The Issue Whether Respondent, John J. D'Hondt, as a licensed operator, should be disciplined for violations of Florida Administrative Code Rule 62-602.650(2), (4) and (4)(f).
Findings Of Fact Based upon the testimony and evidence received at the hearing, the following facts were established by clear and convincing evidence: Petitioner is the State agency vested with the responsibility of regulating Florida's air and water resources, administering Chapter 403, Florida Statutes (2006), and the rules promulgated in Florida Administrative Code Rule Chapter 62. Petitioner has the statutory authority to establish qualifications; examine and license drinking water and domestic wastewater treatment plant operators and to place an operator on probation; and issue, deny, revoke, or suspend an operator's license pursuant to its rules. Respondent is the owner, supplier of water, and licensed operator of the Double D Mobile Home Ranch's drinking water and domestic wastewater treatment plants located in Volusia County, Florida. He holds Certified Operator Drinking Water License No. 0000542 and Certified Operator Wastewater License No. 0006032. The Volusia County Health Department is a county health department that has been approved by Petitioner pursuant to Subsection 403.862(1)(c), Florida Statutes (2006), to enforce Chapter 403, Florida Statutes (2006), and the rules promulgated for the State's drinking water program for Volusia County. As a result of not having received Respondent's September 2004 MOR, by letter dated October 20, 2004, the Volusia County Health Department notified Respondent that MORs were to be submitted to the Volusia County Health Department by the tenth of the month following the month of operation. The November 2004 MOR was to have been submitted to the Volusia County Health Department by December 10, 2004. Respondent signed and dated the November 2004 MOR on December 12, 2004; it was received by the Volusia County Health Department on December 27, 2004. The December 2004 MOR was to have been submitted to the Volusia County Health Department by January 10, 2005. On February 4, 2005, Respondent was sent a late reporting violation letter stating that the December 2004 MOR had not been received. This letter again reminded Respondent that MORs were to be submitted within ten days after the month of operation. The December 2004 MOR was received on February 11, 2005. The April 2005 MOR was to have been submitted by May 10, 2005. Respondent signed and dated the April 2005 MOR on May 17, 2005. It was received on May 27, 2005. The September 2005 MOR was to have been submitted by October 10, 2005. It was received on October 18, 2005. The November 2005 MOR was to have been submitted by December 10, 2005. It was signed and dated December 14, 2005, and received on December 19, 2005. Respondent did not timely submit MORs for the months of November 2004, December 2004, April 2005, September 2005, and November 2005. In 2004, the Volusia County Health Department inspected the Double D Mobile Home Ranch's drinking water treatment plant and found that Respondent maintained a combined logbook for the drinking water and domestic wastewater treatment plants. Respondent was informed that he was required to keep a separate operation and maintenance logbook for each of the drinking water and domestic wastewater treatment plants. On August 10, 2004, Petitioner inspected the Double D Mobile Home Ranch's domestic wastewater treatment plant and found that there was a combined logbook for the drinking water and domestic wastewater treatment plants. Respondent was again informed that he was required to keep separate logbooks for each plant. A non-compliance letter dated October 12, 2004, and a copy of the August 10, 2004, inspection report were sent to Respondent informing him that he needed to separate his operation and maintenance logbook. In 2005, the Volusia County Health Department inspected the Double D Mobile Home Ranch's drinking water treatment plant and found that Respondent still maintained a combined logbook for the drinking water and domestic wastewater treatment plants. During the inspection, Respondent was again informed that he was required to keep a separate operation and maintenance logbook for the drinking water and domestic wastewater treatment plants. On June 15, 2005, Petitioner inspected the Double D Mobile Home Ranch's domestic wastewater treatment plant and again found that Respondent was keeping a combined logbook for the drinking water and domestic wastewater treatment plants. During this inspection, Respondent was again informed that he was required to keep separate logbooks. A non-compliance letter and a copy of the June 15, 2005, inspection report were sent to Respondent again informing him that he was required to maintain separate logbooks for the drinking water and domestic wastewater treatment plants. On February 13, 2006, the Volusia County Health Department inspected the Double D Mobile Home Ranch's drinking water treatment plant and found that Respondent still maintained a combined operation and maintenance logbook for the drinking water and domestic wastewater treatment plants. During this inspection, Respondent was again informed that he was required to maintain a separate logbook for each plant. Over the extended period reflected by the inspections cited in paragraphs 11 through 15, Respondent failed to maintain separate logbooks for the operation and maintenance of the Double D Mobile Home Ranch's drinking water and domestic wastewater treatment plants. On August 10, 2004, Petitioner inspected the Double D Mobile Home Ranch's domestic wastewater treatment plant and found that the logbook did not contain sufficient entries of the performance of preventative maintenance and repairs or request for repairs of equipment. During this inspection, Respondent was informed that he was required to keep adequate entries of preventative maintenance and repairs or request for repairs of equipment for the domestic wastewater treatment plant. A non-compliance letter and a copy of the August 10, 2004, inspection report were sent to Respondent informing him that he was required to maintain entries of the performance of preventative maintenance and repairs or request for repairs of equipment for the domestic wastewater treatment plant. On June 15, 2005, Petitioner inspected the Double D Mobile Home Ranch's domestic wastewater treatment plant and again found that Respondent was not keeping adequate entries of the performance of preventative maintenance or repairs for the domestic wastewater plant. During this inspection, Respondent was again informed that he was to keep such entries. A non-compliance letter and a copy of the June 15, 2005, inspection report were sent to Respondent informing him that he needed to maintain such entries for the domestic wastewater treatment plant. Photocopies of the combined logbook have essentially no entries for the performance of preventative maintenance or repairs or requests for repairs to a domestic wastewater treatment plant. Infrequent margin notes are not decipherable and do not differentiate between the two activities.
Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the licenses of John J. D'Hondt, as a Certified Operator Drinking Water and a Certified Operator Wastewater, be disciplined as set forth in the "probation" letter of March 15, 2006. DONE AND ENTERED this 13th day of February, 2007, in Tallahassee, Leon County, Florida. S JEFF B. CLARK Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 13th day of February, 2007. COPIES FURNISHED: Ronda L. Moore, Esquire Department of Environmental Protection 3900 Commonwealth Boulevard Mail Station 35 Tallahassee, Florida 32399-3000 John J. D'Hondt 2 Tropic Wind Drive Port Orange, Florida 32128 Lea Crandall, Agency Clerk Department of Environmental Protection Douglas Building, Mail Station 35 3900 Commonwealth Boulevard Tallahassee, Florida 32399-3000 Michael W. Sole, Secretary Department of Environmental Protection Douglas Building, Mail Station 35 3900 Commonwealth Boulevard Tallahassee, Florida 32399-3000 Tom Beason, Acting General Counsel Department of Environmental Protection Douglas Building, Mail Station 35 3900 Commonwealth Boulevard Tallahassee, Florida 32399-3000
The Issue There are two issues in these cases: (1) whether Tampa Bay Desal, LLC ("TBD") provided reasonable assurances that its permit application to discharge wastewater from a proposed seawater desalination plant, National Pollutant Discharge Elimination System ("NPDES") Permit Application No. FL0186813- 001-IWIS, meets all applicable state permitting standards for industrial wastewater facilities; and (2) whether Tampa Electric Company, Inc. (TEC) provided reasonable assurances that its proposed modification to an existing industrial wastewater facility permit, NPDES Permit Modification No. FL0000817-003-IWIS, meets all applicable state permitting standards.
Findings Of Fact Parties other than SOBAC Poseidon Resources, LLC wholly owns TBD as one of Poseidon Resources' subsidiaries. Poseidon Resources formed TBD, the successor to S&W Water, LLC, as a special purpose project company to properly staff and finance the desalination project. TBW entered into a 30-year purchase agreement with TBD (then known as S & W Water, LLC) in 1999 to build, own and operate the desalination facility. Poseidon Resources operates as a privately-held company and all stockholders are major corporations. Poseidon Resources opened for business in 1995 and has over $300 million in water processing assets under management. DEP is an agency of the State of Florida. The United States Environmental Protection Agency ("EPA") delegated its NPDES permitting program to the State of Florida and is run by DEP. TEC is an investor-owned electric utility serving Hillsborough, Polk, Pasco, and Pinellas Counties. TEC owns and operates the Big Bend generating station, an electric plant consisting of four coal-fired steam units having a combined capacity of approximately 1800 megawatts. SWFWMD is a water management district in the State of Florida. SWFWMD reviews and acts upon water use permit applications and protects and manages the water and water- related resources within its boundaries. TBW and all of its Member Governments are within the geographical and legal jurisdiction of SWFWMD. Pasco County is a political subdivision of the State of Florida, a member government of TBW, and is located within the jurisdiction of SWFWMD. Pasco County is a major source of the groundwater used by TBW. TBW is a regional public water supply authority. TBW is the sole and exclusive wholesale supplier of potable water for all its member governments of TBW, which are Hillsborough County, Pasco County, Pinellas County, the City of New Port Richey, the City of St. Petersburg, and the City of Tampa. TBW serves approximately 2 million customers. SOBAC SOBAC was incorporated as a Florida not-for-profit corporation in February 2000. The stated mission of SOBAC is to protect the environmental quality of the bays, canals, and waterways of the Tampa Bay area, and to ensure drinking water for SOBAC members in the Tampa Bay area. SOBAC was formed by a group of people residing primarily in the area of Apollo Beach. Apollo Beach is a waterfront residential community that was created by dredge and fill of wetlands, estuary, and bay bottom bordering the "Big Bend" area of Tampa Bay, where the community terminates in a "hammerhead" of fill over what was once a seagrass bed. Across the North Apollo Beach "Embayment," formed by the "hammerhead," is the discharge canal of TEC's Big Bend power plant. A corrugated metal barrier partially separates the embayment from the discharge canal. This discharge canal also will receive TBD's discharge after re-mixing with TEC's discharge. SOBAC initially was formed out of concern for the environment in the Big Bend area of Tampa Bay. However, there is no requirement that SOBAC members live in the Apollo Beach area, or even in the vicinity of Tampa Bay, and SOBAC's geographic area of concern has broadened somewhat beyond the Apollo Beach area. In order to become a member of SOBAC, one need only sign a card. Prospective members are asked to donate $5 on signing up. Most members donate $5 or more. However, the donation is not mandatory. There is no requirement that members attend any meetings, or participate in any SOBAC activities. Section 3.1 of SOBAC's Constitution and Corporate By-Laws makes "active" membership contingent on payment of "the prescribed [annual] dues." Section 3.2 of SOBAC's Constitution and Corporate By- Laws requires SOBAC to establish annual dues, but no annual dues have been paid because no annual dues structure has ever been established. As a result, no annual dues have been "prescribed," and "active" membership does not require payment of annual dues. SOBAC claims to have approximately 1,000 members. These include all those who have ever become members. Approximately 700 live in the Appollo Beach area; approximately 50-75 of these members form the "core" of active members. Approximately 50-100 members live outside the Tampa Bay area; some of these outsiders probably are among the approximately 100 who are members by virtue of SOBAC's reciprocity agreement with another association called "Friends of the River." SOBAC has never surveyed its membership to determine how its members actually use Tampa Bay. However, the evidence was sufficient to prove that a substantial number of its members, especially among those who reside in the Apollo Beach area, enjoy use of the waters and wetlands of the Big Bend area for recreational activities such as boating and fishing. For that reason, if the activities to be permitted by DEP in these proceedings were to cause environmental damage, a substantial number of SOBAC's members would be affected substantially and more than most residents of distant reaches of the Tampa Bay area. Background of Desalination Project In 1998, the predecessor agency to TBW (the West Coast Regional Water Supply Authority), the six Member Governments and SWFWMD entered into an agreement specifically addressing impacts to natural systems through the development of new, non- groundwater sources, and the reduction of permitted groundwater withdrawal capacity from TBW's eleven existing wellfields from the then permitted capacity of 192 million gallons per day (mgd) to 121 mgd by December 31, 2002 (the "Partnership Agreement"). Pursuant to the Partnership Agreement, the existing water use permits for TBW's 11 specified wellfields were consolidated into a single permit under which TBW is the sole permittee. Prior to execution of the Partnership Agreement, the existing permits for these 11 wellfields allowed for cumulative withdrawals totaling approximately 192 mgd. Upon execution of the Partnership Agreement, the consolidated permit immediately reduced allowed withdrawals to no more than 158 mgd and required that wellfield pumping from the 11 wellfields be further reduced to no more than 121 mgd by December 31, 2002, and then to no more than 90 mgd by December 31, 2007. These withdrawal reductions are necessary to reduce the adverse environmental impacts caused by excessive withdrawals from the 11 wellfields, the majority of which are located in Pasco County. In order to replace the reduction of groundwater withdrawals, TBW adopted a Master Water Plan that provides for the development of specified new, alternative sources of potable water. The seawater desalination facility ("Desal Facility") is one of the cornerstone components of the Master Water Plan. This Facility will furnish 25 mgd of new water resources for the Tampa Bay area and must be in service by December 31, 2002, in order to meet the potable water needs of the residents of the Tampa Bay area. In exchange for the groundwater withdrawal reductions, SWFWMD agreed to contribute up to $183 million towards the development of new water sources that are diverse, reliable and cost-effective. SWFWMD has agreed to co-fund up to 90 percent of the capital cost of the Desal Facility. To comply with the terms and conditions of water use permits it has received from SWFWMD for other water withdrawals in the region, TBW must increase the water sources from which it withdraws water for distribution to its Member Governments in a timely manner. The Desal Facility is the essential means by which these permitting requirements can be met. For the past two years, the Tampa Bay area has been experiencing historic low rainfall and drought conditions. The Desal Facility is supported not only by TBW and its Member Governments, but also by SWFWMD since it is a drought-proof source of supply which has the greatest ability of any new water supply source to allow TBW to meet its members' potable water supply needs while also reducing pumpage from the existing 11 wellfields. In addition to its being a drought-proof source of potable water supply, the Facility will also provide diversity and reliability for TBW's sources of supply, and is a source that is easily expandable to provide additional potable supply that may be necessary in the future. Prior to deciding to proceed with a desalination project, TBW conducted four separate studies to look at the potential individual and cumulative impacts of a desalination facility on Tampa Bay and the surrounding areas, and in particular to evaluate the changes in baywide salinity due to the desalination discharge alone and in combination with the river withdrawals occasioned by other projects. Commencing in 1997, TBW conducted a procurement process that culminated in the award in July 1999 of a contract to S & W Water, LLC, now known as Tampa Bay Desal, LLC, to design, build, own, operate, and eventually transfer to TBW a seawater desalination plant to provide potable water to Hillsborough, Pinellas, and Pasco Counties and to the Cities of Tampa and St. Petersburg for 30 years. TBD's Desal Facility is co-located with the Big Bend Power Station owned and operated by TEC on the northeast side of Hillsborough Bay, in Hillsborough County, Florida. By discharging the concentrate from the Desal Facility to the power plant cooling water prior to its discharge to the power plant discharge canal, environmental impacts from the concentrate are minimized, and disturbance of the discharge canal is avoided. The costs avoided by utilizing the existing intake and outflow from the TEC power plant are reflected in the lower cost of the water to Tampa Bay Water, and ultimately its Member Governments. TBW is contractually bound to TBD to purchase all of the potable water that is produced by the Desal Facility for distribution to its Member Governments and to purchase the entire Facility in the future. With the exception of the NPDES permit at issue, TBD has obtained all of the over 20 other permits which are required for the construction and operation of the desalination facility. TBD has already invested approximately $20 million in this project. The total estimated capital cost of the desalination facility is $110 million. TBD has obtained financing of $42 million and expects to acquire permanent financing in the month of October 2001. SWFWMD agreed to subsidize up to 90 percent of the capital cost of the desalination facility payable to TBW over the term of agreement with TBD. TBD is contractually bound to TBW to complete and fully operate the desalination facility by December 2002. TBD Desalination Process Overview of Process In the instant case, desalination is performed through reverse osmosis ("RO"), a mechanical process wherein pretreated water under very high pressure is pressed against a very fine membrane such that only pure water can pass through it. The vast majority of salt molecules and other substance are eliminated from the water. The RO process is not heat or chemical driven. No additional heat load is being added as a result of the desalination discharge, and the desalination plant will actually result in a reduced heat load to the bay. The desalination facility will withdraw approximately 44.5 mgd of raw water from Units 3 and 4 of TEC's Big Bend cooling water system, produce approximately 25 mgd of product water for transmission to the regional water supply system, and discharge approximately 19.5 mgd of clarified backwash and concentrate water equally into each of the power plant cooling water tunnels for dilution and release into the discharge canal. During abnormal power plant operations including times when Units 3 or 4 are not in operation and during the summer months when the normal supply water intake temperature exceeds the operating temperature range of the RO membranes, a portion of the source water will be withdrawn from an auxiliary supply water system. The auxiliary supply water system consists of a supply pump and pipeline that withdraws water from a location downstream of the fine-mesh screens for Units 3 and 4. The total combined bay withdrawal flow for the power plant and the desalination facility cannot exceed 1.40 billion gallons per day ("bgd"). This limitation ensures that entrainment does not exceed the levels previously permitted for the site, and a new entrainment study pursuant to Section 316(b) of the Clean Water Act is not required. Pretreatment Process The desalination intake water is pretreated in a two- stage gravity filtration process with chemical additives. During pretreatment, ferric sulfates will be added to the desalination intake water to coagulate and capture suspended solids, organic material, and metals that exist in the raw water supply. In this first stage of the pretreatment process, the intake water runs through an aerated course sand filter. Aeration enhances the coagulative process and assists in the capture of organics, suspended solids, and metals. Aeration also occurs in stage two, which uses a fine sand filter pretreatment process. The backwash water from stage two recirculates to the stage one treatment process. The pretreated waters exits through a five micron cartridge filtration prior to entering the RO process. The aerated pretreatment filter backwash water from the pretreatment stage one pretreatment will be sent to a discharge sump for initial settling and then to a clarifier and filter press to remove excess water. Approximately 14 wet tons a day which includes organics, suspended solids, and metals that are removed through the coagulative process and captured from the gravity filters are removed off-site to a landfill. The desal concentrate and clarified backwash water will be combined in a discharge sump or wet well prior to entering into a discharge line manifolded to equally distribute the concentrate discharge into all of the available cooling water outflow tunnels or conduits of the power plant discharge. Reverse Osmosis Membrane Treatment The RO desalination process consists of a two-stage pass of the pretreated water through the reverse osmosis membranes. The RO pumps will force the water through the RO membranes at pressures ranging from 600 to 1000 pounds per square inch (psi). As a result of the RO process, approximately 25 mgd of purified water, also known as permeate, will be produced for delivery to TBW. TBD anticipates cleaning its membranes twice per year, perhaps less, due to the high level of pretreatment. Periodic cleaning removes silt and scale from the membrane surface. Dilute solutions of citric acid, sodium hydroxide, sulfuric acid, sodium tripolyphosphate, or sodium dodecyclbenzene compromise the constituents of various cleaning solutions, with the actual cleaning solution used dependent upon the actual performance of the system once it is placed in operation. Once the cleaning cycle is complete, the spent cleaning solution will be purged from the feed tank, membrane vessels, and piping and diverted into a scavenger tank for off- site disposal. Clean product water (permeate) will be fed to the feed tank and pumped into the RO membrane vessels. This process will continue until the pH of the purge water meets the Class III marine water quality criteria. The membranes will be rinsed with brine concentrate and permeate, and the rinse water will be directed to the wet well for discharge, with the concentrate into the TEC cooling water stream. TBD determined the chemical characterization of the membrane cleaning solution discharge. Cleaning solutions are not discharged in detectable concentrations. As further assurance, the permit requires toxicity testing immediately after membrane cleaning. Dilution of Discharge Water Co-locating the desalination facility with TEC's Big Bend power station allows the desalination concentrate to be diluted with TEC's cooling water prior to discharge into Tampa Bay. The point of injection of the desalination discharge will be located approximately 72 feet upstream of the point of discharge to the discharge canal to ensure complete mixing of the desalination concentrate with TEC's cooling water. This provides reasonable assurance that the desalination discharge will be completely mixed within the cooling water conduits. If all four TEC units are in operation and TBD is producing 25 mgd of finished water, the approximate dilution ratio of the desalination concentrate with TEC cooling water is 70:1. Historical TEC data indicates that a dilution ration of greater than 20:1 will occur more than 99.6 percent of the time, and a dilution ration of greater than 28:1 will occur more than 95 percent of the time. The dilution limitations in the proposed permit are more stringent than those required in Rule 62-302.530(18). The permitted dilution ratio complies with Rule 62- 660.400(2)(d) because it takes into account the nature, volume, and frequency of the proposed discharge, including any possible synergistic effects with other pollutants which may be present in the receiving water body. Comparisons of the Antigua, Key West, and Cyprus facilities are not applicable because those desalination facilities lack the initial dilution that will exist at TEC's Big Bend site. The proposed permit requires a 20:1 minimum dilution ratio at any given time, which may occur for no more than 384 hours per calendar year, and with the further limitation that the discharge at the 20:1 minimum dilution ratio shall not exceed 384 hours in any given 60-day period. At all other times, a minimum dilution ratio of 28:1 must be maintained. To ensure proper dilution and system operation, computer instrumentation in the desal facility will interface with TEC to continuously monitor the operations of TEC's four cooling tower condenser units. If any of the pumps shut down, an alarm will sound at the desalination facility and the computer system will automatically shut down the concentrate discharge to that specific condenser unit discharge tunnel. Further, the desalination plant will employ approximately 12 employees, with a minimum of two employees on duty at all times. TEC Permit Modification Big Bend power station has four coal-fired steam electric generating units. The power station is cooled by water that is taken in from Tampa Bay through two intake structures which are located along TEC's intake canal. One intake structure feeds cooling water to electrical power units 1 and 2 and the other feeds units 3 and 4. After flowing through the condensers, the cooling flows are combined into four separate discharge tunnels which outfall into TEC's discharge canal. The intake structure for Units 3 and 4 is equipped with fine-mesh screens and an organismal collection and return system that has been approved for use by DEP. The purpose of TEC's permit modification is to alter the internal piping in the facility to accommodate the desalination plant at the Big Bend site. TEC's permit modification allows for placement of an intake pipe from TEC's cooling water pipes to the desalination plant and a return pipe downstream from the intake pipe for the return of the desalination concentrate to TEC's cooling water discharge tunnels prior to outfall in the discharge canal. TEC's permit modification also allows for the placement of an auxiliary intake line by TBD to take additional water from behind the intake of units 3 and 4 up to TEC's maximum permitted limit of 1.4 billion gallons a day. The TEC proposed permit is conditioned to require TEC to maintain the structural integrity of both the steel sheet pile wall on the discharge canal and the breakwater barrier North of the discharge canal. TEC's permit modification does not request any changes to the operations of the Big Bend Generating Station. SOBAC Issues and Concerns SOBAC raised numerous issues and concerns in its petitions in these cases and in the Pre-Hearing Stipulation. However, some issues were elimination by rulings adverse to SOBAC during prehearing proceedings and final hearing. Based on the evidence SOBAC sought to elicit at final hearing and issues raised in its Proposed Recommended Order, other, earlier SOBAC issues and concerns appear to have been dropped. Remaining are essentially the following: increased salinity due to TBD discharge; alleged decreased dissolved oxygen (DO) from higher salinity; impacts of higher salinity and alleged decreased DO on marine plants and animals; alleged release of metals from sediments due to higher salinity and alleged lower DO, and effects on marine plants and animals; alleged monitoring deficiencies; alleged failure to utilize available technologies to lower salinity and raise DO; alleged deficient financial assurances; and various alleged resulting DEP rule violations. Description of Tampa Bay: Physical Properties The portion of Tampa Bay and Hillsborough Bay near the Big Bend facility is classified a Class III water body. Tampa Bay is a naturally drowned river valley, meaning that a deep channel exists as a result of natural forces. However, the channel has been deepened to 45 feet or greater to allow large ships to navigate the bay. This deepening of the channel increases the water flow of the head of the bay with the open gulf waters and allows this residual circulation to move more new water from the open Gulf of Mexico up into the bay. Ordinarily, circulation moves salt water up Tampa Bay and spreads it out onto the flanks of the bay where it then mixes with the freshwater. To complete this circulation, the water then flows back out towards the mouth of the bay, primarily along its flanks and shallower parts in the upper part of the water column. The water in Tampa Bay tends to flow faster in its deeper parts, both coming in and going out, and relatively slower in the shallow areas. The majority of flow of freshwater inflow occurs at the bay's flanks as can be seen very clearly in the salinity distributions. Mixing and Stratification Since the development of Tampa Bay from the 1880 condition to the 1972 and 1985 conditions, there is more mixing and exchange of water. Due to shoreline fills for development, such as Apollo Beach, there is less water that now comes in the bay than in the predevelopment condition. Tampa Bay is a fairly well mixed system from top to bottom. This is because the action of the tides basically acts like a big mix master. The bay is fairly shallow, less than four meters in depth on average. The tidal velocities can be as strong as two knots or about a meter per second. When the strong velocity pushes through shallow water, there is extensive overturning, where the bottom water is churned to the top and gets mixed very efficiently. That is very well seen in the observations during dry periods. Over 100 points in Tampa Bay were measured for temperature and salinity top, middle and bottom, and showed that they were very uniform throughout the bay. During periods of large volumes of freshwater input into Tampa Bay, freshwater is pumping into the bay faster than the tidal mixing can mix it from top to bottom. Therefore, in parts of Tampa Bay significant stratification is seen during many times in the wet season. During those times when rainfall is not as prevalent, tidal mixing once again dominates and the bay returns to a more well mixed system. The average tidal fluctuation for Tampa Bay is a range of two to three feet. Salinity As the tide in Tampa Bay comes in, it brings saltier water from the mouth of the bay toward the head of the bay, causing salinities to rise. As the tide recedes, bringing out fresher water from farther up the bay, salinities decrease. Over an individual tidal cycle, particularly during the wet season, a four or five part per thousand ("ppt") change in salinity will occur between a rising tide and a falling tide. During the dry season, tidal flushing is not as significant to salinity levels because not much difference exists in salinity from the head of the bay to the mouth of the bay. Even during the dry season, there is a one to two ppt change over a six to twelve-hour period in any given day. During the dry periods in 1990, salinities elevated up to about 33 ppt, with very little stratification. During the rainy periods, in June and July, salinities dropped rather drastically. In some areas, salinity dropped as low as to 20 to 22 ppt. However, in spite of these drastic seasonal differences, significant variation in salinity occurs as a result of tidal exchange. The Big Bend area is split by the dividing line between Hillsborough Bay and what has been classified Middle Tampa Bay. The salinity for Hillsborough Bay from 1974 through June 2001 at the surface ranges from 0.4 ppt to 38.2 ppt. The middle portion of the same water column contained a range from 2.5 ppt to 39.2 ppt, and the bottom portion showed a range from 3.9 ppt to 37.2 ppt. The average salinities during this time frame were as follows: top 24.2 ppt, middle 24.3 ppt and bottom 25.3 ppt. In the portion of Tampa Bay called Middle Tampa Bay, the surface level salinity ranged from 6.8 ppt to 38.2 ppt. At middle depth, salinities ranged from 7.4 ppt to 38.8 ppt. The bottom level salinities ranged from 11.9 ppt to 39.6 ppt. This is a large range of salinities. Tampa Bay near the Big Bend Area In the area near the Big Bend facility, the Mote Marine Laboratory survey data reflects that the salinity during May and June 2000 reached 33.4 ppt. Further, Mote Marine Laboratory data showed that the North Apollo Embayment area salinities were well mixed vertically throughout the system. The total volume of water exchanged into the North Apollo Embayment and associated canals during a mean tide is approximately 35 percent of the total volume of all water contained in that area. This tidal exchange occurs twice per day. The double diffusion process does not create high salinity in the bottom of the water column in the North Apollo Embayment. The double diffusion process, without any external influence, would lead to both surface and bottom layers of the water column reaching salinity equilibrium. Further, the turbulent mixing that occurs due to tidal processes and wind- induced mixing dominates over the double diffusion process. The Mote Marine Laboratory study conducted between May and early June 2000 did not detect any significant salinity stratification in the area near the Big Bend facility. Vertical stratification of salinity does occur but typically only during the periods of significant freshwater inflow and not in extreme drought or dry conditions. None of the Mote Marine Laboratory data detected any pockets of high salinity water or significant density stratification in the North Apollo Embayment. Estuarine Characteristics Tampa Bay is an estuary. Estuaries are semi-enclosed bodies of saltwater that receive freshwater runoff from drainage or riverine inflow, which measurably dilutes the salinity levels in the estuary. As a result, salinity levels in estuaries typically are highly variable, ranging from 0 ppt where rivers flow into estuaries, to as high as 40 ppt under conditions of low freshwater input or at estuarine mouths where they connect to the sea. There are naturally occurring dissolved oxygen levels below 4.0 mg/l in parts of Tampa Bay, including at Hillsborough County Environmental Protection Commission ("EPC") monitoring stations 9, 80, and 81, which are the closest stations to the proposed discharge. Dissolved oxygen in the bay decreases at night because photosynthesis ceases and respiration exceeds production. Other environmental parameters are also highly variable in estuaries. Therefore, the organisms that inhabit estuaries have adapted to tolerate these highly variable conditions. Estuarine organisms have adaptive means for tolerating changing salinity levels, either by conforming their internal salinity levels to the ambient salinity levels, or by actively regulating their internal salinity levels by intake or excretion of salt. Organisms that are adapted to tolerate a wide range of salinities within the estuary are termed euryhaline organisms. Essentially all of the common organisms in estuaries, including the Tampa Bay estuary, are euryhaline organisms, and therefore are capable of tolerating and living in a wide range of salinities and salinity changes that occur due to tidal, meteorological, and other natural forces in the estuarine environment. Extensive baseline biological studies performed on Tampa Bay reveal that the most common species in the Tampa Bay estuary tolerate salinity levels ranging from 5 ppt to 40 ppt. Seagrasses Five species of seagrass inhabit Tampa Bay. Seagrasses are photosynthetic underwater flowering plants that are typically limited in occurrence and distribution by the water clarity. This limits the depth at which seagrasses can grow. In Tampa Bay, seagrasses are limited to the fringes of the Bay, and are largely limited to depths of approximately three feet, although they can live in depths of up to six feet in clearer parts of the Bay. Seagrasses are very sensitive to increases in nutrients, like nitrogen and phosphorus. These nutrients encourage algae growth, resulting in competitive stress in seagrasses. Due to poor water quality caused by sewage discharge, dredging and filling, and other activities in the Bay, seagrass distribution in Tampa Bay decreased from an historic coverage of approximately 80,000 acres in 1950 to approximately 20,000 acres by 1982. Improvements in water quality, largely due to sewage treatment improvements, have allowed seagrasses to naturally recolonize to approximately 27,000 acres coverage, as of 1994. Wave energy affects seagrass distribution. Seagrasses cannot colonize and survive in areas subject to significant wave energy. For example, the portion of Tampa Bay dredged and filled to create the Apollo Beach "hammerhead" area was once comprised of a broad shallow-water shelf that diminished wave energy, allowing dense seagrass flats to cover the shelf area. Destruction of the broad shallow-water shelf with fill to create the Apollo Beach hammerhead has converted the area to a high wave energy system that is unsuitable for seagrass colonization and growth. Consequently, the only seagrasses inhabiting the Big Bend area are found approximately one kilometer north of the Big Bend power plant, in an area known as "The Kitchen," and approximately one kilometer south of the Apollo Beach hammerhead area. Additionally, there are ephemeral patches of seagrass inhabiting some limited areas of the North Apollo Embayment. Seagrasses are adapted to tolerate a wide range of salinities. They have specialized cells that enable them to deal with salt stress and with broad ranges of and fluctuations in salinity. These adaptations enable them to survive and thrive in estuarine environments. Of the seagrass species that live in Tampa Bay, one species, Ruppia maritima (widgeon grass), occurs in salinity ranges from zero to 40 ppt. Manatee grass, Syringodium filiforme, is most productive in salinities between 5 ppt and 45 ppt. The other three species, Halodule wrightii (shoal grass), Halophila engelmannii (star grass), and Thalassia testudinum (turtle grass), tolerate salinity ranges from approximately 5 ppt to 60 ppt. Seagrasses better tolerate higher salinity levels than lower salinity levels. Lower salinity levels are usually indicative of increased stream and land freshwater runoff, which usually is accompanied by increased turbidity and lower water clarity. Four of the five seagrass species that inhabit Tampa Bay typically reproduce asexually by producing rhizomes, rather than by flowering and producing seeds. It is not completely clear why seagrasses in Tampa Bay reproduce asexually rather than by flowering and seed production. However, recent research indicates that climatic temperature is the controlling factor for flower and seed production. In South Florida, where the climate is warmer, seagrasses reproduce by flowering and seed production. In Tampa Bay, the lower winter temperatures appear to be the limiting factor with respect to successful flower and seed production in seagrasses. Recent studies by the University of South Florida ("USF") marine laboratory indicate that naturally occurring fungal diseases may also limit successful flowering and seed production in seagrasses in Tampa Bay. Since most seagrass species that live in Tampa Bay tolerate and thrive in salinities of up to 60 ppt, the higher salinity levels in the estuary do not appear to adversely affect the ability of seagrasses to reproduce. In fact, the lower salinity levels, below 5 ppt, stress seagrasses and are more likely to adversely affect reproduction than do higher salinity levels. Mangroves Three major species of mangrove inhabit the Tampa Bay area: the red mangrove, black mangrove, and white mangrove. Mangroves inhabit the intertidal area, so they are subjected to daily tidal flooding and drying. Consequently, they must tolerate a wide range of variability in salinity levels and in water availability. Most mangroves tolerate soil salinity levels up to 60 ppt, close to twice the salinity of Tampa Bay. Mangrove mortality due to salinity does not occur until soil levels approach and exceed 70 ppt salinity. Mangroves are also adaptable to, and inhabit, freshwater environments. Phytoplankton and Zooplankton Plankton are life stages or forms of larger organisms, or organisms that have no ability for major locomotion, so they spend their entire life spans floating and drifting with the currents. Plankton are extremely productive in that they reproduce in very large numbers within very short life spans. Holoplankton are planktonic organisms that spend their entire lives in planktonic form. Examples include diatoms, which are a type of phytoplankton, and copepods, which are a type of zooplankton. Meroplankton are "temporary" plankton that drift with the currents in juvenile or larval stages, then either settle out of the water column and metamorphose into an attached form (such as barnacles) or metamorphose into mobile life forms (such as crabs, shrimp, and fish species). Phytoplankton are planktonic plant species and life forms. Zooplankton are planktonic animal species and life forms. Zooplankton feed on phytoplankton. There are approximately 300 species of phytoplankton, and numerous species and forms of zooplankton, found in Tampa Bay. Most phytoplanktonic and zooplanktonic species inhabiting Tampa Bay are euryhaline species capable of tolerating the wide range of salinity levels and abrupt salinity changes that occur naturally in the estuarine system. Most phytoplanktonic and zooplanktonic species and life forms in Tampa Bay tolerate salinity levels ranging from zero to 40 ppt. They appear to be more tolerant of the higher end than the lower end of this salinity range. Manatee The manatee is the only endangered or threatened species identified by the Florida Natural Areas Inventory as inhabiting the area where the desalination plant is proposed to be located. Manatees congregate at the Big Bend Power Station during colder months because they are attracted to the power plant's warmer water discharge. Manatees are considered to be estuarine species, but they have very broad salinity tolerance ranges. They migrate into and out of freshwater springs, through estuaries, into the Gulf of Mexico, and down to the Ten Thousand Islands, where hypersaline conditions frequently exist. Manatees routinely expose themselves to and tolerate salinities ranging from zero to more than 40 ppt. Fish The fish populations in Tampa Bay are comprised of a large number of marine euryhaline species. Due to their ability to osmoregulate their internal salinity levels, these fish species can inhabit salinity ranges from 5 ppt to as high as 40 ppt. Extremely extensive monitoring and sampling programs are currently being conducted in Tampa Bay and specifically in the vicinity of the Big Bend Power Station. The Hillsborough County EPC, SWFWMD, TBW, the United States Geological Survey ("USGS"), the Florida Marine Research Institute, USF, and Mote Marine Laboratory conduct separate biological monitoring programs that sample and monitor numerous biological parameters, including invertebrate infaunal and epifaunal species composition, abundance, and distribution; zooplankton and phytoplankton species composition, abundance, and distribution; emergent and submerged vegetation species composition, abundance, and distribution; and fish species composition, abundance, and distribution. These monitoring programs, which collect and analyze biological data from many areas in the Tampa Bay estuarine system, extensively monitor numerous biological parameters in the Big Bend area. Testing and Modeling Pilot Plant Although DEP's rules do not require the use of a pilot plant to demonstrate reasonable assurances, TBD installed a desalination pilot plant at the Big Bend site in November 1999. The pilot plant matched the hydraulics and configuration of the full-scale facility on a 1/1000 scale. The pilot plant used water from the Big Bend power plant discharge as its source water. The purpose of the pilot plant was to confirm design requirements for the desalination facility and to provide samples of intake water, filtered water, pretreated water, concentrate, and finished water to use for chemical characterization and analysis. Using a pilot plant is superior to using data from engineering projections or data from a different desalination facility because the pilot plant provides data specific to the Big Bend site. Data from the pilot plant were used to establish various effluent and other limits in the permit. Chemical Characterization Intake water, filtered water, pretreated water, concentrate, and finished water from the pilot plant were analyzed for over 350 parameters chosen by DEP to determine chemical characterizations and water quality. The pilot plant operation provides extensive chemical characterization of intake and discharge water composition and mass loading. This information was key in providing accurate information on the chemical composition and mass loading of the desalination discharge concentrate. With this accurate information on the components in the discharge water, DEP was provided more than sufficient reasonable assurance on the potential effect of the chemical components of the discharge. TBD tested the pilot plant discharge water for copper, nickel, other heavy metals, and those chemical constituents specified on the DEP chemical characterization form. The chemical characterization tested for concentrations of constituents based on a 12.8 to 1 dilution ratio, and even at that dilution ratio, did not exceed any of the state water quality parameters. However, to provide additional assurance that there will not be an exceedance of state water quality standards, the permit requires a minimum 20 to 1 dilution ratio. Dissolved Oxygen Saturation Testing Temperature and salinity affect the saturation point of dissolved oxygen ("DO") which is lowest when temperature and salinity are highest. DO saturation charts, which are typically used to determine DO saturation points, are not applicable because those charts do not contain the saturation point of DO at a temperature of 109 degrees Fahrenheit and a salinity of 79 ppt, which represents the worst case conditions for the proposed desalination facility. Bench-scale testing was performed on the undiluted desalination discharge from the pilot plant by heating discharge concentrate samples to 109 degrees Fahrenheit and aerating the samples until the DO stabilized and reached saturation point. The pilot plant bench-scale testing determined that the saturation point of DO in the worst case desalination concentrate using a temperature of 109 degrees Fahrenheit and salinity of 79 ppt was 5.7 mg/l. Toxicity Testing TBD conducted acute toxicity testing using a worst case scenario assuming a diluted effluent of one part desalination concentrate to 12.8 parts of power plant cooling water. Acute toxicity testing evidenced no mortalities, showing that the proposed discharge will not be a source of acute toxicity. TBD conducted chronic toxicity testing on raw concentrate from the pilot plant using a worst case scenario diluted effluent of one part desalination concentrate to 12.8 parts of power plant cooling water. The No Observed Effect Concentration (NOEC) for raw concentrate was determined to be 100 percent and the NOEC for diluted effluent was determined to be greater than 100 percent. The evidence did not explain these concepts, but it was clear from the tests that the proposed discharge will not be a source of chronic toxicity. TBD conducted its acute and chronic toxicity testing using protocols reviewed and approved by DEP. TBD's toxicity testing was also consistent with accepted EPA standards. Assessment of Potential Environmental Impacts TBD prepared an Assessment of Potential Environmental Impacts and Appendices ("Assessment") to analyze the potential biological impacts of the desalination plant discharge into the Tampa Bay estuary. The Assessment examined numerous physical parameters to determine the baseline environmental conditions in the portion of Tampa Bay proximate to the proposed desalination plant site. Among the physical parameters examined in determining the baseline environmental conditions were: salinity; sediment size and composition; metal content in sediments; and numerous water quality parameters such as transparency, biochemical oxygen demand, pesticides, dissolved metals, and pH. Consistency with SWIM Plan As part of the permitting process, TBD was required to demonstrate consistency of the proposed desalination discharge with the SWFWMD's Surface Water Improvement and Management (SWIM) plan, pursuant to Rule 62-4.242. TBD submitted an extensive SWIM consistency analysis, which is sufficient to meet the consistency requirement. Water Quality Based Effluent Limitation Level II Study TBD performed a Water Quality Based Effluent Limitation (WQBEL) Level II study pursuant to Rule Chapter 62- 650 for the purpose of determining the effect of the desalination plant discharge on salinity levels in the vicinity of the desalination plant discharge. TBD had the Danish Hydrologic Institute ("DHI") use the data collected through the WQBEL Level II study in its near-field model of the Big Bend area. See Findings 105-117, infra. DEP also used the data and the DHI model results to establish the salinity and chloride effluent limitations in the permit. The USF Far-Field Model The far-field model was prepared utilizing the Princeton model code. The Princeton model is well recognized and is generally accepted in the scientific community. The goals of the TBD far-field model performed through USF by Dr. Luther and his team were to evaluate the change in bay-wide salinity due to the desalination plant discharge, both alone and in combination with changes in salinity due to enhanced surface water system withdrawals under new consumptive water use permits issued to TBW by SWFWMD to provide other, additional sources of needed potable water supply. The primary goal was to provide DEP with the best science possible of the potential real effects of this desalination discharge into Tampa Bay. The modeling system of Tampa Bay utilized in this analysis was developed beginning in 1989. Dr. Luther and his team have continued to make refinements to the model over the last 12 years. Dr. Luther took the modeling system he had developed over the years for Tampa Bay and did three primary model scenarios. The baseline case reproduced the observed conditions during the 1990 and 1991 years--a very dry period in 1990 and a fairly wet period for 1991--as accurately as possible with all the boundary conditions estimated from observations. This was to capture an entire range of conditions in Tampa Bay. The baseline was then compared with validation data and other observations to ensure it was approximating reality. The second simulated scenario included the same effects as the baseline with the added effect of the desalination intake and discharge at the Big Bend facility. The third case approximated cumulative effects from the TBW enhanced surface water system river withdrawals according to the proposed permit withdrawal schedules. For each test case, it was assumed that only two of the four cooling units at the TEC Big Bend plant were in operation for an entire two-year period, a worst-case scenario expected to occur less than four percent of the time in any given year. The model included data on water levels, temperature, and salinity throughout Tampa Bay. In addition, it takes into account wind blowing across the surface of Tampa Bay, rainfall, freshwater inflow from rivers, and other surface water and groundwater sources. The model was calibrated and validated against actual data to verify simulation of reality as closely as possible. The model was calibrated and validated utilizing Hillsborough County EPC and Tampa Oceanographic Project ("TOP") salinity data. Physical Oceanographic Real Time System ("PORTS") and TOP data on current flow velocity and water levels were utilized to calibrate and validate water levels and current. The acoustic doppler current profilers used in the model study are able to measure the speed at which the water is traveling and the direction at various levels above the bottom within the water column. The TBD far-field model very accurately reproduces the observed tidal residual velocities observed with the acoustic doppler current profilers. The far-field model reflects any stratification that would occur during the model simulations. The far-field model simulates recirculation that occurs between the discharge and intake water. Recirculation is small due to the model's use of the actual bathymetry of Tampa Bay. There are significant shoals and other features that separate the water from the discharge and the intake canal that preclude significant recirculation most of the time. After submitting the far-field model report to DEP, further study was performed on the far-field model that calculated residence time for Tampa Bay. One study dealt with "residence" or "flushing" time. The concept of "residence time" is not well-defined; put another way, there are many different accepted ways of defining it. It may be defined in a simplified manner as the time it takes a patch of dye to flush out of the bay. However, for purposes of the studies performed on the far-field model, theoretical "particles" in model grids were tracked, and "residence time" was defined as the time it would take for the number of particles initially in a grid cell to decrease to 34 percent of the initial number. Using this approach and definition, residence time in the vicinity of the Big Bend facility on the south side where the discharge canal is located was less than 30 days. Immediately offshore of the area of the discharge, the residence time reduced to less than 15 days. The study indicated that the area of the Big Bend facility has a relatively low residence time. In the model's baseline run (for the desalination plant impacts only), maximum differences in salinity occurred during the month of April 1991. Throughout the two-year time period, the maximum concentration of salinities did not increase from this point, and in fact decreased. The maximum average value for salinity difference is 1.3 ppt at the grid cell located directly at the mouth of the TEC Big Bend discharge canal. More than two grid boxes away in any direction and the value falls to less than 0.5 ppt increase in salinity. The maximum salinity of any given day for the far- field model was in the range of 2.1 to 2.2 ppt, which compares favorably with the DHI near-field model which showed an increase of 2.5 ppt. The salinity changes caused by the cumulative effects scenario are smaller than the natural variability during the wetter months in Hillsborough Bay in cells immediately adjacent to the concentrate discharge. Increases in salinity will occur in the vicinity of the discharge canal but will be very localized and small relative to the natural variability in salinity observed in Tampa Bay. At a distance of more than a few hundred meters from the mouth of the discharge canal, it would be difficult (if not impossible) to determine statistically that there would be any increase in salinity from the desalination concentrate discharge. Over the two years modeled, there is no trend of increasing salinity. No long-term accumulation of salt is evidenced within the model. Further, no physical mechanism exists within the real world that would allow for such a long- term accumulation of salinity in Tampa Bay. Dr. Blumberg's independent work verified the conclusions in the far-field model constructed by USF. Dr. Blumberg's estimated flushing times are consistent with those found in the far-field model. DHI Near-Field Model The TBD near-field model was prepared by DHI. DHI prepared a three-dimensional near-field model to describe the potential salinity impacts from the discharge of the proposed desalination plant. The DHI model is a state-of-the-art model whose physics are well documented. By model standards, the DHI near-field model is a high resolution model. The DHI model essentially "nests" within TBD's far-field model. The near-field area includes those areas that would be directly influenced by the combined power and desalination discharges, the North Apollo Embayment and the residential canal system adjacent to the discharge canal. The near-field model was designed to determine whether or not the desalination plant would cause continuous increases in salinity and to predict any increase in salinity in the North Apollo Embayment and the associated canal system. In addition, DHI evaluated the potential for saline recirculation between the discharge and the intake via short circuiting due to overtopping of the existing break water. In order to construct the near-field model, existing data on bathymetry, wind sources, meteorology and other parameters were examined and analyzed. In addition, the information from an intensive data collection effort by Mote Marine Laboratories on current velocities, temperatures, and salinities was incorporated into the model. TBD conducted bathymetric surveys in the residential canal areas, the North Apollo Embayment, and the area between the discharge canal and the intake canal. The model has a vertical structure of six grids and reflects vertical stratification that would occur in the system being modeled. The vertical grids in the model can detect a thermal plume one meter in depth (the size of the thermal plume from TEC's discharge). Information about the TEC thermal plume was incorporated into the model and utilized to calibrate the model's predictive capabilities. The model took into account interactions between the temperature plume and the salinity plume. The model predictions matched the measured temperature plume created by the TEC discharges quite well. The near-field model conservatively assumed a scenario in which only the two TEC units with the smallest total through-flow of 691.2 million gallons a day cooling water were active. DHI then assumed production of a maximum 29 mgd in product water. A salinity level of 32.3 ppt at the intake was utilized in the simulation. The model assumed a conservative wind condition which results in less mixing and dispersion of the plume. Further, wind direction tended to be from the southwest or west during the simulation, which tends to push the plume against the TEC break water which tends to reinforce recirculation. SOBAC witness Dr. Parsons agreed that these simulations for April and May 2000 constituted extreme conditions. DHI ran its model for a total time period of six weeks. The "warm up" for the simulation took place from April 15 to May 7, followed by the "calibration" simulation from May 8 to May 22. An additional validation sequence was run from May 25 to June 8. The production run was defined as the three weeks from May 8 to May 29, 2000. The intensity of the calculations performed in the near-field model due to its high spacial resolution and numeric restrictions make it computationally demanding. The calibration runs took approximately a week to 10 days to run on a state-of-the-art computer. From a computational standpoint, it is not practical to run the near-field model for a two-year time period. The model shows good agreement between its water levels and current velocity to observed data. The model reflects the recirculation of the discharge water that would occur in the system. The maximum salinity for the extreme case scenario in the near-field model is an increase in salinity of 2.5 ppt. With three condensers running, under the modeling scenario comparing the base condition to the desal discharge, there is a maximum difference of only 2.0 ppt. Further, there is no indication of any continuous build up of salinity in the near- field area due to the desalination plant discharge. DHI performed many sensitivity runs on the model, including one which examined rainfall conditions. The results of a two-inch rainfall analysis show that rainfall profoundly freshens the water in the near-field area. Since the modeling was done in a time period of extreme drought, with no freshwater inputs, the ambient or background salinity trended up over the time frame of May through June. As with any estuary, if freshwater inflow is removed, the estuary will get saltier until freshening occurs. Even with the model simulation period extended an additional 10 days beyond that reflected in TBD Ex. 1-O, the model results did not show any increase of salinity differences caused by the desal facility above 2.5 ppt. Based on data from field collections, the operation of the desal plant under worst case conditions did not exceed the assimilative capacity of the near-field environment. A 10 percent salinity change (3.23 ppt) was not reached in any grid cell. The Blumberg Study The "Environmental Impact Assessment for a Seawater Desalination Facility Proposed for Co-Location with the Tampa Electric Company Big Bend Power Generation Facility Located on Tampa Bay, Florida" authored by Norman Blake and Alan F. Blumberg ("Blumberg Study") is a hydrodynamic model study combined with an analysis of potential biological effects. The Blumberg Study was performed at the request of and presented to the Board of County Commissioners of Hillsborough County, Florida. Dr. Blumberg's model used 1998 and 1999 as its baseline, which consisted of an extremely wet year followed by an extremely dry year. The model assumed a scenario of two cooling units in operation pumping 656 mgd of discharge flow. The results of the Blumberg Study are very similar to the results of TBD's far-field model. In addition, the model ran for a 9-year period without any sign of ongoing build-up of salinity. After the two-year model run, the second year ran for an additional 7 simulated years for total model simulation period of 9 years. The Blumberg Study found salinity only increased by 1.4 ppt in the North Apollo Beach Embayment. In fact, the Blumberg Study showed no salinity build-up after the second year of the 7-year portion of the model simulation. The Blumberg Study found that the flushing time for the area near the Big Bend facility ranges from 4 to 10 days. The Blumberg Study applied a formula to predict potential DO saturation level changes. The analysis concluded a small change to DO saturation assuming full saturation on average of 7 mg/l. The Blumberg Study predicted that the desalination discharge would not lower actual DO levels below 5 mg/l. The Blumberg Study concluded that the marine ecology will not be affected by the desalination facility operation. Older Two-Dimensional Models of Tampa Bay Significant strides have been made in hydrodynamic modeling over the last 10 years, with the standard changing from two-dimensional models to three-dimensional models. Three-dimensional models provide more complete results than two-dimensional models. In the late 1970's through the late 1980's, modeling was constrained by the computing limitations of the time and could not examine the difference in water layers in a bay and potentials for currents going in different directions or speeds in different layers of the bay, as now done by state-of-the-art three-dimensional models. A two-dimensional model cannot accurately represent the tidal residual circulation in an estuary such as Tampa Bay, because it omits some of the critical physical forces that drive this type of flow. As the acoustic doppler current profiler showed, water flows in the top of the water column in one direction and flows in the bottom of the water column in a different direction. A two-dimensional model would average these flows over the entire vertical water column. In doing so, it would show much slower residual flow (and, therefore, longer residence time and a longer time to flush the system). SOBAC offered the testimony of Dr. Carl Goodwin, a civil engineer with the USGS. Dr. Goodwin provided testimony on two-dimensional model studies he did for the USGS in the late 1980's to assess the effects of dredging the shipping channel in Tampa Bay. Dr. Goodwin's studies, contained in SOBAC Exs. 69 and 70, suggested the existence of "gyres" in Tampa Bay. But no "gyres" have been observed, and it now appears that these gyres actually do not exist but are two- dimensional modeling artifacts, as shown by state-of-the-art three-dimensional modeling of Tampa Bay. In an earlier version of Dr. Luther's Tampa Bay model, an experiment was performed running the model in a vertically average mode to mimic the two-dimensional model. In this mode, the model was able to reproduce the "gyres" that Dr. Goodwin observed in his two- dimensional model. When the physical equations that related to pressure forces (baroclines) were reactivated in the three- dimensional model, the "gyres" disappeared. In addition, this experiment showed that the two- dimensional model simulation showed residence times an order of magnitude longer as compared to the full three-dimensional simulation. This means that residence time would be 10 times longer in the two-dimensional model than in the three- dimensional model, which takes into account baroclinic forces. Subsequent to the publication of his modeling studies (SOBAC Exs. 69 and 70), Dr. Goodwin found that it would take approximately 110 days for water to travel from the mouth of the Hillsborough Bay to the mouth of Tampa Bay in 1985. This calculation by Dr. Goodwin was not subjected to peer review or the USGS process. However, dividing the 110-day time period with correction factor of 10 discussed above, Dr. Goodwin's corrected estimate would predict an 11-day period for transport of water from Hillsborough Bay to the mouth of Tampa Bay--similar to the Blumberg Study and far-field model results. Opinions of Other SOBAC Experts Besides Dr. Goodwin, SOBAC also elicited some general opinions regarding the combined thermal and salinity plume from Dr. Mike Champ, called as an expert in the areas of environmental biology and chemistry, and from Dr. Wayne Isphording, called as an expert in sedimentology and geochemistry. In part, Dr. Champ based his opinion on a misunderstanding that Tampa Bay is not well-mixed or well- circulated at the location of the Big Bend power plant. In this respect, Dr. Champ's testimony was contrary to all the evidence. Even the "gyres" suggested by Dr. Goodwin's two- dimensional model studies would suggest a great deal of mixing in Middle Tampa Bay in the vicinity of the Big Bend plant. To the extent that the opinions of Dr. Champ and Dr. Isphording differed from the modeling results, they are rejected as being far less persuasive than the expert opinions of the modelers called by TBD, who spent far more time and effort studying the issue. Compliance with Dissolved Oxygen Standard Oxygen is a gas which can dissolve in water to some degree. There are two measurements of DO in water: saturation point and actual level. The saturation point of DO in water equates to the maximum amount of DO that water will hold. The actual level of DO is a measurement of the oxygen in the water. Since the saturation point is the maximum amount of DO that water will hold in equilibrium, the actual level of DO in water is typically equal to or lower than the saturation point. Desalination will affect the saturation point of DO to the extent that it increases salinity. Increased salinity decreases the saturation point of DO because it lowers the potential for water to hold oxygen. But desalination would not affect the actual level of DO in the water if the saturation point remains above the actual level of DO in the water. TBD determined that in the worst case scenario using undiluted desalination discharge, the lowest possible saturation point of DO would be 5.7 mg/l. If the actual level of DO is above 5.7 mg/l, desalination may lower that actual level of DO to 5.7 mg/l. If the actual level of DO is below 5.7 mg/l, desalination will not lower the DO. Since TBD will aerate the water in the pretreatment process, if the actual level of DO is below 5.7 mg/l, the actual level of DO in the discharge water will be increased. The permit DEP proposes to issue to TBD requires that DO at the point of discharge from the RO plant meet the following: that instantaneous DO readings not depress the intake DO when intake DO is at or below 4.0 mg/l, and that they be greater than or equal to 4.0 mg/l when intake DO is greater than 4.0 mg/l; that 24-hour average readings not depress the 24-hour average intake DO when the 24-hour average intake DO is at or below 5.0 mg/l, and that they be greater than or equal to 5.0 mg/l when the 24-hour average intake DO is greater than 5.0 mg/l. The evidentiary basis for SOBAC's argument that the proposed permit's DO limitation allowed violations of state water quality standards was the testimony of Dr. Champ. But it was evident from his testimony that Dr. Champ was not even aware of the effluent limitations until they were pointed out to him at final hearing. Nonetheless, and although Dr. Champ barely had time to read the DO limitations, Dr. Champ immediately opined that the proposed DO limitations virtually invited water quality violations. He dismissed the permit language out-of-hand as being "loosey-goosey," "fuzzy-wuzzy," and "weasel-like." Actually, there is no conflict between the proposed permit's DO limitations and the water quality standards and water quality criteria in DEP's rules. Other witnesses, particularly Tim Parker of DEP, properly compared the language in the permit with DEP's rules containing water quality standards and water quality criteria. Mr. Parker pointed out that the rules must be read in harmony with each other. Rule 62-302.530(31) contains DO water quality criteria and requires that the "actual DO shall not average less than 5.0 in a 24 hour period and shall never be less than 4.0." Rule 62-302.300(15), a water quality standard, states: Pollution which causes or contributes to new violations of water quality standards or to continuation of existing violations is harmful to the waters of this State and shall not be allowed. Waters having a water quality below the criteria established for them shall be protected and enhanced. However, the Department shall not strive to abate natural conditions. Mr. Parker testified that the "natural conditions" referred to in Rule 62-302.300(15) are those found in the intake water to the desalination facility. TBD will not violate either the water quality criteria or the water quality standard for DO. If the actual level of DO in the intake water is less than 5.0 mg/l, TBD will not decrease the actual level of DO in the water below 5.0 mg/l because the actual level of DO is below the worst case saturation point of 5.7 mg/l. The water quality standard in Rule 62-302.300(15) does not prohibit discharges having DO levels below 4.0 mg/l when that discharge does not cause or contribute to existing DO violations. TBD will not cause or contribute to existing DO violations because if the level of DO in the intake water which is the natural condition is less than 4.0 mg/l, TBD will not decrease the actual level of DO in the water. To the contrary, the desalination process will increase the actual level of DO whenever it is below 5.0 mg/l. TBD has provided reasonable assurance that the proposed desalination discharge will not violate the DO water quality standards and criteria in Rules 62-302.530(31) and 62- 302.300(15) because the desalination process will not decrease the actual level of DO below 5.0 mg/l. SOBAC argued that DO levels will drop between intake and discharge as a result of desalination. Some of this argument was based on the testimony of Dr. Mike Champ, one of SOBAC's expert witnesses. But Dr. Champ's testimony on this point (and several others) is rejected as being far less persuasive than the testimony of the expert witnesses for TBD and the other parties. See Finding 196, infra. SOBAC's argument apparently also was based on a fundamental misapprehension of the results of the Blumberg Study, which SOBAC cited as additional support for its argument that desalination will decrease DO at the discharge point. The Blumberg Study only spoke to desalination's effect on DO saturation concentrations, not to its effect on actual DO levels. (In addition, contrary to SOBAC's assertions, the Blumberg Study did not model DO saturation concentrations but only inferred them.) pH The pilot plant measured and analyzed the potential for pH changes in the desalination process and demonstrated that the desalination process reduced pH by no more than a tenth of a pH unit. pH ranges in natural seawater from top to bottom change over one full pH unit; a tenth of a pH unit change would be well within the natural variation of the system. TBD has provided reasonable assurances that the proposed desalination discharge will not violate Rule 62- 302.530(52)(c), which requires that pH shall not vary more than one unit above or below natural background of coastal waters, provided that the pH is not lowered to less than 6.5 units or raised above 8.5 units. Limitations for pH in the permit ensure compliance with Rule 62-302.530(52)(c) at the point of discharge to waters of the state. Temperature Nothing in the desalination process adds heat to the discharged water. To the contrary, the desalination process may dissipate heat due to the interface of the intake water with the air surface in the pretreatment process. Further, the effect of removing 25 mgd of heated cooling water as desal product water reduces the heat load coming out of the TEC plant cooling water discharge by that same 25 mgd. Temperature readings taken as part of the pilot plant study confirm a slight decrease in temperature across the desalination process. Metals The pretreatment process employed by TBD will result in a reduction in metals in the treated water. Ferric sulfate is added to the intake water upstream of the sand filters in the pretreatment process to precipitate metals into solid material which can be captured by the sand filters. Adding ferric sulfate in the pretreatment process results in a net reduction in the total mass load of metals in the discharge water. Initial calculations in the permit application that 104 pounds of ferric sulfate were being discharged in the desalination concentrate were based on using 20 mg/l of ferric sulfate and a conservative estimate of 95 percent settling of solids, with 5 percent of the ferric sulfate being discharged in the desalination concentrate. Further testing through the pilot plant revealed that coagulation optimizes at 9 to 14 mg/l of ferric sulfate with 97.5 percent of the solids settling, resulting in only 2.5 percent (52 pounds) of the ferric sulfate being discharged per day. The desal facility discharge of iron is minute in comparison to naturally occurring metals within the surface water flowing into Tampa Bay from the Hillsborough and Alafia Rivers. Increases in iron due to ferric sulfate addition are predicted to result in a diluted discharge in which the iron level is still below Class III marine surface water limitation of 0.30 mg/l. Even SOBAC witness Dr. Isphording confirmed that there are no concerns caused by metals that TBD is adding during the process. Discharge Effect on Metal Absorption/Desorption Dr. Isphording limited his concerns to the reaction of higher salinity, DO, and redox to the sediments already contained within the area beyond the discharge point. Dr. Isphording admits that he cannot quantify what the potential release of heavy metals would be due to these factors. Absorption of metals occurs when an organic or clay particle attracts to its surface a metal. Biota do not obtain metals if the metal is held in sand or silt size particles. Biota, be they plant or animal, in most cases obtain the metals they receive from tiny particles that are suspended in the water called microparticulate material. Microparticulate material is generally referred to as colloidal phase. Typically, this phase is on the order of a tenth of a micron in size. Biota obtain metals only if they are present at clay- size particles. Only 10 percent of the quantity of metals that are theoretically available to the biota in a given environment is actually absorbed in tissues. Salinity Has Little Effect on Metals Salinity does not exert a controlling influence on absorption/desorption reactions except at very low salinities. If the salinity is zero, which is essentially a pure freshwater environment, and the salinity level then rises 3 ppt, there would be profound changes in the metal loads, for example, where rivers meet estuaries or seawater. When salinity levels in the water are on the order of 25 ppt, small salinity perturbations such as 2.5 ppt will have a very small effect on absorption/desorption reactions. In fact, the influence can be either positive or negative, but in general they are going to be quite small. Potential releases or gains of metal from salinity changes of 2.5 ppt, at the area of the discharge canal, would be difficult to predict, and it is uncertain whether the change would be positive or negative. pH Will Have Virtually No Effect on Metals Although SOBAC witness Dr. Isphording knew of no change to pH caused by the desalination process, he testified to the alleged effect of lowered pH on the metal in the sediments and water column. Only large pH differences can have a significant influence on absorption or desorption of metals. Any effect on absorption from a decrease in pH on the order of a tenth of a pH unit will be hidden within the natural variations of the estuarine system. See Finding 140, supra. Effect of Lower Oxygen Levels on Metals Redox is basically an oxidation-reduction phenomenon. In order for the low levels of oxygen to have a reducing effect resulting in a release of metals from sediments, virtually all of the oxygen would have to be removed from the water. Basically, the environment would have to reach anoxic conditions. Even then, some metals such as copper would remain within the sediments. In an oxygen-buffered system, redox perturbations will not significantly or measurably mobilize metals. Sediments can be oxidizing in the upper part and then generally become more reducing at depth. The area near the desal discharge does not have organic-rich deep sediment. Proposed Discharge Effect on Bioavailability of Metals The proposed desalination plant's discharge will not increase the bioavailability on metals above that of natural variations and any changes would be hard to discern or measure. Nor will there be any appreciable accumulation of metals in sediments in the receiving water resulting from the proposed desalination discharge. DEP has not established any sediment quality standard and monitoring of sediments is not a NPDES requirement. The desalination plant does not result in violations of Class III marine surface water criteria and standards. No Synergistic Effects Caused by Discharge There are no synergistic effects from the proposed discharge wherein the combination of two elements such as temperature and salinity together would create a new effect. Instead, pH, redox, salinity, and temperature may have small, immeasurable effects that may offset each other. No Adverse Impacts to Biota Comprehensive species lists of phytoplankton, zooplankton, benthic macroinvertebrates, fish, aquatic flora (including seagrasses and mangrove species), and threatened or endangered species inhabiting the area were prepared based on extensive review of applicable scientific literature on Tampa Bay. The salinity tolerance ranges of these species were determined through extensive review of information on salinity ranges associated with species capture, laboratory studies, review of studies addressing species types and salinity tolerances in hypersaline estuaries, and species salinity tolerances determined for other desalination projects. When background salinity is above 10 ppt, changes in salinity of a few ppt have no effect on most organisms. Lower salinities are more detrimental than high salinities to most marine organisms, as long as the upper limit does not exceed a value of approximately 40 ppt salinity. Most planktonic species and life forms can tolerate salinities of up to 40 ppt. Mangrove and seagrass species living in the area can tolerate salinity levels as high as 60 ppt. Benthic macroinvertebrates in the area routinely experience, tolerate and survive in salinity levels ranging from approximately 6 ppt to over 39 ppt under natural environmental conditions. Fish species in the area routinely experience and tolerate salinity levels as high as 39 to 40 ppt under natural environmental conditions. Estuaries serve as fish nurseries because fish species lay their eggs in estuaries, and the larval and juvenile life stages live and mature in estuaries. Due to extreme range of conditions that naturally occur in estuaries, fish reproductive strategies have adapted to enable fish eggs and larval and juvenile life stages to tolerate the wide range of natural conditions, including ranges in salinity levels, that are endemic to estuaries. Egg, larval, and juvenile fish stages may be better able to tolerate extreme range of salinities than adults life stages. A 2.5 ppt increase in salinity and the permitted maximum increase of 10 percent above the intake chloride level is within the range of tolerance and variability that seagrasses, mangrove species, benthic macroinvertebrates, biota, fishes, manatees, zooplanktonic and phytoplanktonic species, and other organisms and life forms living in Tampa Bay routinely encounter and tolerate in the natural environment. A 2.5 ppt increase in salinity with the maximum permitted salinity discharge limit of 35.8 ppt of salinity and the permitted maximum increase of 10 percent above the intake chloride level will not adversely affect the survival or propagation of seagrasses, mangroves, benthic macroinvertebrates, biota, zooplankton, phytoplankton, fish, fish eggs, or juvenile life stages of fish species, or other organisms or life forms in Tampa Bay, and specifically the portion of Tampa Bay in the vicinity of the desalination plant discharge. The Shannon-Weiner Index, which is a biological integrity index codified at Rule 62-302.530(11), requires that the index for benthic macroinvertebrates not be reduced to less than 75 percent of established background levels. Since there will be no adverse impacts to benthic macroinvertebrates due to the desalination discharge and since the level of salinity increases anticipated will tend to benefit benthic macroinvertebrates population, TBD has met the criterion in Rule 62-302.530(11). The Mote Marine Laboratory data showed that Tampa Bay experienced a 2.0 ppt change in salinity over the course of one month. No fish kill or observable die-offs of species were observed or reported from this natural occurrence of elevated salinity. The desalination discharge will (1) not adversely affect the conservation of fish and wildlife, including endangered species, or their habitats, (2) not adversely affect fishing or water-based recreational values or marine productivity in the vicinity of the proposed discharge, (3) not violate any Class III marine water quality standards, and (4) maintain water quality for the propagation or wildlife, fish, and other aquatic life. The desalination discharge meets the antidegradation standards and policy set forth in Rules 62-4.242 and 62- 302.300. Discharge Disposal Options Analyzed As part of the permitting process, TBD demonstrated that the use of land application of the discharge, other discharge locations, or reuse of the discharge was not economically and technologically reasonable, pursuant to Rule 62-4.242. TBD submitted a sufficient analysis of these options as part of its Antidegradation Analysis. (TBD Ex. 1G; TBD Ex. 200, Fact Sheet, p. 16). Further Protection in the Permit The permit review of the desalination permit application is one of the most thorough ever conducted by DEP. The proposed permit has conditions which create and provide a wide margin of environmental protection. The permit sets effluent limitations of various constituents which are reasonably expected to be in the desal facility discharge and provides for monitoring programs to ensure compliance with those effluent limitations. The monitoring requirements of the proposed permit exceed the monitoring requirement imposed on other facilities in the Tampa Bay area. Effluent Limitations DEP established effluent limitations using the Class III marine state water quality standards, data provided from the pilot plant regarding the chemical characterization, the modeling conducted by DHI and the University of South Florida, and the water quality data collection by Mote Marine Laboratory in connection with the establishment of the WQBEL. The effluent limitations contained in the permit are consistent with DEP rules. The proposed permit restricts TBD to the lesser of either the chloride limit of 10 percent above intake or the salinity limit of 35.8 ppt. There is no state water quality standard for salinity. The permit limit for chlorides complies with Rule 62- 302.530(18). The permit's additional requirement of a minimum dilution ratio has the effect of limiting chlorides to 7 percent above intake for 384 hours per year and 5 percent above intake for the remainder of the year and thus provides extraordinary assurance that the state water quality standard for chlorides will be met. Dr. Champ was SOBAC's primary witness in support of its argument that the proposed permit allows a discharge with excessive salinity. But it was apparent from his testimony that Dr. Champ misinterpreted the permit limitations for salinity. See Finding 196, infra. Dr. Champ conceded that the chloride limit of 10 percent above intake was appropriate but focused on the 35.8 ppt maximum, as if it overrode the chloride limitation. As found, the opposite is true. TBD will be limited to 10 percent above intake for chlorides even if the result is salinity far less than the daily maximum of 35.8 ppt. Dr. Champ also had concerns about comparing the discharge to intake chloride levels as not being representative of "normal background." He argued (as does SOBAC) for comparing discharge to chloride levels somewhere else in Middle Tampa Bay, nearby but far enough away to insure no influence from the discharge. But the modeling evidence provided reasonable assurance that there will not be a great deal of recirculation of discharge to intake and that the recirculation expected will not cause salinity to build-up continuously over time. The modeling evidence is accepted as far more persuasive than Dr. Champ's testimony. See Finding 196, infra. The only metals for which effluent limitations were established in the permit are copper, nickel, and iron because these were the only metals determined to be close to the state water quality standard levels by the pilot plant studies. The actual levels of such metals in the desalination discharge will be less than those in the pilot plant testing because the dilution ratio (12.8 to 1) used in the pilot testing is much higher than the minimum dilution ratio required by the permit (20 to 1). The permit effluent limitations for copper, nickel, and iron are based on, and comply with, DEP Rules 62- 302.500(2)(d) and 62-302.530(24), (39) and (45). The permit effluent limitations for Gross Alpha are based on and comply with the requirements in Rule 62- 302.530(58). Biological treatment of the desalination plant discharge concentrate is not required because it consists of seawater. Monitoring for Effluent Limitations DEP is able to separately determine TEC's compliance with its permit from TBD's compliance with the effluent limitations in the proposed desalination permit because of how the facility is designed and the monitoring is constructed. Monitoring requirements in the proposed permit were determined with reference to the probability of desal facility discharge exceeding specific water quality standards. DEP rules do not require monitoring for each and every constituent detected above background concentrations, only those which would probably exceed state water quality standards. The permit requires monitoring of effluent limitations at the intake to and discharge from the desalination facility and the calculation of the diluted effluent levels in the co-mingled discharge water. In order to calculate the effluent components in the diluted discharge water, continuous monitoring is performed on the TEC cooling water discharge rate of flow. Parameters of DO, conductivity, salinity, chlorides, copper, iron, nickel, radium, gross alpha, and effluent toxicity are measured at both intake and discharge pursuant to proposed permit. Monitoring of Intake Monitoring of the intake will be located, after interception off TEC Units 3 and 4, prior to entering the desalination plant. Using a sampling location of the intake to the desalination facility prior to filtering or chemical addition for background samples is consistent with the definition of "background" in DEP Rule 62-302.200(3). EPC Stations 11, 80, 81, 13, and 14 are not proper locations for background samples because salinity varies with tides and depth and those stations are too distant from the actual intake point. EPC station 9 is not a good location because it is closer to the discharge than the permit sample point. Monitoring of Discharge Monitoring of the discharge will take place in the wet well prior to discharge into TEC's cooling water discharge tunnels. This monitoring location is in compliance with Rule 62-620.620(2)(i) which provides for monitoring of effluent limitations in internal waste streams. Monitoring of the desal facility discharge concentrate in each of the four cooling water discharge tunnels is impractical due to the high volume of dilution and addition of four potential discharge locations. Once the desal facility concentrate is diluted by the TEC cooling water discharge, it is much more difficult to obtain accurate water quality testing for constituents at such minute levels. Monitoring of the Combined Discharge Concentrations Calculations determine the mixing ratios of the desalination concentrate with TEC's cooling water. Using the flow data from TEC, the calculations will accurately determine the water quality of the co-mingled discharge water. Compliance with Permit Effluent Limitations The proposed permit requires TBD to monitor constituents for which there are effluent limitations on either a daily, weekly or monthly basis, depending on the constituent. The frequency of monitoring for each constituent is based on comparing the expected levels of the constituent to the water quality standard and analyzing the probability of the desal facility discharge exceeding that standard. The monitoring provides additional assurances beyond the pilot plant studies, testing and modeling that no water quality standard will be violated. Continuous monitoring is not necessary to successfully monitor discharges. Monthly measurements are sufficient to determine compliance even for a daily permit level because the chemical characterization studies provide reasonable assurances that the desalination concentrate will not exceed the effluent limitations. Monthly monitoring provides further checks and balances to assure that the desalination discharge is in conformance with the effluent limitations and DEP rules. The EPA only requires that monitoring occur at least once a year. Conductivity provides a direct correlation to salinity and chlorides. Measuring conductivity provides salinity and chloride levels by basis of calculations and is typically used as a surrogate for monitoring chloride and salinity continuously. Salinity and chloride cannot themselves be measured continuously because they are measured by lab tests. The permit requires conductivity to be monitored continuously, not because DEP believed the desalination discharge would be near the chloride limitation, but rather to be extremely conservative. The permit conditions treat an exceedance of salinity or chlorides based on conductivity readings to be a violation of the permit effluent limitations for salinity and chlorides. TBD provided reasonable assurance to DEP that the proposed desalination discharge would not violate the DO water quality standards and criteria in Rules 62-302.530(31) and 62- 302.300(15). The permit condition requiring monitoring of DO provides verification that desal facility discharge will meet the DO water quality standards. Even SOBAC's witness Dr. Champ admitted that a continuous measurement for DO is not as valuable as random weekly samples. External Monitoring Programs The proposed permit requires TBD to develop and submit to DEP a Biological Monitoring Program to monitor seagrasses, benthic macroninvertebrates and fish populations to be consistent with existing Tampa Bay monitoring programs. This program will provide an effective means of monitoring the potential impacts of the desalination discharge. The proposed permit also requires TBD to implement a Water Quality Monitoring Program for three monitoring stations located proximal to the intake, the discharge and the North Apollo Beach Embayment which will monitor conductivity, salinity, DO and temperature continuously. These monitoring programs will provide additional ambient data to DEP. If the data indicate an exceedance or reasonable potential for an exceedance of water quality standards, DEP may reopen the permit in accordance with the reopener clause contained in the permit. These monitoring programs go beyond the requirements in DEP rules. Additionally, DEP does independent monitoring of NPDES discharges without notice and on a purposely unpredictable basis. Proof of Financial Responsibility Rule 62-620.301(6) addresses when DEP may require a permit applicant to submit proof of financial responsibility to guarantee compliance with Chapter 403, Florida Statutes. TBD's compliance history was taken into consideration during the permitting process. Adequate financial assurance were provided in the permit application. (TBD Ex. 1I). Further, the permit conditions added by the settlement agreement (TBD Ex. 470) provide for additional financial assurance beyond those that can be required by the NPDES program and DEP rules. Additional Comment on SOBAC's Evidence As already indicated, SOBAC elicited the testimony of several expert witnesses at final hearing to support its contentions. But none of SOBAC's experts spent a great deal of time studying TBD's desal project, especially compared to witnesses for the other parties. Mostly, SOBAC experts expressed general scientific principles that were not directly tied to specifics of the desal project or were very general expressions of concern. Often, SOBAC's experts were not familiar with all the efforts of experts offered by the other parties to address those very concerns. Except for Dr. Champ, no SOBAC expert opined that the proposed permits would result in violations of DEP statutes and rules. Some SOBAC experts expressed opinions that only would be relevant if there were insufficient assurances in proposed permits that DEP statutes and rules would not be violated. Statistical evidence presented was not particularly relevant. Dr. Goodwin As previously mentioned, Dr. Carl Goodwin was willing to provide testimony on work he did for the USGS, but he gave no expert opinions on the permits which are the subject of these proceedings. As also previously discussed, his two- dimensional model studies were constrained by computational limitations. Even so, his studies indicated that flushing in Tampa Bay was becoming more rapid in recent years. In addition, even if the "gyres" suggested by his two-dimensional studies actually existed, they would tend to promote mixing in Tampa Bay in area of the Big Bend power plant. Dr. Champ Dr. Champ's first opinion was that 35.8 ppt is too high a salinity limit and would result in "oceanic" conditions. He attempted to compare this result to results of diversion of substantial amounts of freshwater inputs to the Black Sea for agricultural purposes--a totally different situation not suitable for comparison to Tampa Bay. Initially, Dr. Champ suggested a limitation of a 10 percent increase above "background" or "ambient" conditions; it was apparent that initially Dr. Champ was not cognizant of the 10 percent over intake chloride limitation in the proposed permit. When he was made aware of the chloride limit, he misinterpreted the two limits, saying that TBD would not be limited to the lower of the two. When it was suggested that he might have misinterpreted the two salinity limits, Dr. Champ testified that chlorides should be compared to a "natural" or "environmental" control site somewhere nearby but outside the influence of the combined TEC/TBD discharge; he said it was a "farce" to compare chlorides to a control site "inside the plant." In so doing, he seemed not to recognize the purpose of the comparison made in the proposed permit--to isolate and identify the impacts of TBD's desal process. In addition, dismissing without much consideration the contrary results of extensive and sophisticated modeling, Dr. Champ opined off- handedly that DO would decrease due to higher salinity that would recirculate and build-up over time. In part, Dr. Champ based this opinion on his misunderstanding that Tampa Bay is not well-mixed or well-circulated at the location of the Big Bend power plant. This was contrary to all the evidence; even if the "gyres" predicted by Dr. Goodwin's two-dimensional model existed, they would suggest a great deal of mixing in Middle Tampa Bay in the vicinity of the Big Bend plant. Dr. Champ next misinterpreted the DO limits in the proposed permit. See Finding 133, supra. Dr. Champ then predicted a decrease in species diversity as a result of higher salinity and lower DO. (To the contrary, salinity increases in the amounts predicted by the far greater weight of the evidence probably would result in somewhat of an increase in species diversity.) Ultimately, Dr. Champ testified that consequences to marine organisms would be dire, even if salinity increased only by 2.5 ppt, because a "salinity barrier" would form across Middle Tampa Bay in contrast to more gradual natural changes in salinity. The far greater weight of the evidence was to the contrary. Dr. Champ made several suggestions to avoid the calamitous results he predicted: require use of a cooling tower to reduce the temperature of the combined TEC/TBD discharge; collect the desal brine concentrate and barge it to the Gulf of Mexico; require intake and discharge pipes extending into the shipping channel in Middle Tampa Bay. But Dr. Champ did not study or give a great deal of thought to implementation of these suggestions. Besides, the other parties proved that these measures were not needed for reasonable assurances. In an attempt to buttress his opinion testimony, Dr. Champ also testified (along with SOBAC's President, B.J. Lower) that the TEC intake canal is virtually devoid of life and that biodiversity in the discharge canal is very low. This testimony was conclusively refuted by the rebuttal testimony of Charles Courtney, who made a site visit after SOBAC's testimony and described in detail a significant number of healthy species in the intake canal, including oyster communities, xanthid crabs, porcellanid crabs, snook, anemones, bivalves, polychaete, and mangroves with seedlings. Of the one and one- half pounds of oysters that Mr. Courtney sampled, he estimated that approximately fifty percent of those oysters were living, which represents a very healthy community. Mr. Courtney further noted that some of the crabs were carrying eggs, which indicates an active life cycle for those species. As to the TEC permit modification, Dr. Champ testified that it was “in-house stuff” which would not affect the environment outside the TEC plant. No other SOBAC witness addressed the TEC permit modification. Dr. Isphording SOBAC called Dr. Wayne Isphording as an expert in sedimentology and geochemistry. Dr. Isphording expressed no concern that the desal process would add metals to Tampa Bay. Essentially, he gave opinion testimony concerning general principles of sedimentology and geochemistry. He testified that heavy metals bound in sediments are released naturally with increases in salinity, but that salinity levels would have to be extreme to result in the release of abnormal quantities of such metals. He admitted that he had performed no studies of sediments in Tampa Bay and declined to offer specific opinions that metals in fact would be released as a result of predicted salinity increases. Dr. Isphording admitted that he knew of no condition in the proposed Desal Facility permit which would cause or allow a violation of state water quality standards. He was aware of no statute or rule requiring more monitoring and testing than is required in the proposed permit. Dr. Parsons SOBAC offered the testimony of Dr. Arthur Rost Parsons, an assistant professor of oceanography at the Naval Postgraduate School, in an attempt to raise questions regarding the near-field and far-field modeling which were provided by TBD to DEP during the course of the permitting process. However, not only had Dr. Parsons not done any modeling in Tampa Bay himself, he was not provided numerous reports and clarifications relating to the studies he was called to critique. He only reviewed an interim report dated November 1, 2000, regarding the near-field model. Dr. Parsons testified that the DHI model used for the near-field study was an excellent shallow water model. He found nothing scientifically wrong with it and testified that the "physics and the model itself is . . . well–documented." Dr. Parsons also did not contradict the results of the DHI model. Instead, he noted that the modeling task was difficult and complex, he described some of the model's limitations, and he testified to things that could have been done to increase his confidence in the model results. One of Dr. Parson's suggestions was to run the model longer. But the evidence was that, due to the model's complexity and high computational demands, it would have been extremely expensive to run the model for longer periods of time. Another of Dr. Parson's suggestions was to use salinity data would be to use the information that the model itself generated with regard to salinity distributions instead of a homogeneous set of salinity data. Dr. Parsons was concerned that use of homogeneous salinity data would not reflect the effect of "double diffusion" of heat and salinity, which would result in sinking of the combined heat. But engineer Andrew Driscoll testified in rebuttal that the effects of "double diffusion" would cease once equilibrium was reached and would not result in a hypersaline plum sinking to the bottom. In addition, he testified that turbulent mixing from tide and wind would dominate over the effect of "double diffusion" at the molecular level so as to thoroughly mix the water, especially in the shallow North Apollo Beach Embayment. Dr. Parsons also suggested that the model be run for rainy season conditions to see if the effects of vertical stratification would increase. But even if vertical stratification increased as a result of rain, salinity also would be expected to decrease. The scenario modeled was "worst case." Dr. Parsons also suggested the use of a range of temperatures for the combined heat/salinity plume instead of an average temperature. However, he conceded that it was not inappropriate to use average temperature. Instead, he would have liked to have seen the model run for a range of temperatures to see if the model was sensitive to temperature differences so as to increase his confidence in the results. Dr. Parson's testimony focused on the near-field model. His only comment on the far-field model was that he thought it should have used the out-puts from the near-field model (as the near-field used the outputs). Scott Herber SOBAC offered no direct testimony on the impact of the Desal Facility discharge on seagrasses in Tampa Bay. The testimony of Steve Herber, a doctoral student at the Florida Institute of Technology, related to the vulnerability of seagrasses, in general, to changes in salinity. However, Mr. Herber had no specific knowledge of the seagrasses present in Tampa Bay and had not performed or reviewed any scientific studies upon which his opinion could be based. He reached no conclusions about the specific permits at issue in this proceeding, nor about the effect of the Desal Facility on seagrasses in Tampa Bay. In contrast to Mr. Herber, the testimony of TBD's expert, Robin Lewis, and SWFWMD's expert, Dr. David Tomasko, provided detailed information about the seagrasses located in Tampa Bay. Both have studied seagrasses in Tampa Bay for many years and have been involved in mapping seagrass distribution in a variety of bays and estuaries along the west coast of Florida. Dr. Tomasko criticized witnesses for SOBAC who attempted to draw conclusions about Tampa Bay based on studies of other bays and estuaries because each bay has unique characteristics that cannot be extrapolated from studies of other bays. Dr. Tomasko and Lewis testified that seagrasses in Tampa Bay are becoming more abundant, that dissolved oxygen levels are increasing, and that water clarity in Tampa Bay is also improving. Dr. Mishra Dr. Satya Mishra was called by SOBAC as an expert in statistics. He is not an expert in the discrete field of environmental statistics. He has never been involved in the development of a biological monitoring program and could not provide an opinion regarding what would be an adequate sample size for this permit. He essentially expressed the general opinions that for purposes of predictive statistical analysis: random sampling is preferred; statistical reliability increases with the number of samples; and 95 percent reliability is acceptable. Dr. Mishra performed no statistical analysis in this case and could not conclude that the sampling provided in the proposed permit would not be random. Ron Chandler Ron Chandler, a marketing representative for Yellow Springs Instrument Corporation (YSI), simply testified for SOBAC regarding the availability of certain types of continuous monitoring devices. He did not offer any opinions regarding whether or not reasonable assurance required continuous monitoring of any specific parameter or any monitoring different from or in addition to what is proposed in TBD's proposed permit. John Yoho SOBAC called John Yoho as a financial and insurance expert to criticize the terms of an agreement by TBD, TBW, and DEP to settle Hillsborough County's request for an administrative hearing (DOAH Case No. 01-1950). This agreement is contained in TBD Ex. 470. But Yoho admitted that he had no knowledge regarding what is required to obtain an NPDES permit in terms of financial assurances. He also indicated that none of his testimony should be understood as relating in any way to financial assurances required for such a permit to be issued. Alleged Improper Purpose The evidence did not prove that SOBAC participated in DOAH Case No. 01-2720 for an improper purpose--i.e., primarily to harass or to cause unnecessary delay or for frivolous purpose or to needlessly increase the cost of licensing or securing the approval of TEC's permit modification applications. To the contrary, the evidence was that SOBAC participated in this proceeding in an attempt to raise justifiable issues arising from the peculiarities of the relationship of TEC's permit modification application to TBD's permit application. Although SOBAC suffered adverse legal rulings that prevented it from pursuing many of the issues it sought to have adjudicated on TEC's permit modification application, it continued to pursue issues as to the TBD permit application which, if successful, could require action to be taken on property controlled by TEC and, arguably, could require further modification of TEC's permit.
Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the Florida Department of Environmental Protection enter a final order: (1) issuing the proposed permit number FL0186813-001-IWIS, as set forth in TBD Ex. 203 with the addition of the two permit conditions specified in TBD Ex. 470; (2) issuing proposed permit modification number FL0000817-003-IWIS, as set forth in TBD Ex. 225; and (3) denying TEC's request for attorney's fees and costs from SOBAC under Section 120.595(1). Jurisdiction is reserved to enter an order on TBD's Motion for Sanctions filed on August 13, 2001, regarding SOBAC expert Ralph Huddleston. DONE AND ENTERED this 17th day of October, 2001, in Tallahassee, Leon County, Florida. __________________________________ J. LAWRENCE JOHNSTON Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 17th day of October, 2001. COPIES FURNISHED: W. Douglas Beason, Esquire Department of Environmental Protection 3900 Commonwealth Boulevard The Douglas Building, Mail Station 35 Tallahassee, Florida 32399-3000 William S. Bilenky, Esquire Southwest Florida Water Management District 2379 Broad Street Brooksville, Florida 34604 Ralf G. Brookes, Esquire Morgan & Hendrick 1217 East Cape Coral Parkway Suite 107 Cape Coral, Florida 33904-9604 Donald D. Conn, General Counsel Tampa Bay Water 2535 Landmark Drive, Suite 211 Clearwater, Florida 33761-3930 Lawrence N. Curtin, Esquire Holland & Knight, LLP 315 South Calhoun Street, Suite 600 Post Office Box 810 Tallahassee, Florida 32302-0810 Douglas P. Manson, Esquire Carey, O'Malley, Whitaker & Manson, P.A. 712 South Oregon Avenue Tampa, Florida 33606-2543 E. A. Seth Mills, Jr., Esquire Fowler, White, Gillen, Boggs, Villareal & Banker, P.A. 501 East Kennedy Boulevard, Suite 1700 Post Office Box 1438 Tampa, Florida 33601-1438 Joseph D. Richards, Esquire Pasco County Attorney's Office 7530 Little Road, Suite 340 New Port Richey, Florida 34654-5598 Cathy M. Sellers, Esquire Moyle, Flanigan, Katz, Raymond & Sheehan, P.A. 118 North Gadsden Street Tallahassee, Florida 32301-1508 Linda Loomis Shelley, Esquire Fowler, White, Gillen, Boggs, Villareal & Banker, P.A. Post Office Box 11240 Tallahassee, Florida 32302 Kathy C. Carter, Agency Clerk Office of General Counsel Department of Environmental Protection 3900 Commonwealth Boulevard, Mail Station 35 Tallahassee, Florida 32399-3000 Teri L. Donaldson, General Counsel Department of Environmental Protection 3900 Commonwealth Boulevard, Mail Station 35 Tallahassee, Florida 32399-3000 David B. Struhs, Secretary Department of Environmental Protection 3900 Commonwealth Boulevard The Douglas Building Tallahassee, Florida 32399-3000
The Issue The issue presented is whether Respondent Seanic Corporation's application for an operating permit for a domestic wastewater treatment facility should be granted.
Findings Of Fact On January 20, 1994, Respondent Seanic Corporation submitted to Respondent Department of Environmental Protection an application to construct a wastewater treatment and disposal facility. The application requested approval to construct a facility with a design capacity of 15,000 gallons per day and to discharge its treated effluent to G-III groundwater through two Class V injection wells. Although the Department had no rules with specific depth requirements for such wells, the plans that accompanied the application contemplated wells with a total depth of 90 feet below land surface, which would be cased down to a depth of 60 feet below land surface. On February 23, 1994, the Department gave notice of its intent to issue the requested construction permit. Petitioners did not challenge the issuance of the construction permit, and the Department issued the permit on April 22, 1994, with an expiration date of five years after the issuance of the permit. On February 17, 1999, Seanic began construction of the permitted facility, including the construction of the two Class V injection wells. At the time the wells were first drilled, there were no statutes or rules regarding the appropriate depth of underground injection wells at a facility like Seanic's. Construction of the Seanic facility was completed before April 12, 1999, as reflected by the Certificate of Completion of Construction for the permitted facility. On April 21, 1999, Seanic filed with the Department its application to operate the facility. Chapter 99-395, Laws of Florida, became effective on June 18, 1999, approximately two months after the facility was constructed and the operating permit application was submitted. Section 5 of Chapter 99-395 defines the term "existing" to mean "permitted by the Department of Environmental Protection or the Department of Health as of the effective date of this act." Chapter 99-395 imposes different effluent limitations for "existing sewage facilities" than those that are applied to new facilities. For facilities that have a design capacity of less than 100,000 gallons per day, new facilities must provide treatment that will produce an effluent that contains no more, on a permitted annual basis, than the following concentrations: Biochemical Oxygen Demand (CBOD5) of 10 mg/L Suspended Solids of 10 mg/L Total Nitrogen of 10 mg/L Total Phosphorus of 1 mg/L These standards are frequently referred to as the "10-10-10-1 Standard." In accordance with Section 6(4) of Chapter 99-395, "existing sewage facilities" have until July 1, 2010, to comply with the 10-10-10-1 standard. Prior to that date, "existing sewage facilities" must meet effluent limitations of 20 mg/L for both CBOD5 and suspended solids and must monitor their effluent for concentrations of total nitrogen and total phosphorus. The Seanic facility is an "existing" facility, as that term is defined in Chapter 99-395, and, therefore, has until July 1, 2010, to comply with the 10-10-10-1 standard. Section 6(7)(a) of Chapter 99-395 requires Class V injection wells for facilities like Seanic's to be "at least 90 feet deep and cased to a minimum depth of 60 feet or to such greater cased depth and total well depth as may be required by Department of Environmental Protection rule." The Department has not promulgated any rules requiring Class V injection wells to be deeper than the depth prescribed in Chapter 99-395, Laws of Florida. As of January 26, 2000, the total depth of Seanic's injection wells measured 92 and 94.5 feet, respectively. On November 24, 1999, the Department entered its notice of intent to issue the operating permit applied for by Seanic and attached to the notice a "draft permit" with the conditions and effluent limitations that would be applied to the facility. In issuing the notice, the Department determined that Seanic had provided reasonable assurance that the facility will not discharge, emit, or cause pollution in contravention of applicable statutes or the Department's standards or rules. The draft permit included effluent limitations of 20 mg/L for both CBOD5 and suspended solids and required Seanic to monitor its effluent for total nitrogen and total phosphorus, in accordance with Chapter 99-395, Laws of Florida, and the Department's rules for existing sewage facilities. The draft permit notes that Seanic must comply with the 10-10-10-1 standard by July 1, 2010. Because Seanic's condominium development has not been completed and the wastewater treatment facility is not expected to go into operation for approximately one year, the draft permit also requires that the facility be re-inspected and re-certified immediately prior to going into operation. The Seanic facility was designed to create an effluent that is several times cleaner than required by Department rules. The facility uses an extended aeration process that is expected to reduce levels of both biological oxygen demand ("BOD") and total suspended solids ("TSS") to lower than 5 mg/L, concentrations that are 75 percent lower than the effluent limitations in the draft permit. Similar facilities in the Florida Keys have shown that they can achieve BOD and TSS concentrations of less than 5 mg/L. The Seanic facility has also been designed to provide a greater level of disinfection than required by law. While the draft permit requires only that the facility maintain a chlorine residual of 0.5 mg/L after fifteen minutes' contact time, the facility has been designed with larger chlorine contact tanks to provide a chlorine contact time of approximately one hour at anticipated flow rates. The facility operator can also increase residual chlorine concentrations. These facts, along with the reduced TSS levels at this facility, will provide considerably greater levels of disinfection than the law requires. Although the draft permit does not contain effluent limitations for total nitrogen or total phosphorus, the levels of these nutrients expected to be present in the Seanic facility's effluent are approximately 5 mg/L and 2-3 mg/L, respectively. Studies conducted on the rate of movement of phosphorus in the subsurface indicate that some of the phosphorus is rapidly immobilized through chemical reactions with the subsurface soil matrix. Specifically, studies conducted on injection wells in the Florida Keys report that 95 percent of the phosphorus is immobilized within a short time after entering the injection well. Studies conducted on the rate of movement of nitrates in the subsurface indicate that some nitrate migration is also retarded through chemical reactions with the subsurface soil matrix. More specifically, studies conducted with injection wells in the Florida Keys report that denitrification removes approximately 65 percent of the nitrates within a short time after the effluent enters the injection well. In addition to the chemical reduction of phosphorus and nitrogen levels in the groundwater, studies conducted on injection wells in the Florida Keys with a total depth of 90 feet and a cased depth of 60 feet have reported extremely high dilution rates by the time effluent injected into such wells would appear in surrounding surface waters. More specifically, studies using chemical and radioactive tracers have reported dilution rates on the range of seven orders of magnitude, i.e., 10 million times. After undergoing chemical reduction in the groundwater as well as extremely high dilution rates, the levels of nitrogen and phosphorus that would be expected to enter Captain's Cove and the adjacent canals will be infinitesimal, i.e., less than one part per trillion. Such levels would be several orders of magnitude below detection limits of currently available analytical methods. The surface waters in the artificial canals and in Captain's Cove surrounding the homes of Petitioners' members are classified by the Department as Class III waters that are predominantly marine. The permitted levels of fecal coliform bacteria in the facility's effluent (as restricted in the draft permit) are identical to the discharge limits for fecal coliform bacteria in Class III waters that are predominantly marine. The operation of Seanic's facility will not result in discharges of fecal coliform bacteria in excess of the applicable effluent limitations. Petitioners' expert witnesses agree that the facility, as designed, will comply with all of the conditions and effluent limitations in the draft permit. No Department rule or standard will be violated by this facility. The Department has not promulgated any effluent limitations or standards for viruses to be discharged to G-III groundwater or Class III surface waters that are predominantly marine. Petitioners' members use and enjoy the clear waters in their canals and in Captain's Cove. They have had the water quality tested four times a year since 1988. Captain's Cove, along with the adjacent canals, has remained a clear, oligotrophic water body with minimal algae growth. Petitioners' members fear that the introduction of viruses and other microorganisms through the facility's effluent will cause swimming in Captain's Cove and the adjacent canals to be harmful to their health. Their fear has been heightened by newspaper stories about viruses and a publicized study which erroneously claimed that Captain's Cove had high levels of harmful bacteria. Petitioner Port Antigua Property Owners Association ("PAPOA") received notice of the Department's intent to issue an operating permit to Seanic. The president discussed the permit with another resident, a microbiologist, who in turn discussed the facility with geologists and reviewed studies performed in the Florida Keys. Their serious concern over the depth of the injection wells and the possible release of viruses and bacteria harmful to the marine environment and to the public health was expressed throughout PAPOA's petition, and a copy of one of the tracer studies upon which they relied was attached to the petition. The president of Petitioner Port Antigua Townhouse Association, Inc. ("PATA"), who is also a member of PAPOA, discussed the Department's notice of intent with the president of PAPOA and the microbiologist. He also discussed the project with a member of PATA who oversees Broward County's wastewater treatment facility, which has the same effluent limitations as the Seanic facility. PATA members believed they should join with PAPOA and the Lower Matecumbe Key Association in requesting a hearing on Seanic's operating permit. PATA and others have also filed litigation in the Circuit Court against Seanic Corporation and others. That litigation is still pending. Petitioners were not able to cite any statute or rule that would be violated by the Seanic facility's discharge. They believe that since the facility is not yet operating, it should be required to adhere to the stricter effluent standards required for new facilities. They also believe that the Department should consider the harmful effects of viruses and bacteria on the marine environment and on the public health. Petitioners did not file their petitions for any improper purpose. They did not file their petitions for any frivolous purpose or to harass or to cause unnecessary delay or to increase Seanic's costs in obtaining an operating permit for its facility. They believed the language in the Department's notice of intent to issue the permit which advises substantially affected persons that they have a right to an administrative hearing and that the Department could change its preliminary agency action as an result of the administrative hearing process. They believe they are simply exercising a right that they have under the law.
Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that a final order be entered granting Seanic's application for an operating permit for its domestic wastewater treatment facility but denying Seanic's Motion for Attorney's Fees and Costs. DONE AND ENTERED this 13th day of November, 2000, in Tallahassee, Leon County, Florida. LINDA M. RIGOT Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 13th day of November, 2000. COPIES FURNISHED: Francine Ffolkes, Esquire Department of Environmental Protection 3900 Commonwealth Boulevard Mail Station 35 Tallahassee, Florida 32399-3000 Evan Goldenberg, Esquire White & Case, LLP First Union Financial Center 200 South Biscayne Boulevard Miami, Florida 33131-5309 Lee R. Rohe, Esquire Post Office Box 500252 Marathon, Florida 33050 Kathy C. Carter, Agency Clerk Department of Environmental Protection 3900 Commonwealth Boulevard Mail Station 35 Tallahassee, Florida 32399-0300 Teri L. Donaldson, General Counsel Department of Environmental Protection 3900 Commonwealth Boulevard Mail Station 35 Tallahassee, Florida 32399-0300
The Issue The issue in this case is whether the Department of Health (Department or DOH) should fine the Petitioner, Jeffery Benefield, $500 and require him to move the drainfield of his onsite sewage disposal system so that no part of it is within ten feet of the potable water line of his neighbors, the Intervenors, Robert and Wanda Schweigel.
Findings Of Fact The Petitioner's home at 10920 Lake Minneola Shores Road (Lake County Road 561-A) was built in 1977. It included an onsite septic tank and drainfield sewage disposal system. On March 31, 2003, the Petitioner personally applied for a permit to repair his existing sewage disposal system by replacing the drainfield. His application did not identify any potable water lines. Department personnel evaluated the site and calculated system specifications, and the Department issued a construction permit on April 3, 2003, based on the estimated size of the existing system. To replace the existing drainfield and meet specifications, 375 square feet of drainfield was required. However, the Petitioner wanted to add 125 square feet to what was required by the specifications, which is acceptable so long as required setbacks are maintained. The Petitioner's drainfield was replaced by a licensed contractor on April 29, 2003. Some work may have been done the following day to complete the job, but it appears that the contractor called for the final inspection on April 29, 2003. On inspection, it was clear that the new drain line closest and (like the other three) parallel to the property line was less than ten feet from a water line, riser, and spigot on the neighboring property, which was owned by Robert and Wanda Schweigel. Specifically, the closest of the new drain lines was estimated to be just five feet from the Schweigels' water line, riser, and spigot. (The next closest was just under ten feet from the Schweigels' water line, riser, and spigot.) As a result, the Department disapproved the installation. The Petitioner disputed the disapproval, initially contending that the Schweigels' water line, riser, and spigot did not convey potable water. It was decided that the new drainfield should be covered while pending a decision as to whether the water line was potable. By the end of July 2003, the Department decided that the Schweigels' water line was indeed potable. In that approximate time frame, the Petitioner's contractor offered to pay to have the Schweigels' water line "sleeved" to a distance at least ten feet from the nearest portion of the Petitioner's drainfield.2 He believed that solution would be much simpler and less costly than moving the Petitioner's drainfield to a distance at least ten feet from any part of the Schweigels' potable water line. This alternative was presented to the Schweigels in that approximate timeframe, but they refused (and continue to refuse.) In August 2003, the Petitioner took the position that, regardless whether the Schweigels' water line was potable, the Petitioner's new drainfield was in the same location as the existing drainfield, and the part of the water line closest to the new drainfield (i.e., the part including the riser and spigot) was not there until after the middle of April 2003 and was recently installed either just before or while the Petitioner's new drainfield was being installed. The evidence was not clear as to the configuration and precise location of the drain lines in the Petitioner's original drainfield. However, it appears to have had three drain lines emanating from the septic tank, starting in the direction of the Schweigels' property and then curving away in the direction of Lake Minneola, which is behind the Petitioner's and the Schweigels' properties, before terminating. The replacement drainfield had pipe emanating from the septic tank and running towards the Schweigels' property line before making a 90-degree turn towards the lake before connecting to the middle of a header pipe. Connecting to the header pipe are four equally-spaced drain lines, one on either end of the header pipe and two in between, that are perpendicular to the header pipe and parallel to each other and to the Schweigels' property line (and potable water line) and run towards the lake. As indicated, it was not clear from the evidence precisely where all of the old drain lines were located, or how close they got to the Schweigels' property (and potable water line.) However, it does not appear that they got as close as two of the four new drain lines in the replacement system. See Petitioner's Exhibits 13 and 21. There was conflicting evidence as to when the Schweigels' potable water line was installed. It is clear from the evidence that there are now three "T's" off the water line from the potable water source near the street. One "T- off" leads to near the front corner of the house, one leads to the middle of the side of the house, and one leads to near the rear corner of the house. The line then extends past the last "T" to the location of the water riser and spigot. The Petitioner's evidence proved that the water line riser and spigot now within ten feet of the Petitioner's drainfield were not there either in May 1999 or on April 14, 2003. But the Schweigels maintained, and the evidence as a whole was persuasive, that the potable water lines currently in place were installed in 1996 or 1997, but were cut and moved to enable the Schweigels to install footers for construction of a concrete privacy wall in approximately 1999. After installation of the footers, the water line had to be moved several inches closer to the Schweigels' house when replaced, and the "T's" were reconnected to the line. In approximately April 2003, the water line riser and spigot were damaged (the evidence was not clear how) and had to be replaced. The evidence was that the Schweigels got a permit to build their privacy wall but did not get a permit for the plumbing work that was necessary in conjunction with the installation of the footers for the wall. Although it appears from the evidence that a plumbing permit was required, the Schweigels did not think a separate plumbing permit was necessary. It is not found that the Petitioner participated in this proceeding for an "improper purpose"--i.e., "primarily to harass or to cause unnecessary delay or for frivolous purpose or to needlessly increase the cost of litigation, licensing, or securing the approval of an activity."
Recommendation Based upon the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the Department of Health enter a final order that the Petitioner pay a $500 fine and either: (1) pay the reasonable cost of having the Schweigels' potable water line "sealed with a water proof sealant within a sleeve of similar material pipe to a distance of at least 10 feet from the nearest portion of the system," so long as no portion of the Schweigels' potable water line "within 5 feet of the drainfield shall be located at an elevation lower than the drainfield absorption surface"; or (2) move or relocate his drainfield to meet the setback requirements of the current Rule 64E-6.005(2)(b). DONE AND ENTERED this 15th day of February, 2005, in Tallahassee, Leon County, Florida. S J. LAWRENCE JOHNSTON Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 15th day of February, 2005.
Findings Of Fact B. D. Taylor, Respondent, is the owner of a wastewater treatment facility near Panama City, Florida, which serves a community of some 125-150 mobile homes at Lane Mobile Home Estates. The facility has a 24,000 gallons per day capacity to provide secondary treatment of wastewater with percolating ponds. It was first permitted in 1971 upon construction and has been in continuous operation since that time. In 1980 Respondent employed the services of a consultant to apply for a renewal of its temporary Permit to operate a wastewater treatment facility. This application stated the temporary operating permit (TOP) was needed to give Respondent time to connect to the regional wastewater treatment facility. The schedule contained in the following paragraph was submitted by Respondent at the time needed to accomplish this objective, Following inspection of the facility, a TOP was issued December 5, 1980 (Exhibit 1), and expired January 1, 1983. TOPs are issued to facilities which do not comply with the requirements for Wastewater treatment. Exhibit 1 contained a schedule of compliance to which Respondent was directed to strictly comply to stop the discharge of pollutants from the property on which the facility is located. These conditions are: Date when preliminary engineering to tie into regional will be complete and notification to DER. July 1, 1981; Date when engineering to tie into regional system will be complete and notification to DER - June 1, 1982; Date construction application will be submitted to phase out present facility - March 1, 1982; Date construction will commence - June 1, 1982; Date construction is to be complete and so certified - October 1, 1982; and Date that wastewater effluent disposal system will be certified "in compliance" to permit - January 1, 1903. None of these conditions or schedules has been met by Respondent. The regional wastewater treatment facility was completed in 1982 and Respondent could have connected to this system in the summer of 1982. This wastewater treatment facility is a potential source of pollution. The holding ponds are bordered by a ditch which is connected to Game Farm Greek, which is classified as Class III waters. The size of Game Farm Creek is such that any discharge of pollution to this body of water would reduce its classification below Class III. On several occasions in the past there have been breaks in the berm surrounding the holding ponds which allow the wastewater in the holding ponds to flow into the ditch and into Game Farm Creek. Even without a break in the berm, wastewater from these holding ponds will enter Game Farm Creek either by percolation or overflow of the holding ponds caused by the inability of the soil to absorb the effluent. On January 28, 1983, this facility was inspected and the results of the inspection were discussed with the operators of the facility. The plant was again inspected on February 8 and February 18, 1983. These inspections disclosed solids were not settling out of the wastewater in the settling tanks; inadequate chlorination of the wastewater was being obtained in the chlorination tanks; samples taken from various points in the system, the ditch along side the holding tanks and in Game Farm Creek, disclosed excess fecal coliform counts; and that very poor treatment was being afforded the wastewater received at the plant as evidence by high levels of total Kejhdal nitrogen and ammonia, high levels of phosphates, high biochemical oxygen demand, and low levels of nitrates and nitrites. In July, 1983, in response to a complaint about odors emanating from the plant, the facility was again inspected. This inspector found the aeration tanks anaerobic, effluent had a strong septic odor, the clarifier was cloudy, the chlorine feeder was empty, no chlorine residual in contact tank, final effluent was cloudy, both ponds were covered with duckweed and small pond was discharging in the roadside ditch (Exhibit 14) Expenses to Petitioner resulting from the inspections intended to bring Respondent in compliance with the requirements for wastewater treatment facilities are $280.32 (Exhibit 9)
The Issue The issues set forth in DOAH Case No. 84-3810 concern the question of whether the State of Florida, Department of Environmental Regulation (DER) should issue a permit to Homer Smith d/b/a Homer Smith Seafood (Homer Smith) to construct a wastewater treatment facility which is constituted of a screening mechanism, dissolved air flotation treatment system, sludge drying bed, pumping station and subaqueous pipeline. In the related action, DOAH Case No. 84-3811, the question is raised whether DER should issue a dredge and fill permit to Homer Smith for the installation of the aforementioned pipeline along submerged lands in Trout Creek, Palmo Cove and the St. Johns River.
Findings Of Fact Introduction and Background In 1982, Homer Smith, under the name of Homer Smith Seafood, established a calico scallop processing facility in the vicinity of the intersection of State Road 13 and Trout Creek in St. Johns County, Florida. From that point forward, Smith has owned and operated the processing plant. His plant adjoins Trout Creek, which is a tributary to the St. Johns River. Both Trout Creek and the St. Johns River are tidally influenced waters that are classified as Class III surface waters under Rule 17-3.161, Florida Administrative Code. The processing undertaken by Smith's operation at Trout Creek contemplates the preparation of the scallops for human consumption. In particular, it involves the purchase of calico scallops from Port Canaveral, Florida, after which the scallops are transported by refrigerated trucks to the processing plant. They are then unloaded into metal hoppers and directed into rotating tumblers which separate out the scallops from sand, mud and other extraneous material. The scallops are placed in a steam tumbler that removes the shells and then passed through a flow tank that washes away sand, grit and shell particles. The scallops are next passed through eviscerators. These eviscerators are long tubes of aluminum with roughened surfaces that pull the viscera off of the scallops. The detached scallops are then sent along a conveyor belt, with scallops in need of further cleaning being picked out and sent to a second eviscerator. The eviscerated scallops are then chilled and packed for marketing. It is the viscera and wastewater associated with this material that is the subject of permitting. Homer Smith is one of about six automated scallop processing plants located in Florida. Two other plants are within St. Johns County, on the San Sebastian River in St. Augustine, Florida. Three other plants are located in Port Canaveral, Florida. When Smith commenced his operation of the scallop processing plant in the summer of 1982, he discharged the scallop processing wastewater into an area described as a swamp with an associated canal which connected to Trout Creek. By the fall of 1982, Smith had been told by representatives of the Department of Environmental Regulation that to operate his facility with the discharge would require a permit(s) from DER. At the time of this discussion, automatic scallop processing was an industry for which appropriate wastewater treatment alternatives had not been specifically identified by the Department of Environmental Regulation or the United States Environmental Protection Agency. This was and continues to be the case as it relates to the promulgation of technology-based effluent limitations designed for calico scallop processors. This circumstance is unlike the situation for most other industries for which DER has established technology-based effluent limitations. To rectify this situation, Florida Laws 85-231 at Section 403.0861, Florida Statutes, requires DER to promulgate technology-based effluent limitations for calico scallop processors by December 1986. In the interim, consideration of any permits that might be afforded the calico scallop processors by the exercise of DER's regulatory authority must be done on a case-by-case basis, when examining the question of technology-based effluent limitations. DER sent a warning letter to Smith on April 20, 1983, informing the processor that discarding its wastewater into Trout Creek without a DER permit constituted a violation of state law. After the warning letter, scallop harvesting declined to the point that by mid-June of 1983 the plant had closed down, and it did not reopen until the middle part of September 1983. Upon the recommencement of operations, DER issued a cease and desist notice and ordered Smith to quit the discharge of wastewater from the facility into Trout Creek. On the topic of the cease and desist, through litigation, Smith has been allowed the right to conduct interim operation of his business which involves direct discharge of wastewater into Trout Creek, pending assessment of wastewater treatment alternatives and pursuit of appropriate DER permits. 1/ When Smith filed for permits on April 10, 1984, he asked for permission to dredge and fill and for construction rights pertaining to industrial wastewater discharge into the St. Johns River. The application of April 10, 1984, involved the installation of a wastewater treatment system and an associated outfall pipeline to transport treated wastewater to the St. Johns River from the plant location. This system would utilize a series of settling tanks and a shell-filter lagoon as the principal wastewater treatment. DER, following evaluation, gave notice in October 1984 of its intent to issue permits related to dredge and fill and the construction of the wastewater treatment facility. In the face of that notification, the present Petitioners offered a timely challenge to the issuance of any DER permits. In considering treatment alternatives, Homer Smith had employed various consultants and discovered that treatment beyond coarse screening had not been attempted in processing calico scallop wastewater. Those consultants were of the opinion that conventional treatment methods such as clarification, sand filtration, vortex separation, breakpoint chlorination, polymers and spray irrigation were of limited viability due to the inability to remove key constituents within the waste stream or based upon certain operational difficulties that they thought would be experienced in attempting those methods of treatment. As envisioned by the April 10, 1984, application for permit, interim treatment of the wastewater was provided by the use of a series of settling tanks and a shell-filter lagoon, within which system adjustments were made to the delivery of wastewater treatment. The April 10, 1984, permit application by Smith did not envision any chemical treatment of the wastewater aside from that which might occur in association with the settling and filtration through the shell-filter lagoon. Following DER's statement of intent to issue a permit for construction of the wastewater treatment facility as described in the April 10, 1984, application by Smith, DER became concerned about the potential toxicity of calico scallop wastewater, based upon its own studies. As a consequence, Smith amended the application for wastewater treatment facility to include use of chemical coagulation and flotation. This amendment occurred in March 1985, and the wastewater treatment process in that application envisioned the use of an electroflotation wastewater system. In view of toxicity problems experienced with the testing related to the use of an electroflotation wastewater treatment system, this treatment alternative was discarded in favor of a dissolved air flotation (DAF) system. This system was pursuant to an amendment to the application effective May 31, 1985. This amendment of May 1985 was in furtherance of the order of the hearing officer setting a deadline for amendments to the application. DER issued an amended intent to grant permits for the DAF unit and the associated pipeline and that action dates from June 28, 1985. The Petitioners oppose the grant of these permits for the DAF unit and pipeline, and under the auspices of their initial petition have made a timely challenge to the grant of a permit for the installation of the DAF wastewater treatment unit and associated pipeline. It is the DAF unit and pipeline that will be considered in substance in the course of this recommended order. On July 6, 1984, Smith sought an easement from the State of Florida, Department of Natural Resources (DNR) for the installation of the pipeline. This was necessary in view of the fact that the pipeline would traverse sovereignty lands which were located beneath Trout Creek, Palmo Cove and the St. Johns River. On December 17, 1984, DNR issued a notice of intent to submit that application to the Board of Trustees of the Internal Improvement Trust Fund with a recommendation of approval. This action was challenged by the Petitioners on January 7, 1985, in a petition for formal hearing challenging the grant of the easement. DOAH Case No. 85-0277 concerns this challenge to grant of an easement. Originally, by action of January 28, 1985, the easement case was consolidated with the present DER permit actions. At the instigation of DNR, the easement case was severed from consideration with the present action. The order of severance was entered on July 31, 1985. The DNR case will be heard on a future date yet to be established. The DNR case was severed because that agency preferred to see test results of treatment efficiencies following the construction of the DAF unit. By contrast, the present DER cases contemplate a decision being reached on the acceptability of the construction of the DAF unit and attendant features, together with the pipeline on the basis of theoretical viability of this entire system. This arrangement would be in phases in which the construction of the upland treatment system would occur within 90 days of the receipt of any construction permit from DER, followed by a second phase within which Smith would construct the pipeline within 60 days of receipt of any other necessary governmental approval, such as the DNR easement approval. Furthermore, DER would wish to see the results of an integrated treatment system involving the upland treatment by the DAF unit and its attendant features and the use of the pipeline and the availability of a mixing zone, that is to say the end of pipe discharge, before deciding on the ultimate question of the grant of an operating permit for the wastewater treatment system. The quandary presented by these arrangements concerns the fact that discharge from the DAF treatment unit would be temporarily introduced into Trout Creek, pending the decision by DNR to grant an easement for the pipeline and the necessary time to install that pipeline. Given the difficult circumstances of these actions, there is raised the question of the propriety of discharging wastewater into Trout Creek pending resolution of the question of whether DNR wishes to grant an easement to place the pipeline over sovereignty submerged lands. This is a perplexing question in view of the fact that DNR requested severance from the present action, thereby promoting further delay in the time between any installation of the upland treatment system and the pipeline. Finally, Trout Creek is an ecosystem which has undergone considerable stress in the past, and it is more susceptible to the influences of pollution than the St. Johns River would be as a point of ultimate discharge from the pipeline. This dilemma is addressed in greater detail in subsequent sections within the recommended order. Petitioner River Systems Preservation, Inc., is a nonprofit organization comprised of approximately seven hundred persons. The focus of the organization is to protect and enhance the environment of northeast Florida. The individual Petitioners, Pinkham E. Pacetti, Robert D. Maley, Ruth M. Whitman and others, are members of the corporation who own property or live near the scallop processing plant of Respondent Smith. In addition, Pacetti owns a marina and recreational fishing camp that is located across Trout Creek from Smith's plant. Pacetti's fish camp dates from 1929. On the occasion of the opportunity for the public to offer their comments about this project, a significant number of persons made presentations at the public hearing on August 29, 1985. Some members of the public favored the project and others were opposed to the grant of any permits. St. Johns County Board of County Commissioners, in the person of Commissioner Sarah Bailey, indicated opposition to the project, together with Bill Basford, President of the Jacksonville City Council. Warren Moody, the vice-chairman of the Jacksonville Waterways Authority spoke in opposition to the project. The Florida Wildlife Federation and the Jacksonville Audubon Society expressed opposition to the project. The officials related the fact of the expenditure of considerable amounts of public tax dollars to improve water quality in the St. Johns River and their concern that those expenditures not be squandered with the advent of some damage to the St. Johns River by allowing the permits in question to be issued. These officials considered the St. Johns River to be a significant resource which they are committed to protecting. The City of Jacksonville, Clay County, Green Cove Springs, the Jacksonville Waterways Authority, the Northeast Florida Regional Planning Council and St. Johns County expressed opposition to the project contemplated by the present permit application, through the adoption of certain resolutions. These broad-based statements of opposition were not spoken to in the course of the hearing by members of any technical staffs to these governmental institutions. Private members of the public, some of whom are affiliated with River Systems Preservation, Inc., expressed concern about water quality violations, harm to fish and other environmental degradations that have been caused by the Homer Smith operation in the past and their belief that these problems will persist if the permits at issue are granted. Those persons who favored the project, in terms of public discussion, primarily centered on the idea that, in the estimation of those witnesses, fairness demanded that Smith be afforded an opportunity to demonstrate that this proposed system of treatment was sound and the quality of the water being discharged from the Homer Smith plant was not as bothersome as had been portrayed by the persons who opposed the grant of environmental permits. Industrial Wastewater Construction Permit Treatment System Description of Homer Smith's Plant and Its Operation. The source of water used for the processing of the scallops at the Homer Smith plant is a well which is located on that property. Homer Smith is allowed to withdraw 300,000 gallons of water per day in accordance with a consumptive use permit that has been issued by the St. Johns River Water Management District. To ensure Smith's compliance with this permit, a metering device is located on the well. Typically, the plant operates an eighteen-hour day, five days a week, using water at a rate of 200 gallons per minute. This would equate to 215,000 gallons per day over an eighteen-hour day. Prior to the imposition of restrictions by the Department of Environmental Regulation through the consent order, this facility had processed as much as 40,000 pounds of scallops each day, for a total of 36,000 gallons each week, at a gross revenue figure of $225,000 per week. Characteristics and Frequency of Effluent Discharge The wastewater generated by the scallop processing that is done at the Homer Smith plant is principally constituted of the well water used to clean the scallops, proteinaceous organic materials, and metals. The metals are introduced into the wastewater stream from the scallop tissue. The wastewater stream also has a certain amount of sand and grit, together with shell fragments. The concentrations of organic materials within the wastewater stream are at high levels. There is also an amount of fecal coliform bacteria and suspended solids. The pollution sources within the wastewater stream include total suspended solids (TSS), biochemical oxygen demand (BOD), nutrients (nitrogen and phosphorus) and the coliform bacteria. In the neighborhood of 30 percent of the BOD in the wastewater is soluble. The balance of the BOD is associated with the suspended solids. With time the organic materials in the wastewater stream will decompose and with the decomposition present certain organic decomposition products, which would include ammonia, amines and sulfides. Heavy metals in the wastewater have been in the scallop tissue and are released with the cleaning of the scallops. These metals include cadmium, copper, zinc, iron, manganese, silver and arsenic. The presence of these metals within the tissues of the scallops are there in view of the fact that the scallops are "filter-feeders" which have taken in these elements or metals that naturally occur in the ocean water. The permit application contemplates an average of five days a week of operation for eighteen hours a day. Notwithstanding the fact that in the past the Homer Smith Seafood operation had processed scallops seven day week, twenty- four hours per day, Smith does not desire to operate more than five and a half days a week in the future. That is perceived to mean five eighteen-hour days and a twelve-hour day on the sixth day. The treatment system contemplated here is for a flow volume of around 200 gallons per minute during normal operation. The system can operate as high as 300 gallons per minute. That latter figure approaches the design capabilities of the treatment system proposed. Wastewater is discharged only when scallops are being processed. There is basically 1:1 ratio between the volume of well water used to process the scallops and the amount of wastewater discharged. Proposed Treatment System and Alternatives As already stated, there is no specific industry standard set forth in the DER rules which would describe technology-based standards for the treatment of calico scallop wastewater. In those instances where the agency is confronted with an industry for which technology-based standards have not been established, DER examines the question of whether that effluent is amenable to biological treatment as contemplated in Rule 17-6.300(1)(n)1., Florida Administrative Code, as an alternative. Biological treatment is a treatment form normally associated with domestic waste and the imposition of this treatment technique is in furtherance of achieving a secondary treatment standard found in Chapter 17-6, Florida Administrative Code, which results in 20 mg/L of BOD and TSS, or 90 percent removal of those constituents, whichever is the greater performance in removal efficiency. In the absence of specific standards related to the calico scallop industry, and in the face of the interpretation of its rules in which DER calls for an examination of the possibility of biological treatment as an alternative to treatment specifically described for a given industry, it was incumbent upon this Applicant to examine the viability of biological treatment of the scallop wastewater product. The Applicant has considered biological treatment as an alternative and rejected that treatment form, in that Smith's consultants believe the wastewater is not amenable to biological treatment. By contrast, Petitioners' consultants believe that biological treatment should be the principal focus in treating the scallop wastewater and contend that biological treatment is a more viable choice when contrasted with the option chosen by the Applicant. If this waste is not amenable to biological treatment, Rule 17-6.300(1)(n)1., Florida Administrative Code, envisions an acceptable or minimum level of secondary treatment shall be determined on a case-by-case basis. In the instance where biological treatment is not a reasonable choice, the Applicant is expected to achieve treatment results which are comparable to those arrived at in treating domestic waste by the use of biological treatment techniques. On this occasion, DER had not established what they believe to be a comparable degree of treatment for calico scallop waste, assuming the unavailability of biological treatment. The present case is a matter of first impression. As a result, the idea of a comparable degree of treatment shall be defined in this hearing process, assuming the inefficacy of biological treatment. In that event, DER must be assured that the proposed treatment plan has an efficiency that rivals the success which biological treatment promotes with domestic waste, taking into account the quality of the effluent prior to treatment, available technology, other permitting criteria and the ambient conditions where the waste stream is being discharged. In arguing in favor of biological treatment, Petitioners pose the possibility of an integrated system in which primary settling tanks or clarifiers would be used together with a biological treatment step, which is referred to as a trickling filter, followed by final settling by the use of tanks or clarifiers in an effort to achieve BOD concentrations in the range of 200 mg/L to 400 mg/L. In this connection, the dissolved air flotation system is seen in the role of alternative to the initial stage of settling of the constituents within the wastewater stream. It is not regarded as the principal means of treatment of the waste. The trickling filter system as a biological treatment medium involves the use of a bacterial culture for the purpose of consuming the oxygen-demanding constituents, BOD. The trickling filter technique, if a viable choice, has the ability to remove 70 to 75 percent of BOD and TSS. Petitioners suggest further treatment of the waste beyond primary and final settling and trickling filter can be afforded by involving activated sludge, which according to their experts would end up with a biological oxygen demand in the 20 mg/L range. Although the constituents of the Smith plant's waste are of a highly organic nature, and, at first blush a candidate for biological treatment by use of the trickling filter, the problem with this form of treatment has to do with the intermittent flow in the Smith operation. This intermittent flow is caused by the fact that the plant does not operate throughout the year. The plant operations are seasonal, depending on calico scallop harvesting which does not occur on a routine basis. Therefore, the problem is presented of trying to keep the biological treatment system "alive" and operating at levels of efficiency which can be expected to maintain the percentage of removal of BOD and TSS that a healthy system can deliver. The bacteria colonies which are vital to the success of the biological treatment system must be fed on a continuous basis to maintain balance in the population of the colony. This would be a difficult undertaking with the Smith operation, given the interruptions in operations which could lead to the decline in the bacterial population and a poorer quality of treatment once the operations were resumed. This finding takes into account the fact that the colony can survive for a week or two by simply recirculating water over the filter. Obviously, in order to maintain necessary efficiencies within this biological treatment, the bacteria must do more than survive. The further suggestion that has been offered that the bacteria could be sustained for longer periods of time by feeding them seafood waste or dog food are not found to achieve the level of efficiency in the operation that would be necessary in posing biological treatment as an alternative. Again, it is more of an intervening measure designed to assure the survival of bacteria pending the continuation of the operations of the plant, as contrasted with a system which is continual and taking into account the uniformity of the waste product more efficient. Another problem with feeding the bacteria when the plant is not operating is that of disposing of the waste produced when this auxiliary feeding is occurring. Just as importantly, biological treatment is questionable given the long retention times necessary for that process and the build-up of toxic levels or concentrations of ammonia. The Applicant had employed an aerated lagoon in attempting to treat the waste and experienced problems with ammonia build up. Although this system did not call for the degree of treatment of the waste prior to the introduction into the lagoon that is contemplated by the present proposal of the Applicant, it does point to the fact of the problems with ammonia in the biological treatment system. Dr. Grantham, a witness whose testimony was presented by the Petitioner, conceded the difficulty of removing ammonia from the trickling filter. Moreover, the biological treatment system is not especially efficient in removing metals and phosphorus from the wastewater. Alternative treatment would be necessary to gain better efficiency in removals of those constituents. The trickling filter is expected to gain 50 percent metals removal, which is inadequate given the concentrations of heavy metals found in the scallop wastewater. Phosphorus could be removed after treatment by the trickling filter by the use of lime or alum. Assuming optimum conditions in the use of biological treatment after primary and final settling, thereby arriving at a BOD level of 200 mg/L, it would then be necessary to make further treatment by the use of activated sludge to see 20 mg/L BOD. The problem with activated sludge is related to the fact that this form of treatment is particularly sensitive to interruptions in flow, which are to be expected in this wastewater treatment setting. On balance, biological treatment does not present a viable choice in treating scallop waste. That leaves for consideration the question of whether the Applicant's proposal would afford a comparable degree of treatment to that expected in the use of biological treatment of domestic waste. The manufacturer of the dissolved air flotation unit or DAF system proposed, known as the Krofta "Supracell," offers another piece of equipment known as the "Sandcell" which in addition to the provision for dissolved air flotation provides sand filtration. The Sandcell might arrive at BOD levels of 400 mg/L. However, the testimony of the witness Lawrence K. Wang, who is intimately familiar with the Krofta products, in responding to questions about the use of the Sandcell system and suggestion that the system would arrive at 400 mg/L BOD responded "could be." This answer does not verify improvement through the contribution of sand filtration. For that reason inclusion of a Sandcell for filtration of BOD is not suggested in this fact finding and the system as proposed must be sufficient in its own right. Having realized the need to provide greater treatment than screening or filtering the waste stream, the Applicant attempted to design a treatment system using flotation technology together with chemical precipitation and coagulation. At first the Applicant examined the possibility of the use of electroflotation (EF). This involved the collection of wastewater in a retention tank and the generation of an electric current to create a series of bubbles to float insoluble flocs. Those flocs are caused by the use of ferric chloride, sodium hydroxide and various polymers which are added to the waste stream. The flocs are then pushed to the top of the chamber by the air bubbles, and this particulate matter is skimmed off by the use of a paddle. Pilot testing was done of the electroflotation technology and showed promising results, so promising that a full-scale electroflotation unit was installed and tested. The full-scale electroflotation showed reasonable removal of BOD, TSS, nutrients, coliform and trace metals. This technique was discarded, however, when bioassay testing of the treated effluent was not successful. In examining the explanation for the failure, the experts of the Applicant were of the opinion that certain chemical reactions were occurring as a result of the passage of the electrical current through the wastewater stream. When this problem with acute toxicity could not be overcome through a series of adjustments to the process, the Applicant decided to test another form of flotation, which is referred to as dissolved air flotation (DAF). This system employs the use of chemicals to create insoluble flocs. Unlike the electroflotation unit, though, it does not utilize electrical currents to create the air bubbles employed in the flotation. The dissolved air flotation thereby avoids problems of toxicity which might be attributed to the passage of electrical current through the water column. The present system as proposed by the Applicant has a number of components. The first component of treatment involves the passage of raw wastewater through a mechanical screening device, which is designed to remove a certain number of particulates by catching those materials on the screen. That material is then removed from the plant and disposed of off site. The balance of the wastewater after this first stage of treatment passes into a sump area and from there into a primary mix/ aeration tank. This water is then chemically treated to facilitate the formation of insoluble flocs. The chemically treated wastewater then enters a premanufactured Krofta Supracell 15 DAF unit which is designed to form bubbles by the use of pressurized air, with those bubbles floating the waste materials within the floc to the surface. Again, this method does not use electrolysis. The floated solid materials are then skimmed from the surface and directed to a holding tank and subsequently pumped to sludge drying beds. Some of the treated wastewater is recycled through the DAF unit after pressurization and in furtherance of forming the necessary bubbles for the DAF unit. The balance of the water is directed to a force main lift station. This water would then be transported through the eight-inch PVC pipe some 13,000 feet into the main channel of the St. Johns River where it is distributed through a five port diffuser. The screening mechanism spoken of had been installed in mid-December 1984 and has been used since that time to filter the wastewater. The screening mechanism is in substitution of settling tanks and shell pits. The shell pits which had been used before presented problems with odors as well as the ammonia build up which has been addressed in a prior paragraph. The removal efficiency of the screening mechanism is 30 percent of particulates associated with pollution parameters, as example BOD, total Kjeldahl nitrogen, total phosphorus and TSS. The frequency of the transport of these screened materials to the off site disposal is four to six times a day and the screen is decontaminated at the end of each day when the operations are closed. The application contemplates the same operating procedures of disposal and maintenance with the advent of any construction permit. The primary mix/aeration tank aerates the wastewater and through that process and the retention time contemplated, equalizes the flow regime and promotes a more balanced concentration of waste materials prior to the introduction of that wastewater for chemical coagulation and flotation. This step in the treatment process enhances the treatment efficiency. Some question was raised by the Petitioners on the size of the primary mix-aeration tank as to whether that tank was sufficient to equalize the flow, and conversely, the impacts of having too much retention time built into that tank, which would promote the build-up of toxic concentrations of ammonia in the wastewater. The retention time within the sump and the primary mix-aeration tank approximates one and one-half hours. The retention time and size of the primary mix-aeration tank are found to be acceptable. This design appropriately addresses concerns about the build-up of decomposition products and toxicity, to include ammonia. The sludge which collects in the primary mix-aeration tank will be pumped back to the sump pit by return flow. The sump pit itself will be pumped out in the fashion of cleaning a septic tank on the basis of once a week. The sump pit also receives the return flow of leachate from the sludge drying bed. Once equalization of flow is achieved in the primary mix-aeration tank, that wastewater is then treated by the use of alum, sodium aluminate and polymers. The purpose of this treatment is to convert soluble and insoluble organic matter such as TSS and BOD, trace elements and phosphorus into insoluble flocs that can be removed by flotation. These combinations of chemicals and dosage rates have been tested in electroflotation and dissolved air flotation bench and pilot scales for use associated with this project and a list of appropriate chemicals and ranges of dosage rates has been determined. It will be necessary for these chemicals and general dosages to be adjusted in the full- scale operation under terms of the construction permit. This facet of the treatment process must be closely monitored. Once the wastewater stream has received the chemical treatment, it is introduced into the Krofta Supracell 15 DAF unit. This unit is 15 feet in diameter, and within this cylinder bubbles are generated by pressurizing some of the chemically treated wastewater and potentially clean tap water. The use of clean tap water promotes dilution of the wastewater stream as well as greater efficiency in the production of the bubbles. Chemically treated wastewater is brought into the cylinder through the back of a revolving arm that moves around a center column of the DAF unit at the speed of the effluent flow. The purpose of this mechanical arrangement is to eliminate horizontal water velocity, to protect the integrity of the flocs that are being formed by the use of the chemicals. Those flocs float to the surface in a few minutes' time, given the normal turbulence and shallow depth of the DAF unit. This limited retention time also avoids ammonia build up. The floating material is then scooped and poured into a stationary center section and is discharged by gravity to the sludge holding tank. Wiper blades which are attached to the revolving arm scrape the bottom and sides of the tank and discharge any settled sludge to a built-in sump in the DAF unit. These materials which are settled in the bottom of the DAF cylinder are transported through the sludge holding tank and eventually placed in the sludge drying beds. The treated wastewater is removed by an extraction pipe associated with the center section of the DAF unit. It is then discharged. The use of clean tap water from the well and the ability to recycle the waste stream can promote greater treatment efficiency in terms of removal of undesirable constituents of the waste stream and the reduction of concentrations of those materials. As a measurement, approximately 8 percent of the wastewater flow will be removed as sludge. This sludge is sufficiently aerated to be reduced in volume by about one-half over a period of ten to thirty minutes in the sludge holding tank. It is then sent to the sludge drying beds. The sludge drying beds are designed to accommodate 30,000 gallons of sludge. They are 60 feet long, 25 feet wide and 4 feet deep. Those drying beds are of greater size than is necessary to accommodate the volume of sludge. The sludge drying beds have a sand and gravel bottom. The water drains from the sludge as leachate and returns to the sump pit in the treatment system at a rate of five to ten gallons a minute. Some concern has been expressed that the "gelatinous" nature of the sludge will make it very difficult to dewater or dry. This opinion is held by experts of the Petitioners, notwithstanding the fact that polymers are used in the treatment process. One expert in particular did not believe that the sludge would adequately dry. Having Considered the evidence, the opinion that the sludge will not dry sufficiently is rejected. Nonetheless, it is incumbent upon the Applicant to monitor drying conditions of the sludge very carefully and, if need be, to add some chemical such as calcium hydroxide to enhance the drying capacity of the sludge material. It is anticipated that the sludge will be removed once a day and this arrangement should be adhered to. With adequate drying, the sludge material can be removed with the use of shovels, rakes and a front-end loader as proposed by the Applicant. With frequent removal and adequate drying, problems with odors can be overcome, and problems with ammonia build up and the generation of unreasonable levels of bacteria can be avoided. Should problems with odors, ammonia and bacteria occur, it would be necessary for the Applicant to purge the drying beds, to include the sand and gravel which had been invested with the sludge materials that had caused the problems. Although Smith has not tested the drying bed leachate as to specific nature, the treatment process can be expected to deal with problems of any build-up of ammonia concentrations, fecal coliform bacteria and other organic decomposition products. This pertains to the ability to remove these offending substances from the site in terms of removal of the residual solids and the ability to treat those parameters within the leachate as the wastewater is cycled through the system. The treated wastewater will be transported to a pumping station by gravity flow and then pumped via the pipeline to the proposed point of discharge in the main channel of the St. Johns River. This pipeline is constituted of fabricated sections of pipe 20 feet in length, connected with bell and spigot joints, rubber gaskets and solvent welding. The treated wastewater is released into the river through a five point diffuser which has three-quarter inch openings angled at ten degrees from the horizontal bottom. The pipeline is anchored with prefilled 80-pound concrete bags attached with polypropelene straps which are placed at 8-foot intervals. These are placed to keep the pipe from floating. The diffuser is supported by four piles driven into the river bottom and surrounded by a series of concrete bags. The purpose of this arrangement is to hold the diffuser in place and to protect it against potential damage from anchors or other possible impact. The Applicant acquiesces in the choice to have the pipeline tested for leaks once a month in the period June through September and every other month during other parts of the year. If leaks are found, the Applicant would be responsible for repairing those leaks. As stated before, it is necessary for the Applicant to receive permission from the State of Florida to be granted an easement before the pipe can be installed. Prior to that permission being granted, the treated wastewater would be placed in Trout Creek, which is adjacent to the processing plant. Predicted End of Pipeline Quality of the Effluent In trying to predict the quality of effluent at the end of the pipeline, bench scale and pilot scale testing was done related to the DAF technology. This testing was done related to screened wastewater that was collected from the plant in April 1985. In this connection two series of DAF bench scale tests were performed. They related to samples collected on April 18 and 19, 1985, which were packed in ice and shipped directly to a research laboratory in Lenox, Massachusetts, where they were treated with chemicals and a laboratory size DAF unit. The concentration of the wastewater parameters were measured and recorded before and after treatment, and the results of those tests are set forth in the Applicant's Exhibit A-4(B)(3), at Table 2-1. The pilot scale testing that was done in this case related to a 4-foot diameter DAF unit which had been installed at the Homer Smith plant. This testing occurred in April 1985. The basis of the testing was samples taken on April 15 and 19, 1985. Again, wastewater parameters were measured before and after treatment and the results are set forth in Applicant's Exhibit A-4(B)(3), at Table 2-1. When the initial testing was done with the DAF, results for total coliform bacteria uniformly fell below a range of 35 organisms/100 ml. Subsequent pilot tests yielded higher bacterial counts which would indicate that there was a build-up of bacteria within the DAF unit. This verifies the need to require that the DAF unit contemplated by the application be routinely cleaned or sanitized to avoid the build-up problem. TSS in the pilot unit effluent was reduced to 40 mg/L and lower. The capacity for metals removal in the pilot scale testing was good pertaining to copper and zinc. The ability to remove cadmium showed a result of 0.013 and 0.015 mg/L. The best performance in the pilot scale testing related to BOD removal showed a value of 510 mg/L. It should be noted that the bench scale testing and pilot scale testing were in the face of significant variations in the amount of BOD presented by the screened wastewater. This identifies the need to pay close attention to the removal efficiency of the system related to the BOD parameter in order to achieve consistent levels of BOD following treatment. The system under review is referred to as full-scale treatment. This treatment can be expected to exceed the levels achieved in the DAF bench and pilot scale testing because: (a) As a general proposition, treatment efficiency improves as the scale of machinery increases from bench to pilot to full-scale; (b) The bench and pilot scale tests were run without the benefit of the primary mix-aeration tank and the benefits derived from that part of the treatment apparatus, that is to say, uniformity of the flow and better dispersion of the constituents of the wastewater stream, prior to chemical treatment; (c) The pilot DAF unit used exclusively recycled wastewater to undergo pressurization for the creation of the air bubbles. In the course of the hearing it was established that approximately 50 gallons per minute of clean tap water could be brought in to the treatment process resulting in the formation of more bubbles and the facilitation of up to 10 percent greater treatment efficiency based upon that change. The other contribution made by the use of clean tap water was the possibility of as much as a 20 percent dilution of the wastewater stream, in terms of concentration of constituents within the wastewater stream; (d) In a full-scale operation, the opportunity is presented to routinely adjust the chemical dosages as well as select among a range of chemicals in order to achieve the greatest treatment efficiency; (e) In employing routine sanitization of the DAF unit by use of a mild chlorine compound, the tendency to accumulate coliform bacteria can be overcome. Removal of this adverse influence improves the water quality. In traveling through the pipeline, the transit time is in the range of two to three hours. At a normal rate of 250 gallons per minute of discharge, the transit time in the pipeline is 2.25 hours. Given the constituents of the wastewater, bacterial populations can be expected and could conceivably consume sufficient amounts of oxygen to affect the dissolved oxygen levels within the wastewater as it exits the pipe at the diffuser ports. In addition, there is some possibility of ammonia build up within the pipeline. To avoid the build up of bacteria at harmful levels, sanitation of the DAF unit must be accomplished. In addition, the pipeline itself should be flushed with clean water at the close of operations each day and treated with small amounts of chlorine to address bacteria which may form within the pipeline. This avoids the increasing concentrations of ammonia and protects against lowered dissolved oxygen concentrations and the possibility of increased levels of toxic substances in the effluent which might be attributable to the proliferation of bacteria and the build-up of ammonia during the transport through the pipeline. Taking into the account the nature of this wastewater and the velocity associated with the transport and the sanitization of the pipeline, sedimentation associated with organic solids or other materials will not present a problem. The pollution parameters associated with the treated effluent at the point of discharge from the pipeline can be expected to meet Class III orders, excepting unionized ammonia, specific conductance, copper, cadmium, pH and zinc. In order to achieve satisfactory compliance with regulatory requirements related to those parameters, the Applicant has requested a two-meter mixing zone. The purpose of that mixing zone would be to afford an opportunity for dispersion and mixing in the ambient water before imposition of water quality standards. The implications of that mixing zone are discussed in a subsequent section to the fact finding within the Recommended Order. In effect use of the mixing zone will promote compliance with standards pertaining to the subject parameters. Petitioners point out the fact that the Applicant has based its assumptions on the results of treatment on the availability of four sets of data which were obtained from DAF effluent--two sets of data coming from the bench tests and two sets of data from the pilot plant. Further, there is an indication of the variation in quality of the effluent from one test to the next and the need to employ different dosage rates of chemicals in the face of those variations. The full-scale system utilizes a number of techniques to gain some uniformity in the quality of the effluent prior to chemical treatment and thereby some uniformity in the amount of chemicals necessary to treat the effluent. This overall system can then be expected to produce treated wastewater that is basically uniform in its constituents. Petitioners point out the limited amount of data in the testing related to BOD. There were, in fact, only two data points: one related to the bench system and one related to the pilot system pertaining to BOD, both of these the product of different chemical dosages for treatment. Again, the system that is at issue in this proceeding can be expected to arrive at a more consistent level of BOD than is depicted in the results pertaining to bench scale and pilot scale testing. In fact, those results were not remarkably disparate in that the bench sale test produced 560 mg/L and the pilot scale test produced 510 mg/L. While the data related to BOD is limited, it still gives sufficient insight as to the probability of successful full-scale treatment and the test data is found to be a reliable indication of success in achieving the goal of 510 mg/L BOD. Contrary to the Petitioners' perceptions, the treatment efficiency is improved with the system that is under review. Petitioners believe that the bench and pilot scale testing not only is unrepresentative of the full-size DAF system, they also believe that the full-size system represents a lesser quality of treatment. In this regard reference is made to features which would adversely affect the treatment efficiencies. The first of those pertains to leachate which drains from beneath the sludge drying beds and is recirculated to the existing sump pit and added to the waste stream. Sludge which sits in the drying bed does decompose and causes biochemical reactions to occur, as Petitioners suggest. Moreover, no specific testing has been done of the leachate to ascertain the ammonia concentrations, pH or other chemical characteristics. Nonetheless, given the intention to clean out the residual matter within the sump pit frequently, and the flexibility to make that cleanup more routinely, and the fact that this amount of leachate is comparatively small in its ratio to wastewater which is being sent through the system for treatment, the leachate is not found to be an unmanageable problem. Nor is the sludge a problem. Likewise, the amounts of heavy metals within the leachate can be accommodated. Concerns expressed by the Petitioners related to the organic materials in the primary mix-aeration tank that is being returned to the sump pit can also be dealt with by the evacuation of the materials in the bottom of the sump pit. This can be achieved more frequently than on a weekly basis if that becomes necessary, and in doing so avoid problems with concentrations of ammonia, bacteria, amines, sulfides and general organic decomposition products. These materials which are returned to the treatment process as wastewater reintroduced into the primary mix-aeration tank can be adequately addressed in the subsequent treatment that occurs by reaeration, the use of the chemicals and DAF flotation. The retention inherent in the sump pit, primary mix-aeration tank and sludge drying bed has a potential to cause problems with ammonia build-up; however, the problems can be satisfactorily addressed, as well as potential problems with other toxic substances in the effluent, by routinely taking the residual material in the sump pit and sludge drying bed out of the treatment system. While the specific chemicals and precise dosage rates to be used with a full-size DAF system remain open, the basic concept of chemical treatment has been identified sufficiently. The precaution that is necessary is to make certain that close monitoring is made of the results of changes in the chemicals and dosage rates. Likewise, special attention should be paid to the implications of adjustments in the pH of the effluent to make certain that compliance is achieved with the Class III water criterion related to changes in pH above background. Adjustments can be made without violating Class III water standards related to pH. In testing that was done pertaining to the electroflotation effluent, a number of other chemicals were observed, to include trimethylamine, dimethyl sulfide, chloroform and other hydrocarbons. There is some indication of the presence of dichleoroethane, ethylbenezene and other aromatics. The possibility exists that these substances may also be products within the DAF effluent. In that event, the critical question would be whether they have any adverse effect in the sense of influences on the ability of the effluent to pass bioassays and the ability of the effluent to comply with standards related to other parameters such as dissolved oxygen, BOD, and TSS. The routine testing which is called for by the draft permit, which is deemed to be appropriate, would create a satisfactory impression of the materials set forth in the paragraph in the sense of the implications of their presence and allow any necessary adjustments in treatment. While the effluent produced in the testing on the part of the Applicant is different, it is representative, and the treated effluent which will be produced in the full-scale system will be of a better quality and present less adverse impacts than shown in the past testing. Petitioners question whether the Applicant has given a conservative portrayal in analyzing the effluent. In particular, it is urged that the Applicant claimed to be vying for use of the bench scale testing as a conservative depiction of the results of treatment. In this connection, the impression given in the hearing was that of ascendancy in treatment efficiency beyond the use of bench scale, pilot scale and ending in full-scale treatment. As pointed out by Petitioners, in making his case the Applicant has used results of bench and pilot scale testing. As example, use was made of the results of testing in the pilot scale in describing the removal effioiencies related to cadmium, whereas in the measurements of nitrogen concentrations the bench scale result was better than that of the pilot testing and was utilized. The real question is whether the overall testing has given some reasonable indication of success in full-scale treatment. To that end, use of results from either the bench scale or pilot scale testing is appropriate, and those results point to success in the full-scale operation. The system that is proposed is designed to address fluctuations in flow and concentrations in the effluent, given the primary mix-aeration tank contribution and the ability to recycle flow within the DAF unit, with the use of clean tap water. This will allow the Applicant to deal with the remarkable differences in BOD that were seen in the test period, ranging from 900 to 3000 mg/L. COD data as well as BOD data is limited but is found to be an ample depiction of potential treatment efficiencies related to that former parameter. In addition to the aforementioned references to changes in chemicals in the treatment process, Petitioners characterize the use of clean tap water in the recycle flow as being "unsubstantiated speculation." While the use of tap water was discussed in a theoretical vein, that discussion is found to be an accurate assessment of the value of the contribution of clean tap water to the treatment system. Impacts on St. Johns River Ambient Water Quality and Conditions The St. Johns River and the area of the proposed discharge is a riverine estuary. It has a freshwater source flowing from the south and a tidal ocean boundary to the north. The confluence of freshwater flow and tidal influences causes the water movement within this area to be oscillatory. That is to say that at different times the water will flow downstream, to the north, and upstream, to the south. There are occasions in which the net flow over a given tidal cycle will be zero; however, the water is always moving. Conductivity and chloride data indicate that the freshwater flow is the dominant flow compared to tidal influences. The extrapolation of available flow data indicates that there is a net downstream flow of fresh water averaging approximately 6,000 CFS. The St. Johns River at the point of discharge is over one and a half miles wide and relatively shallow with maximum depth in the range of 3 to 3.5 meters. Given the fact of the width and depth in this segment of the river, and the imposition of wind conditions and tidal influence, the water is well mixed and flushed. There is no stratification in this portion of the river. The Applicant looked into the question of current bearing and velocity in depths between two to fourteen feet in the water column. Eleven sampling stations were utilized in arriving at information about current bearing. This observation was over an eleven-nautical-mile stretch of the main channel of the St. Johns River. These stations are depicted on Applicant's Exhibit 38. In this portion of the river the current at all measured depth was flowing up and down the main channel. Within these sections there is no indication of a pronounced subsurface water movement toward the east and west banks of the river. Current velocities within the three stations closest to the POD averaged in the range of 0.5 feet per second and velocities in the other stations found within the main channel were within that range of movement. By contrast current velocities within the embayment areas along the east bank of the river were substantially weaker. DER conducted two studies using tracing dyes poured into the St. Johns River at the approximate point of discharge and monitored the course of dispersement of that dye. During this observation the dye was constantly replenished while being carried on the currents. While the dye remained within the area of the main channel, it stayed on the east side of the river as it moved down river on the outgoing tide in the direction of Smith's Point and the Shands Bridge. As the tide was slowing before the change of tide, the dye drifted for approximately two hours in the immediate vicinity of the point of discharge. The DER dye study was a fairly gross measurement of the direction of water movement within the river beyond the point of discharge. It tended to confirm that the water flow was basically up and down river, depending on whether the tide is incoming or outgoing. The studies were not sufficiently refined to speak with any certainty on the possibility that some part of the flow regime would move toward the east or west bank of the river. Nonetheless, in examining the nature of the shallow embayment areas along the banks of the St. Johns River, they are not seen to be subject to the basic flow regime that is occurring in the main channel during tide events. The bathymetry in this area is such that if the main flow regime was having some influence on the embayment areas, the depths within those embayments would be more similar to the depths found in the main channel of the river. Petitioners have employed a number of dye and drogue measurements to try to give a more accurate depiction of the influence of flow within the main channel upon the dispersion of effluent upon discharge and the possibility of those pollutants reaching the embayment areas. While there is no dispute over the fact that Trout Creek is a tributary to the St. Johns River with some tidal influences being shown in that Creek and there is no dispute that water from the St. Johns River flows in and out of Palmo Cove and Trout Creek, there does not appear to be a significant flow of water from the St. John River into the cove and creek from the main channel, in particular from the area of the point of discharge. One of the witnesses of the Petitioners, Sandy Young, did a dye procedure in which a plume was allowed to develop over a distance of approximately 1,000 feet. Although some slight lateral variation was shown in the dye plume, it did not identify a basic flow pattern toward the embayment areas on the east side of the river. The DER dye study was over a distance of some eight thousand feet and also showed some minor lateral variation. Both of these dye studies tend to show a basic flow pattern within the main channel. The dye study run by the Petitioners' witness White gave the same basic depiction as seen in the studies by DER and Young and did not identify a flow pattern out of the main channel toward the embayment areas. In the drogue studies run by Young three Chlorox bottles were filled to 95 percent of volume with water and released at the point of discharge. They were followed for a period of five hours. They moved initially with the outgoing tide toward Jack Wright Island and then when the tide slowed, the drogues slowed. When the tide changed with the incoming tide, the drogues moved toward the center of Palmo Cove. The drogue studies by Young do tend to indicate that some water was exchanged from the main channel at the point of discharge and the embayment areas. It is not a very exact measurement as it only deals with the surface area of the water column, given the wind and wave conditions existing on that occasion. It is in no way representative of the flow direction of the rest of the water column. Therefore, although it may tend to identify that some of the pollutants leaving the point of discharge may find their way to Palmo Cove, it does not establish that quantity of that pollution dispersion and the significance of that dispersion. Based upon this evidence it cannot be seen to be so revealing that the assumptions made by the applicant in trying to identify the dispersion characteristics of the effluent at point of discharge are negated based upon the results of the drogue study. The drogue study which Young did and the observation of the movement from Smith's Point to Little Florence Cove are no more compelling than the dye studies done at the point of discharge. When the Petitioners suggest that there is some influence by centrifugal force pushing the water to the outside of the curve toward the eastern bank, they are correct. However, the contention by the Petitioners that the incoming and outgoing tides sweep to the eastern shoreline of the St. Johns River moving toward Pacetti Point, Palmo Cove, Florence Cove and Smith Point is not accepted. Again, the general flow regime is up and down the main channel of the river and not primarily to the eastern bank. Finally, the fact that the Tetratech data produced for the benefit of the Applicant showing the flow pattern within the overall water column, which indicated that the general direction is the same at the top or bottom of the water column, did not tend to identify the fact that pollutants throughout the water column will be dispersed into the embayment areas from the point of discharge. The data collected in the main channel seem to establish that the water was flowing up and down the channel at depths below the surface. The question becomes whether the amount of pollutants that are being brought into the embayment areas is in such concentrations that they tend to cause problems along the shoreline, especially as it pertains to dissolved oxygen levels. From the facts presented, this outcome is not expected. Levels of dissolved oxygen in the St. Johns River can vary in the natural condition as much as 2 to 3 mg daily. These variations are influenced by algal activity and are not uncommon in Florida waters. Dissolved oxygen is essential to aquatic life. Optimum levels of dissolved oxygen for the fish population of the river are in the neighborhood of 6 to 8 mg/L. DER has established a minimum DO standard of 5 mg/L for Class III waters such as Trout Creek, Palmo Cove and the St. Johns River. This standard is designed to achieve uniform compliance throughout water column at whatever time the measurement may be made. DER, by the employment of this rule, is attempting to deal with those instances in which, in view of the dissolved oxygen level, aquatic organisms are placed under greater stress. The lowest DO concentration expected is normally seen in the summer in July, August and September. DO concentrations in the water column are expected to be highest at the surface area and lowest near the bottom. Measurements near the bottom are significant in this instance because the discharge will occur approximately one foot off the bottom of the river. The Applicant took DO measurements of the area in question during the spring of 1984 over a period of three days. These measurements were taken at a time when a better quality of dissolved oxygen might be expected as contrasted with circumstances in the summer. With the amount of wind involved impressive levels of reaeration were also occurring. These measurements showed that in all stations DO levels were at least 5.0 mg/L at all depths. A study by Applicant's consultant Environmental Science Engineering related to a diurnal event for dissolved oxygen was taken approximately one kilometer downstream from the point of discharge in August 1985 and did not reveal any measurements below 5.0 mg/L. The river was choppy on that day and this would improve the quality of dissolved oxygen. Historical data by DER related to water quality at Picolata, which is south of the POD in the St. Johns River, reveals average DO levels of approximately 6 mg/L. Historical water quality data collected by the Florida Game and Freshwater Fish Commission near Green Cove Springs, which is several kilometers north of the point of discharge, indicated average DO levels in compliance with water quality standards. Diurnal data from near Green Cove Springs did not show any history of DO values below the state standards. There is other historical data, however, which indicates that DO concentrations in the general vicinity of the point of discharge do go below 5.0 mg/L. Game and Freshwater Fish Commission data indicate that the readings below 5.0 mg/L could occur as much as 10 percent of the time. This relates to the study done at Green Cove Springs. There does not appear to be any particular pattern to these events of low DO violations other than the expectation of their occurring in the summer months, occurring more frequently in the lower depths of the water column and in areas which are shallow with limited flow. The summer circumstance is one in which there is a possibility of very heavy rainfall followed by hot weather with overcast skies and no wind, and the DO values go down in that set of conditions. The DO values are, in addition to being lower near the bottom of the water column, likely to be lowest in the evening or early morning hours and persist in length of time from eight to ten hours. Some of the Florida Game and Freshwater Fish Commission data from Green Cove Springs depicted some DO concentrations as low as 1.8 mg/L at the bottom and 2.1 mg/L at the surface. The low readings that were taken at Green Cove Springs occurred in September 1979 after Hurricane David had created unusual conditions in the upper St. Johns River as to effects on DO. The same report indicated DO concentrations at eleven stations in the lower St. Johns River in July and September 1982 were in the range to 4.0 to 4.5 mg/L respectively. This particular data is not particularly valuable in view of the location of those stations. There are occasions when the DO concentration at the point of discharge could go below 5 mg/L and could be as low as 2 mg/L on the bottom, but this is not a routine occurrence and would not persist. The Petitioners' consultant Young had taken certain dissolved oxygen readings at the point of discharge in April 1985 and found compliance with the 5 mg/L standard. At other times he and the consultant white measured substandard dissolved oxygen concentrations at the point of discharge. On July 20, 1985, white collected water samples at the surface and at two feet above the bottom and determined that the readings were 4 mg at the surface and 3 mg near the bottom. On August 10, 1985, Young measured DO concentrations of 4 mg/L near the bottom. On August 30, 1985, Young measured DO values of 4 mg/L at the point of discharge. Young had also measured DO concentrations at Green Cove Springs on August 10, 1985, and discovered readings as low as .5 mg/L and ranging up to 3.8 mg/L. A downstream measurement away from the point of discharge in the main channel made on August 10, 1985, by Young showed a dissolved oxygen reading of 4 mg/L. In these August measurements Young had discovered a number of readings that were in compliance with the 5 mg/L requirement. Again on September 5, 1985, Young made a measurement of dissolved oxygen near the bottom of the water column at the point of discharge which was 5.3 mg/L. Young's measurements of dissolved oxygen at the surface and in the intermediate depth, typically were above 5 mg/L. Bottom readings taken by Young in the main channel of the river and to some extent in the embayment areas were extracted from the soft detrital materials, the place of intersection of the river bottom and the water column. DO levels in these anoxic materials would tend to give lower dissolved oxygen readings and, to the extent that this anoxic material remains in the test probe while taking measurements toward the surface, would have an influence on the readings, making them appear lower than would be the case if the anoxic sediments were not present in the test device. These effects were not so dramatic as to cause the rejection of the data collected by this witness. Some explanation for lower DO readings at the point of discharge can be attributable to the fact that the anoxic material associated with high benthic oxygen demand on the bottom reduces the dissolved oxygen in the water column. Although Rangia clams were present at the point of discharge and they are capable of living in an environment of low salinity and low DO, they are likewise able to live in higher ranges of DO and their presence cannot be regarded as meaning that the dissolved oxygen levels are consistently below 5 mg/L. Petitioners' consultant White opined that there would be a very frequent violation of DO standards at the point of discharge, approaching 25 percent of the time. Considering the facts on the subject of dissolved oxygen in that area, this opinion is rejected, as is the opinion that DO concentrations will go below DER standards most of the time in July, August, and September. Young believes that a more involved study of worst case conditions would reveal DO violations throughout the column in the center of the river. The data that was presented was ample to demonstrate that violations would not be that widespread. Nor is the opinion of the consultant Parks on the subject of DO violations, to the effect that they will occur on many occasions accepted. In the Palmo Cove area it is not unusual to see some DO readings below the 5 mg/L standards. The E.S.E. group found substandard DO conditions in Palmo Cove at sampling Station 1 in September and October 1984 and some instances in April and May 1985. DO concentrations were found in the range of .4 and .6 mg/L in August 15 and 30, 1984, respectively, with DO concentrations of 1.8 and 2.1 mg/L reported on October 4 and October 29, 1984, respectively. DO violations in four out of eight checking periods between April 25 and May 24, 1985, were shown in the Palmo Cove area. Measurements taken by the consultant white showed 3 mg/L at the surface and 2 mg/L at the bottom on July 28, 1985. The consultant Young also made a measurement of 3.2 mg/L of dissolved oxygen on August 10, 1985, in a mid-depth reading in the Palmo Cove area. On September 5, 1985, he found a DO reading of 4.0 mg/L. At those places along the eastern shoreline of the St. Johns River and the relative vicinity of Florence Cove, Jack Wright Island, Little Florence Cove and Colee Cove, low dissolved oxygen readings were found, that is below 5 mg/L. These coves can be expected to have substandard readings frequently during the summer period, based upon measurements taken by the consultant Young. In the conduct of the drogue study related to the Chlorox bottle, the consultant Young in tracking the path of those bottles, found a couple of locations in the path of the drogue which were in the range 2.8 to 4.2 mg/L and 2.0 to 4.6 mg/L. The influences of the discharge will not reduce DO in the embayments. The ambient conditions for BOD in the area where the discharge is contemplated is relatively low and there is no thermal or saline stratification even in the summer months. Nutrient concentrations in this part of the St. Johns River are as indicated within the Applicants Exhibit A-4(B)(3) and at present are at such levels as to promote a healthy fish community. There is algae production that can be sufficient in some areas within this section to cause algae blooms. Algae blooms are not found to be a routine occurrence. Algae blooms reflect higher levels of nitrogen and phosphorus. The consultants Young and White have seen algae blooms in the St. Johns River away from the general area of concern, both upstream and downstream. Should those algae blooms occur, they would promote significant rises and falls in DO concentrations. In Palmo Cove and the St. Johns River, supersaturated DO concentrations have been detected and they are indications of high rates of primary algal productivity. The circumstance of supersaturated conditions, related to dissolved oxygen, can be the by-product of an algal bloom. The concentrations of nitrogen range from an average of 1.42 to a maximum of 2.54 mg/L. Nitrogen concentrations of 1.4 mg to 1.5 mg/L are optimally advantageous for fish production. Significant increases above those levels would cause the decline of the fish population. Total phosphorus concentrations in the ambient waters are high. Concentrations in excess of 0.1 mg/L of total phosphorus are regarded as a indication of eutrophication and the average concentration here is measured as 0.3 mg/L with a maximum ambient concentration found at 0.52 milligrams per liter. There is significant algal growth in the inshore areas and an indication of some eutrophication in the grass beds. The dominant species of algae found in that vicinity are blue-green, which are seen as being nuisance species. The grass beds along the shoreline are basically healthy. On the other hand, some of the public witnesses identified the fact that grass beds and other vegetation have died with the advent of discharge from the Applicant's plant into Trout Creek. This was under a system in which little or no treatment was afforded the effluent. One other public witness indicated that his dock in the Florence Cove area had been covered with a slimy material and algae during the past two years. Significant grass beds are found along Jack Wright Island and in other areas along the eastern shoreline of the river. These grass beds are important as fish habitat to include nursery areas, areas for various juvenile species of fish and other organisms. Some of these grass beds are showing signs of environmental stress, and nutrient loading can contribute to that stress. Some of the grass beds are covered with higher amounts of algae, duckweed and periphyton than are desirable. The duckweed had floated into these areas from other locations and can be expected to move away. The presence of algae is an indication of nutrient loading. The presence of duckweed is not a product of nutrient loading in the sense of the production of the duckweed at the site where they were found along the shoreline. The area in question between Pacetti Point and Shands Bridge serves as a nursery in a sense of providing habitat for juvenile species of fish and other organisms. The grass beds along the shoreline provide habitat for feeding and breeding related to juvenile organisms, to include such species as bass and shrimp. Juvenile catfish are found within the deeper portions of the river as well as croaker and other marine species. There is a high number of juvenile blue crabs in this area of the river and this is a commercial resource. Shrimp are taken by recreational fisherman in the area of the North Shore Pacetti Point. Clam beds are also present near the point of discharge. Juvenile and adult manatee have been seen in the St. Johns River and in the area near Jack Wright Island. Manatee have also been observed in Trout Creek at a time before the operation of the Applicant's plant and at times following the cessation of operations in June 1985. During the course of the operation of the Applicant's plant, when raw effluent was discharged into Trout Creek, fish kills were observed. Those events had not been seen prior to the operation of the plant. Indications are that fish were killed in the creek due to the use by the Applicant of fly bait, which made its way into the water. Dispersion Modeling of Water Quality Impact In order to gain some impression of the influences caused by the dispersion of the pollutants within the effluent, the Applicant through its expert employed several modeling techniques. DER was made aware of this modeling as it developed. A far-field model was used to calculate what the long-term or steady state impacts of the treated effluent would be on the ambient water quality. In trying to identify the influence of the discharge, measurement of metals were taken based upon an assessment of long term increases. BOD, which breaks down and consumes oxygen over time, was examined in the sense of the long term effects as to DO deficits. In essence these projections were superimposed over the ambient condition to gain an impression of the adjusted ambient values, taking into account the influence of the discharge. The Applicant also ran a plume model which was designed to calculate spreading and dispersion of the treated effluent within the zone of initial dilution or mixing zone at the point of discharge. This model responds to the discharge configuration. Through the use of computer calculations, it was established that a five-point diffuser with port openings of 0.75 inches in diameter angled upward at ten degrees would result in an effluent dilution ratio of 28.5:1 within two meters of the point of discharge. The calculated impacts of the plume model were superimposed upon the adjusted ambient water quality conditions set forth in the far-field model in order to determine net impact upon the receiving waters within the mixing zone. A third model was used, referred to as the lateral diffusivity model. This model is designed to calculate the six-hour or short term water quality impacts of the treated effluent when it moves from the zone of initial dilution during flood and ebb tide conditions. By estimating dispersion rate, this model predicts what dilution would occur in the path of the effluent plume. These impacts were then superimposed upon the adjusted ambient water quality conditions to determine the total impact in the path of the plume. The modeling work by the Applicant's consultant is a reasonable depiction of the predicted impacts of the pollution on the ambient conditions. The calculations used in the far-field model assumed a freshwater flow of 2,000 CFS. This assumption in the far-field model satisfactorily addresses worst case flow conditions related to seven-day, 10-year low flow. The temperature utilized in depicting ambient water was 30 degrees centigrade when employed in the far-field and lateral diffusivity models. This corresponds to warm weather conditions, which are more profound in describing effects on water quality. The far-field and lateral diffusivity models assumed that the treated effluent discharged from the pipeline would have a BOD concentration of 665 mg/L. This is contrasted with the maximum concentration allowed by the draft permit, which is 510 mg/L, which is the expected amount of BOD. This tends to depict the impacts of the discharge more conservatively. The model assumes the BOD loading of 2,720 kg per week, equating to an average discharge concentration of 665 mg/L if the plant operates five days a week on an eighteen-hour day. The reaeration rate and NBOD and CBOD decay rates used in the far field and lateral diffusivity models are acceptable. Likewise, the longitudinal dispersion coefficient that was used in the far-field model is acceptable. The standard modeling methodology in this process calls for an assumption of a 1.33 growth rate of the plume in the lateral diffusivity model. The Applicant's consultant decided to use a lower constant diffusivity growth rate. As a consequence, less lateral spreading is depicted. With less lateral spreading, less dilution is shown, and the impacts predicted by the model are exaggerated. One of the parameters of the plume model has to do with river flow which causes some turbulence and also brings about dilution. In this instance the plume model calculations assume stagnant conditions which is a more conservative assessment. As the Petitioners have suggested, the modeling to explain the impacts of dispersion of the pollutants is not designed to give precise calculations of the DO deficit at each point in the river along the eastern shoreline. It is indeed an estimate. The estimate on this occasion is reasonable. Although DER performs mathematical analysis of dispersion of proposed discharge in some cases, it did not do so on this occasion. Nonetheless DER was satisfied with the present choice for modeling the dispersion characteristics of the discharge. Although the models utilized were not subject to exact calibration by measurement of the dispersion at the site, the information gained by the Applicant prior to the imposition of the modeling techniques was sufficient to develop the models and to give a theoretical verification of the expected impacts from the discharge. The Applicant's belief that the maximum DO deficit caused by the discharge will not exceed 0.1 mg/L is accepted. The dissolved oxygen level in the effluent at the point of discharge will be above 5 mg/L. The Applicant's choice of reaeration rates, CBOD decay rates, NBOD decay rates, discharge rate from the pipeline, hours of operation, average reversing current speed, net non- tidal flow, non-tidal velocity, time lag before NBOD decay, maximum tidal velocity, and other variables and assumptions within the models were acceptable choices. Although the possibility exists of an occasional 5 1/2 day operation in which 10 additional hours of operation are added, this would not be so significant as to set aside the predictions as to the pollutant dispersion. The Applicant's consultant who modeled the dispersion rates did not conduct dye studies to verify or calibrate the actual dispersion in the river. One of the dye studies indicated a lateral spreading rate which was less than that predicted by the model. Notwithstanding this revelation, the overall techniques used by the Applicant in predicting lateral spreading rate are sound and do not present a risk of a greater DO deficit than was predicted based upon incorrect assumptions as to lateral spreading rates. The Applicant's consultant's use of 2,000 CFS as the net non-tidal low flow was a more convincing estimate than the field data collected by the United States Geological Service, given the paucity of information about the flow conditions within the St. Johns River. The Applicant's choices in describing maximum tidal velocities and average velocity are accepted. The critique of the modeling efforts done by the Applicant that was made by Petitioners' consultant, Dr. Parks, in which he concludes that the DO deficit is considerably greater than 0.1 mg/L is not accepted. Comparison of Predicted Impacts of Discharge with Statutory and Regulatory Criteria Inside the Mixing Zone Applicant's assumptions about the increase in nutrient concentrations in the St. Johns caused by the discharge are accepted. This is based on the assumption of a nitrogen value of 52 mg/L which was achieved in bench scale testing of the effluent and which can be achieved in the full scale operation. As the effluent is discharged from the diffuser within the mixing zone, there will be some turbidity problems in that the bottom near the point of discharge. The soft silt there is easily resuspended. When the discharge is concluded, the material will settle back to the bottom. There will be further resuspension when the operation commences again and there is a discharge. The transport of these suspended materials is limited in that the water velocity associated with the discharge is quickly dissipated. This phenomenon will not cause adverse environmental impacts. The mixing zone does not include an area approved by the State of Florida, Department of Natural Resources for shellfish harvesting; it does not exceed the presumptive maximum size set forth in Rule 17-4.244, Florida Administrative Code. Nor does it include an existing drinking water supply intake or any other existing supply intake that would be significantly impaired by the proposed mixing zone. The water in this area is of sufficient depth that it will not support grass beds that are associated with a principal nursery area, such as pond weed, midgeon grass, manatee grass, turtle grass or eel grass which are used to support nursery activities. These grasses are normally found inshore. Although juvenile fish are found throughout this reach of the St. Johns River, and for that matter in the entire lower eighty miles of the St. Johns River, the mixing zone is not of such dimensions that it will preempt the health of juvenile fish. Most of the freshwater fish in this system use the littoral areas for reproduction. Marine and estuarine species do not reproduce in the St. Johns River. There is some reproduction that is occurring with some species, such as catfish. Given the size of the mixing zone, no significant adverse effects will occur with the established community of organisms in this portion of the river. The mixing zone will not otherwise impair designated uses of the St. Johns River. The treated effluent will not create a nuisance condition or violate any other DER standards that apply within the mixing zone. With the advent of the full scale facility, maximum, average and chronic toxicity criteria can be reasonably expected to be met at the point of discharge, within the mixing zone and at the boundary of the mixing zone. As described before, the effects of sediment transport upon discharge are localized. The proposal for a mixing zone takes into account Rule 17-4.244, Florida Administrative Code, in the sense of addressing present and future sources of pollutants and the combined effects with other pollutants or substances which may be present in the ambient waters. One of the concerns which DER has about wastewater is the effect which that pollutant has on organisms within the environment. To gain an impression of that influence, testing is required to establish whether the wastewater is acutely toxic. The testing is known as bioassay assessment. While this assessment is normally done after the grant of a construction permit, when confronted with uncertainty about the quality of the effluent, some testing is beneficial prior to the grant of a construction permit. This is especially true given DER's experiences in dealing with raw effluent of several of the scallop processors, to include Homer Smith, which showed that the raw effluent was acutely toxic. This acute toxicity testing is done by placing test organisms into aquaria containing the effluent and measuring survival of those species over time. Results are described in terms of a measurement of the concentration of the effluent at which 50 percent of the organisms are killed during a prescribed test period. In static testing the organisms are simply exposed to the effluent for the requisite period of time. By contrast, a static renewal test calls for the effluent to be replaced with another sample of the effluent at various intervals within the test period. Finally, a flow through bioassay test calls for a continuous stream of fresh effluent to be introduced in prescribed concentrations over the duration of the test. A bioassay assessment in the static condition was performed related to DAF pilot scale effluent that was collected on April 19, 1985. In this instance Daphnia magna were used as test organisms and demonstrated a survival rate of greater than 50 percent in a 100 percent concentration of effluent over a period of 96 hours in the setting of static and static renewal tests. That survival rate was also shown in lesser concentrations of effluent as well. The April 19, 1985, sample was also used in testing the response of Pimephales promelas. These test organisms did not survive either in the static or static renewal tests. While an hypothesis has been made that acute toxicity was experienced in this test organism attributable to build-ups of ammonia, which is greater with this type of organism than with the Daphnia, due to larger biomass which allows for a greater number of ammonia generating bacteria to be presented in the test aquaria and the fact that the Pimethales excrete more ammonia, these differences do not definitely explain why the Daphnia survived and the Pimephales did not. In the series of static renewal bioassays performed on the wastewater that was collected at the plant on April 29, 1985, and shipped to Lenox, Massachusetts, for bench scale treatment, the test organisms of both types failed to survive for 96 hours. It was discovered that during the course of the test period, levels of ammonia rose rapidly. Trace metals in the treated effluent are principally in the form of stable species, as opposed to free ions. These constituents standing alone are not likely to have caused the mortality in the test organisms. The effect of decomposition of the organic constituents in the waste stream is the most likely explanation of why the bioassays of pilot and bench scale treated effluent did not lead to a satisfactory result. Unionized ammonia, a by-product of organic decomposition, is found to be a principle player in the explanation of why the treated effluent was acutely toxic to the test organisms. The exact cause of toxicity has not been precisely identified. Given the complex nature of the effluent, other potentially toxic substances such as sulfides, amines, and other organic compounds could have contributed to the demise of the test organisms. Moreover, toxicity can increase with combinations of chemicals acting in a synergistic fashion, making their combined effects more devastating than the effect of any single substance. Having in mind the fact that ammonia is a major problem in the survival of test organisms subjected to a bioassay, the question becomes one of what may be done to remove ammonia. The production of ammonia in wastewater would depend upon the presence of bacteria. The proposed DAF system removes substantial numbers of bacteria, thereby limiting the possibility of ammonia build-up, if bacteria are not allowed to recolonize in some part of the system prior to discharge. As discussed before, reduction of bacterial activity can be achieved within the proposed treatment system. This is unlike the experience with the bench scale and pilot scale testing that was done on the effluent in which a substantial amount of time transpired before subjecting the test organisms to the effluent and in which a substantial amount of time transpired while the test organisms were being subjected to static and static renewal procedures with the same effluent. The time intervals contributed to the build- up of toxic levels of ammonia in the effluent. The system which is proposed in this instance can avoid the problem of time as it relates to the build-up of levels of ammonia. To further reduce the influence of retention of the waste product, flow through bioassay testing would be the most appropriate measurement of the survivability of the test organism in that it would be responding to real case conditions pertaining to the quality of effluent and its potential toxicity. Under these circumstances, it is reasonable to believe that in a flow through bioassay test of the full scale treatment system, the test organisms could survive. This determination is reached given the reduction in retention time compared to the bench and pilot scale testing, which reduces ammonia, with further ability to reduce ammonia by frequent removal of residual materials from the sludge drying bed and sump pit and taking into account basic improvements in treatment efficiency associated with the full scale system. In addition, the pH of the effluent can be regulated to avoid toxicity in the ammonia which is associated with inappropriate balance within the pH. While a 96-hour LC-50 cannot be calculated with the results of bench scale and pilot scale testing, a reasonable possibility exists for the establishment of that measurement with the advent of a flow through bioassay. There is sufficient similarity between the effluent in the pilot and bench scale testing and the expected effluent in the full-size system for the bioassay testing that was done in those limited systems to give a meaningful indication of the probability that the Applicant can pass a flow through bioassay. Applicant can be reasonably expected to produce an effluent in the mixing zone which will not exceed the 96 hour LC-50 for acute toxicity. As with the circumstance of ammonia, pH can be controlled within the system to address the implications of changes in pH as it pertains to other pollutants in the wastewater. Ammonia production can be influenced by the amount of alkalinity in the effluent and the receiving waters. Alkalinity has not been measured thus far. Alkalinity could be established for the effluent and receiving waters and dealt with if it was suspected as being an explanation of problems with the build up of ammonia which might exceed DER standards. The discharge from the Applicant's plant will not cause long-term problems with low DO, high nutrients, algal imbalances, and chronic toxicity. Outside the Mixing Zone Those constituents within the waste stream, to include those for which a mixing zone was sought, will comply with applicable water quality standards at the boundary of the mixing zone. The dissolved oxygen deficit at its maximum can be expected to be in the neighborhood of 0.1 mg/L and will be exerted somewhere in the range between 1 and 2.5 km downstream of the point of discharge across the width of the plume in worst case conditions. This deficit is not of a dimension which is easily detectable. The implications of that deficit are difficult to perceive in terms of tangible environmental consequences. While a deficit in the range of 0.1 mg/L has some relevance in the DER permitting decision, that deficit as it is dispersed is not expected to cause or contribute to violations of water quality standards in the main channel of the river or in the inshore and embayment areas. While it is true that there are periodic fluctuations of dissolved oxygen below 5 mg/L, DER, as a matter of present policy and professional judgment believes that in this system which evidences characteristics of a clean well-flushed, unstratified water body occasional readings of low DO are not regarded as an indication of violation of water quality standards. This speaks to the main channel area of the river where the only quantifiable influence is expected. The facts presented in this case support the soundness of this policy choice. Petitioners presented the testimony of former officials within DER, namely Parks and Young, who stated that dissolved oxygen standards of 5 mg/L are applied at all times and at all places. They felt that the DER policy was to the effect that permits would not be granted for discharge in any circumstance where the DO concentrations are substandard in the ambient waters, regardless of the amount of decrease or deficit that would be promoted. Parks spoke of the availability of site specific alternative criteria, variances, exceptions or exemptions from the terms of the water quality rule. Having considered these remarks, the present DER policy of allowing the permit to be granted in the instance where occasional violations of ambient water quality standards related to 5 mg/L occur, in the face of the small deficit which is involved in this case, is the better choice. Further, it is a choice that is not so inconsistent with prior practices as to be arbitrary in nature. Finally, DER's position that it would be unadvisable to require a request for site specific alternative criteria, variances, exceptions or exemptions in circumstances such as this case is accepted, when taking into account the problems which would be presented to the agency in administering the permit program, should each Applicant who is confronted with occasional violations below standards for dissolved oxygen have to seek extraordinary relief. While the facts do identify that some pollutants can reach the embayment areas on the eastern shore, the facts do not depict a circumstance in which the amount and quality of that effluent will be such that it will cause or contribute to dissolved oxygen violations in those areas. The water quality in the embayment areas is lower than that in the main area of the river due to inadequate flushing. The areas inshore do not interact with the main channel in a way that would take advantage of the faster moving currents found in the main channel as this interaction might promote a better quality of water. In view of the situation in the embayment areas, the Applicant, on advice of his consultants, moved the proposed location of the discharge into the main channel away from the areas which were under greater stress in terms of dissolved oxygen values and in doing so avoided damage to these areas. The current velocities in the area east of the main channel are weak. There is a substantial distance from the point of discharge to the inshore areas. As the effluent moves toward the inshore or nearshore areas it will become so diluted it will not have an adverse influence on dissolved oxygen. Not only the distances involved, but also the fact that water flowing near the surface is well aerated contributes to the dilution of the effluent as it approaches the shore. Although it has been shown that some stress in the grasses along the eastern shoreline has occurred and the existence of blue-green algae has been shown, together with indications of undesirable algal production, the nutrients which are part of the effluent at the point of discharge are not expected to cause an imbalance in the natural populations of flora and fauna or create nuisance conditions or violations of transparency standards. The nitrogen increase could cause an increase in algal production in the order of one percent, which is inconsequential. The treated effluent will not adversely effect biological integrity of the St. Johns River. The benthic microinvertebrate community in this part of the river is fairly low density due to the fluctuations in salinity levels and predation by fish and blue crabs and given the nature of this substrate which is unstable with low levels of dissolved oxygen. The organisms that are predominant have a tolerance to siltation and fluctuations in dissolved oxygen. The treated effluent will not adversely effect the microinvertebrate community. Petitioners point out the fact that when DO concentrations decrease below optimum levels, fish and other organisms suffer. The fish reduce their movement, feeding and reproduction and they are less disease resistant. They are placed in a position of having to leave the area or risk death if the impacts of the decrease in dissolved oxygen are severe. The influence of the effluent at the point of discharge in this project is not expected to have significant impact on fish and other organisms within these topics of concern expressed in the paragraph. Even though the dissolved oxygen deficit extends in amounts below 0.1 mg/L as far as 2.1 km upstream and 4.5 km downstream and within a wide breadth of the center portion of the river, those deficits will not be significant to the water quality. The BOD associated with the discharge, allowing for mixing will not depress dissolved oxygen levels below DER standards of 5 mg/L. The combination of BOD and nutrient discharge will not cause an imbalance of algal production in the river, nor will it contribute to the dominance of nuisance algal species. The BOD nutrient loading associated with the discharge into the St. Johns will not promote significant ecological impacts on the St. Johns River, to include the possibility of more frequent and severe algae blooms, increase in benthic oxygen demand, risk of increase eutrophication, destruction of grass beds or decline in the fishery. With the advent of discharge in the St. Johns DO fluctuations in the river will not be greater nor will there be an occurrence of a swing from substandard dissolved oxygen levels to supersaturated dissolved oxygen. While the discharge from the Applicant's plant contains pollutants such as cadmium, zinc, arsenic, copper and organic decomposition products, the treatment provided the wastewater is expected to overcome any acute toxicity associated with these materials individually or in combination. Chronic toxicity is not expected related to these materials. The effects of these materials are not expected to cause physiological and behavioral responses which are abnormal in organisms such as reduced locomotion and reproduction or increase susceptibility to diseases to include ulceration and increased mortality. Treatment contemplated and provision of a mixing zone will allow compliance with the standards related to cadmium. Reference has been made to a development known as St. Johns Harbor which is in the vicinity of the proposed discharge and can be expected to promote some pollution in Palmo Cove and the St. Johns River. Although St. Johns Harbor development is proceeding through stages of permit review, it does not appear that it has reached a place in which exact information about its implications as a pollution source can be set out. In discussing the St. Johns Harbor Development, Petitioners emphasized that this eventuality and other matters which deal with cumulative impact have not been satisfactorily addressed. There is no indication than any other substantial development or activity other that St. Johns Harbor is contemplated in this area associated with the permit review at hand. St. Johns Harbor eventually hopes to develop 3000 residential units. It has received the approval of the Northeast Florida Regional Planning Council for the initial phase of development. It has been reviewed by the Florida Fresh Water Game and Fish Commission. The developers are proceeding with the project to include the sale of lots. Nonetheless, that development has not reached the phase where its implications would form the basis of a denial of this project based upon the theory of cumulative impact. While Petitioners contend that stormwater runoff from the St. Johns Harbor project will be a problem, assuming an inadequacy in the design which that developer employs to deal with that matter, this eventuality is not expected based on a review on the facts presented. Reference is made to the Ulcer Disease Syndrome which fish in the St. Johns have suffered from. The principal area in which this event has occurred is north of the area expected to be influenced by this discharge. Nonetheless, diseased fish have been found in Palmo Cove. This Ulcer Disease Syndrome is caused by heavy metals and hydrocarbons, and these materials act in league. The advent of additional heavy metals and other pollutants, such as those being discharged from the Applicant's plant could cause further deterioration in the condition of fish suffering from Ulcer Disease Syndrome. Having considered the facts, this outcome is not expected. Ambient levels of 18 other pertinent pollution constituents in the vicinity of the point of discharge were ascertained by the Applicant's consultants on the basis of field observations and historical United States Geological Survey and Florida Game and Fresh Water Fish Commission data. This formed a basis of an assessment of average and worst case values. This information indicates compliance with those parameters for purposes of water quality standards at the point of discharge. Implementation of Construction Permit Permit Conditions Applicant's Exhibit A-10 is a copy of the DER intent to issue the construction permit. It sets forth seventeen specific permit conditions, and these conditions should be imposed in the permit. The following are additional conditions that should be set forth in the construction permit: The operation and maintenance manual required by original Condition 10 shall provide that the DAF treatment system be cleaned regularly with a mild chlorine solution and that the wastewater from this maintenance be placed in a vehicle and carried off the premises for disposal at an appropriate location. This wastewater from the cleanup shall not be discharged from the plant into state waters. The operation and maintenance manual shall provide that a dosage level of chlorine to clean the pipeline that will result in comp- liance with all water quality standards at the end of the pipeline be added to a fraction of fresh water used to flush the system at the cessation of discharges each day. DER must approve this dosage amount before it becomes part of the operation and maintenance manual. The operation and maintenance manual shall set forth a regular schedule for pumping the accumulated sludge or solid materials from the sump pit. The operation and maintenance manual shall provide that as much as 50 gallons per minute of fresh tapwater may be added to recycled wastewater for pressurization. Any discharge created with this addition may not exceed 250 gallons per minute. Any discharge created above 200 gallons per minute shall be consti- tuted only of tap water. Two machine scallop processing operations at the plant will be limited to an average of 18 hours per day and no more than 90 hours in a week. Monitoring in Trout Creek shall continue as specified in paragraph 17(E) of the Consent Order as long as discharges into Trout Creek continue. On each occasion when the DAF treatment system is in operation, the Applicant shall have a fully trained operator on site. The terms of the construction permit shall expire on December 31, 1986. The constructed pipeline shall be leak tested once a month from June to September and every other month during other months of the year. If a leak in the pipeline is detected it shall be repaired within 20 days and retested for leaks within 15 days thereafter. The carrying out of any leak testing and repairs shall hereunder shall be certified by a professional engineer. Pre-pipeline Operations Petitioners have pointed out the fact that when two or more pollutants are present, as in the instance of the effluent discharged by the Applicant's plant, those pollutants tend to act in a synergistio manner. That can exacerbate the circumstance where you find low dissolved oxygen. This is particularly a matter of concern when discussing Trout Creek. This is unlike the impacts of the discharge into the St. Johns River which are not expected to exceed standards or promote adverse effects. The implications of operation within Trout Creek to allow necessary permit review by DER and the State of Florida, Department of Natural Resources can be overcome once the discharge is withdrawn from Trout Creek and may be addressed by DER more immediately if the dissolved air flotation unit, after a reasonable period of adjustment, does not perform in the fashion that it appears to be capable of. In the instance of discharge into Trout Creek, the material discharged tends to remain in that area for a relatively long period in that the creek is small and has very little flow and poor flushing characteristics. DO levels will be depressed, the presence of a deficit in dissolved oxygen caused by the discharge from the DAF unit would increase the probability of fish kills when contrasted with a circumstance where there is no further deficit of dissolved oxygen. Given the explanation of why a fish kill occurred based upon the past use of fly bait by the Applicant and the fact that there is no indication of fly bait in the present plans, a fish kill in Trout Creek in the time of interim discharged does not seem probable. With the advent of discharge into Trout Creek, the possibility is enhanced for algae blooms and increased eutrophication. There would also be some accumulation of toxic substances. Additionally, there would be some influence on juvenile fish which are more sensitive to pollutants and the possibility exists that it could reach levels that are lethal to bass larvae and juvenile sports fish. The creek would lose some of its viability as a nursery and some fish would leave the creek. These events are not irreversible and can be reasonably remedied with the cessation of discharge into the creek. Moreover, as in the instance with the problem with fish kills, if some set of circumstances attributable to the discharge were to occur in such dimensions as to cause long term impacts in Trout Creek, DER could take action against the construction permit. Dissolved oxygen in Trout Creek can be below the 5 mg/L standard. Data of the E.S.E. group showed that at Highway 13 bridge, approximately fifty yards from the plant in December 1984 and January 1985, values were as low as 0.1 and 0.2 mg/L, and readings could be frequently below 2 mg/L at Highway 13. In April through June 1985, periodic surface dissolved oxygen concentrations were in the range of 3 mg/L and as low as 2.4 mg/L. DO concentrations generally found at the bottom of Trout Creek could be as little or lower than 1 mg/L at times. In July 24, 1985, at the time when the plant had not been operating for approximately a month, the DO concentrations were 2.9 mg/L at mid-depth and 0.8 mg at the bottom. Within Trout Creek in the area of the Pacetti marina, Consultant White measured DO concentrations in the range 1-3 mg/L. On August 10, 1985, six weeks after operations had stopped at the Smith facility, DO concentrations were found to be 3 mg at the surface, less at mid-depth and 0 near the bottom. Computer modeling was not done to ascertain the impacts of a discharge directly into Trout Creek from the DAF unit. The modeling done by the Petitioner's consultant, Parks, using some of the concepts considered in the Applicant's modeling for the St. Johns River is inapplicable to the circumstances in Trout Creek. Trout Creek has also served as a nursing ground for reproduction and habitat for young fish. During the course of the operations by the Applicant in the discharge of essentially untreated effluent, the beds of bass and sun fish have not been seen within the creek. Water quality improves with the DAF unit and sediment loading by heavy metals decreases. Trout Creek is a stressed system at present. It has low levels of dissolved oxygen, high nutrient concentrations and the presence of heavy metals in undesirable amounts. The low numbers of pytoplankton species give some indication of a highly stressed ecosystem. The present officials of DER, Palmer, Owen and Fox, expressed their concerns about dissolved oxygen in those instances where there would be a decrease in ambient DO concentrations. This has particular importance in discussing the problems associated with the discharge into Trout Creek, as opposed to the point of discharge contemplated in the St. Johns River, which risk is minimized given the characteristics of that area and the higher readings of ambient dissolved oxygen in that water, as contrasted with low readings within Trout Creek. A literal interpretation of the position of the agency officials would lead to the conclusion suggested by the Petitioners that no discharge should be allowed into Trout Creek, even on an interim basis. However, such a position would be inherently unfair considering the fact that some discharge would occur into the creek before the installation of the pipeline, whether based upon simultaneous permit review by DER and the State of Florida, Department of Natural Resources in the easement case or sequential review as is contemplated in this instance. Admittedly, the amount of time involved in the discharge into Trout Creek increases in view of the severance of the easement case from the present proceedings. This circumstance occurred in view of the desire on the part of the DNR to see the actual treatment efficiencies involved with the dissolved air flotation unit as opposed to the theoretical possibilities of that equipment. In the present situation, it would be a reasonable policy choice for DER to allow an interim discharge into Trout Creek pending the opportunity for DNR to monitor the quality of the effluent produced by the DAF unit and make a decision about the easement, thus allowing installation of the pipeline if the easement is granted. This arrangement contemplates that DER should closely monitor the quality of the effluent produced by the DAF unit, to make certain, after the Applicant has been given the opportunity to make necessary adjustments to that unit, that the Applicant is not allowed to continue to discharge into Trout Creek following this period of adjustment, when it is shown that the Applicant's equipment is not performing as expected. In any event, the discharge of effluent into Trout Creek will continue over a limited period of time and the system can be expected to quickly return to its healthier state after the removal of the discharge from Trout Creek. This has occurred in the past when the operations of the plant ceased and occurred at a time when the wastewater was of a more damaging quality than contemplated by that associated with the DAF unit. In summary, it would be a reasonable policy choice to allow the interim discharge into Trout Creek on this occasion. Dredge and Fill Permit Characteristics of Pipeline Corridor The pipeline corridor encompasses portions of Trout Creek, Palmo Cove and the St. Johns River. The bottom sediments where the pipeline is to be installed are constituted of soft, and sometimes extremely soft, flocculent silt. Although these sediments are easily resuspended, dispersement of these sediments will only occur while the pipeline is being installed. In placing the pipeline, it is the intention of the Applicant to simply allow the pipe to sink into the sediment. The soft substrate is several feet deep in some places within the proposed corridor. Nonetheless, the pipe is expected to stabilize as it sinks into the material. There are places within the corridor where a crusty material may be found on the surface of or just beneath the substrate. These are locations where jetting or mechanical excavation may be necessary. Jetting may also be necessary along the approximately 155 foot stretch of the corridor that crosses the State of Florida, Department of Transportation right-of-way. This requirement would occur in view of the fact that the Department of Transportation mandates that the pipeline be at a minimum of 30 inches below the creek bottom. In those instances where jetting or other mechanical excavation might be utilized, silt screens would be used to control the short term turbidity. In the areas within the pipeline corridor where tree trunks and branches have been found, these obstructions can be removed without incident. Taking into account the nature of the substrate, at the location where the diffuser will be placed at the end of the pipeline, special attention will be given to that installation to avoid having the diffuser settle into the soft silty material. Given the fact that the silty material is several feet deep and the related fact that the Applicant has not done specific testing of the depth, density and compressibility of this silty material, careful attention should be given to anchoring the diffuser and making certain that the exhaust ports within that device are correctly positioned. The need for this close attention is borne out by the fact that a test pipe which was placed in the silty material settled approximately two and a half feet within several weeks. The matter of the security of the diffuser is also critical, given the fact that the diffuser will be located within one foot of the bottom. Through proper installation, the Applicant can avoid having the diffuser settle into the silty material over time. The installation techniques satisfactorily address the potential problems. Projected Impacts (1) Environmental The icthyological and macroinvertebrate communities within the pipeline corridor have been examined by the Applicant in the person of his consultants. It was found that there are a variety of freshwater fishes within Trout Creek, such as large-mouth bass and sun fish, and a moderate density of macroinvertebrates. The St. Johns River proper is dominated by estuarine and marine aquatic organisms. Infaunal macroinvertebrate densities in the area of the pipeline corridor in the St. Johns River are not high. In placing the pipeline, the effects on aquatic and benthic communities within the corridor or upon water quality do not pose a threat to those communities or to water quality. During the installation of the pipeline, some disturbance of the benthic organisms can be expected; however, those organisms will be able to recolonize quickly. The mere presence of the pipeline is not expected to cause long-term impacts on biological resources or water quality. (b) Navigation In the area of the intended placement of the pipeline related to Trout Creek, boating clubs utilize that vicinity for purposes of anchorage. Those clubs have as many as twenty to thirty boats whose size varies from twenty to fifty-five feet in length. Some of those boats carry anchors which can weigh forty-five pounds or more. Typically, in anchoring one of these craft, the anchor rope is tied down and the engines reversed to set the anchor. Although testimony was given to the effect that the anchors being set might puncture the pipeline, given the explanation about the placement of the pipeline and the nature of the pipe itself, problems with puncturing the pipeline as it might interfere with navigation or environmental concerns such as turbidity plumes due to a puncture of the pipeline are not expected. Nor are the activities associated with retrieval of the anchors via the use of electric winches or hoists seen to be a problem in the sense of snagging the pipeline and rupturing the pipeline when the anchors are brought aboard the vessels. In summary, the pipeline will not be an interference to navigation in the sense of boat anchorage or other aspects of navigation associated with boating. Moreover, the Applicant is willing to indicate the location of the pipeline on navigational charts to assist boaters in avoiding potential problems with anchorage. This is a desirable arrangement and should be done. Comparison of Projected Impacts with Statutory and Regulatory Criteria The dredge and fill activities associated with the pipeline are not expected to cause long-term or short-term adverse impact on biological resources or water quality, or are they expected to interfere with the conservation of natural resources or marine productivity or interfere with navigation to such an extent to be contrary to public interest. The placement of the pipeline will not promote unacceptable interference with fish and other natural resources or destroy clam beds or grass flats, such as would be contrary to the public interest. Permit Conditions Appropriate permit conditions are as follows: Installation of the pipeline shall be conducted within Trout Creek only during weekdays. Pipeline installation activities within Trout Creek shall not block navigation. The pipeline shall be constructed within 60 days following the receipt of all necessary approval, to include the grant of an easement by the State of Florida, Department of Natural Resources for the placement of the pipeline over submerged sovereignty lands. All conditions set forth in the DER draft permit. See Applicant's Exhibit A-57.
Findings Of Fact Upon consideration of the oral and documentary evidence adduced at the hearing, the following relevant findings of fact are made: The Tamaron wastewater treatment facility (facility), located at 3800 Gatewood Drive, Sarasota, Florida, serves the Tamaron residential subdivision which was originally developed by U. S. Homes Corporation in 1976. The subdivision presently consists of 499 homes and was completely built out in the mid-1980's. The facility was originally owned and operated by U. S. Homes Corporation. Tamaron Utilities, a nonprofit entity comprised of the 499 homeowners, acquired the facility in November, 1987. At that time, the facility's existing operating permit was transferred to Tamaron Utilities. The facility is overseen by an elected board of volunteer homeowners. The Department is the agency of the State of Florida that is authorized to regulate domestic wastewater treatment and disposal facilities and permit their construction and operation. It is the successor agency to the Department of Environmental Regulation. By letter dated November 10, 1987, the Department notified Tamaron of the requirements of Chapter 87-303, Laws of Florida (Grizzle-Figg Amendment), which amended Section 403.086, Florida Statutes, and of the Department's intention to modify Tamaron's operating permit to incorporate a schedule of compliance with Section 403.086, Florida Statutes, as amended by Chapter 87-303, Laws of Florida. On August 23, 1988, an operating permit (D058-141783), which contained secondary water treatment requirements, was issued to the facility. Specific condition 7 of the permit required that the facility be in compliance with the Grizzle-Figg Amendment by October, 1990, or eliminate discharge to surface waters. On September 5, 1990, Tamaron filed an application with the Department to renew its domestic waste water treatment and disposal systems operation permit. Tamaron did not consider its facility as discharging waste into one of the specifically named water bodies set forth in the Grizzle-Figg Amendment or to "water tributary thereto" and thereby required to meet the advanced waste treatment criteria set forth in the Grizzle-Figg Amendment. However, in an abundance of caution, Tamaron proceeded to bring its facility into compliance with the advanced waste treatment criteria as set forth in the Grizzle-Figg Amendment. After numerous requests for additional information and several meetings between Tamaron and the Department, the Department issued its Notice of Permit Denial on April 9, 1991, asserting that Tamaron had not provided: (a) reasonable assurance that the requirements of Section 403.086(1)(c), Florida Statutes, mandating advanced waste treatment (AWT) before discharge to certain designated surface waters, would be met and; (b) reasonable assurance that the discharge to those certain designated surface waters would result in minimal negative impact as required by Section 403.086(5)(a), Florida Statutes. The facility continues to operate under its secondary treatment permit No. DO58-141783. The facility consists of a wastewater treatment plant designed for secondary treatment, with tertiary filtration. The design capacity of the facility is 155,000 gallons per day (0.155MGD) with actual flows of slightly over 100,000 gallons per day (0.100MGD+). Three percolation ponds surround the facility comprising the primary effluent disposal method for the facility. The Tamaron subdivision has a series of excavated surface water bodies (stormwater lakes), hydraulically connected, which eventually discharge at the northeast corner of the subdivision into Phillippi Creek. The direct path of surface water flow is from the subdivision's stormwater lakes to Phillippi Creek. These stormwater lakes are in multiple ownership. Under Department policy, stormwater systems permitted by the Department, its predecessor DER, or a water management district solely as stormwater treatment facilities under Chapter 17-25, Florida Administrative Code, are not considered "waters of the State". However, stormwater systems built prior to Chapter 17-25, Florida Administrative Code, permitting requirements, were considered "waters of the State" if they discharge more frequently than a twenty five year, twenty-four hour storm event. See Petitioner's exhibits 13 & 15. Tamaron's stormwater system was built prior to Chapter 17-25, Florida Administrative Code, permitting requirements, and was designed to discharge at a ten year, twenty-four hour storm event which is more frequent than a twenty five year, twenty-four hour storm event. Discharge of water into Phillippi Creek from the subdivision's stormwater lakes is fairly frequent; however, the volume of the discharge is low. Phillippi Creek is a natural surface water which eventually flows into Roberts Bay. Roberts Bay is a specifically named water body in the Grizzle-Figg Amendment (Section 403.086(1)(c), Florida Statutes). Since September, 1989, Tamaron has retained William Murchie, P.E. of AM Engineering, to evaluate the design and operation of the facility in order to comply with appropriate regulatory requirements. The facility provides biological treatment through a contact stabilization utilizing an activated sludge. This process typically provides high quality advanced secondary biological treatment. A chemical feed tank system utilizing ferrous sulfate was added to the facility several years ago to chemically precipitate out total phosphorus to meet the advanced waste treatment requirements. High-level disinfection is achieved in the large chlorine contact chamber and through two tertiary filters. At the design flow of 0.155MGD, the chlorine contact chamber provides nearly 80 minutes of contact time, while actual contact time for existing flows, not including time in filters, is calculated at 110 minutes. Upon leaving the chlorine contact chamber and the biological treatment components of the facility, the chlorinated effluent is directed through two tertiary filters to reduce the biochemical oxygen demand (BOD) and total suspended solids (TSS). After the tertiary filters, the effluent passes through the sample block where it is sampled for TSS, BOD and chlorine and is then piped sequentially into the first, second and third percolation ponds. The percolation ponds span two acres and provide residence time of 35 to 45 days, during which time the effluent is further biologically treated and nitrogen is reduced. From the percolation ponds, the effluent is pumped into a low pressure system which uniformly distributes effluent over two nitrogen reduction filters. The nitrogen reduction filters are located north of the plant and are immediately adjacent to one of the subdivision's stormwater lakes. The nitrogen reduction filters consist of deep sand beds covered with Bermuda grass to provide high nitrogen uptake. The irrigation of the two nitrogen reduction filters is alternated every half day. These nitrogen reduction systems were modified in October/November, 1990, by adding 3 to 3 1/2 feet of clean sand with a permeability rate of 28 feet per day, planting Bermuda grass, and installing an irrigation/distribution system. These filters replaced two sand pits with shallow layers of very coarse sand, after initial testing demonstrated the sand pits to be inadequate in removing nutrients consistent with statutory requirements. In January, 1992, an underdrain system utilizing perforated pipe was installed in the nitrogen reduction filters to create an aerobic zone and to provide a representative sample port after nutrient reduction in the filters. This sample port, used for the biweekly monitoring, consists of a single solid pipe, that collects effluent from the perforated pipes, with a tap to prevent discharge into the adjacent stormwater lake, except during sampling events. The biweekly sampling event results in effluent being discharged from the pipe for approximately 30 minutes to flush the pipe so as to get a proper sample. The underdrain sampling port at the nitrogen reduction filters replaced two earlier monitor wells between the nitrogen reduction filter and the stormwater pond, which proved ineffective because of their location. The perforated underdrains are situated in filter bed sand of medium grain size with a permeability rate 100 feet per day and located below 3 - 3 1/2 feet of clean sand with a permeability rate of 28 feet per day and above very permeable layers of sand, stone and coarse shell. (See Tamaron's exhibit 23 and Department's exhibit 14) The very permeable layers of sand, coarse shell, the perforated pipe and the single solid pipe are all located above the ground water table. Since the perforated pipe and sample port are both located above the ground water level and the surface of the adjacent stormwater lake, it is unlikely that the effluent sample taken from the sample port would be influenced by the ground water or a back flow of water from the adjacent stormwater lake. The coarse shell layer situated below the nitrogen reduction filters extends to the edge of the adjacent stormwater lake. Therefore, the effluent, other than the effluent trapped in the perforated pipe and carried to the sample port, that is irrigated onto the nitrogen reduction filters passes through the sand and into the coarse shell layer. The effluent is then transported laterally through the coarse shell layer to the underground edge of the adjacent stormwater lake where there is a subsurface discharge into the adjacent stormwater lake. Since the discharge to the stormwater lakes is primarily subsurface in nature, the logical compliance point to measure effluent parameters would be the underground sample port which collects the effluent prior to subsurface discharge into the stormwater lake. See Petitioner's exhibit 15. The direction of ground water flow at the facility is towards the north to the adjacent stormwater lakes as evidenced by the hydraulic gradient of the site determined using ground water table elevations. The location for sampling effluent from the facility for compliance with secondary standards was described in Specific Condition 5 of Tamaron's previous permit No. D058-141783 dated August 23, 1988. Specific Condition 5 states that the discharge from the chlorine contact chamber shall be sampled in accordance with Chapter 17-19, Florida Administrative Code, (now Chapter 17-601, Florida Administrative Code), for compliance with the stated secondary limits. The facility's tertiary filters are located after the chlorine contact chamber. Tamaron samples effluent for compliance with secondary standards (BOD,TSS, chlorine) at the sampling box after disinfection and tertiary filtration. Tertiary filtration is designed to achieve a more efficient removal of TSS and BOD. The resulting effluent is usually of higher quality than secondarily treated effluent. A secondary plant with tertiary filtration is referred to as an "advanced secondary treatment" plant. Data presented by Tamaron titled Tamaron 1991-1993 Data On FDER Permit Compliance (Tamaron's exhibit 17, page 1 of 2) shows reported values, sampled after tertiary filtration at the sample box, which suggest that secondary treatment parameters, including fecal coliform, are not being exceeded. The data actually shows a very high removal rate for the parameters sampled. The United States Environmental Protection Agency issued a National Pollutant Discharge Elimination System (NPDES) permit, number FL0042811, to Tamaron for the facility with an effective date of June 1, 1991, which authorized Tamaron to discharge from the facility to the receiving waters named Phillippi Creek to Roberts Bay in accordance with the effluent limitation, monitoring requirements and other conditions set forth in the permit. Since the facility was located in the Grizzle-Figg Amendment area of Florida certain changes were made from the draft permit to the final permit. Those changes appear in the Amendment To The Statement Of Basis At The Time Of Final Permit Issuance which is made a part of the final permit. The amendment provides for changes in Part I, Effluent Limitations and Monitoring Requirements. These changes, among other things, require that the Grizzle-Figg Amendment annual limits of 5 mg/l BOD, 5mg/l TSS, 3mg/l total nitrogen and 1mg/l total phosphorus be added to the effluent limits to adequately maintain water quality standards, and added monitoring requirements and measurement frequency regulations to give the basis for permit limits and conditions in accordance with Chapters 17-302, 17-600 and 17-601, Florida Administrative Code. Data presented by Tamaron titled Tamaron 1991-1993 Data On NPDES Permit Compliance (Tamaron's exhibit 17, page 2 of 2) show reported values sampled after nitrogen reduction filters which suggest that the maximum values for AWT parameters, including fecal coliform, are not being exceeded, particularly after January, 1992, when Tamaron began sampling effluent collected by the perforated underdrains at the sample port. Tamaron has been monitoring and reporting compliance under its final NPDES permit and providing copies to the Department. There was no evidence that Tamaron was ever in violation of its NPDES permit. Tamaron submitted documentation to the Department with its permit application that demonstrated high-level disinfection within the facility was being achieved. However, TSS was being sampled after the application of the disinfectant. Using this procedure, the facility continued to achieve high- level disinfection until the permit denial. After the permit denial, the facility resumed basic disinfection which was required under Tamaron's permit for secondary treatment. This same data indicates that there was compliance with the requirements for fecal coliform. The record is not clear as to the frequency and number of samples taken to provide the data for reporting compliance with the NPDES permit and the data presented in Petitioner's exhibit 17, page 2 of 2. However, there was no evidence, other than sampling for TSS after the disinfectant was added, that Tamaron was not complying with its NPDES Permit that required, among other things, that the monitoring requirements and measurement frequency of the Department's rules and regulations be followed by Tamaron. Tamaron has modified and upgraded the facility in order to achieve a treatment process which will produce effluent of a quality for discharge under the Grizzle-Figg Amendment. Tamaron has provided reasonable assurances, although not absolute assurance, that the facility can comply with the discharge permit requirements of Chapter 403, Florida Statutes, including Section 403.086, Florida Statutes, notwithstanding the testimony of Jay Thabaraj to the contrary concerning Tamaron's sampling technique and its method of obtaining high-level disinfection which can be addressed as a specific condition, if necessary. Studies conducted by the Tamaron's engineer included in Petitioner's exhibit 21 indicates that there was no adverse impact to the stormwater lakes from the facility's wastewater treatment and disposal system. Tamaron has provided reasonable assurances that the point of discharge is a reasonably access point, where such discharge results only in minimal negative impact.
Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is recommended that the Department enter a final order granting Tamaron an operating permit for its facility as secondary treatment facility. In the alternative, that the Department enter a final order granting Tamaron an operating permit for its facility that requires compliance with the advanced waste treatment criteria set forth in Section 403.086(4), Florida Statutes, that, in addition to any general or specific conditions that are normally required, contains specific conditions that: (a) contains specific instructions on sampling technique, sampling frequency and reporting as set forth in Rule 17- 740(1)(b)2., Florida Administrative Code, and (b) sets forth compliance with high-level disinfection, with a time limit for compliance, that accomplishes the intent of the rule, if not the strict letter of the rule, without total redesign of the facility. DONE AND ENTERED this 3rd day of May, 1994, in Tallahassee, Florida. WILLIAM R. CAVE Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 3rd day of May, 1994. APPENDIX TO RECOMMENDED ORDER, CASE NO. 91-2968 The following constitutes my specific rulings, pursuant to Section 120.59(2), Florida Statutes, on all of the proposed findings of fact submitted by the parties in this case. Petitioner, Tamaron's Proposed Findings of Fact: The following proposed findings of fact are adopted in substance as modified in the Recommended Order. The number in parentheses is the Finding(s) of Fact which so adopts the proposed finding(s) of fact: 1(1); 2(2); 3(3); 4(5,6); 5(6); 6(7); 8(12); 10(8); 11-12(13-25,38); 13(31-34); 14(8); 15(13); 16(14); 17-18(15); 19(36); 20(16); 21(17); 22(18); 23(19); 24(20); 25(21);26(22); 32(32,7); 33(33); 34(32,32); 36(31); 39-40(34); 41(36); 42- 43(34); 44(35); 47(4); and 51(10). Proposed findings of fact 27-31, and 35 are conclusions of law rather than findings of fact.. Proposed findings of fact 45, 46, 48-50, 56, 57, 59, and 61-72 are arguments rather than findings of fact. Proposed findings of fact 7, 9, 37, 38, 52-55, 58 and 60 are neither material nor relevant. Respondent, Department's Proposed Findings of Fact: The following proposed findings of fact are adopted in substance as modified in the Recommended Order. The number in parentheses is the Finding(s) of Fact which so adopts the proposed finding(s) of fact: 1(1,6); 2(2); 3(4,10); 5(9); 6(9,10); 8(11); 9-17(18-27); 18(8); 19(13); 20(5); 21(17); 22(30); 23(31); 24(14); 25(17); 26(18-23); 27(34); and 32(35,38). Proposed finding of fact 4 is neither material nor relevant but see Findings of Fact 18-25. Proposed findings of fact 7, 31 and 33 are arguments rather than findings of fact. Proposed findings of fact 28-30 are conclusions of law rather than findings of fact. COPIES FURNISHED: Virginia B. Wetherell, Secretary Department of Environmental Protection Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32399-2400 Kenneth Plante, General Counsel Department of Environmental Protection Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32399-2400 Charles G. Stephens, Esquire C. Robinson Hall, Esquire Enterprise Plaza, Suite 1516 101 E. Kennedy Blvd. Tampa, Florida 33602 Francine Ffolkes, Esquire Office of General Counsel Department of Environmental Protection Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32399-2400
Findings Of Fact The parties stipulated, and it is so found, that Petitioner, DER, has jurisdiction over both the issues and the Respondents Dey and KWC. KWC owns and operates a water system which supplies water to both residential and commercial customers in the City of Keystone Heights, Florida. Virginia Key is the President of KWC, a member of the Board of Directors of the corporation, and one of the five stockholders. The other stockholders are her sisters. The five sisters are the daughters of the late G. E Wiggins, and inherited the company from him at his death in 1969. Mr. Wiggins developed the water company in the 1920's and operated it until his death. KWC came under the jurisdiction of the Florida Public Service Commission (PSC) just prior to Mr. Wiggins' death. At that time, pursuant to a PSC requirement, it was assessed and valued at a sum in excess of $250,000.00 by a consultant firm hired for the purpose. As of late November, 1984, KWC served approximately 752 residential customers which, when multiplied by an average 2.5 persons per family factor, results in a total of approximately 1,880 residential inhabitants served by the water system. In addition, the system serves 105 commercial customers. It is impossible to estimate with any reasonable degree of accuracy the number of individuals involved in the commercial service. The system consists of three wells drilled in 1940, 1946, and 1960 to a depth of 350, 450, and 492 feet respectively. Total yield from the three wells is normally 1,350 gallons per minute. The wells are generally well protected against surface water infusion, are normally not subject to inundation, and have had no salt water infiltration problems in the past. At the present time, well number 2, drilled in 1946, with a 350 gpm yield is out of service. The water, when pumped from the ground, is stored in two tanks-one with a 60,000 gallon capacity and the other with a capacity of 800 gallons. Both tanks are steel. Chlorine is added to the water in each storage situation by a hyper-chlori- nation system before the water is sent to the storage tank. The distribution system is made up of 6" and 2" diameter pipe. In March, 1984, two different inspections of the water system, done by, in one case, an environmental specialist and in the other, an Engineer I with DER, revealed several deficiencies in the maintenance and operation of the system all of which constitute violations of DER rules. Specifically, these include (1) failure to provide an auxiliary power source in the event the main pumping capability of the system is lost, (Rule 17-22.106 (3)(a); (2) failure to utilize for the system an operator certi- fied by the state with a Class C license, (Rule 17-22.107(3)(b); (3) failure to maintain a free chlorine residual in the water of at least 0.2 ppm in the system, (Rule 17-22.106(3)(c); (4) failure to maintain a minimum pressure of 20 ppi in the distribution system, (Rule 17-22.106(3)(f); (5) failure to have a gas chlorination facility, (Rule 17-22.106(3)(d); and (6) failure to obtain proper permits to expand the distribution system, (Rule 17-22.108 (1)(b) Rule 17-22, F.A.C., sets up requirements for safe drinking water and was designed to establish guidelines and standards for facilities and water and to bring water into compliance with the Federal Act. Twenty ppi of pressure in the system was adopted as a standard minimum for residual pressure to protect against outside contaminants getting into the water system. Such contaminants could come from ground water, leaks, and water in storage tanks attached to the system such as toilet tanks, being aspirated into the system. Also a certain amount of pressure is required to operate appliances. Normally minimum pressure is found in areas at the edge of the system and in those areas where inadequate chlorination is located. They interact and both pressure and chlorinization are required. Chlorine can be injected into the system generally in two ways: the first is through gas chlori- nation and the second, through hyper-chlorinization as is used in the instant system. The effectiveness of hyper-chlorinization is limited, however, by the size of the system. Basically, hyper- chlorinization is effective when the demand in the system for pressure is no more than 10 ppi. Above this, gas chlorinization is necessary. As late as January 4, 1985, Mr. Dykes went to Keystone Heights to test the system. His tests showed that 11.9 ppi is the average daily flow per 24 hours for the last 12 months. Since this figure is above 10 ppi, in his opinion, a gas chlorinization system would be needed. Chlorine is used to purify water because it has been shown, through long use, to prevent disease. The requirement for a residual chlorine level in water, therefore, is consistent with that concept to insure chlorine is always in the water in sufficient quantity to prevent disease. Respondent's plant has less than the 0.2 residual that is required under the rule. This insufficiency is caused by the inadequate chlorinization system which has insufficient capacity to provide the appropriate amount of chlorine. At the current level, it is providing only approximately 60 percent of the needed chlorine. To correct this deficiency Mr. Dykes recommends installation of a gas chlorinization system. In addition, the pneumatic tank storing the water from the number 3 well does not give sufficient detention time to allow for appropriate reaction of the chlorine contained in the water before the water is released into the distribution system. Another factor relating to the lack of adequate pressure in the system is the fact that, in Mr. Dykes' opinion, too much of the system is made up of 2" diameter water line. A line of this small diameter prevents the maintenance of adequate pressure especially in light of the fact that there are numerous old lines in the system some with corrosion and scale in them which tends to reduce pressure. This latter factor would be prevalent even in the 6" lines. The current plant manager, Mr. Cross, who has been with Respondent for approximately 4 years is, with the exception of one part time employee, the only operations individual associated with the plant. As such, he repairs the meters and the lines, checks the pumps, the chlorinator, and checks and refills the chlorine reservoir on a seven day a week basis. Be learned the operation of the plant from his precedessor, Mr. Johnson, an unlicensed operator who was with the company for 10 years. Mr. Cross has a "D" license which he secured last year after being notified by DER that a license was required. It was necessary for him to get the "D" license before getting the required "C" license. At the present time, he is enrolled to take courses leading toward the "C" license. At the present time, however, he is not, nor is anyone else associated with KWC, holding a license as required. The rule regarding auxiliary power provides that all community systems serving 350 or more persons shall have standby pumping capability or auxiliary power to allow operation of the water treatment unit and pumping capability of approximately one-half the maximum daily system demand. Respondent has admitted that the system is not equipped with an auxiliary power source and it has already been established that more than 350 persons are served by the system. Respondent also admits that subsequent to November 9, 1977, it constructed main water lines for the system which required the obtaining of a permit from either the Petitioner or the county health unit. Respondent admits that it did not obtain or possess a permit to do the additional construction referenced above from either DER or the Clay County Health Department prior to the construction of the water lines referenced. The inspections referenced above, which identified the problems discussed herein, were accomplished by employees of Petitioner, DER, at a stipulated cost of $898.10. Respondent contends, and there is no evidence to the contrary, that there have been no complaints of contaminated water and that the monthly water samples which Mr. Cross forwards to the Clay County Health Department have been satisfactory. Mr. Cross also indicates that a September, 1983 DER analysis of water samples taken from the system was satisfactory. However, bacteriological analysis reports on water collected from Respondent's system on July 11 and 27, 1983, reflect unsatisfactory levels of either coliform or non-coliform bacteria in the water requiring resubmission of test samples. Respondent also contends that no one has ever gotten sick or died from the water furnished by the system and there is, in fact, no evidence to show this is not true. Even though so far as is known, no one has ever been made sick from the water in the system, in Mr. Dykes' opinion, the risk is there. As a result of the defects identified in this system, insufficient chlorine is going into the system to meet reasonable health standards. Though this does not mean that the water is now bad, it does mean that at any time, given a leak or the infusion of some contaminant, the water could become bad quickly, and the standard established by rule is preventive, designed to insure that even in the case of contamination, the water will remain safe and potable. Respondent does not deny that it is and has been in violation of the rules as set out by the Petitioner. It claims, however, that it does not have sufficient funds available to comply with the rules as promulgated by DER. Respondent has recently filed a request for variance under Section 403.854, Florida Statutes, setting forth as the basis for its request that it does not have the present financial ability to comply with any of the suggested or recommended corrective actions to bring its operation into compliance with the rules. Mr. Protheroe, the consulting engineer who testified for Respondent has not evaluated the system personally. His familiarity with it is a result of his perusal of the records of the company and the Petitioner. Based on his limited familiarity with the system, he cannot say with any certainty if it can be brought into compliance with, for example, the 20 ppi requirement. There are too many unknowns. If, however, the central system was found to be in, reasonably good shape, in his opinion, it would take in excess of $100,000.00 to bring it within pressure standards. To do so would require replacement of the 2" lines, looping the lines, and cleaning and replacing some central system lines as well. In his opinion, it would take three months to do a complete and competent analysis of the system's repair needs. Once that was done, he feels it would take an additional three months to bring the plant into compliance with DER requirements. Other repairs, such as those to the lines outside the plant, would take longer because some are located in the downtown area and have interfaced with other utilities. This could take from three to four months if the money were available to start immediately. Here, however, it has been shown that it is not. Consequently, to do the study and then, if possible, procure the funds required, could take well in excess of six months or so. Mr. Protheroe contends, and there is little if any evidence to indicate to the contrary, that to replace the current system with a new one entirely as it is currently constituted would cost at least $250,000.00. However, in his opinion, no one would ever put in a new system similar to the one currently there. He cannot say how much it would cost to buy the system and make the necessary corrections to it to rectify the deficiencies. His familiarity with the system is not sufficiently complete to do this. He cannot say exactly how much the system is worth in its current state, but he is satisfied that it is worth more than $65,000.00. In that regard, Mrs. Dey indicated that in her opinion, the fair market value of the system is currently at $250,000.00. At the present time, there are current outstanding loans in excess of $9,000.00 at 16 percent interest. This current loan basis has been reduced from a higher figure. In 1977, the company borrowed $15,000.00 at 9 percent. In 1981, it borrowed $5,000.00 more at 18 percent. In 1982, the loans were consolidated at an increased rate of 16 percent and the officers have been advised by their current creditors that they cannot borrow any more money for the system in its current state. They would sell the system if a reasonable price could be realized. However, any inquiries on prospective purchases have been chilled by a low rate base assigned by the PSC. In that regard, the City of Keystone Heights offered to purchase the system for $59,000.00. This offer was declined as being unreasonable. Nonetheless, in light of the low rate base assigned by the PSC in its order issued on December 21, 1981 of slightly over $53,000.00 the offer by the city of $59,000.00 is not completely out of line. A certified public accountant, in KWC's December 31, 1983 financial report assigned a valuation of approximately $62,000.00, again a figure only slightly higher than that offered by the city, but substantially less than the $175,000.00 price asked of the city by Respondent Dey and her sisters. Mrs. Dey indicated that to the best of her knowledge the PSC denied rate increases for the purposes of improvements. In the presentation before the commission, respondents relied exclusively on the services of their attorney and accountant. Evidence from Mr. Lowe, of the PSC, however, indicates that KWC has never requested a rate increase to finance any of the improvements called for here. In the PSC order referred to above, Respondent was awarded a 12.25 percent rate of return on its rate base. This figure was an amalgam of a more than 13 percent rate on equity and a lesser figure for cost of doing business, including debt. At the time of that hearing, however, the debt cost was based on a 9 percent interest figure. The 16 percent interest figure came afterwards and no hearing has been requested based on the higher interest rate and it is so found.
Recommendation Based on the foregoing findings of fact and conclusion of law, it is, therefore: RECOMMENDED that Respondents Virginia W. Day and the Keystone Water Company be ordered to comply with the Orders for Corrective Action previously filed herein to bring the water system in question in compliance with the Florida Safe Water Drinking Act without delay or suffer the penalties for non- compliance called for by statute and, in addition, pay costs of investigation in the amount of $898.16. RECOMMENDED in Tallahassee, Florida this 19th day of February, 1985. ARNOLD H. POLLOCK Hearing Officer Division of Administrative Hearings The Oakland Building 2009 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 19th day of February, 1987. COPIES FURNISHED: Debra A. Swim, Esquire Assistant General Counsel Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32301 John E Norris, Esquire 10 North Columbia Street Lake City, Florida 32055 Victoria Tschinkel, Secretary Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32301