of fire-suppressed communities and is more typical of historic Florida pine flatwoods. The Ft. Green-Hardee Lakes Palmetto Prairie Site, also topsoiled, has been successfully revegetated with saw palmettos and other appropriate species. An interesting uplands reclamation site, for its different use of soils, is the Bald Mountain complex (KC-LB(2) and LB(4)), which is a 180-acre site. In a reclamation project approved in 1989 and 1996, constructed in 1993, and released in 1994 and 2002, IMC backfilled the Bald Mountain site with sand tailings down to 40 feet, capped the sand tailings with six inches of overburden, and then mixed the soils. Nearby, Little Bald Mountain received only sand tailings. Scrub were planted on both locations, but Bald Mountain also received sandhill plantings. Bald Mountain contains suitable sandhill species, such as sandhill buckwheat, although natal grass has been a problem. Natal grass is an invasive grass that colonizes quickly and often requires manual removal. Little Bald Mountain contains appropriate understory grasses, including short-leaved rosemary, an endangered species; Gopher apple, an important wildlife food; and Ashe's [savory] mint, a listed species. The rosemary and mint are reseeding themselves. The site also contains several large palmettos that were started from seed. Approved in 1996, constructed in 2000, and not yet released, Ft. Green/Horse Creek Xeric (FG-HC(3 & 5)) is a 99-acre uplands site reclaimed as xeric oak. IMC backfilled at least six feet of sand tailings over the overburden and then added topsoil over the sand. Already, this site, which is in the nearby Ft. Green Mine, has developed all levels of structure in the appropriate ecosystem, although, according to the CDA, it received irrigation "frequently" from an irrigation system at the start of the project. The site includes denser vegetation, such as shrub palmetto, grasses, and forbs. The direct transfer of topsoil has added species diversity, such as a Florida spruce and a listed orchid. The site also contains a small number of longleaf pines. IMC has hand-removed natal grass at this site, but has lately been using a new selective herbicide. According to the CDA, though, the presence of invasive exotics throughout the site is limited to 0.4 percent. One of the best upland reclamation sites is MU 15E Topsoil (FCL-LMR(6)), which was approved and constructed in 2002 and has not been released. This is a 30-acre topsoiled site in which IMC transferred topsoil carefully: if topsoil was taken from a depression on the donor site, the topsoil was placed in a depression in the receiving site. This site already displays a rich diverse plant palette with hardly any weedy or exotic species. In this site, palmetto and wet prairies slope down to a flatwoods marsh. This site also contains a reclaimed ephemeral wet prairie--possibly the only known ephemeral wet prairie ever reclaimed after phosphate mining. With modest efforts regarding soils and possibly more strenuous efforts regarding nuisance exotics, the reclamation of uplands is relatively easily attained, provided the sites can be protected for the longer timeframes necessary to establish upland forests and especially upland xeric communities and an appropriately shallow water table is reclaimed for pine flatwoods and palmetto prairies. Wetlands Wetlands reclamation is generally more difficult than uplands reclamation. Successful wetlands reclamation typically requires better command of post-reclamation topography, hydrology, soils, and physical environment. Material deviations in these parameters reduce, or eliminate, many wetlands functions, such as floodplain communication, nutrient sequestration, floodwater attenuation, ecotone transitions, and habitat diversification. The loss of such functions may result in immediate problems with water quality, water quantity, and habitat. Given the greater difficulty in successful wetlands reclamation, experience in wetlands reclamation is, not surprisingly, more mixed than the generally favorable experience in uplands reclamation. The greater difficulty in, and more guarded prognosis of, wetlands reclamation, as compared to uplands reclamation, means that the disturbance of wetlands demands closer analysis of the functions of the wetlands proposed to be mined, the functions of the wetlands proposed to be reclaimed, and the reclaimed soils, hydrology, topography, and physical environment on which the reclamation scientists will rely in reclaiming wetlands functions. The most important factor in wetlands reclamation is hydrology. Wetlands with less rigorous hydrological needs, especially if they also tolerate deeper water over longer periods of time, reclaim much more easily than wetlands with more precise hydrological needs, especially if they require shallower water over shorter periods of time. The phosphate mining industry has repeatedly reclaimed marshes and cypress swamps that are inundated deeply and for extended periods of time, but has had a much harder time reclaiming shallower wetlands requiring shorter hydroperiods or shallower water levels. The two most difficult wetlands of this type to reclaim are bay swamps and wet prairies. Among herbaceous wetlands, deep marshes are the easiest to reclaim. Often a target of Land-and-Lakes reclamation, deep marshes also are the result of reclamation projects that failed to create targeted shallower wetlands. Charlotte County ecologist Kevin Irwin noted that deep marshes are easier to reclaim than forested wetlands, for which the post-reclamation hydrology must be more precise. Similarly, a freshwater marsh, which tolerates 6-30 inches of water from 7-12 months annually, is easier to reclaim that a wet prairie, which tolerates 0-6 inches of water from 2-8 months annually. Among forested wetlands, bayheads or bay swamps, as defined in these cases as seepage forested wetlands, are harder to reclaim than mixed wetland hardwoods, as IMC biologist Dr. Douglas Durbin testified--likely, again, due to the requirement of more precise post-reclamation hydrology. Accordingly, the parties do not dispute the ability of the phosphate mining industry to reclaim deep marsh habitat, including freshwater marshes and shrub marshes, as well as deep swamps--principally cypress swamps. Like wet prairies, which sometimes fringe deep marshes, deep marshes provide habitat, supply food, attenuate floodwaters, and improve water quality. Deep marshes may host large numbers of different plant species. However, like lakes, deep marshes remove larger amounts of water from the watershed, as compared to shallower wetlands with shorter hydroperiods, due to evapotranspiration. The reclamation projects known as Morrow Swamp, Ag East, 8.4-acre Wetland, and 84(5) trace a short history of the reclamation of deep-marsh habitat. Permitted in 1980, constructed in 1982, and released in 1984, 150-acre Morrow Swamp represents a prototype, second- generation wetlands reclamation project. According to the CDA, Morrow Swamp is from an era in which reclamation did not attempt to restore topography: "This ecosystem included the reclamation of 150 acres of wetland (freshwater marsh, hardwood swamp, and open water) and 216 acres of contiguous uplands. The reclamation site was originally pine flatwoods and rangeland before it was mined in 1978 and 1979." Designed and built before reclamation scientists concentrated on soils, the hydrological connection between Morrow Swamp and Payne Creek, into which Morrow Swamp releases water, is a concrete structure in a berm that leads to a swale that empties into Payne Creek. Morrow Swamp reveals one obvious shortcoming of mechanical outflow devices, at least if they depend on ongoing maintenance, because vegetation and sedimentation in the infrequently maintained outflow device have blocked the flow of water and contributed to water levels deeper than designed. The reclamation scientists pushed the row-plantings of trees in Morrow Swamp in an effort to understand the relationship of vegetation and hydroperiod. In doing so, they killed thousands of trees, such as the cypress trees that Authority ecologist, Brian Winchester, found that grew to 6-8 inches in diameter and suddenly died. This tree mortality was likely due to problems with water depths and hydroperiods, as suggested by the healthier cypress trees lining the shallower fringe of the marsh. Morrow Swamp operates as a basin with a perched water table atop compacted, relatively impermeable overburden. Beneath the dry overburden is moist soil, so there is no groundwater connection between the marsh and the surficial aquifer. According to Mr. Carter, sand is 15 times more permeable than overburden. Morrow Swamp presents numerous shortcomings, but not to alligators, who find ample food and habitat in and about the deep marsh. More importantly, the emergent-zone vegetation within Morrow Swamp is sequestering nutrients and thus providing water-quality functions. Unfortunately, the deeper water supports only floating vegetation, which is much less efficient at sequestering nutrients, and less diverse than the shallower emergent vegetation, so the excessive depths of Morrow Swamp limit its water-quality functions. Although short of a model wetlands reclamation project, Morrow Swamp was an important milestone in the development of wetlands reclamation techniques and clearly functions as a deep shrub marsh today. Permitted in 1985, constructed in 1986, and released in 2002, 214-acre Ag East (PC-SP(1C)) was built on the knowledge acquired from Morrow Swamp. At Ag East, which is just northeast of Morrow Swamp, the reclamation scientists, planting a large variety of trees, focused on water levels and hydroperiods. The reclamation scientists engineered a wetland system with less open water than Morrow Swamp. They also inoculated the surface with a layer of organic mulch material 2-4 inches thick. However, the design of Ag East again incorporated mechanical devices to control water levels. A weir at one corner of Ag East contains boards; by removing or adding boards, reclamation scientists could control the water depths behind the weir. The deep marsh within Ag East is excessively deep with an excessively long hydroperiod. In certain respects, Ag East has functioned better than Morrow Swamp, although there is some question as to vegetative mix establishing the site and the associated functions that the vegetation will provide. Again, though, Ag East features a functioning deep marsh. One clear shortcoming of Ag East was the failure to create appropriate upland habitat, such as pine flatwoods, around the wetlands, so that wetland species could find appropriate uplands habitat for breeding, nesting, or feeding. The CDA notes the availability of quarterly water quality monitoring data, over a five-year period, for pH, dissolved oxygen, conductance, and total phosphorus, among other parameters, but the results are not contained in this record. Permitted in 1983, constructed by 1986, and released in 1995, 8.4-Acre Wetland (FG-83(1)), which was targeted for 8.4 acres of wetland forested mixed, represents an early use of topsoil, which was a good seed source for herbaceous species and helped increase the effective depth of overburden. As noted above, shallower overburden discourages tree growth past a certain stage. However, 8.4-Acre Wetland also uses a water- control weir to control water depths on the reclaimed wetland. Despite its smaller size than Morrow Swamp or Ag East, 8.4-Acre Wetland was a more ambitious project hydrologically, as it attempted to replace a seepage wetland with a seepage wetland that would receive water from the surrounding uplands. Unlike Morrow Swamp and Ag East, 8.4-Acre Wetland was designed to reclaim only forested wetlands, not forested wetlands and marsh wetlands. Unfortunately, 8.4-Acre Wetland did not re-create a seepage wetland due to excessively deep water and excessively long hydroperiods. Emphasizing instead the creation of microtopography, the reclamation scientists added sand-tailings hummocks within the deeper marsh, effectively lowering the water table under the mound, and planted wetland herbaceous and forested species that could not tolerate the wetter conditions around the hummock. The evidence is conflicting as to the success of these hummock plantings, but the idea was sound. Parts of 8.4-Acre Wetland are at least half infested with cattails, and sizeable areas within 8.4-Acre Wetland are reclaimed marsh, not swamp--despite the attempt of the reclamation scientists to reclaim forested wetlands only. Permitted in 1985, constructed by 1987, and released in 1998, 84(5) (FG-84(5)) was targeted for 17.1 acres of wetland forested mixed and 2.3 acres of freshwater marsh. This site is notable for its soil characteristics. After two soil borings, Mr. Carter could not find a water table in the first 80 inches beneath the surface. However, he found an A horizon, but the CDA notes that this site received 18 inches of donor topsoil. Even more recent reclamation projects have tended to yield deep marshes. Permitted in 1997, constructed in 2002, and not yet released, 198-acre P-20 (FG-HC(9)) exists behind the berm that remains from the ditch and berm system that existed during mining. The sole outlet of the marsh is a discharge pipe, which, presently clogged with vegetation, appears to be contributing to excessively high water depths and excessively long hydroperiods, resulting in an abrupt transition from marsh to uplands without the zonal wetlands associated with natural transitions from marsh to uplands. Water in the marsh spreads into the surrounding uplands, which are planted with upland trees. The berm also prevents natural communication between the marsh and the floodplain of Horse Creek, which is a short distance to the west of P-20. In the reclamation projects described above, more often than not, the reclamation scientists reclaimed deep marshes while targeting shallower wetland systems or at least shallower marshes or swamps. By the mid-1980s, wetlands reclamation scientists were addressing more closely hydrology, vegetation, topsoil, and surrounding upland design, and DEP was imposing post-reclamation monitoring requirements on the phosphate mining companies. One common feature of most of these deep-marsh reclamations is their reliance upon artificial drainage outlets. Inadequate or nonexistent maintenance of these outlets causes excessive water depths for excessive periods. Additionally, reliance on artificial drainage outlets betrays the choice not to attempt more sophisticated design and more precise contouring of the post-reclamation landscape. Improvements in the design and execution of contouring could produce relief from the deep- marsh tendencies of reclamation practices in at least three ways: by flattening the slopes of the edges of the marshes to encourage the formation of more emergent vegetation and wet prairie fringes; introducing a more irregular microtopography in the submerged bottom, including hummocks, to develop greater habitat diversity; and engineering and grading more closely the topographical outlets of marshes, instead of relying on manmade drainage devices that required more maintenance than they received, to better reproduce pre-mining drainage features and access effectively the reclaimed water table. After 8.4-Acre Wetland, reclamation scientists produced, in addition to the P-20s, other marshes with better fringes, so as to support wet prairie fringes, but the most, and evidently only, successful example of shallow-wetland reclamation over an extensive area is PC-SP(2D) (SP-2D). Permitted in 1988, constructed in 1992, and released in 1998 (wetlands), SP(2D) comprises 97 acres of forested and herbaceous wetlands. According to Mr. Winchester, SP-2D exhibits a more natural hydroperiod than the other reclaimed wetlands that he studied. Mr. Winchester visited SP-2D during the dry season, and the shallow wetland was appropriately dry, even though other reclaimed wetlands at the time were inappropriately wet. Mr. Winchester also found less than ten percent coverage by exotic vegetation. Wet prairie fringes deeper marsh at SP-2D, rather than forming larger areas of isolated or connected wet prairie, but this wetland achieves extensive shallow-water areas. According to Authority ecologist Charles Courtney, the marsh of SP-2D appears fairly healthy and contains appropriate vegetation. SP-2D contains sawgrass and forbs, including maidencane and duck potato. Crayfish occupy the wet prairie fringe and are eaten by white ibis and otter. The marsh zonation found at SP-2D is partly a result of appropriate soil reclamation. Mr. Carter found good communication between the shallow marsh at SP(2D) and the surficial aquifer. In the wet season, Mr. Carter found the water table at eight inches above grade, demonstrating that the dry conditions found by Mr. Winchester during the dry season did not extend inappropriately into the wet season. Mr. Carter determined that the first four inches of the wetland is mulched topsoil overlying at least four feet of sand tailings. The subsurface soils were appropriately saturated. Permitted in 2002, constructed in 2003, and not yet released, 1.3-acre FCL-NRM(1) (Regional Tract O, ACOE #362) also contains wet prairie vegetation, but the value of this site, for present purposes, is limited by two factors: its age and its use of a technique not proposed for OFG. Regional Tract O, ACOE #362, is a new site that showcases the success--one year after planting--of the technique of cutting wet prairie sod at a donor site and laying it at the recipient site. Sod-cutting is a good technique, earlier used at Morrow Swamp, but is more expensive than the topsoil transfer proposed for OFG. The reclamation of forested wetlands has improved in recent years. To some extent, the history of forested-wetlands reclamation tracks the path of herbaceous-wetlands reclamation: deeper water for longer periods followed by instances of shallower water for shorter periods. Early in the forested-wetlands reclamation process, reclamation scientists and phosphate mining companies favored cypress trees due to their tolerance of a wider range of water depths and hydroperiods than other wetland trees. However, cypress trees do not occur naturally in the forested wetlands being mined in this part of Florida. Over time, reclamation scientists deemphasized the number of species of wetland trees and emphasized instead species that corresponded to those in comparable forested wetlands. Herbaceous and forested wetlands present different reclamation challenges due to the time each type of wetland requires for revegetation. An herbaceous wetland takes 1-2 years to revegetate, but a forested wetland may take 1-2 decades to gain "really good structure," as Dr. Clewell testified. In addition to taking longer to establish than herbaceous wetlands, forested wetlands require two stages of plantings because the groundcover cannot be added until 4-5 years after planting the trees, so that the trees provide sufficient cover for the appropriate groundcover to grow. The hydrological requirements of different forested wetlands vary. IMC will be reclaiming mostly mixed wetland hardwoods (44 acres), bay swamps and wetland forested mix (each 18 acres), and hydric pine flatwoods (15 acres). All of these communities require water depths equal to those required by wet prairies. Hydric pine flatwoods have a very short hydroperiod-- shorter even than the wet prairie. Bay swamps have a long hydroperiod, comparable to that of the freshwater marsh. And mixed wetland hardwoods and wetland forested mix have hydroperiods roughly equal to that of the wet prairie. The dryness required by mixed wetland hardwoods, wetland forested mix, and especially hydric pine flatwoods make them difficult to reclaim. At first glance, the longer hydroperiod of the bay swamp would seem to make it easier to reclaim, among forested wetlands, but two factors make the bay swamp the most difficult of forested wetlands to reclaim. First, as defined in these cases, the bay swamp provides a critical seepage function, which is hard to create because of its reliance on a precise reclamation of topography, hydrology, and soils, at least with respect to the soil-drainage characteristics. Second, the mucky soils of the bay swamps are difficult to reclaim, given their slow rate of formation, as noted above. Thus, even without the requirement of the dominance of bay trees within the bay swamp, as defined in these cases, bay swamps are very difficult to reclaim, as reclamation experience bears out. An early reclaimed forested wetland is 4.9-acre Bay Swamp (BF-1), which was created on land that had been cleared, but at least large portions of it were never mined, so, except possibly for a disturbed A horizon, the pre-mining soils and site hydrology were intact. Permitted under a predecessor program in 1979, constructed by 1980, and released in 1982, Bay Swamp earned restrained praise from the Authority as, with Dogleg Branch, one of the two highest-functioning reclamation sites. This praise is quickly conditioned with the warning that Bay Swamp did not reclaim as a bay swamp, but as another type of forested wetland, albeit a relatively high functioning one. For all these reasons, Bay Swamp is of limited relevance in evaluating the success of forested wetlands reclamation projects. However, in commenting upon Bay Swamp, the CDA offers some insight into the evolution of reclamation design standards and objectives and the optimism of reclamation scientists when it notes the difficulty of establishing loblolly bay-dominated swamps, "apparent[ly because they require] perennially moist, or wet, soil that is not inundated. Heretofore, these moisture conditions have not been specified as an objective in reclamation design. If these moisture conditions were targeted for reclamation, loblolly bay swamp creation would likely become routine." Another candidate for a reclaimed bay swamp is Lake Branch Crossing (BF-ASP(2A)). Permitted in 1993 and modified in 1997, constructed in 1996, and not yet released, 13.4-acre Lake Branch Crossing contains numerous sweet bays, loblolly bays, and black gums. However, this site was replanted with 4000 trees in mid-2002, and over one-quarter of these trees are displaying signs of stress, so they may not survive. Lake Branch Crossing is bound by a berm with culverts, which may not share a common elevation. Lake Branch Crossing is another excessively deep wetland with an excessively long hydroperiod. Although Lake Branch Crossing exhibits some seepage, it derives its water from a nearby CSA with a much-higher elevation and thus does not compare to the seepage systems to be reclaimed at OFG. The final candidate for a reclaimed bay swamp is Hardee Lakes (FG-PC(1A)), which is a 76-acre wetland forested mixed at the top of the Payne Creek floodplain. Permitted in 1989 and modified in 1994, constructed by 1991, and released in 2000, Hardee Lakes (which is not Hardee Lakes topsoil--the uplands site described above) contains a narrow seepage slope between the berm along the edge of a reclaimed lake and the natural Payne Creek floodplain. Although Hardee Lakes contains some bay trees and operates as a seepage wetland, the setting is inapt for present purposes, given the narrow slope descending from the nearby reclaimed lake, which provides the water for the seepage system. Like Lake Branch Crossing, Hardee Lakes presents an unrealistically easy exercise in the reclamation of a seepage slope and is therefore irrelevant to these cases. At OFG, broader seepage slopes will receive much of their water from upgradient groundwater that is not derived from a lake or other surface water, so the reclamation scientists must reclaim more accurately the topography, hydrology, and soils, again, at least with respect to soil-drainage characteristics. Reclamation scientists monitored Hardee Lakes following reclamation. Besides the seepage slope described in the preceding paragraph, Hardee Lakes contains shallower wetlands, including productive wet prairie and mixed wetland hardwoods that are growing without the need of hummocks, but these areas appear to be more isolated than extensive. As IMC restoration ecologist John Kiefer noted, shallow swamps are better than deep swamps. Again, the tendency toward deeper reclaimed systems, even recently, has plagued reclaimed forested wetlands, such as Lake Branch Crossing, as it has plagued reclaimed herbaceous wetlands. Permitted in 1992 and modified in 1998, constructed in 2002, and not yet released, North Bradley (KC-HP(3) and PD-HP(1B)) was reclaimed for 12 acres of wetland hardwood forest, 21 acres of wetland conifer forest, and 87 acres of herbaceous marsh. North Bradley suffers from poor communication with its water table, as evidenced by Mr. Carter's discovery of a perched water table under the marshes and an excessively deep water table, at 48 inches, under the forested wetlands, as compared to a water table at 40 inches under the uplands. Although the marsh is present, the forested wetland is largely absent. The SP(2D) of forested reclamation projects is Dogleg Branch (L-SP(12A)). The 19.8-acre wetland component of Dogleg was targeted exclusively for wetland hardwood forest. Another 83 acres of Dogleg was reclaimed as upland hardwood forests. Permitted in 1983, constructed by 1984, and released in 1991 (uplands) and 1996 (wetlands), Dogleg's hydrology is better, as one reclaimed area reveals seepage from a mesic area sheetflowing into the stream channel, which was also reclaimed and is discussed in the following section. Due to its proximity to the reclaimed wetlands, this mesic area was probably part of the reclaimed uplands. According to the CDA, Dogleg received transfers of its own mulch and received several phases of tree plantings over several years. The CDA notes that Dogleg was the first forested wetland mitigation project under Florida's dredge and fill rules. Trees were established in part by the transplanting of rooted tree stumps. Forest herbs and shrubs and mature cabbage palms were transplanted from nearby donor sites. Despite these and other efforts, according to the CDA, "design flaws attributable to a lack of prior restoration experience required costly mid-course corrections." Due to high tree mortality, trees had to be replanted over 11 years. The CDA concludes that the problem was a depressed water table due to nearby ongoing mining operations--if Dogleg had a ditch and berm system, it certainly did not have recharge wells. Following mining, according to the July 1995 semi-annual report, over 30 acres of mine pits immediately east and north of the unmined headwaters of Dogleg were filled with sand tailings, which then released "[c]onsiderable in-bank storage of ground water from this sand[, which] has seeped ever since through Dogleg Preserve and into the replacement stream." Prior to the cessation of mining, though, Dogleg suffered dehydration. According to the CDA, due to the drawdown, the topsoil dried out, and the overburden, on which the topsoil had been placed, hardened in the dry season, retarding root extension. The actual soil conditions are described in greatest detail in the July 1995 semi-annual report, which states that 12 inches of topsoil overlaid the "overburden fill," which was "clayey sand." Repeated and persistent replanting of trees, seedlings, and saplings eventually succeeded in establishing an appropriate wetland forest, which, given the prevalence of hardwoods, would constitute the successful reclamation of a mixed wetland hardwoods community, given the negligible representation of cypress trees and other conifers at the site. As reclaimed, Dogleg hosts 24 different species of wetland trees, including all that occur on OFG. Dogleg's forested wetlands are functioning well, although the reclaimed uplands have a major cogongrass infestation. Permitted in 1985, constructed by 1987, and released in 1998, 19.4-acre FG-84(5) (84(5)) was targeted almost entirely for wetland forested mixed, and small areas within 84(5) have achieved this objective. However, reclamation scientists planted so many cypress trees that their dominance today precludes the application of the wetland forested mixed label to the overall wetland. Nonetheless, 84(5) is a relatively high- functioning forested wetland community today. Engineered to contain hummocks, 84(5) also featured the use of transferred topsoil overlying cast overburden to a depth of at least six feet. Despite the presence of the topsoil layer, the proximity of the cast overburden to the surface, without an intervening sand layer, may have discouraged the formation of an appropriate water table. Although drawing on a lake, 84(5) displayed, in one soil boring during the middle of the wet season, no water table--not even a perched one--through the first 80 inches below grade. A small strip of saturated soil existed at the surface, but the highly compacted and impermeable overburden prevented communication between the wetland and the surficial aquifer. The slopes of 84(5) are also excessively steep. Substantial efforts are required to reclaim the shallow herbaceous wetlands and forested wetlands to be reclaimed at OFG. Deeper marshes and swamps require less effort to reclaim, although they develop more often than targeted when the reclamation scientists overshoot the mark as to hydrology. For shallow wetland systems, which are more important to reclaim, the failures far outnumber the successes, even today, so considerable caution is required in mining high-functioning shallow wetland systems and considerable effort is required in their reclamation. No bay swamps have been reclaimed, except under atypical conditions. Streams The successful reclamation of streams has also proven elusive to reclamation scientists and the phosphate mining industry. Although only one reclamation of a high-functioning, extensive shallow herbaceous wetland exists, fringe and small- scale shallow wetlands have been reclaimed. The difference between the reclamation of shallow herbaceous wetlands and streams is that reclamation scientists have benefited from 25 years of trial and error in engineering shallow wetlands. No similar history exists in the engineering of streams. Only nine stream-reclamation sites are identified in these cases, and, as DEP contends, only one of these sites is successful: Dogleg Branch. And even Dogleg Branch fails to access its floodplain properly and probably never will. The biggest difference between shallow wetlands reclamation and stream reclamation is that, until OFG, the phosphate mining industry has not intensively designed stream-reclamation projects, so IMC and its reclamation scientists have little experience on which to draw. A wetlands-reclamation practice, as found in a Florida Institute of Phosphate Research study described by Mr. Irwin, has been to reclaim wetlands downslope from their pre-mining location. Concentrating reclaimed wetlands downslope facilitates the re-creation of supporting hydrology. For OFG, IMC proposes to relocate wetlands downslope--probably to good effect, given the reversion of OFG to cattle ranching, post- reclamation. However, an adverse aspect of this practice has been the mining of upslope, lower-order tributaries and their replacement with downslope deeper marshes. Although difficult to quantify, this and similar reclamation practices have resulted in the destruction, by phosphate mining, of many lower- order streams and their permanent loss to the watershed and ecosystem. When attempting to reclaim streams, rather than convert them to downslope marshes, the phosphate mining industry and reclamation scientists have enjoyed little success. Two reasons likely explain this poor record: the complexity of the functions of a lower-order stream system, including its riparian wetlands and floodplain, and an excessive reliance on the ability of streams, post-reclamation, to self-organize. The importance inherent in the stream, its riparian wetlands, and its floodplain, as a functional unit, is reflected in the decision of IMC to extend the no-mine area to Horse Creek and its 100-year floodplain. Dr. Durbin accurately observes that IMC and its 100-year floodplain are, respectively, the first and second most important natural resources present at OFG. Horse Creek's tributaries and their floodplains are important for many of the same reasons. Relying upon reclaimed systems to self-organize is an essential element of effective reclamation. Natural and anthropogenic forces shape all of the natural systems present at OFG, and these forces will shape the reclaimed systems. Good reclamation engineering accounts for the dynamic nature of these reclaimed systems by establishing initial conditions, such as natural outfalls instead of weirs and culverts, that can evolve productively in response to the forces to which they are subject and eventually become high functioning, self-sustaining ecosystems. On the continuum between intensively engineered reclamation projects and reclamation projects that rely on self- organization, stream-reclamation projects in the phosphate mining industry have so heavily emphasized the latter approach over the former that they may be said to have reclaimed streams incidentally. That is, reclamation scientists have reclaimed streams by contouring valleys so that the erosive process of flowing water would form a stream channel over time: often, a long time. At DEP's urging after the issuance of the Altman Final Order, IMC has introduced a much more intensively engineered stream-reclamation effort in its Stream Restoration Plan. The main problem in assessing the likelihood of the success of the highly engineered Stream Restoration Plan is its novelty. On the one hand, the incidental reclamation of streams typically has been so slow in restoring functions that a more intensively engineered plan could generate quick gains, at least in the replacement of the functions of low-functioning stream systems, such as those that have been substantially altered by agricultural uses. On the other hand, the Stream Restoration Plan has little success--and no engineered success--on which to build, and misdesigned elements could take longer to correct than the undesigned elements in an incidentally reclaimed stream. Thus, when the uncertainties of successful stream reclamation are combined with the complex functions of lower-order tributaries, their riparian wetlands, and their floodplains, the higher- functioning streams at OFG are less attractive candidates for mining and reclamation than even the shallow wetlands discussed above. Horse Creek's tributaries are not necessarily low- functioning due to their status as intermittently flowing, lower-order streams. Even intermittently flowing, lower-order streams, such as all of the tributaries of Horse Creek, restrict the erosion of sediment into higher-order streams, uptake nutrients, maintain appropriate pH levels, and provide useful habitat for macrobenthic communities, macroinvertebrates, amphibians, and small fish. Intermittently flowing lower-order streams attenuate floodwaters by diverting floodwaters into the streams' floodplains, thus reducing peak flows, extending the duration that floodwater is detained upstream, and increasing groundwater recharge and, thus, streamflow. Intermittently flowing lower-order streams also supply energy for higher-order streams and the organisms associated with these stream systems, as organic material from vegetation, algae, and fungi in the lower-order streams eventually is flushed downstream to serve as food sources to downstream organisms. The functions of streams, including intermittently flowing lower-order streams, become even more complex and difficult to replace when considered in relation to the functions of the riparian forested wetlands associated with many lower-order streams, such as the Stream 1e series. The riparian forested wetlands provide additional attenuation of floodwaters, as the trees impede the flow of floodwater more than would ground-hugging herbaceous vegetation. Mature trees lining the stream provide a canopy that can cool the waters in the warmer months (thus reducing water loss to evaporation), provide downstream food in the form of leaf litter in the seasonal loss of leaves, shield interior water and habitats from the effects of wind, provide habitat for feeding and hiding for wildlife, and protect the channel from the impact of cattle (thus reducing the damage from the production of waste and turbidity and destruction of the channel and vegetation). The riparian forested wetlands are important in the sequestration of nutrients. If accompanied by flow-through wetland systems, such as those present in the Stream 1e series, riparian forested wetlands display a complex interrelationship between the roots and soils that contributes to improved water quality, among other things. The riparian forested wetlands also provide microhabitats whose detail and design would defy the restoration efforts of even the most dedicated of stream- restoration specialists, of whom IMC's stream-restoration scientist, John Kiefer, is one. For some of the stream-restoration projects, DEP explicitly permitted or approved the reclamation of a stream. For other such projects, DEP, at best, implicitly permitted or approved the reclamation of a stream. Four of the projects are tributaries to the South Prong Alafia River and are in close proximity to each other. From upstream to downstream, they are Dogleg Branch, whose forested wetland component has been discussed above; Lizard Branch (IMC-L-SP(10)); Jamerson Junior (IMC-L-CFB(1)); and Hall's Branch (BP-L-SPA(1)). Hall's Branch is about 4-5 miles upstream from the confluence of the South Prong Alafia River and North Prong Alafia River. All four of these reclaimed streams are now part of the Alafia River State Park. As noted above, Dogleg, a 19.8-acre wetland hardwood forest and 83-acre upland hardwood forest, was constructed in 1984 and is the oldest of these four reclamation sites adjoining the South Prong Alafia River. Next oldest is Hall's Branch, which was permitted as a 3.8-acre wetland hardwood forest in 1982, constructed by 1985, and released in 1996. Next oldest is Jamerson Junior, which was permitted as a 4.3-acre wetland forested mixed in 1984, constructed in 1986, and released in 1996. Ten years younger than the others is Lizard Branch, which was permitted in 1983 and modified in 1991, constructed in 1994, and released in 1996; some question exists as to its target community, but it was probably a swamp. The reclaimed stream at Dogleg Branch is part of a second-order stream, although the CDA reports that Dogleg Branch was a first-order stream. Pre-mining, Dogleg Branch and Lizard Branch joined prior to emptying into South Prong Alafia River. Portions of the record suggest that the reclaimed stream lies between unmined stream segments upstream and downstream, although one exhibit, cited below, implies that the mining captured the point at which the stream started. The CDA and the July 1995 semi-annual report state that the headwaters of Dogleg were unmined or preserved. The CDA adds, with more detail than the other sources, that the headwater and first 600 feet of the stream were unmined, and the next 1000 feet, down to the forested riparian corridor of South Prong Alafia River, was mined. Due to its detail, the CDA version is credited, as is the July 1995 semi-annual report: the headwaters of Dogleg Branch are unmined. The July 1995 semi-annual report states that the stream-reclamation component of Dogleg Branch required persistence, as did its forested wetlands component. In 1987, one year after the filling of the mine cuts with sand tailings, as described above, it was necessary to cut a new channel, because the gradient of the old reclaimed channel was too shallow and forced water to back up in the unmined headwaters. Reflective of the age of the reclaimed stream, the understory vegetative species associated with Dogleg Branch are more successional, having replaced the lower-functioning pioneer vegetative species that first predominated after reclamation. As a stream-reclamation project, Dogleg Branch has achieved close to the same success that it has achieved as a reclaimed wetlands forest or that SP(2D) has achieved as an extensive herbaceous shallow water wetland. The slope of Dogleg Branch's reclaimed channel is steeper than the slopes of its unmined channels, and the reclaimed segment, which functions well vertically within the banks of the channel, does not access its floodplain properly, largely due to its entrenched nature. Due to the entrenchment underway, it is unlikely that the reclaimed segment of Dogleg Branch will ever communicate with its floodplain, as its unmined segments do. Entrenchment is a measure of channel incision-- specifically, the width of the floodprone area, at a water level at twice bankfull, divided by the bankfull width. Entrenchment may cause excessive erosion, which may result in adverse downstream conditions, such as turbidity and lost habitat. Proceeding perpendicular to the flow of the water, entrenchment extends the channel into the riparian wetlands or uplands alongside the stream, dewatering any nearby wetlands and disturbing the local hydrology. Especially if entrenchment is associated with head-cutting, which operates up the streambed, the resulting erosion deepens the channel sufficiently that the water in major storm events can no longer enter its floodplain, but rushes instead downstream. Although the failure of Dogleg Branch to access its floodplain would not affect macroinvertebrates, which do not use the floodplains, the failure of the reclaimed stream to access its floodplain harms fish, which cannot access the floodplain during high water levels to forage, spawn, and escape predators or high water volumes, and reduces valuable aquatic-upland ecotones. This failure also reduces the ability of the stream to attenuate floodwaters. By chance, Charlotte County's stream- restoration expert Frederick Koonce visited Dogleg Branch shortly after a June 2003 storm event and saw the water from the stream enter the floodplains adjacent to the unmined segments of Dogleg Branch, but not the reclaimed segment. The less-rigorous approach of incidental stream restoration, at least in the mid-1990s, is evident the summer 1994 semi-annual report on Dogleg Branch, in which Dr. Clewell provides a detailed discussion of the biological aspects of the reclamation of this site. Implying that the incidental stream element of the Dogleg reclamation project may be nine years younger than provided in the parties' stipulation, Dr. Clewell writes: The temporary land use area was abandoned and reclaimed during the autumn of 1993. The perimeter canal was filled and the access road removed between Dogleg marsh and the unmined tip of original Dogleg Branch. Within a few days of a site inspection on December 2, 1993, final grading and revegetation had been completed, and water was discharging from Dogleg marsh into unmined Dogleg Branch for the first time ever. The water was free of turbidity. The entire connection had been sodded with bahiagrass turf. Dogleg Branch enjoys good water quality. On the two days that Charlotte County water quality scientist William Dunson tested its waters, in October 2003 and March 2004, the reclaimed Dogleg Branch had dissolved oxygen of 6.8 and 8.6 mg/l, iron of 325 and 212 ug/l, manganese of 41 and 22 ug/l, and aluminum of 160 and 132 ug/l. The Class III water standard for dissolved oxygen is 5 mg/l, except that daily and seasonal fluctuations above 5 mg/l must be maintained. The Class III water standard for iron is no more than 1.0 mg/l (or 1000 ug/l). There are no Class III water standards for manganese and aluminum. Dogleg Branch also passed chronic toxicity testing for reproductivity and malformation. However, Dogleg Branch is distinguishable from at least one of the OFG streams. Dogleg Branch is a much less complex restoration project because reclamation scientists did not need to re-create headwaters, the first 600 feet of stream downstream of the headwaters, or flow-through wetlands. Also, the mined segment of Dogleg was much shorter than the mined segment of the Stream 1e series: 1000 feet versus 2039 feet for the Stream 1e series. Betraying an emphasis on forested wetlands to the exclusion of streams, Dr. Clewell places Hall's Branch a close second to Dogleg among stream-reclamation projects. However, DEP properly did not add a second stream to its list of successful stream-reclamation projects. Reclaimed Hall's Branch is not close to performing the functions of reclaimed Dogleg Branch, and, because of the large gap between Dogleg and all of the other reclaimed streams, it is irrelevant which of them occupies second place. The most visible shortcoming of the reclaimed stream at Hall's Branch is its color. Parts of the water in the reclaimed stream within Hall's Branch are highly discolored with iron flocculent leaching from the surrounding mesic forest and shrub communities. Mr. Dunson's water quality tests in reclaimed Hall's Branch, in October 2003 and March 2004, revealed iron levels of 117,000 ug/l and 4025 ug/l, which are 117 times and 4 times the Class III water standard. Dissolved oxygen was also well below Class III standards at 1.5 mg/l and 2.1 mg/l. Manganese was 1880 ug/l and 392 ug/l, and aluminum was 226 ug/l and 35 ug/l. Like Dogleg Branch, Hall's Branch also passed chronic toxicity tests for reproductivity and malformation. The hydrological connection between the surficial aquifer and the reclaimed stream at Hall's Branch is probably interrupted. Mr. Carter, who did not visit Dogleg Branch, inspected Hall's Branch and found the water table 12 inches below the surface. A soil sample reveals overburden with a layer of topsoil. The CDA seems to indicate that part of Hall's Branch was backfilled with sand tailings of an unspecified depth and part of it was merely contoured overburden--a pattern suggestive of that planned for OFG. The CDA states that trees were planted in mulched areas. The reclaimed forest is dominated by cypress, not the targeted wetland hardwoods. Jamerson Junior is a 4.3-acre reclamation site permitted as a wetland forested mixed community in 1984, constructed by late 1985, and released in early 1996. Part of the reclaimed stream is a second-order stream. Like Hall's Branch, Jamerson Junior also shows signs of orange-colored water leaching in to the stream from the nearby mesic zone. However, the water quality in Jamerson Junior is closer to the water quality in Dogleg Branch than Hall's Branch. Mr. Dunson's iron readings, in October 2003 and March 2004, were 583 ug/l and 195 ug/l, which are within Class III standards. Dissolved oxygen was slightly higher than at Dogleg Branch: 7.0 mg/l and 8.0 mg/l. Manganese was 136 ug/l and 21 ug/l, and aluminum was 391 ug/l and 101 ug/l. However, Jamerson Junior failed chronic toxicity testing for reproductivity, but passed for malformation. This is the only stream that IMC also tested for toxicity, and IMC obtained similar results, according to Dr. Durbin. Soil samples reveal a highly variable soil structure underlying Jamerson Junior. Subsequent reclamation work on the stream required the addition of material to change the elevation of the stream bed and possibly to change the drainage characteristics of the original backfilled material. On the day that Mr. Carter visited Jamerson Junior on August 14, 2003, he found the stream flowing. During the wet season, the water table should normally be expressed in the stream. Presenting a more interrupted relationship between the surficial aquifer and the stream than at Hall's Branch, Jamerson Junior displays no connection between the stream bed and water table, at least to a depth of 40 inches. A soil boring revealed water immediately underneath the stream bed, but, at about 15 inches beneath the bottom of the bed, the soil dried to moist; at 40 inches, Mr. Carter found the water table under the stream. Likewise, the Jamerson Junior channel was poorly integrated with the surrounding wetlands and uplands. At the banks of the stream, Mr. Carter did not find the water table within 80 inches of the surface, which is additional evidence of a discontinuity between the water table and the stream. Much of the reclaimed forested areas are mesic, not hydric. The reclaimed floodplains are narrower than the floodplains in the unmined adjacent area, and the slope of the reclaimed channel is steeper than the slope of the unmined channel. The reclaimed uplands are infested with cogongrass, although less than is present at Dogleg. Lizard Branch is a 6-acre reclamation site permitted as a swamp community in 1983 and modified in 1991, constructed by 1994, and released in 1996. Few of the planted gums and maples are surviving. The uplands surrounding the reclaimed area are infested with cogongrass, which has penetrated the shallower wetlands. Lizard Branch is one of the lowest- functioning forested wetlands. Lizard Branch joins Jamerson Junior as one of only two of six reclaimed stream sites to fail chronic toxicity testing for reproduction, although it passed for malformation. Lizard Branch had the highest two dissolved oxygen readings of all six sites tested by Mr. Dunson: 12.6 mg/l and 7.1 mg/l. Its iron levels were 547 ug/l and 352 ug/l. Manganese was second lowest, behind only Dogleg Branch, at 71 ug/l and 30 ug/l. Aluminum was second highest at 445 ug/l and 45 ug/l. Lizard Branch is an interesting, recent reclamation site for several reasons. Lizard Branch represents a relatively recent instance of the destruction of a stream without its re- creation and either the failure of the incidental reclamation of a stream or the subsequent permission by DEP to allow the permanent elimination of the stream. Mr. Winchester testified that he could not even find a stream at Lizard Branch. Charlotte County ichthyologist Thomas Fraser treated Lizard Branch as a stream, but grouped it with marshes in his analysis, apparently due to the lack of channel formation. The fact is that, despite any effort to reclaim a stream, little, if any, stream structure is present at Lizard Branch. However, a stream once flowed over the reclaimed portion of Lizard Branch. In the summer 1994 semi-annual report, Dr. Clewell notes that Brewster Phosphate received a dredge and fill permit in 1983 to dredge and fill the "headwaters of two streams, Dogleg Branch and Lizard Branch" in connection with the mining at Lonesome Mine. Dr. Clewell adds: The permit was issued with the stipulation that the streams and their attendant riverine forest would be restored on adjacent physically reclaimed lands, concomitant with mining. The permit further stipulated that restoration would be monitored and that semi-annual reports documenting progress in vegetational restoration would be submitted to [DEP.] In the report, Dr. Clewell notes that reporting on Lizard Branch has been "discontinued" and DEP issued a new permit in 1991. The 1991 permit modification is not part of this record, but the result was the elimination of a stream, or at least any signs of a stream ten years after construction. Three of the remaining reclaimed-stream projects were built at about the same time as Lizard Branch project. For only one of these projects did the reclamation scientists explicitly target a stream. Permitted in 1985 and subject to a consent order in 1996, constructed in 1991-92 and 1995, and not yet released, 9.6-acre Tadpole Wetland (H-SPA(1)) was targeted to be about one-third wetland forested mix and two-thirds freshwater marsh. Much cogongrass has infested Tadpole, whose stream enters the Alafia River floodplain and leads to a ditch that runs the remainder of the distance to a point close to the Alafia River. Tadpole's water passed chronic toxicity testing for reproductivity and malformation. However, its water violated Class III standards for dissolved oxygen, with readings of 2.8 mg/l and 2.1 mg/l, and for iron, with readings of 11,300 ug/l and 1100 ug/l. Manganese levels were 166 ug/l and 20 ug/l, and aluminum levels were 660 ug/l--the single highest reading among the four reclaimed streams tested--and 95 ug/l. Permitted in 1985, constructed by 1996, and not yet released, Pickle Wetland (H-SPA(1)) is a 34-acre site, 0.8 acres of which was to be reclaimed as stream. A deep marsh that requires treatment of its nuisance exotics, such as cattails and primrose willow, Pickle is just northeast of Tadpole and a few miles north of Morrow Swamp and Ag East. Pickle's stream is surrounded by uplands. Pickle is the only reclaimed stream of six tested to fail chronic toxicity testing for malformation, although it passed for reproductivity. Pickle has the lowest dissolved oxygen of the six reclaimed streams tested by Mr. Dunson: 0.8 mg/l and 1.2 mg/l. Its iron levels violated Class III standards in October 2003, with a level of 4230 ug/l, but passed in March 2004, with a level of 786 ug/l. Manganese was 127 ug/l and 72 ug/l, and aluminum was 107 ug/l and less than 5 ug/l. Permitted in 1991, constructed in 1995, and not yet released, Trib A ((BF-ASP(2A)) is a 120-acre site to be reclaimed as a wetland forested mix, but it includes a slough that empties into an unmined channel with streamflow. To the extent that a reclaimed stream channel is discernible on Trib A, nine years after the completion of its reclamation, the channel is much more steeply sloped than the adjacent unmined channel-- steeper than the two percent slope, beyond which sandy stream bottoms begin to erode. Not surprisingly, the reclaimed channel has begun to head cut and entrench. In an adjacent unmined area, a stream exists within a floodplain with a very flat slope. In the mined area, the reclaimed floodplain is steeper, suggestive of impeded communication between the reclaimed stream and its floodplain. The groundwater communication at Trib A is almost as interrupted as it was at Jamerson Junior. At Trib A, the uppermost 20 inches of soil was saturated, at the time of Mr. Carter's site inspection. Beneath a moist soil layer, the water table occurred at 40-50 inches deep. Parts of Trib A were topsoiled, but the next layer down was originally from an area below the C horizon. However, the soil-formation process is underway. Permitted in 1995, constructed by 1998, and not yet released, 17.6-acre File 20-2B and 70-3 Dinosaur Wetland (FG- GSB(7)) was reclaimed as a freshwater marsh. Dinosaur is due south of Morrow Swamp and is a headwater wetland. The site is still undergoing treatment for cattails. The record describes little, if anything, about the status of this stream. The last two stream-reclamation reclamations were built at least five years after the last pair. Again, DEP and the phosphate mining company identified a stream as a target for only one of the projects. Permitted in 1989, 1992, and 1998, constructed in 1999, and not yet released, South Bradley (KC-HP(1A) is a 171- acre site, 1.7 acres of which was to be reclaimed as stream. South Bradley is just north of Pickle. The channel is steeply incised and deep at points. The channel runs through forested and unforested areas. Charlotte County ichthyologist Thomas Fraser found iron flocculent in South Bradley and no fish within this area of the reclaimed stream, but three species of fish in a nearby area. Permitted in 1999, constructed by 2003, and not yet released, MU R Wetland H (KC-HB(1)) is a 4.8-acre site to be reclaimed as wetland hardwood forest. Monitoring has not yet begun for this site. Although a tailwater system receiving water from a ditch running to a lake, rather than a natural stream, the channel that has formed in MU R Wetland H does not join the existing downstream channel; the two channels are offset by 75-100 feet. Also, the reclaimed floodplain of MU R Wetland H is more steeply sloped than the floodplain of the adjacent unmined area. The slope of the reclaimed channel is steeper than the slope of the unmined channel, and, due to poor design parameters, the new channel is headcutting into the floodplain, which does not appear to be communicating appropriately with the stream. Combining a more steeply sloped reclaimed floodplain with a headcutting reclaimed stream means, among other things, substantially less communication between the stream and its floodplain. The hydrology of MU Wetland H appears to have been ineffectively reclaimed. In the forested wetland a short distance from the stream, the soil remained unsaturated until 80 inches deep. Closer to the stream, the soil was saturated at a depth of 18-20 inches, but the underlying overburden remained dry to a depth of 70 inches, indicating again a failure to reclaim the water table at appropriate depths. As with all of the almost countless reclamation sites on which the parties' expert witnesses copiously opined, MU R Wetland H is not well-developed in the record in terms of pre- mining conditions, design elements, construction techniques, and post-reclamation conditions. However, the dislocated stream that has formed within this reclaimed wetland stream reinforces the principle that even incidental stream reclamation requires some engineering. The excessive reliance upon a contoured valley to self-organize into a stream, as noted above, has impeded the progress of the science of stream restoration, as applied to mined land in Florida. This factor is unique to streams and does not apply to uplands and wetlands. However, another factor has impeded progress in reclaiming successful systems--whether uplands, wetlands, or streams. This factor is undue emphasis on the identity of post-reclamation vegetation, as compared to pre- mining or reference vegetation, at the expense of function. Charlotte County and the Authority stressed the process of the identification of vegetative species, at the expense of undertaking complex functional analysis and attempting to situate reclaimed systems in the process of energy consumption and production. In part, their cases relied on showing that past reclamation projects, as well as that proposed for OFG, do not replicate pre-mining or reference-site vegetation. An undue emphasis on species identity suffers from two major flaws. First, as Dr. Clewell and Ms. Keenan testified, reclaimed sites undergo stages of colonization, and, during early stages, less-desirable species, such as Carolina willow and wax myrtle, may predominate at more-desirable canopy-forming species succeed them. Ms. Keenan added that the life expectancy of Carolina willow, in this part of Florida, is about 25 years, and no reclaimed site older than 15 years is dominated by Carolina willow. Second, any measure of species identity risks the elevation of replication over function, as DEP has already recognized. A criterion of replication, for example, discredits a reclaimed site with a lower species-identity score because it has been colonized by a greater share of more-desirable species than occupy the reference site. DEP has wisely discontinued the practice of assessing reclamation success in partial reliance upon the Morisita's Index. This index measures the identity of species between two sites or the same site pre-mining and post-reclamation, as a criterion of successful wetlands reclamation. In a similar vein, DEP has recently recognized that vegetative analysis cannot preemption functional analysis, especially as to streams. This recognition is evidenced by a report entitled, "Riparian Wetland Mitigation: Development of Assessment Methods, Success Criteria and Mitigation Guidelines," which was managed by Ms. Keenan, revised May 10, 2001, and filed with the U.S. Environmental Protection Agency Grants Management Office (Riparian Wetland Mitigation). Riparian Wetland Mitigation notes the unsatisfactory history of stream reclamation projects with their emphasis on vegetation to the exclusion of stream hydrology and geomorphology. Riparian Wetland Mitigation states: The more recent methods [of stream restoration] recognize that streams are not simply water conveyance structures, but are complex systems dependent on a variety of hydrological, morphological, and biological characteristics. It is now recognized that in order to successfully restore or create a stream, hydrology, geology and morphology must be considered in the design. Noting the increasing extent to which the phosphate mining industry is applying for permits to mine more and larger stream systems and reclaim them on mined land, Riparian Wetland Mitigation frankly admits: The success criteria included in permits issued by the Department for these newly created streams have been based primarily on vegetational characteristics as is typical of most permits requiring wetland mitigation. However, vegetation alone is a poor indicator of stream function and community health. The results of regular permit compliance inspections of existing stream mitigation projects . . . have suggested that for several projects, although existing riparian vegetation was meeting or trending toward meeting permit requirements, problems existed with site hydrology and habitat quality of the stream channel itself. DEP thus adopted a rapid bioassessment method known as BioRecon, which tests macroinvertebrates, and added two other components: habitat assessment and physical/chemical characterization. DEP then performed "BioRecon, habitat assessment, and physical/chemical sampling" on eight reclaimed streams. Of the eight sites sampled, "only one passed the BioRecon and Habitat Assessment." (It is unclear whether Riparian Wetland Mitigation intends to imply that this site-- obviously, Dogleg Branch--also passed the physical/chemical composition, but it probably did.) DEP then tested smaller, unmined streams and confirmed that they, too, could pass BioRecon and Habitat Assessment. Riparian Wetland Mitigation states that DEP will collect data from comparable unmined streams and attempt to relate geomorphological, hydrological, and biological data to develop more refined criteria by which to assess proposed stream-reclamation projects. When DEP issues these criteria, the likelihood of success of a specific stream-reclamation project will be easier to assess. Until then, the assessment of a specific stream-reclamation project remains more difficult, in the context of past reclamation projects that have reduced or even eliminated important functions of streams. Although DEP's new guidelines for stream restoration will mark a transition from a predominantly vegetative to a multi-variable analysis of stream function, even a predominantly vegetative analysis of stream function is superior to IMC's analysis of streams predominantly from the perspective of flood control, as set forth in the CDA prior to the Altman Final Order. In a remarkably candid admission of the difficulty of reclaiming the many functions of unaltered stream systems, including their riparian wetlands and floodplains, IMC, in its response to RAI-102 in the CDA, states: Although it is impossible in a reasonable amount of time to expect to restore the functionality of the creek systems and associated uplands which historically occurred on the One site and are proposed for mining, it is reasonable to conclude that the reclamation plan restores the primary functions of the watershed[:] i.e. the capture, storage, distribution, and release of precipitation. IMC's subsequent discussion in RAI-102 emphasizes the efficacy of mitigation, from a biological perspective, but only as to stream systems whose pre-mining condition is substantially altered. For relatively unaltered systems, IMC's message remains that the reclamation of functions, besides water quantity, within a reasonable period of time is "impossible." Summary of Findings on Past Mitigation/Reclamation Any attempt at assessing past reclamation projects is impeded by the general lack of data presently available, for each reclamation site, describing pre-mining hydrological, topographical, soil, and geological conditions; the functions of pre-mining communities; reclamation techniques; post-reclamation hydrological, topographical, soil, and geological conditions; and the functions, as they have evolved over time, of reclaimed communities. For post-reclamation water tables, the auger and shovel work of one or two men substitutes for several years of weekly piezometer readings in the wet season and monthly piezometer readings in the dry season--correlated to daily rainfall data collected at the same site. For post-reclamation water quality, a few preliminary toxicity and a few dozen water quality readings--some under less than optimal conditions-- substitute for systematic water-quality testing of a broad range of parameters, again over years. For post-reclamation soils, one soil scientists finds an A horizon and concludes substantial formation has taken place within 10 years; another finds an A horizon--never the same one at the same place--and concludes topsoil transfer; and both are probably correct. Absent better data, reliable analysis is difficult because a wide variety of factors may have contributed to the successes of SP(2D) and Dogleg and the failures of too many other sites to list. Even so, a few facts emerge. IMC can reclaim extensive areas of uplands, deep marshes, and cypress swamps, although difficulties remain with each of these types of reclamation projects. With greater difficulty, IMC can reclaim pine flatwoods and palmetto prairies. With even greater difficulty, IMC can also reclaim forested wetlands, except bay swamps. Far more difficult to reclaim than the communities mentioned in the preceding paragraph are extensive shallow wetlands, seepage bayheads, and streams. Any finding of present ability to reclaim these systems must uneasily account for the numerous failures littering the landscape, the failure ever to reclaim successfully a bayhead as bay swamps typically occur in the landscape, and the unsettling fact that nearly all reclamation successes of shallow wetlands are small patches-- almost always far smaller than designed. Any finding of present ability to reclaim these systems must rely heavily on SP(2D) and Dogleg Branch and the design of the current reclamation plan. The probability of the successful reclamation of any community, but especially extensive shallow wetlands, seepage bayheads, and streams, requires careful analysis of each community proposed to be mined and each community proposed to be reclaimed. For each such community, it is necessary to assess its ultimate functions of consuming and producing energy within a robust, sustainable ecosystem. Additional Features of OFG, Mining, and Reclamation Introduction The preceding sections detail the ERP, CRP approval, and WRP modification and other mitigation sites involving the reclamation of uplands, wetlands, and streams. This section adds information concerning OFG in its pre-mining condition, the proposed mining operations, and the proposed reclamation. OFG IMC adequately mapped the vegetative communities at OFG. As Doreen Donovan, IMC's wetlands biologist testified, trained persons using the FLUCFCS system of classifying vegetative communities tend to fall into one of two categories: lumpers or splitters. Scale dictates FLUCFCS code in many cases. Where one biologist may designate a larger, more varied area with one code, another biologist may designate the same area with several codes. The purpose of FLUCFCS coding dictates the scale. Subordinating vegetative-identity analysis to functional analysis undermines the arguments of Charlotte County and the Authority for an unrealistic level of precision in this exercise. The discrepancies in vegetative mapping noted by Mr. Erwin were insignificant. Many were the product of scaling differences, as noted in the preceding paragraph. Some were the product of distinctions without much, or any, difference, given the context and extent of the proposed activities. For present purposes, absent demonstrated differences in wildlife utilization, groundwater movement, or soil, distinctions between, for example, xeric oak and sand live oak on ten acres are essentially irrelevant. In total area, as compared to the 4197 acres of OFG, the claimed discrepancies did not rise to the level of noteworthy. As for the wetlands at OFG, DEP's acknowledged expert in wetlands identification, Deputy Director Cantrell, personally visited OFG and confirmed the accuracy of the wetlands determinations made three years earlier in December 2000 when DEP issued a Binding Wetland Jurisdictional Determination, which remains valid through December 2005. Deputy Director Cantrell noted minor omissions that might total a couple of acres, but these are insignificant, again given the scale of the proposed activity. The sole material flaw in IMC's mapping of OFG is in the omission of floodplains of the tributaries from Map C-3, although Dr. Garlanger's hydrological analysis, described below, adequately considered the storage and conveyance characteristics of these floodplains. Proper analysis of the tributaries' functions, besides flood control, and proposals to reclaim them is impeded by IMC's failure to depict graphically the 2.3-, 25-, and 100-year floodplains. The record suggests that BMR may have waived any requirement for maps of the floodplains except for those of Horse Creek, but the record does not suggest that, if BMR actually waived this requirement, it thus insulated the CDA from scrutiny with respect to all the information that would have been contained in floodplain maps or assured IMC of favorable analysis of this missing information. Charlotte County hydrologist John Loper prepared floodplain maps, which are Charlotte County Exhibits 1762 (mean annual floodplain), 1763 (25-year floodplain), and 1764 (100- year floodplain). These are credited as accurate depictions of the floodplains of the tributaries of Horse Creek. Mr. Loper's maps reveal little difference between the 25- and 100-year floodplains over much of OFG, including the Panhandle. The two floodplains of Stream 3e are slightly different, but the two floodplains of the Stream 1e series are less noticeably different. Focusing on the 25-year floodplain, the only wide, lengthy floodplain outside of the no-mine area is the floodplain along the Stream 1e series, which is the widest band of floodplain outside the no-mine area. At places, the floodplain of the Stream 1e series is as wide as the corresponding floodplain of Horse Creek. Even at its narrowest, which is along Stream 1ee, the floodplain of the Stream 1e series is as wide as that of Stream 2e and wider than that of Stream 3e. No 25-year floodplain runs along ditched Stream 3e?. The only other portions of the 25-year floodplain contiguous to the floodplain of Horse Creek, but outside the no-mine area, are the large wet prairie at the head of Stream 9w, the large wet prairie at the head of Stream 5w, and the headwater wetlands of Streams 1w-4w. As already noted and discussed in more detail below, all of these wetland systems, including the headwaters of Streams 1w and 3e, are lower-functioning than the wetland system associated with the Stream 1e series. As noted above, over half of the area to be mined is agricultural and another quarter of the area to be mined is uplands consisting largely of sand live oak, pine flatwoods, and palmetto prairie. Accordingly, OFG is characterized by native flatwoods soils, which exhibit high infiltration rates, but restricted percolation due to underlying hardpan or loamy horizons. About one-fifth of the soils at OFG are xeric soils. The wet season water table in the wetter areas will be 0-2 feet below grade and in the uplands over 3 feet below grade. Nothing in the record suggests that IMC will have much difficulty in reclaiming agricultural land or sand live oak communities. Nothing in the record suggests that any of the sand live oak that will be mined is atypically valuable habitat. As noted above, the pine flatwoods and palmetto prairie are more difficult to reclaim, but the pine flatwoods and palmetto prairie at OFG are not atypical instances of these common upland habitats. Some of these communities have been stressed by the lack of fire, so that hardwoods, such as oaks, have become sufficiently established as to resist thinning by fire. Lack of fire has also resulted in overgrown vegetation in more xeric areas. Among forested wetlands, IMC will mine 43 acres of mixed wetland hardwoods, 12 acres of hydric pine flatwoods, 9 acres of bay swamps, and 6 acres of hydric oak forests. Among herbaceous wetlands, IMC will mine 95 acres of wet prairie and 67 acres of freshwater marsh. Map F-3 depicts these wetlands with color-coding for ranges of wetlands values, under the Wetland Rapid Assessment Procedure (WRAP), which is used by the U.S. Army Corps of Engineers. Following a weeklong investigation of wetlands at the Ona Mine, as well as other IMC mines in the vicinity, the U.S. Army Corps of Engineers expressly approved revisions to WRAP to accommodate local conditions at OFG. DEP used a different assessment procedure, but WRAP remains useful for general indications of wetlands function. The WRAP scoring scale runs from 0-1, with 1.0 a perfect score. For ease of reading, the following sections shall identify wetlands scoring below 0.31 as very low functioning, wetlands scoring from 0.31 to 0.5 as low functioning, wetlands scoring from 0.51 to 0.7 as moderate functioning, wetlands scoring from 0.71-0.8 as high functioning, wetlands scoring from 0.81-0.9 as very high functioning, and wetlands scoring from 0.91-1.0 as the highest functioning. The asymmetry of the labeling scheme is to allow differentiation among the wetlands in the highest three categories, which, at OFG, are disproportionately represented, as compared to the lowest three categories. The purpose of these descriptors is only to differentiate relative values. As already discussed, the Map F-2 series identifies existing wetlands alphanumerically and by community, and Map I-2 similarly identifies all post-reclamation communities. In contrast to all reclaimed wetlands, which, as already noted, start with an "E" or "W," all existing wetlands start with a "G" or "H." The ease with which freshwater marshes are reclaimed obviates the necessity of extensively analyzing the condition of marshes presently at OFG, absent evidence of atypical habitat value. In general, the wetland corridor of Horse Creek, as defined by the no-mine area, ranges in quality from very high functioning in Section 29, which is the southernmost end of Horse Creek in OFG, to high functioning north of Section 29. However, narrow fringes of this corridor north of Section 29 are low functioning. Starting from the south, in Section 29, three wetlands are outside of the no-mine area: H031/H032/H033/H034, the G005 wetland complex, and a fringe of the wetlands running adjacent to Horse Creek--the western edges of G262, G266, and G259A are outside of the no-mine area. H031 is the largest part of the H031 complex and is mixed wetland hardwoods. H032 is a small freshwater marsh, and H033 is a hydric oak forest of the same size. H034 is a slightly larger wet prairie. H033 is low functioning. The remainder are high functioning. IMC will reclaim the same communities, as an ephemeral wetland complex. Pre-mining and post-reclamation, this wetland drains into West Fork Horse Creek. Considerably larger than H031, the G505 wetland complex is the headwater wetland of Stream 1w. G512 is the largest component of the G505 wetland complex and is wetland forested mixed. G513 is the next largest component and is a bay swamp. G514 is a fringe wet prairie. Slightly larger than G514, G511 is hydric oak forest. G507 is mixed wetland hardwoods, G506 is a small freshwater marsh, and G505 is a cattle pond. The mixed wetland hardwoods and fringe wet prairie are very high functioning, the bay swamp is high functioning, and the remaining wetlands are moderate functioning. IMC will reclaim the G505 wetland complex as a single bay swamp. G262 and G266 are wet prairie and hydric rangeland, respectively. G259A is mixed wetland hardwoods. The wet prairie and hydric rangeland are moderate functioning, and the mixed wetland hardwoods is very high functioning. IMC will reclaim these wetlands as wet prairie. Section 20 contains the headwater wetlands of Streams 2w, 3w, 4w, and 5w. These are mostly marshes, and they are all low to moderate functioning. These systems have been heavily impacted by agricultural uses. IMC will reclaim these as headwater systems, mostly marshes. IMC will also create one small and one medium ephemeral wet prairie near the headwater wetland of Stream 4w. Section 19, which drains to West Fork Horse Creek, contains three wet prairies (H002, H005, and H006) and a complex consisting of a bayhead (H009A) surrounded by a mixed wetland hardwoods (H009), which is fringed by a small wet prairie (H008). These wetlands are all low to moderate functioning. IMC will reclaim the H008 complex with a bay swamp buffered by a temperate hardwood, and it will restore a cattle pond at the site of the H002 complex. The reclaimed bay swamp will drain to West Fork Horse Creek. Section 18 contains a very low functioning, small wet prairie (H056), which is the only wetland in one of the three lowest ranges of WRAP scores outside of the wetland corridor of Horse Creek. Section 18 also contains a small part of a large wetland that is mostly in Section 17. The latter wetland is addressed in the discussion of wetlands in Section 17. Section 17 contains the West and Central Lobes. The entire Central Lobe is in the no-mine area, but a large wet prairie (G188) abuts the wetlands in the no-mine area of the West Lobe. IMC will reclaim this wet prairie, which is low functioning, as improved pasture, with a strip of hardwood conifer mixed. Several wetlands unassociated with the West and Central Lobes are outside the no-mine area, but on either side of Stream 6w, which leads to the West Lobe. G183, which is the headwater wetland of Stream 7w, is a freshwater marsh, which is moderate functioning. IMC will not reclaim the existing portion of Stream 7w upstream of the no-mine area, so the connected headwater marsh will be reclaimed as an ephemeral wet prairie. South of Stream 7w is a group of four small wetlands: G089, G090, G091/G092, and G093/G094. G089 and G090 are very small wet prairies. G091 and G093 are freshwater marshes, and G092 and G094 are wet prairie fringes. G090 is low functioning, and G089 and G091 are moderate functioning. G093 is very high functioning, and G094 is high functioning. Even the maps on the February submittal CD are unclear, but it appears that G089 and G090 will be reclaimed as ephemeral wet prairies. IMC will reclaim G091 as a small freshwater marsh fringed by a large mixed wetland hardwood and G093 as a large freshwater marsh fringed on the east by a small mixed wetland hardwood. The last version of Figure 13B-8 depicts the small freshwater marsh as isolated, but the large freshwater marsh as ephemeral. IMC will also create two small ephemeral wet prairies due south of the West Lobe and one small ephemeral wet prairie just east of the north end of the West Lobe. About one mile west of Horse Creek is a large wet prairie surrounding a smaller freshwater marsh that has been ditched for agricultural purposes. Part of this wet prairie extends into Section 18. The portion of this system in Section 18 is low functioning; the rest of it is moderate functioning. IMC will reclaim this entire area as improved pasture, except for replacing a single cattle pond. Section 16 spans Horse Creek, but mostly covers an area east of the stream, including the East Lobe. The only wetland outside the no-mine area on the west side of Horse Creek is G076/G077, a freshwater marsh fringed by a wet prairie. This small wetland is moderate functioning, and IMC will reclaim it as an ephemeral wet prairie. East of Horse Creek lies Stream 5e and its flow- through wetland, G204/G205. Predominantly a wet prairie, G204 is low functioning. IMC will reclaim it as a bay swamp. A small fringe wet prairie (G177) lies at the south end of the East Lobe, outside of the no-mine area, but it is low functioning, and IMC will reclaim it as hardwood-conifer mixed. A mixed wetland hardwood (G096), which is moderate functioning, fringed by a wet prairie (G097), which is low functioning, lie just north of where the no-mine area of the East Lobe joins the main no-mine area along Horse Creek. IMC will reclaim this wetland as a freshwater marsh fringed on the east by a wet prairie, and this wetland will be connected to the wetlands of the Horse Creek corridor. A freshwater marsh (G058) lies outside the no-mine area just north of the northeast tip of the East Lobe. This wetland is moderate functioning. IMC will reclaim this site as improved pasture, but will create a small ephemeral wet prairie just to the west of G058 and a larger freshwater marsh to the west of the created wet prairie. Section 8 contains two large areas of wet prairie (G048 and G047) at the head of Stream 9w. These wet prairies are moderate functioning, as are a couple of small wet prairies in Section 8 at the western boundary of OFG. IMC will reclaim these areas mostly as improved pasture, although it will create a large, connected wet prairie over the southeastern part of G048, but extending farther to the south and east. This reclaimed wet prairie will form the headwater wetland of reclaimed Stream 9w, which, as already mentioned, will be shortened from its current length. The only other wetland in Section 8 and outside the no-mine area is a freshwater marsh (G052). This marsh is high functioning. IMC will reclaim this site with a marsh and wet prairie. Like Section 16, Section 9 spans both sides of Horse Creek. On the west side of Horse Creek is mixed wetland hardwoods (G055) fringed by hydric woodland pasture (G054). The mixed wetland hardwoods is high functioning, and the hydric woodland pasture is moderate functioning. IMC will reclaim this site with a gum swamp fringed by temperate hardwoods upland. On the east side of Horse Creek, a small wet prairie (G167) is outside the no-mine area. This very high functioning wet prairie is connected to a large bay swamp (G166) to the north. The bay swamp, which is high functioning, lies partly within and partly outside the no-mine area and is connected to the wetland corridor of Horse Creek. Although high functioning, G166 is overdrained by a tile drain system that drains the citrus grove immediately upland and east of G166. Two mixed wetland hardwoods, which are outside the no-mine area, fringe the bay swamp; they are high functioning. IMC will reclaim a gum swamp for the wet prairie and all mixed wetland hardwoods for the east side of the bay swamp. Just north of the bay swamp that straddles the no- mine boundary is a much smaller bay swamp (G163) fringed by mixed wetland hardwoods (G164) that also straddle the no-mine boundary. Also connected to the wetland corridor of Horse Creek, these wetlands are very high functioning, and IMC will reclaim them with pine flatwoods. Between these two bay swamps straddling the no-mine boundary and the headwater wetland of Stream 8e is a small wet prairie (G041), which is moderate functioning and outside the no-mine area. IMC will reclaim this site with another ephemeral wet prairie. At the southern tip of the headwater wetland of Stream 8e is hydric flatwoods (G157), which is moderate functioning. IMC will reclaim this connected wetland with sand pine flatwoods. A smaller hydric woodland pasture (G154) also connects to another section of hydric flatwoods, which is in the no-mine area between the headwater wetlands of Streams 8e and 7e. The hydric woodland pasture is moderate functioning, and IMC will replace it with hardwood-conifer mixed, although IMC will reclaim a somewhat larger area of mixed wetland hardwoods just north of the present site of the hydric woodland pasture, where no wetland presently exists. The remaining wetlands outside the no-mine area in Section 9 are six isolated wet prairies. They are small wetlands, except for G039/G040, which is a wet prairie fringing a cattle pond, and G039, which is at the eastern boundary of OFG. However, they are all high functioning, even the wet prairie fringing the cattle pond. In this general area, IMC reclaims three ephemeral wet prairies, much closer to the no- mine area than the sites of the six isolated wet prairies, and a small freshwater marsh fringed by a community that is not listed in the legend in Map I-2. Interestingly, IMC also reclaims a large area of shrub and brushland and larger area of sand live oak, again closer to the no-mine area than the sites of some of the six isolated wet prairies. The remainder of the area will be reclaimed as improved pasture. Section 4 contains no-mine area in its southeast corner: Stream 2e and the Heart-Shaped Wetland. Almost all of the wetlands outside the no-mine area in Section 4 are in the top three scoring categories of functioning. Of the six wetlands complexes on OFG that are, in whole or in part, highest functioning, four of them are in Section 4. The two highest functioning wetlands outside Section 4 are in the no-mine area, and one of the highest functioning wetlands in Section 4 is in the Heart-Shaped Wetland. Three of the highest functioning wetlands are thus to be mined. Outside of Section 4, there are 14 wetlands or wetlands complexes outside the no-mine area that are in the second- and third-highest scoring categories. These are the mixed wetland hardwoods (H031) in Section 29; a small piece of mixed wetland hardwoods (G259A) straddling the no-mine boundary in Section 29; the bay swamp and mixed wetland hardwoods to the north in the headwater wetland of Stream 1w, which straddles Sections 29 and 20; the freshwater marsh partly fringed by wet prairie (G093) south of Stream 6w in Section 17; the freshwater marsh (G052) connected to Stream 9w and straddling Sections 17 and 8; the mixed wetland hardwoods flow-through wetland (G055) in Stream 9w and straddling Sections 8 and 9; the two bisected bay swamps (G166 and G163) and their mixed wetland hardwoods fringes in Section 9; and the six isolated wet prairies in the northeast corner of Section 9. In Section 4, there are only nine wetlands or wetlands complexes outside the no-mine area that are not in the second- or third-highest scoring categories, and all but two of them--a very small wet prairie fringe (G006) and half of a larger hydric woodland pasture (G105)--are at least moderate functioning. The wetlands in Section 4 fall into three categories: connected to the Stream 1e series, connected to Streams 3e and 3e?, and isolated. The long connected wetland of Stream 1e is mixed wetland hardwoods (G110). This wetland is high functioning, except for the headwater wetland of Stream 1ef, which is highest functioning. A narrow strip of wetland forested mixed (G132) runs along Stream 1ee. This wetland is moderate functioning. Proceeding from south to north, upstream the Stream 1e series, a freshwater marsh (G129) immediately upstream of Stream 1ee is high functioning, as is a smaller freshwater marsh (G125) immediately upstream of Stream 1ed. Two gum swamps (G123 and G121) in the flow-through wetland at the head of Stream 1ed are very high functioning, as is a freshwater marsh (G126) in the same wetland complex. Just downstream of Stream 1ef is a small freshwater marsh (G115) that is high functioning. Part of the mixed wetland hardwoods abutting this marsh to the east is very high functioning. Just upstream of Stream 1eb is the largest wetland complex of the Stream 1e series wetlands system. The largest communities forming this complex are hydric flatwoods (G107) and mixed wetland hardwoods (G110). The mixed wetland hardwoods envelope a small freshwater marsh (G108) and are fringed on the north by a strip of wetland forested mixed (G102). At the northernmost end of this complex is hydric woodland pasture. All of these communities are high functioning except the hydric woodland pasture, which is moderate functioning, and the hydric flatwoods and half of the marsh, which are very high functioning. Working back downstream, IMC will reclaim the mixed wetland hardwoods of the stream corridor, neglecting to replace the complexity provided by the three of the four flow-through marshes (G108, G125, and G129), the larger headwater marsh (G126), and the two gum swamps. IMC will also neglect to replace even the wetland function of the large hydric flatwoods (G107) and smaller hydric woodland pasture, as these sites are reclaimed as upland communities: pine flatwoods and temperate hardwoods, respectively. However, IMC will add complexity by adding a small marsh abutting the temperate hardwoods, two small bay swamps along the west side of the upper end of the Stream 1e series, a band of hydric flatwoods on both sides of part of the upper stream and a thicker area of hydric flatwoods east of Stream 1ed, a moderately sized area of hydric palmetto prairie within the thicker area of hydric flatwoods, and a thickened wetland corridor--mixed wetland hardwood--along Stream 1ee. The long connected wetland of Stream 3e (G137), which is wetland forested mixed, connects to a headwater or flow- through wetland, whose southern component (G136) is also wetland forested mixed. These wetlands are moderate functioning. The remainder of the wetland upstream of Stream 3e is marsh (G135), wet prairie (G134), and mixed wetland hardwoods (G133); they are all high functioning. The narrow wetland corridor of Stream 3e? is high functioning. The headwater wetland of Stream 3e? is a freshwater marsh (G016) fringed on the south by wet prairie (G015) and the north by mixed wetland hardwoods (G014). The mixed wetland hardwoods is moderate functioning; the marsh and wet prairie are high functioning. Working downstream along Streams 3e and 3e?, IMC will reclaim a large freshwater marsh/shrub marsh complex, fringed by wet prairie, at the site of the large headwater wetland of Stream 3e?. In place of the ditch, where IMC will restore Stream 3e?, IMC will probably reclaim mixed wetland hardwoods. (At present, Map I-2 shows improved pasture, but that was before IMC agreed to reclaim Stream 3e?.) IMC will reclaim the wetland complex between Stream 3e? and 3e with the same vegetative communities, except that it will eliminate some of the present system's complexity by replacing the wet prairie with freshwater marsh. Although Map I-2 inadvertently omits any reclaimed wetland community along Stream 3e, Figure 13A5-1 shows reclaimed wetland forested mixed. There are four isolated wetlands in the vicinity of Stream 1e series. At the northern boundary of OFG is a small wet prairie (G027), which is high functioning. Just west of Stream 1ec is a small hydric flatwoods (G118), which is moderate functioning. Just south of this hydric flatwoods is a larger wet prairie (G119) with a small area of hydric flatwoods (G119A), which are both high functioning. Just east of Stream 1ec is a small wet prairie (G028), which is high functioning, even though it is ditched. IMC will reclaim the high-functioning wet prairie (G027) with a freshwater marsh, the small, moderate-functioning hydric flatwoods (G118) with hydric flatwoods and possibly part of one of the bay swamps, the high-functioning wet prairie/hydric flatwoods (G119) with rangeland abutting a freshwater marsh, and the small, high functioning wet prairie (G028) also with the upland community of rangeland. There are four isolated wetlands south and east of Streams 3e and 3e?. The two largest are freshwater marshes (G024 and G021) fringed by wet prairies (G023 and G022, respectively). These are all highest functioning, except that G023 is high functioning. The two smaller wetlands are wet prairies (G025 and G026), which are both very high functioning. IMC will reclaim all four of these wetlands at their present sites with the same communities, except that IMC will replace one very high functioning wet prairie (G026) with improved pasture. North of the headwater wetland of Stream 3e? are five isolated wetlands. The largest is a large freshwater marsh (G004) at the northeast corner of OFG. A wet prairie (G005) fringes the southern edge of this wetland complex, which is ditched. The marsh is high functioning, but the wet prairie is moderate functioning. Two smaller ditched marshes (G008 and G010) lie southwest of this large complex; they are moderate functioning. A small mixed wetland hardwoods (G007) fringed by a narrow wet prairie (G006), which are north of the two marshes, are moderate and low functioning, respectively. The final isolated wetland is a freshwater marsh (G012) fringed by wet prairie (G011) and connected by ditch to the G014 wetland complex. The marsh is high functioning, and the wet prairie fringe is moderate functioning. IMC will reclaim improved pasture at the sites of four of these five wetlands. At the site of the large freshwater marsh (G004), IMC will reclaim a freshwater marsh, which will be fringed by wetland forested mixed. The wetland forested mixed will be fringed by hydric oak forest, which will be fringed by palmetto prairie. IMC will mine 10,566 linear feet of streams, reclaiming 10,919 linear feet. The current condition of these streams has already been adequately addressed, largely by Mr. Kiefer's assessment in the Stream Reclamation Plan, described above. All the tributaries are Class III waters, although, as Deputy Director Cantrell testified, they might not meet all Class III water standards. In fact, it is unlikely, given the level of agricultural alteration, for these tributaries, both within and without the no-mine area, to meet all Class III standards. As Deputy Director Cantrell testified, the unditched streams are the Stream 1e series, Stream 3e, and Stream 5e, although upstream of OFG, Stream 5e and its headwater wetlands have suffered extensive agricultural impacts. With the exception of the Stream 1e series and probably Stream 3e, elevated levels of turbidity and nutrients and reduced levels of dissolved oxygen are to be expected in the water of the tributaries on OFG due to the extensive ensuing erosion and low- flowing characteristics of these streams. Mining Ditch and Berm System Six months prior to the commencement of mining of each block, IMC will construct a ditch and berm system between the block and the adjoining no-mine area. The ditch and berm system captures the stormwater runoff that would otherwise leave the mine site and releases the groundwater that would otherwise remain at the mine site. The phosphate mining industry began using ditch and berm systems during mining in the late 1980s and early 1990s. IMC has designed the ditch and berm system to capture the water from the 25-year, 24-hour storm event with several feet of freeboard. For storms not in excess of the design storm, the ditch, which runs between the berm and the mine cut, will carry water around the perimeter of the mining block. During periods of high rainfall, IMC will pump the water in the ditch into the mine recirculation system to prevent unintended discharges. When the mine recirculation system reaches its capacity, it releases excess water into Horse Creek upstream of OFG at two outfalls that have already received National Pollutant Discharge Elimination System (NPDES) permits for use with the Ft. Green beneficiation plant. Maintained during all phases of mining operations, ditch and berm systems have effectively protected water quality during mining operations. The only indication in this record of a breach of a ditch and berm system has been one designed to meet older, more relaxed standards. The other function of the ditch and berm system is to dewater the mine site and restore the water table to nearby wetlands in the no-mine area. The removal of the water from the surficial aquifer at the mine cut effectively lowers the water table by, typically, 52 feet, which is the average depth of the excavation at OFG. Lowering the water table in the mine cut by any sizeable amount creates a powerful gradient, which draws more water from the unmined, adjacent surficial aquifer to fill the void of the removed water. Unchecked, this process would fill the mine cut with water so as to prevent mining operations and empty nearby wetlands of water so as to deprive them of their normal water levels and hydroperiods. To prevent these diversions of the unmined surficial aquifer from taking place, pumps send the groundwater entering the mine cut into the mine recirculation system and ditch. To maintain adequate groundwater flow from the ditch into unmined wetlands, the ditch must maintain adequate water levels. While constructing the ditch and berm system, IMC will construct monitoring wells between the ditch and the wetland or surface water, which will indicate when groundwater flows are less than the pre-mining flows, for which IMC will have already collected the data. Varying permeabilities of adjacent soils or inadequate maintenance of the ditch may cause the system to fail to maintain the proper hydration of nearby unmined wetlands. Due to failures of its ditch and berm system, IMC has several times dewatered nearby wetlands. Recent failures occurred at the East Fork Manatee River in November or December 1999, the North Fork of the Manatee River in March 2000, and two more recent failures at the Ft. Green Mine. To maintain the ditch and berm system, an inspector will daily drive a vehicle along the top of the berm to check the berm and the water level in ditch. However, recharge wells are also necessary to ensure that the ditch and berm system prevents the dehydration of unmined wetlands is recharge wells. Recharge wells would reduce the frequency and extent of wetland drawdowns. Strategically located throughout the length of the ditch, recharge wells would be drilled into the bottom of the ditch to the intermediate or Floridan aquifer. By this means, recharge wells actively maintain appropriate water levels in the ditches and prevent drawdowns. IMC has several alternative sources for the water for these recharge wells: the water pumped from the surficial aquifer during the dewatering of the mine, the groundwater that has returned to areas already backfilled with sand tailings, or the water from the mine recirculation system, provided it is filtered. Notwithstanding testimony to the contrary, neither the CRP approval nor the ERP requires IMC to install recharge wells. These documents fail to impose upon IMC any specific action, if the monitoring wells reveal reduced or eliminated groundwater flows into the wetlands and surface waters. Both documents acknowledge the possibility that IMC may need to install recharge wells to recharge the ditch. In his testimony, Dr. Garlanger recommended the installation of floats on the top of each recharge well to allow the inspector visually checking the ditch and berm readily to check each recharge well at the same time. Clearly, the presence of floats atop recharge wells would allow early identification and repair of malfunctioning recharge wells, prior to the loss of water from the ditch and the dehydration of nearby unmined wetlands. 2. Mine Recirculation System In addition to recycling the water used in mining operations, the mine recirculation system draws on sources deeper than the surficial aquifer, as well as rain. Water leaves the mine recirculation system through evapotranspiration and surface runoff. When water leaves the system as runoff, during or after major storm events, it does so through NPDES outfalls, and the high water volumes associated with the storm generally assure that any contaminants in the discharged water are sufficiently diluted. 3. Sand Tailings Budget For OFG, IMC has presented a reasonable sand tailings budget. Dr. Garlanger, whose expertise in geotechnical matters finds no match on the opposing side, has opined that the supply is ample. Charlotte County and the Authority have challenged the adequacy of the sand tailings budget. In part, Charlotte County and the Authority base their challenge to the sand tailings budget in part on an earlier comment by Dr. Garlanger concerning changing volumes of sand tailings, but he adequately explained that their reliance was misplaced. As noted above, the sand tailings budget at OFG requires sand from the Four Corners and Ft. Green mines. Conjuring up images of a sand Ponzi scheme, Charlotte County and the Authority seem to argue, in part, that there are not enough sand tailings, and DEP has allowed phosphate mining companies that have run out of nearby sand to substitute a Land-and-Lakes reclamation for the more sand-intensive reclamation that had originally been permitted and approved. OFG is early enough in the post Land-and-Lakes reclamation era that, if sand tailings from post-reclamation excavations are being moved around, OFG will get them. The obligation imposed upon IMC to obtain sand tailings backfill is not contingent upon feasibility; IMC must backfill the mine cuts with sand. The possibility that DEP would allow OFG to abandon one of the central tenets of this reclamation project by substituting Land-and-Lakes reclamation for topographic replication is inconceivable. Reclamation BMR Reclamation Guidelines BMR program administrator James (Bud) Cates supervises reclamation by the phosphate mining industry. Mr. Cates and Janine L. Callahan, also of BMR, prepared a document entitled, "Guidelines for the Reclamation, Management, and Disposition of Lands within the Southern Phosphate District of Florida" (Reclamation Guidelines). The document is dated August 2002. Although it is marked, "draft," Reclamation Guidelines is a revision of the first draft, which was prepared in 1993. The Administrative Law Judge commends the authors and DEP for the close attention to detail that has resisted finalization for nine years, but it would be imprudent to disregard the second draft while awaiting the next novennial revision, especially when DEP offered it as an exhibit (DEP Exhibit 37). Consistent with an emphasis on functional analysis and the creation of vegetative, hydrologic, and soils conditions that facilitate self-organization, Reclamation Guidelines defines "reclamation" as: the attempt to identify and replace those components/parameters of a community, resulting in the creation of a functional natural community analog. Emphasis is placed on the creation of functional soil, hydrology, and floral precursors that serve as the basis for food-web development. Because of the ecological need for fully functional communities, analogs are typically designed on a whole habitat basis rather than being designed around the specific needs of one or two species. These analogs are designed to incorporate a maximum initial diversity potential, based upon the premise that with proper management, the initial input will yield, over time, maximum ultimate diversity. Reclamation plans for and the activities used to create these replacement communities will be guided by existing knowledge of earthmoving, soils, hydrology, vegetation, general ecology, and wildlife management. Data in every applicable field should be constantly collected and used to increase knowledge and improve the results of the reclamation of natural community analogs. Focusing on specific reclamation techniques for soils, Reclamation Guidelines adds: The use of Topsoil/Vegetative Inoculum (T/VI) is extremely important to the introduction of organic matter, soil microbes, mycorrhizae, and plant propagules. These factors are critical to the creation of a living soil precursor. The T/VI is also the best known source of plant propagules that will provide the diversity inherent in a given community. Therefore, to the extent of material availability and economic feasibility, T/VI is recommended for use in the replacement of natural community analogs. The goal should be a three to six inch average depth with a minimum depth of no less than one inch over the base of sand, overburden, or sand/overburden mixture. Where T/VI availability problems occur, an artificially created topsoil precursor may be used in combination with all available T/VI or as a replacement for T/VI. Topsoil precursor may be created by incorporating a mixture of overburden, clay, and organics (hay mulch, wood chips, manure, green manure, or combinations thereof). All artificially created topsoil precursors should contain an organic portion and should be treated with microbial and mycorrhizal inoculum. For Sandhill, which has the least burdensome requirements among the three habitats most analogous to sand live oak (sand pine scrub, xeric oak scrub, and sandhill), Reclamation Guidelines notes that the objective is to concentrate a "deep layer of well-drained sands around/upon a topographic high to prove an area of rapid, positive infiltration and positive down-gradient seepage." The reclaimed sandhill habitat is adapted to excessively drained sands and requires "substantial depth to water table (although not as excessive or deep as scrub)." For soils, Reclamation Guidelines offers two options: six to eight feet of sand tailings covered with a layer of T/VI from a suitable donor scrub or eight to ten feet of sand tailings covered with a minimum four inch layer of artificially created topsoil precursor. For sand pine scrub and xeric oak scrub, the soil requirements are the same, except that the first option is for sand tailings eight to ten feet deep, not six to eight feet deep. As already noted, CRP Specific Condition 8.b requires IMC to reclaim sand live oak and xeric oak scrub with "several feet" of sand tailings and three to six inches of topsoiling from donor scrub or, if topsoiling is not feasible, the seeding and disking of a green manure crop. (Although omitted, the feasibility condition presumably qualifies the topsoiling requirement because Specific Condition 8.b defines "feasible.") For Pine Flatwoods and Dry Prairie, Reclamation Guidelines notes that the objective is to locate these communities on moderately to poorly drained soils, so that the depth to the water table is moderate to shallow. Most vegetation of these two communities is adapted to predominantly sand soils. For soils, Reclamation Guidelines offers two options: two to four feet of sand tailings covered with a layer of T/VI from a suitable donor flatwoods/dry prairie area or two to four feet of sand tailings covered with a minimum four inch layer of artificially created topsoil precursor. As already noted, CRP Specific Condition 8.a requires IMC to reclaim pine flatwoods and dry prairie with a minimum of 15 inches of sand tailings and three to six inches of transferred or stockpiled topsoil, if feasible, or, if not, the seeding and disking of a green manure crop. For Wetland Mixed Forest, Reclamation Guidelines notes that this community will occupy the outer limit of the floodplain down to the stream channel and the forested edge of deeper marshes. Likely to receive runoff from major storm events, Wetland Mixed Forest should be designed to contain and slow runoff while maintaining sufficient water for wetland viability. For soils, Reclamation Guidelines offers three options: decompacted overburden to a depth below the dry season water table overlying by a layer of T/VI from an appropriate donor site, two to three feet of sand tailings under a layer of T/VI, or either overburden or two to three feet of sand tailings covered by a minimum of four inches of artificially created topsoil precursor. As already noted, ERP Specific Condition 14.b requires IMC to reclaim all forested wetlands by backfilling with sand tailings or overburden to an unspecified depth under "several inches of wetland topsoil," if feasible. However, for bay swamps, Specific Condition 14.b adds in boldface: "All reclaimed bay swamps shall receive several inches of muck directly transferred from forested wetland approved for mining." Reclamation Guidelines treats Bay Swamp (and Cypress Swamp) separately from other forested wetlands. Noting that Bay Swamps are in areas of significant surficial seepage or high average groundwater elevation, Reclamation Guidelines states that Bay Swamps require sufficient seepage to remain saturated or a deep organic profile at and below the average water table elevation. For soils, Reclamation Guidelines states: "Bay swamps require the placement of one to three feet of organic muck as a depressed lens. The muck should be obtained from a suitable donor wetland." For Non-Forested Wetland, which includes wet prairies and freshwater marshes, Reclamation Guidelines is of value more to identify why the phosphate mining industry and DEP have overseen the routine reclamation of deeper wetlands, but not shallower wetlands. Treating these two very different communities under the same category, Reclamation Guidelines states: "All of the sub-categories may be constructed on overburden, with the exception of sand pond." Although the overburden option for reclaimed forested wetlands seems a stretch, given repeated problems of mature tree growth into overburden relatively close to grade, the overburden option for reclaimed wet prairie, other than fringing deeper marshes when properly sloped, can no longer merit serious consideration, given only one successful, extensive shallow-wetland reclamation site--SP(2D), whose reclaimed soil is four inches of mulched topsoil overlying four feet of sand tailings. However, consistent with its Reclamation Guidelines, DEP did not differentiate between wet prairies and deep marshes in the soil-reclamation requirements contained in the ERP. ERP Specific Condition 14.c allows backfilling with sand tailings or overburden and requires only "several inches of wetlands topsoils when available." Tellingly, Reclamation Guidelines divides aquatic systems into two categories: shallow (less than six feet deep) and deep. Shallow systems comprise swamps, marshes, sloughs, and ponds, but not streams. Nowhere does Reclamation Guidelines explicitly address the reclamation of streams. Comparing the soil-reclamation requirements that DEP has imposed on IMC in the CRP approval and ERP to the soil- reclamation specifications stated in BMR's Reclamation Guidelines, material discrepancies emerge as to the depth of sand tailings underlying four upland communities. If IMC transfers topsoil, sand live oak communities require at least six feet of sand tailings, not "several" feet; if IMC uses green manure, sand live oak communities require at least eight feet of sand tailings. Regardless whether topsoiled or green manured, xeric oak scrub communities require at least eight feet of sand tailings, not "several" feet. Regardless whether topsoiled or green manured, pine flatwoods and palmetto prairie require at least two feet of sand tailings, not 15 inches. There is a material discrepancy between the ERP and Reclamation Guidelines as to bay swamps. Reclamation Guidelines specifies one to three feet of organic muck for reclaimed Bay Swamps. ERP Specific Condition 14.b requires only "several inches of muck." Given the poor record reclaiming bay swamps, DEP, in forming this condition, is not relying on any experience-based knowledge that it has acquired, or, if it is, it did not add this information to the present record. There is no discrepancy as to wet prairies, but this is clearly due to a shortcoming in Reclamation Guidelines, at least as to non-fringe wet prairies. Under Reclamation Guidelines, wet prairies, at best, will continue to reclaim only as fringes, and only then if the edges of deeper wetlands have shallow slopes. Given the otherwise-uniform failure to reclaim extensive shallow wetlands, the actual soil regime at SP(2D) of four feet of sand tailings under four inches of topsoil must set the minimum soil criteria for wet prairie. 2. Geology and Soils For purposes of this Recommended Order, soils occur predominantly in the first two meters of the earth's surface. Below that depth, geologic characteristics predominate, so this Recommended Order refers to these deeper structures as geology. Post-reclamation, all of the soil and the top 45-50 feet of the geology are a product of IMC's reclamation activities. The post-reclamation geologic characteristics follow from the mining process, which deposits overburden within the mine cut in two locations. Most of the overburden is deposited in spoil piles within the cut. Some of the overburden is piled against the sides of the mine cut to reduce the seepage of water from the surrounding surficial aquifer into the cut. Both types of overburden are sometimes called "cast overburden." At OFG, prior to backfilling, the creation of cast overburden spoil piles will either leave alternating bands of sand tailings valleys and cast overburden spoil piles, each 330 feet wide, or each 165 feet wide; the record is not entirely clear on this point. The scenario with the greater hydrological impact is that each valley and the base of each spoil pile is 330 feet wide, but, even under this scenario, relatively little backfilled area would have less than five feet of sand tailings. If each sand tailings valley is 330 feet and each cast overburden spoil pile is also 330 feet at its base, the profile of each cast overburden spoil pile would appear to be a two- dimensional pyramid with its top cut off just below midpoint along its two slopes. The sides of the spoil piles of cast overburden are not perpendicular to the surface, but are sloped at about 1.5:1, according to Dr. Garlanger. Rounding off the depth of the mine cut to 50 feet, this 33-degree slope would travel 50 feet vertically at the point at which it had traveled 75 feet horizontally. Matching this slope with another on the other side of the spoil pile, 150 feet of the 330-foot wide overburden spoil pile would be consumed by the sloped sides, and 180 feet would be a plateau, at a constant elevation of 50 feet above the bottom of the mine pit. Adding 7.5 feet on either side of the plateau gains a depth of 5 feet, so the width of overburden under less than five feet of sand tailings would be 195 feet. Under the less-favorable scenario, for a 660-foot wide band of reclaimed geology, without regard to topsoil additions, the sand tailings, for the above-described 660-foot slice, will be at least 10 feet deep for a distance of 450 feet, or 68 percent of the reclaimed area, and will be at least 5 feet deep for a distance of 475 feet, or 72 percent of the reclaimed area. Adding the U-turns at the end of the rows would add only a little more area to the 28 percent of the reclaimed area with an overburden plateau within five feet of the surface. If the cast overburden spoil piles fill only half of each 330-foot wide cut, then the overburden plateaus would be much narrower. Each sand valley of 165 feet would abut a 33-degree slope that would again run 75 feet horizontal while climbing 50 feet vertical. Two of these slopes would consume 150 feet horizontal, leaving an overburden plateau of only 15 feet, leaving much less land with an overburden plateau within five feet of the surface. The shaping of the overburden that precedes the backfilling, the backfilling of sand tailings, and the transfer of topsoil are aided by substantial technological improvements in earthmoving equipment in recent years. Most importantly, earthmoving equipment has incorporated global positioning systems, so that they can now grade material to a tolerance of two centimeters, as compared to tolerances of six inches and one foot not long ago. This achievement permits the reclamation scientists to supervise backfilling more closely so as to replicate the design topography, which is a necessary, although not sufficient, condition of successful establishment of targeted hydroperiods and inundation levels. IMC soil scientist Joseph Schuster and Mr. Carter both presented detailed, well-documented testimony and are both competent soil scientists. They start from the same point, which is that pedogenesis, or soil formation, is a function of five factors: parent material, relief, climate, vegetation, and time. From there, they travel separate paths in their analysis and conclusions concerning the soil aspects of IMC's reclamation plan. In the successful reclamation of soils, Mr. Schuster highlights the creation of appropriate drainage characteristics, and Mr. Carter highlights the creation of appropriate soil horizons, although both experts acknowledge the importance of both these factors, and others, in soil formation and function. Their reasoning seemed mostly to be a question of differing emphases, although their conclusions were mutually exclusive. As already noted, the A horizon is the topsoil layer. (A mucky wetland may have an O horizon.) There is some variability among horizons--for example, the C horizon, which is described below, may occur immediately beneath the A horizon, especially in sandy material. But, for this part of Florida, typically, the E horizon forms under the A horizon. The E horizon is a leaching zone, through which rainwater transmits substances from the A horizon down to the B horizon, which is the accumulation zone beneath the E horizon. Florida typically has two types of B horizons: the Bh (or spodic) horizon, which is composed of loamy or spodic materials, and the Bt (or argyllic) horizon, which is composed of clayey materials. The spodic horizon is a mineral soil horizon containing aluminum and organic carbon, and possibly iron, which formed in a much colder climate, probably at least 10,000 years ago. Spodic horizons typically occur in the top two feet of the soil profile. Although spodic horizons may occur as deep as 40 feet, they occur at OFG within 20 inches of the surface, sometimes within only 10 inches. Beneath the B horizons is the C horizon, which is the parent material for pedogenesis. For the most part, Mr. Schuster's emphasis on reclaiming appropriate drainage is credited as the single most important factor in reclamation, and his seven drainage categories are ample for guiding the reclamation of the drainage characteristics of soils. More reclamation failures may necessitate the implementation of one of Mr. Carter's suggestions to carefully restore the soil horizons within the top two meters of the mine cut, as it is backfilled, or to use more clayey soils, such as those from drained CSAs, to add more nutrient-retaining capacity to the B and C horizons than nutrient-poor sand tailings provide. Mr. Carter's soil cores from reclamation sites, which reveal overburden close to the surface, presented stark contrasts to soil cores of native soils in the area, although drainage concerns outweigh pedogenic concerns. Mr. Carter correctly points out that, from a soils perspective, pre-mining overburden is not post-reclamation overburden. From a mining perspective, what lies above the unmined phosphate ore is overburden, and what lies in the ground, post-reclamation, is also overburden, which, to a certain depth, is dominated by characteristics of the B horizon and underlying C horizon. However, in a 52-foot deep phosphate mine, as opposed to typical road construction, which Mr. Schuster unpersuasively offered as a comparable, the overburden is ultimately dominated by geologic material from below the C horizon. From a soils perspective, what lies in the unmined ground are soil horizons that took many years to form, and what lies in the ground, post- reclamation, is nothing but an admixture of former soil horizons and geologic material that normally resides a little deeper in the earth's crust. As Mr. Carter notes, the result, post- reclamation, is less like soil and more like unconsolidated soil material with little horizonization even several years after reclamation, and, if an overburden layer is present close to the surface, it typically is tightly compacted. Soil horizons are not an incidental or random characteristic of undisturbed soils; soil horizons are an important component in the formation and functioning of soil. Mr. Schuster himself disclaims reliance upon overburden epipedons--which are organically influenced horizons typically above the B horizon--in the restoration of native ecosystems, although he does not object to the presence of such epipedons in agricultural restoration. If sand were displaced by overburden in the area of the E horizon, the E horizon will be unable to contribute to the formation of the B horizon, as it must, especially after the comprehensive disturbance of all soil horizons contemplated at OFG. Mr. Schuster's disclaimer bodes ill for the ERP provisions allowing overburden as an alternative to sand tailings for forested and herbaceous wetlands. However, Mr. Schuster's disdain for cast overburden near the surface is well-founded. His emphasis on drainage over soil horizons, including even overburden epipedons, may find support at Dogleg, which, according to the CDA, suffered the loss of its 12-inch topsoil layer due to oxidization and was left with overburden of a "clayey sand" texture that may have been more permeable than typical, less permeable overburden. This loss appears to have taken place over sufficient time that other conditions may have commenced to form an A horizon. However, when adjacent mining ended and the water table re-established itself, the reclaimed trees began to survive. Mr. Schuster accounts for the importance of pedogenesis, in addition to drainage characteristics, by identifying the topsoil/green manure, sand, and overburden as analogs of soil horizons. Certainly, the topsoil/green manure is a functional analog, and its thickness is not much of a variable. Sand tailings provide an appropriate texture for an A horizon. But the variability of the depths of sand tailings limits the force of Mr. Schuster's argument for functional analogs. For all wetland communities, overburden may occur at depths of only several inches, and, for pine flatwoods and palmetto prairies, overburden may occur at depths of 15 inches. Or sand tailings may be over 50 feet deep, atop a clay confining layer, not overburden. Setting aside the problem with the variability of depths of sand tailings, it is possible to treat sand tailings as a functional E horizon, through which materials will leach from the A horizon and into the B horizon, which is the zone of accumulation. However difficult it may be to cast the sand tailings in the role of a B horizon, it is impossible to cast them in the role of a C horizon. Ignoring the considerable amount of geologic material contained in cast overburden and possible textural issues, Mr. Schuster plausibly offers overburden as good B and C horizon material because of its higher clay or spodic content. Thus, the apparent impairment of pedogenesis may not be as extensive as first appears, provided overburden remains below the A and E horizons. Still, mining and reclamation, at least as designed for OFG, mean the loss of some soil functions for extensive periods of time, but proper reclamation of drainage characteristics and hydrology sufficiently mitigate these losses of function. Even Mr. Schuster's emphasis on drainage is not unconditional, as he relies on the application of topsoil or the implementation of a green-manure process to provide an immediate A horizon and accelerate the process by which the A horizon continues to form. Endorsed by Mr. Carter as a good idea to increase organic material and loosen the structure of the topsoil, green manure is the process by which a quick-growing cover crop is planted on the finished surface, post-reclamation. The crop is then disked into the soil to provide a quick infusion of nitrogen and organic matter. This approach has not previously been used in reclamation following phosphate mining, but it has been used in other applications and is effective. Post-reclamation, fire too will pump nutrients into the A horizon. Herbaceous wetlands, with their shallower roots, ought to be adequately served by Mr. Schuster's focus on the drainage characteristics of reclaimed soils. Forested wetlands present a different challenge due to their deeper root systems. Past reclamation of forested wetlands has experienced tree loss after several years of growth, possibly indicative of a problem with root development beyond a certain depth. Perhaps the roots cannot penetrate the overburden or cannot find the necessary nourishment, after penetrating the overburden; however, it is at least as likely, given the record of reclamation, that the mitigation site suffered from a poorly reclaimed water table, so that, for example, the water table was too high for too long, perched, or even too low for too long. Given the repeated problems with establishing appropriate water tables, post-reclamation, this factor looms as a likely explanation for tree die-off. However, Mr. Schuster's emphasis on drainage characteristics over pedogenic conditions carries more weight as to herbaceous wetlands and xeric habitats, where sandy soils predominate to relative great depths, and somewhat less weight as to forested wetlands. Mr. Schuster's emphasis on drainage over pedogenesis carries even less weight as to pine flatwoods and palmetto prairies, which are less tolerant to the disturbance of the spodic horizon in reclaimed soils. Obviously, overburden presents different textures and drainage characteristics than do native flatwoods soils. However, pine flatwoods and palmetto prairies are more dependent upon higher water tables than more xeric upland communities, so, again, past problems in reclaiming these upland communities again likely involve the failure to create an appropriate water table, post-reclamation. Differences between Mr. Schuster and Mr. Carter were harder to reconcile regarding the role of pH in soil. Mr. Schuster and Mr. Carter reached different results in field tests of soil pH. However, Mr. Schuster's testimony is credited that most ecosystems tolerate a wide range of pH, and the most important soil characteristic remains its drainage characteristics. Hydrology Introduction Removing and replacing the topography, soils, and geology, including the surficial aquifer, to a depth of 52 feet, under nearly 3500 acres of land necessitates hydrological analysis. Hydrological analysis is necessary to support three sets of projections: the streamflows of Horse Creek, downstream of OFG, during mining and after reclamation; hydroperiods and inundation depths of reclaimed wetlands, as the wetlands created in the reclaimed topography and soils fill and empty with water based on inputs and outputs from runoff and groundwater, inputs from rainfall, and outputs from evapotranspiration; and peak discharges from OFG, during mining and after reclamation. All hydrological analysis must account for the water budget, which balances the inputs and outputs of water. The elements of the water budget are rainfall, runoff, percolation (or infiltration), evapotranspiration, deep recharge (the recharge of the deeper aquifers), and groundwater outflow. Rainfall is the most important factor because it is the sole means by which water enters the system. Equal to the total of the outputs, annual rainfall is a large number, typically measuring in this part of Florida in excess of 50 inches. Rainfall is also a variable number in two respects. It varies from year to year. For the Peace River basin, annual rainfall from 1933 to 2002 has ranged from 35.89 inches to 74.5 inches with an average of 52.4 inches. However, rainfall in the Peace River basin has varied over eras. From 1933 to 1962, average annual rainfall was 55.48 inches. From 1962 to 2002, average annual rainfall was 51.02 inches. For the Peace River basin, the average annual rainfall has decreased about 4 1/2 inches in the past four decades when compared to the preceding three decades. Especially over shorter time intervals, rainfall also varies considerably from location to location within a relatively small area. Subject to these variabilities, especially the distance of the rainfall gauge to the location for which the water budget is constructed, rainfall is easily measured by rainfall gauges. Measurement means straightforward collection of data without elaborate modeling, calculation, or simulation. After rainfall, the most important element in the water budget is evapotranspiration, which is the combined effect of evaporation of water from soil, plant surfaces, wetlands, and open water and transpiration of water through vegetative processes. In this part of Florida, evapotranspiration releases about 75 percent of the rainfall back into the atmosphere, which, by convention, counts as a loss to the system. Unlike rainfall, evapotranspiration typically cannot be measured, except that the maximum evaporation, which is a pan containing water in the direct sun, is subject to direct measurement. Hydrologists have measured evapotranspiration from irrigated golf courses at 58-62 inches annually, and Dr. Garlanger has measured evapotranspiration from reclaimed CSAs at 39-41 inches annually, although both of these measurements may have been somewhat indirect. However, hydrologists widely recognize ranges of evapotranspiration for this part of Florida for different land uses. Annual rates of evapotranspiration for open water is 49-1 inches, for riparian wetlands is 47-49 inches, and for isolated wetlands is 43-44 inches. The annual evapotranspiration for pine flatwoods is 37-39 inches and for xeric uplands is 34-36 inches. Impervious surface, such as pavement or a roof, produces only 8-10 inches annually--absent weeds, all evaporation. In addition to land use, the amount of water available controls the amount of evapotranspiration. Elevations of the water table will affect evapotranspiration. Thus, hydrologists often measure potential and actual evapotranspiration. Anthropogenic impacts may increase or decrease evapotranspiration. Net additions of impervious surface, such as parking lots, roads, and rooftops, increase runoff and decrease evapotranspiration. Net additions of open water, such as lakes, ponds, and streams, decrease runoff and increase evapotranspiration. At the other end of the spectrum, deep recharge removes very little water at OFG. Even during mining, when the impacts would be greatest due to high withdrawals, the increase to deep recharge is 30-60 gallons per minute--insignificant as compared to the average recharge rate in the Peace River basin of 190,000 gallons per minute. In fact, according to RAI-192 in the CDA, rainfall, not deepwell water, is the primary source of water for the mine recirculation system. Deep recharge is typically one inch annually, although Charlotte County hydrologist Phillip Davis, in one of his scenarios, claimed that 2.5 inches of water annually would enter the intermediate aquifer from the surficial aquifer. This range of values for deep recharge is within the specified ranges for most types of evapotranspiration. Deep recharge cannot be directly measured. The record does not suggest much variability in deep recharge, which is controlled by the elevation of the water table and potentiometric surface of the Florida Aquifer, in undisturbed geologic systems in this part of Florida. Although the replacement of part of the confining layer between the surficial and intermediate aquifers could affect deep recharge, the potential impact at OFG appears to be very small due to the permeability of the matrix layer and impermeability of the clay bed beneath it. However, historic anthropogenic disturbances may have increased deep recharge. All groundwater withdrawals induce recharge, at least of the surficial aquifer. Withdrawals from the deeper aquifers, such as those taken by the phosphate mining industry prior to expanded recycling, could have caused increased rates of deep recharge, depending on the confining layers above the Floridan Aquifer within the area influenced by the withdrawals. To the extent that the effect of these deep withdrawals extended to the surficial aquifer, evapotranspiration and streamflow would have been reduced. Groundwater outflow has been measured in this area by Bill Lewelling of the U.S. Geologic Service. (Mr. Lewelling seems to have measured groundwater outflow indirectly by measuring chloride concentrations at different locations.) He found a range of 1.7-17.9 inches annually with an average of 9.2 inches annually. An important component of groundwater outflow, infiltration depends on soil type and antecedent saturation, so it is variable in terms of location and climate. However, it appears to vary within a relatively narrow range at OFG, pre- mining. One combination of water-budget elements that may be measured easily is streamflow, which, as noted above, is a combination of the runoff and groundwater outflow reaching the stream. Streamflow equals rainfall minus evapotranspiration minus deep recharge minus the change in uplands storage. For the purposes of Dr. Garlanger's analysis, uplands are everything, including wetlands, above riparian wetlands, and riparian wetlands are the area adjacent to a stream channel that remain perennially wet and are typically within the 25-year floodplain. Streamflow is not variable like rainfall as to location because the river or stream is fixed and so is the location of the gauge, but streamflow is highly variable as to volume, even from year to year. For Horse Creek at State Road 64, for example, annual streamflow from 1977 to 2001 has averaged 9.7 inches, but has ranged from one inch to 17 inches. For the Peace River at Arcadia, annual streamflow from 1950-1962 was 13.25 inches or 1334 cfs. From 1963 to 2002, average streamflow at the same location was 8.78 inches or 884 cfs. The SWFWMD has not yet set minimum flows and levels for the Peace River, but is presently in the process of setting these values. In these cases, streamflow is most often calculated to compare a model's output in streamflow to measured values for the same period of time, to determine streamflow for locations without a streamflow gauge, or to determine streamflow for locations with a streamflow gauge, but after changes in land use, such as the construction of a ditch and berm system or post-mining reclamation. Another combination of water-budget elements that can be measured, although with more difficulty than streamflow, is the water table. Most water table data are fairly recent, dating from the early 1990s. Mr. Davis testified that the water table data available for OFG were the most limited that he had ever encountered. Varying daily, the water table is the top of the surficial aquifer. The elevation of a non-perched water table, at any given time, is ultimately driven by all of the elements of the water budget, but is immediately reflective of surficial aquifer inputs and outputs and hydraulic conductivity. Hydraulic conductivity is the ability of a porous medium to transmit a specific fluid under a unit hydraulic gradient, so it is highly dependent on the physical properties of the medium through which the fluid is transmitted. Although hydraulic conductivity exists in the horizontal and vertical planes, this Recommended Order considers only horizontal hydraulic conductivity. Hydraulic conductivity is an important hydrological factor that can be measured, at least horizontally, although with difficulty. Hydraulic conductivity varies by location due to the variations in permeability of the geological structure through which the groundwater is passing. The hydraulic conductivity of sand tailings is about 38 feet per day, and the hydraulic conductivity of cast overburden is about one foot per day. Native soils are typically somewhere in between these two extremes. In one area, the matrix, pre-mining, had a permeability of 5-15 feet per day. IMC's assurances concerning streamflow, wetlands hydroperiod and inundation depths, and peak discharges must be assessed against three different backdrops. At one extreme, at least based on the present record, phosphate mining and reclamation, as distinguished from other phases of phosphate processing, have not caused adverse flooding; the sole example of flooding from a failed ditch and berm system--designed to meet more relaxed standards--occurred at the Kingsford Mine on January 1, 2003, and no serious environmental damage occurred. At the other extreme, reclamation after phosphate mining has routinely failed to reclaim targeted hydroperiods and inundation depths for shallower wetlands and many forested wetlands. In between these two extremes, although closer, at least recently, to the industry's flooding experience, is streamflow. Historic impacts to the Peace River are considered below, but an example of the minimal impact on streamflow of recent mining is found in the last 15 years' mining of the upper reaches Horse Creek. During this period, the streamflow of Horse Creek at State Road 64 has remained unchanged. The record does not support Mr. Davis's suggestion that high volumes of groundwater pumping and high volumes of NPDES discharges artificially added streamflow during this period. Resolution of the hydrological evidence in these cases requires close examination of the testimony of Dr. Garlanger, who addressed all three areas for IMC; Mr. Davis, who addressed streamflow and wetland hydroperiods and inundation depths for Charlotte County; and Mr. Loper, who addressed peak discharges for Charlotte County. All three of these witnesses are highly competent and patiently and thoroughly explained their hydrological analyses. Mr. Loper proved adept at finding flaws in IMC's analyses of peak discharges. Dr. Garlanger and his staff several times refined their work, even during the hearing, to incorporate Mr. Loper's findings. Differences remained between Mr. Loper and Dr. Garlanger, and, although it is possible that Mr. Loper is correct on these remaining points, Dr. Garlanger successfully discounted the importance of Mr. Loper's objections in projecting peak discharges. Examining the evidence in the backdrop of a record almost devoid of failures that have resulted in flooding, it proved impossible not to credit Dr. Garlanger's assurances about peak discharges. Mr. Davis was less successful in finding flaws in IMC's analysis of streamflow, or at least in finding material flaws. As detailed below, his theory attributing to phosphate mining a greater share of historic reductions in the streamflow of the Peace River seems less likely than Dr. Garlanger's theory attributing a lesser share of these historic reductions to phosphate mining. Mr. Davis substituted an integrated simulation model for Dr. Garlanger's uplands model and spreadsheet. The advantages of Mr. Davis's model emerged to a greater extent in simulating wetlands hydroperiods and inundation depths, not in simulating streamflows. This is discussed in detail below. The conflict between Mr. Davis and Dr. Garlanger over the ability to reclaim targeted hydroperiods and inundation depths has proved very difficult to resolve. Dr. Garlanger has vast experience in the phosphate mining industry and thus a clear advantage in projecting, as he has since 1974 at several hundreds of projects, peak discharges and streamflow. But this experience is no advantage as to projecting wetland hydroperiods and inundation depths. Dr. Garlanger did not state that he has projected hydroperiods and inundation depths for 30 years at several hundreds of projects. If he has done so, he has contributed to the numerous failures, described above, of reclaiming shallow wetlands. More likely, the phosphate mining industry has infrequently targeted shallow wetlands for reclamation, so Dr. Garlanger does not have extensive experience in creating the necessary hydroperiods and inundation depths for shallow wetlands. The reclamation of specific hydroperiods and inundation depths for shallow wetlands is likely a fairly recent development, perhaps due to the relaxed restoration expectations of earlier eras or the inability of earthmoving equipment to execute fine specifications in finished topography. In the CDA discussion of Bay Swamp, noted above, the author admits that reclamation historically has not attempted to reclaim the kind of interface necessary between shallow wetlands and the water table to support bay swamps. The parties' understandable, but unrealistic, pursuit of findings that all previous shallow-wetland reclamations of any size have failed or succeeded may have discouraged testimony candidly analyzing what hydrologists have learned from the limited successes and the many failures. Especially unfortunate is the omission of any discussion of the success of Dogleg, where, according to the CDA material, persistent replanting of trees over many years in soils with prominent, but perhaps atypically permeable, cast overburden profiles eventually succeeded, after the completion of nearby mining allowed the water table to reestablish itself. The record does not even indicate if Dogleg mining took place behind a ditch and berm system, nor does it adequately describe the texture of the overburden on which the topsoil rested. In addition to different levels of confidence attaching to the demonstrated ability of the phosphate mining industry to avoid adverse flooding and significant reductions in streamflow, on the one hand, and the routine inability of the phosphate mining industry to re-create the hydroperiods and inundation depths required for shallow wetlands, another point of differentiation exists between Dr. Garlanger's streamflow projections and his hydroperiod and inundation depth projections. Although he uses the same uplands model and similar wetlands models for both tasks, certain characteristics of his relatively simple modeling do not work as well in projecting hydroperiods and inundation depths as they do in projecting streamflows. Accurate projections of streamflow, at a discrete point downstream of the 4197 acres constituting OFG, are amenable to averaging, smoothing out input values, and substituting assumed values for calculated values. Accurate projections of hydroperiods and inundation depths require precise analysis of reclaimed wetlands--few over 10 acres, most less than a couple of acres--distributed over the 3477 acres of OFG to be mined. For each wetland, precision means daily accuracy to within a few inches of elevation of topography and water table and no more than a few feet of hydraulic conductivity. Streamflow projections, which have worked in the recent past, will continue to work, whether each projection within an area is accurate or any errors within an analyzed area offset errors in other areas, so that, notwithstanding flow discharge curves, small discrepancies in projected streamflow average out over longer periods of time. Hydroperiod and inundation depth projections, which may have been attempted, if at all, only rarely in the past, must be accurate over very small areas for very specific time intervals. Also, streamflow projections are less sensitive to misallocations between runoff and groundwater flow than are projections of shallow wetland hydroperiod and inundation depth. The record suggests that reclaiming short wetland hydroperiods and shallow inundation depths places new and more difficult demands upon the phosphate mining industry and its reclamation scientists. Although long accustomed to producing projects that did not flood and at least recently accustomed to producing projects that did not reduce streamflow, the phosphate mining industry and its reclamation scientists are only now acclimating to newer regulatory expectations that they produce projects that reliably reclaim shallow wetlands by re-creating functional relationships between these wetland systems and surface runoff and groundwater flow. Streamflow Streamflow in Horse Creek downstream of OFG and the Peace River is reduced during mining because the ditch and berm system captures all of the runoff, at least up to the capacity of the ditch and berm system. The ditch and berm system is designed to handle the 25-year, 24-hour storm event, although additional, unspecified freeboard is built into the system. The capacity of the ditch and berm system may be exceeded by more intense storms or perhaps even lesser storms, unless the 25-year storm design accounts for antecedent water levels, which may be higher in systems with recharge wells than in systems without the recharge wells. In any event in which the capacity of the ditch and berm system is exceeded, IMC pumps the water through the mine recirculation system and releases it through one of two NPDES outfalls upstream at Horse Creek. Because the ditch and berm system captures all of the runoff, under normal conditions, the reduction in streamflow after reclamation is generally less than the reduction in streamflow during mining. The removal of the ditch and berm system allows runoff again to contribute to streamflow. To analyze the impacts upon streamflow, Dr. Garlanger first performed a simplified water budget analysis at three locations: Horse Creek at State Road 72 (near Arcadia), the Peace River at Ft. Ogden (where the Authority withdraws its raw water--downstream of the confluence of Horse Creek and the Peace River), and the point at which the Peace River empties into Charlotte Harbor. Although Dr. Garlanger used uplands exclusively for this simplified exercise in constructing a conceptual water budget, adding the riparian wetlands would not substantially change the result because the wetlands runoff and evapotranspiration would be higher, but the wetlands groundwater outflow would be lower. Either way, Dr. Garlanger's analysis, which is sometimes called an analytic model, was merely a prelude to more sophisticated modeling. For his during-mining analysis, Dr. Garlanger assumed that the ditch and berm system would capture all the runoff from the 5.4 square miles of the Horse Creek sub-basin behind the ditch and berm system. In sequential mining, the ditch and berm system would not capture all of the 5.4 square miles at once. But, assuming the worst-case scenario, Dr. Garlanger assumed the capture of the runoff from entire sub-basin for a period of 25 years. Initially, Dr. Garlanger also assumed that the ditch and berm system would likewise not release any base flow. This is an unrealistic scenario because, as noted above, one of the two purposes of the ditch and berm system is to permit base flow into wetlands and streams. Later, Dr. Garlanger alternatively assumed that the ditch and berm system would release all of the base flow. If the ditch and berm system is equipped with recharge wells, it is reasonable to expect that the system will release all of the base flow. Calculating that the Horse Creek sub-basin upstream of State Road 64 is 39.5 square miles, Dr. Garlanger divided the average streamflow of 29.1 cfs at State Road 64 by the area of the sub-basin and determined that each square mile contributed 0.74 cfs of streamflow. Multiplying this number by the 5.4 miles captured by the ditch and berm system, Dr. Garlanger determined that, during mining, the ditch and berm system would reduce streamflow by 4 cfs, if it removed all base flow (and runoff). This very worst-case scenario would generate the following reductions in streamflow: in Horse Creek at State Road 72, 2.3 percent; in the Peace River at Ft. Ogden, 0.3 percent; and in the Peace River at Charlotte Harbor, 0.2 percent. Dr. Garlanger then calculated the reduction in streamflow in the probable scenario in which the ditch and berm system, with recharge wells, operates properly and releases the base flow, while still retaining all the runoff. Relying principally upon Mr. Lewelling's report on groundwater outflow in various locations within the Horse Creek sub-basin, Dr. Garlanger calculated that the capture rate would decrease from 0.74 cfs per square mile to 0.28 cfs per square mile. Applying a capture rate of 0.28 cfs per square mile times 5.4 miles, the reduction in streamflow, during mining, is more realistically 1.5 cfs. This means that, under the simplified analytic model, the ditch and berm system would reduce streamflow in Horse Creek at State Road 72 by less than one percent, in the Peace River at Ft. Ogden by .13 percent, and in the Peace River at Charlotte Harbor by .09 percent. These figures would represent the same reduction in streamflow caused by a decrease in average annual rainfall of 0.01 inches. Although, as discussed below, Dr. Garlanger also undertook more sophisticated modeling of streamflow during mining, this is a good point at which to address three of Mr. Davis's objections to Dr. Garlanger's during-mining analysis because these objections are more conceptual in nature and are not directed to Dr. Garlanger's model. Mr. Davis contended that the unmined wetlands would become dehydrated because: 1) the ditch and berm system would deprive them of surface flow or runoff from the areas behind the ditch and berm system; 2) the ditch and berm system would deprive them of adequate base flow or groundwater; and 3) water in the ditch would be lost to evapotranspiration. These objections are more applicable to a ditch and berm system without recharge wells. If the only source of water to rehydrate the wetlands is the groundwater running into the mine and rainfall directly on the area behind the berm, the loss of runoff into the area behind the berm and the loss of water to increased evaporation would require additional analysis to assure that adequate water remained to recharge the downstream wetlands through groundwater inputs. However, the recharge wells add additional water, probably from the deeper aquifers, so that adequate water can be supplied the downstream wetlands through groundwater inputs. To the extent that intercepted surface flow reduces water levels in the unmined wetlands, IMC can offset this loss by pumping more water into the ditch and increasing groundwater inputs into these wetlands. Mr. Davis's additional objection about additional evapotranspiration from the riparian wetlands assumes the condition that he claims will not occur--adequate hydration of the riparian wetlands--so it is impossible to credit this concern. Dr. Garlanger next analyzed streamflow by applying a simulation model. More sophisticated than the analytic model discussed in the preceding paragraphs, the uplands portion of this modeling also aided Dr. Garlanger's analysis of the hydroperiods and inundation depths of the wetlands in the no- mine area and the reclaimed wetlands, which are discussed in the next subsection. Dr. Garlanger's simulation model calculates site-specific groundwater outflows based on day-to-day hydrological conditions. Unlike the analytic model, which examined the effect on streamflow only during mining, the simulation model determines streamflow contributions from OFG without any mining disturbance for a 25-year period into the future, during mining, and after reclamation for the same 25- year period used in the no-mining analysis. The modeling proceeded in two stages. First, Dr. Garlanger modeled uplands. Then, inserting the groundwater and runoff outputs from the uplands model into a streamflow model, Dr. Garlanger modeled the riparian system to determine its contributions to streamflow at a point just downstream of OFG. Thus, rainfall is the only addition of water into the uplands system, but rainfall, groundwater outflow from the uplands into the riparian wetlands, and runoff from the uplands into the riparian wetlands are the additions of water into the riparian system. The uplands model is the Hydrological Evaluation of Landfill Performance (HELP) model. Developed for use in analyzing groundwater movement in landfills, HELP generally calculates groundwater outflow based on the hydraulic conductivity of the surficial aquifer divided by the square of the distance from the riparian wetland to the basin divide. In 2001, Dr. Garlanger modified the HELP model (HELPm). The modification multiplies the output from HELP by the square of the maximum height of the water table above the confining layer at the basin divide minus the square of the minimum height of the water table above the confining layer at the riparian wetlands. The only variable in HELPm is the maximum height of the water table above the confining layer; all other values, including those set forth above for HELP, are fixed. The modification improved the HELP model by allowing Dr. Garlanger, among other things, to reduce the extent to which the model is constrained by enabling him to input more realistic hydraulic conductivities. Using HELP, unmodified, Dr. Garlanger had had to input unrealistically high values for hydraulic conductivity. Hydraulic conductivity is either measured in the field or assumed. To simulate OFG without any mining for 25 years into the future, Dr. Garlanger had to obtain an input for hydraulic conductivity. Based on collected data from near the Panhandle as to daily fluctuations in the water table over a two-year period and sub-surface soil composition, as well as other information, Dr. Garlanger determined an average weighted hydraulic conductivity for OFG, pre-mining, of 19 feet per day with a low of 10 feet per day. Dr. Garlanger settled on an initial average weighted hydraulic conductivity of 15 feet per day for the surficial aquifer, but also identified a low-end average of 10 feet per day. As noted above, the contribution of an area of land to streamflow is dependent upon rainfall, evapotranspiration, deep recharge, and the change in storage, which is driven by the elevation of the water table (i.e., the top of the surficial aquifer) as it changes from day to day. Focusing on the vertical components of the water budget, HELPm calculates daily changes in storage, based on water table levels, so as to permit projections of runoff and groundwater outflow from the uplands. For rainfall, Dr. Garlanger relied upon the records of the Wauchula gauge, which is about 10 miles northeast from OFG. Rainfall data for this gauge go back to 1933, although to supplement some missing months, Dr. Garlanger relied on the Ft. Green gauge, which is closer to OFG, but does not go as far back as the Wauchula gauge. To supplement this information on the volume of rainfall, Dr. Garlanger added inputs on the frequency and rate of rainfall. For this calculation, Dr. Garlanger only used rainfall data for the period from 1978 to 2002 because the U.S. Geologic Service has collected streamflow data for Horse Creek at State Road 64 only as far back as 1978. Similar streamflow data for Horse Creek downstream at State Road 72 and for the Peace River go further back. Dr. Garlanger selected this timeframe so he could compare the model output of predicted streamflow to actual streamflow. HELPm calculates evapotranspiration, typically the largest source of water loss, on a daily basis. Dr. Garlanger calibrated evapotranspiration in his simulation by comparing HELPm calculations against average annual values for evapotranspiration for riparian wetlands, uplands, and wetlands in uplands, so as to permit the calculation of an average value of evapotranspiration for the Horse Creek basin above State Road Calibration is the process by which a hydrologist modifies the data inputs to the model based on measured data in order to produce a better match between observed and predicted data. Using generally accepted evapotranspiration values and the standard water-budget formula, Dr. Garlanger calculated average annual evapotranspiration for the Horse Creek basin above State Road 64 of 40.3 inches. He determined the following annual average evapotranspiration rates: riparian wetlands-- 47.5 inches; depressional wetlands--44 inches; seepage wetlands- -47.5 inches; well-drained uplands--34.5 inches; and other uplands--39 inches. Using this information, Dr. Garlanger then found the appropriate average annual evapotranspiration for the OFG uplands that he was modeling, and he reran the model five or six times until it produced outputs for uplands evapotranspiration consistent with this value. For uplands runoff, Dr. Garlanger turned to a well- recognized methodology for estimating the storage available in the uppermost foot of soil, as infiltration is an important factor in determining runoff. For groundwater outflow, Dr. Garlanger uses the one available equation, which is derived from Darcy's Law. Dr. Garlanger then ran his model for the no-mining, during-mining, and after-reclamation options, and he validated the model. In validation, the hydrologist confirms the model's outputs to measured data. In these exercises, Dr. Garlanger compared the predicted groundwater outflows with the empirical values published by Mr. Lewelling and predicted groundwater levels with those measured by IMC near the Panhandle. Dr. Garlanger ran the model with hydraulic conductivities of 10-15 feet per day and drainage times of 5-12 days. He eventually settled on an average hydraulic conductivity of 10 feet per day and an average drainage time of 12 days. Using these values, Dr. Garlanger validated his output by projecting streamflow from the entire 39.5-square mile area upstream of State Road 64, for which data exist. He found that the model produced a reasonable prediction of the flow duration curve. Dr. Garlanger then validated the output by comparing predicted and measured cumulative streamflow from 1978 through 1987, during which time mining in the Horse Creek basin was insignificant. He found a very good matchup between actual data and his model's predictions. Validating the output for average daily and average annual streamflow against actual data, Dr. Garlanger again found that the model performed acceptably. Dr. Garlanger then was prepared to model the 5.4 square-mile area for impact on Horse Creek streamflow at State Road 64 for 25 years without mining, during mining, and for 25 years after reclamation. For during-mining conditions, Dr. Garlanger assumed that the ditch and berm system would capture all of the runoff and none of the groundwater. For post-reclamation conditions, Dr. Garlanger assumed that the cast overburden spoil piles would be parallel to the flow of groundwater or, where that is not practicable, that the top of the spoil piles would be shaved by progressive amounts, ranging from five feet at the groundwater (or basin) divide progressively to 15 feet at the riparian wetland. This is vital to his calculations because of the vast difference in hydraulic conductivity of cast overburden spoil piles as compared to sand tailings. When oriented perpendicular to groundwater flow and unshaved, these spoil piles would act as underground dams, blocking the flow of groundwater. Dr. Garlanger modeled streamflow, in Horse Creek at State Road 64, which is just downstream of the confluence of Horse Creek and West Fork Horse Creek, under two scenarios: hydraulic conductivity of ten feet per day and drainage time of 12 days and hydraulic conductivity of fifteen feet per day and drainage time of five days. For post-reclamation hydraulic conductivity, Dr. Garlanger used 12 feet per day. With the higher streamflow reductions resulting from the lower hydraulic conductivities, Dr. Garlanger projected streamflow reductions, during mining, from 1.07-2.41 cfs and, after reclamation, from 0.10-0.14 cfs. These are average annual values. Generating a flow duration curve for Horse Creek at State Road 64 and using the more adverse data from the lower hydraulic conductivity value, Dr. Garlanger found a slight decrease, during mining, in flow during low-flow conditions, reflecting the mining of the Panhandle tributaries that contributed to groundwater outflow. Generating a stage duration curve, to depict the elevation of the water in the stream during the low-flow condition, Dr. Garlanger demonstrated that the difference is about three inches. After reclamation, as compared to pre-mining conditions, Dr. Garlanger determined that the average flow is decreased by 0.1 cfs, probably due to increased evapotranspiration from the additional reclaimed wetlands. This generates no discernible difference in the two flow duration curves for Horse Creek at State Road 64. Dr. Garlanger thus reasonably concluded that mining would not adversely affect the flow of Horse Creek at State Road 64 or dehydrate wetlands in the no-mine area. He concluded that, after reclamation, the impact would be de minimis as a decrease of 0.1 cfs is beyond the ability to measure flows. Farther downstream, at State Road 72, which is downstream of the confluence of Brushy Creek and Horse Creek, Dr. Garlanger calculated projected streamflow reductions, during mining, from 1.2-2.8 cfs and, after reclamation, from 0.12-0.16 cfs, which are too small to measure. Likewise, there are no discernible differences in the flow duration curves at State Road 72. Downstream of the confluence of Horse Creek and the Peace River, at Ft. Ogden, Dr. Garlanger calculated that the reduction in streamflow caused by mining at OFG would be equivalent to the reduction caused by a decrease of 0.01 inches of rainfall in the Peace River basin. Mr. Davis voiced many objections to Dr. Garlanger's streamflow calculations based on his reliance on HELPm. These objections are addressed at the end of the next section. Mr. Davis also voiced objections to Dr. Garlanger's calculations based on his understatement of the impact of phosphate mining on streamflow. As already noted, Dr. Garlanger made the better case on this issue. Distinguishing between the two rainfall eras in the Peace River basin--1933-1962 and 1969-1998--Dr. Garlanger reported that the measured average streamflow of the Peace River in the latter era was about 4.33 inches lower than the average streamflow of the Peace River in the former era. Finding that decreased average rainfall reduced streamflow by 3.75 inches per year, Dr. Garlanger calculates that the remaining 0.58 inches per year reduction in streamflow was largely due to an increase in deep recharge from 3.37 inches annually in the earlier era to 6.3 inches annually in the latter era. Anthropogenic changes in the Peace River basin have had opposing effects on streamflow. Urbanization, which causes increases in impervious surface, have increased runoff at the expense of evapotranspiration, thus increasing streamflow-- although certain demands of urbanization, such as groundwater pumping for potable water and industrial uses, will increase deep recharge, thus decreasing streamflow. Groundwater withdrawals by agriculture, industrial, utilities, and phosphate mining, net of the returns of these waters, have increased deep recharge, which, as just noted, decreases streamflow. Historically, phosphate mining's profligate use of deep groundwater also released much of the water back to streamflow, although the industry's historic predilection for Land-and-Lakes reclamation increased evapotranspiration and thus reduced streamflow. Converting inches of streamflow to cfs, Dr. Garlanger makes a good case that the streamflow of the Peace River is down about 500 cfs, mostly due to reduced rainfall amounts. About 50 cfs of that reduction is due to anthropogenic effects, and 5-15 cfs of man-caused reductions in the streamflow of the Peace River are due to phosphate mining. By contrast, Mr. Davis unconvincingly attributed a three-inch reduction in streamflow at the South Prong Alafia River to phosphate mining. This reduction in streamflow may be explained by Mr. Davis's failure to apply a lower and more reasonable streamflow assumption, absent mining; a lower and more likely rainfall amount; and a higher and more likely evapotranspiration rate. Wetland Hydroperiods and Inundation Depths 694. In making his groundwater calculations, Dr. Garlanger attempted to predict the behavior of the surficial aquifer, post-reclamation, and the ability of runoff and the water table to support the hydroperiods and inundation depths of the wetlands in the no-mine area and reclaimed wetlands. For this phase of his hydrological work, Dr. Garlanger again used the HELPm for the uplands and a long-term simulation model for the depressional wetlands in the uplands. The long-term simulation model is very similar to the streamflow model used for the riparian-wetland component of the streamflow modeling. Notwithstanding the replacement of the present geology with its more limited vertical permeability with wide bands of sand tailings down to the clay confining layer, Dr. Garlanger believes that deep recharge will remain unchanged by mining and reclamation because groundwater levels will return to their pre-mining elevations. To analyze the ability of the post-reclamation water table to support the reclaimed wetlands, Dr. Garlanger took 12 wetland cross-sections and projected fluctuations in water table and hydroperiod. These are presumably the 13 wetland complexes identified in Figure 13-3, described above. Dr. Garlanger testified about one modeled reclaimed wetland in detail--a freshwater marsh fringed by a wet prairie. This is E046/E047, which is a combined 16.1-acre wetland that is upgradient from E048, which is six-acre mixed wetland hardwoods that will replace the east half of a bay swamp (G166) and mixed wetland hardwoods fringes (G166B and G166C). Dr. Garlanger performs an iterative process based on a post-reclamation topographic map that starts with substantially pre-mining topography. Identifying the HELPm inputs, Dr. Garlanger takes the length of the upland to the riparian system and the assumed hydraulic conductivity based on the relative depths of sand tailings and cast overburden, and he then runs HELPm to determine the daily upland runoff and groundwater outflow. Dr. Garlanger then calculates the maximum height of the water table above the confining layer at any point downgradient from the basin divide to the riparian wetland. To input hydraulic conductivity, Dr. Garlanger testified that he obtains a value "based on the spoil piles and the depth that the spoil pile will be cut down to adjacent to the preserved area." (Tr, p. 2993) Applying the output to a wetlands model that is similar to the streamflow model, Dr. Garlanger then engages in an iterative process in which he adjusts and readjusts the post- reclamation topography to produce the proper elevation of the bottom of each modeled wetland for the hydroperiod that is stipulated for the vegetative community to be created in that location. Besides changing the bottom slope of each seepage wetland, the major adjustments for each wetland are narrowing its outlet or lowering its bottom elevation to extend its hydroperiod and deepen its inundation depth or broadening its outlet or raising its bottom elevation to shorten its hydroperiod and make its bottom elevation more shallow. Dr. Garlanger modeled the iterative process by continuing it late into the hearing, as he and IMC surveyor, Ted Smith, produced a "final" post-reclamation topographic map at the end of the hearing. Actually, even this map is not final, as Dr. Garlanger testified that he and Mr. Smith will produce the final topographic map, for wetlands, after the area is mined, photographed, backfilled, and graded, at which time they will know the location and direction of the cast overburden spoil piles. Dr. Garlanger will then use a calibrated model to account for actual in situ conditions. Due to the flatness of OFG, it is possible, even at this late stage, to regrade the sand tailings, if necessary for hydrological purposes. Monitoring wells will produce substantial data on the hydraulic conductivity of the no-mine area, as well as the hydroperiods of existing wetlands and the frequency with which seepage wetlands release water. Dr. Garlanger and IMC employees will also measure the hydraulic conductivity of the sand tailings and overburden in the reclaimed areas, also to assist their preparation of the final topographic map. As noted above, ERP Specific Condition 16.B.2 requires IMC to model 24 reclaimed wetlands to demonstrate successful water table re-creation and hydroperiod and inundation depth reclamation. Dr. Garlanger applied his models to confirm that, for each of the 24 modeled wetlands, the design topography and hydrology would produce the targeted hydroperiod and inundation depth. Mr. Davis modeled three reclaimed bay swamps. Bay swamps are the hardest wetlands for which to reclaim an appropriate water table due to their long hydroperiod, shallow inundation depths, and seepage characteristics. As noted above, no successful reclamation of bay swamps has ever taken place, except under circumstances inapplicable to OFG. The three reclaimed bay swamps are: E008, a 0.7-acre bay swamp abutting the west side of the Stream 1e series; E063, a 1.3-acre flow-through bay swamp in Stream 5e; and W039, an 11.2-acre bayhead from which Stream 1w will flow. W039 is a very large reclaimed wetland. After the 20.7-acre wet prairie (W003) to be reclaimed at the headwaters of Stream 9w and the 23.8-acre mixed wetland hardwoods (E003) lining the Stream 1e series, W039 is the largest reclaimed wetland at OFG, along with E018/E020, which are the isolated wet prairie fringe and freshwater marsh on the east side of Section 4. Mr. Davis testified as a witness in surrebuttal, which was necessitated by a late change by IMC in post- reclamation topography for these three bay swamps. Mr. Davis implied that he understood these three bay swamps better than he did the other reclaimed wetland systems. The fact is that he did understand these three reclaimed bay swamps better than he did any other reclaimed wetlands. Prior to testifying, at the order of the Administrative Law Judge, Mr. Davis and Dr. Garlanger conferred so that Mr. Davis, in preparing to respond to the "final" post-reclamation topography, would clarify any uncertainty about how Dr. Garlanger was modeling these wetlands and projecting their hydroperiods and inundation depths. Mr. Davis identified Dr. Garlanger's topographical changes to these three bay swamps. For E008, Dr. Garlanger lowered the west end of the wetland by 0.5 feet, extended a 114-foot contour up the channel, just east of an existing 115- foot contour, and possibly adjusted the slope. For E063, Dr. Garlanger lowered the bottom elevation by one foot, so that it can now store 0.3 feet of water, given its overflow popoff elevation. And for W039, Dr. Garlanger removed a slope and flattened the bottom, so that it can store 0.3 feet of water. From Dr. Garlanger's spreadsheets, Mr. Davis found the values for runoff, groundwater, and rainfall entering each wetland. Mr. Davis found that E008 received only 10 percent of its water from runoff, more of its water from rainfall, but most of its water from groundwater inflow. Noting that E008 abuts a reclaimed xeric area, Mr. Davis recalled a 6:1 ratio of groundwater inflow to runoff inflow. Mr. Davis explained that E008 loses most of its water to runoff. Mr. Davis found that the groundwater input for this wetland was consistent with the testimony of biologists, such as Deputy Director Cantrell, that bay swamps are primarily groundwater-driven systems, but questioned the absence of groundwater outflow to the adjacent, down-gradient riparian wetland (E003). For E063, however, Mr. Davis found that inputs from runoff, a more important source of water for this wetland, were about the same as inputs from groundwater. Although he did not testify to this fact, E063 is an unusual reclaimed bay swamp because it is the only one that will serve as a flow-through wetland, situated, as it is, in the middle of Stream 5e. This would seem to explain the larger role of surface water inputs than is typical of bay swamps adjacent to uplands. For W039, Mr. Davis found a small percentage of surface water and larger percentages of groundwater and rainfall as water sources for this wetland. Rainfall inputs would be greater due to the large area of the wetland, according to Mr. Davis. As a headwater wetland abutting uplands, W039 would be expected to have a higher input ratio, than E063, of water from groundwater versus runoff. Mr. Davis noted that W039 lost about half of its water to evapotranspiration, which would also make sense given its large surface area, and half to runoff, which would make sense given its status as a headwater wetland for Stream 1w. Mr. Davis then ran his MIKE SHE model to predict the hydroperiod for each wetland. This model is described in more detail at the end of this subsection. In simulating the hydrology of the reclaimed OFG, Mr. Davis assumed that the overburden spoil piles would be parallel to the direction of groundwater flow and eliminated any differential depressional storage, but he continued to assume two inches of depressional storage. (These assumptions are also discussed in connection with the MIKE SHE model.) Mr. Davis found that the 11.2-acre W039 will have a perfect hydroperiod. Its inundation hydroperiod will range from 8.6 months to 11.0 months, from bottom to top. Its saturation hydroperiod, which is water measured to a depth of 0.5 foot below the bottom of the wetland, will range from 8.8 months to 11.1 months, from bottom to top. Mr. Davis found that the 1.3-acre E063 will have a hydroperiod of 11.9 months, which is 0.9 months too long. Mr. Davis found that the 0.7-acre E008 will have a hydroperiod of 2.7 months for inundation and 4.6 months for saturation, which is about four months too short. 714. Crediting Mr. Davis's testimony, IMC's successful reclamation of an 11.2-acre bay swamp, dependent upon upland surface water and groundwater inputs, would be an unprecedented success. As discussed below, Mr. Davis's depressional assumption is not credited, so the hydroperiod of E063 would be shorter than the 11.9 months that he has calculated. Also, this reclaimed system will be a seepage system that would not permit the build-up of much standing water, so, even crediting Mr. Davis's calculations, Dr. Garlanger has achieved the proper hydrology for its reclamation too. It is more difficult to resolve the conflict in simulated hydroperiods for E008. E008 is a more complicated wetland to model because it is part of a reclaimed complex consisting of nine reclaimed wetlands. No other wetland complex to be reclaimed at OFG approaches this number of different communities in a single complex. Except for E018, which, although 30.7 acres, is a much simpler wetland system because it is an isolated complex of three wetlands, no other wetland complex to be reclaimed at OFG comes close to the area of the Stream 1e series' wetlands complex, which totals 35.1 acres, or over 10 percent of the wetlands to be reclaimed at OFG. Mr. Davis's unjustified depressional assumption generates excessively wet conditions, but, for E008, he found its hydroperiod to be too short by at least 3.4 months. And, of course, E008 is the difficult-to-reclaim bay swamp. The two models invite comparisons at this point. Mr. Davis's model, MIKE SHE, enjoys wide usage for calculating streamflows, hydroperiods, and inundation depths, as it has been used in these cases. MIKE SHE has been used successfully in large-scale settings. On the other hand, HELP was designed for calculating water levels in landfills. For calculating the uplands component of streamflow and hydroperiod, HELPm is used by Dr. Garlanger alone. The author of HELP's routine for lateral drainage and the subroutine for unsaturated vertical flow, Bruce McEnroe, pointed out that this model could accommodate only a regular, homogenous drainage layer, as would be found in a landfill, and could not accommodate the irregular, heterogeneous aquifer layer, which Dr. Garlanger was modeling. Mr. McEnroe also explained that the downstream boundary condition of HELP, which is free drainage, does not resemble the actual downstream boundary condition, in which groundwater cannot typically drain freely, and this limitation applies equally to the pre-mining and post-reclamation scenarios. Mr. McEnroe also found a mathematical error, but Dr. Garlanger later showed that it would alter results inconsequentially. Complaining about Dr. Garlanger's failure to provide comment lines in his source code, where he modified HELP, Mr. McEnroe emphasized that the model, as modified and used by Dr. Garlanger, really was no longer the HELP model. Counterposed to Mr. McEnroe's testimony was the testimony of Mark Ross, an associate professor of civil and environmental engineering at the University of South Florida College of Engineering. Professor Ross has 20 years' experience in hydrological modeling and has worked with the Florida Institute of Phosphate Research model that Mr. Davis helped develop, but which no longer is supported or in much use. Professor Ross conducted a peer review of the HELPm model, spending 20-30 hours in the process, exclusive of time spent discussing the model with Dr. Garlanger. Professor Ross endorsed Dr. Garlanger's use of a single value of .75 for evapotranspiration in riparian wetlands and his use of a weighted hydraulic conductivity. Professor Ross acknowledged that more complex models were available, but correctly opined that the simplest model was best if it could accommodate all of the available data. Although the emphasis in his testimony was on streamflow, Professor Ross addressed wetlands and their hydroperiods sufficiently to assure that his opinion of the sufficiency of the HELPm model covered both tasks. The interplay between the complexity of the model and availability of data emerged more clearly with the testimony of Authority hydrologist Henrik Sorensen, who developed code for the MIKE SHE model. Successful applications of this model range from the Danube River to Kuala Lampur to South Florida. The Danube River project was the construction of a dam, and hydrologists ran MIKE SHE to project the impact of the diverted streamflow on riparian wetlands. The Kuala Lampur project was the construction of a new city, and hydrologists ran MIKE SHE to project the impact of vastly changing land uses on the water level in the peat wetlands. South Florida projects have included a number of analyses of wetlands impacts of proposed activities. At Lake Tohopekaliga, hydrologists used MIKE SHE to project the effects on the water table and nearby wetlands of a 6-7 foot drawdown of the lake to remove muck. Unlike HELPm, MIKE SHE is an integrated model, meaning that all of its components are contained in a single model. Significant for present purposes, MIKE SHE integrates surface water and groundwater analysis in a single model, so as to facilitate the modeling of the interaction between a stream and surficial aquifer. This is especially important for simulating interactions between the surface and shallow water tables. MIKE SHE is a physically based model, meaning that it is based on equations derived from the laws of nature. In using HELPm and the spreadsheet models for streamflow and hydroperiod, Dr. Garlanger of course relies on laws of nature, but also relies on conceptualizations to link equation-driven outputs. As Mr. Sorensen explained, MIKE SHE is based on differential equations, so that it is dynamic as to time and space, but Dr. Garlanger's models are based on analytic equations, so they are limited to state-to-state solutions. The conceptualizations that link outputs and essentially integrate Dr. Garlanger's pairs of models are only as good as the conceptualizer, who, in the case of Dr. Garlanger, is very good, but conceptualizations can become so pervasive that the model loses its reliability and adds little or nothing to a conceptual exercise using an analytic model. Unlike MIKE SHE, HELPm is a lump-parameter model, which necessitates the input of average hydraulic conductivities, evapotranspiration rates, and leaf area indexes over relatively large areas and, in the case of evapotranspiration rates, sometimes at the expense of their calculation. Constraining a model, by inputting, rather than calculating, values to force results within an expected range, may resemble validation, but when the inputs become unrealistic, as Dr. Garlanger's hydraulic conductivity values were before he modified HELP, the model's credibility is impaired, not enhanced, by the process. Conceptualizations can eventually constrain modeled simulations so as to undermine confidence in the model's outputs. Unlike HELPm, MIKE SHE is spatially distributed, so that different land use types may be distributed throughout the model. HELPm may input different land uses for different basins, but MIKE SHE allows the user to input different land uses for different cells, each of the user's choice as to size. As noted by Mr. McEnroe, HELP was developed to simulate a shallow system running to a drain, and it remains well-suited for this task. In tracking the water table, HELPm assumes a constant thickness of the drainage layer, which reflects the design of landfills, not natural systems. As IMC contends, the post-reclamation geology will be far simpler than the pre-mining geology at OFG, but even the post-reclamation hydrology is far more complex than that of a landfill. With a 35:1 ratio of hydraulic conductivities, the surficial aquifer must negotiate the 330-foot wide valleys of sand tailings separated from 180-foot wide plateaus by 33-degree overburden slopes. Overburden peaks would have been simpler than overburden plateaus because the effective depth of sand tailings would have been at least five feet over nearly all of the mined area; as already noted, these overburden plateaus mean that, exclusive of shavings and toppings, overburden at less than five feet finished depth occupies about 28 percent of the surface of the mined area. This geology is much more complicated than the uniform geology of a landfill, especially when trying to project the surface water and groundwater inputs and outputs of shallow wetlands and streams, some of which will span several phases of this unusual geology. Unlike HELPm, MIKE SHE is used for its designed purpose when used for projecting streamflow and wetlands hydroperiods and inundation depths. It is widely used, peer- reviewed and supported with two or three updates annually. Mr. Sorensen made an interesting point when he opined that HELPm does a good job with average flows. This explains HELPm's reliability in calculating streamflows. Notwithstanding the calculation of peak discharge curves, accurate streamflow calculations--at least in this part of Florida--tolerate calculations based on average conditions and approximations much better than do accurate calculations of hydroperiod and inundation depths, especially concerning shallow wetlands in wetland complexes. MIKE SHE is not without its shortcomings, at least as applied in these cases. For his MIKE SHE simulation, Mr. Davis did not simulate first- and second-order streams, perched groundwater flow (i.e., interflow), or shallow concentrated overland flow, and, despite the model's sophistication, he still had to perform conceptualizations, such as of drainage. Mr. Davis's first two post-reclamation runs, prior to his final run of the three bay swamps, suffered from faulty assumptions. First, he assumed depressions and differential depressions based on a settling that Dr. Garlanger, with geotechnical engineering experience that Mr. Davis lacks, testified convincingly would not occur. Second, Mr. Davis assumed that the spoil piles would be oriented perpendicular to the direction of groundwater flow. Mr. Davis likely knew that IMC had agreed on December 23, 2003, to orient the mine cuts parallel to the direction of groundwater flow, to the extent practicable. Mr. Davis modeled the perpendicular scenario presumably due to the vagueness of the assurance, set forth only in the introduction to the January submittal, and thus unenforceable, that IMC would grade or shave the tops of overburden plateaus of spoil piles running perpendicular to groundflow. When performing his modeling, Mr. Davis could not have known of Dr. Garlanger's recommendation, as contained in a letter dated April 29, 2004--less than two weeks prior to the start of the final hearing--that IMC shave 5-15 feet off any perpendicular cast overburden spoil piles or that IMC would accept Dr. Garlanger's recommendation during the final hearing. As agreed to by IMC during the hearing, it will bulldoze any spoil piles oriented perpendicular to the direction of groundwater flow from 5-15 feet: the cut would allow five feet of sand tailings nearest the groundwater divide and would progressively deepen to allow 15 feet of sand tailings nearest the stream. For an average width of overburden of 195 feet with five feet thickness of sand tailings, which is the width calculated above under the less-favorable hydrological scenario with regard to the bases of the sand tailings valleys and cast overburden plateaus, Dr. Garlanger calculated a hydraulic conductivity of seven feet per day. Mr. Davis assumed that IMC would not be able to orient the spoil piles parallel to groundwater flow, but nothing indicates that the proper orientation of these piles will be impracticable over significant areas of land. If a turn of the dragline near Horse Creek leaves a relatively short area of spoil perpendicular to groundwater flow and if IMC will shave this area as it does rows, shaving the pile down 15 feet would substantially improve water table/shallow wetland interaction over the portion of the mined area that is left with an overburden plateau. Conceptualizing the contingency of a spoil pile blocking groundwater flow close to Horse Creek, such as from the U-turn of the dragline at the end of a row, the bulldozing of that spoil pile down to an effective 15-foot depth would leave a depth of at least 15 feet of sand tailings running 1095 feet, as measured alongside of Horse Creek out to a point at which the spoil piles would again run parallel to groundwater flow. If all of the spoil piles turned at Horse Creek and assuming that IMC will cut down the cast overburden piled against the sides of the mine cuts, for the distance equal to the distance between the edge of the no-mine area to the start of the curve, sand tailings would be at least 15 feet deep. The real problem with MIKE SHE, as applied at OFG, is its sophistication. Mr. Sorensen admitted that he had not reviewed the data available for this part of Florida, but claimed that he knew, based on his work in South Florida, that sufficient data existed to run the MIKE SHE model. This is highly unlikely. In addition to Mr. Davis's observation about the lack of data, the record reveals a slimmer universe of data than Mr. Sorensen imagined to exist. Measured values for the hydraulic conductivity of pre-mined or post-reclaimed areas are largely unavailable. For specific reclamation sites, little data exist of pre-mining and post-reclamation soil textures, water tables, and wetland hydroperiods and stage elevations. By volume, the two most critical inputs are rainfall and evapotranspiration, which must be calculated or assumed because, for practical purposes, it cannot be directly measured. A major determinant of evapotranspiration is the water table elevation. The critical inputs of rainfall and water table elevations illustrate the shortcomings of the data for these cases. Rainfall records in the general area cover a long period of time, except that collection points are usually far enough away from the site to be analyzed as to raise the probability of significant daily fluctuations, which average out over time. MIKE SHE inputs rainfall spatially and hourly while HELPm inputs a single daily value. Without regard to any particular application, MIKE SHE is the superior model on this point, but its superiority is wasted when the data of hourly rainfall for individual cells are unavailable and values, often based on much longer intervals at much greater distances, must be interpolated. Records for most surficial aquifer monitoring wells in the area date back only to the early 1990s and are fairly spotty as to locations. MIKE SHE inputs spatially distributed groundwater elevations, while HELPm inputs a single value. If, as Mr. Davis testified, multiple inputs of water table elevations, for which direct OFG data are unavailable, must rely on a hydrologist's knowledge of surficial aquifer responses, MIKE SHE would share the same tendency of HELPm--at least for this variable--of relying on external guidance to produce its output. By contrast, the scientists studying the Danube River had lacked the resources for many years to do much more than collect data, so the data for the Danube MIKE SHE simulation was much richer than the data available at OFG. In such data-rich environments, MIKE SHE is the superior model for wetland hydroperiods and inundation depths. The question in these cases is whether, given the limitations of the OFG data and HELPm in simulating hydroperiods and inundation depths, IMC has still provided reasonable assurance of the reclamation of functional hydroperiods and inundation depths for reclaimed wetlands. IMC's case as to reclaimed hydroperiods and inundation depths is undermined by certain aspects of the use of HELPm in these cases. The scientific method, which lends confidence to analysis-driven conclusions to the extent that others can reproduce the analytic process, is poorly served by computer code that is modified without notation and modeling results that no one can reproduce due to the repeated intervention of the modeler, applying his touch and feel to the simulation. Only at the end of nearly eight weeks of hearing and a conference between Dr. Garlanger and Mr. Davis could Mr. Davis finally gain sufficient understanding of Dr. Garlanger's modeling process to make a meaningful comparison between his conclusions and Dr. Garlanger's conclusions for the hydroperiods and inundation depths of three wetlands. When applied to project streamflow, with its relative amenability to average inputs, and when applied to projecting the hydroperiods and inundation depths of deeper and more isolated wetlands, HELPm, as used by Dr. Garlanger, who, as an experienced and highly competent hydrologist, can adjust and re- adjust inputs and outputs, produces reasonable assurance. However, Mr. Davis's analysis of Dr. Garlanger's work and other factors preclude a finding that Dr. Garlanger has provided reasonable assurance that IMC will reclaim a functional hydroperiod and inundation depths for E008. The finding in the preceding paragraph implies no similar rejection of Dr. Garlanger's modeling of the other wetlands. Most of the modeled reclaimed wetlands are isolated and do not present the challenge of simulating complex interactions among them, where an error in modeling an upgradient wetland will cause an error in modeling a downgradient wetland. A couple of the modeled reclaimed wetlands are headwater wetlands, which Dr. Garlanger has demonstrated his ability to model in W039. Outside of the Stream 1e series, the only wetlands similar in location to E008, as attached to a riparian system, will be E040, E048, E054 complex, and W044, of which only E048 is to be modeled. Mr. Davis also addressed E048 in surrebuttal. A wetland forested mixed, E048 will replace a high-functioning bay swamp abutting, or a part of, the riparian wetlands of Horse Creek. Mr. Davis admitted that he could agree with Dr. Garlanger's analysis of inputs into E048 from isolated reclaimed wetlands upgradient of E048, so that he could agree with Dr. Garlanger's projected hydroperiod for this reclaimed wetland. However, Mr. Davis explained that E008 is located in the flatter Panhandle, but that E048, as well as the other reclaimed wetlands listed in the preceding paragraph, are located in areas characterized by steeper grades and more xeric conditions, which support Dr. Garlanger's emphasis on groundwater inputs over surface water inputs. Peak Discharges During mining, the ditch and berm system prevents adverse flooding. If it operates as intended, the ditch and berm system delays the release of runoff from OFG by re-routing it through one of the NPDES outfalls. This decreases peak discharge downstream of OFG. Presumably, IMC will operate the recharge wells in anticipation of storm events--allowing the water levels to lower in advance of storms and maintaining higher water levels in advance of drier periods--so as not to raise the possibility of flooding by way of accelerated discharges through the NPDES outfalls. Failure of the ditch and berm system is highly improbable. The sole failure reported in this record did not involve a system as engineered as the one proposed for OFG, according to Dr. Garlanger. Another possible source of flooding during mining arises from the designed blockage of flow from unmined areas. IMC plans a single, elevated pipeline crossing across Stream 2e, and Dr. Garlanger explained that the design of the culvert, as part of this temporary crossing, will not result in adverse flooding during mining. Similar design work by Dr. Garlanger will be necessitated, if DEP issues a Final Order incorporating the recommendation below that the Stream 1e series and its 25-year floodplain also be placed in the no-mine area. The riparian wetlands for the Stream 1e series are narrowest along Stream 1ee, so this may be the location that DEP determines for the dragline walkpath corridor, if DEP determines that IMC may maintain a dragline crossing anywhere along the Stream 1e series. The sole issue, during mining, involving peak discharges is a legal question, which is whether IMC's ditch and berm system has the capacity to accommodate the design storm. As noted below, the design storm is the 25-year storm, if the ditch and berm system is an open drainage system, and the design storm is the 100-year storm, if the ditch and berm system is a closed drainage system. The capacity of the proposed ditch and berm system is designed to accommodate the 25-year storm, but not the 100-year storm. The facts necessary to determine if the ditch and berm system is open or closed are set forth above. In its Final Order, DEP must characterize a system that is closed in the sense of the availability of a passive discharge outfall, but open in the sense that, with the intervention of pumps--assuming the availability of electricity during a major storm or alternative sources of power--excessive volumes of water may be moved to an NPDES outfall. This is a minor issue because, even if DEP determines that the ditch and berm is a closed system, IMC may easily heighten the berm as necessary to accommodate the 100-year storm. Post-reclamation, many of the changes that IMC will make to OFG will reduce peak discharges. The agricultural alterations that ditched and drained wetlands accelerated drainage and increased peak discharges downstream, as compared to pre-existing natural drainage rates and peak discharge volumes. The removal of these ditches, the net addition of 24 acres of forested wetlands and 48 acres of herbaceous wetlands, the addition of sinuosity and in-stream structure to the reclaimed streams, and the redesigning of the banks of the reclaimed streams so as to permit communication between the reclaimed streams and their floodplains will attenuate floodwaters, slow the rate of runoff, increase temporary storage, and ultimately reduce peak discharges from their present values. Dr. Garlanger modeled peak discharges using the Channel Hydrologic Analysis Networking (CHAN) model, which is a widely accepted model to simulate peak discharges. As already noted, Mr. Loper found several inconsistencies and flaws in earlier modeling, but Dr. Garlanger, undeterred, re-ran the CHAN simulations, incorporating Mr. Loper's findings, as Dr. Garlanger deemed necessary. The bottom line is that, post-reclamation, very small increases in peak discharges will occur at the Carlton cutout and would occur at some property immediately downstream of the point at which Horse Creek leaves OFG. The owners of the Carlton cutout consented to the very minor flooding of their pasture land, and IMC, of course, has no objection to the very minor flooding of its downstream property. Even absent these consents, the very limited extent and frequency of flooding, given the prevailing agricultural uses in the area, could not be characterized as adverse. Among the points raised by Mr. Loper was the absence of mapping of any floodplain besides the 100-year floodplain of Horse Creek. The omission of other floodplains is of environmental or biological importance, but not direct hydrological importance. If for no other reason than that IMC will replicate pre-mining topography, especially at the lower elevations, there will be no loss of floodplain storage. 4. Water Quality Water quality violations characterize past efforts to reclaim streams, other than Dogleg Branch, but the good water quality at Dogleg Branch means that the phosphate mining industry can reclaim streams and maintain water quality, post- reclamation. The intensive engineering in IMC's Stream Restoration Plan raises the prospect of successfully reclaimed water quality, especially among the simpler, more altered stream systems to be reclaimed. There is little doubt that, during mining, few impacts to water quality take place. The ditch and berm systems in place during the upstream mining in the Horse Creek sub-basin have permitted no degradation of water quality. Given the present condition of most of the tributaries and extensive agricultural alterations of most of OFG, successful reclamation may be expected to result in certain changes to water quality, among already-altered tributaries, at least once the reclaimed communities have established themselves. Successful reclamation of these streams and their channels should lower turbidity, by replacing their incised, unstable stream channels and banks with stable channels and banks. The addition of riffles and structure to the stream bed should raise dissolved oxygen levels in these streams. Excluding cattle from these streams, by placing cattle ponds away from Horse Creek and vegetatively screening Horse Creek and the tributaries, should lower adverse impacts, such as turbidity, due to cattle damage to the banks, and nutrient loading, due to cattle waste discharges. Phosphorus is sometimes temporarily higher after mining, but this may be merely a trophic surge. Water temperature will cool with the addition of forested riparian wetlands, once the canopy develops, where none presently exists. However, none of these effects can be anticipated with the reclamation of the relatively pristine Stream 1e series. Other reclamation activities may also be anticipated to improve water quality. These activities include adding net wetlands area, replacing low-functioning wetlands with wetlands with the potential to achieve high-functioning levels, concentrating wetlands more around streams, adding supportive uplands, and otherwise increasing storage and slowing runoff. These activities will raise the level of natural filtration, compared to the natural filtration presently performed at OFG. Wildlife Management and Habitat The wildlife management plans are reasonable accommodations of wildlife that presently use OFG, based on the frequency of the usage by each species and the degree of protection afforded certain species. It is important that IMC update wildlife utilization information for the period that elapses between the site visits and the commencement of mining; wildlife usage by some species, especially the Audubon crested caracara, was discovered shortly before the hearing and, if later found to be more intense, will require more intensive wildlife management plans. Likewise, DEP will need confirmation of FWC's approval of IMC's gopher tortoise relocation plan. Always of especial concern is the Florida panther. Obviously, the accommodations necessary for one or two male Florida panthers visiting OFG are far less intensive than those necessary if a breeding pair had established themselves at the site. Ms. Keenan testified that the ERP/CRP approval should have incorporated the entire Habitat Management Plan. Although the ERP and CRP approval would be strengthened by the incorporation of the Habitat Management Plan, and DEP may elect to do so in its Final Order, the provisions actually incorporated adequately address wildlife management concerns. The evidence fails to establish that OFG, which has been logged over the years, presently supports red cockaded woodpeckers. Clearly, as is the case with the Audubon's crested caracara, IMC is committed to develop, prior to mining, appropriate management plans that meet the needs of whatever species are found using OFG between the hearing and the start of mining. In general, the reclamation of OFG will improve the value of the area for wildlife habitat. The concentration of reclaimed wetlands reduces induced edge by 36 miles. Induced edges artificially increase predation and decrease the function of the upland/wetland interface for those aquatic- or wetland- dependent species that rely on adjacent uplands during parts of their life cycle. The increased breadth of the riparian wetlands, which has been detailed above, also improves wildlife utilization and habitat values by discourage cattle from using the streams and adjacent wetlands. IMC's reclamation plan slightly increases the area of cattle ponds and locates them farther away from sensitive wetlands and streams. IMC's reclamation plan also serves the often- overlooked needs of amphibians. The creation of isolated and ephemeral wetlands, which will not receive floodwaters from Horse Creek or its tributaries in most storm events, will enable these amphibians to develop sustainable populations and flourish. At present, two factors have led to artificially high levels of predation of these amphibians by small fish. Ditching of formerly isolated wetlands and the proximity of still- isolated wetlands to tributaries and their connected wetlands-- so as to allow runoff to connect the two systems during storm events--allow small fish to enter the habitat of the amphibians and prey upon them at artificially high rates. Mitigation/Reclamation--Financial Responsibility IMC has never defaulted on any of its reclamation or mitigation responsibilities. Its mitigation cost estimates are ample to cover the listed expenses of the proposed wetlands mitigation, with two exceptions. For reasons set forth in the Conclusions of Law, IMC is not required to post financial security at this time for any CRP reclamation, such as the reclamation of uplands not relied upon by aquatic- and wetlands- dependent species, that is not also ERP mitigation. However, the listed expenses omit two important items of ERP mitigation. First, the listed expenses omit Dr. Garlanger's fees for final engineering work on wetlands hydroperiods and inundation depths after backfilling has been completed. This is an expense covered under reclamation, as well as mitigation, pursuant to Chapter 378, Part III, and Chapter 373, Part IV, Florida Statutes, respectively. Second, the listed expenses omit the cost of acquiring sand tailings, transporting them to the mine cut, and contouring them. For the reasons discussed in the Conclusions of Law, the cost of obtaining and transporting the sand tailings is not required under reclamation, pursuant to Chapter 378, Part III, Florida Statutes, but is required under mitigation under Chapter 373, Part IV, Florida Statutes. Charlotte County contends that the cost of obtaining, transporting, and contouring sand tailings is $35,588 per acre, according to Mr. Irwin. This represents $10,588 per acre, as Mr. Irwin's "best guesstimate" for earthmoving, which seems to include the stripping and preserving of the A and B horizons, and $25,000 per acre for the shaping of wetland reclamation units. This testimony includes items for which financial security is not required, such as preserving the A and B horizons, and excludes the third-party cost of acquiring sufficient sand tailings to backfill the OFG mine cuts to the post-reclamation topography and transporting these sand tailings to OFG. The record supplies no information on these costs.

Recommendation It is RECOMMENDED that the Department of Environmental Protection issue a Final Order: Granting the ERP with the conditions set forth in paragraph 884 above. Approving the CRP with the conditions set forth in paragraph 919 above. Approving the WRP modification when the ERP and CRP approval become final and the time for appeal has passed or, if an appeal is taken, all appellate review has been completed. Dismissing the petition for hearing of Petitioner Peace River/Manasota Regional Water Supply Authority for lack of standing. DONE AND ENTERED this 9th day of May, 2005, in Tallahassee, Leon County, Florida. S ROBERT E. MEALE Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 9th day of May, 2005. COPIES FURNISHED: Kathy C. Carter, Agency Clerk Department of Environmental Protection Office of General Counsel Mail Station 35 3900 Commonwealth Boulevard Tallahassee, Florida 32399-3000 Greg Munson, General Counsel Department of Environmental Protection Mail Station 35 3900 Commonwealth Boulevard Tallahassee, Florida 32399-3000 Douglas P. Manson Carey, O'Malley, Whitaker & Manson, P.A. 712 South Oregon Avenue Tampa, Florida 33606-2543 John R. Thomas Thomas & Associates, P.A. 233 3rd Street North, Suite 101 St. Petersburg, Florida 33701-3818 Edward P. de la Parte, Jr. de la Parte & Gilbert, P.A. Post Office Box 2350 Tampa, Florida 33601-2350 Renee Francis Lee Charlotte County Attorney's Office 18500 Murdock Circle Port Charlotte, Florida 33948 Alan R. Behrens Desoto Citizezs Against Pollution 8335 State Road 674 Wimauma, Florida 33598 Alan R. Behrens 4070 Southwest Armadillo Trail Arcadia, Florida 34266 Gary K. Oldehoff Sarasota County Attorney's Office 1660 Ringling Boulevard, Second Floor Sarasota, Florida 34236 Thomas L. Wright Lee County Attorney's Office 2115 Second Street Post Office Box 398 Ft. Myers, Florida 33902 Rory C. Ryan Holland & Knight, LLP Post Office Box 1526 Orlando, Florida 32802-1526 Frank Matthews Hopping, Green & Sams, P.A. 123 South Calhoun Street Post Office Box 6526 Tallahassee, Florida 32314 Susan L. Stephens Holland & Knight, LLP Post Office Box 810 Tallahassee, Florida 32302-0810 Francine M. Ffolkes Department of Environmental Protection 3900 Commonwealth Boulevard The Douglas Building, Mail Station 35 Tallahassee, Florida 32399-3000

# 6
SAVE TRAIL RIDGE AND THE ENVIRONMENT, INC. vs TRAIL RIDGE LANDFILL, INC., AND DEPARTMENT OF ENVIRONMENTAL REGULATION, 90-007295 (1990)
Division of Administrative Hearings, Florida Filed:Jacksonville, Florida Nov. 19, 1990 Number: 90-007295 Latest Update: Apr. 19, 1993

Findings Of Fact The Parties The Applicant, Trail Ridge Landfill, Inc. (Trail Ridge), is a corporation formed in 1989 for the purpose of developing a landfill project and providing waste disposal capacity for the City of Jacksonville. Trail Ridge Landfill, Inc. is a wholly-owned subsidiary of Waste Management of North America, Inc. Its operating division is involved in the waste collection, recycling and disposal business. Waste Management of North America, Inc. is a wholly-owned subsidiary of Waste Management, Inc., which is involved in all facets of solid waste collection and disposal nationally. The Florida Department of Environmental Regulation (DER) is an agency of the State of Florida charged with the responsibility of regulating solid waste management facilities and with permitting their initial construction and operation. It is charged with reviewing applications for permits for construction of such facilities, for reviewing applications for dredge and fill permits in wetlands or waters of the State and, as pertinent to the project involved in this proceeding, for storm water management and storage of surface water and the regulation thereof through its permitting and enforcement authority contained in Chapters 403 and 373, Florida Statutes, and Titles 40C and 17, Florida Administrative Code. The Petitioners are Coastal Environmental Society, Inc. (CESI), a not- for-profit Florida corporation established for the purpose of protecting natural resources. St. Johns Preservation Association, Inc. (SJPA), also a not-for- profit Florida corporation established for the purpose of protecting the community, including environmental concerns; Baldwin-Maxville Coalition, Inc., also a not-for-profit corporation established to promote the health and welfare of its community, including environmental concerns; William McCranie, a resident of Jacksonville, Florida; Darryl Sperry, a resident and citizen who lives 1 1/4 miles from the proposed landfill site in Baker County. All Petitioners have been established to be substantially affected by the proposed permitting and the projects related thereto and all have met pertinent standing requirements as a matter of fact and law. The Respondents do not contest the standing of the Petitioners. Background and Purpose of the Project The purpose of the proposed landfill facility is to address the solid waste disposal needs of the City of Jacksonville and Duval County (the City). The City currently disposes of solid waste at two landfills. One is on the east side of Jacksonville on Gervin Road, and the other is located in the north area of Jacksonville on Island Road. The presently used, east landfill is an unlined landfill currently operated pursuant to a DER Consent Order, in connection with which closure of that landfill is planned. The north landfill consists of three unlined cells and one lined cell. The City currently has unused landfill capacity at these two landfills which will last approximately one more year, but has also sought approval for expansion of the north landfill which would provide about two more additional years of capacity, if approved. The proposed landfill project, if approved, constructed and operated, would meet these solid waste disposal needs for approximately 20 to 25 years. The project at hand began when the City issued a Request For Proposal for private companies to submit bids to the City for construction of additional landfill capacity somewhere to the northwest of Jacksonville in Duval County. Two companies that met qualifying requirements submitted proposals in response to the request for proposals. Trail Ridge was one of those two qualifying bidders. The City selected the Applicant for contract award and then entered into a contract. The Applicant has an option to purchase the proposed landfill site from Gilman Timber and Land Company (Gilman, Gilman Paper Company). After issuance of the permits to the Applicant, the option would be exercised. Thereafter the property would be immediately conveyed to the City from the Applicant. Thus the site of the proposed facility will ultimately be owned and controlled by the City, although the Applicant will operate the landfill under its contract with the City. Gilman presently uses the 1,288 acre site and several thousand surrounding acres for growing timber, principally pine trees, in a pine plantation-type operation grown for use as pulp wood. Much of the site and surrounding Gilman land is characterized by pine trees grown to an age of 20 years or less and then harvested. A great deal of the site property has recently been cut, chopped, plowed re-bedded and re-planted with pine trees. Although some of the site is characterized by mature timber, much of the timber has been recently planted or is otherwise timber not yet mature enough for harvest. The option agreement provides that Trail Ridge will purchase the property from Gilman for $10,000 per acre. The City will then purchase the 1,288 acres from the Applicant for $2,600 per acre, which the Applicant maintains is the current, fair-market-value for the land as it is currently used as pine plantation for growing pulp wood. These terms and conditions are a part of the City's Request For Proposals. In addition to paying the Applicant $2,600 per acre for the 1,288 acre site, the City will pay the Applicant a fee over the life of the operation of the proposed landfill. The fee, amortized over the 20- year span of the agreement, will make up the difference between the Applicant's $10,000 per acre purchase price paid to Gilman and the City's $2,600 per acre initial purchase price paid to the Applicant. The City will thus ultimately re- pay Trail Ridge the $10,000 per acre for the purchase price for the property. The Applicant corporation will operate the landfill over its entire useful life and then close it. Thus, the Applicant's own figures show the land is valued at $3,348,800. The record does not reflect the reason for the purchase price paid to Gilman being $12,880,000, of which the City will repay $9,000,000 to the Applicant in the form of the operation fee, over and above the initial payment to the Applicant of $3,348,800. In any event, the utilities payment to the Applicant of the $12,880,000 for the land and the operation of the landfill only represents the recompense to the Applicant for the purchase funds expended for it to buy the site from Gilman. Additionally, the Applicant, through its option agreement with Gilman, is required to pay Gilman a $60,000 per month option fee. $15,000 per month of that must be paid during the pendency of the option, with the remainder of the $45,000 monthly fees due upon closing of the purchase. The portion of the operation fee paid by the City over and above the $2,600 per acre initial purchase price, attributable to the land appraisal itself, will be paid by the City on the basis of a certain dollar fee-per-ton of solid waste handled and disposed of in the landfill by the Applicant. Testimony indicates this will be approximately $8.00-$15.09 per ton, although the evidence as to which amount is indefinite. The testimony of Applicant's witness Allen, in any event, references these amounts as applicable to the City's solid waste "stream" handled by Trail Ridge at the proposed facility. Its contact with the City assures the Applicant of a minimum of 569,000 tons of waste per year to which the fee would apply. The City currently generates approximately 750,000 tons of waste per year. There is no evidence of what the construction or other capital costs or operation expenses related to the proposed facility will be over the useful life of the facility for the Applicant or related corporations. Site and Design The proposed site is 1,288 acres in size, located in southwestern Duval County, approximately three miles south of Interstate Highway 10, 1.5 miles west of U.S. Highway 301 and 1.14 miles north of State Road 228. The site is located in a sparsely populated area approximately 4 to 6 miles from the City of Baldwin, 5 miles from the City of Macclenny and 2 miles from the City of Maxville. A substantial portion of the proposed site will be left undisturbed and used as a buffer area to separate it from any surrounding development. There are water supply wells within fairly close proximity to the site. One well is within a mile of the site and three are approximately 1.5 miles southeast of the site. The proposed facility will include both a Class I and Class III solid waste disposal area. The Class I area will be approximately 148 acres in size, and the Class III area, 28 acres. The Class III disposal area will only be used for non- household refuse such as construction debris, tree and shrubbery clippings and the like, which will not generate deleterious substances in liquid or gaseous form, as will the Class I landfill. The remainder of the 1,288 acres will be used for buffer zones, dirt borrow areas, storm water management facilities and ancillary facilities necessary to the day to day operation of the landfill. No part of the Class III disposal area will be located within 200 feet of jurisdictional wetlands, which are the closest bodies of water. The project will be located on "Trail Ridge," which is a relatively elevated geographic feature, extending generally in a north-south direction in western Duval County. Geologically, it is an ancient sand dune. There is a substantial decline in elevation of this portion of the ridge from west to east, which produces surface water drainage patterns in a west to east direction at the site, also accompanied by surface water drainage patterns in a southerly- northerly direction into wetlands which occur on the south and north verge of the site, because the site is a prong or easterly extension of Trail Ridge lying between wetlands which occur on the northerly, southerly and easterly boundaries of the Class I disposal site. The 1,288 acres, including the landfill sites themselves, have been used for silvi-culture practices since 1948 or earlier, and are currently managed primarily as a slash pine plantation grown for pulp wood purposes. The present owner of the site, Gilman Paper Company, plans to continue this use of the site should the landfill project not be approved and constructed. Since 1948, the entire site, including much of the wetlands thereon, have been logged, some portions of it as many as three times. The silvi-culture practices at the site include clear- cutting, chopping, burning, harrowing, tilling and bedding of the soil, and planting of pine trees. The pine trees are grown to be harvested on a 20-year cycle or less. Due to these intensive silvi-cultural practices, the natural conditions of the site have been significantly altered and much natural vegetation, such as bottom-land hardwoods, has been replaced by planted pine trees. The area has been extensively ditched for drainage purposes and logging roads have been constructed throughout the site. The design of the Class I disposal area of the landfill includes three major components: a liner system, which includes a permanent leachate collection and removal system, a cap and closure system and a gas control system. The Class I disposal area is designed to be 140 feet high when the landfill is completed and closed in approximately 20-25 years. It will have typical landfill refuse "lifts," of approximately 8 to 12 feet in height, with a side slope grade of three horizontal feet to one vertical foot of elevation gain. This is the maximum grade steepness allowed by DER rules. The Class III landfill, in which no household garbage, chemicals, oils and greases or other deleterious substances will be deposited, will include only a cap and closure system. In order to carry out Department regulatory requirements designed to contain waste permanently in a well- defined area and to minimize the amount of leachate produced within a landfill, as well as to collect and remove leachate that is produced, the landfill will have, in effect, a double liner system. The liner system is designed to contain the leachate produced when rain water contacts waste in the landfill and to cause that leachate to percolate vertically downward through the landfill, capture it in the liner system, prevent it from contacting groundwater and to remove it and treat it. Leachate from the Class I disposal area will be contained by the liner system and removed by a leachate collection and removal system. The liner system, starting from the bottom and proceeding upward, will consist of a 6 inch thick layer of compacted, subgrade soil. Over that layer, a prefabricated "bentonite" clay-like material will be deposited. Directly over the bentonite layer will be a high density polyethylene liner (the secondary liner) called a "geomembrane." The bentonite material has the characteristic of swelling when contacted by a liquid so that, if the geomembrane leaks, the bentonite will swell and plug the hole in the liner above it. On top of the bentonite layer and the geomembrane layer, is a synthetic drainage material called "geonet." Geonet has a very high transmissivity rate and therefore has great capacity to conduct water within its own plane. Lying immediately above the geonet material is a geotextile filter designed to keep sand out of the pores or interstices of the geonet. Above that geotextile filter is a second geomembrane (the primary liner). Above the second geomembrane is another geonet layer, as well as another geotextile filter layer. Then to protect the entire liner system from damage, two feet of clean sand will be placed above the uppermost geotextile filter layer. The two feet of sand also acts as a drainage layer for the uppermost geonet. The leachate that percolates down through the waste and the sand will contact the geonet and then be carried down slope on top of the geomembrane. This constitutes the leachate collection system. The bottom geonet is called the "leak detection system." This is because, if a hole develops in the primary liner, any leachate coming through the hole will be quickly drained away through the bottom geonet. The bottom geonet thus operates as a backup leachate collection system, since any leachate reaching the bottom geonet will also be discharged into the leachate removal system. If a leak should develop in the secondary liner, the bentonite material would quickly plug the leak, swelling and absorbing that liquid. The Petitioners have stipulated that the Applicant has proposed a liner system and leachate collection system for the Class I disposal area which meets all criteria of Chapter 17-701, Florida Administrative Code, except as to the requirements of Rule 17-701.050(5)(c), (e)3. and 4. and (f)3., Florida Administrative Code. The Applicant demonstrated that the liner system and leachate collection system will meet the criteria of Rule 17- 701.050(5)(c), Florida Administrative Code. The liner system will be installed in accordance with a quality assurance plan. A specific condition already agreed upon will require the Applicant to submit for approval a revised quality control and assurance plan for installing the Class I synthetic liner system, after selection of the liner manufacturer and prior to the liner's installation. The liner system is designed so that it will be protected from puncture by waste materials or landfill operation equipment. In addition to the two feet of sand placed on top of the entire liner system to protect it, when initial waste disposal begins, the first lift of waste across the entire area of the liner system, as it is installed in phases, will be composed of 6-8 feet of "select waste" to protect the liner from puncture. Select waste is waste containing no pipes, roots or other potentially puncturing objects which could penetrate the sand layer to damage the liner system. A quality assurance engineer will be on site full-time supervising the initial placement of the select waste until that phase of the landfill operation is completed. A grant of the permit should be so conditioned. The Applicant has established that the liner system and leachate collection system will meet the criteria of Rule 17-701.050(5)(e), Florida Administrative Code. The leachate depth on top of the primary and secondary liners will not exceed a foot because the geonet has the capacity to quickly remove leachate from the liner. The actual hydraulic head of leachate on the primary liner will be only approximately 1/4 inch. The depth on the secondary liner was shown to be even less. The liner system and leachate collection system will meet the criteria of Rule 17-701.050(5)(e)3. and (f)3., Florida Administrative Code. The design of the collection system, including the geotextile filter, will prevent clogging of the system throughout the active life and closure period of the landfill, primarily by placing a gravel aggregate around the collection pipe so as to prevent debris from entering the system. A pilot line will also be installed in each collection pipe to facilitate access for mechanical cleaning, should it be necessary. In the unlikely event of an obstruction in the system, the leachate would simply bypass that area and continue down-grade to the next downstream leachate collection pipe and be removed from the landfill for treatment by that means. The liner system and leachate collection system will also meet the criteria of Rule 17-701.050(5)(e)4., Florida Administrative Code. The leachate collected will be carried downhill to pipes at the east end of the landfill. The leachate will then be pumped from the pipes into storage tanks. Trucks will then be filled with leachate to be transported to the City's Buckman Regional Wastewater Treatment Plant, owned and operated by the City, for treatment and disposal. Unrefuted evidence shows that this plant has adequate capacity and treatment capability to safely treat and handle the leachate. The truck loading areas will be equipped with berms and other means of protecting the surrounding wetlands, surface and groundwaters from leachate spills during the truck filling process. The Applicant's evidence does not demonstrate, however, that the tanks themselves and the area surrounding them will have protective measures for containing leachate spills. In order to comply with the above rule, the totality of the evidence concerning the leachate collection, disposal system and treatment method demonstrates that the tanks should be accompanied by a surrounding containment system (walls or berms) which will have the capability of containing the entire capacity of a tank should failure of a leachate collection tank or related piping or valving occur. Any grant of the permit should be so conditioned. The Petitioners have stipulated, and the Department agrees, that the Class III disposal area is exempt from the liner system and leachate collection system requirements of the above-cited rule provisions. Covering and Closure System Both the Class I and Class III landfills are designed with a composite soil covering system to minimize the amount of rainfall which can come into contact with the solid waste so as to minimize the creation of leachate. During the day to day landfill operations, a 6 inch initial cover will be applied to enclose each Class I landfill disposal cell on a daily basis, except for the working face itself, where waste is currently being deposited. The working face may be left uncovered, so long as solid waste is scheduled to be placed on it within an 18 hour period. A 6 inch initial cover will also be applied once every week to enclose each Class III landfill disposal cell. Thereafter, an intermediate cover of one foot of compacted earth will be applied on top of the initial cover within seven days of initial completion, if a final cover or additional lift on top of that completed cell is not to be applied within 180 days of cell completion. The initial cover will consist of sandy soil, over which will come the intermediate cover of one foot of compacted earth. The final cover will be applied to those portions of the landfill which have been filled with waste to the extent of designed dimensions at the time those portions have been filled. The final cover, to be placed on the sides of the landfill and ultimately upon the top at the end of its useful life, will be placed on top of the 12 inches of intermediate soil layer and will consist of 12 inches of compacted clay with a permeability of 1 X 10/-7 cm/sec. Next will come a layer of 12 inches of compacted soil and then a final layer of 12 inches of top soil, upon which the Applicant will plant grass for erosion control. Erosion of the cover layers on the side slopes is designed to be minimized by closing areas of the landfill as they are filled, an operational procedure commonly referred to as "close as you go." The final cover layers placed on the landfill outside of the clay cap are designed to allow the establishment of a planted grass cover as soon as possible to minimize erosion of the cover material and the side slopes. In addition, the intermediate cover placed on top of and between each cell, beneath the clay layer surrounding the outside perimeter of the landfill, has a high permeability, thereby acting as a drainage layer to direct rainfall and leachate vertically downward to the leachate collection system, as well as to collect runoff so as to retard erosion. Erosion is also retarded, as is the runoff of storm water/leachate over the side slopes of the landfill, by containing storm water which comes into contact with the working face of the landfill cells. This will be accomplished by minimizing the size of the working face to approximately 42 feet width. This will serve to reduce the potential for storm water to contact waste. Additionally, berms will be constructed around the working faces of each active cell which will cause any runoff or storm water which gets inside the working face of the cell to remain there and to percolate through the land fill to eventually be collected as leachate by the collection system. If enough rain falls on the working face of a cell to cause an overflow of storm water over the berms, additional berms placed on the interior slopes of the landfill will catch the overflow and divert it back through the landfill and the leachate collection system. The Applicant contends that normal maintenance equipment and personnel will be able to maintain the exterior side slopes of the landfill and thus minimize erosion. However, if erosion should become a problem, the Applicant proposes to install interceptor berms constructed on the side slopes, accompanied by various geotextural fabrics or synthetic materials proposed to be imbedded on the side slopes to help anchor the interceptor berms. These berms, however, have been demonstrated by Petitioner's witness, Mr. Peavy, to be inadequate to retard erosion. In fact, they may promote erosion because they would be insufficiently anchored to the side slope (as designed with 3:1 slope) and the downhill slope of the berms themselves is considerably steeper than a 3:1 ratio, which will actually promote erosion. The erosion problem will be discussed in further detail infra, but the proposed "optional" berm system, consisting of two proposed berms down the length of the 450 foot side slope will have to be redesigned in order to serve the purpose of retarding side slope erosion. The cap or cover for the exterior side slopes of the landfill will consist of a relatively impermeable clay layer overlain by a sand layer, as well as a top soil layer. Mr. Lithman, an expert in geotechnical engineering testifying for the Applicant, established that as a result of the side slope stability analysis he conducted of the clay layer for the Class I disposal area, that the clay layer would be stable, with a safety factor of 2.9-3, which is more than adequate for a slope as designed for the Class I disposal area (3:1). Mr. Evander Peavy, testifying for the Petitioners and accepted as an expert witness in the fields of civil engineering, soil mechanics, surface water hydrology and hydraulics, agreed that there was an adequate safety factor in the clay cap layer itself and that no plane of failure would likely occur in that layer. The problem, however, lies in the sand layer immediately predetermined or potential plane of failure will occur at the interface between the sand layer and clay layer. This is where the side slope of the landfill is most likely to fail. Failure means that the weight of the sand and soil layers on the outside of the clay layer would exceed the resisting forces, holding them back on the slope of the landfill, which would result in a deformation, slumping or break in the sand layer. If this slumping or break occurs in the sand layer and is not immediately repaired, rain water can erode the clay layer, which is highly erodible if exposed to rainfall. If not redressed soon, this could result in exposure of the waste of the landfill to rain water with the result that leachate could seep out of the side slopes of the landfill and enter surface waters of the State through the functioning of the storm water system. The most likely layers a civil engineer would analyze to determine the stability of the side slope would be the sand and soil layers above the clay layer because they are the weaker layers in terms of adhesion, shearing and resistance to downward movement under stress. However, Mr. Lithman, Trail Ridge's expert who conducted a side-slope stability analysis, only analyzed failure in the clay layer initially, until he was called on rebuttal to address findings of Mr. Peavy. The DER rule provision that allows 3:1 ratio side slopes for the sides of such landfills only serves as a guideline or maximum steepness criteria for design engineers. It does not relieve an engineer from analyzing slope stability in accord with good engineering practices. Analyzing side slope stability must be done in terms of establishing "safety factors." An acceptable safety factor for a landfill is 1.5 because, if failure occurs, solid waste can quickly be uncovered which can cause leachate contamination to surface waters of the State. A safety factor of 1.5 is the commonly accepted factor for earthen dam design because of the risks posed by failure of such slopes or embankments. Mr. Peavy is extensively experienced in the design of earthen dams and similar earth works, including extensive analysis of slope constituents and design for stability under shear forces and other failure-inducing factors, as well as for resistance to erosive forces. He was engaged in such phases of engineering work for approximately 26 years, during which period he designed and oversaw construction of numerous dams, revetments and other earthen embankments and works of many types. Because of this, and because of the commonly accepted engineering methods and calculations he used in analyzing the stability and integrity of the side slopes of the landfill, involving plane of failure analysis and erosion damage analysis, his testimony is credited over that of the other witnesses testifying on the subject matters involving side slope integrity of the landfill. Because of this, a safety factor was established for the side slopes of the landfill, for the sand and soil layers of 1.5. Safety factors of 1.25 are indeed commonly used for highway embankments, but highway embankments are not designed with predetermined or potential planes of failure, such as is involved at this landfill (as presently designed) between the sand-soil layers and the clay layer. Trail Ridge's expert witness in this area, Mr. Lithman, had testified that a safety factor of 1.25 would be adequate because it was typical of DOT earthen embankments for roadways. Mr. Niehoff testified that a 1.3 safety factor was sufficient. In fact, however, Mr. Peavy, testifying for the Petitioners, calculated the safety factor of the side slopes of the landfill to actually be 0.85, using his initial assumption of a weight for a cubic foot of the sand-soil layer of approximately 100 pounds. Mr. Niehoff testifying for Trail Ridge found no basic fault with Mr. Peavy's analysis of the safety factor and alleged that his analysis was done with accepted engineering procedures, but only with use of slightly different assumptions. He testified that if he had used the same assumptions as Mr. Peavy, he would have reached the same conclusions. Mr. Peavy also calculated his safety factor again by employing the same equation used by Trail Ridge's expert, Mr. Lithman, and assumed instead that the unit of sand-soil layers was 125 pounds per cubic foot, as did Mr. Lithman. This assumption coupled with the internal angle of friction of 35 degrees used by Mr. Peavy, which was shown to be a conservative assumption, resulted in a calculated safety factor of 1.05, which is still unacceptable, even under Mr. Lithman's analysis, because Mr. Lithman opined that the safety factor should be 1.25. Using Mr. Peavy's equation, but his own assumptions as to angle of friction and weight per cubic foot of the sand-soil layer, Mr. Niehoff, testifying for the Applicant, calculated a safety factor of 1.3. This safety factor also is unacceptable because it is less than the 1.5 safety factor established as proper by Mr. Peavy's testimony and, indeed, if Mr. Lithman's safety factor of 1.25 could be deemed acceptable, the 1.3 figure would result only in a marginal safety factor at best. The major difference between the safety factor calculations of Mr. Peavy and Mr. Niehoff is that Mr. Peavy assumed that the sand-soil layer above the clay layer would be saturated, while Mr. Niehoff assumed that only 19 inches of the 24 inch sand-soil cover layer would be saturated by rainfall. However, Trail Ridge's own experts, Mr. Lithman and Mr. Niehoff, offered conflicting testimony between themselves on the amount of saturation to be expected. Like Mr. Peavy, Mr. Lithman did his analysis on the basis that the sand-soil layers would be saturated completely, contrary to Mr. Niehoff's subsequent testimony that this would not happen beyond a 19 inch depth in the layer. Mr. Niehoff's conclusions that the sand-soil layer would not become saturated or valid only if there is a complete grass cover over the entire side slopes of the landfill. He admitted that if the sand-soil layer became saturated, the safety factor would only be 1.1 or less according to his own calculations. Trail Ridge offered no preponderant evidence to establish that an adequate grass cover could be established so as to prevent saturation of the sand-soil layer during the design 25-year, 24-hour storm event (approximately 8- 9 inches rainfall in 24 hours). The evidence indicates, rather, that establishing and maintaining a grass cover on the side slopes of the landfill will be very difficult to achieve on a uniform, completely grassed basis. This is because of erosion and because of the damage by equipment necessary to repeatedly repair erosion damage and because of the fact that much of the side slopes of the landfill will be, in effect, under construction until the landfill is completely built out and completed at the end of approximately 20 years. Even if the lower several lifts of the landfill, when covered on the "cover as you go" basis can achieve them, more recently deposited, will not have a complete grass cover. Thus, there is a substantial likelihood of saturation of the sand-soil layer, during storm events of the type for which the landfill is designed. Further, the volume of water that would saturate into the sand-soil layer, even if the landfill was completely grassed, will still be sufficient to totally saturate the lower 90 feet of the landfill side slopes above the clay layer in the event of a 25-year, 24-hour storm event. If the sand-soil layers become saturated, sloughing or failure of those layers will occur at the toe of the landfill. If that occurs, then the clay layer, protective cap can be quickly eroded by subsequent rainfall and surface runoff. This will cause the waste within the landfill to be exposed to rainfall, generating leachate which can migrate to the surface of the landfill and thence to the storm water system and ultimately to the surface waters of the State. No provisions have been made in the design to remove water from the sand-soil layers once it reaches the area near the toe of the landfill to prevent sand-soil layer failure. The impermeability of the clay layer would prevent the rainfall from migrating through the clay layer and continuing to the interior bottom of the landfill to be collected properly as leachate because the clay layer properly should be an impermeable barrier to storm water. Thus, a saturated condition of the sand-soil layers would be most likely to cause their sloughing and failure near the toe of the landfill, with resulting damage by erosion or cracking to the clay layer with the effect of allowing leachate to escape to surface waters of the State. Although the Applicant's expert, Mr. Lithman, opined that side slope stability had not been a problem with the 3:1 ratio slopes at the City's Rosemary Hill Landfill, he admittedly was unaware of the height or length of the side slopes of that landfill. The longer the side slopes and the higher the landfill, the more likely it is that the sand-soil layers will become saturated and fail during design storm events or shortly thereafter, especially as the landfill, in its later years is built both longer and higher toward its final configuration. Further, Mr. Lithman and the Applicant's evidence does not reveal the composition of the side slopes of the Rosemary Hill Landfill, in terms of whether or not the clay and sand-soil layers designed in the proposed landfill are present. Due to the height of the proposed landfill, the lengths of its side slopes and the absence of design features such as terraces and benches, failure of the side slopes, especially in the later years of the landfill's life and, indeed, after closure (closed landfills can generate leachate) is likely to occur, based upon the facts established through Mr. Peavy's testimony. The likely side slope failure is a result of the design flaw and is not a problem which can be cured by normal operation and maintenance activities. Indeed those activities may aggravate the problem through their deleterious effect on the establishment of a uniform, complete grass cover. Because of the height of the proposed landfill, the length and slopes of its sides and the lack of design features such as benches or terraces, it is likely to experience significant side slope erosion due to storm water. The volume of rain water that would accumulate and flow down the sides of the landfill will achieve velocities which would destroy even a well established grass cover, especially in the later years of the landfill's life when the sides have reached significant length and height. Storm water would thus gain sufficient velocity to destroy a grass cover and to particularly attack those portions where the grass cover is incomplete, thinned or possessed of an insufficient root mat to hold the soil. Once erosion starts, small rills will form which will soon develop into deeper gullies, ultimately penetrating the sand-soil layer. It can then quickly erode away the resulting exposed clay cap layer, exposing the waste to storm water. Leachate could thus leak from the landfill. Because of the present design of the Class I landfill, the only way to repair erosion damage is to push material from the bottom with heavy machinery, such as bulldozers. These erosion maintenance activities themselves would prevent the establishment of a uniform solid grass cover. The presently operated East Landfill in Duval County exhibits both side slope failure and erosion damage due to rainfall on its 3:1 slopes, including damage to the grass cover. Erosion damage to the slope layers due to erosion maintenance activities of the type which would be necessary to repair damage at the proposed landfill has occurred. Both erosion and side slope failure will ultimately result in exposure of solid waste to rainfall runoff and assure side slope seepage of leachate. The material eroded or sloughed away from the side slopes can obstruct the drainage conveyance system surrounding the landfill, rendering the MSSW/storm water system inoperative. Because of the presently proposed design of the landfill, it would be impossible to effectively correct side slope erosion or failure, due especially to maintenance activities. Even if a uniform grass cover could be established in the last years of landfill operation and after closure, the great length and slope of sides of the landfill by that time would result in erosion even if the grass cover were initially uniform and solid on the entire slope of the landfill. A change in the design of the landfill, however, whereby 15 foot wide benches or terraces would be incorporated into the sides of the landfill every 20 or so vertical feet, would likely prevent the side slope erosion and failure established to be likely by Mr. Peavy. In fact, benches or terraces similar to those found to be required by Mr. Peavy have had to be recently installed at the East Landfill in Duval County in order to resolve side slope erosion and failure problems on those 3:1 slopes. The mere installation of interceptor berms, as depicted in TRL Exhibit 28, would not alleviate side slope failure and erosion problems, but rather would aggravate them and would reduce the safety factor of the side slopes to 0.5. Consequently, in order to grant the permit, it should be conditioned on the landfill being re-designed and constructed so as to incorporate benches or terraces at approximately 20 foot intervals on the slope of the landfill from bottom to top. Although this may potentially reduce the volume of space within the landfill, depending on how it is accomplished, it has been established that, without the use of the bench or terrace system, pollutant leachate cannot be reasonably assured to be prevented from entering State waters and wetlands. Leachate Control Leachate is any water coming in contact with solid waste. The chemical constituents of leachate which are present and will be present in the Duval County solid waste stream, to be disposed of at the proposed landfill, include chlorobenzene, volatile organics of various types, benzene, acetone, phenolic compounds, gasoline constituents, chloroform, methylethylketone, methylene chloride, toluene, xylene, ethylbenzene, total organic carbon, nitrogen, phosphorus and metals such as aluminum, chromium and zinc. Leachate thus contains toxic, hazardous and priority pollutants which will be disposed of in the landfill. The breakdown and degradation of solid waste can also generate additional toxic or hazardous compounds and substances. Leachate can potentially be discharged in a proposed landfill into groundwater and surface waters in a number of ways, including leakage from the bottom of the landfill liner into groundwaters, including into the Class I storm water pond and surface waters of the State through discharge from the groundwater into the storm water pond system. It could also be deposited into the storm water system through spillage of leachate where tanker trucks are loaded, through seepage of leachate through the side slopes of the proposed landfill by damage to the integrity of those side slopes as found above. The Petitioners maintain that side slope seepage of leachate will occur because the permeability of the intermediate cover layers surrounding the cells of the landfill is significantly less than the permeability of solid waste. This will have the result, according to Petitioners, that leachate will migrate horizontally through the intermediate cover layers to the sides of the landfill. Once there it arguably would migrate to the surface of the landfill side slopes through erosion of the outer cover, and fissures in the clay due to drying from exposure to the sun and through erosion. Additionally, the Petitioners maintain that leachate will migrate downward through the peripheral intermediate cover layer under the clay and contact the impermeable clay anchor cap, build up hydraulic head pressure and thus seep out through landfill sides near the toe of the landfill. The Petitioners maintain that Trail Ridge's policy and proposal to punch holes in the intermediate cover layers atop the cells of the landfill to encourage downward migration of leachate and discourage horizontal migration of leachate through the intermediate cover layers will be ineffective because the intermediate cover is more permeable than the solid waste itself so that punching holes in the intermediate cover to allow the leachate to migrate down through solid waste will actually not occur. Additionally the Petitioners contend that the filter system and the storm water pond will not treat the dissolved chemical components of the leachate specified in Petitioner's Exhibit 2 and that these dissolved components will move through the sand filters into waters of the State. Contrary to Petitioner's contentions, however, the Applicant has demonstrated that leachate will not avoid capture by the leachate collection system by seeping horizontally through the cover or cap and out the sides of the landfill, provided that the side slope failure and erosion prevention measures found to be necessary in the above Findings of Fact are instituted in the design, construction and operation of the landfill. The design of the cap and closure system is basically a side slope seepage prevention system, except for the absence of terraces or benches. The intermediate soil cover beneath the clay cap and surrounding each cell of the landfill acts as a drainage medium. It will channel any seepage of leachate from the cells of solid waste through the permeable, intermediate soil cover, generally in a downward direction, both in and between the cells of the landfill throughout its cross-section, as well as downward through the intermediate soil cover lining immediately beneath the clay cap around the periphery of the landfill. This system, if the above design deficiency is corrected, will tend to force the leachate downward into the collection system, as opposed to horizontally out the cover or the sides of the landfill. The reason this system will work in this manner is because the intermediate cover soil is more permeable than the solid waste itself. The permeability of the intermediate cover will promote vertical movement of the leachate because, as the leachate migrates across each cell, it will encounter the vertical, intermediate soil cover layer at the side of each cell and that will promote its moving downward toward the collection system. The water in the landfill will thus follow the path of least resistance, so that the vertical portions of the intermediate cover layers surrounding each cell and surrounding the sides of the landfill beneath the clay cap, coupled with the force of gravity, will provide a preferential path downward toward the leachate collection system. This finding includes consideration of the Petitioners' contention that leachate will migrate downward and contact the impermeable clay anchor cap and build up head pressure so that it will seep out of the sides at the toe of the landfill. The intermediate cover layer underlying the sides of the landfill beneath the clay anchor cap is connected with the leachate collection system underlying the bottom of the landfill. Thus, a continuous conduction of leachate down through the intermediate cover, permeable layer will allow the leachate to seep downward all the way to the leachate collection system rather than pooling behind the impermeable clay anchor cap. This condition will be enhanced by the fact that surrounding each cell is the approximately vertical, permeable intermediate cover layer, throughout the entire cross-section of the landfill, such that much of the leachate will migrate downward in the interior of the landfill. Because of the ready conductance of leachate in a downward direction by the intermediate cover layers, Trail Ridge's policy of punching holes in the intermediate cover layer on the top of each cell in order to seek to prevent side slope seepage of leachate will be ineffective because the intermediate cover is more permeable than the solid waste. Thus, this procedure is unnecessary and, in fact, could become counter-productive to the extent that punching holes in the intermediate cover would allow rain water mixed with leachate to contact more of the solid waste contents of the landfill as it migrates down through the interior of each solid waste cell. This would result in a more highly concentrated form of leachate, which could pose more deleterious threats to ground and surface waters should it escape to ground and surface waters. Therefore, any grant of the permit should be conditioned on a prohibition of the Applicant thus violating the integrity of the intermediate cover layer overlying each cell as the landfill is built up in lifts. Gas Control System The Class I disposal area is designed with a gas control system which will prevent explosions and fires caused by the accumulation of methane gas due to decomposition of the waste in the landfill. The gas control system will prevent damage to the vegetation on the final cover of the closed portions of the landfill or vegetation beyond the perimeter of the property. It will prevent objectionable odors off site. The Petitioners have stipulated that the Applicants' gas control system will be designed in accordance with Rule 17- 701.050(5)(j), Florida Administrative Code. Although the Petitioners presented testimony of various persons who live in close proximity to other landfills, which were at one time operated by Waste Management subsidiary companies, neither the persons who testified of odor problems at those landfills, nor other witnesses presented testimony to show whether any of the landfills utilized a gas control system or one of equivalent design to that proposed for the subject facility. No evidence was presented to support a finding that the proposed landfill facility would produce objectionable odors to any significant degree. The Petitioners have further stipulated that the Class III disposal area is exempt from the gas control system requirements set forth in Rule 17- 701.050(5)(i) and (j) and (6)(i), Florida Administrative Code, and the Department agrees. Hydrogeology and Ground Water Monitoring The Applicant filed as part of its application, and placed in evidence, a hydrogeological survey and groundwater monitoring plan, contained in TRL Exhibit 51. The hydrology of the proposed landfill site may fairly be characterized as complex because it contains many different features such as recharge and discharge areas, varying zones of conductivity, a sand component to the surficial aquifer as well as a rock aquifer component and multi-directional groundwater flows. Additionally, wetland systems occur down-gradient from the higher levels of the surficial aquifer on the north, east and south sides of the proposed Class I disposal area. From the surface grade down to a depth of approximately 100 feet lies the surficial aquifer, which primarily consists of a coarse sand medium. Lying below the sand aquifer is a confining unit (relatively impermeable) identified as the Hawthorn Group, which consists of denser marls, dolomites and silver clays. Beneath the Hawthorn layer, at a depth of approximately 300-400 feet, is the Floridan aquifer, which serves as the principal deep water supply source for this part of Florida. Additionally, immediately above the Hawthorn layer in the deep zone of the surficial aquifer, a "rock aquifer" exists under a portion of the landfill site, generally the eastern-most portion. It was not shown to be continuous throughout the site. The rock aquifer is connected to the sand surficial aquifer lying above it. Zones of varying higher and lower permeability occur at various places within the surficial aquifer. Generally, groundwater at the site flows down-gradient in an easterly direction, caused by rain or surface water recharging the surficial aquifer on the higher portions of Trail Ridge, including the western side of the landfill Class I disposal site. The surficial aquifer then discharges this groundwater to the land surface and the wetlands lying on the eastern side of the site. Additionally, some northward and southward flow of groundwater occurs from recharge areas to the wetlands lying on the northerly and southerly boundaries of the Class I disposal site in the wetlands. The specific condition 19 contained in the Department's Notice of Intent to issue permit and draft permit requires the Applicant to periodically (quarterly) sample monitoring wells to ensure that water quality standards are not exceeded at the boundary of a zone of discharge established by that specific condition and authorized by Rule 17-28.700(4)(a), Florida Administrative Code. A groundwater monitoring plan has been developed by the Applicant, with accompanying hydrogeological survey as mandated by Rule 17-28.700, Florida Administrative Code. The proposed groundwater monitoring system consists of 42 monitoring wells in and around the area of the proposed Class I and Class III landfill sites. The system is designed to monitor upgradient and downgradient flows in wells constructed to sample from the shallow and intermediate zone and from the deep zone (to some extent) on the east boundary of the Class I disposal site. Specific condition number 18 of the Notice of Intent to grant the permit and draft permit, to which the Applicant has agreed, requires that a detailed chemical characterization of a representative sample of leachate be performed, so as to allow for any necessary modifications to the list of chemical substances to be analyzed in water samples drawn from the monitoring wells on a quarterly basis. Although there are up-gradient monitoring wells for the shallow and intermediate portions of the surficial aquifer, there are no upgradient monitoring wells for the deep zone of the surficial aquifer. There are no upgradient monitoring wells on the west side of the landfill in the deep zone. The deep zone of the surficial aquifer is the zone between the intermediate zone and the top of the Hawthorn confining bed. The rock aquifer is present beneath the proposed landfill site and was encountered at well locations B-7, B-8, B-12 and B-14. That rock aquifer is hydrologically connected to and part of the deep zone, which is hydrogeologically connected throughout the site to the uppermost portions of the surficial aquifer lying beneath the landfill. The rock aquifer is a significant source of drinking water in Duval County and the surrounding northeast Florida area and is used as a supply source for domestic and commercial wells within one and one-half miles of the landfill Class I site. "Sinkers" are immiscible liquids contained in landfill leachate that are denser than water. When released from the landfill they would sink to the first low permeability unit in the surficial aquifer. This would be at the bottom of the surficial aquifer at the rock unit. Once they encountered a lower permeability unit or strata, sinkers would then move in a more lateral direction downgradient in undetermined directions. The silty clay layer depicted on Figure 9 of TRL Exhibit 51 would intercept those sinkers and cause them to tend to move in a direction toward the silty clay layer intercepted by well B-1. At that point the sinkers would then have a tendency to move in a north or south direction on top of the confining zone. The direction those sinkers would move, following a gradient, cannot be determined at present from the groundwater monitoring plan because no deep wells are proposed in either of those areas which could detect sinkers. The groundwater monitoring plan is thus not adequate for the deep zone or to detect pollutants that could migrate off site in the rock aquifer because there are no monitoring wells in the deep zone on the west, north and south sides of the Class I landfill area. Monitoring for sinker compounds in the deep zones is thus insufficient and water supply wells nearby in the deep zone would be at risk because there is no way to detect pollutants between those water supply wells and the source of the pollutants at the landfill. The groundwater monitoring plan is inadequate because there is insufficient information to determine the direction of water flow in the deep zone. Sufficient upgradient monitoring wells in the deep zone are necessary in order to determine the direction of water flow in the deep zone which will in turn indicate where additional deep zone monitoring wells should be located to detect contaminants migrating off site. Leachates also contain contaminant constituents or compounds called "floaters." Floaters are immiscible liquids which are lighter or less dense than water. They tend to float on top of the groundwater table. The hydrologic information depicted with the application and the Applicant's evidence is not sufficient to determine where floaters might migrate. The shallow monitoring wells referenced in TRL Exhibit 42 would not adequately detect floaters at or near the water table surface. Due to the lower lying stream or wetland systems on the north and south side of the Class I landfill on Trail Ridge, groundwater flows in the vicinity of those areas are likely moving northward and southward to some extent. Thus, TRL Exhibit 51, and particularly Figure 14 of that exhibit, is insufficient to support a determination of where monitoring wells should be located because it does not include the impact of the stream or wetland systems on the north and south sides of the landfill. Groundwater contours bend into the stream areas on the north and south sides of the landfill which would indicate groundwater flow to the south and the north instead of just from west to east. The general shape of these contour lines would resemble the contour lines depicted in Figure 16 of TRL Exhibit 51. These contour lines bend back to the east and the west on the north and south sides of the Class I landfill. Since there is groundwater flow to the north and to the south from the Class I landfill, intermediate and deep monitoring wells in addition to shallow wells, should be located along the west, north and south sides of the landfill. Because they are not in the groundwater monitoring plan thus far, the plan is inadequate. A grant of the permits should be conditioned on such additional wells being installed and made a part of the monitoring program, in accordance with the above findings. A zone of discharge for the proposed landfill has been established pursuant to Rule 17-28.700(4)(a)2., Florida Administrative Code, which is intended to extend vertically from the base of the surficial aquifer and horizontally 100 feet beyond the footprint of the landfill or to the compliance groundwater monitoring wells, whichever is less. (See pages 611- 618 of the transcript.) Therefore, even if the groundwater monitoring wells are closer than 100 feet to the footprint of the landfill, they are to be used for monitoring for compliance with applicable water quality standards, including the primary and secondary drinking water standards for G-II groundwater, as contained in Rules 17-550.310 and 17-550.320, Florida Administrative Code. The Applicant has agreed to this location of the wells, their spatial relationship to the footprint of the landfill, to the zone of discharge and to their use for compliance purposes. Storm Water and Surface Water Management System The Applicant proposes as part of its permit application a storm water discharge and surface water management system. The application for permitting for that system was submitted to the DER which reviewed it using the Water Management District's permitting criteria set forth in Chapters 40C-4 and 40C- 42, Florida Administrative Code. Pursuant to its independent permitting authority set forth in Section 373.413, Florida Statutes, the DER noticed its intent to issue the MSSW permit to the Applicant, based upon its opinion that the project will comply with applicable rules. The proposed storm water discharge/surface water management system (MSSW system) will utilize roadside swales, perimeter ditches, catch basins, culverts, detention ponds and pump stations to manage storm water in compliance with Chapters 17-25, 40C-4 and 40C-42, Florida Administrative Code. The solid waste disposal areas will operate as watersheds, routing storm water in to the MSSW system. The retention areas have been designed to handle the retention treatment requirements of a 25-year, 24-hour "design storm" runoff, resulting from approximately eight to nine inches of rainfall. The system is comprised of three independent parts; the Class I landfill system, the Class III landfill system and the separate roadway surface water management system. The Class I system will use temporary berms to intercept storm water runoff from the cap cover system of the landfill, on top of the solid waste disposal area. These top berms will divert the storm water runoff to regularly spaced pipes which will convey the storm water into the perimeter swale located at the foot of the landfill side slopes. The runoff will then be diverted through a culvert into a concrete-lined perimeter ditch which will convey it to the pond. The top berms of the landfill also operate as erosion control features, capturing and channelling some storm water runoff away from the side slopes of the landfill, thereby assisting in erosion control. The Class I retention pond covers an area of approximately ten acres and will contain approximately 43 million gallons of water at design water levels. The peak flow of storm water runoff from a design 25-year, 24-hour storm can be accumulated and released at predetermined rates. The runoff from the first one inch of rainfall in a 72 hour period is retained and stored in the pond. No discharge will be allowed to the pond's outfall system, rather all the outfall from the runoff from the first inch of rainfall will be routed through the sand filter system prior to discharge. When storm water runoff enters the pond, it will mix with the water already in the pond and become part of the total water column. When a rainfall event then produces greater than one inch of rainfall, some water will have to be discharged from the pond by passing it through the sand filter and then discharging through the outfall structure. The water discharged is water which was already resident in the pond before the rainfall event, mixed with the current rainfall runoff from that hypothetical rainfall event. The volume of the pond is so large that storm water runoff will constitute a very small fraction of the actual water volume in the pond at any given time. On the average, it will take 33 days for a given molecule of storm water runoff to travel through the pond, the sand filter and then be discharged through the outfall system. the sand filter system operates on a water level trigger device involving floats in wet wells attached to electrical switching mechanisms. When a certain water elevation in the wet wells, reflective of the elevation in the pond, is reached, the pumps automatically start and pump water into the filter chambers, causing the water to flow over a filtering sand. The filter will be maintained periodically by lowering of the water level to permit removal and replacement of the top six inches of sand in the filter. The Class III storm water pond is similar in design to the Class I pond except that it will not use a top berm. Rather, a perimeter swale will function similarly to the Class I landfill top berm, intercepting storm water runoff from the top and side slopes of the Class III landfill. The Class III storm water pond is equipped with the same type of filtration and pumping system as the Class I pond. The Class III system is designed also to retain the first inch of storm water runoff from a "design storm" rainfall in a 72 hour period. All of that runoff from the first inch of rainfall will likewise be routed through sand filtering prior to discharge. The roadway storm water system utilizes grassed roadside swales to act as a retention structure to filter the storm water runoff. The runoff retained in the swales will be conveyed by pipe to a smaller detention and dispersion pond located between the Class I and Class III disposal areas and built with the same design constraints as the Class I pond. The roadway system will not use a pumping system to operate, but rather discharge will occur through natural action of gravity through the dispersion pond. The filtered storm water runoff from the Class I and Class III disposal areas will be discharged into adjacent wetlands after it leaves the ponds. The discharge will be performed by a wetland irrigation system. The irrigation system will discharge the filtered storm water through conveyance pipes to the wetland boundaries. There a series of perforated pipes will extend outward from the conveyance pipes themselves and serve as a means of gradually releasing the filtered storm water into the wet land area as a means of wetland replenishment and mitigation. Concerning the issue of surface water quality, it has been established that the sand filtering systems on the Class I and Class III storm water ponds are capable of providing 100 percent of the treatment required by State water quality standards when considered in conjunction with the treatment capability of the ponds themselves as natural lake systems. The individual sand filters each provide twice the capacity for treatment necessary which equates to a safety factor of 2. With both filters operating, there is a combined safety factor of 4. Although the Class I and Class III retention ponds are designed with filtration systems, the primary pollution removal system will be the ponds themselves operating as natural lakes. Once storm water enters the ponds, the average residence time is adequate to allow the biological processes of uptake and assimilation to function to remove the bulk of the pollutants, including those derived from any spillage of leachate into the storm water management system and ultimately deposited into the ponds. The volatile organic compounds which can occur in the leachate can largely be removed simply by the process of evaporation, due to the adequate retention time of any leachate- containing storm water which reaches the ponds. It has been established that, due to the storm water pond's natural treatment mechanisms, especially the long retention time, the size and volume of the ponds, as well as the vegetated sides of the ponds, that, considering also the operation of the filter system, the water discharging from the Class I and Class III storm water treatment facility will have very low concentrations of total nitrogen, phosphorous, biochemical oxygen demand (BOD), suspended solids and heavy metals. The Applicant's expert witness on water quality and water chemistry, Dr. Harper, also assumed that the Class I retention pond would have some leachate migration into the pond through groundwater influx. Worst case scenarios were used to estimate this possible influx and the results established a maximum deposition of 2.46 gallons of leachate into the pond over a 65 day period. This amount would be diluted by a factor of 14 million solely by new storm water runoff and rain normally expected under average rainfall conditions during such a 65 day period, without even considering the considerable dilution by the existing water volume of approximately 43 million gallons already in the pond in such a period. Dr. Harper's testimony is accepted. It is unlikely that any runoff can enter the retention pond on one day and then exit within one day's time through the outfall overflow device. Even assuming that runoff occurs in excess of the designed one inch, that runoff would dilute with the large volume of water already present in the storm water pond. Thus, the new storm water would be mixed, diluted and subject to natural biological processes and the process of evaporation (of volatile organic compounds), operative in the pond before it can be released through the outfall structure. The runoff will enter the pond at the west end and discharge through the opposite or east end of the pond. The majority of water caused to be discharged through the outfall because of a larger-than-design storm event runoff would thus actually be water already present in the pond as opposed to incoming runoff from the recent rain event being deposited in the west end of the pond where the storm water system discharges from the Class I disposal area. Even a rainfall event producing twice the designed-for volume would produce no effect on the water quality of the discharge. Further, along with the filter systems and the natural processes of biological uptake, assimilation as well as evaporation in the natural lake system which would operate in the pond, the side slopes of both ponds will be vegetated so as to further assist in uptake and removal of any pollutants present in the runoff, further mitigating any potential for water quality impacts. It has been established that the surface water management system is designed to segregate surface water from leachate by minimizing the size of the landfill working face and reducing the potential for storm water to contact waste and become leachate. Further, a berm will be constructed around each working face which will encompass the entire active cell of the landfill, causing any runoff water entering the working face to remain there and percolate through the landfill to the leachate collection system, rather than entering the storm water system. If a severe rainfall event could cause leachate to overflow those berms, the design includes additional berms on the interior slopes of the landfill to catch that overflow and divert it back through the leachate collection system. The berms are relocated as the working face of the landfill changes, so they will continue to fulfill these functions on an ongoing basis. In terms of a worst case event, the Applicant has also established that the estimated impact of runoff from approximately one acre of exposed solid waste entering the retention pond would still cause no water quality impacts. Further assurance of leachate segregation from surface waters is provided in a spillage control plan which would be activated in the event of leachate spillage from a tanker truck. In connection with this, any grant of the permit should be conditioned upon an adequate berm system surrounding the tank truck leachate filling device in order to contain any such spill to prevent the leachate from entering the storm water retention facilities and surface waters. Such a system should also be characterized by (and the permit conditioned upon) retention berms or other forms of containment being placed around each leachate storage tank, designed to retain the full capacity of such a leachate storage tank in the event of a catastrophic tank valve, piping or other failure. It has been demonstrated, moreover, that if the leachate-storm water separation and control system were to fail in some way so that leachate directly entered the retention pond, the volume of leachate entering the pond would have to exceed approximately 150,000 gallons to cause any water quality violation in the storm water retention pond, even assuming the high concentration of contaminants in the leachate envisioned in the opinion of Dr. Robert Livingston, the Petitioners' aquatic ecologist and toxicologist. He raised concerns that pollution of the head water systems of the St. Johns and St. Mary's Rivers might result from the operation of the project. The Applicant has rebutted the concerns expressed by Dr. Livingston and Dr. Parks and established reasonable assurances that toxins and contaminants occurring in leachate will not deposit in surface waters of the State in any significant or rule-violative amounts for the reasons expressed in the above Findings of Fact. Draw-Down Effects The Petitioners contend that there will be a draw-down of groundwater levels in surrounding wetlands caused by these storm water ponds and associated pumping, in violation of the Water Management District's rules and policy embodied in MSSW Handbook Section 10.6.3. This section presumes an adverse impact on wetlands will result if the system causes the groundwater table to be lowered more than five feet lower than the average dry season low water table. The Petitioners' expert in this area, Dr. Motz, estimated that a measurable draw-down of groundwater of one to two feet in the wetlands water table would extend outward as far as maybe 1,000 feet in all directions from each of the storm water ponds. Dr. Motz used a large error convergence factor in his calculations, however, and also used a model for a confined aquifer, which was not shown to exist at the subject site. He did not use a model which should be appropriate for unconfined or semiconfined aquifers which the evidence reveals is the more appropriate hydrogeology which would be employed in groundwater modeling for the subject site. Dr. Motz' use of a large error convergence factor can potentially result in an answer which is far from the actual appropriate draw-down figure. Numerical models are approximations of reality and the smaller the error convergence factor, then the closer to the real number of the cone of depression, or draw-down level, the model will give. Consequently, the use of an analytical groundwater, cone of depression model was shown by the Applicants' witnesses to give a more accurate result, especially in view of the large error convergence factor employed by Dr. Motz in his numerical model. It was not shown that Dr. Motz had actually "calibrated" the groundwater model he employed. The Applicants' hydrogeology expert, Don Miller, used three analytical and two empirical methods to determine radius of influence or draw-down from the storm water ponds and calibrated the models he used. Validating the data or calibrating the model is a way of making sure the model actually represents the situation intended. Calibration is performed in this instance by inputting some data and then seeing if the model itself could accurately predict the remainder of the data of interest. Using these various methods, Dr. Miller arrived at a range of radius of influence likely to occur from the Class I storm water pond of 167 feet to 184 feet at the western end of the pond and approximately 40 feet at the eastern end. The maximum radius of influence for the Class III storm water pond was shown to be approximately 160 feet at the western end and 0 at the northeastern corner. The other hydrogeology expert for the Applicant, Dr. Leve, performed a separate analytical analysis of draw-down using the Southwest Florida Water Management District's "KOCH" model to produce a projected radius of influence of approximately 167 feet, which is comparable to the projections of Dr. Miller. In conjunction with this, it was shown that Dr. Motz' use of a small value for groundwater infiltration and the large error convergence factor served to increase his predicted radius of influence in an inaccurate way. Dr. Motz also used a higher value for transmissivity or hydraulic conductivity ("K"). The Applicant's experts relied on the average of the actual permeability test results obtained for the site. A different figure for transmissivity or hydraulic conductivity results from Dr. Motz taking into account two test wells in which hydraulic conductivity could not be measured because the well water level rose too quickly to obtain a measurement. Consequently, he predicted or assumed that that factor might affect the hydraulic conductivity at the site by a whole order of magnitude, which resulted in his 1,000 foot prediction for draw-down cone of influence. The problem here is that the evidence does not demonstrate clearly that this much- greater hydraulic conductivity factor with regard to these two wells, which was an isolated incident compared to all other wells tested, is not some mechanical or human error in the installation or evaluation of the wells. Further, even if one predicts the hydraulic conductivity of the unmeasured, apparently highly conductive wells at the geometric mean of all the hydraulic conductivity measurements for the water table zone (except for the marl zone) at 3.0 X 10 cm/sec or three times greater than the value used by the Applicant, it would result in a cone of influence of 265 feet instead of 184 feet. If one also assumed a value for the two ignored wells, as data points, by assuming that they had a hydraulic conductivity value of 3.5 x 10/-3 cm/sec, the highest reported well conductivity value, and then employed that in the empirical formula used by Donald Miller, it would still not greatly exceed the 265 foot cone of depression number. No evidence was adduced to demonstrate that a cone of depression of that magnitude would have any adverse affect on the wetlands, especially in view of the recharging of the wetlands through the storm water pumping and irrigation system. In summary, the totality of the evidence in the Applicant's case, especially on rebuttal, demonstrates that Dr. Motz' methodology significantly overestimated the radius of influence for draw-down at both storm water ponds. The parties agree that the maximum draw-down of 16 feet would occur within the Class I storm water pond, where a "seepage face" would be formed where the pond would cut into the water table through earth borrowing activities. The maximum draw-down inside the Class III storm water pond, where a seepage face would be formed by the excavation into the water table to construct the pond, will be 14 feet. The lowered groundwater within the storm water ponds is due in part to the natural sloping land surface of that area and the concurrent natural slope of the water level before the ponds are even excavated. The slope of draw-down will decrease rapidly, that is, much of the 14 foot or 16 foot apparent draw-down amount will be the result of the relatively sheer seepage face formed by the pond excavation. At the top of that seepage face, the groundwater cone of depression will flatten out considerably and very rapidly so that, as the slope of the draw-down decreases rapidly in the immediate vicinity of the pond, the groundwater outside the ponds themselves will actually be lowered less than five feet. The groundwater levels used in the application were based upon seasonal high water level for the site, rather than "average dry season low" water levels, as referenced in Section 10.6.3 of the Water Management District's Applicant's handbook. Therefore, the projected draw-downs are very conservative and would overestimate the actual draw-down for dry season low water table groundwater levels. Consequently, the weight of the evidence supports the Applicant's predictions on the effects of draw-down. The evidence demonstrates that draw-down from the storm water ponds associated with both landfills will have either no impact or minimal impact on wetland species, either transitional or submerged, in the surrounding wetlands. Silvi-culture activities on the site have considerably altered the area and lowered the natural water table through the construction of drainage structures by the timber company in the past. In general, the wetland jurisdictional lines from the storm water ponds are based on United States Army Corps of Engineers (Corps) wetland criteria and thus do not contain species generally considered to be wetland species for purposes of DER dredge and fill or Water Management District MSSW jurisdictional purposes. Many species used by the Corps in determining jurisdiction, such as slash pine, can grow both in uplands or wetlands. The edges of the areas delineated as jurisdictional wetlands are dominated by transitional and upland plant species such as slash pine, gallberry, palmetto, grapevine and huckleberry, which can tolerate dry conditions. It is only as one's investigation proceeds waterward or toward the center of the delineated wetlands, (in which area the land surface slopes down- gradient at the same area where the draw-down cone of influence rapidly diminishes to an insignificant level), that the plant species change to those species adapted to regular and periodic inundation for purposes of the State agencies' wetlands jurisdiction. The draw-down maximum for any wetland location using the maximum projected radius from Dr. Miller's efforts of 184 feet, (17 feet beyond the projection based upon the Water Management District's model), is on the southwest edge of the Class I pond. Maximum draw-down there will be 24' inches at the wetland boundary line, that is, the Corps jurisdictional boundary line where the dominant plant species are transitional or upland plants such as slash pine, gallberry and bay trees. Pine trees at this point exhibit tall and vigorous growth which indicates that the water table, before installation of the ponds, is already well below the surface, otherwise these upland trees would lack sufficient oxygen to grow if water levels were closer to the surface. The potential draw-down here would thus have little effect on this vegetation. There will be essentially no draw-down effect further down-gradient beyond the DER Water Management District jurisdictional boundary, where the pines are already of diminished stature because of water existing close to the land's surface and where DER wetland jurisdictionally-listed plants predominate. The draw-down at the wetland boundary line on the southeastern part of the Class I pond will be 9 2/3 inches. Wetland species which could be affected are found 50-60 feet beyond that radius of influence at this point. The radius of influence on the northern side of the Class I pond will not cross any wetland boundary until it widens at the northwestern corner. The maximum draw-down at the wet land line near the northwestern corner of the pond would be approximately 15 1/2 inches. Here again the predominant plant species are the upland species of slash pine and gallberry and thus the draw-down will have little effect on those species for reasons mentioned above. On the western edge of the Class III pond is an isolated wetland for purposes of the Water Management District MSSW and Corps jurisdiction only. The edge of that wetland is dominated by slash pine and gallberry. The estimated draw-down on the boundary line of that land in the area dominated by slash pine and gallberry is six inches. There will be no draw-down from that Class III borrow pond area in any wetland dominated by transitional or submerged species. In addition to the above considerations and factual findings concerning the effect of the draw-down, the Applicant is proposing an irrigation systems as delineated above, which will deliver water to the wetlands to mitigate and replenish any minimal impacts of groundwater draw-down. The irrigation system will increase the degree and duration of saturation of the soils at the wetlands' boundary. This will mitigate any minimal effect of draw- down and may actually have the effect of enhancing the health and quality of the wetlands over time, from the wetlands' boundary waterward. In order that the irrigation system will pose the maximum benefit and most closely imitate the natural systems, the irrigation system will be designed for flexible operation. A wetlands ecologist will review the wetlands quarterly and adjust the irrigation system as necessary, as to location and operational regime, in order to properly maintain the health, including water levels and hydro-periods in the wetlands. The Applicant has agreed that the grant of the permit be conditioned to allow for this ongoing quarterly investigation and adjustment. Dr. Motz indicated in his testimony his belief that, to a large extent, the water pumped to the wetlands through the irrigation system would simply immediately migrate to the groundwater and immediately back to the storm water pond, through the effects of the draw-down, and not serve the purpose of replenishing the wetlands. He admitted, however, that he did not know whether the proposed irrigation system would work or not. The Applicant's expert witness in this regard, Dr. Leve, established that the irrigation system would effectively distribute water into the wetlands and saturate the surface due to the "mound effect" of water at the irrigation systems' discharge point at the wetland boundary. He used a standard, generally-accepted "mounding model" to predict the effects of the mounding for the irrigation system. Mounding is a hydrogeological phenomenon whereby water will mound up and create a zone of saturation in the soil at the point of discharge to the ground surface. Mr. Leve ran that model for a cross-section of each of the storm water pumps. He also ran the model for two different values of groundwater inputs into the ponds. A figure of 28,800 gallons of groundwater infiltration into the pond per day, as predicted by the Applicant's expert witnesses, and the 100,000 gallon per day groundwater input predicted by Dr. Motz was used. For both cross- section locations examined by Dr. Leve, the discharge of 28,000 gallons per day at the wetland boundary would raise groundwater levels by approximately three inches. The discharge of 100,000 gallons per day at the same locations through the irrigation system would increase water levels by approximately nine inches. These calculations ware based upon the discharge of the groundwater inputs into the storm water pond only. Discharge additionally of the inputs from storm water runoff from the surface of the landfill into the pond and then through the irrigation system would also be delivered into the wetlands as warranted. Additionally, a berm system will prevent surface water runoff from entering the north dirt borrow area. A berm will be constructed at the eastern boundary of the north borrow area to maintain an interior water elevation of 125 feet or one foot above the natural ground, whichever is higher. Water levels will thus be maintained at the north borrow area so that there will be no lowering or de-watering of the groundwater table. Additionally, storm water will be diverted by berms along the west end of both the Class I and Class III landfills upgradient and into the wetlands, so that the adjoining wetlands receive significant surface water recharge that previously did not flow into those wetlands. Mitigation A mitigation plan was proposed for purposes of both the dredge and fill permit application and, in the solid waste landfill application, for the MSSW permitting. It was incorporated into the draft dredge and fill permit and draft landfill permit incorporated in the Department's Notice of Intent to issue. The mitigation plan and other measures will offset the impacts from filling and other activities caused by the project in both the dredge and fill and MSSW jurisdictional wetlands on the site. The proposed mitigation measures include the creation of 4.76 acres of new wetlands; the irrigation of the wetlands surrounding the Class I and Class III storm water ponds, as delineated above, and the diversion of surface water around the landfills into the wetlands to aid in their recharge. A high quality, forested wetland will be created utilizing the reliable method of mulching and, an extensive hardwood planting program which will include red maple, sweetgum, cypress and tupelo trees. The created wetland will contain deep water and transitional zones. The area will be monitored to insure 80 percent survival of the trees planted and routine maintenance will be performed. Approval of this mitigation plan and any issuance of the permits should include the requirement that rapid replanting be done to replace any dead trees and such approval should also be conditioned on the use of the largest trees possible to be planted, by appropriate tree planting equipment, so that the beneficial uptake and filtering functions, as well as wildlife habitat functions of such hardwood wetlands can begin operating as a mitigatory factor as soon as possible. The created wetland area will replace lost wetlands with a wetland type of higher quality and potentially higher habitat function, depending upon the maturity of the trees planted (see above condition). The wetland replacement ratio attendant to the creation of this wetland area is proposed to be 2.8:1 and the permit should be conditioned on at least that ratio being observed in the mitigation wetland installation plan. Although there was some testimony critical of the wetland creation proposal because it would alter 4.76 acres of uplands which might be of significance to the wildlife in the area, in fact the site of the mitigation area is currently pine plantation which has been greatly altered from its natural state. It does not currently provide high quality upland wildlife habitat. Additionally, only 30-40 percent of the uplands on the entire tract will be altered by the entire project construction proposed. This leaves a majority of the uplands presently on the site in their current condition to the extent that it serves as wildlife habitat at the present time. A conversion of the subject area into a high quality hardwood forest wetland, which would remain bordered by upland on one side in any event, will not have any significant impact on the present value of the mitigation areas as habitat. Wetlands Assessment and Impacts Through the use of consultant personnel skilled in the fields of surveying, biology and botany, the Applicant established jurisdictional lines demarcating the boundaries of DER jurisdiction for dredge and fill permitting purposes and MSSW permitting purposes in the field and adduced evidence of those boundaries at the hearing. The jurisdictional lines established were conservative in the sense that they reflect the jurisdictional standards of the U.S. Army Corps of Engineers, which is generally landward of the lines which would be established by the plant communities characteristic of DER dredge and fill and Water Management District MSSW jurisdiction. The locations of the flags as placed by the biology-botany consultant were then professionally surveyed and plotted by a trained surveyor such that the jurisdictional line was signed and sealed as a "specific purpose of survey." Further, a biologist met with the surveyors weekly to review the plotted line to ensure accuracy. That survey was submitted to the Department in connection with the applications herein. The Department supports that jurisdictional determination in this proceeding. The Department's own jurisdictional determination staff members were on the sites of the jurisdictional determinations for approximately eight days. The location of the wetland jurisdictional line for purposes of MSSW permitting has not been challenged by Petitioners, and no evidence regarding MSSW jurisdiction has been presented by Petitioners in this proceeding. The wetlands jurisdictional survey prepared by the Petitioners, however, showed "new" DER jurisdictional wetlands which would represent, if accepted, an alteration of the DER jurisdictional wetland boundary. Additionally, the challenge to the DER. jurisdictional determination is restricted by the Petitioners to the area around the Class I landfill footprint and its associated storm water pond. No evidence has been presented regarding the jurisdictional determination for the remainder of the site and project, including the access road. Witness Don Garlic has a degree in marine biology with additional coursework and training in the field of botany, including field training in wetland species. He visited the site for seven days for the purpose of critiquing the dredge and fill DER jurisdictional line established by the Applicant and offered as proof by the Applicant in this proceeding. In the 2-3 mile segment of the jurisdictional line around the Class I landfill and associated storm water pond, Mr. Garlick opined that there were three gaps 18-20 feet wide where he did not agree with the dredge and fill jurisdictional line determination. These areas represented by the gaps, if the gaps were determined to be jurisdictional, would add rather long, linear features of putative wetlands to the jurisdictional wetlands already encompassed by the proposed Class I portion of the project. They would add approximately 1/2 acre of additional DER jurisdictional wetlands impacted by the project. The Petitioners, however, did not establish the duration of water flow at any of the areas in which dredge and fill jurisdiction was contested. Mr. Garlick stated that water was flowing each of the seven days he was on the site, from March 28 to May 8, 1991, but stated that it was raining when he was there on April 23. He did not review rainfall data to determine whether it had rained prior to any of his visits. Likewise, he was not shown to have reviewed any groundwater data or to have performed any tests to ascertain groundwater levels in relation to claiming jurisdiction over the disputed Areas A, B, C and D depicted on Petitioners' Exhibit 8. This site has not experienced a prolonged drought. For the period 1988 through the hearing, only the latter portion of 1990 reflected a significant lack of rainfall based on rainfall data obtained from the National Oceanic and Atmospheric Administration Office (NOAA) at the U.S. Navy's nearby Cecil Field, as well as the Jacksonville International Airport. Nineteen eighty-eight, in fact, had above-average rainfall of 61 inches. The Class I landfill area was originally "flagged" in September and early October 1989. July, August and September 1989 were months of above average rainfall. September 1989 had 14 inches of rain, twice the normal rainfall. Nineteen ninety had slightly less than half of its average rainfall for the year, although it started out with normal rainfall and became dry in the fall months. There has since been twice the normal rainfall for the few months of 1991 prior to the hearing. A drought of the type and duration experienced in the latter part of 1990 would have had no significant effect on the plants at the sites in question (sites A, B, C and D). They are perennial plants that remain year-round and therefore are adapted to drought and flood conditions. (T-2047) 1/ The Applicant's jurisdictional determination based upon dominant plant species, established by its consultant in evidence was based upon perennial plant species. Therefore, the hydrological conditions on the site were normal ones when these areas were originally reviewed in 1989 and the jurisdictional delineations established and the conditions found at the site shortly prior to the hearing in March through early May 1991 by Mr. Garlick were unusually wet conditions and do not reflect the normal conditions prevailing at the site. Mr. Byron Peacock was accepted as an expert in wetlands ecology and botany with a B.S. degree in each of those disciplines, with emphasis on Florida wetland species, especially with regard to Florida fresh water wetlands. Mr. Peacock is quite familiar with the site, having been to the site "dozens of times" since September 1989, almost every month for a 21-month period. Mr. Godley, another of Applicant's expert witnesses, also visited the areas put into contention by Mr. Garlick in his testimony for purposes of testifying in rebuttal and also concluded that these areas were not jurisdictional for purposes of the DER's dredge and fill jurisdiction. Mr. Mike Eaton of DER visited at least one of the areas or sites in contention and was of the same opinion. Mr. Garlick had relied on flowing water being present and the plants present to determine that Area A, a ditch along Hells Bay Road, was a jurisdictional wetland area. The areas on both sides are upland. Mr. Garlick testified that there were breaks in the vegetation in Area A and that the vegetation was sufficient to establish a connection. Area A does not contain sufficient water to support a dominance of listed wetland species under either the "a or b tests," as provided in Rule 17-301.400(1)(a) and (b), Florida Administrative Code. There is upland vegetation growing all the way across the ditch on both sides at its connecting point and point of discharge to dredge and fill wetlands. If the ditch held water it would be wettest at this point of discharge into the jurisdictional wetlands, but the ditch does not contain water on a regular and periodic basis, as established by the testimony of Mr. Peacock. Therefore, the water observed in the ditch by Mr. Garlick would have been surface water runoff from the recent high rainfall. Concerning Area B in the Class I storm water pond footprint, Mr. Garlick indicated that he relied on herbaceous wetland plants as a basis for his finding of that as a jurisdictional area. He used the "b test" vegetation method of at least 80 percent transitional plants, less than 10 percent submerged or upland species, as well as the presence of "other indicators" of regular and periodic inundation for that Area B for purposes of the rule cited last above. Area B is a logging road and lies between upland stands of planted pines. It has been used as a road within the past year and there are "rutted- out" or gouged areas in the road caused by vehicular traffic which have puddled water, but between the puddles are areas dominated by upland vegetation. There is also a clear vegetative break in jurisdiction at the point where Area B connects to the jurisdictional line at Area B's southern end. The vegetation at that connecting point is a mixture of red. root, a transitional plant and many upland species, the dominant one being amphicarpum muhlenbergianum, which looks similar to red root in the field. Mr. Garlick testified that red root was the predominant plant in Area B. Mr. Garlick may have mistaken amphicarpum muhlenberqianum for red root. He was not familiar with that upland species and did not know if it was found at the site. A review of photographs from the 1950s, 1960s, 1970s and 1980s showed that Area B had historically always been uplands. The evidence shows that this area holds water only in limited areas following rainfall and that there is no hydrological, "a or b test" vegetative connection between these areas and jurisdictional waters of the State. Area C, located on the west side of the present West Fiftone Road, also contains part of an old road bed, as well as a ditch. Area C was determined to be within MSSW jurisdiction by the Applicant, but was also claimed as a dredge and fill jurisdictional area by Mr. Garlick for the Petitioner. Mr. Garlick indicated in his testimony that plants in Area C were mixed transitional and submerged species, but were sufficient to make out the area as within DER jurisdiction, based upon those plants. He also testified that different parts of Area C met the "a test" or the "b test." The ditch on the eastern side of Area C is dominated by upland vegetation, including amphicarpum grass, slash pine and goldenrod. The slash pines growing in the ditch, as shown by a photograph in evidence, were several years old. This ditch was dry on all of Mr. Peacock's visits to the site except recently during heavy rains. The remainder of Area C is characterized by a canopy of slash pines, a subcanopy of titi shrub of an upland type, with less than ten percent of the vegetation being characterized by bay and tupelos. There is a ground cover over most of that area consisting of upland species such as chokeberry, gallberry and reindeer moss. This area was determined to be jurisdictional for MSSW purposes because of a wet area in the middle containing fetter bush and sweet gallberry, which are both transitional species for jurisdictional purposes. The entire Area C was delineated as MSSW in the permit application, even though it may not all be jurisdictional, simply for ease of delineation and survey. The MSSW wetland areas within Area C, however, have no vegetative or hydrologic connection to the dredge and fill jurisdictional wetlands. Area C thus does not contain sufficient water or vegetation under either the A or B test connected with other jurisdictional areas to be considered jurisdictional for purposes of the DER's dredge and fill jurisdiction. Area D consists of a rutted trail-road used on a regular basis by persons visiting the tract. There is an upland pine plantation on either side of the roadway. Mr. Garlick contended there was a "flow way" in Area D, but that the vegetation was spotty or sporadic. During the past 21 months, Area D was dry every time Mr. Peacock was on the site, except recently after prolonged, heavy rains. At the eastern end of Area D near its connection to Area C, there is a patch of upland amphicarpum grass, growing all the way across the ditch and road. There is also the presence of beak rush, an upland plant which looks similar to submerged rush. There is insufficient water or wetland vegetation under either the a or b test to establish that this Area D is jurisdictional. The evidence thus did not support the Petitioner's contention that additional dredge and fill wetlands would be impacted by the project. The areas claimed by the Petitioners as additional jurisdictional wetlands did not contain sufficient water to be determined jurisdictional, pursuant to DER Rule 17-301, Florida Administrative Code. These areas held water only at certain times of the year in direct response to heavy or frequent rainfall and were normally influenced, that is, fed, by surface water rather than groundwater. Likewise, these areas did not contain sufficient plant species in the canopy, subcanopy or ground cover to be considered jurisdictional pursuant to vegetation indices and procedures delineated in Rule 17- 301.400(1)(a) or (b), Florida Administrative Code. Mr. Mike Eaton of DER testified and established a 1990 DER policy embodied in a memorandum admitted into evidence explaining how the Department employs the above-cited rule for purposes of using hydric soils in making dredge and fill jurisdictional determinations. Both Mr. Eaton and the DER policy in evidence established that hydric soils are not used by the Department except as an indicator of regular and periodic inundation once "b test" vegetation has been determined to be present for purposes of the above rule. Mr. Garlick testified that he used hydric soils as a "back up" to jurisdictional determinations based upon hydrology and plants. He did not identify any area where his jurisdictional determination was based on soils alone. The Department policy memorandum in evidence emphasizes the importance, in jurisdictional determinations with hydric soils as an aid, of not merely determining whether the soil in question is hydric, but also of investigating the specific characteristics of the soil profile, which the Department maintains must be performed by a soils scientist. Mr. Carlisle, a soil scientist, visited the site and took samples of the areas indicated by Mr. Garlick. These locations were located in an approximate fashion by Mr. Garlick on Petitioner's Exhibit 8 at the hearing. Thirty-four of the 35 samples taken were determined to be hydiric by Dr. Carlisle. There are, however, breaks of up to approximately 525 feet between the hydric soils test findings in Areas A, B and D and yet the distance between one hydric and non-hydric soil test finding was shown to be approximately 50 feet. No soil samples were taken by Dr. Carlisle in Area C. These samples are found to provide an insufficient basis for determining the presence of hydric soils throughout Areas A-D. Additionally, Areas A-D did not contain areas of "b test" vegetation contiguous to other jurisdictional areas. Therefore, even if hydric soils had been present throughout these areas, these soils standing alone, without supporting "b test" vegetation, are insufficient to establish jurisdiction in the areas maintained to be so by Mr. Garlick. General Wetland Impacts This project will impact wetlands subject to the DER jurisdiction and which are jurisdictional for MSSW purposes under Chapter 40C-4, Florida Administrative Code, the rules of the St. Johns River Water Management District. Thus, a dredge and fill permit is required pursuant to Section 403.91 et seq., Florida Statutes, and DER Rule 17-312, Florida Administrative Code. Areas subject to DER dredge and fill jurisdiction and MSSW permitting jurisdiction are considered pursuant to DER Rules 17- 301 and 40C-4, Florida Administrative Code. The 1,288 acre site contains approximately 550 acres of wetland, much of which contains planted pines as well as some naturally occurring pines, as well as hardwood swamp, cypress and gum swamp, seepage slope, ditches and swales. Virtually all of the wetlands have been adversely affected in some way by the forestry practices which have occurred and are still occurring on the site. Most of the sloughs and natural flow-ways have been channelized. Ditching has drained the adjacent wetlands and significantly altered the hydrology of the entire wetland system on the site. The wetland known as Hells Bay Swamp, immediately east of the landfills, is currently being clear cut by the Gilman Paper Company. The 550 acres of wetlands are jurisdictional for either dredge and fill or MSSW purposes or both. Some 3.17 acres of MSSW wetlands will be impacted by project construction; 1.61 acres of these are also dredge and fill wetlands. The 1.61 acres of the impacted dredge and fill and MSSW wetlands consist of roadside ditches along the Hells Bay Road and a road on the north side of the Class I landfill. These roads are currently subject to logging traffic, which decreases the usage of the roadways and ditches by wildlife. Consequently, the master of species present and using these ditches is limited. In addition to the 1.61 acres of ditches, the impacted MSSW wetlands also include 0.16 acres of wetland ditches along the entrance road in proximity to dredge and fill wetlands, a 0.80 acre isolated cypress head wetland located within the footprint of the Class I landfill and a 0.60 acre wetland located along West Fiftone Road extending into the south border of the Class I landfill footprint. The 0.80 acre cypress head has already been impacted by a logging road or fire break, and ditches have been constructed through the interior of it. The larger cypresses have been logged, and the remaining vegetation is sparse, rendering it of little quality as habitat for fish and wildlife. The 0.60 acre wetland extending into the south border of the Class I landfill is an old road bed with evidence of ruts from vehicular traffic depicted on photographs in evidence. This area has a slash pine canopy and is dominated by titi shrubs, with a few black gum and traditional wetland plant species such as fetter bush and gallberry in disconnected areas. It is a low quality wetland of scant value as habitat for fish or wildlife. Prior to and during construction, as a condition on a grant of the permits, all wetlands on the site will be protected from erosion, siltation, scouring or excessive deposition of turbidity, de-watering or other construction and operationally-related impacts by the installation and use of siltation barriers placed at wetland boundaries. Because of the significant possibility of the impacts mentioned above, especially siltation and turbidity, to the wetlands during the construction phase of the facilities and attendant to ultimate operation of the landfill itself, grant of the permit should be conditioned on acceptance of monthly inspections by DER enforcement personnel once construction has begun. Wildlife and Archaeological Resource Impacts Wildlife surveys were conducted by expert witness Isaac Rhodes Robinson and members of his staff, as well as by Biological Research Associates, Inc. in the months preceding the hearing. Mr. Robinson and the biologists on his staff spent approximately 1,000 man hours surveying the site, and Mr. Robinson, accepted as an expert in wildlife ecology and wetland ecology, testified on behalf of the Applicant in this proceeding. Assessments of the site were performed by reviewing relevant literature as well as conducting field surveys for both upland and wetland species. No evidence was found of any threatened or endangered species on the site. Mr. Robinson and his staff conducted surveys in 1990 and in early 1991 and biologists from Mr. Robinson's staff were present on the site at various times from September 1989 through the time of the hearing. Surveys performed by Mr. Robinson and his personnel were conducted in accordance with Florida Game and Fresh Water Fish Commission (FGFWFC) guidelines and exceeded that agency's guidelines by surveying 100 percent of the upland areas. No testimony of any witness in this proceeding indicated any physical evidence of use of the site by any endangered or threatened species. Wildlife surveys revealed a shall colony of gopher tortoises, listed as a species of special concern by the FGFWFC in a marginal habitat zone on the extreme western boundary of the Class I disposal area. The colony consists of less than ten individuals and there will not be a significant impact to the tortoises because the individuals will be trapped and relocated to a more suitable habitat on another area of he Applicant's tract, which will be undisturbed by the landfill or its operations, or else to a suitable habitat area off-site, as directed by the FGFWFC. Jay Stephen Godley was accepted as an expert in wildlife ecology and wetlands ecology. He directed an independent assessment of the site and project's impacts. The assessment included reviewing permitting documents, aerial photographs and literature pertaining to wildlife use of the site, as well as over 90 man hours spent at the site. He confirmed that the small population of gopher tortoises was the only significant species on the site and that the project would not significantly impact any listed wildlife species. Extensive trapping and investigation of gopher tortoise and armadillo burrows reveal no evidence of listed "commensal" species, or those species commonly found in association with gopher tortoises, such as Florida mice, gopher frogs, Florida pine snakes, or Eastern indigo snakes. In additions the isolated cypress head in the Class I landfill footprint was sampled for gopher frog tadpoles, and none were found. Florida pine snakes prefer scrub or sand hill habitats, neither of which are found on the site. Pine flatwoods environments, without the presence of either sand hill or scrub habitat, like this site, are not good indigo snake habitat. No indigo snakes' shed skins or other evidence of indigo snake frequency were observed on the site. Indigo snakes are large black snakes which are active during daylight hours and easy to observe in the course of extensive surveys such as those that were conducted for purposes of this project. Considering the amount of time spent by the various biologists on the site, it is quite likely that indigo snakes would have been observed if they frequented this site. The project will have no significant impact on wading birds. All wetlands were surveyed for listed bird species for a minimum of five days using FGFWFC guidelines. No wading birds were observed on the site during the 21 month period of review by Mr. Robinson's firm. The existence of the wood stork, bald eagle or Florida sand hill crane was not established on this site and is considered unlikely by the expert witnesses, whose opinions are accepted. No eagle nests were observed and, since the tree cover provides very limited extent of open water, the site is less than satisfactory as habitat for the little blue heron, snowy egret and Louisiana heron. The only wading bird observed by the Petitioner's expert witness on wildlife issues was a little blue heron observed in a wetland area east of the site, which is off the site being purchased by the Applicant and which was recently clear-cut by the Gilman Paper Company. The project will have no significant adverse impact on the Florida black bear's habitat. The black bear is a threatened species, but black bears do not use the site. No evidence was presented that black bears have ever been present on or in the immediate vicinity of the site. No witness, including Mr. Goodowns, an employee of Gilman Paper Company who has frequently visited and worked on this site over many years, has ever observed a black bear or any sign of a black bear present on the site. Bee hives have been kept at the site since at least 1969 and, although these are very attractive to black bears, they have never been known to have disturbed the hives, nor has it ever been necessary for bee keepers to erect electric fences or other devices to protect the hives from bears. The site presently is not far isolated from human activity, which fact deters the use of it as a habitat or an occasional travel way for black bears. It is located in an area completely enclosed by I-10, State Roads 228 and U.S. Highway 301, all heavily traveled public highways, as well as in close proximity to the town of Maxville, approximately two miles away, and Macclenny, approximately five miles away. Highways with high traffic volumes are significant barriers to movements of black bears, rendering it even less likely that black bears have or will frequent the site. The only evidence of potential black bear presence anywhere near the site presented by the Petitioners was the site's position near the Osceola Black Bear Range, as interpreted from one published article, as well as indication of three bear road kills from six to 15 miles away from the site, and supposed black bear movements recorded by the FGFWFC, all represented on a hand-drawn map, only admitted a corroborative hearsay pursuant to Section 120.58, Florida Statutes. The map exhibit contained the expert's own redrawing of his interpretation of the extent of the Osceola Black Bear Range from the article he referenced, which itself was not offered into evidence. Bear movements depicted on the map really consisted of those of a bear apprehended by the FGFWF and released in the area. The map did not show any roads, therefore making location and distances to the reported road kills speculative at best. Because black bears do not use this site and because of its encirclement by significant human activity, the site is not significant as a bear dispersal corridor or travelway between the Osceola Forest bear population and the Ocala Forest population. No direct evidence by radio-telemetry data or otherwise was offered to show that black bears actually move between the Osceola and Ocala Forest populations, nor particularly that they move through the area in the immediate vicinity of the project site. Construction of the landfill would not prevent the movement or foraging of black bears through the site. Neither fencing nor presence of traffic on the landfill access roads only during daylight hours would prevent such movement. It is also unlikely that bears would likely be hit by traffic on the roads because the noisy trucks which will use the road would provide ample warning to bear's of any danger from traffic so they would avoid it. If the landfill were constructed on this site, less than one-half of 5/100 of one percent of the 3,800 square- mile area of the Osceola Black Bear Range, referenced by the Petitioners' expert witness, would be impacted. The site itself does not provide high quality black bear' foraging or denning habitat. Even the Petitioners' expert characterized it as "good" or "better than average" habitat. All but 3.17 acres of the area to be impacted by the project is upland, consisting primarily of pine flatwoods. Authoritative studies show that flatwoods are not heavily utilized by bears, which spend 70 percent of their time in swamp or wetland habitat. The 550 acres of wetlands, including approximately 280 acres of swamps, which will be left undisturbed on the site, will provide habitat and travel corridors for the black bears should any ever frequent the site. Additionally, the 4.76 acres of hardwood wetlands to be created as mitigation, would add high quality wetland habitat for black bears. Therefore, due to the extremely small area involved, the unlikelihood of use by black bears and the mitigation proposed, the landfill will have virtually no impact on black bear habitat, travelways or populations. The evidence thus established that the project will not have an adverse impact on endangered or threatened species or their habitats. Because the site has been under extensive commercial forest management and harvest operations for over forty years, the density of plant and animal life has been reduced, thus making the site as a whole, low quality wildlife habitat.

Recommendation Having considered the foregoing Findings of Fact, Conclusions of Law, the evidence of record, the candor and demeanor of the witnesses and the pleadings and arguments of the parties, it is, therefore RECOMMENDED: That a Final Order be entered by the Department of Environmental Regulation approving Trail Ridge Landfill, Inc.'s applications for the above-referenced permits for the proposed solid waste management facility, including a solid waste management facility permit, a storm water/management and storage of surface waters permit and a dredge and fill permit, provided those mandatory conditions specified in the Notices of Intent to issue such permits, as well as those conditions found to be necessary in the above Findings of Fact and Conclusions of Law are made mandatory conditions of permitting and subsequent facility operations. DONE AND ENTERED this 20th day of September, 1991, in Tallahassee, Leon County, Florida. P. MICHAEL RUFF Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, FL 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 20th day of September 1991.

Florida Laws (13) 120.57120.68267.061373.042373.413373.414373.416403.031403.702403.707403.813403.927471.025 Florida Administrative Code (3) 40C-4.09140C-4.30140C-42.061
# 7
DR. OCTAVIO BLANCO vs NNP-BEXLEY, LTD., AND SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT, 08-001972 (2008)
Division of Administrative Hearings, Florida Filed:Brooksville, Florida Apr. 18, 2008 Number: 08-001972 Latest Update: Sep. 02, 2009

The Issue There are two main issues in this case. The first is whether Respondent, NNP-Bexley, Ltd. (NNP-Bexley), has provided Respondent, Southwest Florida Water Management District (the District), with reasonable assurances that the activities NNP- Bexley proposes to conduct pursuant to Environmental Resource Permit (ERP) Application No. 43013740.004 (the Permit) meet the conditions for issuance of permits established in Sections 373.413 and 373.414, Florida Statutes (2007), Florida Administrative Code Rules 40D-4.301 and 40D-4.302, and the Environmental Resource Permit Information Manual, Part B, Basis of Review (BOR).1 The second is whether Petitioner, Dr. Octavio Blanco (Blanco), participated in this proceeding for an improper purpose so as to warrant the imposition of sanctions under Section 120.595(1), Florida Statutes.2

Findings Of Fact Blanco is a resident of Pasco County, Florida. Blanco is a trustee and beneficiary of an unrecorded Land Trust Agreement, dated December 19, 1996, known as Trust Number 99. The Trust holds title to real property (the Blanco Property) located to the south of the NNP-Bexley property. The Blanco property is approximately 100 acres and primarily agricultural. It has a narrow frontage along State Road (SR) 54, and is directly east of the Suncoast Parkway. A wetland known as Wetland A3 is partially located on the northern portion of the Blanco property. NNP-Bexley is a Florida limited partnership between the Bexley family and NNP-Tampa, LLC, and is the applicant for the ERP at issue in this case. Newland Communities, LLC, is the project manager for NNP-Bexley under a project management agreement. The ERP at issue in this case would authorize construction of a new surface water management system to serve Phase I of the Bexley Ranch Development of Regional Impact (DRI), which is a 6,900-acre mixed use, residential community. Phase one consists of a 1,717-acre residential subdivision in Sections 7, 8, and 16-20, Township 26 South, Range 18 East, Pasco County, Florida (the Subject Property), with 735 residential units, both single and multi-family, and associated improvements, including widening SR 54 and constructing Sun Lake Boulevard and Tower Road (collectively, the Project). The Subject Property is located North of the Blanco property. Like the rest of the land subject to the Bexley Ranch DRI, the Subject Property is predominantly agricultural land used for raising cattle, sod farming, and tree farming. There is little native vegetation and limited habitat value for wildlife in the uplands. The Subject Property is composed of approximately 654 acres of wetlands and 1063 acres of uplands. Most of the wetlands will be preserved, including many as part of a wildlife corridor along the Anclote River that is proposed to be dedicated to Pasco county. The Bexley Ranch DRI has been extensively reviewed. Including the DRI approval, it has received 23 separate development approvals to date. A Site Conditions Assessment Permit (SCAP) issued by the District established existing conditions on the NNP-Bexley Property for ERP permitting purposes, including wetland delineations, wetland hydroperiods, pre-development flows, drainage flow patterns, and the pre- development flood plain. The SCAP was not challenged and is not subject to challenge in this proceeding. Surface Water Management System The Subject Property accepts off-site drainage flows from the east and from the south. All drainage exits the Subject Property to the west, into property owned by the District. There is a culvert under an abandoned railroad crossing between the Subject Property and the Blanco property that directs surface water flows into the Subject Property. That culvert controls water elevations on the Blanco property. The surface water management system consists of a series of wet detention facilities, wetland creation areas, and floodplain mitigation designed to control water quality, quantity, and floodplain elevations. The design of the surface water management system was optimized and environmental impacts were reduced by using created wetlands for floodplain attenuation. Information from the SCAP was used to create pre- development and post-development Inter-connected Pond Routing (ICPR) computer models of drainage relevant to the Subject Property. The ICPR models were used to design a surface water management system that will avoid adverse on-site or off-site impacts and provide required water quality treatment. The ICPR models showed that the in-flows and out-flows to and from the Project site will not be adversely impacted by the proposed activities. The proposed surface water management system will not cause adverse water quantity impacts to receiving waters or to adjacent land, including Dr. Blanco's property. The Phase I project will not cause adverse impacts to existing surface water storage and conveyance capabilities and will not adversely affect the quality of receiving waters such that state water quality standards will be violated. The proposed water quality treatment system utilizes ponds for treatment and attenuation. Flow will be controlled by outlet structures. During construction, best management practices will be used to control sediment run-off. The surface water management system provides adequate water quantity and quality treatment and is designed to meet the criteria in Section 5.2 and BOR Section 6. Wetlands and Associated Impacts The wetlands within the Subject Property consist primarily of moderate-quality forested wetlands that have been selectively logged in the past. Previously isolated wetlands have been connected by surface water ditches. Through multiple iterations of design, direct wetland impacts from the Project were reduced from 86 to approximately of the 654 acres of wetlands on the Subject Property. Of those 24 acres, almost half are man-made surface water ditches. There will be direct impacts to 13.6 acres of wetlands that will require mitigation, which is approximately two percent of the total wetlands on the Subject Property. Most of the direct wetland impacts are the result of required transportation improvements such as roadway crossings. Secondary impacts also were considered. However, the proposed ERP requires a minimum of 15 feet and an average of 65 feet of buffer around wetlands on the Subject Property. The uplands have been converted into improved pasture or silviculture that lack native vegetation and have limited habitat value. According to the evidence, given buffers that exceed the District's criteria of a minimum 15 feet and average feet, no "additional measures are needed for protection of wetlands used by listed species for nesting, denning, or critically important feeding habitat"; and any secondary impacts from the expected residential development on a large percentage of the uplands on the Subject Property and subsequent phases of the Bexley DRI are not considered to be adverse. See BOR Section 3.2.7. Extensive wildlife surveys were conducted throughout the breeding season at all relevant times for sand hill cranes, wading birds, and all listed species. No colonies of listed bird species, such as wood storks, herons, egrets, or ibises, were found on the Project site; and no listed species was found to utilize the site for nesting. Mitigation Under the proposed ERP for the Project, approximately 80 acres of wetlands are to be created for floodplain attenuation and mitigation to offset unavoidable wetland impacts. The proposed mitigation areas are to be excavated to relatively shallow depths and planted. All the mitigation is on the Subject Property. The State's mandated Uniform Mitigation Assessment Method (UMAM) was used in this case to determine the amount of mitigation "needed to offset adverse impacts to wetlands and other surface waters." Fla. Admin. Code R. 62-345.100(1). Generally, UMAM compares functional loss to wetlands and other surface waters to functional gains through mitigation. In applying UMAM in this case, it does not appear that NNP-Bexley considered any functional loss to wetlands and other surface waters from the use of a large percentage of the uplands on the Subject Property and subsequent phases of the Bexley DRI for residential development. Apparently, impacts resulting in any such functional loss to wetlands and other surface waters were treated as secondary impacts that were not considered to be adverse because they were adequately buffered. See Finding 17, supra. In addition, "the amount and type of mitigation required to offset . . . [s]econdary impacts to aquatic or wetland dependent listed animal species caused by impacts to uplands used by such species for nesting or denning" are evaluated and determined by means other than "implementation of Rules 62- 345.400 through 62-345.600, F.A.C." Fla. Admin. Code R. 62- 345.100(5)(b). In any event, the undisputed evidence was that the uplands have been converted into improved pasture or silviculture that lack native vegetation and have limited habitat value, and there was ample evidence that UMAM was used properly in this case to determine the amount of mitigation "needed to offset adverse impacts to wetlands and other surface waters." Id. Without any evidence to the contrary, the evidence in the record is accepted. Based on the accepted UMAM evidence, wetland impacts resulted in 6.36 units of functional loss. The functional gain of the proposed mitigation calculated using UMAM is 18.19 units, more than offsetting Project impacts to wetlands on the Subject Property. Proposed Excavations for Ponds and Wetland Creation Blanco's expressed concerns focus on a 30-acre wetland to be created in the southwest corner of the Subject Property for mitigation with a secondary benefit of floodplain compensation credit. Referred to as M-10, this wetland is proposed to be created by excavating uplands to a depth of approximately two and one half feet, which is approximately half a foot below the seasonal high water line (SHWL). Because it is controlled by the railroad culvert near the property boundary, Wetland A3 will not be negatively impacted by M-10. It will not lose water to M-10 or any of the proposed excavations except in periods of relatively high rainfall, when those outflows would benefit Wetland A3. In addition, the existing Tampa Bay Water pipeline and the proposed Tower Road, located between the Blanco Property and the Subject Property, would restrict any drawdown effects from impacting Wetland A3. Mr. Marty Sullivan, a geotechnical engineer, performed an integrated ground and surface water modeling study to evaluate the potential for impacts to Wetland A3 from the excavation of a large-sized pond on the adjacent Ashley Glen property as part of a project that also was the subject of an ERP administrative challenge by Petitioner. Petitioner's challenge concerned impacts to Wetland A3 from excavation of an adjacent pond, known as P11. Mr. Sullivan's modeling demonstrated that there would be no adverse impacts to the hydrology of Wetland A3 from the Ashley Glen excavation although P-11 was larger and deeper than M-10, and much closer to Wetland A3. The bottom of P-11 came within 2 feet of limerock, in contrast to the minimum 10 foot separation in M-10. The Bexley and Ashley Glen sites are substantially similar in other respects, and the Ashley Glen modeling is strong evidence that M-10 would not adversely impact Wetland A3 or the wetlands on the Subject Property. Approximately 50 test borings were conducted throughout the 6,900-acre DRI site. The borings were done after considering the locations of wetlands and proposed activities. Test borings in Phase I were performed on the west side of the Subject Property. The findings from the test borings indicate that there is an inconsistent semi-confining layer that overlies the DRI site. Limestone varies in depth from 15 feet to 50 feet below the surface. Based upon the findings from the test borings, excavations for stormwater ponds are a minimum of 10 feet above the top of the limestone layer, meaning the semi-confining unit materials that cover the limestone will not be encountered or breached. Given the excavation depths of the various ponds, no adverse draw-downs are expected that would cause the groundwater table to be lowered due to downward leakance. While initially water would be expected to flow or move through the ground from existing wetlands on the Subject Property to the new M-10 wetland, water levels will stabilize, and there will be enough water for the existing wetlands and for M-10. There will be more water in the southwestern corner of the Subject Property for a longer period of time than in pre- development conditions. NNP-Bexley provided reasonable assurance that there will be no adverse impacts to Wetland A3 or the existing wetlands on the Subject Property from M-10 or any of the proposed excavations. Other Conditions for Permit Issuance The Project was evaluated under the public interest test found in Rule 40D-4.302. The evidence was that the public interest criteria have been satisfied. The Project is capable, based on generally accepted engineering and scientific principles, of being effectively performed and of functioning as proposed. The applicant has provided reasonable assurance that the construction, operation, and maintenance of the system will meet the conditions for permit issuance in Rule 40D-4.301 and 40D4.302. Improper Purpose Blanco has a history of opposing projects near his property, with mixed results. In this case, after Blanco learned of NNP-Bexley's application for an ERP, he met with Ms. Brewer on April 20, 2006, to discuss it. At the time, specifics were not discussed, but Blanco let Ms. Brewer know that his successful opposition to an earlier project by Westfield Homes resulted in significant expenditures by the developer and eventually the abandonment of the project by that developer. Blanco warned Ms. Brewer that, if NNP-Bexley did not deal with him to his satisfaction, and he challenged NNP-Bexley's application, NNP-Bexley would risk a similar fate. In August 2006, Blanco arranged a meeting at the University of South Florida (USF) with Ms. Brewer, NNP-Bexley's consultants, Blanco, and USF hydrologists, Drs. Mark Stewart and Mark Rains. At the time, Blanco's expressed concern was the impact of the NNP-Bexley project on Wetland A3. As a result of the meeting, it was agreed that there would be no impact on Wetland A3, primarily because it was upstream and its water elevations were controlled by the downstream culvert to the south of the Bexley property. Nonetheless, Ms. Brewer agreed to limit excavations in the southwest corner near the Blanco property and Wetland A3 to a depth of no more than two and a half feet, instead of the 12 feet being proposed at the time. NNP-Bexley made the agreed changes to the application and proceeded towards obtaining approval by the District. When Blanco learned that the NNP-Bexley project was on the agenda for approval by the District Board at its meeting in March 2008, Blanco took the position that NNP-Bexley had reneged on an agreement to keep him informed and insisted on an urgent meeting. At this third meeting with Ms. Brewer and some of her consultants, Blanco was told that the only change to the application was the one agreed to at the meeting at USF in August 2006. Not satisfied, Blanco asked that the application documentation be forwarded to Dr. Stewart for his evaluation. He mentioned for the first time that he was concerned about an increased risk to the Blanco property and Wetland A3 from wildfires starting on the Bexley property, spreading south, and utilizing dry muck resulting from the dewatering of wetlands in the southwest corner of the Bexley property as fuel. Blanco requested that the approval item be removed from the Board's agenda to give Dr. Stewart time to evaluate the documentation and advise Blanco. Blanco stated that, if forced to challenge Board approval, he would raise numerous issues arising from the entirety of the application, not just the muck fire issue and not just issues arising from activities in the southwest corner of the Bexley property. Ms. Brewer refused to delay Board approval for the reasons given by Blanco. When told that the item would not be removed from the agenda, Blanco stated that he would not challenge an approval that limited the excavations to the SHWL. NNP-Bexley refused because it was necessary to dig the pond to a half foot below the SHWL in order to create a mitigation wetland. At that point, Blanco proposed that he would not challenge a Board approval if: vegetation was removed from the mitigation areas to reduce the risk of wildfires; a fire break was constructed along Tower Road and mowed periodically; NNP-Bexley agreed in writing to never deepen the mitigation pond M-1 in the southwest corner of the Bexley property; and NNP-Bexley paid Blanco $50,000 for him to install a well for use in fighting any wildfire that might approach the Blanco property and Wetland A3 from the north. Ms. Brewer agreed to all of Blanco's demands except for the $50,000 payment. Instead, she offered to pay for construction of the well, which she believed would cost significantly less than $50,000. At that point, the negotiations broke down, and Blanco filed a request for a hearing. The District denied Blanco's first request for a hearing and gave him leave to amend. In the interim, the Board voted to approve NNP-Bexley's application, and Blanco timely- filed an amended request for a hearing. The amended request for a hearing did not mention fire risk. Instead, it resurrected the issue of dewatering Wetland A3, as well as wetlands on the Bexley property, caused by the excavation in the southwest corner of the Bexley property, which would "result in destruction of functions provided by those wetlands that are not accounted for by the District." The amended request for a hearing also raised numerous other issues. After Blanco's former attorney-of-record withdrew without objection, Blanco's present counsel-of-record appeared on his behalf and requested a continuance to give Blanco time to determine whether either Dr. Stewart or Dr. Rains would be willing to testify for him if the hearing were re-scheduled. That request was denied. During a telephonic prehearing conference on September 8, 2008, Blanco asked to add Mr. Patrick Tara, a professional engineer, to his witness list. This request was denied as untimely. Mr. Tara was available but was not permitted to testify at the final hearing; instead, Blanco was allowed to file an affidavit of Mr. Tara as a proffer. Blanco's request to present expert evidence on fire hazards from muck fires in dry conditions was denied as irrelevant under the District's ERP conditions of issuance. Essentially, Blanco presented no evidence to support any of the allegations in his amended request for a hearing. Blanco maintained in his testimony that he filed and persisted in this challenge on the advice of his experts, Drs. Stewart and Rains, and after September 8, 2008, also on the opinions of Mr. Tara. For that reason, Blanco was given the opportunity to file affidavits from Drs. Stewart and Rains, in addition to the affidavit of Mr. Tara, in support of his expressed basis for litigating this case. Respondents were given the opportunity to depose Drs. Stewart and Rains if desired. Drs. Stewart and Rains, as well as Mr. Tara, all told Blanco essentially that the excavation proposed in NNP-Bexley's plans for development probably would have adverse impacts on the surrounding wetlands. However, none of them told Blanco that there would be adverse impacts on Wetland A3; Drs. Stewart and Rains clearly told Blanco that there would be no adverse impacts on Wetland A3. It does not appear from his affidavit that Mr. Tara focused on Wetland A3, and there is no reason to believe that he disagreed with Drs. Stewart and Rains with regard to Wetland A3. As to the wetlands on the Bexley property surrounding the excavation in the southwest corner of the property, any potential impacts from excavation that Drs. Stewart and Rains might have discussed with Blanco prior to the USF meeting in August 2006 were reduced after NNP-Bexley agreed to limit the depth of the excavation to two and a half feet. When asked about the revised excavations again in February or March of 2008, Dr. Stewart essentially told Blanco that even the shallower excavations would make the surrounding wetlands on the Subject Property drier during dry conditions and that any such impacts could be eliminated or minimized by either limiting the excavation to the SHWL or by maintaining a buffer of undisturbed land around the excavation. Dr. Rains agreed with Dr. Stewart's assessment. Contrary to Blanco's testimony at the final hearing, there is no evidence that Dr. Stewart, Dr. Rains, or Mr. Tara ever advised Blanco to file and persist in this challenge. In their depositions, Drs. Stewart and Rains specifically denied ever giving Dr. Blanco such advice. Likewise, there is no evidence that any of them had any opinions to give Blanco about risk of fire hazards. In their depositions, Drs. Stewart and Rains specifically denied ever giving Blanco such opinions. There are additional discrepancies between Blanco's testimony and the deposition testimony of Drs. Stewart and Rains. Blanco swore that Dr. Stewart was unable for health reasons to testify for him. In his deposition, Dr. Stewart denied that his health entered into his decision. He told Blanco from the outset that he would not be willing to testify as Blanco's expert. Dr. Stewart only cursorily examined the materials Blanco had delivered to him and only responded to Blanco's questions in generalities. Most of their conversations consisted of Blanco bringing Dr. Stewart up-to-date on what was happening in the case. Blanco swore that Dr. Rains planned to testify for him at the scheduled final hearing until unexpected events made it impossible. In his deposition, Dr. Rains testified that he never agreed to testify as Dr. Blanco's expert and that his unavailability to testify at the final hearing was made known to Blanco when he was first asked to testify at the scheduled final hearing. He never even opened the box of materials Blanco had delivered to him and barely spoke to Blanco at all about hydrology. Most of Dr. Rains' communications with Blanco had to do with Dr. Rains' unavailability to participate. Based on all of the evidence, it is found that Blanco's participation in this proceeding was for an improper purpose--i.e., "primarily to harass or to cause unnecessary delay or for frivolous purpose or to needlessly increase the cost of litigation, licensing, or securing the approval of an activity." His more recent dealings with Drs. Stewart and Rains and Mr. Tara seem more designed to obtain or infer statements for Blanco to use to avoid sanctions than to obtain actual evidence to support a valid administrative challenge.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the District enter a final order issuing ERP No. 43013740.004 to NNP-Bexley. Jurisdiction is reserved to determine the appropriate amount of attorney's fees and costs to be awarded under Section 120.595(1), Florida Statutes, in further proceedings consolidated with NNP-Bexley's requests for Sections 57.105 and 120.569(2)(e), Florida Statutes. DONE AND ENTERED this 17th day of November, 2008, in Tallahassee, Leon County, Florida. S J. LAWRENCE JOHNSTON Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 17th day of November, 2008.

Florida Laws (13) 120.569120.57120.595120.68267.061373.042373.086373.413373.4136373.414373.421403.03157.105 Florida Administrative Code (7) 28-106.20140D-4.30140D-4.30262-302.30062-345.10062-345.60062-4.242
# 8
DIANE MILLS vs ST. JOHNS RIVER WATER MANAGEMENT DISTRICT, JAY GINN, AND LINDA GINN, 02-001497 (2002)
Division of Administrative Hearings, Florida Filed:Jacksonville, Florida Apr. 16, 2002 Number: 02-001497 Latest Update: May 14, 2004

The Issue The issue in this case is whether, and under what conditions, the Respondent, St. Johns River Water Management District (District), should grant Environmental Resource Permit (ERP) No. 40-109-81153-1 authorizing Respondents, Jay and Linda Ginn (Ginns or Applicants), to construct a 136-unit single-family residential development with associated surface water management system.

Findings Of Fact The Parties and Proposed Project Respondent, the District, is a special taxing district created by Chapter 373, Florida Statutes, charged with the duty to prevent harm to the water resources of the District, and to administer and enforce the cited statutes and Florida Administrative Code Rules promulgated by the District under the authority of those statutes. (Unless otherwise stated, all Florida Statutes refer to the 2003 codification, and all Florida Administrative Code Rules refer to the current codification.) Respondents, Jay and Linda Ginn, are the owners of 47 acres of land located just west of the City of St. Augustine in St. Johns County, Florida. They are seeking ERP Permit No. 40- 109-81153-1 from the District to construct a 136-acre residential community and associated surface water management facilities on the property, to be known as Ravenswood Forest. The 47-acre project site is predominantly uplands, with a large (10.98-acre) wetland (Wetland 1) located on the eastern boundary and completely separating the uplands on the project site from adjacent properties to the east. While the central portion of the site is mostly a sand pine vegetated community, and the western portion is largely a pine flatwood community, there are six other smaller wetlands scattered within the upland areas lying west of Wetland 1, each numbered separately, 2 through 7. The site is currently undeveloped except for some cleared areas that are used as dirt road trails and a borrow pit or pond excavated in the central part of the site. This clearing and excavation was accomplished in the 1980’s for a project that was never completed. The project site is bordered on the north by Ravenswood Drive. On the east lies an existing residential development probably constructed in the 1970’s; to the west of the project site is a power-line easement; and to the south is a Time Warner cable facility. The land elevations at the project site are generally higher on the west and slope off to Wetland 1 on the east. Under current conditions, water generally drains from west to east into Wetland 1. Some water from the site, as well as some water entering the site from off-site properties to the west, flows into the existing pond or borrow pit located in the central portion of the site. Under extreme rainfall conditions, the borrow pit/pond can reach a stage that allows it to overflow and discharge into Wetland 1. Some off-site water also enters Wetland 1 at its north end. Water that originates from properties to the west of the Ravenswood site is conveyed through ditches to the roadside ditch that runs along the south side of Ravenswood Drive. Water in this roadside ditch ultimately enters Wetland 1 at its north end and flows south. Once in Wetland 1, water moves north to south. Water leaves the part of Wetland 1 that is located on the Ravenswood site and continues to flow south through ditches and culverts ultimately to the San Sebastian River. The Wetland 1 system is contiguous with wetlands located on property owned by Petitioner, Marilyn McMulkin. Mrs. McMulkin lives on Hibiscus Street to the east of the project. Mrs. McMulkin is disabled and enjoys observing wildlife from her home. Mrs. McMulkin has observed woodstorks, kites, deer, cardinals, birds, otter, indigo snake, flying squirrels, gopher tortoises, and (more recently) bald eagles on her property or around the neighborhood. Mrs. McMulkin informed the District of the presence of the bald eagle in 2002, but it was not discovered until November of 2003 that there was an eagle nest on the Ginns property in Wetland 1. Petitioner, Diane Mills, owns a house and property on Hibiscus Street to the east of the Project. The proposed stormwater discharge for the Project is to a wetland system that is contiguous with a wetland system that is in close proximity to Mrs. Mills' property. Petitioners' property is not located in a flood plain identified by FEMA. Nevertheless, Petitioners' property experiences flooding. At times, the flooding has come through Mrs. McMulkin's house and exited out the front door. The flood water, which can be 18-24 inches high in some places on Mrs. McMulkin's property, comes across her backyard, goes through or around her house, enters Hibiscus Street and turns north. The flooding started in the late 1980's and comes from the north and west, from the Ginns' property. The flooding started after Mr. Clyatt Powell, a previous co-owner of the Ravenswood property, started clearing and creating fill roads on the property using dirt excavated from the property. The flooding now occurs every year and has increased in duration and frequency; the flooding gets worse after the rain stops and hours pass. The evidence, including Petitioners' Exhibit 1, indicated that there are numerous other possible reasons, besides activities on the Ginns' property in the late 1980's, for the onset and exacerbation of Petitioners' flooding problems, including: failure to properly maintain existing drainage facilities; other development in the area; and failure to improve drainage facilities as development proceeds. The parties have stipulated that Petitioners have standing to object to ERP Permit No. 40-109-81153-1. Project Description As indicated, water that originates west of the project site currently enters the project site in two ways: (1) it moves across the western project boundary; and (2) it travels north to a ditch located on the south side of Ravenswood Drive and is conveyed to Wetland 1. The offsite water that moves across the western project boundary comes from a 16-acre area identified as Basin C (called Basin 4 post-development). The offsite water that moves north to the ditch and enters Wetland 1 comes from a 106.87-acre area identified as Basin D (called Basin 5 post-development). The project’s stormwater conveyance and treatment facilities include two connected wet detention ponds with an outfall to a wetland on the eastern portion of the project site. Stormwater from most of the project site will be conveyed to a pond, or detention area (DA) DA-1, which will be located near (and partially coinciding with the location of) the existing pond or borrow pit. The water elevation in DA-1 will be controlled at a level of 26 feet. Water from DA-1 will spill over through a control structure into a pipe that will convey the spill-over to DA-2. In addition to the spill-over from DA-1, offsite water that currently enters the project site across the western boundary will be conveyed to a wetland area at the southwest corner of the project site. At that point, some of the water will be taken into DA-2 through an inlet structure. The water elevation in DA-2 will be controlled at level 21. Water from DA-2 will be released by a control structure to a spreader swale in Wetland 1. While some of the water conveyed to the wetland area at the southwest corner of the project site will enter DA-2, as described, some will discharge over an irregular weir (a low area that holds water until it stages up and flows out) and move around the southern boundary of the project site and flow east into Wetland 1. Wetland 1 is a 10.98-acre onsite portion of a larger offsite wetland area extending to the south and east (which includes the wetlands on Mrs. McMulkin's property). For purposes of an Overall Watershed Study performed by the Ginns' engineering consultant, the combined onsite and offsite wetlands was designated Node 98 (pre-development) and Node 99 (post- development). From those areas, water drains south to ditches and culverts and eventually to the San Sebastian River. Best management practices will be used during project construction to address erosion and sediment control. Such measures will include silt fences around the construction site, hay bales in ditches and inlets, and maintenance of construction equipment to prevent release of pollutants, and may include staked sod on banks and turbidity barriers, if needed. In addition, the District's TSR imposed permit conditions that require erosion and sediment control measures to be implemented. The District's TSR also imposed a permit condition that requires District approval of a dewatering plan within 30 days of permit issuance and prior to construction. The Ginns intend to retain the dewatering from construction on the project site. Wetland Impacts Onsite Wetlands Wetland 1 is a 10.98-acre mixed-forested wetland system. Its overall condition is good. It has a variety of vegetative strata, a mature canopy, dense understory and groundcover, open water areas, and permanent water of varying levels over the course of a year. These attributes allow for species diversity. Although surrounded by development, the wetland is a good source for a variety of species to forage, breed, nest, and roost. In terms of vegetation, the wetland is not unique to northeast Florida, but in November 2003 an eagle nest was discovered in it. A second wetland area onsite (Wetland 2) is a 0.29-acre coniferous depression located near the western boundary of the site. The overall value of the functions provided by Wetland 2 is minimal or low. It has a fairly sparse pine canopy and scattered ferns provide for little refuge and nesting. Water does stand in it, but not for extended periods of time, which does not allow for breeding of most amphibians. The vegetation and inundation do not foster lower trophic animals. For that reason, although the semi-open canopy would be conducive to use by woodstorks, birds and small mammals do not forage there. A third wetland area onsite (Wetland 3) is a 0.28-acre mixed-forested wetland on the northern portion of the site. The quality of Wetland 3 is low. A 24-inch culvert drains the area into a 600-foot long drainage ditch along the south side of Ravenswood Drive leading to Wetland 1. As a result, its hydroperiod is reduced and, although it has a healthy pine and cypress canopy, it also has invasive Chinese tallow and upland species, along with some maple. The mature canopy and its proximity to Ravenswood Drive would allow for nesting, but no use of the wetland by listed species has been observed. In order to return Wetland 3 to being productive, its hydroperiod would have to be restored by eliminating the connection to the Ravenswood Drive ditch. A fourth wetland area onsite (Wetland 4) is a 0.01- acre portion of a mixed-forested wetland on the western boundary of the site that extends offsite to the west. Its value is poor because: a power line easement runs through it; it has been used as a trail road, so it is void of vegetation; and it is such a small fringe of an offsite wetland that it does not provide much habitat value. A fifth wetland area onsite (Wetland 5) is a 0.01-acre portion of the same offsite mixed-forested wetland that Wetland 4 is part of. Wetland 5 has a cleared trail road through its upland fringe. Wetland 5 has moderate value. It is vegetated except on its upland side (although its vegetation is not unique to northeast Florida), has a nice canopy, and provides fish and wildlife value (although not as much as the interior of the offsite wetland). A sixth wetland area onsite (Wetland 6) is a 0.28-acre wetland located in the western portion of the site. It is a depression with a coniferous-dominated canopy with some bays and a sparse understory of ferns and cord grass that is of moderate value overall. It does not connect with any other wetlands by standing or flowing water and is not unique. It has water in it sufficient to allow breeding, so there would be foraging in it. Although not discovered by the Ginns' consultants initially, a great blue heron has been observed utilizing the wetland. No listed species have been observed using it. Wetland 6 could be good gopher frog habitat due to its isolation near uplands and its intermittent inundation, limiting predation by fish. In addition, four gopher tortoise burrows have been identified in uplands on the project site, and gopher frogs use gopher tortoise burrows. The gopher frog is not a listed species; the gopher tortoise is listed by the State of Florida as a species of special concern but is not aquatic or wetland-dependent. Woodstorks are listed as endangered. Although no woodstorks were observed using Wetland 6, they rely on isolated wetlands drying down to concentrate fish and prey in the isolated wetlands. With its semi-open canopy, Wetland 6 could be used by woodstorks, which have a wingspan similar to great blue herons, which were seen using Wetland 6. However, Wetland would not provide a significant food source for wading birds such as woodstorks. The other surface water area onsite (Wetland 7) is the existing 0.97-acre pond or borrow pit in the southwest portion of the project site. The pond is man-made with a narrow littoral shelf dominated by torpedo grass; levels appears to fluctuate as groundwater does; and it is not unique. It connects to Wetland 1 during seasonal high water. It has some fish, but the steep slope to its littoral shelf minimizes the shelf's value for fish, tadpoles, and larvae stage for amphibians because fish can forage easily on the shelf. The Ginns propose to fill Wetlands 2, 3, 4, and 6; to not impact Wetland 5; and to fill a 0.45-acre portion of Wetland and dredge the remaining part into DA-1. Also, 0.18 acre of Wetland 1 (0.03 acre is offsite) will be temporarily disturbed during installation of the utility lines to provide service to the project. Individually and cumulatively, the wetlands that are less than 0.5-acre--Wetlands 3, 6, 2, 4, and 5--are low quality and not more than minimal value to fish and wildlife except for Wetland 5, because it is a viable part of an offsite wetland with value. While the Ginns have sought a permit to fill Wetland 4, they actually do not intend to fill it. Instead, they will simply treat the wetland as filled for the purpose of avoiding a County requirement of providing a wetland buffer and setback, which would inhibit the development of three lots. Offsite Wetlands The proposed project would not be expected to have an impact on offsite wetlands. Neither DA-1 nor DA-2, especially with the special conditions imposed by the District, will draw down offsite wetlands. The seasonal high water (SHW) table in the area of DA- 1 is estimated at elevation 26 to 29. With a SHW table of 26, DA-1 will not influence groundwater. Even with a SHW table of 29, DA-1 will not influence the groundwater beyond the project's western boundary. DA-1 will not adversely affect offsite wetlands. A MODFLOW model was run to demonstrate the influence of DA-1 on nearby wetlands assuming that DA-1 would be controlled at elevation 21, that the groundwater elevation was 29, and that no cutoff wall or liner would be present. The model results demonstrated that the influence of DA-1 on groundwater would barely extend offsite. The current proposed elevation for DA-1 is 26, which is higher than the elevation used in the model and which would result in less influence on groundwater. The seasonal high water table in the area of DA-2 is 28.5 to 29.5. A cutoff wall is proposed to be installed around the western portion of DA-2 to prevent it from drawing down the water levels in the adjacent wetlands such that the wetlands would be adversely affected. The vertical cutoff wall will be constructed of clay and will extend from the land surface down to an existing horizontal layer of relatively impermeable soil called hardpan. The cutoff wall tied into the hardpan would act as a barrier to vertical and horizontal groundwater flow, essentially severing the flow. A MODFLOW model demonstrated that DA-2 with the cutoff wall will not draw down the adjacent wetlands. The blow counts shown on the boring logs and the permeability rates of soils at the proposed location of DA-2 indicate the presence of hardpan. The hardpan is present in the area of DA-2 at approximately 10 to 15 feet below the land surface. The thickness of the hardpan layer is at least 5 feet. The Ginns measured the permeability of hardpan in various locations on the project site. The cutoff wall design is based on tying into a hardpan layer with a permeability of 0.052 feet per day. Because permeability may vary across the project site, the District recommended a permit condition that would require a professional engineer to test for the presence and permeability of the hardpan along the length of the cutoff wall. If the hardpan is not continuous, or if its permeability is higher than 0.052 feet per day, then a liner will be required to be installed instead of a cutoff wall. The liner would be installed under the western third of DA-2, west of a north-south line connecting the easterly ends of the cutoff wall. (The location of the liner is indicated in yellow on Applicants' Exhibit 5B, sheet 8, and is described in District Exhibit 10.) The liner would be 2 feet thick and constructed of clay with a permeability of no more than 1 x 10-6 centimeters per second. A liner on a portion of the bottom of pond DA-2 will horizontally sever a portion of the pond bottom from the groundwater to negate the influence of DA-2 on groundwater in the area. A clay liner would function to prevent adverse drawdown impacts to adjacent wetlands. The project, with either a cutoff wall or a clay liner, will not result in a drawdown of the groundwater table such that adjacent wetlands would be adversely affected. Reduction and Elimination of Impacts The Ginns evaluated practicable design alternatives for eliminating the temporary impact to 0.18-acre of Wetland 1. The analysis indicated that routing the proposed utility services around the project site was possible but would require a lift station that would cost approximately $80,000 to $100,000. The impact avoided is a temporary impact; it is likely that the area to be impacted can be successfully reestablished and restored; and preservation of Wetland 1 is proposed to address lag-time for reestablishment. It was determined by the Ginns and District staff that the costs of avoidance outweigh the environmental benefits of avoidance. Petitioners put on evidence to question the validity of the Wetland 1 reduction/elimination analysis. First, Mr. Mills, who has experience installing sewer/water pipes, testified to his belief that a lift station would cost only approximately $50,000 to $60,000. He also pointed out that using a lift station and forced main method would make it approximately a third less expensive per linear foot to install the pipe line itself. This is because a gravity sewer, which would be required if a lift station and forced main is not used, must be laid at precise grades, making it is more difficult and costly to lay. However, Mr. Mills acknowledged that, due to the relatively narrow width of the right-of-way along Ravenswood Drive, it would be necessary to obtain a waiver of the usual requirement to separate the sewer and water lines by at least 10 feet. He thought that a five-foot separation waiver would be possible for his proposed alternative route if the "horizontal" separation was at least 18 inches. (It is not clear what Mr. Mills meant by "horizontal.") In addition, he did not analyze how the per-linear-foot cost savings from use of the lift station and forced main sewer would compare to the additional cost of the lift station, even if it is just $50,000 to $60,000, as he thinks. However, it would appear that his proposed alternative route is approximately three times as long as the route proposed by the Ginns, so that the total cost of laying the sewer pipeline itself would be approximately equal under either proposal. Mr. Mills's testimony also suggested that the Ginns did not account for the possible disturbance to the Ravenswood eagles if an emergency repair to the water/sewer is necessary during nesting season. While this is a possibility, it is speculative. There is no reason to think such emergency repairs will be necessary, at least during the approximately 20-year life expectancy of the water/sewer line. Practicable design modifications to avoid filling Wetland 4 also were evaluated. Not filling Wetland 4 would trigger St. Johns County wetland setback requirements that would eliminate three building lots, at a cost of $4,684 per lot. Meanwhile, the impacted wetland is small and of poor quality, and the filling of Wetland 4 can be offset by proposed mitigation. As a result, the costs of avoidance outweigh the environmental benefits of avoidance. Relying on ERP-A.H. 12.2.2.1 the Ginns did not perform reduction/elimination analyses for Wetlands 2 and 6, and the District did not require them. As explained in testimony, the District interprets ERP-A.H. 12.2.1.1 to require a reduction/elimination analysis only when a project will result in adverse impacts such that it does not meet the requirements of ERP-A.H. 12.2.2 through 12.2.3.7 and 12.2.5 through 12.3.8. But ERP-A.H. 12.2.2.1 does not require compliance with those sections for regulated activities in isolated wetlands less than one-half acre in size except in circumstances not applicable to this case: if they are used by threatened or endangered species; if they are located in an area of critical state concern; if they are connected at seasonal high water level to other wetlands; and if they are "more than minimal value," singularly or cumulatively, to fish and wildlife. See ERP-A.H. 12.2.2.1(a) through (d). Under the District's interpretation of ERP-A.H. 12.2.1.1, since ERP-A.H. 12.2.2.1 does not require compliance with the very sections that determine whether a reduction/elimination analysis is necessary under ERP-A.H. 12.2.1.1, such an analysis is not required for Wetlands 2 and 6. Relying on ERP-A.H. 12.2.1.2, a., the Ginns did not perform reduction/elimination analyses for Wetlands 3 and 7, and the District did not require them, because the functions provided by Wetlands 3 and 7 are "low" and the proposed mitigation to offset the impacts to these wetlands provides greater long-term value. Petitioners' environmental expert opined that an reduction/elimination analysis should have been performed for all of the wetlands on the project site, even if isolated and less than half an acre size, because all of the wetlands on the project site have ecological value. For example, small and isolated wetlands can be have value for amphibians, including the gopher frog. But his position does not square with the ERP- A.H., as reasonably interpreted by the District. Specifically, the tests are "more than minimal value" under ERP-A.H. 12.2.2.1(d) and "low value" under ERP-A.H. 12.2.1.2, a. Secondary Impacts The impacts to the wetlands and other surface waters are not expected to result in adverse secondary impacts to the water resources, including endangered or threatened listed species or their habitats. In accordance with ERP-A.H. 12.2.7(a), the design incorporates upland preserved buffers with minimum widths of 15 feet and an average width of 25 feet around the wetlands that will not be impacted. Sediment and erosion control measures will assure that the construction will not have an adverse secondary impact on water quality. The proposed development will be served by central water and sewer provided by the City of St. Augustine, eliminating a potential for secondary impacts to water quality from residential septic tanks or septic drainfields. In order to provide additional measures to avoid secondary impacts to Wetland 1, which is the location of the bald eagles’ nest, the Applicants proposed additional protections in a Bald Eagle Management Plan (BEMP) (App. Ex. 14). Under the terms of the BEMP, all land clearing, infrastructure installation, and exterior construction on homes located within in the primary zone (a distance within 750 feet of the nest tree) is restricted to the non-nesting season (generally May 15 through September 30). In the secondary zone (area between 750 feet and 1500 feet from the nest tree), exterior construction, infrastructure installation, and land clearing may take place during the nesting season with appropriate monitoring as described in the BEMP. Proposed Mitigation The Ginns have proposed mitigation for the purpose of offsetting adverse impacts to wetland functions. They have proposed to provide mitigation for: the 0.18-acre temporary impact to Wetland 1 during installation of a water/sewer line extending from existing City of St. Augustine service to the east (at Theodore Street); the impacts to Wetlands 3, 4 and 7; and the secondary impacts to the offsite portion of Wetland 4. The Ginns propose to grade the 0.18-acre temporary impact area in Wetland 1 to pre-construction elevations, plant 72 trees, and monitor annually for 5 years to document success. Although the easement is 30 feet in width, work will be confined to 20 feet where vegetation will be cleared, the top 1 foot of soil removed and stored for replacing, the trench excavated, the utility lines installed, the trench refilled, the top foot replaced, the area replanted with native vegetation, and re- vegetation monitored. To facilitate success, the historic water regime and historic seed source will give the re-vegetation effort a jump-start. The Ginns propose to restore and enhance a 0.12-acre portion of Wetland 1 that has been degraded by a trail road. They will grade the area to match the elevations of adjacent wetland, plant 48 trees, and monitor annually for 5 years to document success. This is proposed to offset the impacts to Wetland 4. The proposed grading, replanting, and monitoring will allow the area to be enhanced causing an environmental benefit. The Ginns propose to preserve 10.58 acres of wetlands and 3.99 acres of uplands in Wetland 1, 1 acre of upland buffers adjacent to Wetlands 1 and 5, and the 0.01 acre wetland in Wetland 5. The upland buffer will be a minimum of 15 feet wide with an average of 25 feet wide for Wetland 1 and 25 feet wide for Wetland 5. A conservation easement will be conveyed to the District to preserve Wetlands 1 and 5, the upland buffers, and the wetland restoration and enhancement areas. The preservation of wetlands provides mitigation value because it provides perpetual protection by ensuring that development will not occur in those areas, as well as preventing activities that are unregulated from occurring there. This will allow the conserved lands to mature and provide more forage and habitat for the wildlife that would utilize those areas. Mitigation for Wetlands 2 and 6 was not provided because they are isolated wetlands less than 0.5-acre in size that are not used by threatened or endangered species; are not located in an area of critical state concern; are not connected at seasonal high water level to other wetlands; and are not more than minimal value, singularly or cumulatively, to fish and wildlife. As previously referenced in the explanation of why no reduction/elimination analysis was required for these wetlands, ERP-A.H. 12.2.2.1(d) does not require compliance with under ERP- A.H. 12.3 through 12.3.8 (mitigation requirements) for regulated activities in isolated wetlands less than one-half acre in size except in circumstances found not to be present in this case. See Finding 44, supra. The cost of the proposed mitigation will be approximately $15,000. Operation and Maintenance A non-profit corporation that is a homeowners association (HOA) will be responsible for the operation, maintenance, and repair of the surface water management system. An HOA is a typical operation and maintenance entity for a subdivision and is an acceptable entity under District rules. See ERP-A.H. 7.1.1(e) and 7.1.2; Fla. Admin. Code R. 40C- 42.027(3) and (4). The Articles of Incorporation for the HOA and the Declaration of Covenants, Conditions, and Restrictions contain the language required by District rules. Water Quantity To address water quantity criteria, the Applicants' engineers ran a model (AdICPR, Version 1.4) to compare the peak rate discharge from the project in the pre-project state versus the peak rate discharge after the project is put in place. The pre-project data input into the model were defined by those conditions that existed in 1985 or 1986, prior to the partial work that was conducted, but not completed, on the site in the late 1980's. The project’s 1985/1986 site condition included a feature called Depression A that attenuated some onsite as well as offsite stormwater. Because of work that was done on the project site after 1985/1986 (i.e., the excavation of the borrow pit and road-clearing activities in the late 1980's), the peak rate of discharge for the 1985/1986 project site condition was lower than the peak rate of discharge for today’s project site condition. (Flooding at Mrs. McMulkin's house began after the work was performed on the project site in the late 1980's.) Because this partial work conducted in the late 1980's increased peak rate discharge from the site, by taking the pre-project conditions back to the time prior to that work, the peak rate of discharge in the 1985-86 pre-project condition was lower than it would be under today's conditions. The model results indicated that for the 25-year, 24- hour storm event, the pre-project peak rate discharge is 61.44 cubic feet per second (cfs). The post-project peak rate discharge is 28.16 cfs. Because the completed project reduces the pre-project peak rate discharges, the project will not cause any adverse flooding impacts off the property downstream. A similar analysis of the peak rate discharges under pre-project conditions that exist today (rather than in 1986) was compared to peak rate discharges for the post-project conditions. This analysis also showed post-project peak rate discharges to be less than the peak rate discharges from the site using today’s conditions as pre-project conditions. As further support to demonstrate that the project would not cause additional flooding downstream, a second modeling analysis was conducted, which is referred to as the Ravenswood Overall Watershed Model (OWM). The Applicants' engineer identified water flowing into the system from the entire watershed basin, including the project site under both the pre- and post-project conditions. The water regime was evaluated to determine what effect the proposed project will have on the overall peak rate discharges, the overall staging, and the duration of the staging within the basin that ultimately receives the water from the overall watershed. This receiving basin area was defined as the "wetland node" (Node 98 pre- project, and Node 99 post-project). As previously stated, the area within this "wetland node" includes more than just the portion of Wetland 1 that is located on the Ravenswood site. It also includes the areas to the south and east of the on-site Wetland 1 (including properties owned by the Petitioners) and extends down to an east-west ditch located just north of Josiah Street. The project’s surface water management system will not discharge to a landlocked basin. The project is not located in a floodway or floodplain. The project is not located downstream of a point on a watercourse where the drainage is five square miles or more. The project is impounding water only for temporary storage purposes. Based on testimony from their experts, Petitioners contend that reasonable assurances have not been given as to water quantity criteria due to various alleged problems regarding the modeling performed by the Ginns' engineer. Tailwater Elevations First, they raise what they call "the tailwater problem." According to Petitioners, the Ginns' modeling was flawed because it did not use a 19.27-foot SHW elevation in Wetland 1 as the tailwater elevation. The 19.27-foot SHW was identified by the Ginns' biologist in the Wetland 1 near the location of the proposed utility line crossing the wetland and was used as the pre-development tailwater in the analysis of the project site. The post-development tailwater condition was different because constructing the project would change the discharge point, and "tailwater" refers to the water elevation at the final discharge of the stormwater management system. (SW- A.H., Section 9.7) The post-development tailwater was 21 feet, which reflects the elevation of the top of the spreader swale that will be constructed, and it rose to 21.3 feet at peak flow over that berm. For the OWM, the final discharge point of the system being modeled was the east-west ditch located just north of Josiah Street, where the tailwater elevation was approximately 18.1 feet, not the 19.27 feet SHW mark to the north in Wetland 1. The tailwater condition used in the modeling was correct. Petitioners also mention in their PRO that "the Applicants' analysis shows that, at certain times after the 25 year, 24 hour storm event, in the post development state, Wetland 1 will have higher staging than in the predevelopment state." But those stages are after peak flows have occurred and are below flood stages. This is not an expected result of post- development peak-flow attenuation. Watershed Criticism The second major criticism Petitioners level at the Applicants' modeling is that parts of the applicable watershed basins were omitted. These include basins to the west of the project site, as well as basins to the north of the site, which Petitioners lumped into the so-called "tailwater problem." Petitioners sought to show that the basins identified by the Ginns as draining onto the project site from the west were undersized, thus underestimating the amount of offsite water flowing onto the project site. With respect to Basin C, Petitioners' witness testified that the basin should be 60 acres instead of 30 acres in size, and that consequently more water would flow into pond DA-2 and thus reduce the residence time of the permanent pool volume. In fact, Basin C is 16 acres in size, not 30 acres. The water from Basin C moves onto the project site over the western project boundary. A portion of the water from Basin C will be directed to pond DA-2 through an inlet structure, and the rest will move over an irregular weir and around the project site. With respect to Basin D, Petitioners' witness testified that the basin should encompass an additional 20 acres to the west and north. West of Basin D, there are ditches routing water flow away from the watershed, so it is unclear how water from an additional 20 acres would enter the watershed. The western boundary of the OWM is consistent with the western boundaries delineated in two studies performed for St. Johns County. Petitioners' witness testified that all of the water from the western offsite basins currently travels across the project site's western boundary, and that in post-development all of that water will enter pond DA-2 through the inlet structure. In fact, currently only the water from Basin C flows across the project site's western boundary. Post-development, only a portion of water from Basin C will enter pond DA-2. Currently and post-development, the water in Basin D travels north to a ditch south of Ravenswood Drive and discharges into Wetland 1. Petitioners also sought to show that a 50-acre area north of the project site should have been included in the OWM. Petitioners' witness testified that there is a "strong possibility" that the northern area drains into the project site by means of overtopping Ravenswood Drive. The witness' estimate of 50 acres was based on review of topographical maps; the witness has not seen water flowing over Ravenswood Drive. The Ginns' engineer testified that the area north of Ravenswood Drive does not enter the project site, based on his review of two reports prepared by different engineering firms for St. Johns County, conversations with one of those engineering firms, conversations with the St. Johns County engineer, reviews of aerials and contour maps, and site observations. Based on site observations, the area north of the project site drains north and then east. One report prepared for St. Johns County did not include the northern area in the watershed, and the other report included an area to the north consisting of 12 acres. The Ginns' engineer added the 12-acre area to the OWM and assumed the existence of an unobstructed culvert through which this additional water could enter Wetland 1, but the model results showed no effect of the project on stages or duration in the wetland. Even if a 50-acre area were included in the OWM, the result would be an increase in both pre-development and post- development peak rates of discharge. So long as the post- development peak rate of discharge is lower than the pre- development peak rate of discharge, then the conveyance system downstream will experience a rate of water flow that is the same or lower than before the project, and the project will not cause adverse flooding impacts offsite. Petitioners' witness did not have any documents to support his version of the delineations of Basins C and D and the area north of Ravenswood Drive. Time of Concentration Time of concentration (TC) is the time that it takes a drop of water to travel from the hydraulically most distant point in a watershed. Petitioners sought to show that the TC used for Basin C was incorrect. Part of Petitioners' rationale is related to their criticism of the watersheds used in the Ginns' modeling. Petitioners' witness testified that the TC was too low because the distance traveled in Basin C should be longer because Basin C should be larger. The appropriateness of the Basin C delineation already has been addressed. See Finding 71, supra. Petitioners' witness also testified that the TC used for the post-development analysis was too high because water will travel faster after development. However, the project will not develop Basins C and D, and thus using the same TC in pre- development and post-development is appropriate. The project will develop Basins A and B (called Basins 1, 2, and 3 post- development), and the post-development TC for those basins were, in fact, lower than those used in the pre-development analysis. Groundwater Infiltration in DA-2 One witness for Petitioners opined that groundwater would move up through the bottom of DA-2 as a result of upwelling (also referred to as infiltration or seepage), such that 1,941 gallons per day (gpd) would enter DA-2. That witness agreed that if a liner were installed in a portion of DA-2, the liner would reduce upwelling in a portion of the pond. Another witness for Petitioners opined that 200 gpd of groundwater would enter the eastern part and 20,000 gpd would enter the western part of DA-2. Although that witness stated that upwelling of 200 gpd is not a significant input and that upwelling of 20,000 gpd is a significant input, he had not performed calculations to determine the significance. Even if more than 20,000 gpd of groundwater entered DA-2, DA-2 will provide sufficient permanent pool residence time without any change to the currently designed permanent pool size or the orifice size. Although part of one system, even if DA-2 is considered separate from DA-1, DA-2 is designed to provide an additional permanent pool volume of 6.57 acre-feet (in addition to the 20.5 acre/feet provided by DA-1). This 6.57 acre-feet provided by DA-2, is more than the 4.889 acre-feet of permanent pool volume that would be necessary to achieve a 21-day residence time for the 24+ acres that discharge directly into DA-2, as well as background seepage into DA-2 at a rate of 0.0403 cfs, which is more upwelling than estimated by Petitioners' two witnesses. There is adequate permanent pool volume in DA-2 to accommodate the entire flow from Basin C and for water entering through the pond bottom and pond sides and provide at least 21 days of residence time. Water Quality Criteria Presumptive Water Quality The stormwater system proposed by the Ginns is designed in accordance with Florida Administrative Code Rules 40C-42.024, 40C-42.025, and 40C-42.026(4). Wet detention ponds must be designed for a permanent pool residence time of 14 days with a littoral zone, or for a residence time of 21 days without a littoral zone, which is the case for this project. See Fla. Admin. Code R. 40C-42.026(4)(c) and (d). DA-1 and DA-2 contain sufficient permanent pool volume to provide a residence time of 31.5 days, which is the amount of time required for projects that discharge to Class II Outstanding Florida Waters, even though the receiving waterbody for this project is classified as Class III Waters. See Fla. Admin. Code R. 40C-42.026(4)(k)1. Best management practices will be used during project construction to address erosion and sediment control. Such measures will include silt fences around the construction site, hay bales in ditches and inlets, and maintenance of construction equipment to prevent release of pollutants, and may include staked sod on banks and turbidity barriers if needed. In addition, the District proposed permit conditions that require erosion and sediment control measures to be implemented. (Dist. Ex. 1, pp. 8-9, #4; Dist. Ex. 2, p. 1, ##3, 4, and 5, and p. 6, #10). ERP/MSSW/Stormwater Special Conditions incorporated into the proposed permit require that all wetland areas or water bodies outside the specific limits of construction must be protected from erosion, siltation, scouring or excess turbidity, and dewatering. (Dist. Ex. 2). The District also proposed a permit condition that requires District approval of a dewatering plan for construction, including DA-1 and DA-2, within 30 days of permit issuance and prior to construction. The Ginns intend to retain the dewatering from construction on the project site. As previously described, Petitioners' engineering witness sought to show that DA-2 will not provide the required permanent pool residence time because Basin C should be 60 acres in size. Petitioners' environmental witness also expressed concern about the capacity of the ponds to provide the water quality treatment required to meet the presumptive water quality criteria in the rules, but those concerns were based on information he obtained from Petitioners' engineering witness. Those issues already have been addressed. See Findings 77-78, supra. Groundwater Contamination Besides those issues, Petitioners raised the issue that groundwater contamination from a former landfill nearby and from some onsite sludge and trash disposal could be drawn into the proposed stormwater management system and cause water quality violations in the receiving waters. If groundwater is contaminated, the surface water management system could allow groundwater to become surface water in proposed DA-1. St. Johns County operated a landfill from the mid-1950s to 1977 in an area northwest of the project site. The landfill accepted household and industrial waste, which was buried in groundwater, which in turn could greatly enhance the creation of leachate and impacted water. Groundwater flows from west to east in the vicinity of the landfill and the project site but there was conflicting evidence as to a minor portion of the property. The Ginns' witness testified that if the landfill extended far enough south, a small part of the project site could be downgradient from the landfill. But there was no evidence that the landfill extended that far south. Petitioners' witness testified that the groundwater flow varies on the south side of the landfill so that groundwater might flow southeast toward the site. Even if Petitioners' witness is correct, the surface water management system was designed, as Petitioners' other witness agreed, so that DA-1 would have minimal influence on groundwater near the pond. In 1989, sewage sludge and garbage were placed in a pit in the central part of the project site, north of the existing pond, which also is the area for proposed DA-1; and at various times refuse--including a couple of batteries, a few sealed buckets, and concrete--has been placed on the surface of the site. In 1989, to determine the amount of sewage and garbage on the project site, the St. Johns County Health Department chose several locations evidencing recent excavation south of Ravenswood Drive, had the areas re-excavated, and found one bag of garbage and debris such as tree stumps and palmettos. In 2001, an empty 55-gallon drum was on the site; there was no evidence what it once contained or what it contained when deposited onsite, if anything. In addition, trespassers dumped solid waste on the property from time to time. Petitioners' witness searched the site with a magnetometer and found nothing significant. On the same day, another of Petitioners’ witnesses sampled with an auger but the auger did not bore for core or any other type sample; it merely measured groundwater level. In 1985, 1999, and 2000, groundwater offsite of the project near the landfill was sampled at various times and places by various consultants to determine whether groundwater was being contaminated by the landfill. The groundwater sampling did not detect any violations of water quality standards. Consultants for the Ginns twice sampled groundwater beneath the project site and also modeled contaminant migration. The first time, in 2001, they used three wells to sample the site in the northwest for potential impacts to the property from the landfill. The second time, they sampled the site through cluster wells in the northwest, middle, and south. (Each cluster well samples in a shallow and in a deeper location.) The well locations were closest to the offsite landfill and within an area where refuse may have been buried in the north- central part of the site. Due to natural processes since 1989, no sewage sludge deposited onsite then would be expected to remain on the surface or be found in the groundwater. The evidence was that the sewage sludge and garbage were excavated. Although samples taken near the center of the property contained substances that are water quality parameters, they were not found in sufficient concentration to be water quality violations. There is an iron stain in the sand north of the existing pond in the area where pond DA-1 is to be located. Based on dissolved oxygen levels in the groundwater, Petitioners' witness suggested that the stain is due to buried sewage, but the oxygen levels are not in violation of water quality standards and, while toward the low end of not being a violation, the levels could be due to natural causes. No evidence was presented establishing that the presence of the iron stain will lead to a violation of water quality standards. Petitioners' witness, Mr. Boyes, testified that iron was a health concern. But iron itself is a secondary drinking water standard, which is not a health-based standard but pertains to odor and appearance of drinking water. See § 403.852(12) and (13), Fla. Stat. Petitioners argued that the Phase I study was defective because historical activity on the project site was not adequately addressed. But the Phase I study was only part of the evidence considered during this de novo hearing. Following up on the Phase I study, the 2001 sampling analyzed for 68 volatile organics and 72 semi-volatile organics, which would have picked up solvents, some pesticides, petroleum hydrocarbons, and polynuclear aromatic hydrocarbons--the full range of semi-volatile and volatile organics. The sampling in August 2003 occurred because some of the semi-volatile parameters sampled earlier needed to be more precisely measured, and it was a much broader analysis that included 63 semi-volatiles, 73 volatile organic compounds, 23 polynuclear aromatic hydrocarbons, 25 organic phosphate pesticides, 13 chlorinated herbicides, 13 metals, and ammonia and phosphorus. The parameters for which sampling and analyses were done included parameters that were representative of contaminants in landfills that would have now spread to the project site. They also would have detected any contamination due to historical activity on the project site. Yet groundwater testing demonstrated that existing groundwater at the project site meets state water quality standards. Based on the lack of contaminants found in these samples taken from groundwater at the project site 50 years after the landfill began operation, the logical conclusion is that either groundwater does not flow from the landfill toward the project site or that the groundwater moving away from the landfill is not contaminated. Groundwater that may enter the stormwater ponds will not contain contaminants that will exceed surface water quality standards or groundwater quality standards. Taken together, the evidence was adequate to give reasonable assurances that groundwater entering the stormwater ponds will not contain contaminants that exceed surface water quality standards or groundwater quality standards and that water quality violations would not occur from contaminated water groundwater drawn into the proposed stormwater management system, whether from the old landfill or from onsite waste disposal. The greater weight of the evidence was that there are no violations of water quality standards in groundwater beneath the project site and that nothing has happened on the site that would cause violations to occur in the future. Contrary to Petitioners' suggestion, a permit condition requiring continued monitoring for onsite contamination is not warranted. J. Fish and Wildlife Except for the bald eagle nest, all issues regarding fish and wildlife, listed species, and their habitat as they relate to ERP-A.H. 12.2.2 through 12.2.2.4 already have been addressed. When the Ginns were made aware in November 2003 that there was an eagle nest in Wetland 1, they retained the services of Tony Steffer, an eagle expert with over 25 years of experience working specifically with eagles and eagle management issues, including extensive hands-on experience with eagles and the conduct of field studies, aerial surveys, and behavioral observations as well as numerous research projects on the bald eagle. Mr. Steffer visited the Ravenswood site on numerous occasions since the discovery of the nest, made observations, and was integral in the drafting of the Ravenswood BEMP. It is Mr. Steffer’s opinion that the proposed project, with the implementation of the BEMP, will not adversely affect the eagles. This opinion was based on Mr. Steffer's extensive knowledge and experience with eagle behavior and human interactions. In addition, Mr. Steffer considered the physical characteristics of the Ravenswood site and the nest tree, the dense vegetation in Wetland 1 surrounding the nest site, and the existing surrounding land uses, including the existing residential community that lies a distance of about 310 feet from the nest site, the existing roadways and associated traffic, and the school (with attendant playground noise) that is to north of the site. In Mr. Steffer's opinion, the eagles are deriving their security from the buffering effects provided by the surrounding wetland. He observed that the nesting and incubating eagles were not disturbed when he set up his scope at about 300-320 feet from the tree. The BEMP requires that Wetland 1, and the upland islands located within it, be preserved and limits the work associated with the water/sewer line to the non-nesting season. With the BEMP implemented, Mr. Steffer expressed confidence that the Ravenswood eagles would be able to tolerate the proposed activities allowed under the BEMP. The Ravenswood project plans and the BEMP were reviewed by the U.S. Fish and Wildlife Service (USFWS). The USFWS analyzed information in their files relating to projects which proposed activities within the primary zone of an eagle nest and reported abandoned nests. None of the reported abandoned nests could be attributed to human activities in and around the nest tree. Based on the project plans, the terms of the BEMP, and this analysis, the USFWS concluded that the Ravenswood project "is not likely to adversely affect" the bald eagles at the Ravenswood site. According to the coordination procedures agreed to and employed by the USFWS and the Florida Fish and Wildlife Conservation Commission (FFWCC), the USFWS takes the lead in reviewing bald eagle issues associated with development projects. In accordance with these procedures, for the Ravenswood project, the USFWS coordinated their review and their draft comments with the FFWCC. The FFWCC concurred with the USFWS’s position that the project, with the implementation of the BEMP, will not adversely affect the Ravenswood eagles or their nest. This position by both agencies is consistent with the expert testimony of Mr. Don Palmer, which was based on his 29 years of experience with the USFWS in bald eagle and human interactions. Petitioners and their witnesses raised several valid concerns regarding the continued viability of the Ravenswood eagle nest during and after implementation of the proposed project. One concern expressed was that parts of the Habitat Management Guidelines for the Bald Eagle in the Southeast Region (Eagle Management Guidelines) seem inconsistent with the proposed project. For example, the Eagle Management Guidelines state: "The emphasis [of the guidelines] is to avoid or minimize detrimental human-related impacts on bald eagles, particularly during the nesting season." They also state that the primary zone, which in this case is the area within a 750 foot radius of the nest tree, is "the most critical area and must be maintained to promote acceptable conditions for eagles." They recommend no residential development within the primary zone "at any time." (Emphasis in original.) They also recommend no major activities such as land clearing and construction in the secondary zone during the nesting season because "[e]ven intermittent use or activities [of that kind] of short duration during nesting are likely to constitute disturbance." But the eagle experts explained that the Eagle Management Guidelines have not been updated since 1987, and it has been learned since then that eagles can tolerate more disturbance than was thought at that time. Another concern was that the Ravenswood eagles may have chosen the nest site in Wetland 1 not only for its insulation from existing development to the north and east but also for the relatively sparse development to the west. Along those lines, it was not clear from the evidence that the eagles are used to flying over developed land to forage on the San Sebastian River and its estuaries to the east, as the eagle experts seemed to believe. Mr. Mills testified that eagles have been seen foraging around stocked fish ponds to the west, which also could be the source of catfish bones found beneath the Ravenswood nest. But it is believed that the confident testimony of the eagle experts must be accepted and credited notwithstanding Petitioners' unspecific concerns along these lines. Finally, Petitioners expressed concern about the effectiveness of the monitoring during the nesting required under the BEMP. Some of Petitioners' witnesses related less-than-perfect experiences with eagle monitoring, including malfeasance (monitors sleeping instead of monitoring), unresponsive developers (ignoring monitors' requests to stop work because of signs of eagle disturbance, or delaying work stoppage), and indications that some eagle monitors may lack independence from the hiring developer (giving rise, in a worst case, to the question whether an illegal conspiracy exists between them to ignore signs of disturbance when no independent observer is around). Notwithstanding these concerns, Petitioners' witnesses conceded that eagle monitoring can be and is sometimes effective. If Mr. Steffer is retained as the eagle monitor for this project, or to recruit and train eagle monitors to work under his supervision, there is no reason to think that eagle monitoring in this case will not be conducted in good faith and effectively. Even if the Ginns do not retain Mr. Steffer for those purposes, the evidence did not suggest a valid reason to assume that the Ginns' proposed eagle monitoring will not be conducted in good faith and effectively. K. Other 40C-4.301 Criteria – 40C-4.301(1)(g)-(k) 40C-4.301.301(1)(g) - No minimum surface or groundwater levels or surface water flows have been established pursuant to Florida Administrative Code Rules Chapter 40C-8 in the area of the project. 40C-4.301.301(1)(h) - There are no works of the District in the area of the project. 40C-4.301.301(1)(i) - The proposed wet detention system is typical and is based on accepted engineering practices. Wet detention systems are one of the most easily maintained stormwater management systems and require very little maintenance, just periodically checking the outfall structure for clogging. 40C-4.301.301(1)(j) - The Ginns own the property where the project is located free from mortgages and liens. As previously indicated, they will establish an operation and maintenance entity. The cost of mitigation is less than $25,000 so that financial responsibility for mitigation was not required to be established. (Costs associated with the proposed BEMP are not included as part of the Ginns' mitigation proposal.) 40C-4.301.301(1)(k) - The project is not located in a basin subject to special criteria. Public Interest Test in 40C-4.302 The seven-factor public interest test is a balancing test. The test applies to the parts of the project that are in, on, or over wetlands, and those parts must not be contrary to the public interest unless they are located in, on, or over an Outstanding Florida Water (OFW) or significantly degrade an OFW, in which case the project must be clearly in the public interest. No part of the project is located within an OFW. Balancing the public interest test factors, the project will not be contrary to the public interest. 40C-4.302(1)(a)1. - The project will not adversely affect the public health, safety, or welfare or the property of others because the surface water management system is designed in accordance with District criteria, the post-development peak rate of discharge is less than the pre-development peak rate of discharge, and the project will not cause flooding to offsite properties. 40C-4.302(1)(a)2. - Mitigation will offset any adverse impacts of the project to the conservation of fish and wildlife or their habitats, and the BEMP is designed to prevent adverse effects on the Ravenswood eagles. Although active gopher tortoise burrows were observed on the site, the impacts to these burrows are addressed by the FFWCC’s incidental take permit. The mitigation that is required as part of that permit will adequately offset the impacts to this species. 40C-4.302(1)(a)3. - The project will not adversely affect navigation or cause harmful shoaling. The project will not adversely affect the flow of water or cause harmful erosion. The project's design includes erosion and sediment control measures. The project's design minimizes flow velocities by including flat slopes for pipes. The stormwater will be discharged through an upsized pipe, which will reduce the velocity of the water. The stormwater will discharge into a spreader swale (also called a velocity attenuation pond), which will further reduce the velocity and will prevent erosion in Wetland 1. The other findings of fact relevant to this criterion are in the section entitled "Water Quantity." See Findings 61-67, supra. 40C-4.302(1)(a)4. – Development of the project will not adversely affect the legal recreational use of the project site. (Illegal use by trespassers should not be considered under this criterion.) There also will not be any adverse impact on recreational use in the vicinity of the project site. Wetlands 1 and 5 may provide benefit to marine productivity by supplying detritus to the marine habitat, and these wetlands will remain. 40C-4.302(1)(a)5. - The project will be of a permanent nature except for the temporary impacts to Wetland 1. Mitigation will offset the temporary adverse impacts. 40C-4.302(1)(a)6. - The District found no archeological or historical resources on the site, and the District received information from the Division of Historical Resources indicating there would be no adverse impacts from this project to significant historical or archeological resources. 40C-4.302(1)(a)7. - Considering the mitigation proposal, and the proposed BEMP, there will be no adverse effects on the current condition and relative value of functions being performed by areas affected by the proposed project. The proposed project is no worse than neutral measured against any one of these criteria, individually. For that reason, it must be determined that, on balance, consideration these factors indicates that the project is not contrary to the public interest. Other 40C-4.302 Criteria The proposed mitigation is located within the same drainage basin as the project and offsets the adverse impacts so the project would not cause an unacceptable cumulative impact. The project is not located in or near Class II waters. The project does not contain seawalls and is not located in an estuary or lagoon. The District reviewed a dredge and fill violation that occurred on the project site and was handled by the Department of Environmental Regulation (DER) in 1989. The Ginns owned the property with others in 1989. Although they did not conduct the activity that caused the violation, they took responsibility for resolving the matter in a timely manner through entry of a Consent Order. The evidence was that they complied with the terms of the Consent Order. Applicants' Exhibit 30K was a letter from DER dated February 13, 1991, verifying compliance based on a site inspection. Inexplicably, the file reference number did not match the number on the Consent Order. But Mr. Ginn testified that he has heard nothing since concerning the matter either from DER, or its successor agency (the Department of Environmental Protection), or from the District. The evidence was that the Ginns have not violated any rules described in Florida Administrative Code Rule 40C- 4.302(2). There also was no evidence of any other DER or DEP violations after 1989.

Recommendation Based upon the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the St. Johns River Water Management District enter a final order issuing to Jay and Linda Ginn ERP number 40-109-81153-1, subject to the conditions set forth in District Exhibits 1, 2, and 10. DONE AND ENTERED this 16th day of April, 2004, in Tallahassee, Leon County, Florida. S J. LAWRENCE JOHNSTON Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 16th day of April, 2004.

Florida Laws (4) 120.569120.5728.16403.852
# 9
BOBBY C. BILLIE AND SHANNON LARSEN vs ST. JOHNS RIVER WATER MANAGEMENT DISTRICT AND MARSHALL CREEK COMMUNITY DEVELOPMENT DISTRICT, 03-001881 (2003)
Division of Administrative Hearings, Florida Filed:St. Augustine, Florida May 21, 2003 Number: 03-001881 Latest Update: Apr. 21, 2004

The Issue The issues to be resolved in this proceeding concern whether an environmental resource permit (number 4-109-0216-ERP) (the ERP) should be modified to allow construction and operation of a surface water management system (the project) for a residential development known as EV-1, in a manner consistent with the standards for issuance of ERPs in accordance with Florida Administrative Code Rules 40C-4.301 and 40C-4.302.

Findings Of Fact The applicant MCCDD is a unit of special purpose government established in accordance with the provisions of Chapter 190, Florida Statutes for purposes enunciated by that statute. MCCDD has applied for the permit modification at issue in this proceeding. The District is a special taxing district created by Chapter 373, Florida Statutes. It is charged with preventing harm to the water resources of the district and to administer and enforce Chapter 373, Florida Statutes, and related rules promulgated thereunder. Petitioner Larsen was born in Daytona Beach, Florida. Sometime early in 2002 she apparently moved to the Crescent Beach area and lived for 5-6 months. Crescent Beach is approximately 30 minutes from the EV-1 site. Since October 2002, Petitioner Larsen has been a resident of Live Oak, Florida. She resided for most of her life in Daytona Beach, approximately one hour and 20 minutes from the site. She has been involved with the approval process of the entire Palencia Development (DRI) since 1998, of which the subject parcel and project is a part. The Petitioner likes to observe wildlife in natural areas and to fish, swim, and camp. Ms. Larsen has visited the Guana River State Park (Park) which borders the Tolomato River. Her first visit to the Park was approximately one to two years before the DRI approval of the Palencia project. Ms. Larsen has used the Park to observe birds and other wildlife and to fish. She has fished the Tolomato River shoreline in the Park, and also at the Park dam located across the river and south about two and one-half miles from the EV-1 site. Ms. Larsen has seen the Tolomato River some 30 to 40 times and intends to continue using the Tolomato River and the Guana River State Park in the future. On several occasions she and Petitioner Billie have visited "out-parcel" residents of the Palencia development and viewed wildlife and birds and walked the Marshall Creek area and the marsh edge viewing various bird species. In June 2003, after this litigation ensued, she, her niece and out-parcel resident Glenda Thomas walked a great deal of the subject site taking photographs of wildlife. In July 2003, Larsen and Billie participated in a fishing boat trip in the Marshall Creek area. In September 2003, she and Petitioner Billie kayaked on two consecutive days in the Tolomato River and in Marshall Creek, observing various wildlife such as endangered Wood Storks. Petitioner Larsen has been actively involved for the past 12 years as an advocate for the protection of indigenous or native American burial, village and midden sites on private and government property. Petitioner Billie is a spiritual leader or elder of the Independent Seminole Nation of Florida. In that capacity he sees it as his responsibility to protect animals, rivers, trees, water, air, rains, fish, and "all those things." The Independent Traditional Seminole Nation consists of approximately 200 persons, most of whom reside in Southern Florida. Mr. Billie lives in Okeechobee, Florida, several hours distant by automobile from the project site. About 10 to 30 years ago Billie visited the Eastside of Tolomato River, to visit the beach, the river and other areas in what is now Guana State Park. He visited the dike or dam area and walked along the river front in what is now the Park. He checked on burial sites along the Tolomato River in what is now Guana State Park. Billie first visited the Palencia property about five years ago and has been back a number of times. He has observed various forms of wildlife there and has visited out-parcel owners in the development area to ensure that they do not destroy any burial sites. Billie considers himself an environmental and indigenous rights advocate charged with maintaining the earth and resources for the next generation and preserving sacred and burial sites of indigenous people. He has in the past assisted governmental entities in preserving sacred indigenous sites and burial sites and has participated in the reburials of human remains and their belongings. Sometime ago Billie went on a boat ride on the Tolomato River. Since the filing of the Petition in this proceeding he has been in a kayak on the Tolomato River twice and once in a boat in the vicinity of Marshall Creek. He has also observed Marshall Creek from Shannon Road. He has been on the EV-1 site three times, all in conjunction with this litigation. His concerns with the EV-1 project in part stem from alleged impacts to an indigenous burial ground which he feels he identified, due to the presence of "a lot of shell." However, all of the shell was located in a previously constructed road bed off of the EV-1 project site. He testified that he has had no training with regard to identification of archeological sites, but that he can "feel" if a burial site is present. He believes that the EV-1 project will adversely affect everyone just like it adversely affects him. The Project The project is a 23.83-acre, single-family residential development and an associated stormwater system known as EV-1. It lies within the much larger Marshall Creek DRI in St. Johns County, Florida. The project is in and along wetlands associated with the Tolomato River to the east and wetlands associated with Marshall Creek, a tributary of the Tolomato River, to the north. The project consists of thirteen residential lots, two curb and gutter roadway segments with cul- de-sacs (Hickory Hill Court and North River Drive), paved driveways to individual lots, concrete and pvc stormwater pipes, two stormwater lift stations, perimeter berms, four stormwater run-off storage ponds, and an existing wet detention stormwater pond, which was previously permitted and located south and west of the EV-1 site. The project will also have on-site and off- site wetland mitigation areas. All portions of the EV-1 site are landward of the mean high waterline of the adjacent water bodies. The project plan calls for permanent impacts to 0.82 acres of wetlands. A total of 0.75 acres of that 0.82 acre wetlands is comprised of fill for four access crossings for roads and driveways and a total of 0.07 acres is for clearing in three areas for boardwalk construction. MCCDD proposes to preserve 6.47 acres of forested wetlands and 5.6 acres of saltmarsh wetlands, as well as to preserve 10.49 acres of upland buffers; to restore 0.05 acres of salt marsh and to create 0.09 acres of salt marsh wetlands as mitigation for any wetland impacts. The EV-1 mitigation plan is contiguous to and part of the overall Marshall Creek DRI mitigation plan. The Marshall Creek DRI is also known as "Palencia." The upland buffers are included to prevent human disturbance of the habitat value of off-site wetlands. The upland buffers on the EV-1 site range from 25 feet in areas that do not adjoin tidal marshes to 50 feet in areas which front the Tolomato River or Marshall Creek. Within the 25-foot buffers restrictions include (1) no trimming of vegetation and (2) no structures may be constructed. Within the 50-foot buffers the same restrictions apply, except that for 50 percent of the width of each lot, selected hand trimming may be done on branches 3 inches or less in diameter between 3 and 25 feet above the ground surface. The buffers and other preserved areas will be placed in conservation easements, ensuring that they will remain undisturbed. The Stormwater Management System The 23.83 acre drainage area of the EV-1 project is divided into two types: (1) "Developed Treated Area" consisting of the houses, a portion of each residential lot, all driveways, sidewalks and both cul-de-sac roadway sections, comprising 11.27 acres and (2) "Undeveloped Buffer Area" consisting of the undeveloped portion of the residential lots or 12.56 acres. The buffer areas are located between the developed treated area and the surrounding receiving water. The developed and undeveloped areas of each lot will be separated by earthen berms. The berms will be constructed within each lot and will be a minimum of one foot high above existing ground level at the landward ledge of the natural buffer area. When water falls on the house and the surrounding yard it will be directed through grading to the berm of the lot. Once it reaches the berm it will be collected in a series of inlets and pipes; and once collected within the pipe system it will be stored within the collection system and in several storage ponds. The developed areas storage systems consisting of the inlets, pipes and storage ponds are then connected to two stormwater lift stations that transfer the stored runoff to an existing wet detention pond, known as the EV-2 pond, which is located immediately adjacent to the EV-1 project area. There are two pumps and a wet well in each pump station. The combination of storage ponds, piping systems, the wet wells and the pump stations provide storage of the entire required treatment volume which is 61,000 cubic feet. Actually, the system has been designed to treat 65,000 cubic feet, somewhat in excess of the required treatment volume. Even when the pumps are not running these components of the system are able to completely contain the required treatment volume. The system has been designed to capture and treat in excess of 1.5 inches of runoff. This is the runoff that would be generated from a 5.3 inch rainfall event which is expected to occur less than once per year. This l.5 inches of runoff would generate the required 61,000 cubic feet of treatment volume. In order to ensure that the design volume is not exceeded, the applicant has limited the amount of impervious service on each lot to a maximum of 10,000 square feet. In order to ensure that the on-lot ponds in the collection system are hydrologically isolated, they have been designed to be either completely lined or constructed with "cut- off walls" placed in soils with either a hard pan layer or a layer of low permeability. This would prevent the ponds from de-watering nearby wetlands by removing any hydrologic communication between those wetlands and the ponds. Further, the liners and cut-off walls will isolate the pond from the effects of groundwater. This will ensure that the ponds can be maintained at the designed water level and that, therefore, the collection system will have the required storage volume. The EV-2 pond provides for wet detention treatment and was previously permitted and constructed as part of the EV-2 project. In order to accommodate the additional flow from the EV-1 site, the existing orifice will be plugged and an additional orifice will be installed. No changes will be made to the shape, depth, width, or normal water elevation of the EV- 2 pond. The EV-2 pond discharges into wetland systems that are directly connected to the intracoastal waterway. The EV-2 pond discharges into a wetland system and has a direct hydrologic connection to the intracoastal waterway north of the Matanzas inlet. The District rules do not contain a legal definition of the intracoastal waterway; however, for the purpose of determining whether a project discharge constitutes a direct discharge to the intracoastal waterway, the waterway includes more than the navigable channel of the intracoastal waterway. (Projects that have a direct discharge to the intracoastal waterway north of the Matanzas inlet are not required to demonstrate that the post-development peak rate of discharge does not exceed the pre-development peak rate of discharge, because this criterion was designed to evaluate the flooding impacts from rainfall events.) Flooding in water- bodies such as the intracoastal waterway is not governed by rainfall, but rather by tides and storm surges. The system design includes a clearing and erosion control plan and specific requirements to control erosion and sediment. The system design incorporates best management practices and other design features to prevent erosion and sedimentation, including (1) capturing turbidity; (2) sodding and grassing side slopes; (3) filtering water; (4) use of siltation fences during construction; (5) removing sediment; (6) early establishment of vegetative cover; and (7) keeping water velocities low, at less than 2 feet per second. The EV-2 pond is hydrologically isolated from groundwater influence because it was constructed with cut-off walls placed into a hard pan, impermeable layer. The EV-2 pond appears to be working properly, with no indication of adverse groundwater influence. The system has been designed to prevent adverse impacts to the hydro-period of remaining wetlands. The wetlands are hydrated through groundwater flow. The groundwater will still migrate to the wetlands as it did in the pre-development condition. The cut-off walls and liners in the ponds will prevent draw-down of groundwater from the wetlands. No septic tanks are planned for the project. The system is designed based on generally accepted engineering practices and should be able to function as designed. The pumps are three inch pumps that can handle solids up to two and one-half inches in diameter. Yard grates have one-inch slots that will prevent anything larger than one inch diameter from entering the system. Additionally, solids would accumulate in the sump areas. Finally, even if there were a power outage, the system can store the full treatment volume, without discharging, until power is restored. Flood Plain Consideration The 100-year flood elevation for the EV-1 site is 7.0 feet NGVD. The finish flood elevation of the houses will be 8.0 feet. The streets and roadways have been designed to be flood free in accordance with the St. Johns County criteria relating to flooding. The 10-year flood elevation for the EV-1 site is 4.1 feet NGVD. The project will result in filling 2,691 cubic feet of fill in areas below the 4.1-foot NGVD elevation which will include 2,456 cubic feet for "Hickory Hill" and 235 cubic feet for "North River." Thus, 2,691 feet of water will displaced in the 10-year floodplain of the Tolomato River as a result of the EV-1 project. This fill will result in a rise in water elevation in the Tolomato River of 0.0002 feet, which is less than the thickness of the single sheet of paper and is statistically insignificant. If other applicants were to impact the 10-year floodplain to the same extent, there would be no adverse cumulative impact in the flood storage capability of the floodplain. The Tolomato River/intracoastal waterway does not function as a floodway because it is more influenced by wind and tide than by stormwater runoff. Therefore, the project will not cause a net reduction in the flood conveyance capabilities of a floodway. Surface Water Each roadway and master driveway is provided with culverts to ensure redundant, multiple paths for water flow. For this reason, the wetland fill will not significantly impact the flow of water. These redundant connections also ensure that the water velocities are low, reducing the likelihood of erosion. In order to ensure that erosion will not occur, surface water velocities will be less than two feet per second and steep slopes (greater than two percent) will be sodded. The project does not impound water other than for temporary detention purposes. The project does not divert water to another hydrologic water basin or water course. Water Quality The Tolomato River and Marshall Creek, its tributary, are classified as Class II water bodies pursuant to Florida Administrative Code Rule 62-302.400. The designated use for Class II water is for shellfish harvesting. The Tolomato River is the receiving water for the EV-1 project. The Marshall Creek and Tolomato River Class II waters do not meet the applicable Class II water quality standards for total fecal coliform bacteria and for dissolved oxygen (DO). Water sampling indicates that sometimes the regulatory parameters for fecal coliform and for DO are exceeded in the natural occurring waters of Marshall Creek and the Tolomato River. The EV-2 pond has a large surface area and the top of the water column will be the most well-oxygenated due to contact with the atmosphere. Any water discharging from the pond will come from the surface of the pond which is the water containing the highest oxygen content in the entire water column of the pond. Thus, discharges from the EV-2 pond will not violate water quality standards for DO and the construction and operation of the project will actually improve the water quality in the receiving waters with respect to the dissolved oxygen parameter. Bacteria such as fecal coliform, generally have a life span of a few hours to a few days. The EV-2 pond will have a detention time, for water deposited therein, of approximately 190 days. This lengthy residence time will provide an ample opportunity for die-off of any coliform bacteria in the water column before the water is discharged from the pond. Additionally, there will be substantial dilution in the pond caused by the large volume of the pond. No new sources of coliform bacteria such as septic tanks are proposed as part of the EV-1 project. The fecal coliform discharge from the pond will thus be very low in value and will lead to a net improvement in the water quality of the receiving water-body. In fact, since the commencement of construction on the Marshall Creek DRI phases, a substantial and statistically significant decrease in fecal coliform levels has been observed in the main channel of Marshall Creek. The applicant has provided a detailed erosion control plan for the construction phase of the EV-1 project. The plan requires the use of best erosion and sediment control practices. In any location that will have slopes exceeding a two percent gradient, sodding will be provided adjacent to roadways or embankments, thereby preventing erosion. The EV-1 project design is based on generally accepted engineering practices and it will be able to function and operate as designed. The liner and cut-off wall components of the pond portions of the project are proven technology and are typical on such project sites which are characterized by high groundwater table and proximity to wetlands. The pump stations component of the project design is proven technology and is not unusual in such a design situation. The pump stations have been designed according to the stringent specifications provided for wastewater lift station pumps in sewer systems which operate with more frequency and duration of running times and therefore, more stressful service, than will be required for this system. Once constructed, the surface water management system will be operated and maintained by the applicant, which is a community development district. An easement for access in, on, over and upon the property, necessary for the purpose of access and maintenance of the EV-1 surface water management system, has been reserved to the community development district and will be a permanent covenant running with the title to the lots in the project area. The portions of the river and Marshall Creek adjacent to the project have been classified by the Department of Environmental Protection as conditionally restrictive for shellfish harvesting because of fecal coliform bacterial levels, which often exceed state water quality standards for that parameter. The boundary of the conditional shellfish harvesting area is the mean high water elevation. The EV-1 project site is located above the mean high water elevation. None of the wetland areas within the project site are able to support shellfish due to the characteristics of the wetlands and the lack of daily inundation of the high marsh portion of the wetlands. No shellfish have been observed on the EV-1 site. The EV-1 project will not result in a change in the classification of the conditionally restricted shellfish harvesting area. The project will not negatively affect Class II waters and the design of the system and the proposed erosion controls will prevent significant water quality harm to the immediate project area and adjacent areas. The discharge from the project will not change the salinity regime or temperatures prevailing in the project area and adjacent areas. Wetland Impact The 23.83-acre site contains five vegetative communities that include pine, flatwood, uplands, temperate hardwood uplands, wetland coniferous forest, wetland mixed forest and salt marsh. Several trail roads that were used for site access and forestry activities traverse the site. The project contains 0.82 acres of wetlands. The wetland communities are typical and are not considered unique. Most of the uplands on the main portion of the site exhibit the typical characteristics of a pine flatwood community. Some of the road-crossing areas within the EV-1 boundary are wetland pine flatwoods; these areas are dominated by pines and a canopy, but are still considered wetlands. There is also a very small area of high marsh vegetative community within the EV-1 boundary. Most of the site, both wetlands and uplands, has been logged in the past. The wetlands are functional; however, the prior logging operations have reduced the overall wildlife value of the site, including that of the wetlands, due to the absence of mature trees. All of the wetlands on the EV-1 site are hydrologically connected to and drain to the Marshall Creek and Tolomato River systems. The wetlands on the site are adjacent to an ecologically, important watershed. To the east of the EV-1 site, the Tolomato River and Marshall Creek are part of the Guana Marsh Aquatic Preserve. The Guana River State Park and Wildlife Management Area is also to the east of the EV-1 site. All the wetlands and uplands on the EV-1 site are located above the elevation of the mean high water line and therefore are outside the limit of the referenced Aquatic Preserve and Outstanding Florida Water (OFW). Direct Wetland Impact Within the site boundary there will be a total of 0.82 acres of wetland impacts in seven areas. MCCDD proposes to fill 0.75 acres of the wetlands to construct roads to provide access to the developed uplands and selectively clear 0.07 acres of the mixed forested wetlands to construct three pile-supported pedestrian boardwalks. The fill impacts include 0.29 acres within the mixed forested wetlands, 0.32 acres within the coniferous wetlands, and 0.14 acres within the high salt marsh area. The direct impacts to wetlands and other surface waters from the proposed project are located above the mean high water line of Marshall Creek and the Tolomato River. The first impact area is a 0.25-acre impact for a road crossing from the EV-2 parcel on to the EV-1 site. 0.14 acres of the 0.25 acres of impact will be to an upper salt marsh community and 0.11 acres of impact is to a mixed forested wetland. This impact is positioned to the south of an existing trail road. The trail road has culverts beneath it so there has been no alteration to the hydrology of the wetland as a result of the trail road. This area contains black needle rush and spartina (smooth cord grass). The black needle rush portion of this area may provide some foraging for Marsh Wrens, Clapper Rails and mammals such as raccoons and marsh rabbits. The fresh-water forested portion of this area, which contains red maple and sweet gum, may provide foraging and roosting and may also be used by amphibians and song birds. Wading birds would not likely use this area because the needle rush is very sharp- pointed and high and will not provide an opportunity for these types of birds to forge and move down into the substrate to feed. The wading birds also would be able to flush very quickly in this area and their predators would likely hide in this area. The second impact area is a 0.25-acre impact to a pine flatwoods wetland community and will be used for a road crossing. It is in a saturated condition most of the time. The species that utilize this area are typically marsh rabbits, possums, and raccoons. The third impact area is a 0.18-acre impact to a mixed forested wetlands for a roadway crossing on the south end of the project. The impact is positioned within the area of an existing trail road. The trail road has culverts beneath it, so there will be no alteration to the hydrology of the wetland as a result of the road. This area is characterized by red maple, sweet gum and some cabbage palm. There will be marsh rabbits, raccoons, possums, some frogs, probably southern leopard frogs and green frogs in this area. Wading birds would not likely use this area due to the same reasons mentioned above. The fourth impact area is a 0.07-acre impact for a driveway for access to Lot two. This area is a mixed forested wetland area, having similar wildlife species as impact areas three and seven. The fifth impact area is a 0.02-acre clearing impact for a small residential boardwalk for the owner of Lot six to access the uplands in the back of the lot. The proposed boardwalk will be completely pile-supported and will be constructed five feet above the existing grade. This area is a mixed forested wetland area, having similar species as impact areas three and seven. Wading birds would also not likely use this area for the same reasons delineated above as to the other areas. The sixth impact area is also a 0.02-acre clearing impact similar to impact area five. The proposed board walk would be located on Lot five and be completely pile-supported five feet above the existing grade. This area is a mixed forested wetland area similar to impact area five. Deer will also use this area as well as the rest of the EV-1 site. Wading birds will probably not use this area due to the same reasons mentioned above. The seventh impact area is a 0.03-acre impact for two sections of a public boardwalk (previously permitted) for the Palencia Development. The proposed boardwalk will be completely pile-supported, five feet above the existing grade. This is a pine-dominated area with similar wildlife species to impact area two. All these wetlands are moderate quality wetlands. The peripheral edges of the wetlands will be saturated during most of the year. Some of the interior areas that extend outside the EV-1 site will be seasonally inundated. Secondary Impacts The applicant is addressing secondary impacts by proposing 8.13 acres of 25-foot wide (or greater) upland buffers and by replacing culverts at the roadway crossings to allow for wildlife crossing and to maintain a hydrologic connection. Mitigation by wetland preservation is proposed for those areas that cannot accommodate upland buffers (i.e., the proposed impact areas). Under the first part of the secondary impact test MCCDD must provide reasonably assurance that the secondary impact from construction, alteration and intended or reasonably expected uses of the project will not adversely affect the functions of adjacent wetlands or other surface waters. With the exception of wetland areas adjacent to the road crossings, MCCDD proposes to place upland buffers around the wetlands where those potential secondary impacts could occur. The buffers are primarily pine flatwoods (pine dominated with some hardwood). These buffers encompass more area than the lots on the EV-1 site. The upland buffers would extend around the perimeter of the project and would be a minimum of 25 feet and a maximum of 50 feet wide, with some areas actually exceeding 50 feet in width. The buffers along the Marshall Creek interface and the Tolomato River interface will be 50 feet and the buffers that do not front the tidal marshes (in effect along the interior) will be 25 feet. These upland buffers will be protected with a conservation easement. No activities, including trimming or placement of structures are allowed to occur within the 25-foot upland buffers. These restrictions ensure that an adequate buffer will remain between the wetlands and the developed portion of the property to address secondary impacts. The restriction placed on the 25-foot buffers is adequate to prevent adverse secondary impacts to the habitat value of the off-site wetlands. No types of structures are permitted within the 50- foot buffers. However, hand-trimming will be allowed within half of that length along the lot interface of the wetland. Within that 50 percent area, trimming below three-feet or above 25-feet is prohibited. Trimming of branches that are three inches or less in diameter is also prohibited. Lot owners will be permitted to remove dead material from the trimming area. The 50-foot buffers will prevent secondary impacts because there will still be a three-foot high scrub area and the 50 foot distance provides a good separation between the marsh which will prevent the wading birds, the species of primary concern here, from flushing (being frightened away). None of the wetland area adjacent to uplands are used by listed species for nesting, denning, or critically important feeding habitat. Species observed in the vicinity of Marshall Creek or the adjacent Tolomato River wetland aquatic system include eagle, least tern, brown pelican, and wading birds such as the woodstork, tri-color blue heron, and snowy egrets. Wading Birds will typically nest over open water or on a island surrounded by water. Given the buffers proposed by MCCDD, the ability of listed species to forage in the adjacent wetlands will not be affected by upland activities on the EV-1 site. The adjacent wetlands are not used for denning by listed species. Under the second part of the secondary impact test, MCCDD must provide reasonable assurance that the construction, alteration, and intended or reasonably expected uses of the system will not adversely affect the ecological value of the uplands to aquatic or wetland dependent species for enabling nesting or denning by these species. There are no areas on the EV-1 site that are suitable for nesting or denning by threatened or endangered species and no areas on the EV-1 site that are suitable for nesting or denning by aquatic and wetland dependent species. After conducting on-site reviews of the area, contacting the U.S. Fish and Wildlife Service and the Florida Wildlife Commission and reviewing literature and maps, Mr. Esser established that the aquatic and wetland listed species are not nesting or denning in the project area. There is a nest located on uplands on the first island east of the project site, which was observed on October 29, 2002. The nest has been monitored informally some ten times by the applicants, consultants and several times by personnel of the District. The nest was last inspected on October 14, 2003. No feathers were observed in the nest at that time. It is not currently being used and no activity in it has been observed. Based on the absence of fish bones and based upon the size of the sticks used in the nest (one-half inch) and the configuration of the tree (crotch of the tree steeply angled) it is very unlikely that the nest is that of an American Bald Eagle. It is more likely the nest of a red-tailed hawk. Historical and Archeological Resources Under the third part of the secondary impact test and as part of the public interest test, any other relevant activities that are very closely linked and causally related to any proposed dredging or filling which will cause impacts to significant historical or archeological resources must be considered. When making a determination with regard to this part of the secondary impact test the District is required by rule to consult the Division of Historical and Archeological Resources (the Division) within the Department of State. The District received information from the Division and from the applicant regarding the classification of significant historical and archeological resources. In response to the District's consultation with the Division, the Division indicated that there would be no adverse impacts from this project to significant historical or archeological resources. As part of the Marshall Creek DRI application, a Phase I archeological survey was conducted for the entire area of the DRI, including the EV-1 project area. The Phase I survey of the Marshall Creek DRI area revealed nine archeological sites. At the end of the Phase I survey, five of the nine sites were recommended to be potentially eligible for the National Register of Historical places and additional work was recommended to be done on those five sites, according to Dr. Ann Stokes, the archeologist who performed the Phase I survey and other archeological investigation relevant to this proceeding. One of the sites considered eligible for listing on the National Register of Historic Places was site 8SJ3146. Site 8SJ3146 was the only site found in the area near the EV-1 project site. The majority of the EV-1 project site lies to the east of this archeological site. The entry road leading into EV-1 crosses the very southeastern edge or corner of the 8SJ3146 archeological site. Shovel tests for archeological remains or artifacts were conducted across the remainder of the EV-1 property and were negative. Ceramic shards were found in one of the shovel tests (shovel test number 380), but it was determined by Dr. Stokes that that ceramic material (pottery) had been within some type of fill that was brought into the site and the ceramics were not artifacts native to that site. Therefore, it was not considered a site or an occurrence. There was no evidence of any human remains in any of the shovel test units and there was nothing to lead Dr. Stokes to believe that there were any individuals buried in that area. (EV-1) Because a determination was made that 8SJ3146 was a potentially significant site, a "Phase II assessment" was conducted for the site. During the Phase II assessment five tests units were established on the site to recover additional information about the site and assess its significance. The test unit locations (excavations) were chosen either to be next to an area where there were a lot of artifacts recovered or where an interesting type of artifact had been recovered. Test units one through four contained very few or no artifacts. Test unit five however, yielded faunal bones (animal remains), pottery and a post mold (post molds are evidence of support posts for ancient structures). After the Phase II assessment was conducted, site 8SJ3146 was considered to be significant, but the only part of the site that had any of the data classes (artifact related) that made it a significant site was in the area of the very southwest portion of 8SJ3146, surrounding test unit five. Dr. Stokes recommended that the area surrounding test unit five in the very southwestern portion of 8SJ3146 be preserved and that the remainder of the site would not require any preservation because the preservation of the southwestern portion of the site was the only preservation area which would be significant archeologically and its preservation would be adequate mitigation. That southwestern portion of the site, surrounding unit five, is not on the EV-1 site. Dr. Stokes recommended to the applicant and to the Division that a cultural resource management plan be adopted for the site and such a plan was implemented. A Phase I cultural resource survey was also conducted on the reminder of the EV-1 site, not lying within the boundaries of 8SJ3146. That survey involved shovel tests across the area of the EV-1 project area and in the course of which no evidence of archeological sites was found. Those investigations were also reported to the Division in accordance with law. The preservation plan for site 8SJ3146, as to preservation of the southwest corner, is now called an archeological park. That designation was shown to be adequate mitigation for this site. The preservation area is twice as large as the area originally recommended by Dr. Stokes to be preserved; test unit five is within that preservation area. Dr. Stokes's testimony and evidence are not refuted by any persuasive countervailing evidence and are accepted. They demonstrate that the construction and operation of the EV-1 project will not adversely affect any significant archeological or historical resources. This is because any effects to site 8SJ3146 are mitigated by the adoption of the preservation plan preserving the southwest portion of that archeological site. Under the fourth part of the secondary impact test, the applicant must demonstrate that certain additional activities and future phases of a project will not result in adverse impacts to the functions of wetlands or result in water quality violations. MCCDD has demonstrated that any future phase or expansion of the project can be designed in accordance with the District's rule criteria. Mitigation of Adverse Impacts The permit applicant has proposed mitigation to offset adverse impacts to wetland functions as part of its ERP application. The proposed mitigation consists of 0.05 acres of wetlands restoration, 12.07 acres of wetland preservation (including 6.47 acres of mixed forested wetlands and 5.60 acres of salt marsh), 10.49 acres of upland preservation (which includes buffers and additional upland areas) and 0.09 acres of salt marsh creation. The mitigation for the EV-1 project will occur on-site and off-site; 10.49 acres of upland buffer are being committed to the project. The upland buffers are on-site; the rest of the mitigation is off-site and is adjacent to EV-1. There will be 5.6 acres of salt marsh preservation and 6.47 acres of forested wetland preservation. All of the mitigation is on land lying above the mean high water elevation and is outside the aquatic preserve and the OFW. The salt marsh restoration will occur by taking out an existing trail road that is in the northeast section of the site and the salt marsh creation site is proposed at the tip of lot number one. The preservation of wetlands provides mitigation value because it provides perpetual protection, ensuring that development will not occur in those areas, as well as preventing agricultural activities, logging and other relatively unregulated activities from occurring there. This will allow the conserved lands to mature and to provide more forage and habitat for wildlife that would use those areas. The functions that are currently being provided by the wetlands to be impacted will be replaced and exceeded in function by the proposed mitigation. Additionally, MCCDD did not propose any impacts on site that could not be offset by mitigation. The EV-1 project will not adversely affect the abundance and diversity and habitat of fish and wildlife. The mitigation for the proposed project is also located within the same drainage basin as the area of wetlands to be adversely impacted. MCCDD has proposed mitigation that implements all or part of a plan of regional ecological value and the proposed mitigation will provide greater long-term ecological value than the wetlands to be impacted. The plan of regional ecological value consists of the land identified in the DRI as well as the lands that have been permitted as mitigation up to date and the proposed EV-1 mitigation lands. The plan includes lands that have been added to the plan since the approval of the Marshall Creek DRI. The mitigation proposed for the impact to wetlands and other surface waters associated with the project is contiguous with the Guana River Marsh Aquatic Preserve, with previously preserved wetlands and upland islands and with Marshall Creek. When implemented the mitigation plan will create wetlands and preserve wetlands and uplands with functions similar to the impacted wetlands and those wetlands will be connected through wetland and upland preservation to the Guana River Marsh Aquatic Preserve. Corridors and preservation areas important for wildlife movement throughout the whole Palencia site have been set aside. As development progresses towards the eastern portion of the Marshall Creek site, it is important to add preservation areas to the whole larger plan. The lands proposed to be added as mitigation for the EV-1 project will add to the value of the previously preserved lands from other phases of the DRI and development by helping to maintain travel corridors and forage areas for wildlife, to maintain water quality in the adjacent marsh and to maintain fish and wildlife benefits of the aquatic preserve. MCCDD has provided more mitigation than is typically required by the District for such types of impact. The upland preservation ratios for example range from about three-to-one to twenty-to-one. MCCDD is providing upland preservation at a near twenty-to-one ratio. Salt marsh preservation ratios are typically required to be sixty to one and MCCDD is providing mitigation at twice that ratio. Concerning fresh-water forested preservation, the District usually requires mitigation at a twenty to twenty-five-to-one ratio and the applicant is proposing a thirty to one preservation ratio. Additional mitigation will be provided beyond what is required to mitigate the adverse impacts for each type of impact anticipated. Although proposing more mitigation may in some instances not provide greater long-term ecological value than the wetlands to be adversely affected, the mitigation proposed by MCCDD will provide greater long-term ecological value. The Petitioners contend that a chance in circumstances has occurred which would adversely affect the mitigation plan as a plan of regional ecological value. They claim its efficacy will be reduced because of a proposed development to a tract of land known as the Ball Tract which would, in the Petitioners' view, sever connection between the Marshall Creek site and the 22,000-acre Cummer Trust Tract also known as "Twelve mile swamp." Although a permit application has been submitted to the Florida Wildlife Commission for the Ball Tract property, located northwest of Marshall Creek and across U.S. Highway 1 from Marshall Creek and the EV-1 site, no permit has been issued by the District for that project. Even if there were impacts proposed to wetlands and other surface waters as part of any development on the Ball Tract, mitigation would still be required for those impacts, so any opinion about whether the connection would be severed between the project site, the Marshall Creek site and the Cummer Trust Tract is speculative. The Petitioners also sought to establish changed circumstances in terms of reduced effectiveness of the plan as a plan of regional ecological value because, in their opinion, Map H, the master plan, in the Marshall Creek development order plan, shows the EV-1 project area as being located in a preservation area. However, Map H of the Marshall Creek DRI actually shows the designation VP for "Village Parcel" on the EV-1 site and shows adjacent wetland preservation areas. Although Map H shows a preservation area adjacent to the EV-1 parcel, the Petitioners infer that EV-1 was not proposed for development. That is not the case. Map H contains a note that the preservation areas (as opposed to acreages) are shown as generalized areas and are subject to final design, road crossings and final wetland surveys before they were exactly delineated. Therefore, in the DRI plan, the EV-1 area was not actually designated a preservation area. Surface Water Diversion and Wetland Draw-Down Water will not be diverted to another basin or water course as a result of the EV-1 project. Water captured by the treatment system and discharged from the EV-2 pond, will flow back through wetlands that meander through the project site. The EV-1 project will not result in significant diversion of surface waters. The project will also not result in a draw-down of groundwater that will extend into adjacent wetlands. Each of the storage ponds on lots 1, 3, and 7 and between lots 9 and 10 has been designed to include cut-off walls around the perimeter of the ponds and the storage pond on lot 7 will be completely lined. The cut-off walls will be installed in a soil strata that has very low permeability. The cut-off walls and liner will restrict the movement of groundwater from the wetlands into the storage ponds. As a result, the zone of influence of each storage pond will not extend far enough to intercept with the adjacent wetlands. The Public Interest Test The public interest test has seven criteria, with each criteria having equal weight. The public interest test applies to the parts of the project that are in, on or over wetlands, and those parts must not be contrary to the public interest unless they are located in, on or over an OFW or may significantly degrade an OFW; then the project must be clearly in the public interest. It is a balancing test. The EV-1 project, however, is not located in an OFW. The Public Health Safety and Welfare Criteria The parts of the project located in, on and over wetlands will not adversely affect the public health, safety or welfare. These parts of the project will not cause any adverse impact on flood stages or flood plains and discharges from the system will not harm shell fishing waters. This factor is thus considered neutral. Conservation of Fish, Wildlife or Their Habitat The mitigation from this project will offset any adverse impacts to fish wildlife or their habitat. Therefore this factor is considered neutral as well. Fishing, Recreational Value and Marine Productivity There is no recreational activity or fish nursery areas within the project limits and the project will not change the temperature of the aquatic regime. None of the impacts associated with the EV-1 site are within the mean high water line of the marine aquatic regime. The activities are not going to interact with the tidal regime and they cause negligible impacts. Concerning marine productivity, the wetland impacts are landward of the marine system; therefore, impact on marine productivity is not applicable. Thus this factor is considered neutral. Temporary or Permanent Nature The project will be of a permanent nature. Even though the project is permanent, this factor is considered neutral because the mitigation proposed will offset any permanent adverse impact. Navigation and the Flow of Water The parts of the project located in, on and over wetlands will not adversely affect navigation. These parts will also not impound or divert water and therefore will not adversely affect the flow of water. The project has been designed to minimize and reduce erosion. Best management practices will be implemented, and therefore, the project will not cause harmful erosion. Thus this factor is also considered neutral. Current Condition and Relative Value of Functions Being Performed The current condition and relative value of the functions being performed by the areas affected by the proposed activity, wetlands areas, will not be harmed. This is because any adverse impacts to the wetlands involved will be more than offset by the mitigation proposed to be effected. Therefore, there may well be a net gain in the relative value and functions being performed by the natural areas and the mitigation areas combined. Thus this factor is neutral. Works of the District The proposed project will not cause any adverse impact to a work of the District established in accordance with Section 373.086, Florida Statutes. Shoaling The construction and operation of the proposed project to the extent it is located in, on or over wetlands or other surface waters will not cause any harmful shoaling.

Recommendation Having considered the foregoing Findings of Fact, Conclusions of Law, the evidence of record, the candor and demeanor of the witnesses, and the pleadings and arguments of the parties, it is, therefore, RECOMMENDED that a Final Order be entered by the St. Johns River Water Management District granting MCCDD's application for an individual environmental resource permit with the conditions set forth in the technical staff report dated September 24, 2003, in evidence as St. John's River Water Management District's Exhibit 3. DONE AND ENTERED this 9th day of February, 2004, in Tallahassee, Leon County, Florida. S P. MICHAEL RUFF Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with Clerk of the Division of Administrative Hearings this 9th day of February, 2004. COPIES FURNISHED: Deborah J. Andrews, Esquire 11 North Roscoe Boulevard Ponte Vedra Beach, Florida 32082 Veronika Thiebach, Esquire St. Johns River Water Management District Post Office Box 1429 Palatka, Florida 32178-1429 Marcia Parker Tjoflat, Esquire Pappas, Metcalf, Jenks & Miller, P.A. 245 Riverside Avenue, Suite 400 Jacksonville, Florida 32202-4327 Stephen D. Busey, Esquire Allan E. Wulbern, Esquire Smith, Hulsey & Busey 225 Water Street, Suite 1800 Jacksonville, Florida 32202 Kirby Green, Executive Director St. Johns River Water Management District Post Office Box 1429 Palatka, Florida 32178-1429

Florida Laws (7) 120.52120.569120.57267.061373.086403.41290.803
# 10

Can't find what you're looking for?

Post a free question on our public forum.
Ask a Question
Search for lawyers by practice areas.
Find a Lawyer