Elawyers Elawyers
Washington| Change
Find Similar Cases by Filters
You can browse Case Laws by Courts, or by your need.
Find 49 similar cases
KAREN AHLERS AND JERI BALDWIN vs SLEEPY CREEK LANDS, LLC AND ST. JOHNS RIVER WATER MANAGEMENT DISTRICT, 14-002610 (2014)
Division of Administrative Hearings, Florida Filed:Palatka, Florida Jun. 03, 2014 Number: 14-002610 Latest Update: Oct. 24, 2016

The Issue The issue to be determined is whether Consumptive Use Permit No. 2-083-91926-3, and Environmental Resource Permit No. IND-083-130588-4 should be issued as proposed in the respective proposed agency actions issued by the St. Johns River Water Management District.

Findings Of Fact The Parties Sierra Club, Inc., is a national organization, the mission of which is to explore, enjoy, and advocate for the environment. A substantial number of Sierra Club’s 28,000 Florida members utilize the Silver River, Silver Springs, the Ocklawaha River, and the St. Johns River for water-based recreational activities, which uses include kayaking, swimming, fishing, boating, canoeing, nature photography, and bird watching. St. Johns Riverkeeper, Inc., is one of 280 members of the worldwide Waterkeepers Alliance. Its mission is to protect, restore, and promote healthy waters of the St. Johns River, its tributaries, springs, and wetlands -- including Silver Springs, the Silver River, and the Ocklawaha River -- through citizen- based advocacy. A substantial number of St. Johns Riverkeeper’s more than 1,000 members use and enjoy the St. Johns River, the Silver River, Silver Springs, and the Ocklawaha River for boating, fishing, wildlife observation, and other water-based recreational activities. Karen Ahlers is a native of Putnam County, Florida, and lives approximately 15 miles from the Applicant’s property on which the permitted uses will be conducted. Ms. Ahlers currently uses the Ocklawaha River for canoeing, kayaking, and swimming, and enjoys birding and nature photography on and around the Silver River. Over the years, Ms. Ahlers has advocated for the restoration and protection of the Ocklawaha River, as an individual and as a past-president of the Putnam County Environmental Council. Jeri Baldwin lives on a parcel of property in the northeast corner of Marion County, approximately one mile from the Applicant’s property on which the permitted uses will be conducted. Ms. Baldwin, who was raised in the area, and whose family and she used the resources extensively in earlier years, currently uses the Ocklawaha River for boating. Florida Defenders of the Environment (FDE) is a Florida corporation, the mission of which is to conserve and protect and restore Florida's natural resources and to conduct environmental education projects. A substantial number of FDE’s 186 members, of which 29 reside in Marion County, Florida, use and enjoy Silver Springs, the Silver River, and the Ocklawaha Aquatic Preserve, and their associated watersheds in their educational and outreach activities, as well as for various recreational activities including boating, fishing, wildlife observation, and other water-based recreational activities. Sleepy Creek Lands, LLC (Sleepy Creek or Applicant), is an entity registered with the Florida Department of State to do business in the state of Florida. Sleepy Creek owns approximately 21,000 acres of land in Marion County, Florida, which includes the East Tract and the North Tract on which the activities authorized by the permits are proposed. St. Johns River Water Management District (SJRWMD or District) is a water-management district created by section 373.069(1). It has the responsibility to conserve, protect, manage, and control the water resources within its geographic boundaries. See § 373.069(2)(a), Fla. Stat. The Consumptive Use Permit The CUP is a modification and consolidation of two existing CUP permits, CUP No. 2-083-3011-7 and CUP No. 2-083- 91926-2, which authorize the withdrawal of 1.46 mgd from wells located on the East Tract. Although the existing CUP permits authorize an allocation of 1.46 mgd, actual use has historically been far less, and rarely exceeded 0.3 mgd. The proposed CUP modification will convert the authorized use of water from irrigation of 1,010 acres of sod grass on the East Tract, to supplemental irrigation of improved pasture for grass and other forage crops (approximately 97 percent of the proposed withdrawals) and cattle watering (approximately three percent of the proposed withdrawals) on the North Tract and the East Tract. An additional very small amount will be used in conjunction with the application of agricultural chemicals. CUP No. 2-083-3011-7 is due to expire in 2021. CUP No. 2-083-91926-2 is due to expire in 2024. In addition to the consolidation of the withdrawals into a single permit, the proposed agency action would extend the term of the consolidated permit to 20 years from issuance, with the submission of a compliance report due 10 years from issuance. Sleepy Creek calculated a water demand of 2.569 mgd for the production of grasses and forage crops necessary to meet the needs for grass-fed beef production, based on the expected demand in a 2-in-10 drought year. That calculation is consistent with that established in CUP Applicant’s Handbook (CUP A.H.) section 12.5.1. The calculated amount exceeds the authorized average allocation of 1.46 mgd. Mr. Jenkins testified as to the District’s understanding that the requested amount would be sufficient, since the proposed use was a “scaleable-type project,” with adjustments to cattle numbers made as necessary to meet the availability of feed. Regardless of demand, the proposed permit establishes the enforceable withdrawal limits applicable to the property. With regard to the East Tract, the proposed agency action reduces the existing 1.46 mgd allocation for that tract to a maximum allocation of 0.464 mgd, and authorizes the irrigation of 611 acres of pasture grass using existing extraction wells and six existing pivots. With regard to the North Tract, the proposed agency action authorizes the irrigation of 1,620 acres of pasture and forage grain crops using 15 center pivot systems. Extraction wells to serve the North Tract pivots will be constructed on the North Tract. The proposed North Tract withdrawal wells are further from Silver Springs than the current withdrawal locations. The proposed CUP allows Sleepy Creek to apply the allocated water as it believes to be appropriate to the management of the cattle operation. Although the East Tract is limited to a maximum of 0.464 mgd, there is no limitation on the North Tract. Thus, Sleepy Creek could choose to apply all of the 1.46 mgd on the North Tract. For that reason, the analysis of impacts from the irrigation of the North Tract has generally been based on the full 1.46 mgd allocation being drawn from and applied to the North Tract. The Environmental Resource Permit As initially proposed, the CUP had no elements that would require issuance of an ERP. However, in order to control the potential for increased runoff and nutrient loading resulting from the irrigation of the pastures, Sleepy Creek proposes to construct a stormwater management system to capture runoff from the irrigated pastures, consisting of a series of vegetated upland buffers, retention berms and redistribution swales between the pastures and downgradient wetland features. Because the retention berm and swale system triggered the permitting thresholds in rule 62-330.020(2)(d) (“a total project area of more than one acre”) and rule 62-330.020(2)(e) (“a capability of impounding more than 40 acre-feet of water”), Sleepy Creek was required to obtain an Environmental Resource Permit for its construction. Regional Geologic Features To the west of the North Tract is a geologic feature known as the Ocala Uplift or Ocala Platform, in which the limestone that comprises the Floridan aquifer system exists at or very near the land surface. Karst features, including subterranean conduits and voids that can manifest at the land surface as sinkholes, are common in the Ocala Uplift due in large part to the lack of consolidated or confining material overlaying the limestone. Water falling on the surface of such areas tends to infiltrate rapidly through the soil into the Floridan aquifer, occasionally through direct connections such as sinkholes. The lack of confinement in the Ocala Uplift results in few if any surface-water features such as wetlands, creeks, and streams. As one moves east from the Ocala Uplift, a geologic feature known as the Cody Escarpment becomes more prominent. In the Cody Escarpment, the limestone becomes increasingly overlain by sands, shell, silt, clays, and other less permeable sediments of the Hawthorn Group. The North Tract and the East Tract lie to the east of the point at which the Cody Escarpment becomes apparent. As a result, water tends to flow overland to wetlands and other surface water features. The Property The North and East Tracts are located in northern Marion County near the community of Fort McCoy. East Tract Topography and Historic Use The East Tract is located in the Daisy Creek Basin, and includes the headwaters of a small creek that drains directly to the Ocklawaha River. The historic use of the East Tract has been as a cleared 1,010-acre sod farm. The production of sod included irrigation, fertilization, and pest control. Little change in the topography, use, and appearance of the property will be apparent as a result of the permits at issue, but for the addition of grazing cattle. The current CUPs that are subject to modification in this proceeding authorize groundwater withdrawals for irrigation of the East Tract at the rate of 1.46 mgd. Since the proposed agency action has the result of reducing the maximum withdrawal from wells on the East Tract to 0.464 mgd, thus proportionately reducing the proposed impacts, there was little evidence offered to counter Sleepy Creek’s prima facie case that reasonable assurance was provided that the proposed East Tract groundwater withdrawal allocation will meet applicable CUP standards. There are no stormwater management structures to be constructed on the East Tract. Therefore, the ERP permit discussed herein is not applicable to the East Tract. North Tract Topography and Historic Use The North Tract has a generally flat topography, with elevations ranging from 45 feet to 75 feet above sea level. The land elevation is highest at the center of the North Tract, with the land sloping towards the Ocklawaha River to the east, and to several large wet prairie systems to the west. Surface water features on the North Tract include isolated, prairie, and slough-type wetlands on approximately 28 percent of the North Tract, and a network of creeks, streams, and ditches, including the headwaters of Mill Creek, a contributing tributary of the Ocklawaha River. A seasonal high groundwater elevation on the North Tract is estimated at 6 to 14 inches below ground surface. The existence of defined creeks and surface water features supports a finding that the North Tract is underlain by a relatively impermeable confining layer that impedes the flow of water from the surface and the shallow surficial aquifer to the upper Floridan and lower Floridan aquifers. If there was no confining unit, water going onto the surface of the property, either in the form of rain or irrigation water, would percolate unimpeded to the lower aquifers. Areas in the Ocala Uplift to the west of the North Tract, where the confining layer is thinner and discontiguous, contain few streams or runoff features. Historically, the North Tract was used for timber production, with limited pasture and crop lands. At the time the 7,207-acre North Tract was purchased by Sleepy Creek, land use consisted of 4,061 acres of planted pine, 1,998 acres of wetlands, 750 acres of improved pasture, 286 acres of crops, 78 acres of non-forested uplands, 20 acres of native forest, 10 acres of open water, and 4 acres of roads and facilities. Prior to the submission of the CUP and ERP applications, much of the planted pine was harvested, and the land converted to improved pasture. Areas converted to improved pasture include those proposed for irrigation, which have been developed in the circular configuration necessary for future use with center irrigation pivots. As a result of the harvesting of planted pine, and the conversion of about 345 acres of cropland and non-forested uplands to pasture and incidental uses, total acreage in pasture on the North Tract increased from 750 acres to 3,938 acres. Other improvements were constructed on the North Tract, including the cattle processing facility. Aerial photographs suggest that the conversion of the North Tract to improved pasture and infrastructure to support a cattle ranch is substantially complete. The act of converting the North Tract from a property dominated by planted pine to one dominated by improved pasture, and the change in use of the East Tract from sod farm to pasture, were agricultural activities that did not require a permit from the District. As such, there is no impropriety in considering the actual, legal use of the property in its current configuration as the existing use for which baseline conditions are to be measured. Petitioners argue that the baseline conditions should be measured against the use of the property as planted pine plantation, and that Sleepy Creek should not be allowed to “cattle-up” before submitting its permit applications, thereby allowing the baseline to be established as a higher impact use. However, the applicable rules and statutes provide no retrospective time-period for establishing the nature of a parcel of property other than that lawfully existing when the application is made. See West Coast Reg’l Water Supply Auth. v. SW Fla. Water Mgmt. Dist., Case No. 95-1520 et seq., ¶ 301 (Fla. DOAH May 29, 1997; SFWMD ) (“The baseline against which projected impacts conditions [sic] are those conditions, including previously permitted adverse impacts, which existed at the time of the filing of the renewal applications.”). The evidence and testimony in this case focused on the effects of the water allocation on the Floridan aquifer, Silver Springs, and the Silver River, and on the effects of the irrigation on water and nutrient transport from the properties. It was not directed at establishing a violation of chapter 373, the rules of the SJRWMD, or the CUP Applicant’s Handbook with regard to the use and management of the agriculturally-exempt unirrigated pastures, nor did it do so. Soil Types Soils are subject to classifications developed by the Soil Conservation Service based on their hydrologic characteristics, and are grouped into Group A, Group B, Group C, or Group D. Factors applied to determine the appropriate hydrologic soil group on a site-specific basis include depth to seasonal high saturation, the permeability rate of the most restrictive layer within a certain depth, and the depth to any impermeable layers. Group A includes the most well-drained soils, and Group D includes the most poorly-drained soils. Group D soils are those with seasonal high saturation within 24 inches of the soil surface and a higher runoff potential. The primary information used to determine the hydrologic soil groups on the North Tract was the depth to seasonal-high saturation, defined as the highest expected annual elevation of saturation in the soil. Depth to seasonal-high saturation was measured through a series of seven hand-dug and augered soil borings completed at various locations proposed for irrigation across the North Tract. In determining depth to seasonal-high saturation, the extracted soils were examined based on depth, color, texture, and other relevant characteristics. In six of the seven locations at which soil borings were conducted, a restrictive layer was identified within 36 inches of the soil surface. At one location at the northeastern corner of the North Tract, the auger hole ended at a depth of 48 inches -- the length of the auger -- at which depth there was an observable increase in clay content but not a full restrictive layer. However, while the soil assessment was ongoing, a back-hoe was in operation approximately one hundred yards north of the boring location. Observations of that excavation revealed a heavy clay layer at a depth of approximately 5 feet. In each of the locations, the depth to seasonal-high saturation was within 14 inches of the soil surface. Based on the consistent observation of seasonal-high saturation at each of the sampled locations, as well as the flat topography of the property with surface water features, the soils throughout the property, with the exception of a small area in the vicinity of Pivot 6, were determined to be in hydrologic soil Group D. Hydrogeologic Features There are generally five hydrogeologic units underlying the North Tract, those units being the surficial aquifer system, the intermediate confining unit, the upper Floridan aquifer, the middle confining unit, and the lower Floridan aquifer. In areas in which a confining layer is present, water falling on the surface of the land flows over the surface of the land or across the top of the confining layer. A surficial aquifer, with a relatively high perched water table, is created by the confinement and separation of surface waters from the upper strata of the Floridan aquifer. Surface waters are also collected in or conveyed by various surface water features, including perched wetlands, creeks, and streams. The preponderance of the evidence adduced at the final hearing demonstrates that the surficial aquifer exists on the property to a depth of up to 20 feet below the land surface (bls). Beneath the surficial aquifer is an intermediate confining unit of dense clay interspersed with beds of sand and calcareous clays that exists to a depth of up to 100 feet bls. The clay material observed on the North Tract is known as massive or structureless. Such clays are restrictive with very low levels of hydraulic conductivity, and are not conducive to development of preferential flow paths to the surficial or lower aquifers. The intermediate confining unit beneath the North Tract restricts the exchange of groundwater from the surficial aquifer to the upper Floridan aquifer. The upper Floridan aquifer begins at a depth of approximately 100 feet bls, and extends to a depth of approximately 340 feet bls. At about 340 feet bls, the upper Floridan aquifer transitions to the middle confining unit, which consists of finely grained, denser material that separates the interchange of water between the upper Floridan aquifer and the lower Floridan aquifer. Karst Features Karst features form as a result of water moving through rock that comprises the aquifer, primarily limestone, dissolving and forming conduits in the rock. Karst areas present a challenging environment to simulate through modeling. Models assume the subsurface to be a relatively uniform “sand box” through which it is easier to simulate groundwater flow. However, if the subsurface contains conduits, it becomes more difficult to simulate the preferential flows and their effect on groundwater flow paths and travel times. The District has designated parts of western Alachua County and western Marion County as a Sensitive Karst Area Basin. A Sensitive Karst Area is a location in which the porous limestone of the Floridan aquifer occurs within 20 feet of the land surface, and in which there is 10 to 20 inches of annual recharge to the Floridan aquifer. The designation of an area as being within the Sensitive Karst Area Basin does not demonstrate that it does, or does not, have subsurface features that are karstic in nature, or that would provide a connection between the surficial aquifer and the Floridan aquifer. The western portion of the North Tract is within the Sensitive Karst Area Basin. The two intensive-use areas on the North Tract that have associated stormwater facilities -- the cattle unloading area and the processing facility -- are outside of the Sensitive Karst Area Basin. The evidence was persuasive that karst features are more prominent to the west of the North Tract. In order to evaluate the presence of karst features on the North Tract, Mr. Andreyev performed a “desktop-type evaluation,” with a minimal field survey. The desktop review included a review of aerial photographs and an investigation of available data, including the Florida Geological Survey database of sinkhole occurrence in the area. The aerial photographs showed circular depressions suggestive of karst activity west and southwest of the North Tract, but no such depressions on the North Tract. Soil borings taken on the North Tract indicated the presence of layers of clayey sand, clays, and silts at a depth of 70 to 80 feet. Well-drilling logs taken during the development of the wells used for an aquifer performance test on the North Tract showed the limestone of the Floridan aquifer starting at a depth below ground surface of 70 to 80 feet. Other boring data generated on the North Tract suggests that there is greater than 100 feet of clay and sandy clay overburden above the Floridan aquifer on and in the vicinity of the North Tract. Regardless of site-specific differences, the observed confining layer separating the surficial aquifer from the Floridan aquifer is substantial, and not indicative of a karst environment. Aquifer performance tests performed on the North Tract were consistent in showing that drawdown in the surficial aquifer from the tests was minimal to non-detectable, which is strong evidence of an intact and low-permeability confining layer. The presence of well-developed drainage features on the North Tract is further evidence of a unit of confinement that is restricting water from going deeper into the subsurface, and forcing it to runoff to low-lying surface water features. Petitioners’ witnesses did not perform any site- specific analysis of karst features on or around the Sleepy Creek property. Their understanding of the nature of the karst systems in the region was described as “hypothetical or [] conceptual.” Dr. Kincaid admitted that he knew of no conduits on or adjacent to the North Tract. As a result of the data collected from the North Tract, Mr. Hearn opined that the potential for karst features on the property that provide an opening to the upper Floridan aquifer “is extremely remote.” Mr. Hearn’s opinion is consistent with the preponderance of the evidence in this case, and is accepted. In the event a surface karst feature were to manifest itself, Sleepy Creek has proposed that the surface feature be filled and plugged to reestablish the integrity of the confining layer. More to the point, the development of a surficial karst feature in an area influenced by irrigation would be sufficient grounds for the SJRWMD to reevaluate and modify the CUP to account for any changed conditions affecting the assumptions and bases for issuance of the CUP. Silver Springs, the Silver River, and the Ocklawaha River The primary, almost exclusive concern of Petitioners was the effect of the modified CUP and the nutrients from the proposed cattle ranch on Silver Springs, the Silver River, and the Ocklawaha River. Silver Springs Silver Springs has long been a well-known attraction in Florida. It is located just to the east of Ocala, Florida. Many of the speakers at the public comment period of this proceeding spoke fondly of having frequented Silver Springs over the years, enjoying its crystal clear waters through famous glass-bottomed boats. For most of its recorded history, Silver Springs was the largest spring by volume in Florida. Beginning in the 1970s, it began to lose its advantage, and by the year 2000, Rainbow Springs, located in southwestern Marion County, surpassed Silver Springs as the state’s largest spring. Silver Springs exists at the top of the potentiometric surface of the Floridan aquifer. Being at the “top of the mountain,” when water levels in the Floridan aquifer decline, groundwater flow favors the lower elevation springs. Thus, surrounding springshed boundaries expand to take more water to maintain their baseflows, at the expense of the Silver Springs springshed, which contracts. Rainbow Springs shares an overlapping springshed with Silver Springs. The analogy used by Dr. Knight was of the aquifer as a bucket with holes at different levels, and with the Silver Springs “hole” near the top of the bucket. When the water level in the bucket is high, water will flow from the top hole. As the water level drops below that hole, it will preferentially flow from the lower holes. Rainbow Springs has a vent or outlet from the aquifer, that is 10 feet lower in elevation than that of Silver Springs. Coastal springs are lower still. Thus, as groundwater levels decline, the lower springs “pirate flow” from the upper springs. Since the first major studies of Silver Springs were conducted in the 1950s, the ecosystem of Silver Springs has undergone changes. The water clarity, though still high as compared to other springs, has been reduced by 10 to 15 percent. Since the 1950s, macrophytic plants, i.e., rooted plants with seeds and flowers, have declined in population, while epiphytic and benthic algae have increased. Those plants are sensitive to increases in nitrogen in the water. Thus, Dr. Knight’s opinion that increases in nitrogen emerging from Silver Springs, calculated to have risen from just over 0.4 mg/l in the 1950s, to 1.1 mg/l in 2004, and to up to 1.5 mg/l at present,1/ have caused the observed vegetative changes is accepted. Silver River Silver Springs forms the headwaters for the Silver River, a spring run 5 1/2 miles in length, at which point it becomes a primary input to the Ocklawaha River. Issues of water clarity and alteration of the vegetative regime that exist at Silver Springs are also evident in the Silver River. In addition, the reduction in flow allows for more tannic water to enter the river, further reducing clarity. Dr. Dunn recognized the vegetative changes in the river, and opined that the “hydraulic roughness” caused by the increase in vegetation is likely creating a spring pool backwater at Silver Springs, thereby suppressing some of the flow from the spring. The Silver River has been designated as an Outstanding Florida Water. There are currently no Minimum Flows and Levels established by the District for the Silver River. Ocklawaha River The Ocklawaha River originates near Leesburg, Florida, at the Harris Chain of Lakes, and runs northward past Silver Springs. The Silver River is a major contributor to the flow of the Ocklawaha River. Due to the contribution of the Silver River and other spring-fed tributaries, the Ocklawaha River can take on the appearance of a spring run during periods of low rainfall. Historically, the Ocklawaha River flowed unimpeded to its confluence with the St. Johns River in the vicinity of Palatka, Florida. In the 1960s, as part of the Cross-Florida Barge Canal project, the Rodman Dam was constructed across the Ocklawaha River north of the Sleepy Creek property, creating a large reservoir known as the Rodman Pool. Dr. Knight testified convincingly that the Rodman Dam and Pool have altered the Ocklawaha River ecosystem, precipitating a decline in migratory fish populations and an increase in filamentous algae. At the point at which the Ocklawaha River flows past the Sleepy Creek property, it retains its free-flowing characteristics. Mill Creek, which has its headwaters on the North Tract, is a tributary of the Ocklawaha River. The Ocklawaha River, from the Eureka Dam south, has been designated as an Outstanding Florida Water. However, the Ocklawaha River at the point at which Mill Creek or other potential surface water discharges from the Sleepy Creek property might enter the river are not included in the Outstanding Florida Water designation. There are currently no Minimum Flows and Levels established by the District for the Ocklawaha River. The Silver Springs Springshed A springshed is that area from which a spring draws water. Unlike a surface watershed boundary, which is fixed based on land features, contours, and elevations, a springshed boundary is flexible, and changes depending on a number of factors, including rainfall. As to Silver Springs, its springshed is largest during periods of more abundant rainfall when the aquifer is replenished, and smaller during drier periods when groundwater levels are down, and water moves preferentially to springs and discharge points that are lower in elevation. The evidence in this case was conflicting as to whether the North Tract is in or out of the Silver Springs springshed boundary. Dr. Kincaid indicated that under some of the springshed delineations, part of the North Tract was out of the springshed, but over the total period of record, it is within the springshed. Thus, it was Dr. Kincaid’s opinion that withdrawals anywhere within the region will preferentially impact Silver Springs, though he admitted that he did not have the ability to quantify his opinion. Dr. Knight testified that the North Tract is within the Silver Springs “maximum extent” springshed at least part of the time, if not all the time. He did not opine as to the period of time in which the Silver Springs springshed was at its maximum extent. Dr. Bottcher testified that the North Tract is not within the Silver Springs springshed because there is a piezometric rise between North Tract and Silver Springs. Thus, in his opinion, withdrawals at the North Tract would not be withdrawing water going to Silver Springs. Dr. Dunn agreed that the North Tract is on the groundwater divide for Silver Springs. In his view, the North Tract is sometimes in, and sometimes out of the springshed depending on the potentiometric surface. In his opinion, the greater probability is that the North Tract is more often outside of the Silver Springs springshed, with seasonal and year—to—year variation. Dr. Dunn’s opinion provides the most credible explanation of the extent to which the North Tract sits atop that portion of the lower Floridan aquifer that feeds to Silver Springs. Thus, it is found that the groundwater divide exists to the south of the North Tract for a majority of the time, and water entering the Floridan aquifer from the North Tract will, more often than not, flow away from Silver Springs. Silver Springs Flow Volume The Silver Springs daily water discharge has been monitored and recorded since 1932. Over the longest part of the period of record, up to the 1960s, flows at Silver Springs averaged about 800 cubic feet per second (cfs). Through 1989, there was a reasonable regression between rainfall and springflow, based on average rainfalls. The long-term average rainfall in Ocala was around 50 inches per year, and long-term springflow was about 800 cfs, with deviations from average generally consistent with one another. Between 1990 and 1999, the relationship between rainfall and springflow declined by about 80 cubic feet per second. Thus, with average rainfall of 50 inches per year, the average springflow was reduced to about 720 cfs. From 2000 to 2009, there was an additional decline, such that the total cumulative decline for the 20-year period through 2009 was 250 cfs. Dr. Dunn agreed with Dr. Knight that after 2000, there was an abrupt and persistent reduction in flow of about 165 cfs. However, Dr. Dunn did not believe the post-2000 flow reduction could be explained by rainfall directly, although average rainfall was less than normal. Likewise, groundwater withdrawals did not offer an adequate explanation. Dr. Dunn described a natural 30-year cycle of wetter and drier periods known as the Atlantic Multidecadal Oscillation (AMO) that has manifested itself over the area for the period of record. From the 1940s up through 1970, the area experienced an AMO wet cycle with generally higher than normal rainfall at the Ocala rain station. For the next 30-year period, from 1970 up to 2000, the Ocala area ranged from a little bit drier to some years in which it was very, very dry. Dr. Dunn attributed the 80 cfs decline in Silver Springs flow recorded in the 1990s to that lower rainfall cycle. After 2000, when the next AMO cycle would be expected to build up, as it did post—1940, it did not happen. Rather, there was a particularly dry period around 2000 that Dr. Dunn believes to have had a dramatic effect on the lack of recovery in the post-2000 flows in the Silver River. According to Mr. Jenkins, that period of deficient rainfall extended through 2010. Around the year 2001, the relationship between rainfall and flow changed such that for a given amount of rainfall, there was less flow in the Silver River, with flow dropping to as low as 535 cfs after 2001. It is that reduction in flow that Dr. Knight has attributed to groundwater withdrawals. It should be noted that the observed flow of Silver Springs that formed the 1995 baseline conditions for the North Central Florida groundwater model that will be discussed herein was approximately 706 cfs. At the time of the final hearing in August 2014, flow at Silver Springs was 675 cfs. The reason offered for the apparent partial recovery was higher levels of rainfall, though the issue was not explored in depth. For the ten-year period centered on the year 2000, local water use within Marion and Alachua County, closer to Silver Springs, changed little -- around one percent per year. From a regional perspective, groundwater use declined at about one percent per year for the period from 1990 to 2010. The figures prepared by Dr. Knight demonstrate that the Sleepy Creek project area is in an area that has a very low density of consumptive use permits as compared to areas adjacent to Silver Springs and more clearly in the Silver Springs springshed. In Dr. Dunn’s opinion, there were no significant changes in groundwater use either locally or regionally that would account for the flow reduction in Silver Springs from 1990 to 2010. In that regard, the environmental report prepared by Dr. Dunn and submitted with the CUP modification application estimated that groundwater withdrawals accounted for a reduction in flow at Silver Springs of approximately 20 cfs as measured against the period of record up to the year 2000, with most of that reduction attributable to population growth in Marion County. In the March 2014, environmental impacts report, Dr. Dunn described reductions in the stream flow of not only the Silver River, but of other tributaries of the lower Ocklawaha River, including the upper Ocklawaha River at Moss Bluff and Orange Creek. However, an evaluation of the Ocklawaha River water balance revealed there to be additional flow of approximately 50 cfs coming into the Ocklawaha River at other stations. Dr. Dunn suggested that changes to the vent characteristics of Silver Springs, and the backwater effects of increased vegetation in the Silver River, have resulted in a redistribution of pressure to other smaller springs that discharge to the Ocklawaha River, accounting for a portion of the diminished flow at Silver Springs. The Proposed Cattle Operation Virtually all beef cattle raised in Florida, upon reaching a weight of approximately 875 pounds, are shipped to Texas or Kansas to be fattened on grain to the final body weight of approximately 1,150 pounds, whereupon they are slaughtered and processed. The United States Department of Agriculture has a certification for grass—fed beef which requires that, after an animal is weaned, it can only be fed on green forage crops, including grasses, and on corn and grains that are cut green and before they set seed. The forage crops may be grazed or put into hay or silage and fed when grass and forage is dormant. The benefit of grass feeding is that a higher quality meat is produced, with a corresponding higher market value. Sleepy Creek plans to develop the property as a grass- fed beef production ranch, with pastures and related loading/unloading and slaughter/processing facilities where calves can be fattened on grass and green grain crops to a standard slaughter weight, and then slaughtered and processed locally. By so doing, Sleepy Creek expects to save the transportation and energy costs of shipping calves to the Midwest, and to generate jobs and revenues by employing local people to manage, finish, and process the cattle. As they currently exist, pastures proposed for irrigation have been cleared and seeded, and have “fairly good grass production.” The purpose of the irrigation is to enhance the production and quality of the grass in order to maintain the quality and reliability of feed necessary for the production of grass-fed beef. East Tract Cattle Operation The East Tract is 1,242 acres in size, substantially all of which was previously cleared, irrigated, and used for sod production. The proposed CUP permit authorizes the irrigation of 611 acres of pasture under six existing center pivots. The remaining 631 acres will be used as improved, but unirrigated, pasture. Under the proposed permit, a maximum of 1,207 cattle would be managed on the East Tract. Of that number, 707 cattle would be grazed on the irrigated paddocks, and 500 cattle would be grazed on the unirrigated improved pastures. If the decision is made to forego irrigation on the East Tract, with the water allocation being used on the North Tract or not at all, the number of cattle grazed on the six center pivot pastures would be decreased from 707 cattle to 484 cattle. The historic use of the East Tract as a sod farm resulted in high phosphorus levels in the soil from fertilization, which has made its way to Daisy Creek. Sleepy Creek has proposed a cattle density substantially below that allowed by application of the formulae in the Nutrient Management Plan in order to “mine” the phosphorus levels in the soil over time. North Tract Cattle Operation The larger North Tract includes most of the “new” ranch activities, having no previous irrigation, and having been put to primarily silvicultural use with limited pasture prior to its acquisition by Sleepy Creek. The ranch’s more intensive uses, i.e., the unloading corrals and the slaughter house, are located on the North Tract. The North Tract is 7,207 acres in size. Of that, 1,656 acres are proposed for irrigation by means of 15 center- pivot irrigation systems. In addition to the proposed irrigated pastures, the North Tract includes 2,382 acres of unirrigated improved pasture, of which approximately 10 percent is wooded. Under the proposed permit, a maximum of 6,371 cattle would be managed on the North Tract. Of that number, 3,497 cattle would be grazed on the irrigated paddocks (roughly 2.2 head of cattle per acre), and 2,374 cattle would graze on the improved pastures (up to 1.1 head of cattle per acre). The higher cattle density in the irrigated pastures can be maintained due to the higher quality grass produced as a result of irrigation. The remaining 500 cattle would be held temporarily in high-concentration corrals, either after offloading or while awaiting slaughter. On average, there will be fewer than 250 head of cattle staged in those high-concentration corrals at any one time. In the absence of irrigation, the improved pasture on the North Tract could sustain about 4,585 cattle. Nutrient Management Plan, Water Conservation Plan, and BMPs The CUP and ERP applications find much of their support in the implementation of the Nutrient Management Plan (NMP), the Water Conservation Plan, and Best Management Practices (BMPs). The NMP sets forth information designed to govern the day to day operations of the ranch. Those elements of the NMP that were the subject of substantive testimony and evidence at the hearing are discussed herein. Those elements not discussed herein are found to have been supported by Sleepy Creek’s prima facie case, without a preponderance of competent and substantial evidence to the contrary. The NMP includes a herd management plan, which describes rotational grazing and the movement of cattle from paddock to paddock, and establishes animal densities designed to maintain a balance of nutrients on the paddocks, and to prevent overgrazing. The NMP establishes fertilization practices, with the application of fertilizer based on crop tissue analysis to determine need and amount. Thus, the application of nitrogen- based fertilizer is restricted to that capable of ready uptake by the grasses and forage crops, limiting the amount of excess nitrogen that might run off of the pastures or infiltrate past the root zone. The NMP establishes operation and maintenance plans that incorporate maintenance and calibration of equipment, and management of high-use areas. The NMP requires that records be kept of, among other things, soil testing, nutrient application, herd rotation, application of irrigation water, and laboratory testing. The irrigation plan describes the manner and schedule for the application of water during each irrigation cycle. Irrigation schedules for grazed and cropped scenarios vary from pivot to pivot based primarily on soil type. The center pivots proposed for use employ high-efficiency drop irrigation heads, resulting in an 85 percent system efficiency factor, meaning that there is an expected evaporative loss of 15 percent of the water before it becomes available as water in the soil. That level of efficiency is greater than the system efficiency factor of 80 percent established in CUP A.H. section 12.5.2. Other features of the irrigation plan include the employment of an irrigation manager, installation of an on-site weather station, and cumulative tracking of rain and evapotranspiration with periodic verification of soil moisture conditions. The purpose of the water conservation practices is to avoid over application of water, limiting over-saturation and runoff from the irrigated pastures. Sleepy Creek has entered into a Notice of Intent to Implement Water Quality BMPs with the Florida Department of Agriculture and Consumer Services which is incorporated in the NMP and which requires the implementation of Best Management Practices.2/ Dr. Bottcher testified that implementation and compliance with the Water Quality Best Management Practices manual creates a presumption of compliance with water quality standards. His testimony in that regard is consistent with Department of Agriculture and Consumer Services rule 5M-11.003 (“implementation, in accordance with adopted rules, of BMPs that have been verified by the Florida Department of Environmental Protection as effective in reducing target pollutants provides a presumption of compliance with state water quality standards.”). Rotational Grazing Rotational grazing is a practice by which cattle are allowed to graze a pasture for a limited period of time, after which they are “rotated” to a different pasture. The 1,656 acres proposed for irrigation on the North Tract are to be divided into 15 center-pivot pastures. Each individual pasture will have 10 fenced paddocks. The 611 acres of irrigated pasture on the East Tract are divided into 6 center-pivot pastures. The outer fence for each irrigated pasture is to be a permanent “hard” fence. Separating the internal paddocks will be electric fences that can be lowered to allow cattle to move from paddock to paddock, and then raised after they have moved to the new paddock. The NMP for the North Tract provides that cattle are to be brought into individual irrigated pastures as a single herd of approximately 190 cattle and placed into one of the ten paddocks. They will be moved every one to three days to a new paddock, based upon growing conditions and the reduction in grass height resulting from grazing. In this way, the cattle are rotated within the irrigated pasture, with each paddock being used for one to three days, and then rested until each of the other paddocks have been used, whereupon it will again be used in the rotation. The East Tract NMP generally provides for rotation based on the height of the pasture grasses, but is designed to provide a uniform average of cattle per acre per year. Due to the desire to “mine” phosphorus deposited during the years of operation of the East Tract as a sod farm, the density of cattle on the irrigated East Tract pastures is about 30 percent less than that proposed for the North Tract. The East Tract NMP calls for a routine pasture rest period of 15 to 30 days. Unlike dairy farm pastures, where dairy cows traverse a fixed path to the milking barn several times a day, there will be minimal “travel lanes” within the pastures or between paddocks. There will be no travel lanes through wetlands. If nitrogen-based fertilizer is needed, based upon tissue analysis of the grass, fertilizer is proposed for application immediately after a paddock is vacated by the herd. By so doing, the grass within each paddock will have a sufficient period to grow and “flush up” without grazing or traffic, which results in a high—quality grass when the cattle come back around to feed. Sleepy Creek proposes that rotational grazing is to be practiced on improved pastures and irrigated pastures alike. The rotational practices on the improved East Tract and North Tract pastures are generally similar to those practiced on the irrigated pastures. The paddocks will have permanent watering troughs, with one trough serving two adjacent paddocks. The troughs will be raised to prevent “boggy areas” from forming around the trough. Since the area around the troughs will be of a higher use, Sleepy Creek proposes to periodically remove accumulated manure, and re-grade if necessary. Other cattle support items, including feed bunkers and shade structures are portable and can be moved as conditions demand. Forage Crop Production The primary forage crop on the irrigated pastures is to be Bermuda grass. Bermuda grass or other grass types tolerant of drier conditions will be used in unirrigated pastures. During the winter, when Bermuda grass stops growing, Sleepy Creek will overseed the North Tract pastures with ryegrass or other winter crops. Due to the limitation on irrigation water, the East Tract NMP calls for no over-seeding for production of winter crops. Crops do not grow uniformly during the course of a year. Rather, there are periods during which there are excess crops, and periods during which the crops are not growing enough to keep up with the needs of the cattle. During periods of excess, Sleepy Creek will cut those crops and store them as haylage to be fed to the cattle during lower growth periods. The North Tract management plan allows Sleepy Creek to dedicate one or more irrigated pastures for the exclusive production of haylage. If that option is used, cattle numbers will be reduced in proportion to the number of pastures dedicated to haylage production. As a result of the limit on irrigation, the East Tract NMP does not recommend growing supplemental feed on dedicated irrigation pivot pastures. Direct Wetland Impacts Approximately 100 acres proposed for irrigation are wetlands or wetland buffer. Those areas are predominantly isolated wetlands, though some have surface water connections to Mill Creek, a water of the state. Trees will be cut in the wetlands to allow the pivot to pass overhead. Tree cutting is an exempt agricultural activity that does not require a permit. There was no persuasive evidence that cutting trees will alter the fundamental benefit of the wetlands or damage water resources of the District. The wetlands and wetland buffer will be subject to the same watering and fertigation regimen as the irrigated pastures. The application of water to wetlands, done concurrently with the application of water to the pastures, will occur during periods in which the pasture soils are dry. The incidental application of water to the wetlands during dry periods will serve to maintain hydration of the wetlands, which is considered to be a benefit. Fertilizers will be applied through the irrigation arms, a process known as fertigation. Petitioners asserted that the application of fertilizer onto the wetlands beneath the pivot arms could result in some adverse effects to the wetlands. However, Petitioners did not quantify to what extent the wetlands might be affected, or otherwise describe the potential effects. Fertigation of the wetlands will promote the growth of wetland plants. Nitrogen applied through fertigation will be taken up by plants, or will be subject to denitrification -- a process discussed in greater detail herein -- in the anaerobic wetland soils. The preponderance of the evidence indicated that enhanced wetland plant growth would not rise to a level of concern. Since most of the affected wetlands are isolated wetlands, there is expected to be little or no discharge of nutrients from the wetlands. Even as to those wetlands that have a surface water connection, most, if not all of the additional nitrogen applied through fertigation will be accounted for by the combined effect of plant uptake and denitrification. Larger wetland areas within an irrigated pasture will be fenced at the buffer line to prevent cattle from entering. The NMP provided a blow-up of the proposed fencing related to a larger wetland on Pivot 8. Although other figures are not to the same scale, it appears that larger wetlands associated with Pivots 1, 2, 3, and 12 will be similarly fenced. Cattle would be allowed to go into the smaller, isolated wetlands. Cattle going into wetlands do not necessarily damage the wetlands. Any damage that may occur is a function of density, duration, and the number of cattle. The only direct evidence of potential damage to wetlands was the statement that “[i]f you have 6,371 [cattle] go into a wetland, there may be impacts.” The NMP provides that pasture use will be limited to herds of approximately 190 cattle, which will be rotated from paddock to paddock every two to three days, and which will allow for “rest” periods of approximately 20 days. There will be no travel lanes through any wetland. Thus, there is no evidence to support a finding that the cattle at the density, duration, and number proposed will cause direct adverse effects to wetlands on the property. High Concentration Areas Cattle brought to the facility are to be unloaded from trucks and temporarily corralled for inspection. For that period, the cattle will be tightly confined. Cattle that have reached their slaughter weight will be temporarily held in corrals associated with the processing plant. The stormwater retention ponds used to capture and store runoff from the offloading corral and the processing plant holding corral are part of a normal and customary agricultural activity, and are not part of the applications and approvals that are at issue in this proceeding. The retention ponds associated with the high-intensity areas do not require permits because they do not exceed one acre in size or impound more than 40 acre-feet of water. Nonetheless, issues related to the retention ponds were addressed by Petitioners and Sleepy Creek, and warrant discussion here. The retention ponds are designed to capture 100 percent of the runoff and entrained nutrients from the high concentration areas for a minimum of a 24—hour/25—year storm event. If rainfall occurs in excess of the designed storm, the design is such that upon reaching capacity, only new surface water coming to the retention pond will be discharged, and not that containing high concentrations of nutrients from the initial flush of stormwater runoff. Unlike the stormwater retention berms for the pastures, which are to be constructed from the first nine inches of permeable topsoil on the property, the corral retention ponds are to be excavated to a depth of six feet which, based on soil borings in the vicinity, will leave a minimum of two to four feet of clay beneath the retention ponds. In short, the excavation will penetrate into the clay layer underlying the pond sites, but will not penetrate through that layer. The excavated clay will be used to form the side slopes of the ponds, lining the permeable surficial layer and generally making the ponds impermeable. Organic materials entering the retention ponds will form an additional seal. An organic seal is important in areas in which retention ponds are constructed in sandy soil conditions. Organic sealing is less important in this case, where clay forms the barrier preventing nutrients from entering the surficial aquifer. Although the organic material is subject to periodic removal, the clay layer will remain to provide the impermeable barrier necessary to prevent leakage from the ponds. Dr. Bottcher testified that if, during excavation of the ponds, it was found that the remaining in-situ clay layer was too thin, Sleepy Creek would implement the standard practice of bringing additional clay to the site to ensure adequate thickness of the liner. Nutrient Balance The goal of the NMP is to create a balance of nutrients being applied to and taken up from the property. Nitrogen and phosphorus are the nutrients of primary concern, and are those for which specific management standards are proposed. Nutrient inputs to the NMP consist generally of deposition of cattle manure (which includes solid manure and urine), recycling of plant material and roots from the previous growing season, and application of supplemental fertilizer. Nutrient outputs to the NMP consist generally of volatization of ammonia to the atmosphere, uptake and utilization of the nutrients by the grass and crops, weight gain of the cattle, and absorption and denitrification of the nutrients in the soil. The NMP, and the various models discussed herein, average the grass and forage crop uptake and the manure deposition to match that of a 1,013 pound animal. That average weight takes into account the fact that cattle on the property will range from calf weight of approximately 850 pounds, to slaughter weight of 1150 pounds. Nutrients that are not accounted for in the balance, e.g., those that become entrained in stormwater or that pass through the plant root zone without being taken up, are subject to runoff to surface waters or discharge to groundwater. Generally, phosphorus not taken up by crops remains immobile in the soil. Unless there is a potential for runoff to surface waters, the nutrient balance is limited by the amount of nitrogen that can be taken up by the crops. Due to the composition of the soils on the property, the high water table, and the relatively shallow confining layer, there is a potential for surface runoff. Thus, the NMP was developed using phosphorus as the limiting nutrient, which results in nutrient application being limited by the “P-index.” A total of 108 pounds of phosphorus per acre/per year can be taken up and used by the irrigated pasture grasses and forage crops. Therefore, the total number of cattle that can be supported on the irrigated pastures is that which, as a herd, will deposit an average of 108 pounds of phosphorus per year over the irrigated acreage. Therefore, Sleepy Creek has proposed a herd size and density based on calculations demonstrating that the total phosphorus contained in the waste excreted by the cattle equals the amount taken up by the crops. A herd producing 108 pounds per acre per year of phosphorus is calculated to produce 147 pounds of nitrogen per acre per year. The Bermuda grass and forage crops proposed for the irrigated fields require 420 pounds of nitrogen per acre per year. As a result of the nitrogen deficiency, additional nitrogen-based fertilizer to make up the shortfall is required to maintain the crops. Since phosphorus needs are accounted for by animal deposition, the fertilizer will have no phosphorus. The NMP requires routine soil and plant tissue tests to determine the amount of nitrogen fertilizer needed. By basing the application of nitrogen on measured rather than calculated needs, variations in inputs, including plant decomposition and atmospheric deposition, and outputs, including those affected by weather, can be accounted for, bringing the full nutrient balance into consideration. The numeric values for crop uptakes, manure deposition, and other estimates upon which the NMP was developed were based upon literature, values, and research performed and published by the University of Florida and the Natural Resource Conservation Service. Dr. Bottcher testified convincingly that the use of such values is a proven and reliable method of developing a balance for the operation of similar agricultural operations. A primary criticism of the NMP was its expressed intent to “reduce” or “minimize” the transport of nutrients to surface waters and groundwater, rather than to “negate” or “prevent” such transport. Petitioners argue that complete prevention of the transport of nutrients from the property is necessary to meet the standards necessary for issuance of the CUP and ERP. Mr. Drummond went into some detail regarding the total mass of nutrients expected to be deposited onto the ground from the cattle, exclusive of fertilizer application. In the course of his testimony, he suggested that the majority of the nutrients deposited on the land surface “are going to make it to the surficial aquifer and then be carried either to the Floridan or laterally with the groundwater flow.” However, Mr. Drummond performed no analysis on the fate of nitrogen through uptake by crops, volatization, or soil treatment, and did not quantify the infiltration of nitrogen to groundwater. Furthermore, he was not able to provide any quantifiable estimate on any effect of nutrients on Mill Creek, the Ocklawaha River, or Silver Springs. In light of the effectiveness of the nutrient balance and other elements of the NMP, along with the retention berm system that will be discussed herein, Mr. Drummond’s assessment of the nutrients that might be expected to impact water resources of the District is contrary to the greater weight of the evidence. Mr. Drummond’s testimony also runs counter to that of Dr. Kincaid, who performed a particle track analysis of the fate of water recharge from the North Tract. In short, Dr. Kincaid calculated that of the water that makes it as recharge from the North Tract to the surficial aquifer, less than one percent is expected to make its way to the upper Floridan aquifer, with that portion originating from the vicinity of Pivot 6. Recharge from the other 14 irrigated pastures was ultimately accounted for by evapotranspiration or emerged at the surface and found its way to Mill Creek. The preponderance of the competent, substantial evidence adduced at the final hearing supports the effectiveness of the NMPs for the North Tract and East Tract at managing the application and use of nutrients on the property, and minimizing the transport of nutrients to surface water and groundwater resources of the District. North Central Florida Model All of the experts involved in this proceeding agreed that the use of groundwater models is necessary to simulate what might occur below the surface of the ground. Models represent complex systems by applying data from known conditions and impacts measured over a period of years to simulate the effects of new conditions. Models are imperfect, but are the best means of predicting the effects of stresses on complex and unseen subsurface systems. The North Central Florida (NCF) model is used to simulate impacts of water withdrawals on local and regional groundwater levels and flows. The NCF model simulates the surficial aquifer, the upper Floridan aquifer, and the lower Floridan aquifer. Those aquifers are separated from one another by relatively impervious confining units. The intermediate confining unit separates the surficial aquifer from the upper Floridan aquifer. The intermediate confining unit is not present in all locations simulated by the NCF model. However, the evidence is persuasive that the intermediate confining unit is continuous at the North Tract, and serves to effectively isolate the surficial aquifer from the upper Floridan aquifer. The NCF model is not a perfect depiction of what exists under the land surface of the North Tract or elsewhere. It was, however, acknowledged by the testifying experts in this case, despite disagreements as to the extent of error inherent in the model, to be the best available tool for calculating the effects of withdrawals of water within the boundary of the model. The NCF model was developed and calibrated over a period of years, is updated routinely as data becomes available, and has undergone peer review. Aquifer Performance Tests In order to gather site-specific data regarding the characteristics of the aquifer beneath the Sleepy Creek property, a series of three aquifer performance tests (APTs) was conducted on the North Tract. The first two tests were performed by Sleepy Creek, and the third by the District. An APT serves to induce stress on the aquifer by pumping from a well at a high rate. By observing changes in groundwater levels in observation wells, which can be at varying distances from the extraction well, one can extrapolate the nature of the subsurface. In addition, well-completion reports for the various withdrawal and observation wells provide actual data regarding the composition of subsurface soils, clays, and features of the property. The APT is particularly useful in evaluating the ability of the aquifer to produce water, and in calculating the transmissivity of the aquifer. Transmissivity is a measure of the rate at which a substance passes through a medium and, as relevant to this case, measures how groundwater flows through an aquifer. The APTs demonstrated that the Floridan aquifer is capable of producing water at the rate requested. The APT drawdown contour measured in the upper Floridan aquifer was greater than that predicted from a simple run of the NCF model, but the lateral extent of the drawdown was less than predicted. The most reasonable conclusion to be drawn from the combination of greater than expected drawdown in the upper Floridan aquifer with less than expected extent is that the transmissivity of the aquifer beneath the North Tract is lower than the NCF model assumptions. The conclusion that the transmissivity of the aquifer at the North Tract is lower than previously estimated means that impacts from groundwater extraction would tend to be more vertical than horizontal, i.e., the drawdown would be greater, but would be more localized. As such, for areas of lower than estimated transmissivity, modeling would over-estimate off-site impacts from the extraction. NCF Modeling Scenarios The initial NCF modeling runs were based on an assumed withdrawal of 2.39 mgd, an earlier -- though withdrawn - - proposal. The evidence suggests that the simulated well placement for the 2.39 mgd model run was entirely on the North Tract. Thus, the results of the model based on that withdrawal have some limited relevance, especially given that the proposed CUP allows for all of the requested 1.46 mgd of water to be withdrawn from North Tract wells at the option of Sleepy Creek, but will over-predict impacts from the permitted rate of withdrawal. A factor that was suggested as causing a further over-prediction of drawdown in the 2.39 mgd model run was the decision, made at the request of the District, to exclude the input of data of additional recharge to the surficial aquifer, wetlands and surface waters from the irrigation, and the resulting diminution in soil storage capacity. Although there is some merit to the suggestion that omitting recharge made the model results “excessively conservative,” the addition of recharge to the model would not substantially alter the predicted impacts. A model run was subsequently performed based on a presumed withdrawal of 1.54 mgd, a rate that remains slightly more than, but still representative of, the requested amount of 1.46 mgd. The 1.54 mgd model run included an input for irrigation recharge. The simulated extraction points were placed on the East Tract and North Tract in the general configuration as requested in the CUP application. The NCF is designed to model the impacts of a withdrawal based upon various scenarios, identified at the hearing as Scenarios A, B, C, and D. Scenario A is the baseline condition for the NCF model, and represents the impacts of all legal users of water at their estimated actual flow rates as they existed in 1995. Scenario B is all existing users, not including the applicant, at end-of-permit allocations. Scenario C is all existing users, including the applicant, at current end-of-permit allocations. Scenario D is all permittees at full allocation, except the applicant which is modeled at the requested (i.e., new or modified) end-of-permit allocation. To simulate the effects of the CUP modification, simulations were performed on scenarios A, C, and D. In order to measure the specific impact of the modification of the CUP, the Scenario C impacts to the surficial, upper Floridan, and lower Floridan aquifers were compared with the Scenario D impacts to those aquifers. In order to measure the cumulative impact of the CUP, the Scenario A actual-use baseline condition was compared to the Scenario D condition which predicts the impacts of all permitted users, including the applicant, pumping at full end-of-permit allocations. The results of the NCF modeling indicate the following: 2.39 mgd - Specific Impact The surficial aquifer drawdown from the simulated 2.39 mgd withdrawal was less than 0.05 feet on-site and off- site, except to the west of the North Tract, at which a drawdown of 0.07 feet was predicted. The upper Floridan aquifer drawdown from the 2.39 mgd withdrawal was predicted at between 0.30 and 0.12 feet on-site, and between 0.30 and 0.01 feet off-site. The higher off-site figures are immediately proximate to the property. The lower Floridan aquifer drawdown from the 2.39 mgd withdrawal was predicted at less than 0.05 feet at all locations, and at or less than 0.02 feet within six miles of the North Tract. 2.39 mgd - Cumulative Impact The cumulative impact to the surficial aquifer from all permitted users, including a 2.39 mgd Sleepy Creek withdrawal, was less than 0.05 feet on-site, and off-site to the north and east, except to the west of the North Tract, at which a drawdown of 0.07 feet was predicted. The cumulative impact to the upper Floridan aquifer from all permitted users, including a 2.39 mgd Sleepy Creek withdrawal, ranged from 0.4 feet to 0.8 feet over all pertinent locations. The cumulative impact to the lower Floridan aquifer from all permitted users, including a 2.39 mgd Sleepy Creek withdrawal, ranged from 1.0 to 1.9 feet over all pertinent locations. The conclusion drawn by Mr. Andreyev that the predicted impacts to the lower Floridan are almost entirely from other end-of-permit user withdrawals is supported by the evidence and accepted. 1.54 mgd - Specific Impact The NCF model runs based on the more representative 1.54 mgd withdrawal predicted a surficial aquifer drawdown of less than 0.01 feet (i.e., no drawdown contour shown) on the North Tract, and a 0.01 to 0.02 foot drawdown at the location of the East Tract. The drawdown of the upper Floridan aquifer from the CUP modification was predicted at up to 0.07 feet on the property, and generally less than 0.05 feet off-site. There were no drawdown contours at the minimum 0.01 foot level that came within 9 miles of Silver Springs. The lower Floridan aquifer drawdown from the CUP modification was predicted at less than 0.01 feet (i.e., no drawdown contour shown) at all locations. 1.54 mgd - Cumulative Impact A comparison of the cumulative drawdown contours for the 2.36 mgd model and 1.54 mgd model show there to be a significant decrease in predicted drawdowns to the surficial and upper Floridan aquifers, with the decrease in the upper Floridan aquifer drawdown being relatively substantial, i.e., from 0.5 to 0.8 feet on-site predicted for the 2.36 mgd withdrawal, to 0.4 to 0.5 feet on-site for the 1.54 mgd model. Given the small predicted individual impact of the CUP on the upper Floridan aquifer, the evidence is persuasive that the cumulative impacts are the result of other end-of-permit user withdrawals. The drawdown contour for the lower Floridan aquifer predicted by the 1.54 mgd model is almost identical to that of the 2.36 mgd model, thus supporting the conclusion that predicted impacts to the lower Floridan are almost entirely from other end-of-permit user withdrawals. Modeled Effect on Silver Springs As a result of the relocation of the extraction wells from the East Tract to the North Tract, the NCF model run at the 1.54 mgd withdrawal rate predicted springflow at Silver Springs to increase by 0.15 cfs. The net cumulative impact in spring flow as measured from 1995 conditions to the scenario in which all legal users, including Sleepy Creek, are pumping at full capacity at their end-of-permit rates for one year3/ is roughly 35.4 cfs, which is approximately 5 percent of Silver Springs’ current flow. However, as a result of the redistribution of the Sleepy Creek withdrawal, which is, in its current iteration, a legal and permitted use, the cumulative effect of the CUP modification at issue is an increase in flow of 0.l5 cfs. Dr. Kincaid agreed that there is more of an impact to Silver Springs when the pumping allowed by the CUP is located on the East Tract than there is on the North Tract, but that the degree of difference is very small. Dr. Knight testified that effect on the flow of Silver Springs from relocating the 1.46 mgd withdrawal from the East Tract to the North Tract would be “zero.” The predicted increase of 0.15 cfs is admittedly miniscule when compared to the current Silver Springs springflow of approximately 675 cfs. However, as small as the modeled increase may be -- perhaps smaller than its “level of certainty” -- it remains the best evidence that the impact of the CUP modification to the flow of Silver Springs will be insignificant at worst, and beneficial at best. Opposition to the NCF Model Petitioners submitted considerable evidence designed to call the results generated by the District’s and Sleepy Creek’s NCF modeling into question. Karst Features A primary criticism of the validity of the NCF model was its purported inability to account for the presence of karst features, including conduits, and their effect on the results. It was Dr. Kincaid’s opinion that the NCF model assigned transmissivity values that were too high, which he attributed to the presence of karst features that are collecting flow and delivering it to springs. He asserted that, instead of assuming the presence of karst features, the model was adjusted to raise the overall capacity of the porous medium to transmit water, and thereby match the observed flows. In his opinion, the transmissivity values of the equivalent porous media were raised so much that the model can no longer be used to predict drawdowns. That alleged deficiency in the model is insufficient for two reasons. First, as previously discussed in greater detail, the preponderance of the evidence in this case supports a finding that there are no karst features in the vicinity of the North Tract that would provide preferential pathways for water flow so as to skew the results of the NCF model. Second, Dr. Kincaid, while acknowledging that the NCF model is the best available tool for predicting impacts from groundwater extraction on the aquifer, suggested that a hybrid porous media and conduit model would be a better means of predicting impacts, the development of which would take two years or more. There is no basis for the establishment of a de facto moratorium on CUP permitting while waiting for the development of a different and, in this case, unnecessary model. For the reasons set forth herein, it is found that the NCF model is sufficient to accurately and adequately predict the effects of the Sleepy Creek groundwater withdrawals on the aquifers underlying the property, and to provide reasonable assurance that the standards for such withdrawals have been met. Recharge to the Aquifer Petitioners argued that the modeling results showing little significant drawdown were dependent on the application of unrealistic values for recharge or return flow from irrigation. In a groundwater model, as in the physical world, some portion of the water extracted from the aquifer is predicted to be returned to the aquifer as recharge. If more water is applied to the land surface than is being accounted for by evaporation, plant uptake and evapotranspiration, surface runoff, and other processes, that excess water may seep down into the aquifer as recharge. Recharge serves to replenish the aquifer and offset the effects of the groundwater withdrawal. Dr. Kincaid opined that the NCF modeling performed for the CUP application assigned too much water from recharge, offsetting the model's prediction of impacts to other features. It is reasonable to assume that there is some recharge associated with both agricultural and public supply uses. However, the evidence suggests that the impact of recharge on the overall NCF model results is insignificant on the predicted impacts to Silver Springs, the issue of primary concern. Mr. Hearn ran a simulation using the NCF model in which all variables were held constant, except for recharge. The difference between the “with recharge” and “without recharge" simulations at Silver Springs was 0.002 cfs. That difference is not significant, and is not suggestive of adverse impacts on Silver Springs from the CUP modification. Dr. Kincaid testified that “the recharge offset on the property is mostly impacting the surficial aquifer,” and that “the addition of recharge in this case didn't have much of an impact on the upper Floridan aquifer system.” As such, the effect of adding recharge to the model would be as to the effect of groundwater withdrawal on wetlands or surface water bodies, and not on springs. As previously detailed, the drawdown of the surficial aquifer simulated for the 2.39 mgd “no recharge” scenario were less than 0.05 feet on-site and off-site, except for a predicted 0.07 foot drawdown to the west of the North Tract. The predicted drawdown of the surficial aquifer for the 1.54 mgd “with recharge” scenario was 0.02 feet or less. The preponderance of the evidence supports a finding that drawdowns of either degree are less than that at which adverse impacts to wetlands or surface waters would occur. Thus, issues related to the recharge or return flows from irrigation are insufficient to support a finding or conclusion that the NCF model failed to provide reasonable assurance that the standards for issuance of the CUP modification were met. External Boundaries The boundaries of the NCF model are not isolated from the rest of the physical world. Rather, groundwater flows into the modeled area from multiple directions, and out of the modeled area in multiple directions. Inflows to the model area are comprised of recharge, which is an assigned value, and includes water infiltrating and recharging the aquifer from surface waters; injection wells; upward and downward leakage from lower aquifers; and flow across the external horizontal boundaries. Outflows from the model area include evapotranspiration; discharge to surface waters, including springs and rivers; extraction from wells; upward and downward leakage from lower aquifers; and flow against the external model boundaries. Dr. Kincaid testified that flow across the external model boundary is an unknown and unverifiable quantity which increases the uncertainty in the model. He asserted that in the calibrated version of the model, there is no way to check those flows against data. His conclusion was that the inability of the NCF model to accurately account for external boundary flow made the margin of error so great as to make the model an unreliable tool with which to assess whether the withdrawal approved by the proposed CUP modification will increase or decrease drawdown at Silver Springs. The District correlates the NCF model boundaries with a much larger model developed by the United States Geological Survey, the Peninsula of Florida Model, more commonly referred to as the Mega Model, which encompasses most of the State of Florida and part of Southeast Georgia. The Mega Model provides a means to acknowledge that there are stresses outside the NCF model, and to adjust boundary conditions to account for those stresses. The NCF is one of several models that are subsets of the Mega Model, with the grids of the two models being “nested” together. The 1995 base year of the NCF model is sufficiently similar to the 1993-1994 base year of the Mega Model as to allow for a comparison of simulated drawdowns calculated by each of the models. By running a Mega Model simulation of future water use, and applying the change in that use from 1993 base year conditions, the District was able to come to a representative prediction of specific boundary conditions for the 1995 NCF base year, which were then used as the baseline for simulations of subsequent conditions. In its review of the CUP modification, the District conducted a model validation simulation to measure the accuracy of the NCF model against observed conditions, with the conditions of interest being the water flow at Silver Springs. The District ran a simulation using the best information available as to water use in the year 2010, the calculated boundary conditions, irrigation, pumping, recharge, climatic conditions, and generally “everything that we think constitutes that year.” The discharge of water at Silver Springs in 2010 was measured at 580 cfs. The discharge simulated by the NCF model was 545 cfs. Thus, the discharge predicted by the NCF model simulation was within six percent of the observed discharge. Such a result is generally considered in the modeling community to be “a home run.” Petitioners’ objections to the calculation of boundary conditions for the NCF model are insufficient to support a finding that the NCF model is not an appropriate and accurate tool for determining that reasonable assurance has been provided that the standards for issuance of the CUP modification were met. Cumulative Impact Error As part of the District’s efforts to continually refine the NCF, and in conjunction with a draft minimum flows and levels report for Silver Springs and the Silver River, the cumulative NCF model results for the period of baseline to 2010 were compared with the simulated results from the Northern District Model (NDF), a larger model that overlapped the NCF. As a result of the comparison, which yielded different results, it was discovered that the modeler had “turned off” not only the withdrawal pumps, but inputs to the aquifer from drainage wells and sinkholes as well. When those inputs were put back into the model run, and effects calculated only from withdrawals between the “pumps-off” condition and 2010 pumping conditions, the cumulative effect of the withdrawals was adjusted from a reduction in the flow at Silver Springs of 29 cfs to a reduction of between 45 and 50 cfs, an effect described as “counterintuitive.” Although that result has not undergone peer review, and remains subject to further review and comparison with the Mega Model, it was accepted by the District representative, Mr. Bartol. Petitioners seized upon the results of the comparison model run as evidence of the inaccuracy and unreliability of the NCF model. However, the error in the NCF model run was not the result of deficiencies in the model, but was a data input error. Despite the error in the estimate of the cumulative effect of all users at 2010 levels, the evidence in this case does not support a finding that the more recent estimates of specific impact from the CUP at issue were in error. NCF Model Conclusion As has been discussed herein, a model is generally the best means by which to calculate conditions and effects that cannot be directly observed. The NCF model is recognized as being the best tool available for determining the subsurface conditions of the model domain, having been calibrated over a period of years and subject to peer review. It should be recognized that the simulations run using the NCF model represent the worst—case scenario, with all permittees simultaneously drawing at their full end-of-permit allocations. There is merit to the description of that occurrence as being “very remote.” Thus, the results of the modeling represent a conservative estimate of potential drawdown and impacts. While the NCF model is subject to uncertainty, as is any method of predicting the effects of conditions that cannot be seen, the model provides reasonable assurance that the conditions simulated are representative of the conditions that will occur as a result of the withdrawals authorized by the CUP modification. Environmental Resource Permit The irrigation proposed by the CUP will result in runoff from the North Tract irrigated pastures in excess of that expected from the improved pastures, due in large measure to the diminished storage capacity of the soil. Irrigation water will be applied when the soils are dry, and capable of absorbing water not subject to evaporation or plant uptake. The irrigation water will fill the storage space that would exist without irrigation. With irrigation water taking up the capacity of the soil to hold water, soils beneath the irrigation pivots will be less capable of retaining additional moisture during storm events. Thus, there is an increased likelihood of runoff from the irrigated pastures over that expected with dry soils. The increase in runoff is expected to be relatively small, since there should be little or no irrigation needed during the normal summer wet season. The additional runoff may have increased nutrient levels due to the increased cattle density made possible by the irrigation of the pastures. The CUP has a no—impact requirement for water quality resulting from the irrigation of the improved pasture. Thus, nutrients leaving the irrigated pastures may not exceed those calculated to be leaving the existing pre-development use as improved pastures. Retention Berms The additional runoff and nutrient load is proposed to be addressed by constructing a system of retention berms, approximately 50,0004/ feet in length, which is intended to intercept, retain, and provide treatment for runoff from the irrigated pasture. The goal of the system is to ensure that post—development nutrient loading from the proposed irrigated pastures will not exceed the pre—development nutrient loading from the existing improved pastures. An ERP permit is required for the construction of the berm system, since the area needed for the construction of the berms is greater than the one acre in size, and since the berms have the capability of impounding more than 40 acre-feet of water. The berms are to be constructed by excavating the top nine inches of sandy, permeable topsoil and using that permeable soil to create the berms, which will be 1 to 2 feet in height. The water storage areas created by the excavation will have flat or horizontal bottoms, and will be very shallow with the capacity to retain approximately a foot of water. The berms will be planted with pasture grasses after construction to provide vegetative cover. The retention berm system is proposed to be built in segments, with the segment designed to capture runoff from a particular center pivot pasture to be constructed prior to the commencement of irrigation from that center pivot. A continuous clay layer underlies the areas in which the berms are to be constructed. The clay layer varies from 18 to 36 inches below the ground surface, with at least one location being as much as five feet below the ground surface. As such, after nine inches of soil is scraped away to create the water retention area and construct the berm, there will remain a layer of permeable sandy material above the clay. The berms are to be constructed at least 25 feet landward of any jurisdictional wetland, creating a “safe upland line.” Thus, the construction, operation, and maintenance of the retention berms and redistribution swales will result in no direct impacts to jurisdictional wetlands or other surface waters. There will be no agricultural activities, e.g., tilling, planting, or mowing, within the 25-foot buffers, and the buffers will be allowed to establish with native vegetation to provide additional protection for downgradient wetlands. As stormwater runoff flows from the irrigated pastures, it may, in places, create concentrated flow ways. Redistribution swales will be built in those areas to spread any remaining overland flow of water and reestablish sheet flow to the retention berm system. At any point at which water may overtop a berm, the berm will be hardened with rip—rap to insure its integrity. The berms are designed to intercept and collect overland flow from the pastures and temporarily store it behind the berms, regaining the soil storage volume lost through irrigation. A portion of the runoff intercepted by the berm system will evaporate. The majority will infiltrate either through the berm, or vertically into the subsurface soils beneath it. When the surficial soils become saturated, further vertical movement will be stopped by the impermeable clay layer underlying the site. The runoff water will then move horizontally until it reemerges into downstream wetland systems. Thus, the berm system is not expected to have a measurable impact on the hydroperiod of the wetlands on the North Tract. Phosphorus Removal Phosphorus tends to get “tied up” in soil as it moves through it. Phosphorus reduction occurs easily in permeable soil systems because it is removed from the water through a chemical absorption process that is not dependent on the environment of the soil. As the soils in the retention areas and berms go through drying cycles, the absorption capacity is regenerated. Thus, the retention system will effectively account for any increase in phosphorus resulting from the increased cattle density allowed by the irrigation such that there is expected to be no increase in phosphorus levels beyond the berm. Nitrogen Removal When manure is deposited on the ground, primarily as high pH urine, the urea is quickly converted to ammonia, which experiences a loss of 40 to 50 percent of the nitrogen to volatization. Soil conditions during dry weather conditions are generally aerobic. Remaining ammonia in the manure is converted by aerobic bacteria in the soil to nitrates and nitrites. Converted nitrates and nitrites from manure, along with nitrogen from fertilizer, is readily available for uptake as food by plants, including grasses and forage crops. Nitrates and nitrites are mobile in water. Therefore, during rain events of sufficient intensity to create runoff, the nitrogen can be transported downstream towards wetlands and other receiving waters, or percolate downward through the soil until blocked by an impervious barrier. During storm events, the soils above the clay confining layer and the lower parts of the pervious berms become saturated. Those saturated soils are drained of oxygen and become anaerobic. When nitrates and nitrites encounter saturated conditions, they provide food for anaerobic bacteria that exist in those conditions. The bacteria convert nitrates and nitrites to elemental nitrogen, which has no adverse impact on surface waters or groundwater. That process, known as denitrification, is enhanced in the presence of organic material. The soils from which the berms are constructed have a considerable organic component. In addition to the denitrification that occurs in the saturated conditions in and underlying the berms, remaining nitrogen compounds that reemerge into the downstream wetlands are likely to encounter organic wetland-type soil conditions. Organic wetland soils are anaerobic in nature, and will result in further, almost immediate denitrification of the nitrates and nitrites in the emerging water. Calculation of Volume - BMPTRAINS Model The calculation of the volume necessary to capture and store excess runoff from the irrigated pastures was performed by Dr. Wanielista using the BMPTRAINS model. BMPTRAINS is a simple, easy to use spreadsheet model. Its ease of use does not suggest that it is less than reliable. The model has been used as a method of calculating storage volumes in many conditions over a period of more than 40 years. The model was used to calculate the storage volumes necessary to provide storage and treatment of runoff from fifteen “basins” that had a control or a Best Management Practice associated with them. All of the basins were calculated as being underlain by soils in poorly-drained hydrologic soil Group D, except for the basin in the vicinity of Pivot 6, which is underlain by the more well-drained soil Group A. The model assumed about percent of the property to have soil Group A soils, an assumption that is supported by the evidence. Soil moisture conditions on the property were calculated by application of data regarding rainfall events and times, the irrigation schedule, and the amount of irrigation water projected for use over a year. The soil moisture condition was used to determine the amount of water that could be stored in the on-site soils, known as the storage coefficient. Once the storage coefficient was determined, that data was used to calculate the amount of water that would be expected to run off of the North Tract, known as the curve number. The curve number is adjusted by the extent to which the storage within a soil column is filled by the application of irrigation water, making it unable to store additional rainfall. As soil storage goes down, the curve number goes up. Thus, a curve number that approaches 100 means that more water is predicted to run off. Conversely, a lower curve number means that less water is predicted to run off. The pre-development curve number for the North Tract was based on the property being an unirrigated, poor grass area. A post-development curve number was assigned to the property that reflected a wet condition representative of the irrigated soils beneath the pivots. In calculating the storage volume necessary to handle runoff from the basins, the wet condition curve number was adjusted based on the fact that there is a mixture of irrigated and unirrigated general pasture within each basin to be served by a segment of the retention berm system, and by the estimated 15 percent of the time that the irrigation areas would be in a drier condition. In addition, the number was adjusted to reflect the 8 to 10 inches of additional evapotranspiration that occurs as a result of irrigation. The BMPTRAINS model was based on average annual nutrient-loading conditions, with water quality data collected at a suitable point within Reach 22, the receiving waterbody. The effects of nutrients from the irrigated pastures on receiving waterbodies is, in terms of the model, best represented by average annual conditions, rather than a single highest-observed nutrient value. Pre-development loading figures were based on the existing use of the property as unirrigated general pasture. The pre-development phosphorus loading figure was calculated at an average event mean concentration (EMC) of 0.421 milligrams per liter (mg/l). The post—condition phosphorus loading figure was calculated at an EMC of 0.621 mg/l. Therefore, in order to achieve pre-development levels of phosphorus, treatment to achieve a reduction in phosphorus of approximately 36 percent was determined to be necessary. The pre-development nitrogen loading figure was calculated at an EMC of 2.6 mg/l. The post—condition nitrogen loading figure was calculated at an EMC of 3.3 mg/l. Therefore, in order to achieve pre-development levels of nitrogen, treatment to achieve a reduction in nitrogen of approximately 25 percent was determined to be necessary. The limiting value for the design of the retention berms is phosphorus. To achieve post-development concentrations that are equal to or less than pre-development concentrations, the treatment volume of the berm system must be sufficient to allow for the removal of 36 percent of the nutrients in water being retained and treated behind the berms, which represents the necessary percentage of phosphorus. In order to achieve the 36 percent reduction required for phosphorus, the retention berm system must be capable of retaining approximately 38 acre—feet of water from the 15 basins. In order to achieve that retention volume, a berm length of approximately 50,000 linear feet was determined to be necessary, with an average depth of retention behind the berms of one foot. The proposed length of the berms is sufficient to retain the requisite volume of water to achieve a reduction in phosphorus of 36 percent. Thus, the post-development/irrigation levels of phosphorus from runoff are expected to be no greater than pre-development/general pasture levels of phosphorus from runoff. By basing the berm length and volume on that necessary for the treatment of phosphorus, there will be storage volume that is greater than required for a 25 percent reduction in nitrogen. Thus, the post-development/irrigation levels of nitrogen from runoff are expected to be less than pre- development/general pasture levels of nitrogen from runoff. Mr. Drummond admitted that the design of the retention berms “shows there is some reduction, potentially, but it's not going to totally clean up the nutrients.” Such a total clean-up is not required. Rather, it is sufficient that there is nutrient removal to pre-development levels, so that there is no additional pollutant loading from the permitted activities. Reasonable assurance that such additional loading is not expected to occur was provided. Despite Mr. Drummond’s criticism of the BMPTRAINS model, he did not quantify nutrient loading on the North Tract, and was unable to determine whether post-development concentrations of nutrients would increase over pre-development levels. As such, there was insufficient evidence to counter the results of the BMPTRAINS modeling. Watershed Assessment Model In order to further assess potential water quantity and water quality impacts to surface water bodies, and to confirm stormwater retention area and volume necessary to meet pre-development conditions, Sleepy Creek utilized the Watershed Assessment Model (WAM). The WAM is a peer-reviewed model that is widely accepted by national, state, and local regulatory entities. The WAM was designed to simulate water balance and nutrient impacts of varying land uses. It was used in this case to simulate and provide a quantitative measure of the anticipated impacts of irrigation on receiving water bodies, including Mill Creek, Daisy Creek, the Ocklawaha River, and Silver Springs. Inputs to the model include land conditions, soil conditions, rain and climate conditions, and water conveyance systems found on the property. In order to calculate the extent to which nutrients applied to the land surface might affect receiving waters, a time series of surface water and groundwater flow is “routed” through the modeled watershed and to the various outlets from the system, all of which have assimilation algorithms that represent the types of nutrient uptakes expected to occur as water goes through the system. Simulations were performed on the North Tract in its condition prior to acquisition by Sleepy Creek, in its current “exempted improved pasture condition,” and in its proposed “post—development” pivot-irrigation condition. The simulations assessed impacts of the site conditions on surface waters at the point at which they leave the property and discharge to Mill Creek, and at the point where Mill Creek merges into the Ocklawaha River. The baseline condition for measuring changes in nutrient concentrations was determined to be that lawfully existing at the time the application was made. Had there been any suggestion of illegality or impropriety in Sleepy Creek’s actions in clearing the timber and creating improved pasture, a different baseline might be warranted. However, no such illegality or impropriety was shown, and the SJRWMD rules create no procedure for “looking back” to previous land uses and conditions that were legally changed. Thus, the “exempted improved pasture condition” nutrient levels are appropriate for comparison with irrigated pasture nutrient levels. The WAM simulations indicated that nitrogen resulting from the irrigation of the North Tract pastures would be reduced at the outflow to Mill Creek at the Reach 22 stream segment from improved pasture levels by 1.7 percent in pounds per year, and by 0.6 percent in milligrams per liter of water. The model simulations predicted a corresponding reduction at the Mill Creek outflow to the Ocklawaha River of 1.3 percent in pounds per year, and 0.5 percent in milligrams per liter of water. These levels are small, but nonetheless support a finding that the berm system is effective in reducing nitrogen from the North Tract. Furthermore, the WAM simulations showed levels of nitrogen from the irrigated pasture after the construction of the retention berms to be reduced from that present in the pre- development condition, a conclusion consistent with that derived from the BMPTRAINS model. The WAM simulations indicated that phosphorus from the irrigated North Tract pastures, measured at the outflow to Mill Creek at the Reach 22 stream segment, would be reduced from improved pasture levels by 3.7 percent in pounds per year, and by 2.6 percent in milligrams per liter of water. The model simulations predicted a corresponding reduction at the Mill Creek outflow to the Ocklawaha River of 2.5 percent in pounds per year, and 1.6 percent in milligrams per liter of water. Those levels are, again, small, but supportive of a finding of no impact from the permitted activities. The WAM simulations showed phosphorus in the Ocklawaha River at the Eureka Station after the construction of the retention berms to be slightly greater than those simulated for the pre-development condition (0.00008 mg/l) -- the only calculated increase. That level is beyond miniscule, with impacts properly characterized as “non- measurable” and “non-detectable.” In any event, total phosphorus remains well below Florida’s nutrient standards. The WAM simulations were conducted based on all of the 15 pivots operating simultaneously at full capacity. That amount is greater than what is allowed under the permit. Thus, according to Dr. Bottcher, the predicted loads are higher than those that would be generated by the permitted allocation, making his estimates “very conservative.” Dr. Bottcher’s testimony is credited. During the course of the final hearing, the accuracy of the model results was questioned based on inaccuracies in rainfall inputs due to the five-mile distance of the property from the nearest rain station. Dr. Bottcher admitted that given the dynamics of summer convection storms, confidence that the rain station rainfall measurements represent specific conditions on the North Tract is limited. However, it remains the best data available. Furthermore, Dr. Bottcher testified that even if specific data points simulated by the model differ from that recorded at the rain station, that same error carries through each of the various scenarios. Thus, for the comparative purpose of the model, the errors get “washed out.” Other testimony regarding purported inaccuracies in the WAM simulations and report were explained as being the result of errors in the parameters used to run alternative simulations or analyze Sleepy Creek’s simulations, including use of soil types that are not representative of the North Tract, and a misunderstanding of dry weight/wet weight loading rates. There was agreement among witnesses that the WAM is regarded, among individuals with expertise in modeling, as an effective tool, and was the appropriate model for use in the ERP application that is the subject of this proceeding. As a result, the undersigned accepts the WAM simulations as being representative of comparative nutrient impacts on receiving surface water bodies resulting from irrigation of the North Tract. The WAM confirmed that the proposed retention berm system will be sufficient to treat additional nutrients that may result from irrigation of the pastures, and supports a finding of reasonable assurance that water quality criteria will be met. With regard to the East Tract, the WAM simulations showed that there would be reductions in nitrogen and phosphorus loading to Daisy Creek from the conversion of the property to irrigated pasture. Those simulations were also conservative because they assumed the maximum number of cattle allowed by the nutrient balance, and did not assume the 30 percent reduction in the number of cattle under the NMP so as to allow existing elevated levels of phosphorus in the soil from the sod farm to be “mined” by vegetation. Pivot 6 The evidence in this case suggests that, unlike the majority of the North Tract, a small area on the western side of the North Tract drains to the west and north. Irrigation Pivot is within that area. Dr. Harper noted that there are some soils in hydrologic soil Group A in the vicinity of Pivot 6 that reflect soils with a deeper water table where rainfall would be expected to infiltrate into the ground. Dr. Kincaid’s particle track analysis suggested that recharge to the surficial aquifer ultimately discharges to Mill Creek, except for recharge at Pivot 11, which is accounted for by evapotranspiration, and recharge at Pivot 6. Dr. Kincaid concluded that approximately 1 percent of the recharge to the surficial aquifer beneath the North Tract found its way into the upper Floridan aquifer. Those particle tracks originated only on the far western side of the property, and implicated only Pivot 6, which is indicative of the flow divide in the Floridan aquifer. Of the 1 percent of particle tracks entering the Floridan aquifer, some ultimately discharged at the St. John’s River, the Ocklawaha River, or Mill Creek. Dr. Kincaid opined, however, that most ultimately found their way to Silver Springs. Given the previous finding that the Floridan aquifer beneath the property is within the Silver Springs springshed for less than a majority of the time, it is found that a correspondingly small fraction of the less than 1 percent of the particle tracks originating on the North Tract, perhaps a few tenths of one percent, can reach Silver Springs. Dr. Bottcher generally agreed that some small percentage of the water from the North Tract may make it to the upper Floridan aquifer, but that amount will be very small. Furthermore, that water reaching the upper Floridan aquifer would have been subject to the protection and treatment afforded by the NMP and the ERP berms. The evidence regarding the somewhat less restrictive confinement of the aquifer around Pivot 6 is not sufficient to rebut the prima facie case that the CUP modification, coupled with the ERP, will meet the District’s permitting standards. Public Interest The primary basis upon which Sleepy Creek relies to demonstrate that the CUP is “consistent with the public interest” is that Florida's economy is highly dependent upon agricultural operations in terms of jobs and economic development, and that there is a necessity of food production. Sleepy Creek could raise cattle on the property using the agriculturally-exempt improved pastures, but the economic return on the investment would be questionable without the increased quality, quantity, and reliability of grass and forage crop production resulting from the proposed irrigation. Sleepy Creek will continue to engage in agricultural activities on its properties if the CUP modification is denied. Although a typical Florida beef operation could be maintained on the property, the investment was based upon having the revenue generation allowed by grass-fed beef production in order to realize a return on its capital investment and to optimize the economic return. If the CUP modification is denied, the existing CUP will continue to allow the extraction of 1.46 mgd for use on the East Tract. The preponderance of the evidence suggests that such a use would have greater impacts on the water levels at Silver Springs, and that the continued use of the East Tract as a less stringently-controlled sod farm would have a greater likelihood of higher nutrient levels, particularly phosphorus levels which are already elevated.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law set forth herein it is RECOMMENDED that the St. Johns River Water Management District enter a final order: approving the issuance of Consumptive Use Permit No. 2-083-91926-3 to Sleepy Creek Lands, LLC on the terms and conditions set forth in the complete Permit Application for Consumptive Uses of Water and the Consumptive Use Technical Staff Report; and approving the issuance of Environmental Resource Permit No. IND-083-130588-4 to Sleepy Creek Lands, LLC on the terms and conditions set forth in the complete Joint Application for Individual and Conceptual Environmental Resource Permit and the Individual Environmental Resource Permit Technical Staff Report. DONE AND ENTERED this 29th day of April, 2015, in Tallahassee, Leon County, Florida. S E. GARY EARLY Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 29th day of April, 2015.

Florida Laws (27) 120.54120.569120.57120.60120.68373.016373.019373.036373.042373.0421373.069373.079373.175373.223373.227373.229373.236373.239373.246373.406373.413373.4131373.414403.067403.087403.9278.031 Florida Administrative Code (12) 28-106.10828-106.21740C-2.30140C-2.33140C-44.06540C-44.06662-302.30062-330.05062-330.30162-4.24062-4.24262-40.473
# 1
OLD FLORIDA PLANTATION, LTD. vs POLK COUNTY BOARD OF COUNTY COMMISSIONERS AND SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT, 00-004928 (2000)
Division of Administrative Hearings, Florida Filed:Bartow, Florida Dec. 07, 2000 Number: 00-004928 Latest Update: Nov. 05, 2001

The Issue The issue in this matter is whether Respondent, Polk County Board of Commissioners (Polk County or County) has provided Respondent, Southwest Florida Water Management District (SWFWMD), with reasonable assurances that the activities Polk County proposed to conduct pursuant to Standard General Environmental Resource Permit (ERP) No. 4419803.000 (the Permit) meet the conditions for issuance of permits established in Rules 40D-4.301, and 40D-40.302, Florida Administrative Code. (All rule citations are to the current Florida Administrative Code.)

Findings Of Fact Events Preceding Submittal of ERP Application The Eagle-Millsite-Hancock drainage system dates back to at least the 1920's, and has been altered and modified over time, especially as a result of phosphate mining activities which occurred on OFP property in the 1950's-1960's. The system is on private property and is not owned and was not constructed by the County. Prior to 1996, the Eagle-Millsite-Hancock drainage system was in extremely poor repair and not well- maintained. The Eagle-Millsite-Hancock drainage system originates at Eagle Lake, which is an approximately 641-acre natural lake, and discharges through a ditch drainage system to Lake Millsite, which is an approximately 130-acre natural lake. Lake Millsite drains through a series of ditches, wetlands, and ponds and flows through OFP property through a series of reclaimed phosphate pits, ditches and wetlands and ultimately flows into Lake Hancock, which is an approximately 4500-acre lake that forms part of the headwaters for the Peace River. The drainage route is approximately 0.5 to 1 mile in overall length. The Eagle-Millsite-Hancock drainage system is one of eight regional systems in the County for which the County and SWFWMD have agreed to share certain funding responsibilities pursuant to a 1996 letter agreement. To implement improvements to these drainage systems, Polk County would be required to comply with all permitting requirements of SWFWMD. During the winter of 1997-1998, Polk County experienced extremely heavy rainfall, over 39 inches, as a result of El Nino weather conditions. This unprecedented rainfall was preceded by high rainfalls during the 1995-1996 rainy season which saturated surface waters and groundwater levels. During 1998, Polk County declared a state of emergency and was declared a federal disaster area qualifying for FEMA assistance. Along the Lake Eagle and Millsite Lake drainage areas, septic tanks were malfunctioning, wells were inundated and roads were underwater. The County received many flooding complaints from citizens in the area. As a result of flooding conditions, emergency measures were taken by the County. The County obtained SWFWMD authorization to undertake ditch cleaning or vegetative control for several drainage ditch systems in the County, including the Eagle-Millsite-Hancock drainage system. No SWFWMD ERP permit was required or obtained for this ditch cleaning and vegetative control. During its efforts to alleviate flooding and undertake emergency ditch maintenance along the Eagle-Millsite-Hancock drainage route, the County discovered a driveway culvert near Spirit Lake Road which was crushed and impeding flow. The evidence was unclear and contradictory as to the size of the culvert. Petitioner's evidence suggested that it consisted of a 24-inch pipe while evidence presented by the County and by SWFWMD suggested that it was a 56-inch by 36-inch arched pipe culvert. It is found that the latter evidence was more persuasive. On February 25, 1998, the County removed the crushed arched pipe culvert at Spirit Lake Road and replaced it with two 48-inch diameter pipes to allow water to flow through the system. The replacement of this structure did not constitute ditch maintenance, and it required a SWFWMD ERP. However, no ERP was obtained at that time (although SWFWMD was notified prior to the activity). (One of the eight specific construction items to be authorized under the subject ERP is the replacement of this culvert.) Old Florida Plantation, Ltd. (OFP) property also experienced flooding during February 1998. OFP's property is situated along the eastern shore of Lake Hancock, and the Eagle- Millsite-Hancock drainage system historically has flowed across the property before entering Lake Hancock. In the 1950's and 1960's, the property was mined for phosphate. The mining process destroyed the natural vegetation and drastically altered the soils and topography, resulting in the formation of areas of unnaturally high elevations and unnaturally deep pits that filled with water. OFP purchased the property from U.S. Steel in 1991. The next year OFP initiated reclamation of the property, which proceeded through approximately 1998. In 1996, OFP applied to the County for approval of a development of regional impact (DRI). OFP blamed the flooding on its property in 1998 on the County's activities upstream, claiming that the property had never flooded before. But upon investigation, the County discovered a 48-inch diameter pipe on OFP property which, while part of OFP's permitted drainage system, had been blocked (actually, never unopened) due to OFP's concerns that opening the pipe would wash away wetlands plants recently planted as part of OFP's wetland restoration efforts. With OFP and SWFWMD approval, the County opened this pipe in a controlled manner to allow flowage without damaging the new wetlands plants. Following the opening of this blocked pipe, OFP property upstream experienced a gradual drop in flood water levels. When the water level on OFP's property stabilized, it was five feet lower and no longer flooded. Nonetheless, OFP continues to maintain not only that the County's activities upstream caused flooding on OFP property but also that they changed historic flow conditions. This contention is rejected as not being supported by the evidence. Not only did flooding cease after the 48-inch pipe on OFP's property was opened, subsequent modeling of water flows also demonstrated that the County's replacement of the crushed box culvert at the driveway on Spirit Lake Road as described in Finding 8, supra, did not increase flood stages by the time the water flows into the OFP site and did not cause flooding on OFP property in 1998. (To the contrary, OFP actions to block flows onto its property may have contributed to flooding upstream.) On October 6, 1998, the County entered into a contract with BCI Engineers and Scientists to initiate a study on the Eagle-Millsite-Hancock drainage system, identify options for alleviating flooding along the system and prepare an application for an ERP to authorize needed improvements to the system. Prior to the County's submittal of an ERP application, SWFWMD issued a conceptual ERP to OFP for its proposed wet detention surface water management system to support its proposed DRI on the OFP property. OFP's conceptual permit incorporated the Eagle-Millsite-Hancock drainage system and accommodated off-site flowage into the system. Before submitting an ERP application to SWFWMD, the County had communications with representatives of OFP concerning an easement for the flow of the drainage system through OFP property. In March 1999, the County reached an understanding with OFP's engineering consultant whereby OFP would provide the County with an easement across OFP lands to allow water to flow through to Lake Hancock. In turn, the County would: construct and pay for a control structure and pipe east of OFP to provide adequate flowage without adversely affecting either upstream or downstream surface waters; construct and upgrade any pipes and structures needed to convey water across OFP property to Lake Hancock; and provide all modeling data for OFP's review. The ERP Application Following completion of the engineering study, the County submitted ERP Application No. 4419803.000 for a Standard General ERP to construct improvements to the Eagle-Millsite- Hancock drainage system on August 18, 1999. Eight specific construction activities are proposed under the County's project, at various points along the Eagle- Millsite-Hancock drainage system as follows: 1) Add riprap along channel bottom; 2) Modify culvert by replacing 56-inch by 36- inch arch pipe by two 48-inch pipes (after-the-fact, done in 1998, as described in Finding 8, supra); 3) Add riprap along channel bottom; 4) Add box, modify culvert by replacing existing pipe with two 48-inch pipes, add riprap along channel bottom; 5) add riprap along channel bottom; 6) Add weir, modify culvert by replacing existing 24-inch pipe with two 48-inch pipes, add riprap along channel bottom; 7) Add box and modify culvert by replacing existing 24-inch pipe with two 48-inch pipes; 8) Modify existing weir. Under the County's application, construction activities Nos. 6, 7, and 8 would occur on OFP property. In addition, it was proposed that surface water would flow across OFP's property (generally, following existing on-site drainage patterns), and it was indicated that flood elevations would rise in some locations on OFP's property as a result of the improvements proposed in the County's application. (Most if not all of the rise in water level would be contained within the relatively steep banks of the lakes on OFP's property--the reclaimed phosphate mine pits.) In its application, the County stated that it was in the process of obtaining easements for project area. As part of the ERP application review process, SWFWMD staff requested, by letter dated September 17, 1999, that the County clarify the location of the necessary rights-of-way and drainage easements for the drainage improvements and provide authorization from OFP as property owner accepting the peak stage increases anticipated in certain OFP lakes as a result of the County's proposed project activities. On September 28, 1999, OFP obtained a DRI development order (DO) from the County. In pertinent part, the DRI DO required that OFP not adversely affect historical flow of surface water entering the property from off-site sources. Historical flow was to be determined in a study commissioned by the County and SWFWMD. The DO appeared to provide that the study was to be reviewed by OFP and the County and approved by SWFWMD. Based on the study, a control structure and pipe was to be constructed, operated and maintained by the County at the upstream side of the property that would limit the quantity of off-site historical flow, unless otherwise approved by OFP. OFP was to provide the County with a drainage easement for this control structure and pipe, as well as a flowage easement from this structure, through OFP property, to an outfall into Lake Hancock. The DO specified that the flowage easement was to be for quantitative purposes only and not to provide water quality treatment for off-site flows. The DO required OFP to grant a defined, temporary easement prior to first plat approval. In its November 11, 1999, response to SWFWMD's request for additional information, the County indicated it would obtain drainage easements and that it was seeking written acknowledgment from OFP accepting the proposed increases in lake stages. During the ERP application review process, the County continued efforts to obtain flowage easements or control over the proposed project area and OFP's acknowledgment and acceptance of the increase in lake stages. At OFP's invitation, the County drafted a proposed cross-flow easement. But before a binding agreement could be executed, a dispute arose between OFP and the County concerning other aspects of OFP's development plans, and OFP refused to enter into an agreement on the cross- flow easement unless all other development issues were resolved as well. On August 4, 2000, in response to SWFWMD's request that the County provide documentation of drainage easements and/or OFP's acceptance of the increased lake stages on OFP property, the County submitted a proposed and un-executed Perpetual Flowage and Inundation Easement and an Acknowledgment to be signed by OFP accepting the increased lake stages. On August 7, 2000, the OFP property was annexed by the City of Bartow (the City). On October 16, 2000, the City enacted Ordinance No. 1933-A approving OFP's DRI application. The City's DO contained essentially the same provision on Off- Site Flow contained in the County's DO. See Finding 18, supra. However, the City's DO specified that the historical flow study was required to be reviewed and approved by OFP (as well as by the County and by SWFWMD). OFP has not given formal approval to historical flow studies done to date. On October 6, 2000, SWFWMD issued a Notice of Final Agency Action approving Polk County ERP No. 4419803.000. Permit Specific Condition No. 7 provides that "all construction is prohibited within the permitted project area until the Permittee acquires legal ownership or legal control of the project area as delineated in the permitted construction drawings." As a result of this permit condition, the County cannot undertake construction as authorized under the Permit until any needed easement or legal control is obtained. Precise Easement Route Approximately two months before final hearing, a dispute arose as to the precise cross-flow easement route proposed by the County. OFP had understood that the County's proposed route was based on a detailed survey. But closer scrutiny of the County's proposed route indicated that it cut corners of existing lakes on OFP's property, crossed residential lots proposed by OFP, and veered north into uplands (also proposed for residential use) in the western portion of the route before looping south and then north again to the outfall at Lake Hancock. Information subsequently revealed in the course of discovery suggested that the County's proposed route may have been based on pre-reclamation topography of OFP's property. After OFP recognized the implications of the cross- flow easement route being proposed by the County, OFP provided the County with several different alternative easement routes through the OFP property. While agreement as to the precise route has not yet been reached, the precise route of the easement is not significant to the County, as long as water can flow across OFP property to Lake Hancock and so long as the County does not have to re-locate existing ditches. Such adjustments in the location of the proposed flowage easement would not affect SWFWMD staff's recommendation for permit issuance, as long as it covered the defined project areas. In addition, OFP's current site plan is a preliminary, conceptual plan subject to change before it is finalized. Regardless what cross-flow easement route is chosen, it will be temporary and subject to modification when OFP's development plan is finalized. If the County is unable to not negotiate a flowage easement across OFP property, it could obtain whatever easement is required through use of the County's eminent domain powers. The County's acquisition of an easement to accommodate a flowage route and anticipated increased stage on OFP property gives reasonable assurance that any stage increases will not cause adverse impacts to OFP property and gives reasonable assurance that the County will have sufficient legal control to construct and maintain the improvements. Project Area The County applied for a Standard General Permit and specified a total project area of 0.95 acre. This acreage reflects the area required for actual construction and alteration of control structures and drainage ditches in the preexisting Eagle-Millsite-Hancock system. It does not reflect the entire acreage drained by that system (approximately 1,800 to 2,000 acres). It also does not reflect the area of the cross-flow easement, which the County has yet to obtain. When determining project size for purposes of determining the type of permit applicable to a project, SWFWMD staff considers maximum project area to be limited to the acreage owned or controlled by the applicant. In addition, since this is a retrofit project for improvement of an existing drainage system not now owned or controlled by the County, SWFWMD staff only measured the area required for actual construction and alteration of control structures and drainage ditches. Future easements necessary for future maintenance of the system were not included. When OFP applied for its conceptual ERP for its proposed DRI, the project area was considered to be the acreage owned by OFP. The rest of the basin draining through OFP's property to Lake Hancock (again, approximately 1,800 to 2,000 acres) was not considered to be part of the project area. Water Quantity Impacts The County's project will retrofit certain components of the same drainage system which OFP will utilize for surface water management and treatment pursuant to its conceptual ERP. Modeling presented in the County's application demonstrates that there will be some rises and some lowering of some of the lake levels on OFP's property during certain rain events. Anticipated rises are lower than the top of banks authorized in OFP's conceptual permit; hence the system will continue to function properly. While there are some differences in the County's permit application and OFP's conceptual permit application concerning modeling estimates of flow rates through OFP property, the differences are minor and are attributed to differences in modeling inputs. The County used more detailed modeling information. Any such differences are not significant. Differences in flow rates provided in the County's proposed permit and in OFP's conceptual permit do not render the permits as incompatible. If the County's permit were issued, any modeling undertaken in connection with a subsequent application by OFP for a construction permit would have to be updated to include the County's improvements to the system. This outcome is not a basis for denial of the County's permit. While the rate at which water will flow through the system will increase, no change in volume of water ultimately flowing through the drainage system is anticipated as a result of the County's proposed improvements. The increased lake stages which are anticipated to occur on OFP property as a result of the County's project will not cause adverse water quantity impacts to the receiving waters of Lake Hancock or adjacent lands. The project will not cause adverse flooding to on-site or off-site property. The project will not cause adverse impacts to existing surface water storage and conveyance capabilities. The project will not adversely impact the maintenance of surface or ground water levels or surface water flows established pursuant to Chapter 373.042, Florida Statutes. Water Quality Impacts No adverse impacts to water quality on OFP property are anticipated from the County's proposed drainage improvements. The project will not add any pollutant loading source to the drainage system and is not expected to cause any algae blooms or fish kills in OFP waters or cause any additional nutrient loading into OFP's surface water management systems. As reclaimed phosphate mine pits, the lakes on OFP's property are high in phosphates. Meanwhile, water quality in upstream in Millsite Lake and Eagle Lake is very good. Off-site flow of higher quality water flushing the OFP lakes will improve the water quality on the OFP site. The County's project will have no adverse impact on the quality of water in the downstream receiving of Lake Hancock (which currently has poor water quality due in large part to past phosphate mining). Upstream of OFP, the project will not cause any adverse water quality impacts and is anticipated to result in positive impacts by lessening the duration of any flooding event and thereby lessening septic tank inundation from flooding. This will have a beneficial impact on public health, safety, and welfare. Thus, there is a public benefit to be gained in having the County undertake the proposed drainage and flood control improvements now, rather than waiting for OFP to finalize its plat and construct its development project. The County's proposed improvements do not require any formal water quality treatment system. The improvements are to a conveyance system and no impervious surfaces or other facilities generating pollutant loading will be added. Upstream of OFP, the Eagle-Millsite-Hancock drainage system flows through natural lakes and wetlands systems that provide natural water quality treatment of the existing drainage basin. OFP expressed concern that the County's improvements to drainage through these areas (including the ditch maintenance already performed in 1998) will increase flow and reduce residence time, thereby reducing natural water quality treatment. But ditch maintenance does not require an ERP, and the County gave reasonable assurances that reduction in natural water quality treatment will not be significant, especially in view of the good quality of the water flowing through the system out of Eagle Lake and Millsite Lake. As a result, it is found that the County's proposed project will not adversely affect the quality of receiving waters such that any applicable quality standards will be violated. Indeed, OFP's expert consultant conceded in testimony at final hearing that OFP has no reason to be concerned about the quality of water at present. Rather, OFP's real concern is about water quality in the future. Essentially, OFP is asking SWFWMD to require the County to guarantee OFP that future development in the area will not lead to any water quality problems. Requiring such a guarantee as a condition to issuance of an ERP would go far beyond SWFWMD requirements and is never required of any applicant. Besides being speculative on the evidence in this case, future development in the area will be required to meet applicable SWFWMD water quality requirements. SWFWMD permitting required for such future development would be the proper forum for OFP to protect itself against possible future reduction in water quality (as well as possible future increase in water quantity). Environmental Impacts The drainage ditches to be improved by the County's project were originally constructed before 1984. These upland cut ditches were not constructed for the purpose of diverting natural stream flow, and are not known to provide significant habitat for any threatened or endangered species. The County provided reasonable assurance that the proposed project will not change the hydroperiod of a wetland or other surface water, so as to adversely affect wetland functions or other surface water functions. The functions of the wetlands and surface waters to be affected by the proposed project include conveyance, some water quality treatment, and possibly some wildlife movement or migration functions between the wetlands served by the ditches. Wetland impacts from the project consists of .63 acre of permanent impacts and .21 acre of temporary impacts, for a total of .84 acre of impact. The permanent impacts consist of the replacement of pipes with new structures in the ditches and the addition of rip rap in areas to prevent sedimentation and erosion. The proposed project's anticipated increase in the rate of flow is expected to lessen the duration of any flooding event at the upper end of the drainage system, and at the downstream end is expected to create a subsequent rise in some of the lakes and storage areas on the OFP property during certain rain events. The anticipated rise in some of the reclaimed lakes on OFP property is not anticipated to have any adverse impact on the functions that those surface waters provide to fish, wildlife or any threatened or endangered species. The reclaimed lakes subject to rise in water levels for certain rain events are steep-sided and do not have much littoral zone, and little, if any, loss of habitat will result. The County's application provides reasonable assurance that the anticipated stage increase in affected wetlands or surface waters will not adversely affect the functions provided by those wetlands or surface waters. The County provided reasonable assurance that the proposed project will not violate water quality standards in areas where water quality standards apply, in either the short- term or the long-term. Long-term effects were addressed in Finding 43-51, supra. Short-term water quality impacts anticipated during the construction of the proposed improvements will be addressed through the use of erosion and sediment controls. The proposed project also will not create any adverse secondary impacts to water resources. The project will not cause any adverse impacts to the bird rookery located to the north on OFP property. The project will not cause any adverse impacts to the bass in OFP's lakes, a concern expressed by OFP relatively recently. To the contrary, since the project will improve water quality in OFP's lakes, the impact on OFP's bass is expected to be positive. OFP raised the issue of a bald eagle nesting site located on its property. The evidence was that a pair of bald eagles has built a nest atop a Tampa Electric Company (TECO) power pole on the property in October of each year since 1996. Each year the pair (which is thought to be the same pair) has used a different TECO power pole. Most of the nests, including the one built in October 2000, have been on poles well south of any construction proposed under the County's ERP and clearly outside of the primary and secondary eagle management zones designated by the U.S. Fish and Wildlife Service. But one year, a nest was built on a pole farther north and possibly within the secondary eagle management zone. OFP presented testimony that U.S. Fish and Wildlife would require OFP to apply for an "incidental take" in order to build homes within the primary eagle protection zones around any of the four poles on which eagles have built nests since 1996; timing of construction of homes within the secondary protection zones may be affected. Even accepting OFP's testimony, there was no evidence as to how U.S. Fish and Wildlife would view construction of the County's proposed drainage improvements on OFP property within those zones. In addition, the evidence was that, in order to accomplish its DRI plans to build homes in the vicinity of the TECO power poles that have served as eagle nests in recent years, without having to apply for an "incidental take," OFP plans to place eagle poles (more suitable for eagle nests than power poles, which actually endanger the eagles) in another part of its property which is much more suitable habitat in order to encourage the eagles to build their nest there. The new location would put the County's proposed construction activity far outside the primary and secondary eagle management zones. Other Permitting Requirements The County's proposed project is capable, based on generally accepted scientific engineering and scientific principles, of being effectively performed and of functioning as proposed. The County has the financial, legal, and administrative capability of ensuring that the activity proposed to be undertaken can be done in accordance with the terms and conditions of the permit. No evidence was presented by Petitioner that the Project will cause adverse impacts to any work of the District established under Section 373.086, Florida Statutes. No evidence was presented by Petitioner that the project will not comply with any applicable special basin or geographic area criteria established under Chapter 40D-3, Florida Administrative Code.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the Southwest Florida Water Management District enter a final order issuing Standard General Environmental Resource Permit No. 4419803.000. DONE AND ENTERED this 17th day of September, 2001, in Tallahassee, Leon County, Florida. J. LAWRENCE JOHNSTON Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 17th day of September, 2001. COPIES FURNISHED: Linda L. McKinley, Esquire Polk County Attorney's Office Post Office Box 9005, Drawer AT01 Bartow, Florida 33831-9005 Gregory R. Deal, Esquire 1525 South Florida Avenue, Suite 2 Lakeland, Florida 33803 Margaret M. Lytle, Esquire Martha A. Moore, Esquire Southwest Florida Water Management District 2379 Broad Street Brooksville, Florida 34604-6899 E. D. Sonny Vergara, Executive Director Southwest Florida Water Management District 2379 Broad Street Brooksville, Florida 34609-6899

Florida Laws (2) 373.042373.086 Florida Administrative Code (12) 40D-1.60340D-1.610540D-4.02140D-4.09140D-4.10140D-4.30140D-4.30240D-4.38140D-40.04040D-40.30262-302.30062-4.242
# 2
FLORIDA WILDLIFE FEDERATION vs. GORDON V. LEGGETT, MOSELEY COLLINS, ET AL., 82-002235 (1982)
Division of Administrative Hearings, Florida Number: 82-002235 Latest Update: Jun. 21, 1991

The Issue Whether the applicants own the property in question? Whether the project would comply with the criteria of the South Florida Water Management District contained in Basis of Review for Surface Water Management Systems, specifically Sections 3.1.3 and 3.2? Whether flood protection would be inadequate or septic tanks unsuitable or whether the public health and safety would be compromised or the ultimate purchasers be deprived of usage of the property due to inundation in violation of Chapter 373, Florida Statutes (1981), or Rule 40E-4.301(1), Florida Administrative Code?

Findings Of Fact Ms. Williamson and Messrs. Leggett and Collins hold in fee simple a triangular 117.24-acre parcel in Okeechobee County as tenants in common under a warranty deed executed in their favor by one W. C. Sherman. They propose to develop the property as a trailer park (complete with airstrip) large enough to accommodate 109 trailers. To this end, soil would be dug up from the center of the property and used to raise the elevation of the surrounding land above the 100-year floodplain. (T. 47) The applicants have a dredging permit from the Department of Environmental Regulation authorizing them to excavate 629,889 cubic yards. They are proposing to dig to a depth of 76 feet below ground. This would create an 18-acre body of water ("Poe's Lake") which would overflow a V-notched weir into a county canal. The county canal would take the water to C- 38, one of the large canals to which the Kissimmee River has been relegated, at a point about 18 miles upstream from Lake Okeechobee. Runoff would wash over residential lots and roadways; the site would be graded to assure drainage into Poe's Lake. The minimum road crest elevation would be 30 feet NGVD ("[a]round twenty-nine feet" T.52), as compared to the control elevation for surface waters of 28.5 feet NGVD. WATER QUALITY The developers plan septic tanks for wastewater treatment. At the close of all the evidence, counsel for the applicants stated that sanitary sewers could be installed instead. Respondents' Proposed Recommended Order, p. With all the housing units in use, at least 10,900 gallons of effluent would seep into the ground from the tanks daily. There would be some evapotranspiration, but all the chemicals dissolved in the effluent would eventually end up in the groundwater. During the dry season, septic tank effluent would cause mounding of the groundwater and some groundwater movement toward, and eventual seepage into, Poe's Lake. The eventual result would be eutrophication and the growth of algae or macrophytes on the surface of Poe's Lake. This would cause dissolved oxygen violations in Poe's Lake. Discharges from the lake would inevitably occur, aggravating the situation in C-38, which already experiences dissolved oxygen levels below 5.0 milligrams per liter in the rainy summer months. Some fraction of the nutrients in the effluent from the septic tanks would ultimately reach Lake Okeechobee itself. The sheer depth of the excavation would create another water quality problem. Under the anaerobic conditions that would obtain at the bottom of Poe's Lake, bacteria acting on naturally occurring sulfates would produce hydrogen sulfide, ammonia and various other reduced organic nitrogen compounds. These substances are toxic to human beings and would, in some indeterminate quantity, enter the groundwater from Poe's Lake. This would affect the taste and perhaps the potability of water from any well nearby. It would be "possible to design a better system where there would be nutrient removal and a greatly reduced probability of violation of the dissolved oxygen criterion and obviation of the potential for ground water contamination." (T. 200) Installation of a baffle on the weir would serve to prevent buoyant debris from entering surface waters of the state. BASIS OF REVIEW Official recognition was taken of the "Basis of Review for Surface Water Management Permit Applications Within the South Florid Water Management District," parts of which all parties agree pertain in the present proceedings. Among the criteria stated in this document are: 3.1.3 Waste and Wastewater Service - Potable water and wastewater facilities must be identified. The Applicant for a Surface Water Management Permit must provide information on how these services are to be provided. If wastewater disposal is accomplished on-site, additional information will normally be requested regarding separation of waste and storm systems. 3.2.1.4 Flood protection - Building floors shall be above the 100 year flood elevations, as determined from the most appropriate information, including Federal Flood Insurance Rate Maps. Both tidal flooding and the 100 year, 3 day storm event shall be considered in determining elevations. b. Commercial and industrial projects to be subdivided for sale are required to have installed by the permittee, as a minimum, the required water quality system for one inch of runoff detention or one half inch of runoff retention from the total developed site. State standards - Projects shall be designed so that discharges will meet State water quality standards, as set forth in Chapter 17-3, Retention/detention criteria - Retention and/or detention in the overall system, including swales, lakes, canals, greenways, etc., shall be provided for one of the three following criteria or equivalent combinations thereof . . . Wet detention volume shall be provided for the first inch of runoff from the developed project, or the total runoff from a 3-year, 1-hour rainfall event, whichever is greater. Dry detention volume shall be provided equal to 75 percent of the above amounts computed for wet detention. Retention volume shall be provided equal to 50 percent of the above amounts computed for wet detention. 3.2.4.1 Discharge structures should include gratings for safety and maintenance purposes. The use of trash collection screens is desirable. Discharge structures shall include a "baffle" system to encourage discharge from the center of the water column rather than the top or bottom. 3.2.4.4.2 b. Control elevations should be no higher than 2 feet below the minimum road centerline elevation in the area served by the control device in order to protect the road subgrade. Simply detaining runoff before discharging it offsite will not insure that the water quality standards set forth in Chapter 17-3 will be met. Whether the standards are met depends on, among other things, the composition of the runoff. FWF'S INTEREST Among the purposes of the FWF, as stated in its charter, Shall be to further advance the cause of conservation in environmental protection, to perpetuate and conserve fish and wildlife, oil, water, clean air, other resources of the State and so manage the use of all natural resources, that this generation and posterity will receive the maximum benefit from the same. (T. 248-9) Four or five thousand Floridians belong to FWF. FWF members "make use" (T. 250) of the waters of Lake Okeechobee, the Kissimmee River and specifically of the waters in C-38. PROPOSED FINDINGS CONSIDERED The applicants and FWF filed post hearing memoranda and proposed recommended orders including proposed findings of fact which have been considered in preparation of the foregoing findings of fact. They have been adopted, in substance, for the most part. To the extent they have been rejected, they have been deemed unsupported by the weight of the evidence, immaterial, cumulative or subordinate.

Recommendation Upon consideration of the foregoing, it is RECOMMENDED: That SFWMD deny the pending application for surface water management permit. DONE and ENTERED this 29th day of November, 1983, in Tallahassee, Florida. ROBERT T. BENTON II, Hearing Officer Division of Administrative Hearings The Oakland Building 2009 Apalachee Parkway Tallahassee, Florida 32301 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 29th day of November, 1983. COPIES FURNISHED: Dennis J. Powers, Esquire Gunster, Yoakley, Criser & Stewart 400 South County Road Palm Beach 33480 Terrell K. Arline, Esquire 325-C Clematis Street West Palm Beach, Florida 33401 Irene Kennedy Quincey, Esquire 3301 Gun Club Road West Palm Beach, Florida 33406 Charles P. Houston, Esquire 324 Datura Street, Suite 106 West Palm Beach, Florida 33401

Florida Laws (2) 120.57120.60 Florida Administrative Code (1) 40E-4.301
# 3
MICHAEL C. BROWN vs SOUTH FLORIDA WATER MANAGEMENT DISTRICT AND CENTEX HOMES, 04-000476 (2004)
Division of Administrative Hearings, Florida Filed:West Palm Beach, Florida Feb. 04, 2004 Number: 04-000476 Latest Update: Sep. 13, 2004

The Issue The issues are whether Respondent Centex Homes is entitled to the issuance of an environmental resource permit to construct a 2665 square-foot boat dock and authorization of a lease of 7807 square feet of sovereign submerged land in the portion of the Intracoastal Waterway known as Lake Worth Lagoon in Palm Beach County.

Findings Of Fact In this case, Respondent South Florida Water Management District (District) has proposed to issue to Respondent Centex Homes (Centex) an environmental resource permit (ERP) and authorization to lease sovereign submerged land. The purpose of the ERP and lease authorization is for Centex to construct a dock to serve a multifamily development known as Ocean Cay. Ocean Cay is a 56-unit townhouse development located on a five-acre parcel in Hypoluxo, Florida, bordered on the west by U.S. Highway 1, on the east by the Lake Worth Lagoon, and on the north and south by developed residential areas. At the time of the hearing, Centex had closed on the sale of 50 of the residential units, was finishing construction of the final six units, and had entered into contracts to sell three of these six units. The Lake Worth Lagoon is a Class III water and is not an aquatic preserve. The Intracoastal Waterway channel is in the middle of the lagoon. The proposed dock would be about 1.5 miles north of the South Lake Worth Inlet (a/k/a Boynton Inlet) and 13 miles south of the Lake Worth Inlet (a/k/a Palm Beach Inlet). As measured from the project location to the opposite shoreline, the length of the dock is more than 25 percent of the width of the waterbody. Petitioner Michael C. Brown resides at 131 Las Brisas Circle, Hypoluxo, Florida. Intervenor O'Brien resides at 124 Park Lane East, Hypoluxo, Florida. Intervenors Evlyn and Vern Hakes reside at 140 Park Lane East, Hypoluxo, Florida. As stipulated by Respondents, Petitioner and Intervenors have standing, so this Recommended Order will not restate the substantial evidence in the record of the standing of Petitioner and Intervenors. Three of the objections raised by Petitioner and Intervenors involve procedural issues that are easily dismissed on factual grounds. The first objection is that Centex lacks the requisite equitable interest in the upland to obtain a lease of sovereign submerged land. The second objection is that the Ocean Cay Homeowners' Association lacks the financial, legal, and administrative resources to ensure the performance of all permitting obligations, as they may arise in the future. The third objection is that District staff, not the Governing Board of District, issued the proposed agency action on the ERP. As for the first procedural objection, Centex acquired the parcel by special warranty deed, which vests fee simple interest in Centex and contains all the customary warranties of title. The title insurance policy obtained by Centex for the parcel insures fee simple interest in Centex, subject to undescribed reservations contained in the deed from the Board Trustees of the Internal Improvement Trust Fund (Trustees), any part of the parcel lying below the mean high water line, and public rights "to use the waters over the submerged land lying adjacent to or within the Intercoastal [sic] Waterway for boating, fishing, swimming and other public purposes, together with the rights of the State of Florida and United States to regulate the use of the navigable waters." Not only does Centex enjoy full beneficial ownership of the upland, subject to the rights of its grantees who have purchased townhouse units, but Centex's title extends approximately 250 feet waterward of the mean high water line by operation of a deed from the Trustees to a predecessor in interest of Centex. If the ownership of submerged land between the submerged land for which an applicant seeks a lease and adjacent uplands also owned by an applicant has any effect at all, it only emphasizes the legitimate, nonspeculative interest of such an applicant in obtaining the sought-after lease. As for the second procedural objection, Centex is a sophisticated land-development entity with ample financial, legal, and administrative resources to ensure the satisfaction of any permitting obligations imposed upon it in connection with this case. At present, Centex controls the Ocean Cay Homeowners' Association. So, at present, the concerns of Petitioner and Intervenors about the ability of the homeowners' association to satisfy its obligations are unfounded. It is true that, upon the closing of the sale of sufficient units, Centex will transfer control of the homeowners' association to the homeowners. The record does not describe the financial, legal, and administrative resources of the homeowners' association following the withdrawal of Centex, but they will presumably not approach the substantial resources of Centex. District claims that Centex may not transfer the ERP without District's approval; however, ERP Special Condition 2 identifies the operating entity responsible for the docking facility as Ocean Cay Homeowners' Association, even though the ERP identifies the applicant as Centex. Fatal to the argument of Petitioner and Intervenors, though, are the facts that the proposed lease of sovereign submerged land is for only five years, a failure to discharge permit obligations that should be incorporated verbatim into the lease militates against any lease renewals, and the removal of the dock would substantially cure any deficiencies in its maintenance. As for the third procedural objection, District staff, on November 21, 2003, proposed to issue a standard general ERP for the construction and operation of a 2665 square-foot docking facility with nine boat slips for use by the residents of Ocean Cay and to approve the lease of 7807 square feet of sovereign submerged land under and surrounding the docking facility. Staff issues a proposed standard general ERP when a permit does not conflict with existing law or policy or a work of the District. District's Governing Board issues a proposed standard individual ERP in the relatively rare case in which a permit conflicts with existing law or policy or a work of the District. Again, the objections of Petitioner and Intervenors lack factual support. Here, the Governing Board, not staff, will receive the Recommended Order and issue the Final Order. So, as Petitioner and Intervenors wish, the Governing Board, not staff, will take the final agency action in this case. Under these circumstances, the record reveals no harm in the fact that District staff issued the proposed agency action. The remainder of the ERP provisions bears on the substantive objections raised by Petitioner and Intervenors. As amended at the final hearing by District and accepted by Centex, ERP Special Condition 9 provides: A permanent sign shall be installed at the docking facility entrance to notify boat owners that mooring at the docking facility shall be limited to no more than a total of nine vessels. Vessels moored in slips 1-2 and 7-9 shall be limited to outboard powered vessels, not more than 27 feet in length as reported by the manufacturer exclusive of engines and any bow pulpit. Vessels moored in slips 3 and 6 shall be limited to not more than 27 feet in length as reported by the manufacturer exclusive of engines and any bow pulpit. Vessels moored in slips 3 and 6 are not limited to outboard power. Vessels moored in slips 4 and 5 shall be limited to 36 feet in length, as reported by the manufacturer exclusive of engines and any bow pulpit. Vessels in slips 4 and 5 are not limited to outboard power. Slips are identified by number in the discussion below. As amended at the final hearing by District and accepted by Centex, ERP Special Condition 10 provides: "Dock, walkway, and seagrass sign pilings shall be constructed of plastic, concrete or greenheart, non-CCA treated wood or wood wrapped in 30 to 60 mil pvc." ERP Special Condition 11 provides that construction of the dock shall be in accordance with the locations and dimensions shown on the enclosed exhibits. The referenced drawings depict the adjacent upland, submerged bottom, and proposed dock. The drawings describe sufficient detail of the adjacent upland. The north and south property lines of the 190- foot wide parcel run due east and west. At mean high water, the parcel's shoreline runs about 210 feet in a south-southwesterly direction from the north property line. Waterward of the mean high water line is a thin band of sand, varying portions of which are exposed between mean high water and mean low water. The drawings describe the submerged bottom in great detail as to seagrass and reasonable detail as to water depths. Waterward of the beach is a band of Halodule wrightii (shoal grass). The drawings describe the shoal grass in this area as "sparse." The drawings depict mean low water depths along three transects at 25-foot intervals, starting roughly at the landward commencement of the shoal grass. (All water depths are based on mean low water.) If the property lines were extended into the water, the north transect is 25 feet south of the north property line, and the south transect is 25 feet north of the south property line. The middle transect is an equal distance between the north and south transects. Along the north transect, the band of shoal grass is about 25 feet wide. Along the south transect, the band narrows to about six feet wide. Along the middle transect, the band is about 50 feet wide. Waterward of the band of sparse shoal grass, according to the drawings, is a band of "mixed Halodule and sparse Johnson's." The reference to "Johnson's" is to Halophila johnsonii (Johnson's grass), which is a rare species of seagrass that is listed by the U.S. Environmental Protection Agency as threatened. 50 C.F.R. § 17.12(h). Johnson's grass is found only on the east coast of Florida from the Indian River Lagoon to Biscayne Bay and is a fragile species of seagrass. The band of mixed shoal grass and sparse Johnson's grass reflects the same pattern as the shoal grass closer to shore: thinner at the north and south ends and wider in the middle. Along the north transect, the band of the two species is about 162 feet wide. Along the south transect, the band is about 212 feet wide. Along the middle transect, the band is about 240 feet wide. Waterward of the middle band of mixed shoal grass and sparse Johnson's grass, according to the drawings, is "scattered isolated blades of H. Decipiens and [Johnson's grass]." "H. Decipiens" is Halophila decipiens (paddle grass). Waterward of the north and south ends of the mixed shoal grass and sparse Johnson's grass are triangular-shaped areas of "sparse Johnson's." Along the north transect, this band of sparse Johnson's grass is about 75 feet wide. Along the south transect, this band of sparse Johnson's grass is about 50 feet wide. Waterward of these bands of sparse Johnson's grass is "scattered, isolated blades of H. Decipiens and [Johnson's grass]." Measured from the mean high water line, the band of mixed shoal grass and sparse Johnson's grass extends about 275 feet along the north transect, 312 feet along the middle transect, and 300 feet along the south transect. Water depths are shallow throughout almost the entire project area. Starting from shore, water depths are almost entirely less than 1.0 feet within the area of sparse shoal grass, although depths reach 1.2 feet along the middle transect. Proceeding waterward along the north transect, the depths within the area of mixed shoal grass and sparse Johnson's grass range from 0.7 feet at the landward end to 2.2 feet at the waterward end. Proceeding waterward along the middle transect, the depths within the area of mixed shoal grass and sparse Johnson's grass range from 1.2 feet to 4.2 feet. Proceeding waterward along the south transect, the depths within the area of mixed shoal grass and sparse Johnson's grass range from 1.0 feet to 2.7 feet. The water continues to deepen in the triangular-shaped areas of sparse Johnson's grass, through which the north and south transects run. Along the north transect, the water depths range from 2.2 feet to 3.1 feet. Along the south transect, the water depths range from 2.7 feet to 3.6 feet. The drawings depict depths waterward of the start of scattered, isolated blades of paddle grass and Johnson's grass. These reported depths extend to a point roughly parallel to the end of the proposed dock along the north transect, about 12 feet waterward of the end of the proposed dock along the middle transect, and about 37 feet waterward of the end of the proposed dock along the south transect. Along the north transect, the depths remain constant, at about 3.5 feet, until the most waterward 25 feet, along which the water deepens 0.5 feet to 4.1 feet. Along the middle transect, the depths deepen about 0.5 feet to around 5.0 feet for about 75 feet, then deepen to 5.4 feet a few feet landward of the most waterward portion of the dock. About 10 feet waterward of the end of the dock, the depth reaches 5.7 feet, which is the deepest reported depth in the project area. Along the south transect, the depths deepen about one foot over the first 100 feet waterward from the start of the scattered, isolated blades of paddle grass and Johnson's grass. From a point parallel to the end of the dock, the water along the south transect deepens another 0.5 feet to about 5.2 feet. The drawings also describe the proposed dock in great detail. The dock, oriented due east and west, runs a distance of 420 feet from its landing, at the mean high water line, to its waterward terminus. The dock is four feet wide, except for a 10-foot long section, at about midpoint, that is six feet wide to facilitate wheelchair access. At the urging of District, to reduce seagrass impacts, Centex moved the dock ten feet south and extended it ten additional feet into deeper water. Because of the former of these modifications, the dock runs ten feet south of the middle transect. The main deck of the dock is grated, so as to allow at least 46 percent of the light to pass through it, from the waterward extent of the sparse shoal grass to the waterward extent of the mixed shoal grass and sparse Johnson's grass, which is a distance of about 250 feet. Although the drawings specify only a value of 46 percent light transmissibility, testimony established that this criterion would require the use of fiberglass decking material. Perhaps the most prominent feature of the dock, in addition to its length, is its height. The deck is five feet above mean high water. Mean high water is 1.7 feet National Geodetic Vertical Datum (NGVD). Mean low water is -0.8 feet NGVD. Five decks run perpendicular to the main deck--three on the south side and two on the north side--to form the slips at the waterward terminus of the dock. The most landward of these decks is four feet wide and 30-feet long and runs south of the main deck, at a point about 330 feet waterward of the landing. Two more decks, both of the same dimensions as the first deck, join the main deck at a point about 375 feet waterward of the landing. Thirty-eight feet separate the two southern decks, so that the two slips created between them (Slips 9 and 8, from landward to waterward) each is 18-19 feet wide. The most landward slip formed north of the main deck (Slip 1) is also 18-19 feet wide. Two pilings north of the main deck and two pilings south of the main deck define these first three slips. The remaining perpendicular decks form the terminus of the entire dock. These decks are eight-feet wide and run 38 feet north and 38 feet south of the edges of the main deck. The four slips immediately landward of these decks are 18-19 feet wide. Moving clockwise from the northwest corner, these slips are Slips 2, 3, 6, and 7. The remaining two slips are waterward of the eight-foot wide deck. The northern slip is Slip 4, and the southern slip is Slip 5. According to the drawings, the waterward extent of the proposed lease is 18 feet waterward of the waterward end of the dock. The waterward extent of the proposed lease is 425 feet from the landward end of the Intracoastal Waterway channel (the 415 feet shown in the drawings is wrong), which, as established by testimony, is 125 feet wide at this location. The drawings also depict a 42-inch high handrail running from the landing to the most landward perpendicular deck. The purpose of the handrail, whose vertical slats are eight inches apart, is to discourage mooring of vessels to the main dock landward of the slips. Every 50 feet, at the base of the handrails on either side of the dock, is a sign prohibiting docking, mooring, loading, or unloading of vessels. At the terminus of the dock, the drawings show a rock crib structure that rises about one foot from the submerged bottom along the entire 80-foot length of the eight-foot wide perpendicular deck. Apparently, the rock crib is eight-feet wide, so that it extends, beneath the surface of the water, under the entire area of the eight-foot wide perpendicular deck. Extending above the rock crib, along this 80-foot long deck, is a wave attenuator. The drawings also depict a couple of seagrass warning signs north and south of the dock, about 20-30 feet waterward of the waterward extent of the sparse Johnson's grass, at the north and south portions of the project area, and the mixed shoal grass and sparse Johnson's grass, in the middle of the project area, just a few feet north of the dock. The drawings also show pilings at a minimum of 10-foot intervals along the entire length of the main deck, as well as pilings for the perpendicular decks at the dock's terminus. Special Condition 12 prohibits fueling facilities or hull-painting or -cleaning at the dock. Special Condition 13 prohibits liveaboards. Special Condition prohibits subleasing of the docking facilities and limits their use to residents of Ocean Cay. Special Conditions 14 and 15 detail various manatee- protection provisions. Special Condition 19 requires the implementation of a turbidity-control plan during construction. Special Condition 18 prohibits construction under the ERP until the Department of Environmental Protection has issued a submerged land lease. As amended at the final hearing by District and accepted by Centex, Special Condition 20 requires Centex to maintain at least one trash receptacle at the terminus of the dock. The District staff report states that Centex has minimized the impacts of the project by reducing the length of the dock from 550 feet and its capacity from 22 slips. The staff report notes, as mentioned above, the relocation of the dock ten feet to the south and ten feet waterward, both changes to reduce impacts on seagrasses. The District staff report states that manatees probably use the area of the project for travel and foraging nearshore seagrass beds. Concerning the lease of sovereign submerged land, the District staff report acknowledges the waterward extent of Centex's ownership of submerged lands. As for the sovereign submerged land, the District staff report states, without explanation, that the docking facility is not more than 25 percent of the width of the "navigable portion of the waterbody," pursuant to Florida Administrative Code Rule 18-21.004(4)(a)3, and is more than 100 feet from the federal navigation channel, as required by Florida Administrative Code Rule 18-21.004(4)(a)4. The District staff report attaches "Recommended Special Lease Conditions for Ocean Cay." These include a restriction that vessels moored at the dock clear the submerged bottom by at least one foot at all times while moored. Other provisions correspond to the special conditions attaching to the ERP, as described above. As discussed in the Conclusions of Law, analysis of the proposed activity requires three determinations: first, does the proposed activity, unmitigated, adversely impact surface waters; second, if so, has Centex reduced or eliminated all such impacts through design modifications to the extent practicable; and third, if so, but if net impacts remain, has Centex adequately mitigated these net impacts? Absent mitigation, the construction of a 420-foot dock covering 2665 square-feet of water adversely impacts the water resources, most obviously by the immediate destruction of the seagrasses occupying the area in which at least 80 pilings will be installed and by the gradual destruction of the seagrasses that will be shaded by the dock and lose the light necessary for survival. Centex has incorporated into the proposed dock design all practicable modifications that could eliminate or reduce these adverse impacts to the surface waters. Centex has proposed a dock that is narrow, high, translucent, and nontoxic. To minimize the risk of prop dredging of the seagrass and bottom sediments, the dock's length and railings would limit mooring to relatively deeper water, and the boat-length restriction would effectively limit the reach of prop dredging. Even after these design modifications, however, adverse impacts to the surface waters remain that Centex must mitigate. The ultimate issue, then, is whether Centex has adequately mitigated the remaining impacts of the proposed activity by proposing sufficient affirmative acts to offset the remaining adverse impacts. Strictly speaking, mitigation consists of activities that are unnecessary for the desired activity--here, the construction of a dock--but are performed to offset the adverse impacts of the desired activity. In this case, Centex proposes three mitigation activities: the construction of a rock crib, the installation of a wave attenuator, and the erection of two seagrass warning signs. The adequacy of this proposed mitigation requires identification of the specific impacts to the surface waters and the efficacy of the mitigation in offsetting these impacts. As cited in the Conclusions of Law, the public-interest criteria set forth the elements requiring consideration. Except to the extent discussed in navigation, the dock will not adversely affect the public health, safety, or welfare or property of others. The narrow, long dock, which restricts mooring activity to its terminus over 400 feet from the shoreline, has no impact on the riparian rights of adjacent or nearby upland owners. Thus, no mitigation is necessary for this criterion. Even after mitigation, the dock will adversely affect the conservation of fish and wildlife, including listed species, and their habitats. The most immediate impact of the dock is upon the seagrasses that presently grow on the bottom. Seagrasses, which are among the most productive communities known to nature, are vital to the health of the Lake Worth Lagoon. Seagrasses perform numerous functions important to the surface waters and, specifically, the conservation of fish and wildlife and their habitats: shelter for small fish and shellfish; food for a variety of small and larger organisms, including manatee and sea turtles; stabilization of bottom sediments, which improves water clarity; recycling of nutrients, including nitrogen--an important function for the water quality of the nitrogen-limited Lake Worth Lagoon; and formation of a substrate on which epiphytes may attach and provide food for a variety of organisms, including manatee and sea turtles. The mitigation activities offset some, but not all, of the functions provided by the seagrass that are lost by the construction of the dock. The rock crib probably will replace the function of the seagrass in stabilizing sediments. The rock crib probably will replicate some of the shelter function of the seagrass, although nothing in the record would support a finding that the crevices of the rock crib provide exactly the same shelter as the seagrass patches that will be destroyed by the dock. Thus, there is no basis to assume that the shelter functions of the seagrass are replaced by the shelter functions of the rock crib. Undoubtedly, the rock crib will not replace the food function of the seagrass. Some predators may find the same juvenile fish in the rock crib as they have found in the seagrass, and some organisms may find the same epiphytes attaching to the rock crib as they have found attaching to the seagrass. However, the organisms, such as manatee and sea turtles, that eat the seagrass itself will find the rock crib a poor food substitute. Additionally, the rock crib will perform none of the nutrient-fixing that seagrasses perform. The rock crib thus fails to perform the vital functions of seagrass in providing food for important species, such as the manatee, and fixing nutrients, which is important to improving or maintaining water quality. The wave attenuator is a potentially useful form of mitigation. Although a slight over-generalization, the seagrass thins to the point of near disappearance at a point in which the slope of the submerged bottom breaks--very roughly at about three feet deep. Centex's witnesses offered the better explanation of this phenomenon by linking it to the strong wakes produced by vessels motoring in the Intracoastal Waterway. Although the area of the proposed project is permanently slow speed, no wake, the Intracoastal Waterway channel has no speed limit, and the wakes from vessels in the channel pound the shallows, focusing considerable energy upon the rising bottom at the point at which the water depth reduces to three feet. The main problem with the wave attenuator as mitigation is one of scale. Nothing in the record suggests that the attenuator, even in conjunction with the rock crib beneath it, will attenuate the incoming waves along the entire length of the dock. The attenuator will absorb the energy of the waves, whether from passing vessels or storms, but the interrupted waves will rejoin a short distance landward of the attenuator, possibly waterward of the first appearance of significant seagrass. The wave attenuator is thus inadequate in preserving or enhancing the remaining seagrass following the construction of the dock. The signs suffer two shortcomings. First, they are as likely to attract fishers as they are to deter recreational boaters, so the record permits no finding as to their efficacy in preserving or enhancing the remaining seagrass following the construction of the dock. Second, the record discloses little prop dredging of the seagrasses in the proposed vicinity of the dock, so the effect of the signs is not to ameliorate the damage historically done in this area by boats. To the contrary, at best, the signs may reduce some of the prop dredging that would occur in the future by boats drawn close to shore by the presence of the dock, which will attract fish and, thus, fishers. For these reasons, the signs are inadequate mitigation. Considered in conjunction with each other, the three mitigation activities fail to address the important food and nutrient-fixing functions of the seagrass that would be destroyed by the dock. Ignoring the failure of the proposed mitigation to address two of the most important functions of the seagrass, District and Centex contend that the mitigation is adequate for other reasons. District and Centex contend that the loss of seagrass is de minimis, consisting of not more than .03 acres of destroyed seagrass, or about 2.2 percent of the seagrass in the project area. Although the east-west orientation of the dock results in more shading than an identical dock oriented north- south, the shading loss could be less due to commendable design modifications involving the width, height, and translucent materials of the dock. Adding to the loss of seagrass from shading is the loss from the "halo effect," which is the wider area of seagrass loss probably resulting from the effect of the dock in artificially attracting and retaining seagrass consumers, like parrot fish. The record thus affords no basis for a finding of a loss of less than .03 acres. Nor does the record afford any basis for determining that the seagrass loss is de minimis. If Lake Worth Lagoon has seagrass to spare, the record does not support such a finding. If the lost functions of the seagrass--primarily, providing food and fixing nutrients--are not de minimis, the question remains whether practicable mitigation for these functions exists. Although transplantation of seagrass may be impracticable due to poor water clarity, even one of Centex's experts noted the importance of filling holes for seagrass recruitment, given the inability of seagrass to extend roots laterally up or down slopes. District's expert identified backfilling submerged holes and scraping spoil islands as two means of encouraging natural seagrass recruitment. District's expert noted a practical consideration favoring rock cribs versus more elaborate, higher-maintenance mitigation. Rock cribs are low- or no-maintenance projects that require no monitoring, enforcement, or enhancement. However, these same considerations underscore the complexity of the functions provided by seagrass lost to the proposed activity. Mitigating the loss of these functions may be difficult and high-maintenance, if the mitigation is to offset the loss. On this record, a finding of impracticability of such mitigation activities would be speculative, given the absence of evidence of impracticability, such as in the form of the absence of nearby depressions with suitable recruitment conditions or seagrass restoration projects in which Centex could participate. An unusual factor militating against a finding of adequate mitigation is that one of the seagrasses is itself a protected species. Johnson's grass is rare and fragile. The dock would displace Johnson's grass in a location less than one mile north of one of ten federally designated Critical Habitats for Johnson's Seagrass and one of two such habitats in Lake Worth Lagoon. 50 C.F.R. § 226.213(h). In contrast to the permit conditions directly protecting the manatee, the record is silent as to any effort by District to coordinate this permit with the work of the federal government and possibly the state and local governments to preserve Lake Worth Lagoon's seagrass, including the threatened Johnson's grass. On balance, even after mitigation, the dock will adversely affect the conservation of fish and wildlife, including listed species, and their habitats. The dock will not adversely affect navigation, the flow of water, and erosion or shoaling. Located only 1.5 miles from the inlet, tidal flows are good in the project area. The rock crib and wave attenuator, which tend to restrict east-west flows and waves, will have little impact on the tidal flows, which are predominantly in a north-south direction. The dock will not cause any erosion or shoaling. The dock will be lighted and should not present a navigation hazard. Larger vessels will remain a safe distance from the dock as they travel in the Intracoastal Waterway channel. Under normal boating conditions, small boats, such as kayaks, canoes, and small motorboats, can safety navigate under the five-foot deck and between the pilings spaced at a minimum distance of ten feet apart. The dock will not adversely affect the fishing or recreational values in the vicinity. To the contrary, the structure provided by the dock will probably attract and concentrate fish, making them easier to catch. In the longer term, even after mitigation, the dock will adversely affect marine productivity for the reasons discussed in connection with the conservation of fish and wildlife and their habitat. The dock will not adversely affect any historical or archaeological resources. Even after mitigation, the dock will adversely affect the current conditions and relative value of functions for the reasons discussed in connection with the conservation of fish and wildlife and their habitat. For the reasons set forth above, Centex has failed to provide reasonable assurance that the proposed activity, even after mitigation, is not harmful to the District's water resources, is not inconsistent with District's overall objectives, is not contrary to the public interest, will not adversely impact the value of functions provided to fish and wildlife and listed species by surface waters, and will not cause adverse secondary impacts to the water resources

Recommendation It is RECOMMENDED that the South Florida Water Management District enter a final order denying Centex Homes' request for an environmental resource permit and approval to lease sovereign submerged lands for the purpose of constructing the above- described dock at Ocean Cay in the Lake Worth Lagoon. DONE AND ENTERED this 2nd day of August, 2004, in Tallahassee, Leon County, Florida. S ROBERT E. MEALE Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 2nd day of August, 2004. COPIES FURNISHED: Henry Dean, Executive Director South Florida Water Management District 3301 Gun Club Road West Palm Beach, Florida Marcy I. LaHart 33416-4680 Marcy I. LaHart, P.A. 711 Talladega Street West Palm Beach, Florida 33405 Ashley D. Foster South Florida Water Management District 3301 Gun Club Road Mail Stop Code 1410 West Palm Beach, Florida 33406 J. Kendrick Tucker Huey, Guilday, Tucker, Schwartz & Williams, P.A. Post Office Box 12500 Tallahassee, Florida 32317-2500

CFR (1) 50 CFR 17.12(h) Florida Laws (18) 120.569120.5717.12253.01253.02253.03267.061373.042373.086373.413373.4136373.414373.416373.421373.427373.43040.011403.031
# 4
GEORGE HALLORAN vs SOUTH FLORIDA WATER MANAGEMENT DISTRICT, 92-006254 (1992)
Division of Administrative Hearings, Florida Filed:Key West, Florida Oct. 19, 1992 Number: 92-006254 Latest Update: Oct. 05, 1993

Findings Of Fact Based upon the oral and documentary evidence adduced at the final hearing and the entire record in this proceeding, the following findings of fact are made: The SFWMD is a public corporation in the state of Florida existing by virtue of Chapter 25270, Laws of Florida, 1949, and operating pursuant to Chapter 573, Fla. Stat., and Title 40E, Fla. Admin. Code, as a multi-purpose water management district, with its principal office in West Palm Beach, Florida. The Navy has proposed construction of a naval housing facility on the Peary Court site (the "Site") in Key West, Florida. The Site is approximately 25.89 acres and will provide 160 housing units for junior enlisted Navy and Air Force personnel and their families. The Site is the center of a larger, 37 acre drainage basin. The Site was formerly the location of military housing. However, for the past 18 years, the Site had been used by the City of Key West, with the assent of the Navy, for active and passive recreation for city residents. The Site contains a cemetery of historic value and a former military housing structure now being used by the Navy Key West Federal Credit Union with an associated parking area of paved asphalt. On February 6, 1992, the Navy submitted an application for a Surface Water Management District General Permit for the Project. The proposed surface water management system (the "System") was designed by Rice Creekmore, a registered professional engineer, and his company Johnson, Creekmore, and Fabray. The proposed System utilizes the existing topography and incorporates a number of drainage control mechanisms to manage the run-off from the Site. The System employs inlets, swales and culverts to direct stormwater run-off into dry detention areas (ponds) for pretreatment prior to discharging into seven 24-inch Class V injection wells (drainage wells). As discussed below, these injection wells must be permitted by the Florida Department of Environmental Regulation ("FDER"). The dry pond areas utilize key ditches, bottom elevation 1.0' NGVD, in order to hydraulically connect all of the dry pond areas together into one dry system prior to overflowing into the drainage wells beginning at elevation 1.5' NGVD. In other words, the detention ponds are interconnected with pipes. The design includes only one point where run-off would be discharged from the Site during any storm equal to a 25 year, three day storm event. That discharge would occur at the lowest point of the Site at the corner of Eisenhower and Palm. The water would be discharged through a V notch weir (the "Weir") into the City's stormwater system. An existing 12" storm drain line at the discharge point will be replaced by a 13.5" by 22.0" Reinforced Concrete Elliptical Pipe culvert. As discussed in more detail below, the System is designed so as to detain 1" of run-off within the dry detention ponds prior to any discharge through the Weir. After review of the application and submittals, the SFWMD issued a Notice of Intent to issue General Permit and Stormwater Discharge Certification No. 44-00178-S (the "Permit") on September 29, 1992. Petitioner and Intervenor timely petitioned for an administrative hearing challenging the SFWMD decision to award the Permit. There is no dispute as to the standing of either Petitioner or Intervenor. The SFWMD has adopted rules that set forth the criteria which an applicant must satisfy in order for a surface water management permit to issue. The criteria are set forth in Rule 40E-4, Florida Administrative Code. Rule 40E-4.301(1)(m) and 40E-4.091(1)(a) incorporate by reference The Basis of Review for Surface Water Management Permit Applications within South Florida Water Management District - April, 1987, ("The Basis for Review"). The Basis for Review explicates certain procedures and information used by the SFWMD staff in reviewing a surface water management permit application. The SFWMD issues general permits for projects of 40 acres or less that meet specific criteria. All other projects must obtain individual permits which are reviewed by the District Board. The specific rules relating only to general permits are set forth in Rule 40E-40. In addition, the Basis for Review sets forth certain technical requirements which must be met for the issuance of a general permit including general construction requirements and special requirements for wetlands. The Basis for Review also sets forth criteria for how a proposed system should address water quantity and water quality issues. The SFWMD assumes that water quantity and water quality standards will be met if a system satisfies the criteria set forth in the Basis for Review. Water Quantity Criteria Rule 40E-4.301(a), Florida Administrative Code, requires an applicant to provide reasonable assurances that a surface water management system will provide adequate flood protection and drainage. The purpose of the water quantity criteria is to insure that pre- development flows and post-development flows are equal. The SFWMD requires calculations of a project's projected post-development flow to guarantee that the post-development discharge rate will not be in excess of the pre-development discharge rate. These calculations are based on a 25 year, 3 day storm event. There is no stormwater management system in place at the Project Site. The pre-development topography results in a pre-development discharge point from the Site at the corner of Eisenhower Drive and Palm Avenue. At this point, a discharge or outfall pipe leads into the City of Key West's stormwater management system. The City's system ultimately discharge into Garrison Bight, a nearly waterbody which is discussed in more detail below. At the time the Navy began planning for the Project, the Navy was told that the discharge pipe had a capacity of accepting water at a rate of 40 cubic feet per second ("CFS"). The Navy initially designed a system to utilize this capacity. Subsequently, it was discovered that, due to the size of the pipe at the discharge point and the capacity of the pipes downstream in the City of Key West's stormwater management system, the City would not allow or accommodate a discharge of more than 11 CFS from the Site. Thus, the System had to be redesigned so that the discharge to the City's system would not exceed 11 CFS. The system was redesigned to incorporate the seven (7) Class V injection wells. The injection wells are intended to insure that discharge from the Project into the City stormwater system through the surface water discharge pipe at Eisenhower Drive and Palm Avenue will not exceed 11 CFS. The injection wells introduce treated stormwater into the ground before it reaches the discharge point. The pre-development rate of surface water discharge from Peary Court in a 25 year, 72 hour storm event was 55 CFS. This rate was calculated based upon a site survey, a determination of the existing amount of pervious versus impervious surface area, and a calculation made through a generally accepted civil-engineering computer program. 1/ This predevelopment discharge is the amount of water which would be expected to discharge off-site after percolation occurs. The number and size of the injection wells for the proposed system were determined based upon tests of an on-site twelve-inch fire well. The results of the tests revealed that the on-site test well could manage in excess of 2 CFS. Due to test limitations, the exact capacity could not be measured, but the capacity was clearly more than 2 CFS. These results were then compared with data obtained from the engineering firm of Post, Buckeley, Schuh & Jernigan for installed wells in the Florida Keys of a similar nature and size to the wells in the proposed surface water management system. The Post, Buckeley test results indicated that 24-inch wells had a capacity of 31 CFS. In addition, the design engineer consulted with South Florida Well Drillers, who have drilled other wells in the Florida Keys including 24-inch wells at the Key West airport which were completed shortly before the application for this Project. South Florida Well drillers found the capacity of 24-inch wells in Key West to be in the 25 to 30 CFS range. Based upon the results of the test well and the related reports described above, the project engineer based his design of the surface water management system on an estimated well capacity of 8.4 CFS for each well. These estimates were submitted by the Navy in its application and were appropriately determined to be reasonable by the SFWMD staff. Indeed, the evidence established that 8.4 CFS was a conservative estimate. The seven injection wells, at an estimated capacity of approximately 8.4 CFS each, provide in excess of 56 CFS of well discharge capacity, which is beyond the necessary discharge volume for the Project. Limiting Condition No. 13 of the Permit requires the Navy to obtain a well capacity test from a Florida Registered Professional Engineer or Professional Geologist following the installation of the first Class V injection well at the Site. If the results of this test indicate that the capacity of the well is different than that submitted by the Navy in its application, the Navy must apply for a permit modification to provide a design which incorporates a representative injection well flow-rate and an appropriate number of wells for the Site. In view of the reasonableness of the capacity rates utilized for the wells, it is unlikely that the results of the capacity test will result in any major design change in the proposed surface water management system. The use of the injection wells in the proposed surface water management system will significantly reduce the amount of run-off which would otherwise reach Garrison Bight from the Site. After the System is completed, it is expected that the amount of run-off from the Site that will reach Garrison Bight will be only 20 percent of the predevelopment amount. In addition, because there has previously been no management of the run-off from the Site and surrounding areas, there has been a frequent flooding problem at the corner of Eisenhower Drive and Palm Avenue after heavy rain storms. The proposed surface water management system will accommodate the overflow of water which historically occurred when discharges from Peary Court and the surrounding areas could not be accommodated by the Key West storm water management system. Petitioner and Intervenor suggest that the effect of tidal flow on the capacity of the wells was not fully considered. The evidence established that the design engineer considered normal high tides in calculating groundwater elevations. Respondent's engineering experts have concluded that the proposed surface water management system is effectively designed to accommodate the Florida Keys' tidal flows. Petitioner and Intervenor offered no expert testimony to refute this conclusion and/or to establish that the tides would impact the effectiveness of the proposed surface water management system. In the event that an extremely high tide occurs at the time of a storm, the detention ponds may hold standing water for a short time. This water would not be discharged off-site. There is no evidence that tidal influences would in any way adversely affect the System's ability to uptake pollutants in the "first- flush". The Class V shallow injection wells are an integral part of the proposed Peary Court surface water management system. Without the injection wells it is not clear whether the Project could meet the SFWMD water quantity criteria. The SFWMD does not have authority to permit Class V injection wells. FDER must permit those wells. The Peary Court site is not the first Florida Keys' project permitted by the SFWMD which utilizes injection wells. The surface water management permits for the other projects were issued contingent upon obtaining the necessary permits for the injection wells. Special Condition No. 14 of the Permit provides that the Permit is conditioned on the Applicant obtaining the applicable permits from FDER for the injection wells. During the interim while the Navy is seeking the FDER permits, it should be required to retain all run-off on-site. If the Navy is not able to obtain the necessary FDER permits for the injection wells, the Navy should be required to either retain all run-off on-site or propose an alternate design to meet the SFWMD's water quantity requirements. A modified permit application with a new Notice of Intent should be required for any alternate design. The following Special Condition Number 14 was offered by the SFWMD at the hearing (language revised from original condition is highlighted and underlined): THIS PERMIT IS ISSUED BASED ON THE APPLICANT OBTAINING THE NECESSARY CLASS V INJECTION WELL PERMITS FROM THE FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION (FDER). THE PERMITTEE SHALL SUBMIT AN APPROVED CLASS V DRAINAGE WELL PERMIT FROM FDER PRIOR TO OPERATION OF THE SURFACE WATER MANAGEMENT SYSTEM. IN THE INTERIM, THE PERMITTEE SHALL CERTIFY TO THE DISTRICT THAT NO OFF-SITE DISCHARGE WILL OCCUR UNTIL THE APPROVED CLASS V DRAINAGE WELLS ARE IN OPERATION. IF THE SURFACE WATER MANAGEMENT SYSTEM DESIGN MUST BE MODIFIED AS A RESULT OF FDER REQUIREMENTS OR IF THE CLASS V INJECTION WELL PERMITS ARE NOT ISSUED, THE APPLICANT SHALL APPLY FOR A PERMIT MODIFICATION TO PROVIDE A SURFACE WATER MANAGEMENT SYSTEM DESIGN WHICH SHALL MEET DISTRICT CRITERIA IN EFFECT AT THAT TIME. The proposed additional language requires the Navy to certify that no off-site discharges will occur until the injection wells are permitted and are operating. This revised language should be added to Special Condition No. 14 to clarify that the injection wells must be in operation prior to any off-site discharge from the surface water management system. Maintenance of the surface water management system entails upkeep of the dry detention areas and routine grass cutting, as well as inspection of the injection wells on a periodic basis to guard against clogging and reduced capacity. The system is essentially designed to operate without direct surveillance or intervention. Injection wells do not require any additional maintenance over and above that which is routinely required for other types of surface water management systems. The injection wells will require routine maintenance to ensure that manholes and inlets do not become clogged. Limiting Condition No. 8 of the Permit requires that the surface water management system, including the injection wells, be maintained. At the hearing, the SFWMD proposed that a condition be added to the Permit to further clarify the maintenance requirements. A condition requiring long-term maintenance would be desirable and reasonable. A new special condition should be added to the Permit requiring long-term maintenance of grass swales and inspections of injection wells for clogging. Acceptable language for such a condition would be: SPECIAL CONDITION NO. 15 The permittee shall provide long-term maintenance of the surface water management system, encompassing the injection wells, including, but not limited to, (a) maintenance of the vegetation in the grass swales and detention ponds and (b) routine inspections of wells and discharge structures for clogging. Water Quality Criteria As noted above, there is no designed system for surface water management and/or water quality pretreatment at the Site in its undeveloped state. Surface water run-off that can not be managed by the City of Key West's storm water management system collects in roads adjacent to the Site, resulting in adverse water quality and quantity impacts to adjacent land and receiving waters. The applicable water quality criteria, contained in Rule 40E-4.301, Florida Administrative Code, require an applicant to provide reasonable assurances that a surface water management system will not cause adverse water quality impacts to receiving waters and adjacent lands, and will not cause discharge which results in any violation of the standards and criteria of Chapter 17-302 for surface waters of the state. Rule 40E-4.301 provides that: In order to obtain a permit under this chapter, an applicant must give reasonable assurances that the surface water management system is consistent with the State Water Policy as set forth in Chapter 17-40, Florida Administrative Code (40E-4.301(1)(h), Florida Administrative Code. Rule 17-40.420 provides in pertinent part: Minimum Stormwater Treatment Performance Standards. When a stormwater management system complies with rules establishing the design and performance criteria for stormwater management systems, there shall be a rebuttable presumption that such systems will comply with state water quality standards. The Department and the Districts, pursuant to Section 373.436, Florida Statutes, shall adopt rules that specify design and performance criteria for new stormwater management systems which: 1. Shall be designed to achieve at least 80 percent reduction of the average annual load of pollutants that would cause or contribute to violations of state water quality standards. The Basis for Review, which is incorporated into Title 40E, Florida Administrative Code, by reference, further delineates the applicable water quality permit criteria for surface water management systems. Regarding water quality criteria, the Basis for Review provides: 3.2.2.1 State standards - Projects shall be designed so that discharges will meet state water quality standards, as set forth in Chapter 17-3 [revised to 17-302], Florida Administrative Code. The SFWMD's water quality criteria do not require chemical testing of stormwater for residential projects. The SFWMD's water quality criteria require that the design of a surface water management system meet applicable design/technology based criteria. Section 3.2.2.2 of the Basis for Review contains the specific water quality criteria for the design of a surface water management system. The SFWMD allows applicants to design their surface water management system using either dry or wet detention or dry or wet retention, so long as the treatment provided by the system meets water quality and quantity criteria. Dry detention consists of a system of grass swales and vegetative- covered ponds which detain water at a predetermined rate prior to off-site discharge. Wet retention can contain canals, ditches, lakes or ponds to retain water on-site. If a system is designed to meet the criteria specified in 3.2.2.2(a) of the Basis for Review and incorporates Best Management Practices ("BMP's") for the type of system proposed, the SFWMD presumes that water quality standards will not be violated. In determining which system is appropriate for a particular site, water quantity (flooding impacts) and water quality impacts must be balanced. In some cases, water quantity concerns may preclude certain types of water quality treatment methods. At the hearing in this case, Petitioner and Intervenor suggested that retention is superior to detention in designing surface water management systems. The evidence presented in this case was insufficient to support this conclusion. In any event, this contention focuses only on water quality considerations. One drawback to retention is that it may have on-site flooding impacts. With respect to this Project, the evidence indicates that retention may not have been an acceptable alternative because of possible adverse water quantity impacts. The Navy's proposed surface water management system was designed to utilize dry detention with filtration for treatment of surface water prior to discharge into the injection wells and/or off-site. The design uses a system of grass swales and grass-covered detention ponds to detain and filter pollutants from the surface water as it makes its way through the dry detention system. The System is designed to utilize as many grass swale areas as possible to filter or treat the surface water before it reaches the detention ponds which provide further treatment. The swales restrict the flow of water to approxmiately one half to one foot per second which allows for percolation and a tremendous amount of filtration. The System utilizes the natural topography of the Site to direct water through the dry detention system to the lowest point of the Site at the corner of Eisenhower Drive and Palm Avenue. Any water which makes it to this last detention pond and is not drained into one of the injection wells can flow through the discharge structure (the Weir) at 11 CFS and ultimately make it into Garrison Bight. Petitioner and Intervenor have suggested that the design of the proposed System is defective because water discharged from the cul-de-sacs in the Project design will flow directly into detention ponds without passing over any of the grass swales. The permit criteria do not specify that all surface water must contact grass swales prior to reaching a detention pond. While greater filtration is achieved the longer the run-off remains in the system, the evidence established that the detention ponds by themselves provide sufficient water quality treatment. With respect to all but one of the cul-de-sacs, the water must pass through at least two detention ponds before it is discharged. Run-off from the cul-de-sac closest to the Weir will receive treatment only in the last discharge pond. Petitioner and Intervenor questioned whether the run- off from this last cul-de-sac will receive adequate treatment, in other words, whether the "first flush" will be adequately detained prior to discharge, especially in circumstances when the detention pond is already wet. However, the evidence was insufficient to establish that their concerns are justified and/or that this situation would constitute a violation of water quality standards. This cul-de-sac is only 100 ft in diameter and accounts for no more than 8 percent of the total run-off from the Site. After considering all of the evidence, it is concluded that the water from the cul-de-sacs will be adequately treated in accordance with the permit criteria prior to any discharge. In assessing the Navy's proposed surface water management system the following criteria from the Basis for Review are pertinent in determining whether the proposed System will provide appropriate water quality treatment: 3.2.2.2 Retention and/or detention in the overall system, including swales, lakes, canals, greenways, etc., shall be provided for one of the three following criteria or equivalent combinations thereof. . .: Wet detention volume shall be provided for the first inch of run-off from the developed project, or the total run-off of 2.5 inches times the percentage of imperviousness, whichever is greater. Dry detention volume shall be provided equal to 75 percent of the above amounts computed for wet detention. If the receiving waterbody, is a "sensitive receiving water," which would include an Outstanding Florida Water, the following additional criteria regarding direct discharges are applicable: 3.2.2.2 d. Projects having greater than 40 percent impervious area and which discharge directly to sensitive receiving waters shall provide at least one half inch of dry detention or retention pretreatment as part of the required retention/detention. The SFWMD interprets the permitting criteria as creating a rebuttable presumption that a surface water management system that provides detention in accordance with BMP's of the first inch (1") of run-off from a Site, commonly referred to as the "first-flush", will meet state water quality standards. The "first-flush" occurs at the onset of a rainfall when most pollutants run off paved areas and percolate into the grass swales. It is an accepted design parameter that the "first flush" contains 90 percent of the pollutants which will be collected in the run-off. The 90 percent of the pollutants in the first flush are consequently retained on-site through pure percolation and never reach the discharge facility. Although Petitioner and Intervenor suggest that dry detention does not provide this degree of filtration, the evidence was insufficient to support this contention. The proposed System for this Project provides treatment for the first one inch (1") of run-off from the developed Project, thereby meeting the permitting criteria for sensitive receiving waters. Intervenor and Petitioner contend that the development of this Project will necessarily result in a larger amount of pollutants in the run-off from the Site. They argue that the Applicant has not provided reasonable assurances that capturing 90 percent of the increased level of pollutants in the first flush will meet water quality standards. As noted above, compliance with the permit criteria creates a rebuttable presumption that water quality standards will be met. Insufficient evidence was presented to overcome this rebuttable presumption. In calculating the appropriate volume for the dry detention ponds, the Project engineer used the Site's percentage of impervious area. The percentage of impervious area was determined in accordance with SFWMD criteria. The calculations do not account for any percolation from the impervious areas even though much of that run-off will pass through swales and other grassy areas of the Site. In addition, there is a built-in buffer between the berm elevation around the ponds and the expected water level in the ponds. These factors confirm that there is significant additional capacity in the ponds which is an overage or safety net. In sizing the detention ponds, the project engineer also factored in additional off-site water that will be coming on-site from Palm Avenue. This water currently ponds on Palm Avenue contributing to a recurring flooding problem in the area. This off-site water will be routed through an inlet and pumped directly into on-site detention areas thereby reducing flooding on Palm Avenue and providing some treatment for off-site run-off that was not previously treated before entering the City's stormwater system. As noted above, additional water quality criteria requirements apply to projects which discharge to an Outstanding Florida Water. These additional criteria are set forth in paragraph 40 above. Outstanding Florida Water or OFW is the designation given exclusively by the FDER to certain waterbodies in Florida which have special significance, either for ecological or recreational reasons. Outstanding Florida Waters are afforded the highest degree of water quality protection. The criteria for designation of waters as Outstanding Florida Waters is found in Chapter 17-302, Florida Administrative Code. When the SFWMD initially reviewed the Permit application for this Project, it erroneously assumed that Garrison Bight, the ultimate receiving body for the waters discharged from the project through the City stormwater system, was an OFW. Although the SFWMD applied water quality criteria for OFW's when it reviewed the subject permit application, the evidence at the hearing in this case established that Garrison Bight is not an Outstanding Florida Water. A FDER representative, qualified as an expert in the designation of Outstanding Florida Waters, testified that the Outstanding Florida Water designation does not apply to certain waterbodies that were degraded at the time of designation or did not have the significance or pristine water quality that merit special protection. The designation also does not apply to artificial waterbodies. Artificial waterbodies are defined in Rule 17-302.700(9)(i), Florida Administrative Code, as a waterbody created by dredging or excavation or by the filing in of its boundaries on at least two sides. The FDER has formally determined that Garrison Bight is not an Outstanding Florida Water because Garrison Bight is an artificial waterbody in accordance with the definition. Furthermore, Garrison Bight is the site of extensive boating and marina activities. The water quality of Garrison Bight is currently degraded in comparison to ambient conditions and offshore/unconfined water. In sum, the evidence established that proposed surface water management system meets or exceeds the current permit criteria. Consequently, the water flowing into Garrison Bight from the Site will be significantly less and much cleaner after the proposed surface water management system is installed than it currently is without a designed surface water management system.

Recommendation Based upon the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that a Final Order be entered approving the issuance of Surface Water Management General Permit No. 44-01785 in accordance with the Notice of Intent dated September 29, 1992 and the additional conditions noted in this Recommended Order. DONE AND ENTERED this 14th day of May, 1993, at Tallahassee, Florida. J. STEPHEN MENTON Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 14th day of May, 1993.

Florida Laws (9) 120.56120.57120.68373.114373.403373.413373.436373.617403.021 Florida Administrative Code (2) 40E-4.09140E-4.301
# 5
DEFENDERS OF CROOKED LAKE, INC., AND PHILLIP AND PRISCILLA GERARD vs KRISTA HOWARD AND DEPARTMENT OF ENVIRONMENTAL PROTECTION, 17-005328 (2017)
Division of Administrative Hearings, Florida Filed:Lakeland, Florida Sep. 22, 2017 Number: 17-005328 Latest Update: Aug. 16, 2018

The Issue The issue is whether Respondent, Krista Howard,2/ is entitled to issuance of the Consolidated Environmental Resource Permit and Recommended Intent to Grant Sovereignty Submerged Lands Authorization, Permit No. 53-0351424-001-EI, as announced by Respondent, Department of Environmental Protection, in the Consolidated Notice of Intent to Issue Environmental Resource Permit and Lease to Use Sovereignty Submerged Lands issued on July 28, 2017, and subsequently amended on January 11, 2018.3/

Findings Of Fact The Parties Petitioner Defenders is a Florida non-profit corporation that has been in existence since the mid-1980s or earlier. Defenders' primary purpose is to protect and preserve Crooked Lake so that it may remain an Outstanding Florida Water ("OFW") for all members of the public to use and enjoy. Defenders has more than 25 members who reside in Polk County, Florida. Its membership consists of approximately 100 family memberships, mostly comprised of persons who live on or near Crooked Lake. Petitioners Gerards are riparian landowners on Crooked Lake, whose property is located immediately adjacent to, and slightly to the northwest of, Respondent Howard's property. The Gerards' home address is 1055 Scenic Highway North, Babson Park, Florida 33827. Respondent Howard is the applicant for the Consolidated Authorization for the Dock. Howard's property, which is riparian to Crooked Lake, is located at 1045 Scenic Highway North, Babson Park, Florida 33827. Respondent DEP is the administrative agency of the State of Florida statutorily charged with, among other things, protecting Florida's water resources. As part of DEP's performance of these duties, it administers and enforces the provisions of chapter 373, part IV, Florida Statutes, and the rules adopted pursuant to that statute. Pursuant to that authority, DEP determines whether to issue or deny applications for ERPs. Pursuant to section 253.002, Florida Statutes, DEP also serves as staff to the Board of Trustees of the Internal Improvement Trust Fund ("Board of Trustees") and, in that capacity, reviews and determines whether to issue or deny, applications for approval to use sovereignty submerged lands.5/ DEP Review of the Application The Dock is proposed to be located on sovereignty submerged lands and in surface waters subject to State of Florida regulatory jurisdiction. Therefore, an environmental resource permit and a sovereignty submerged lands lease are required. On or about February 14, 2017, Todd Rickman, Howard's professional contractor who designed the Dock, filed an Application for a Sovereignty Submerged Lands Lease for Existing Structures and Activities6/ ("Application") with DEP's Southwest District Office, seeking approval to construct and operate the Dock. On or about March 15, 2017, DEP requested additional information regarding the project. Howard submitted the requested items, and the Application was determined complete on May 30, 2017. Notice of DEP's receipt of the Lease portion of the Application was provided as required by section 253.115. The comment period commenced on June 15, 2017, and ended on July 6, 2017. As previously noted, on July 28, 2017, DEP issued the Consolidated Notice of Intent, proposing to issue the Consolidated Authorization to construct and operate the Dock. On January 11, 2018, DEP amended the Consolidated Notice of Intent to accurately reflect the "clearly in the public interest" permitting standard for the ERP portion of the Consolidated Authorization, which is applicable to projects proposed in OFWs. Background Crooked Lake Crooked Lake (also, "Lake") is an approximately 4,247-acre freshwater lake in Polk County, Florida. It is an irregularly shaped karst lake roughly resembling an inverted "L," with the longer axis running north to south. It is located on the Lake Wales Ridge. Crooked Lake is designated an OFW by Florida Administrative Code Rule 62-302.700(9)(i)9.7/ The Lake is classified as a Class III waterbody pursuant to Florida Administrative Code Rule 62-302.400(15).8/ The elevations and bottom contours in Crooked Lake vary substantially throughout the Lake. Thus, water depths may, and generally do, vary substantially from one location to another throughout the Lake. The water levels in Crooked Lake fluctuate frequently and, at times, dramatically, depending on rainfall frequency and amounts. A graph prepared by Petitioners' Witness James Tully, using Southwest Florida Water Management District ("SWFWMD") historical water level data for Crooked Lake measured in National Geodetic Vertical Datum of 1929 ("NGVD") shows water levels historically fluctuating from as low as approximately 106 feet in or around 1991, to as high as 123 feet NGVD in or around 1951, 1961, and 2004. Rickman generated a water level graph using the Polk County Water Atlas ("Atlas") website. This graph, which covers the period of 2008 through mid-2017, shows that the water levels in Crooked Lake, for this most recent ten-year period, fluctuated approximately five feet, with the lowest levels falling slightly below 114 feet NGVD for relatively short periods in 2012 and 2013, and the highest level rising to approximately 119 feet NGVD in mid-2017. The competent, credible evidence shows that although water levels in Crooked Lake may occasionally rise to levels at or around 123 feet NGVD, those conditions have been associated with extreme weather events such as hurricanes, are atypical, and are relatively short-lived. The maximum water level in Crooked Lake is subject to control by a weir located south of the Lake. Discharge from the weir occurs at a control elevation of 120 feet NGVD. As such, the water level in parts of Crooked Lake may, at times, temporarily exceed 120 feet NGVD, but will eventually decrease to 120 feet NGVD as the water flows south and is discharged through the weir. To the extent rainfall does not recharge the Lake, water levels may fall below 120 feet NGVD. The ordinary high water line ("OHWL"), which constitutes the boundary between privately-owned uplands and sovereignty submerged lands, has been established at 120.0 feet NGVD for Crooked Lake. Crooked Lake is used for recreational activities such as fishing, swimming, boating, and jet ski use, and there are public and private boat ramps at various points on the lake that provide access to the Lake. There is no marina having a fueling station on the Lake. The credible evidence shows that the northeast portion of the Lake, where the Dock is proposed to be located, experiences a substantial amount of boat and jet ski traffic. This portion of the Lake also is used for swimming, water- skiing, wakeboarding, the use of "towables" such as inner tubes, and for other in-water recreational uses. The Proposed Dock Howard holds fee title by warranty deed to parcel no. 333028-000000-033140 located at 1045 Scenic Highway, Babson Park, Florida.9/ This parcel has approximately 110 linear feet of riparian shoreline on Crooked Lake. The Dock is proposed to be constructed and operated on sovereignty submerged lands adjacent to this riparian upland parcel, which is located on the eastern shore of the northeastern portion of Crooked Lake. The Dock, as proposed, is a private single-family residential dock that will be used by Howard for water-dependent recreational purposes, such as specifically, boating, fishing, swimming, and sunbathing. The Dock is not proposed to be constructed or used by, or to otherwise serve, commercial or multifamily residential development. The Dock is configured as a "T," supported by pilings and consisting of a 4-foot-wide by 152-foot-long access walkway, and an approximately 1,983-square-foot terminal platform comprised of a lower-level platform having four vessel slips and a flat platform roof. Two sets of stairs lead from the lower level of the terminal platform to the platform roof, which will be elevated eight feet above the lower-level platform and will have a railed perimeter. The platform roof will function as a roof for the boat storage area below and a sundeck. The four slips on the Dock's lower-level platform will be used for permanent mooring for up to six watercraft: a 23-foot-long ski boat,10/ a 20-foot-long fishing boat, and four jet skis. As proposed, the Dock will occupy a total area of approximately 2,591 square feet. The lower platform of the Dock is proposed to be constructed at an elevation of 121 feet NGVD. The roof/upper platform will be constructed eight feet above that, at an elevation of 129 feet NGVD. The pilings supporting the Dock will be wrapped in an impervious material to prevent leaching of metals and other pollutants into the water. Pursuant to the Specific Purpose Field Survey ("Survey") for the Lease submitted as part of the Application, the Lease will preempt approximately 2,591 square feet, and closely corresponds to the footprint of the Dock. The submerged lands surrounding the Dock that are not occupied by the footprint of the Dock, including the area between terminal platform and the shoreline, are not included in the preempted area of the Lease.11/ The Survey shows "approximate riparian lines" which delineate Howard's riparian area oriented to the center of the waterbody and to the primary navigation channel in the northeast portion of Crooked Lake. As shown on the version of the Survey initially filed as part of the Application, the Dock was proposed to be located approximately 4.7 feet, at its closest point, from the southern riparian line. However, in response to DEP's request for additional information, the Survey was modified in April 2017, to shift the Dock northward within Howard's riparian area. The Dock is now proposed to be located 25.1 feet, at its closest point, from the southern riparian line, and 29.4 feet, at its closest point, from the northern riparian line. The walkway of the Dock will commence at an approximate elevation of 120 feet NGVD, which corresponds to the OHWL established for Crooked Lake. As previously noted above, the walkway will extend waterward approximately 152 feet, where it will intersect with the terminal platform. The terminal platform will extend another 52 feet waterward. In total, the Dock is proposed to extend waterward approximately 204 feet from the OHWL. Although the Dock would be one of the longest and largest docks on Crooked Lake, the credible evidence establishes that there are several other docks of similar size and/or length on the Lake. Rickman testified that he obtained approvals for, or was otherwise aware of, several docks over 2,000 square feet on the Lake. Additionally, the evidence showed that eight other docks on the Lake are longer than the proposed Dock.12/ Rickman testified that most of the larger docks on Crooked Lake have roofs, and that most of these roofs are pitched, rather than flat.13/ As noted above, the water level in Crooked Lake frequently and, at times, extensively fluctuates. As a result, there are periods during which water depths in parts of the Lake are extremely shallow. Rickman testified that the Dock was designed to extend far enough out into Crooked Lake to reach sufficient water depth to enable Howard to maximize the use of the Dock for boating throughout the year. The Dock is designed to extend out to the point at which the bottom elevation of the Lake is approximately 109.9 feet NGVD. Based on the Atlas' ten-year water level graph for Crooked Lake referenced above, Rickman projected that at this point, the water depth typically would be sufficient to allow Howard to operate her largest vessel, the 23-foot ski boat. The ski boat has a 25-inch draft.14/ The boat will be stored out of the water on a boat lift on the Dock, attached by cables to a sub-roof immediately beneath the platform roof. When being lowered into or hoisted from the water, the boat will be placed in a boat cradle consisting of two containment railings approximately 18 inches high each on either side, and a "V" shaped aluminum bottom with bunks on which the boat is cradled. The aluminum bottom of the cradle was estimated to be two to three inches thick. Although the boat cradle is approximately 18 to 21 inches in "total height,"15/ the cradle does not have to be completely lowered its entire 18- to 21-inch height into the water when used. Steven Howard explained, credibly, that the cradle needs to be lowered into the water only a few inches lower than the ski boat's 25-inch draft to enable the boat to float into or out of the cradle. To that point, Rickman testified that taking into account the 25-inch draft of the ski boat and the "total height" of the boat cradle, between 40 and 44 inches of water depth would be required when the cradle is used in order to avoid coming into contact with the Lake bottom. Based on the Atlas graph showing the lowest water levels for the previous ten-year period at approximately 114 feet NGVD, Rickman designed the Dock to extend out to the 109.9-foot NGVD bottom elevation point. At this point, the projected water depth would be slightly more than four feet during periods of the lowest projected water levels for Crooked Lake. For the Dock to be able to wharf out to 109.9 feet NGVD bottom elevation, it must extend a total of approximately 204 feet waterward into the Lake. The credible evidence establishes that while Howard's ski boat is one of the largest, it is not the largest boat operated on Crooked Lake. Impacts Assessment for Environmental Resource Permit Water Quality Impacts As noted above, Crooked Lake is a Class III waterbody. Accordingly, the surface water quality standards and criteria applicable to Class III waters in Florida codified in rule 62-302.300 apply to Crooked Lake. The Dock, as proposed to be constructed and operated, is not anticipated to adversely affect or degrade water quality in Crooked Lake. Specifically, as required by the Consolidated Authorization, a floating turbidity curtain will be installed around the boundary of the construction area before construction commences, and it must be left in place until construction is complete and turbidity levels in the work area have returned to background levels. Additionally, as noted, the pilings supporting the Dock must be wrapped in an impervious material to prevent leaching of metals and other pollutants into the water over the life of the structure. The Consolidated Authorization also prohibits the installation and use of fueling equipment at the Dock; prohibits the discharge of sewage or other waste into the water; prohibits liveaboards; prohibits fish cleaning or the installation of fish cleaning stations unless sufficient measures such as sink screens and waste receptacles are in place; and prohibits repair and maintenance activities involving scraping, sanding, painting, stripping, recoating, and other activities that may degrade water quality or release pollutants into the water. Although the Consolidated Authorization imposes a specific condition requiring, for all vessels using the Dock, a minimum 12-inch clearance between the deepest draft of the vessel (with motor in the down position) and the top of submerged resources, it does not specifically address circumstances where the use of the boat cradle, rather than the vessel itself, may come into contact with the Lake bottom. DEP's witness acknowledged that if the boat cradle were to come into contact with the Lake bottom, water quality standards may be violated. Given the information presented at the final hearing regarding the operation of the boat lift and the need for sufficient clearance between the bottom of the boat cradle and the lake bottom, the undersigned recommends that a specific condition be included in the Consolidated Authorization prohibiting contact of the Lake bottom by the boat cradle. This recommended condition is set forth in paragraph 73.A., below. Upon consideration of the conditions imposed by the Consolidated Authorization discussed above, including imposing a specific condition that prohibits contact of the boat cradle with the Lake bottom, the undersigned finds that the Dock will not adversely affect or degrade the water quality of Crooked Lake. Water Quantity Impacts The Dock, as proposed, is a piling-supported structure that will not impound, store, or impede the flow of surface waters. As such, the Dock will not cause adverse flooding to on-site or offsite property, will not result in adverse impacts to surface water storage and conveyance capabilities, and will not result in adverse impacts to the maintenance of surface or ground water levels. Impacts to Fish, Wildlife, and Listed Species and Habitat The Application states, in section 5, question 6, that there is no vegetation on Howard's riparian shoreline. However, the Survey depicts an area of emergent grasses approximately 60 feet wide and extending diagonally approximately 70 feet waterward into the Lake. The Survey depicts this grassed area as straddling the riparian line between Howard's property and the adjacent parcel to the south. The Survey shows the Dock as being located a significant distance waterward of the grassed area, such that no portion of the Dock will be located on or near this grassed area. Additionally, an aerial photograph of Howard's property and the Lake waterward of Howard's property shows a smaller patch of what appears to be emergent grasses further offshore. This grassed area is not shown on the Survey, and it cannot definitively be determined, by examining the Survey and the aerial photograph, whether this grassed area is growing in an area that will be impacted by the Dock. Steven Howard acknowledged that this smaller grassed area may be located at or near the jet ski slip on the southeastern side of the Dock. An environmental assessment of this smaller grassed area was not performed or submitted as part of the Application. Thus, any value that this area may have as fish and wildlife habitat was not assessed as part of DEP's determination that the Dock will not adversely impact the value of functions provided to fish, wildlife, and to listed species and their habitat. In order to provide reasonable assurance that the Dock will not adversely impact the value of functions provided to fish, wildlife, and to listed species and their habitat, the undersigned recommends including a specific condition in the Consolidated Authorization requiring this smaller grassed area to be completely avoided during construction and operation of the Dock, or, if avoidance is not feasible, that an environmental assessment be performed prior to construction so that the value of this grassed area, if any, to fish, wildlife, and listed species can be evaluated to determine whether minimization and compensatory mitigation should be required. This recommended condition is set forth in paragraph 73.B., below. As previously noted, the Consolidated Authorization contains a specific condition requiring a minimum 12-inch clearance between the deepest draft of the vessel (with the motor in the down position) and the top of submerged resources for all vessels that will use the docking facility. Compliance with this condition will help ensure that the value of functions provided to fish and wildlife and to listed species and their habitat of any such submerged resources is not adversely impacted by vessels using the Dock. The Consolidated Authorization also contains a specific condition requiring handrails to be installed on the Dock to prevent mooring access to portions of the Dock other than the wetslips. This will help protect submerged resources in shallower areas in the vicinity of the Dock. Fish populations in the immediate area of the Dock site may temporarily be affected during construction of the Dock; however, those impacts are not anticipated to be permanent. Additionally, as previously discussed, the Dock pilings must be wrapped with an impervious material to prevent leaching of pollutants into the water, and once installed, the pilings may provide habitat for fish and a substrate for benthic organisms. Provided that the conditions set forth in the draft Consolidated Authorization, as well as the recommendation regarding the smaller grassed area, are included in the final version of the Consolidated Authorization, it is determined that the construction and operation of the Dock will not adversely impact the value of functions provided to fish, wildlife, or to listed species or their habitat.16/ Impact on Navigation Petitioners assert that the Dock will constitute a hazard to navigation in the northeast portion of Crooked Lake. Specifically, they assert that because the Dock will extend out approximately 204 feet into the Lake, it necessarily will create a navigational hazard to boaters in the vicinity. As support, Petitioners presented evidence consisting of Steven Howard's testimony that an inner tube on which his nephew was riding, that was being pulled behind a motor boat, collided with the Gerards' 84-foot-long floating dock adjacent to Howard's riparian area. Petitioners argue that if an 84-foot-long dock creates a navigational hazard, a 204-foot-long dock would create an even greater navigational hazard. The undersigned does not find this argument persuasive. The portion of Crooked Lake on which the Dock is proposed to be located is approximately a mile and a half to two miles long and one-half to three-quarters of a mile wide. Although this portion of Crooked Lake experiences substantial boat traffic, the evidence shows that the Lake is sufficiently large in this area, even with the Dock in place, to allow safe navigation. To this point, it is noted that there are two other longer docks in the northeastern portion of Crooked Lake, extending 220 and 244 feet into the Lake from the shoreline. There was no evidence presented showing that either of these docks constitutes a navigational hazard.17/ Petitioners also assert that during periods of high water in this portion of Crooked Lake, the Dock will be underwater and thus will present a navigational hazard. In support, they presented photographs taken on October 30, 2017—— approximately six weeks after Hurricane Irma struck central Florida——showing ten docks, out of the 109 docks on Crooked Lake, that were partially or completely submerged.18/ When the photographs were taken, the approximate water elevation was 119.2 feet NGVD. All or a portion of the submerged docks had been constructed at or below the 119.2-foot NGVD elevation. The docks without roofs were mostly or completely invisible under the water. However, for the roofed docks, the roofs remained visible above the water even when their docking platforms were submerged. Here, although the walkway and lower platform of Howard's Dock is proposed to be constructed at an elevation of 121 feet NGVD, the roof will be constructed at an elevation of 129 feet NGVD. Thus, even during the relatively infrequent periods19/ during which the water level in Crooked Lake may exceed 121 feet NGVD, the platform roof will still be visible to vessels navigating in this portion of the Lake. Additionally, the Consolidated Authorization contains a specific condition requiring the waterward end of the Dock to be marked with a sufficient number of reflectors to be visible from the water at night by reflected light. This condition provides additional assurance that the Dock will not present a navigational hazard. For these reasons, it is determined that the Dock will not adversely affect navigation. Other ERP-Related Issues The evidence did not show that the Dock is proposed to be located in or proximate to a "work of the District," as defined in section 373.019(28). The only "work of the District" about which evidence was presented is the weir located south of Crooked Lake. This structure is many thousands of feet south of the Dock. There was no evidence presented showing that the Dock would have any impact on this weir. The Dock, as proposed, was designed by an experienced professional contractor who has designed and installed many docks on Crooked Lake, and, as such, is anticipated to function as proposed. The Dock must be built according to engineering diagrams to the Consolidated Authorization, and as-built drawings must be submitted when Dock construction is complete so that DEP can confirm that the Dock is constructed in accordance with the approved design. The evidence establishes that Howard, as the applicant, and Rickman, as the professional contractor in charge of construction, are financially, legally, and administratively capable of ensuring that the activity will be undertaken in accordance with the terms and conditions of the Consolidated Authorization. No evidence to the contrary was presented. The Dock will be located in the waters of Crooked Lake and will be affixed to the submerged bottom. The Department of State, Division of Historical Resources ("DHR"), did not provide any comments indicating that historical or archaeological resources are anticipated to be impacted by the project. Additionally, the Consolidated Authorization contains a general condition requiring subsurface activity associated with construction of the Dock to immediately cease, and DHR to be contacted, if any prehistoric or historic artifacts, such as pottery or ceramics, stone tools or implements, dugout canoes, or other physical remains that could be associated with Native American cultures or early colonial or American settlements are encountered at any time within the project site area. Additional Recommended Conditions Based on the foregoing, the undersigned recommends that the following specific conditions be included in the Consolidated Authorization, Permit No. 53-0351424-001-EI: A minimum six-inch clearance shall be maintained between the top of all submerged resources and the deepest draft of the cradle of the boat lift while in use. For purposes of this condition, submerged resources consist of the bottom sediment and/or any submerged grasses or other aquatic organisms. Any emergent grasses in the permittee's riparian area shall be avoided during the construction and operation of the Dock. If it is not feasible to avoid these grasses, an environmental assessment of the grassed area shall be performed and submitted to the Department prior to commencing construction, so that the value of this grassed area, if any, to fish, wildlife, and listed species can be evaluated and the extent to which minimization and/or compensatory mitigation is appropriate can be determined. Clearly in the Public Interest Florida Administrative Code Rule 62-4.070, Standards for Issuing or Denying Permits, states in pertinent part: A permit shall be issued to the applicant upon such conditions as the Department may direct, only if the applicant affirmatively provides the Department with reasonable assurance based on plans, test results, installation of pollution control equipment, or other information, that the construction, expansion, modification, operation, or activity of the installation will not discharge, emit, or cause pollution in contravention of Department standards or rules. In addition to the foregoing permitting requirements, because the Dock is proposed to be located in an OFW, Howard also must provide reasonable assurance that the Dock meets the "clearly in the public interest" standard. The "clearly in the public interest" standard does not require the applicant to demonstrate need for the project or a net public benefit from the project. Rather, this standard requires the applicant to provide greater assurances, under the circumstances specific to the project, that the project will comply with the applicable permitting requirements.20/ For the reasons discussed above, and with the inclusion of the additional recommended conditions in paragraphs 73.A. and 73.B., it is determined that the proposed Dock meets the applicable permitting requirements and the "clearly in the public interest" standard for issuance of the ERP. Impacts Assessment for Sovereignty Submerged Lands Lease Water-Dependency of the Proposed Dock A water-dependent activity is one which can only be conducted in, on, over, or adjacent to water areas because the activity requires direct access to the water body or sovereignty submerged lands for specified activities, including recreation, and where the use of water or sovereignty submerged lands is an integral part of the activity. See Fla. Admin. Code R. 18-21.003(71). Petitioners argue that the Dock will not constitute a water-dependent activity because the depth of water in the slips may, at times, be insufficient to allow operation of Howard's vessels while complying with the requirement that a minimum 12- inch clearance be maintained between the lowest draft of the vessel and submerged resources. The undersigned finds this argument unpersuasive. The Dock is being constructed specifically for the purpose of enabling Howard to use her vessels for boating——a recreational activity for which use of the water indisputably is an integral part. The Dock's primary purpose is to moor vessels that will be used for the water-dependent recreational activities of boating and fishing, and other water-dependent recreational uses of the Dock include fishing, swimming and sunbathing. Case law interpreting the Florida Administrative Code Chapter 18-21 makes clear that because docks are used for mooring vessels or conducting other in-water recreational uses, they are "water-dependent" activities for purposes of the rules.21/ Thus, even if water depths in the Dock's slips are at times insufficient for vessel mooring or launching,22/ this does not render the Dock not a "water-dependent activity." Resource Management Requirements The preempted area of the Lease is proposed to be used for a Dock that will be used for boating, fishing, and swimming. These traditional in-water recreational uses are consistent with the management purposes of sovereignty submerged lands as described in rule 18-21.004(2)(a). With the inclusion of the conditions currently proposed in the draft Consolidated Approval, as well as the recommended conditions in paragraphs 73.A. and 73.B., the undersigned determines that the Dock will not result in adverse impacts to sovereignty submerged lands and associated resources. With the inclusion of the conditions currently proposed in the draft Consolidated Approval, as well as the recommended conditions in paragraphs 73.A. and 73.B., the undersigned determines that the Dock is designed to minimize or eliminate impacts to fish and wildlife habitat and submerged resources. With the inclusion of the currently proposed conditions in the draft Consolidated Authorization, as well as the recommended conditions set forth in paragraphs 73.A. and 73.B., it is determined that the Dock, as designed and constructed, will minimize or eliminate cutting, removal, or destruction of wetland vegetation. Additionally, as discussed above, the proposed Consolidated Approval requires the avoidance of adverse impacts to historic and cultural resources. Riparian Rights Consistent with rule 18-21.004(3)(d), the Dock is proposed to be constructed in Howard's riparian area and will be set back more than 25 feet from the northerly and southerly riparian lines shown on the Survey. Rule 18-21.004(3)(a) prohibits activities authorized under chapter 18-21 from being implemented in a manner that would unreasonably infringe on traditional common law riparian rights, as defined in section 253.141, of upland owners adjacent to sovereignty submerged lands. Similarly, rule 18-21.004(3)(c) requires all structures and activities to be designed and conducted in a manner that will not unreasonably restrict or infringe upon the riparian rights of adjacent riparian owners. Collectively, these provisions prohibit an activity that will occur on sovereignty submerged lands from unreasonably infringing on or unreasonably restricting the riparian rights of upland riparian owners. Riparian rights are rights appurtenant to, and inseparable from, riparian land that borders on navigable waters. § 253.141, Fla. Stat.; Broward v. Mabry, 50 So. 830 (Fla. 1909). At common law, riparian rights include the rights of navigation, fishing, boating, and commerce. Hayes v. Bowman, 91 So. 2d 795 (Fla. 1957). The right of navigation necessarily includes the right to construct and operate a dock to access navigable waters. Belvedere Dev. Corp. v. Dep't of Transp., 476 So. 2d 649 (Fla. 1985); Shore Vill. Prop. Owners' Ass'n v. Dep't of Envtl. Prot., 824 So. 2d 208, 211 (Fla. 4th DCA 2002). Common law riparian rights also include the right to an obstructed view. Lee Cnty v. Kiesel, 705 So. 2d 1013 (Fla. 2d DCA 1998). Many of these common law riparian rights have been statutorily codified in section 253.141. Statutory riparian rights include the "rights of ingress, egress, boating, bathing, and fishing and such others as may be or have been defined by law." § 253.141(1), Fla. Stat. At issue in this case are the competing riparian rights of next-door neighbors——i.e., Howard's right to wharf out to navigable waters for purposes of boating and other water- dependent recreational activities, and the Gerards' right to an unobstructed view. The question is whether Howard's proposed construction and operation of a dock of sufficient length to enable her to use her boats would unreasonably infringe on or unreasonably restrict the Gerards' right to an unobstructed view of the Lake. By virtue of the riparian rights appurtenant to Howard's riparian property, she is entitled to wharf out to water deep enough to enable her to navigate. She owns two boats, one of which pulls a draft of 25 inches, and the other, a draft of 20 inches, which she uses to navigate the Lake. Thus, an essential aspect of Howard's riparian right of navigation is her ability to construct and operate a dock long enough to enable her to reach water depths sufficient to use these boats. However, as noted above, this right is not unfettered. Howard's exercise of her riparian navigation right cannot unreasonably infringe on Gerard's right to an unobstructed view. Florida case law holds that the right to an "unobstructed" view does not entail a view free of any infringement or restriction whatsoever by neighboring structures or activities. In Hayes, the court defined the right as "a direct, unobstructed view of the [c]hannel and as well a direct, unobstructed means of ingress and egress . . . to the [c]hannel." Id. at 801 (emphasis added). The court then prescribed the rule that "in any given case, the riparian rights of an upland owner must be preserved over an area 'as near as practicable' in the direction of the [c]hannel so as to distribute equitably the submerged lands between the upland and the [c]hannel." Id. (emphasis added). To the extent there is no channel in this portion of the Lake, Hayes dictates that riparian rights must be apportioned equitably, so that a riparian owner's right to an unobstructed view can extend only from the owner's property in the direction of the center of the Lake. Kling v. Dep't of Envtl. Reg., Case No. 77-1224 (Fla. DOAH Oct. 6, 1977; Fla. DER Nov. 18, 1977) at ¶¶ 11-12 (emphasis added). Here, no evidence was presented showing that the Dock——which will be located immediately south and east of the Gerards' riparian property and attendant riparian area——will present an obstruction to the Gerards' view of the Lake channel. Additionally, the evidence did not establish that Howard's Dock would obstruct the Gerards' view of the center of the northeast portion of Crooked Lake, which is located west and slightly south of their property.23/ Administrative precedent in Florida provides additional support for the determination that the Dock will not unreasonably infringe on the Gerards' right to an unobstructed view. In O'Donnell v. Atlantic Dry Dock Corporation, Case No. 04-2240 (Fla. DOAH May 23, 2005; Fla. DEP Sept. 6, 2005), riparian owners challenged the proposed approval of expansions of sovereignty submerged lands leases authorizing Atlantic Dry Dock, a neighboring commercial shipyard, to expand its shipyard facilities and install new docking facilities. The administrative law judge noted that although the expanded shipyard would further encroach on the riparian owners' already somewhat-restricted view from their property, it would not substantially and materially obstruct the Petitioners' view to the channel. He commented: "it [their view] may be further obstructed to the west in the direction of the Atlantic Marine yard, but not in the direction of the channel." To that point, he found that although "any lateral encroachment on the Petitioners' line-of-sight to the channel by the large eastern dry dock proposed will be an annoyance, . . . [it] will not rise to the level of a substantial and material interference or obstruction of the Petitioners' view to the channel." Id. at ¶ 119. He found that "there is no 'special riparian right' to a view of the sunset, just as there was no right to a particular object of view . . . by the riparian owners complaining in the Hayes case." Id. at ¶ 120. Castoro v. Palmer, Case Nos. 96-0736, 96-5879 (Fla. DOAH Sept. 1, 1998; Fla. DEP Oct. 19, 1998), also is instructive. In Castoro, neighboring riparian owners challenged the proposed issuance of an environmental approval and sovereignty submerged lands lease for a 227-foot-long dock having a terminal platform with boat lift. The owners contended that due to the dock's length, it would impermissibly obstruct their views of the water. The administrative law judge rejected that contention, distinguishing the circumstances from those in Lee County v. Kiesel, 705 So. 2d 1013 (Fla. 2d DCA 1998), in which the construction of a bridge that blocked 80 percent of the riparian owners' view of the channel was held to constitute a "substantial and material" obstruction to the riparian right of view. The ALJ noted that although the dock would have "some impact on the neighbors' views" and their use of the waterbody, it did not unreasonably impact their riparian rights to an unobstructed view or to use of the waterbody. Id. at ¶¶ 73-74. In Trump Plaza of the Palm Beaches Condominium v. Palm Beach County, Case No. 08-4752 (Fla. DOAH Sept. 24, 2009; Fla. DEP Oct. 8, 2009), a condominium association challenged the proposed issuance of a sovereignty submerged lands use approval to fill in a dredged area and create mangrove islands in the Lake Worth Lagoon, alleging, among other things, that the creation of the mangrove islands would unreasonably infringe on their riparian right to an unobstructed view. In rejecting this position and recommending issuance of the submerged lands use approval, the ALJ noted that the area obstructed by the mangrove islands would be negligible compared to the remaining expanse of the view, and further noted that the owners' real concern was directed at the aesthetics of the project——specifically, they did not want to view mangrove islands. The ALJ stated: "[t]he evidence supports a finding that while the project will undoubtedly alter the view of the water from [the riparian owners' property], the impact on view is not so significant as to constitute an unreasonable infringement of their riparian rights." Id. at ¶ 86. Applying these case law principles, it is determined that the Dock will not unreasonably infringe on or unreasonably restrict the Gerards' riparian right to an unobstructed view. To that point, the cases make clear that the right to an "unobstructed" view is not an unfettered right to a view of the water completely free of any lateral encroachment, but, instead is the right of a view toward the channel or the center of a lake without unreasonable infringement or restriction. Here, although the Dock will laterally encroach on the Gerards' full panoramic view of the Lake——and, as such, may even constitute an annoyance, the evidence did not show that the Dock will obstruct or otherwise restrict their view to the channel or the center of the Lake. Moreover, to the extent the Gerards have expressed concern about the Dock interfering with their view of the south shore of the Lake, O'Donnell makes clear the desire to have a particular object of view——here, the south shore of the Lake——is not a legally protected riparian right. It is also found that the Dock will not unreasonably interfere with the Gerards' riparian rights of ingress, egress, boating, or navigation. As previously noted, the Dock will be located at least 25 feet inside the riparian lines established for Howard's upland property, and, it will not be constructed in a location or operated in a manner that will obstruct, interfere with, or restrict the Gerards' access to the Lake or to sufficient water depths to enable navigation.24/ The evidence also did not establish that the Dock will restrict or otherwise interfere with the Gerards' use of their riparian area for ingress and egress, boating, fishing, bathing, or other riparian uses. In sum, it is concluded that the Dock will not unreasonably infringe on or restrict the riparian rights of adjacent upland riparian owners. Accordingly, it is determined that the Dock will meet the requirements and standards in rule 18-21.004(3) regarding riparian rights. Navigational Hazard For the reasons discussed in paragraphs 63 through 67, it is determined that the Dock will not constitute a navigational hazard in violation of rule 18-21.004(7)(g). Not Contrary to the Public Interest Rule 18-21.004(1)(a) requires an applicant to demonstrate that an activity proposed to be conducted on sovereignty submerged lands will not be contrary to the public interest. To meet this standard, it is not necessary that the applicant show that the activity is affirmatively in the "public interest," as that term is defined in rule 18-21.003(51). Rather, it is sufficient that the applicant show that there are few, if any, "demonstrable environmental, social, and economic costs" of the proposed activity. Castoro, at ¶ 69. For the reasons discussed above, and with the inclusion of the additional recommended conditions in paragraphs 73.A. and 73.B., it is determined that the proposed Dock meets the "not contrary to the public interest" standard required for issuance of the Lease. Demonstration of Entitlement to ERP Howard met her burden under section 120.569(2)(p) to present a prima facie case of entitlement to the ERP by entering into evidence the Application, the Notice of Intent, and supporting information regarding the proposed Dock. She also presented credible, competent, and substantial evidence beyond that required to meet her burden under section 120.569(2)(p) to demonstrate prima facie entitlement to the ERP. The burden then shifted to Petitioners to demonstrate, by a preponderance of the competent substantial evidence, that the Dock does not comply with section 373.414 and applicable ERP rules. For the reasons discussed above, it is determined that Petitioners did not meet their burden of persuasion under section 120.569(2)(p) in this proceeding. Accordingly, for the reasons addressed above, it is determined that Howard is entitled to issuance of the ERP for the Dock. Demonstration of Entitlement to Lease As previously discussed, Howard bore the burden of proof in this proceeding to demonstrate, by a preponderance of the evidence, that the Dock meets all applicable statutory and rule requirements for issuance of the Lease for the Dock. For the reasons discussed above, it is determined that Howard met this burden, and, therefore, is entitled to issuance of the sovereignty submerged lands lease for the Dock. Petitioners' Standing Defenders' Standing As stipulated by the parties and noted above, Defenders is an incorporated non-profit entity created for the primary purpose of protecting and preserving Crooked Lake so that it may remain an OFW for all members of the public to enjoy. Defenders has been in existence since at least the mid- 1980s. Robert Luther, the president of Defenders, testified that the organization's purpose also entails providing education and promoting public awareness in order to preserve the natural beauty, water quality, ecological value, and quality of life around Crooked Lake. As stipulated by the parties and noted above, Defenders has more than 25 members. Luther testified that Defenders has approximately 100 family members, most of whom live on or around Crooked Lake. He noted that many of Defenders' members own boats, which they park at a local boat landing on the Lake. Based on this testimony, it is inferred that these members operate their boats on Crooked Lake. After receiving the public notice of the project, Defenders' board of directors voted to oppose issuance of the Consolidated Authorization for the Dock. Luther testified that the board's decision was based on the determination that "it was clearly within the public interest" to oppose the Dock. Gerards' Standing The Gerards reside at 1055 Scenic Highway, Babson Park, Florida. Their riparian property is immediately adjacent to, and northwest of, Howard's property. The Gerards own a floating dock that is located within their riparian area.25/ The dock consists of two 4-foot- wide by 30-foot-long ramps attached to a 24-foot-long by 8-foot- wide pontoon boat. Priscilla Gerard testified that she enjoys spending time sitting and reading books on the beach in front of her property, and that having that area to sit and read is a significant aspect of her enjoyment of her lakefront property. Ms. Gerard observed that extensive boating activities in the northeast portion of the Lake on weekends is disruptive, and interferes with her use of her beach for relaxing and reading. She particularly noted that boats operating very close to the shore cause waves to splash up on her beach, interfering with her ability to sit and read close to the shore. She did not contend that Howard's use of the Dock for boating would contribute to the disruptive nature of existing boat traffic in the vicinity. Ms. Gerard has viewed the plans for the proposed Dock and is very concerned that due to its size, her view of the south side of the Lake will be completely blocked. She acknowledged, and other competent, credible evidence showed, that there are other docks on the Lake in the vicinity of her riparian property. The evidence shows that existing docks having lengths of 145 feet and 170 feet are located in the vicinity of, and are visible from, the Gerards' property. She testified that an existing dock and tiki hut block her view of the Lake to the north. She acknowledged that although Howard's Dock, if constructed as proposed, may somewhat obstruct her view to the left (south) of her property, it would not block her view straight out into the Lake. Phillip Gerard testified that he has boated extensively on Crooked Lake in a variety of vessel types. He further testified that he has observed a range of boating practices on Crooked Lake, including seeing water skiers and persons being towed behind motorized vessels on inner tubes and other types of "towables." He testified that, based on his personal observations, persons being towed do not have independent control of the speed or direction of the "towable"; thus, depending on the direction in which the towing vessel turns, the towable may be slung to the left or the right. Gerard commented that such lack of control could result in a person riding on a towable colliding with a dock, and he noted that Howard's nephew, who was riding on an inner tube being towed by a boat, was involved in such a collection with his (Mr. Gerard's) own dock. Mr. Gerard did not testify that the Dock would present a navigational hazard to, or otherwise interfere with, the Gerards' riparian right of ingress and egress. Neither of the Gerards testified that the Dock would impact their ability to access navigable waters in the Lake. Mr. Gerard acknowledged that if Howard's Dock were constructed, boats that currently travel very close to the shoreline of his property would be forced to swing further out in the Lake, away from his riparian shoreline, in order to avoid the Dock.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the Department of Environmental Protection enter a final order approving the issuance of Consolidated Environmental Resource Permit and Recommended Intent to Grant Sovereignty Submerged Lands Authorization, Permit No. 53-0351424-001-EI, on the terms and conditions set forth in the Consolidated Notice of Intent and attached draft of Permit No. 53-0351424-001-EI, as modified to include the Additional Recommended Conditions set forth in paragraphs 73.A. and 73B. DONE AND ENTERED this 5th day of July, 2018, in Tallahassee, Leon County, Florida. S CATHY M. SELLERS Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 5th day of July, 2018.

Florida Laws (21) 120.52120.569120.57120.6820.331253.001253.002253.115253.141267.061373.019373.042373.086373.4132373.414373.421373.427403.031403.061403.41290.202 Florida Administrative Code (5) 18-21.00318-21.00462-302.40062-4.00162-4.070
# 6
KAREN AHLERS AND JERI BALDWIN vs SLEEPY CREEK LANDS, LLC AND ST. JOHNS RIVER WATER MANAGEMENT DISTRICT, 14-002609 (2014)
Division of Administrative Hearings, Florida Filed:Palatka, Florida Jun. 03, 2014 Number: 14-002609 Latest Update: Oct. 24, 2016

The Issue The issue to be determined is whether Consumptive Use Permit No. 2-083-91926-3, and Environmental Resource Permit No. IND-083-130588-4 should be issued as proposed in the respective proposed agency actions issued by the St. Johns River Water Management District.

Findings Of Fact The Parties Sierra Club, Inc., is a national organization, the mission of which is to explore, enjoy, and advocate for the environment. A substantial number of Sierra Club’s 28,000 Florida members utilize the Silver River, Silver Springs, the Ocklawaha River, and the St. Johns River for water-based recreational activities, which uses include kayaking, swimming, fishing, boating, canoeing, nature photography, and bird watching. St. Johns Riverkeeper, Inc., is one of 280 members of the worldwide Waterkeepers Alliance. Its mission is to protect, restore, and promote healthy waters of the St. Johns River, its tributaries, springs, and wetlands -- including Silver Springs, the Silver River, and the Ocklawaha River -- through citizen- based advocacy. A substantial number of St. Johns Riverkeeper’s more than 1,000 members use and enjoy the St. Johns River, the Silver River, Silver Springs, and the Ocklawaha River for boating, fishing, wildlife observation, and other water-based recreational activities. Karen Ahlers is a native of Putnam County, Florida, and lives approximately 15 miles from the Applicant’s property on which the permitted uses will be conducted. Ms. Ahlers currently uses the Ocklawaha River for canoeing, kayaking, and swimming, and enjoys birding and nature photography on and around the Silver River. Over the years, Ms. Ahlers has advocated for the restoration and protection of the Ocklawaha River, as an individual and as a past-president of the Putnam County Environmental Council. Jeri Baldwin lives on a parcel of property in the northeast corner of Marion County, approximately one mile from the Applicant’s property on which the permitted uses will be conducted. Ms. Baldwin, who was raised in the area, and whose family and she used the resources extensively in earlier years, currently uses the Ocklawaha River for boating. Florida Defenders of the Environment (FDE) is a Florida corporation, the mission of which is to conserve and protect and restore Florida's natural resources and to conduct environmental education projects. A substantial number of FDE’s 186 members, of which 29 reside in Marion County, Florida, use and enjoy Silver Springs, the Silver River, and the Ocklawaha Aquatic Preserve, and their associated watersheds in their educational and outreach activities, as well as for various recreational activities including boating, fishing, wildlife observation, and other water-based recreational activities. Sleepy Creek Lands, LLC (Sleepy Creek or Applicant), is an entity registered with the Florida Department of State to do business in the state of Florida. Sleepy Creek owns approximately 21,000 acres of land in Marion County, Florida, which includes the East Tract and the North Tract on which the activities authorized by the permits are proposed. St. Johns River Water Management District (SJRWMD or District) is a water-management district created by section 373.069(1). It has the responsibility to conserve, protect, manage, and control the water resources within its geographic boundaries. See § 373.069(2)(a), Fla. Stat. The Consumptive Use Permit The CUP is a modification and consolidation of two existing CUP permits, CUP No. 2-083-3011-7 and CUP No. 2-083- 91926-2, which authorize the withdrawal of 1.46 mgd from wells located on the East Tract. Although the existing CUP permits authorize an allocation of 1.46 mgd, actual use has historically been far less, and rarely exceeded 0.3 mgd. The proposed CUP modification will convert the authorized use of water from irrigation of 1,010 acres of sod grass on the East Tract, to supplemental irrigation of improved pasture for grass and other forage crops (approximately 97 percent of the proposed withdrawals) and cattle watering (approximately three percent of the proposed withdrawals) on the North Tract and the East Tract. An additional very small amount will be used in conjunction with the application of agricultural chemicals. CUP No. 2-083-3011-7 is due to expire in 2021. CUP No. 2-083-91926-2 is due to expire in 2024. In addition to the consolidation of the withdrawals into a single permit, the proposed agency action would extend the term of the consolidated permit to 20 years from issuance, with the submission of a compliance report due 10 years from issuance. Sleepy Creek calculated a water demand of 2.569 mgd for the production of grasses and forage crops necessary to meet the needs for grass-fed beef production, based on the expected demand in a 2-in-10 drought year. That calculation is consistent with that established in CUP Applicant’s Handbook (CUP A.H.) section 12.5.1. The calculated amount exceeds the authorized average allocation of 1.46 mgd. Mr. Jenkins testified as to the District’s understanding that the requested amount would be sufficient, since the proposed use was a “scaleable-type project,” with adjustments to cattle numbers made as necessary to meet the availability of feed. Regardless of demand, the proposed permit establishes the enforceable withdrawal limits applicable to the property. With regard to the East Tract, the proposed agency action reduces the existing 1.46 mgd allocation for that tract to a maximum allocation of 0.464 mgd, and authorizes the irrigation of 611 acres of pasture grass using existing extraction wells and six existing pivots. With regard to the North Tract, the proposed agency action authorizes the irrigation of 1,620 acres of pasture and forage grain crops using 15 center pivot systems. Extraction wells to serve the North Tract pivots will be constructed on the North Tract. The proposed North Tract withdrawal wells are further from Silver Springs than the current withdrawal locations. The proposed CUP allows Sleepy Creek to apply the allocated water as it believes to be appropriate to the management of the cattle operation. Although the East Tract is limited to a maximum of 0.464 mgd, there is no limitation on the North Tract. Thus, Sleepy Creek could choose to apply all of the 1.46 mgd on the North Tract. For that reason, the analysis of impacts from the irrigation of the North Tract has generally been based on the full 1.46 mgd allocation being drawn from and applied to the North Tract. The Environmental Resource Permit As initially proposed, the CUP had no elements that would require issuance of an ERP. However, in order to control the potential for increased runoff and nutrient loading resulting from the irrigation of the pastures, Sleepy Creek proposes to construct a stormwater management system to capture runoff from the irrigated pastures, consisting of a series of vegetated upland buffers, retention berms and redistribution swales between the pastures and downgradient wetland features. Because the retention berm and swale system triggered the permitting thresholds in rule 62-330.020(2)(d) (“a total project area of more than one acre”) and rule 62-330.020(2)(e) (“a capability of impounding more than 40 acre-feet of water”), Sleepy Creek was required to obtain an Environmental Resource Permit for its construction. Regional Geologic Features To the west of the North Tract is a geologic feature known as the Ocala Uplift or Ocala Platform, in which the limestone that comprises the Floridan aquifer system exists at or very near the land surface. Karst features, including subterranean conduits and voids that can manifest at the land surface as sinkholes, are common in the Ocala Uplift due in large part to the lack of consolidated or confining material overlaying the limestone. Water falling on the surface of such areas tends to infiltrate rapidly through the soil into the Floridan aquifer, occasionally through direct connections such as sinkholes. The lack of confinement in the Ocala Uplift results in few if any surface-water features such as wetlands, creeks, and streams. As one moves east from the Ocala Uplift, a geologic feature known as the Cody Escarpment becomes more prominent. In the Cody Escarpment, the limestone becomes increasingly overlain by sands, shell, silt, clays, and other less permeable sediments of the Hawthorn Group. The North Tract and the East Tract lie to the east of the point at which the Cody Escarpment becomes apparent. As a result, water tends to flow overland to wetlands and other surface water features. The Property The North and East Tracts are located in northern Marion County near the community of Fort McCoy. East Tract Topography and Historic Use The East Tract is located in the Daisy Creek Basin, and includes the headwaters of a small creek that drains directly to the Ocklawaha River. The historic use of the East Tract has been as a cleared 1,010-acre sod farm. The production of sod included irrigation, fertilization, and pest control. Little change in the topography, use, and appearance of the property will be apparent as a result of the permits at issue, but for the addition of grazing cattle. The current CUPs that are subject to modification in this proceeding authorize groundwater withdrawals for irrigation of the East Tract at the rate of 1.46 mgd. Since the proposed agency action has the result of reducing the maximum withdrawal from wells on the East Tract to 0.464 mgd, thus proportionately reducing the proposed impacts, there was little evidence offered to counter Sleepy Creek’s prima facie case that reasonable assurance was provided that the proposed East Tract groundwater withdrawal allocation will meet applicable CUP standards. There are no stormwater management structures to be constructed on the East Tract. Therefore, the ERP permit discussed herein is not applicable to the East Tract. North Tract Topography and Historic Use The North Tract has a generally flat topography, with elevations ranging from 45 feet to 75 feet above sea level. The land elevation is highest at the center of the North Tract, with the land sloping towards the Ocklawaha River to the east, and to several large wet prairie systems to the west. Surface water features on the North Tract include isolated, prairie, and slough-type wetlands on approximately 28 percent of the North Tract, and a network of creeks, streams, and ditches, including the headwaters of Mill Creek, a contributing tributary of the Ocklawaha River. A seasonal high groundwater elevation on the North Tract is estimated at 6 to 14 inches below ground surface. The existence of defined creeks and surface water features supports a finding that the North Tract is underlain by a relatively impermeable confining layer that impedes the flow of water from the surface and the shallow surficial aquifer to the upper Floridan and lower Floridan aquifers. If there was no confining unit, water going onto the surface of the property, either in the form of rain or irrigation water, would percolate unimpeded to the lower aquifers. Areas in the Ocala Uplift to the west of the North Tract, where the confining layer is thinner and discontiguous, contain few streams or runoff features. Historically, the North Tract was used for timber production, with limited pasture and crop lands. At the time the 7,207-acre North Tract was purchased by Sleepy Creek, land use consisted of 4,061 acres of planted pine, 1,998 acres of wetlands, 750 acres of improved pasture, 286 acres of crops, 78 acres of non-forested uplands, 20 acres of native forest, 10 acres of open water, and 4 acres of roads and facilities. Prior to the submission of the CUP and ERP applications, much of the planted pine was harvested, and the land converted to improved pasture. Areas converted to improved pasture include those proposed for irrigation, which have been developed in the circular configuration necessary for future use with center irrigation pivots. As a result of the harvesting of planted pine, and the conversion of about 345 acres of cropland and non-forested uplands to pasture and incidental uses, total acreage in pasture on the North Tract increased from 750 acres to 3,938 acres. Other improvements were constructed on the North Tract, including the cattle processing facility. Aerial photographs suggest that the conversion of the North Tract to improved pasture and infrastructure to support a cattle ranch is substantially complete. The act of converting the North Tract from a property dominated by planted pine to one dominated by improved pasture, and the change in use of the East Tract from sod farm to pasture, were agricultural activities that did not require a permit from the District. As such, there is no impropriety in considering the actual, legal use of the property in its current configuration as the existing use for which baseline conditions are to be measured. Petitioners argue that the baseline conditions should be measured against the use of the property as planted pine plantation, and that Sleepy Creek should not be allowed to “cattle-up” before submitting its permit applications, thereby allowing the baseline to be established as a higher impact use. However, the applicable rules and statutes provide no retrospective time-period for establishing the nature of a parcel of property other than that lawfully existing when the application is made. See West Coast Reg’l Water Supply Auth. v. SW Fla. Water Mgmt. Dist., Case No. 95-1520 et seq., ¶ 301 (Fla. DOAH May 29, 1997; SFWMD ) (“The baseline against which projected impacts conditions [sic] are those conditions, including previously permitted adverse impacts, which existed at the time of the filing of the renewal applications.”). The evidence and testimony in this case focused on the effects of the water allocation on the Floridan aquifer, Silver Springs, and the Silver River, and on the effects of the irrigation on water and nutrient transport from the properties. It was not directed at establishing a violation of chapter 373, the rules of the SJRWMD, or the CUP Applicant’s Handbook with regard to the use and management of the agriculturally-exempt unirrigated pastures, nor did it do so. Soil Types Soils are subject to classifications developed by the Soil Conservation Service based on their hydrologic characteristics, and are grouped into Group A, Group B, Group C, or Group D. Factors applied to determine the appropriate hydrologic soil group on a site-specific basis include depth to seasonal high saturation, the permeability rate of the most restrictive layer within a certain depth, and the depth to any impermeable layers. Group A includes the most well-drained soils, and Group D includes the most poorly-drained soils. Group D soils are those with seasonal high saturation within 24 inches of the soil surface and a higher runoff potential. The primary information used to determine the hydrologic soil groups on the North Tract was the depth to seasonal-high saturation, defined as the highest expected annual elevation of saturation in the soil. Depth to seasonal-high saturation was measured through a series of seven hand-dug and augered soil borings completed at various locations proposed for irrigation across the North Tract. In determining depth to seasonal-high saturation, the extracted soils were examined based on depth, color, texture, and other relevant characteristics. In six of the seven locations at which soil borings were conducted, a restrictive layer was identified within 36 inches of the soil surface. At one location at the northeastern corner of the North Tract, the auger hole ended at a depth of 48 inches -- the length of the auger -- at which depth there was an observable increase in clay content but not a full restrictive layer. However, while the soil assessment was ongoing, a back-hoe was in operation approximately one hundred yards north of the boring location. Observations of that excavation revealed a heavy clay layer at a depth of approximately 5 feet. In each of the locations, the depth to seasonal-high saturation was within 14 inches of the soil surface. Based on the consistent observation of seasonal-high saturation at each of the sampled locations, as well as the flat topography of the property with surface water features, the soils throughout the property, with the exception of a small area in the vicinity of Pivot 6, were determined to be in hydrologic soil Group D. Hydrogeologic Features There are generally five hydrogeologic units underlying the North Tract, those units being the surficial aquifer system, the intermediate confining unit, the upper Floridan aquifer, the middle confining unit, and the lower Floridan aquifer. In areas in which a confining layer is present, water falling on the surface of the land flows over the surface of the land or across the top of the confining layer. A surficial aquifer, with a relatively high perched water table, is created by the confinement and separation of surface waters from the upper strata of the Floridan aquifer. Surface waters are also collected in or conveyed by various surface water features, including perched wetlands, creeks, and streams. The preponderance of the evidence adduced at the final hearing demonstrates that the surficial aquifer exists on the property to a depth of up to 20 feet below the land surface (bls). Beneath the surficial aquifer is an intermediate confining unit of dense clay interspersed with beds of sand and calcareous clays that exists to a depth of up to 100 feet bls. The clay material observed on the North Tract is known as massive or structureless. Such clays are restrictive with very low levels of hydraulic conductivity, and are not conducive to development of preferential flow paths to the surficial or lower aquifers. The intermediate confining unit beneath the North Tract restricts the exchange of groundwater from the surficial aquifer to the upper Floridan aquifer. The upper Floridan aquifer begins at a depth of approximately 100 feet bls, and extends to a depth of approximately 340 feet bls. At about 340 feet bls, the upper Floridan aquifer transitions to the middle confining unit, which consists of finely grained, denser material that separates the interchange of water between the upper Floridan aquifer and the lower Floridan aquifer. Karst Features Karst features form as a result of water moving through rock that comprises the aquifer, primarily limestone, dissolving and forming conduits in the rock. Karst areas present a challenging environment to simulate through modeling. Models assume the subsurface to be a relatively uniform “sand box” through which it is easier to simulate groundwater flow. However, if the subsurface contains conduits, it becomes more difficult to simulate the preferential flows and their effect on groundwater flow paths and travel times. The District has designated parts of western Alachua County and western Marion County as a Sensitive Karst Area Basin. A Sensitive Karst Area is a location in which the porous limestone of the Floridan aquifer occurs within 20 feet of the land surface, and in which there is 10 to 20 inches of annual recharge to the Floridan aquifer. The designation of an area as being within the Sensitive Karst Area Basin does not demonstrate that it does, or does not, have subsurface features that are karstic in nature, or that would provide a connection between the surficial aquifer and the Floridan aquifer. The western portion of the North Tract is within the Sensitive Karst Area Basin. The two intensive-use areas on the North Tract that have associated stormwater facilities -- the cattle unloading area and the processing facility -- are outside of the Sensitive Karst Area Basin. The evidence was persuasive that karst features are more prominent to the west of the North Tract. In order to evaluate the presence of karst features on the North Tract, Mr. Andreyev performed a “desktop-type evaluation,” with a minimal field survey. The desktop review included a review of aerial photographs and an investigation of available data, including the Florida Geological Survey database of sinkhole occurrence in the area. The aerial photographs showed circular depressions suggestive of karst activity west and southwest of the North Tract, but no such depressions on the North Tract. Soil borings taken on the North Tract indicated the presence of layers of clayey sand, clays, and silts at a depth of 70 to 80 feet. Well-drilling logs taken during the development of the wells used for an aquifer performance test on the North Tract showed the limestone of the Floridan aquifer starting at a depth below ground surface of 70 to 80 feet. Other boring data generated on the North Tract suggests that there is greater than 100 feet of clay and sandy clay overburden above the Floridan aquifer on and in the vicinity of the North Tract. Regardless of site-specific differences, the observed confining layer separating the surficial aquifer from the Floridan aquifer is substantial, and not indicative of a karst environment. Aquifer performance tests performed on the North Tract were consistent in showing that drawdown in the surficial aquifer from the tests was minimal to non-detectable, which is strong evidence of an intact and low-permeability confining layer. The presence of well-developed drainage features on the North Tract is further evidence of a unit of confinement that is restricting water from going deeper into the subsurface, and forcing it to runoff to low-lying surface water features. Petitioners’ witnesses did not perform any site- specific analysis of karst features on or around the Sleepy Creek property. Their understanding of the nature of the karst systems in the region was described as “hypothetical or [] conceptual.” Dr. Kincaid admitted that he knew of no conduits on or adjacent to the North Tract. As a result of the data collected from the North Tract, Mr. Hearn opined that the potential for karst features on the property that provide an opening to the upper Floridan aquifer “is extremely remote.” Mr. Hearn’s opinion is consistent with the preponderance of the evidence in this case, and is accepted. In the event a surface karst feature were to manifest itself, Sleepy Creek has proposed that the surface feature be filled and plugged to reestablish the integrity of the confining layer. More to the point, the development of a surficial karst feature in an area influenced by irrigation would be sufficient grounds for the SJRWMD to reevaluate and modify the CUP to account for any changed conditions affecting the assumptions and bases for issuance of the CUP. Silver Springs, the Silver River, and the Ocklawaha River The primary, almost exclusive concern of Petitioners was the effect of the modified CUP and the nutrients from the proposed cattle ranch on Silver Springs, the Silver River, and the Ocklawaha River. Silver Springs Silver Springs has long been a well-known attraction in Florida. It is located just to the east of Ocala, Florida. Many of the speakers at the public comment period of this proceeding spoke fondly of having frequented Silver Springs over the years, enjoying its crystal clear waters through famous glass-bottomed boats. For most of its recorded history, Silver Springs was the largest spring by volume in Florida. Beginning in the 1970s, it began to lose its advantage, and by the year 2000, Rainbow Springs, located in southwestern Marion County, surpassed Silver Springs as the state’s largest spring. Silver Springs exists at the top of the potentiometric surface of the Floridan aquifer. Being at the “top of the mountain,” when water levels in the Floridan aquifer decline, groundwater flow favors the lower elevation springs. Thus, surrounding springshed boundaries expand to take more water to maintain their baseflows, at the expense of the Silver Springs springshed, which contracts. Rainbow Springs shares an overlapping springshed with Silver Springs. The analogy used by Dr. Knight was of the aquifer as a bucket with holes at different levels, and with the Silver Springs “hole” near the top of the bucket. When the water level in the bucket is high, water will flow from the top hole. As the water level drops below that hole, it will preferentially flow from the lower holes. Rainbow Springs has a vent or outlet from the aquifer, that is 10 feet lower in elevation than that of Silver Springs. Coastal springs are lower still. Thus, as groundwater levels decline, the lower springs “pirate flow” from the upper springs. Since the first major studies of Silver Springs were conducted in the 1950s, the ecosystem of Silver Springs has undergone changes. The water clarity, though still high as compared to other springs, has been reduced by 10 to 15 percent. Since the 1950s, macrophytic plants, i.e., rooted plants with seeds and flowers, have declined in population, while epiphytic and benthic algae have increased. Those plants are sensitive to increases in nitrogen in the water. Thus, Dr. Knight’s opinion that increases in nitrogen emerging from Silver Springs, calculated to have risen from just over 0.4 mg/l in the 1950s, to 1.1 mg/l in 2004, and to up to 1.5 mg/l at present,1/ have caused the observed vegetative changes is accepted. Silver River Silver Springs forms the headwaters for the Silver River, a spring run 5 1/2 miles in length, at which point it becomes a primary input to the Ocklawaha River. Issues of water clarity and alteration of the vegetative regime that exist at Silver Springs are also evident in the Silver River. In addition, the reduction in flow allows for more tannic water to enter the river, further reducing clarity. Dr. Dunn recognized the vegetative changes in the river, and opined that the “hydraulic roughness” caused by the increase in vegetation is likely creating a spring pool backwater at Silver Springs, thereby suppressing some of the flow from the spring. The Silver River has been designated as an Outstanding Florida Water. There are currently no Minimum Flows and Levels established by the District for the Silver River. Ocklawaha River The Ocklawaha River originates near Leesburg, Florida, at the Harris Chain of Lakes, and runs northward past Silver Springs. The Silver River is a major contributor to the flow of the Ocklawaha River. Due to the contribution of the Silver River and other spring-fed tributaries, the Ocklawaha River can take on the appearance of a spring run during periods of low rainfall. Historically, the Ocklawaha River flowed unimpeded to its confluence with the St. Johns River in the vicinity of Palatka, Florida. In the 1960s, as part of the Cross-Florida Barge Canal project, the Rodman Dam was constructed across the Ocklawaha River north of the Sleepy Creek property, creating a large reservoir known as the Rodman Pool. Dr. Knight testified convincingly that the Rodman Dam and Pool have altered the Ocklawaha River ecosystem, precipitating a decline in migratory fish populations and an increase in filamentous algae. At the point at which the Ocklawaha River flows past the Sleepy Creek property, it retains its free-flowing characteristics. Mill Creek, which has its headwaters on the North Tract, is a tributary of the Ocklawaha River. The Ocklawaha River, from the Eureka Dam south, has been designated as an Outstanding Florida Water. However, the Ocklawaha River at the point at which Mill Creek or other potential surface water discharges from the Sleepy Creek property might enter the river are not included in the Outstanding Florida Water designation. There are currently no Minimum Flows and Levels established by the District for the Ocklawaha River. The Silver Springs Springshed A springshed is that area from which a spring draws water. Unlike a surface watershed boundary, which is fixed based on land features, contours, and elevations, a springshed boundary is flexible, and changes depending on a number of factors, including rainfall. As to Silver Springs, its springshed is largest during periods of more abundant rainfall when the aquifer is replenished, and smaller during drier periods when groundwater levels are down, and water moves preferentially to springs and discharge points that are lower in elevation. The evidence in this case was conflicting as to whether the North Tract is in or out of the Silver Springs springshed boundary. Dr. Kincaid indicated that under some of the springshed delineations, part of the North Tract was out of the springshed, but over the total period of record, it is within the springshed. Thus, it was Dr. Kincaid’s opinion that withdrawals anywhere within the region will preferentially impact Silver Springs, though he admitted that he did not have the ability to quantify his opinion. Dr. Knight testified that the North Tract is within the Silver Springs “maximum extent” springshed at least part of the time, if not all the time. He did not opine as to the period of time in which the Silver Springs springshed was at its maximum extent. Dr. Bottcher testified that the North Tract is not within the Silver Springs springshed because there is a piezometric rise between North Tract and Silver Springs. Thus, in his opinion, withdrawals at the North Tract would not be withdrawing water going to Silver Springs. Dr. Dunn agreed that the North Tract is on the groundwater divide for Silver Springs. In his view, the North Tract is sometimes in, and sometimes out of the springshed depending on the potentiometric surface. In his opinion, the greater probability is that the North Tract is more often outside of the Silver Springs springshed, with seasonal and year—to—year variation. Dr. Dunn’s opinion provides the most credible explanation of the extent to which the North Tract sits atop that portion of the lower Floridan aquifer that feeds to Silver Springs. Thus, it is found that the groundwater divide exists to the south of the North Tract for a majority of the time, and water entering the Floridan aquifer from the North Tract will, more often than not, flow away from Silver Springs. Silver Springs Flow Volume The Silver Springs daily water discharge has been monitored and recorded since 1932. Over the longest part of the period of record, up to the 1960s, flows at Silver Springs averaged about 800 cubic feet per second (cfs). Through 1989, there was a reasonable regression between rainfall and springflow, based on average rainfalls. The long-term average rainfall in Ocala was around 50 inches per year, and long-term springflow was about 800 cfs, with deviations from average generally consistent with one another. Between 1990 and 1999, the relationship between rainfall and springflow declined by about 80 cubic feet per second. Thus, with average rainfall of 50 inches per year, the average springflow was reduced to about 720 cfs. From 2000 to 2009, there was an additional decline, such that the total cumulative decline for the 20-year period through 2009 was 250 cfs. Dr. Dunn agreed with Dr. Knight that after 2000, there was an abrupt and persistent reduction in flow of about 165 cfs. However, Dr. Dunn did not believe the post-2000 flow reduction could be explained by rainfall directly, although average rainfall was less than normal. Likewise, groundwater withdrawals did not offer an adequate explanation. Dr. Dunn described a natural 30-year cycle of wetter and drier periods known as the Atlantic Multidecadal Oscillation (AMO) that has manifested itself over the area for the period of record. From the 1940s up through 1970, the area experienced an AMO wet cycle with generally higher than normal rainfall at the Ocala rain station. For the next 30-year period, from 1970 up to 2000, the Ocala area ranged from a little bit drier to some years in which it was very, very dry. Dr. Dunn attributed the 80 cfs decline in Silver Springs flow recorded in the 1990s to that lower rainfall cycle. After 2000, when the next AMO cycle would be expected to build up, as it did post—1940, it did not happen. Rather, there was a particularly dry period around 2000 that Dr. Dunn believes to have had a dramatic effect on the lack of recovery in the post-2000 flows in the Silver River. According to Mr. Jenkins, that period of deficient rainfall extended through 2010. Around the year 2001, the relationship between rainfall and flow changed such that for a given amount of rainfall, there was less flow in the Silver River, with flow dropping to as low as 535 cfs after 2001. It is that reduction in flow that Dr. Knight has attributed to groundwater withdrawals. It should be noted that the observed flow of Silver Springs that formed the 1995 baseline conditions for the North Central Florida groundwater model that will be discussed herein was approximately 706 cfs. At the time of the final hearing in August 2014, flow at Silver Springs was 675 cfs. The reason offered for the apparent partial recovery was higher levels of rainfall, though the issue was not explored in depth. For the ten-year period centered on the year 2000, local water use within Marion and Alachua County, closer to Silver Springs, changed little -- around one percent per year. From a regional perspective, groundwater use declined at about one percent per year for the period from 1990 to 2010. The figures prepared by Dr. Knight demonstrate that the Sleepy Creek project area is in an area that has a very low density of consumptive use permits as compared to areas adjacent to Silver Springs and more clearly in the Silver Springs springshed. In Dr. Dunn’s opinion, there were no significant changes in groundwater use either locally or regionally that would account for the flow reduction in Silver Springs from 1990 to 2010. In that regard, the environmental report prepared by Dr. Dunn and submitted with the CUP modification application estimated that groundwater withdrawals accounted for a reduction in flow at Silver Springs of approximately 20 cfs as measured against the period of record up to the year 2000, with most of that reduction attributable to population growth in Marion County. In the March 2014, environmental impacts report, Dr. Dunn described reductions in the stream flow of not only the Silver River, but of other tributaries of the lower Ocklawaha River, including the upper Ocklawaha River at Moss Bluff and Orange Creek. However, an evaluation of the Ocklawaha River water balance revealed there to be additional flow of approximately 50 cfs coming into the Ocklawaha River at other stations. Dr. Dunn suggested that changes to the vent characteristics of Silver Springs, and the backwater effects of increased vegetation in the Silver River, have resulted in a redistribution of pressure to other smaller springs that discharge to the Ocklawaha River, accounting for a portion of the diminished flow at Silver Springs. The Proposed Cattle Operation Virtually all beef cattle raised in Florida, upon reaching a weight of approximately 875 pounds, are shipped to Texas or Kansas to be fattened on grain to the final body weight of approximately 1,150 pounds, whereupon they are slaughtered and processed. The United States Department of Agriculture has a certification for grass—fed beef which requires that, after an animal is weaned, it can only be fed on green forage crops, including grasses, and on corn and grains that are cut green and before they set seed. The forage crops may be grazed or put into hay or silage and fed when grass and forage is dormant. The benefit of grass feeding is that a higher quality meat is produced, with a corresponding higher market value. Sleepy Creek plans to develop the property as a grass- fed beef production ranch, with pastures and related loading/unloading and slaughter/processing facilities where calves can be fattened on grass and green grain crops to a standard slaughter weight, and then slaughtered and processed locally. By so doing, Sleepy Creek expects to save the transportation and energy costs of shipping calves to the Midwest, and to generate jobs and revenues by employing local people to manage, finish, and process the cattle. As they currently exist, pastures proposed for irrigation have been cleared and seeded, and have “fairly good grass production.” The purpose of the irrigation is to enhance the production and quality of the grass in order to maintain the quality and reliability of feed necessary for the production of grass-fed beef. East Tract Cattle Operation The East Tract is 1,242 acres in size, substantially all of which was previously cleared, irrigated, and used for sod production. The proposed CUP permit authorizes the irrigation of 611 acres of pasture under six existing center pivots. The remaining 631 acres will be used as improved, but unirrigated, pasture. Under the proposed permit, a maximum of 1,207 cattle would be managed on the East Tract. Of that number, 707 cattle would be grazed on the irrigated paddocks, and 500 cattle would be grazed on the unirrigated improved pastures. If the decision is made to forego irrigation on the East Tract, with the water allocation being used on the North Tract or not at all, the number of cattle grazed on the six center pivot pastures would be decreased from 707 cattle to 484 cattle. The historic use of the East Tract as a sod farm resulted in high phosphorus levels in the soil from fertilization, which has made its way to Daisy Creek. Sleepy Creek has proposed a cattle density substantially below that allowed by application of the formulae in the Nutrient Management Plan in order to “mine” the phosphorus levels in the soil over time. North Tract Cattle Operation The larger North Tract includes most of the “new” ranch activities, having no previous irrigation, and having been put to primarily silvicultural use with limited pasture prior to its acquisition by Sleepy Creek. The ranch’s more intensive uses, i.e., the unloading corrals and the slaughter house, are located on the North Tract. The North Tract is 7,207 acres in size. Of that, 1,656 acres are proposed for irrigation by means of 15 center- pivot irrigation systems. In addition to the proposed irrigated pastures, the North Tract includes 2,382 acres of unirrigated improved pasture, of which approximately 10 percent is wooded. Under the proposed permit, a maximum of 6,371 cattle would be managed on the North Tract. Of that number, 3,497 cattle would be grazed on the irrigated paddocks (roughly 2.2 head of cattle per acre), and 2,374 cattle would graze on the improved pastures (up to 1.1 head of cattle per acre). The higher cattle density in the irrigated pastures can be maintained due to the higher quality grass produced as a result of irrigation. The remaining 500 cattle would be held temporarily in high-concentration corrals, either after offloading or while awaiting slaughter. On average, there will be fewer than 250 head of cattle staged in those high-concentration corrals at any one time. In the absence of irrigation, the improved pasture on the North Tract could sustain about 4,585 cattle. Nutrient Management Plan, Water Conservation Plan, and BMPs The CUP and ERP applications find much of their support in the implementation of the Nutrient Management Plan (NMP), the Water Conservation Plan, and Best Management Practices (BMPs). The NMP sets forth information designed to govern the day to day operations of the ranch. Those elements of the NMP that were the subject of substantive testimony and evidence at the hearing are discussed herein. Those elements not discussed herein are found to have been supported by Sleepy Creek’s prima facie case, without a preponderance of competent and substantial evidence to the contrary. The NMP includes a herd management plan, which describes rotational grazing and the movement of cattle from paddock to paddock, and establishes animal densities designed to maintain a balance of nutrients on the paddocks, and to prevent overgrazing. The NMP establishes fertilization practices, with the application of fertilizer based on crop tissue analysis to determine need and amount. Thus, the application of nitrogen- based fertilizer is restricted to that capable of ready uptake by the grasses and forage crops, limiting the amount of excess nitrogen that might run off of the pastures or infiltrate past the root zone. The NMP establishes operation and maintenance plans that incorporate maintenance and calibration of equipment, and management of high-use areas. The NMP requires that records be kept of, among other things, soil testing, nutrient application, herd rotation, application of irrigation water, and laboratory testing. The irrigation plan describes the manner and schedule for the application of water during each irrigation cycle. Irrigation schedules for grazed and cropped scenarios vary from pivot to pivot based primarily on soil type. The center pivots proposed for use employ high-efficiency drop irrigation heads, resulting in an 85 percent system efficiency factor, meaning that there is an expected evaporative loss of 15 percent of the water before it becomes available as water in the soil. That level of efficiency is greater than the system efficiency factor of 80 percent established in CUP A.H. section 12.5.2. Other features of the irrigation plan include the employment of an irrigation manager, installation of an on-site weather station, and cumulative tracking of rain and evapotranspiration with periodic verification of soil moisture conditions. The purpose of the water conservation practices is to avoid over application of water, limiting over-saturation and runoff from the irrigated pastures. Sleepy Creek has entered into a Notice of Intent to Implement Water Quality BMPs with the Florida Department of Agriculture and Consumer Services which is incorporated in the NMP and which requires the implementation of Best Management Practices.2/ Dr. Bottcher testified that implementation and compliance with the Water Quality Best Management Practices manual creates a presumption of compliance with water quality standards. His testimony in that regard is consistent with Department of Agriculture and Consumer Services rule 5M-11.003 (“implementation, in accordance with adopted rules, of BMPs that have been verified by the Florida Department of Environmental Protection as effective in reducing target pollutants provides a presumption of compliance with state water quality standards.”). Rotational Grazing Rotational grazing is a practice by which cattle are allowed to graze a pasture for a limited period of time, after which they are “rotated” to a different pasture. The 1,656 acres proposed for irrigation on the North Tract are to be divided into 15 center-pivot pastures. Each individual pasture will have 10 fenced paddocks. The 611 acres of irrigated pasture on the East Tract are divided into 6 center-pivot pastures. The outer fence for each irrigated pasture is to be a permanent “hard” fence. Separating the internal paddocks will be electric fences that can be lowered to allow cattle to move from paddock to paddock, and then raised after they have moved to the new paddock. The NMP for the North Tract provides that cattle are to be brought into individual irrigated pastures as a single herd of approximately 190 cattle and placed into one of the ten paddocks. They will be moved every one to three days to a new paddock, based upon growing conditions and the reduction in grass height resulting from grazing. In this way, the cattle are rotated within the irrigated pasture, with each paddock being used for one to three days, and then rested until each of the other paddocks have been used, whereupon it will again be used in the rotation. The East Tract NMP generally provides for rotation based on the height of the pasture grasses, but is designed to provide a uniform average of cattle per acre per year. Due to the desire to “mine” phosphorus deposited during the years of operation of the East Tract as a sod farm, the density of cattle on the irrigated East Tract pastures is about 30 percent less than that proposed for the North Tract. The East Tract NMP calls for a routine pasture rest period of 15 to 30 days. Unlike dairy farm pastures, where dairy cows traverse a fixed path to the milking barn several times a day, there will be minimal “travel lanes” within the pastures or between paddocks. There will be no travel lanes through wetlands. If nitrogen-based fertilizer is needed, based upon tissue analysis of the grass, fertilizer is proposed for application immediately after a paddock is vacated by the herd. By so doing, the grass within each paddock will have a sufficient period to grow and “flush up” without grazing or traffic, which results in a high—quality grass when the cattle come back around to feed. Sleepy Creek proposes that rotational grazing is to be practiced on improved pastures and irrigated pastures alike. The rotational practices on the improved East Tract and North Tract pastures are generally similar to those practiced on the irrigated pastures. The paddocks will have permanent watering troughs, with one trough serving two adjacent paddocks. The troughs will be raised to prevent “boggy areas” from forming around the trough. Since the area around the troughs will be of a higher use, Sleepy Creek proposes to periodically remove accumulated manure, and re-grade if necessary. Other cattle support items, including feed bunkers and shade structures are portable and can be moved as conditions demand. Forage Crop Production The primary forage crop on the irrigated pastures is to be Bermuda grass. Bermuda grass or other grass types tolerant of drier conditions will be used in unirrigated pastures. During the winter, when Bermuda grass stops growing, Sleepy Creek will overseed the North Tract pastures with ryegrass or other winter crops. Due to the limitation on irrigation water, the East Tract NMP calls for no over-seeding for production of winter crops. Crops do not grow uniformly during the course of a year. Rather, there are periods during which there are excess crops, and periods during which the crops are not growing enough to keep up with the needs of the cattle. During periods of excess, Sleepy Creek will cut those crops and store them as haylage to be fed to the cattle during lower growth periods. The North Tract management plan allows Sleepy Creek to dedicate one or more irrigated pastures for the exclusive production of haylage. If that option is used, cattle numbers will be reduced in proportion to the number of pastures dedicated to haylage production. As a result of the limit on irrigation, the East Tract NMP does not recommend growing supplemental feed on dedicated irrigation pivot pastures. Direct Wetland Impacts Approximately 100 acres proposed for irrigation are wetlands or wetland buffer. Those areas are predominantly isolated wetlands, though some have surface water connections to Mill Creek, a water of the state. Trees will be cut in the wetlands to allow the pivot to pass overhead. Tree cutting is an exempt agricultural activity that does not require a permit. There was no persuasive evidence that cutting trees will alter the fundamental benefit of the wetlands or damage water resources of the District. The wetlands and wetland buffer will be subject to the same watering and fertigation regimen as the irrigated pastures. The application of water to wetlands, done concurrently with the application of water to the pastures, will occur during periods in which the pasture soils are dry. The incidental application of water to the wetlands during dry periods will serve to maintain hydration of the wetlands, which is considered to be a benefit. Fertilizers will be applied through the irrigation arms, a process known as fertigation. Petitioners asserted that the application of fertilizer onto the wetlands beneath the pivot arms could result in some adverse effects to the wetlands. However, Petitioners did not quantify to what extent the wetlands might be affected, or otherwise describe the potential effects. Fertigation of the wetlands will promote the growth of wetland plants. Nitrogen applied through fertigation will be taken up by plants, or will be subject to denitrification -- a process discussed in greater detail herein -- in the anaerobic wetland soils. The preponderance of the evidence indicated that enhanced wetland plant growth would not rise to a level of concern. Since most of the affected wetlands are isolated wetlands, there is expected to be little or no discharge of nutrients from the wetlands. Even as to those wetlands that have a surface water connection, most, if not all of the additional nitrogen applied through fertigation will be accounted for by the combined effect of plant uptake and denitrification. Larger wetland areas within an irrigated pasture will be fenced at the buffer line to prevent cattle from entering. The NMP provided a blow-up of the proposed fencing related to a larger wetland on Pivot 8. Although other figures are not to the same scale, it appears that larger wetlands associated with Pivots 1, 2, 3, and 12 will be similarly fenced. Cattle would be allowed to go into the smaller, isolated wetlands. Cattle going into wetlands do not necessarily damage the wetlands. Any damage that may occur is a function of density, duration, and the number of cattle. The only direct evidence of potential damage to wetlands was the statement that “[i]f you have 6,371 [cattle] go into a wetland, there may be impacts.” The NMP provides that pasture use will be limited to herds of approximately 190 cattle, which will be rotated from paddock to paddock every two to three days, and which will allow for “rest” periods of approximately 20 days. There will be no travel lanes through any wetland. Thus, there is no evidence to support a finding that the cattle at the density, duration, and number proposed will cause direct adverse effects to wetlands on the property. High Concentration Areas Cattle brought to the facility are to be unloaded from trucks and temporarily corralled for inspection. For that period, the cattle will be tightly confined. Cattle that have reached their slaughter weight will be temporarily held in corrals associated with the processing plant. The stormwater retention ponds used to capture and store runoff from the offloading corral and the processing plant holding corral are part of a normal and customary agricultural activity, and are not part of the applications and approvals that are at issue in this proceeding. The retention ponds associated with the high-intensity areas do not require permits because they do not exceed one acre in size or impound more than 40 acre-feet of water. Nonetheless, issues related to the retention ponds were addressed by Petitioners and Sleepy Creek, and warrant discussion here. The retention ponds are designed to capture 100 percent of the runoff and entrained nutrients from the high concentration areas for a minimum of a 24—hour/25—year storm event. If rainfall occurs in excess of the designed storm, the design is such that upon reaching capacity, only new surface water coming to the retention pond will be discharged, and not that containing high concentrations of nutrients from the initial flush of stormwater runoff. Unlike the stormwater retention berms for the pastures, which are to be constructed from the first nine inches of permeable topsoil on the property, the corral retention ponds are to be excavated to a depth of six feet which, based on soil borings in the vicinity, will leave a minimum of two to four feet of clay beneath the retention ponds. In short, the excavation will penetrate into the clay layer underlying the pond sites, but will not penetrate through that layer. The excavated clay will be used to form the side slopes of the ponds, lining the permeable surficial layer and generally making the ponds impermeable. Organic materials entering the retention ponds will form an additional seal. An organic seal is important in areas in which retention ponds are constructed in sandy soil conditions. Organic sealing is less important in this case, where clay forms the barrier preventing nutrients from entering the surficial aquifer. Although the organic material is subject to periodic removal, the clay layer will remain to provide the impermeable barrier necessary to prevent leakage from the ponds. Dr. Bottcher testified that if, during excavation of the ponds, it was found that the remaining in-situ clay layer was too thin, Sleepy Creek would implement the standard practice of bringing additional clay to the site to ensure adequate thickness of the liner. Nutrient Balance The goal of the NMP is to create a balance of nutrients being applied to and taken up from the property. Nitrogen and phosphorus are the nutrients of primary concern, and are those for which specific management standards are proposed. Nutrient inputs to the NMP consist generally of deposition of cattle manure (which includes solid manure and urine), recycling of plant material and roots from the previous growing season, and application of supplemental fertilizer. Nutrient outputs to the NMP consist generally of volatization of ammonia to the atmosphere, uptake and utilization of the nutrients by the grass and crops, weight gain of the cattle, and absorption and denitrification of the nutrients in the soil. The NMP, and the various models discussed herein, average the grass and forage crop uptake and the manure deposition to match that of a 1,013 pound animal. That average weight takes into account the fact that cattle on the property will range from calf weight of approximately 850 pounds, to slaughter weight of 1150 pounds. Nutrients that are not accounted for in the balance, e.g., those that become entrained in stormwater or that pass through the plant root zone without being taken up, are subject to runoff to surface waters or discharge to groundwater. Generally, phosphorus not taken up by crops remains immobile in the soil. Unless there is a potential for runoff to surface waters, the nutrient balance is limited by the amount of nitrogen that can be taken up by the crops. Due to the composition of the soils on the property, the high water table, and the relatively shallow confining layer, there is a potential for surface runoff. Thus, the NMP was developed using phosphorus as the limiting nutrient, which results in nutrient application being limited by the “P-index.” A total of 108 pounds of phosphorus per acre/per year can be taken up and used by the irrigated pasture grasses and forage crops. Therefore, the total number of cattle that can be supported on the irrigated pastures is that which, as a herd, will deposit an average of 108 pounds of phosphorus per year over the irrigated acreage. Therefore, Sleepy Creek has proposed a herd size and density based on calculations demonstrating that the total phosphorus contained in the waste excreted by the cattle equals the amount taken up by the crops. A herd producing 108 pounds per acre per year of phosphorus is calculated to produce 147 pounds of nitrogen per acre per year. The Bermuda grass and forage crops proposed for the irrigated fields require 420 pounds of nitrogen per acre per year. As a result of the nitrogen deficiency, additional nitrogen-based fertilizer to make up the shortfall is required to maintain the crops. Since phosphorus needs are accounted for by animal deposition, the fertilizer will have no phosphorus. The NMP requires routine soil and plant tissue tests to determine the amount of nitrogen fertilizer needed. By basing the application of nitrogen on measured rather than calculated needs, variations in inputs, including plant decomposition and atmospheric deposition, and outputs, including those affected by weather, can be accounted for, bringing the full nutrient balance into consideration. The numeric values for crop uptakes, manure deposition, and other estimates upon which the NMP was developed were based upon literature, values, and research performed and published by the University of Florida and the Natural Resource Conservation Service. Dr. Bottcher testified convincingly that the use of such values is a proven and reliable method of developing a balance for the operation of similar agricultural operations. A primary criticism of the NMP was its expressed intent to “reduce” or “minimize” the transport of nutrients to surface waters and groundwater, rather than to “negate” or “prevent” such transport. Petitioners argue that complete prevention of the transport of nutrients from the property is necessary to meet the standards necessary for issuance of the CUP and ERP. Mr. Drummond went into some detail regarding the total mass of nutrients expected to be deposited onto the ground from the cattle, exclusive of fertilizer application. In the course of his testimony, he suggested that the majority of the nutrients deposited on the land surface “are going to make it to the surficial aquifer and then be carried either to the Floridan or laterally with the groundwater flow.” However, Mr. Drummond performed no analysis on the fate of nitrogen through uptake by crops, volatization, or soil treatment, and did not quantify the infiltration of nitrogen to groundwater. Furthermore, he was not able to provide any quantifiable estimate on any effect of nutrients on Mill Creek, the Ocklawaha River, or Silver Springs. In light of the effectiveness of the nutrient balance and other elements of the NMP, along with the retention berm system that will be discussed herein, Mr. Drummond’s assessment of the nutrients that might be expected to impact water resources of the District is contrary to the greater weight of the evidence. Mr. Drummond’s testimony also runs counter to that of Dr. Kincaid, who performed a particle track analysis of the fate of water recharge from the North Tract. In short, Dr. Kincaid calculated that of the water that makes it as recharge from the North Tract to the surficial aquifer, less than one percent is expected to make its way to the upper Floridan aquifer, with that portion originating from the vicinity of Pivot 6. Recharge from the other 14 irrigated pastures was ultimately accounted for by evapotranspiration or emerged at the surface and found its way to Mill Creek. The preponderance of the competent, substantial evidence adduced at the final hearing supports the effectiveness of the NMPs for the North Tract and East Tract at managing the application and use of nutrients on the property, and minimizing the transport of nutrients to surface water and groundwater resources of the District. North Central Florida Model All of the experts involved in this proceeding agreed that the use of groundwater models is necessary to simulate what might occur below the surface of the ground. Models represent complex systems by applying data from known conditions and impacts measured over a period of years to simulate the effects of new conditions. Models are imperfect, but are the best means of predicting the effects of stresses on complex and unseen subsurface systems. The North Central Florida (NCF) model is used to simulate impacts of water withdrawals on local and regional groundwater levels and flows. The NCF model simulates the surficial aquifer, the upper Floridan aquifer, and the lower Floridan aquifer. Those aquifers are separated from one another by relatively impervious confining units. The intermediate confining unit separates the surficial aquifer from the upper Floridan aquifer. The intermediate confining unit is not present in all locations simulated by the NCF model. However, the evidence is persuasive that the intermediate confining unit is continuous at the North Tract, and serves to effectively isolate the surficial aquifer from the upper Floridan aquifer. The NCF model is not a perfect depiction of what exists under the land surface of the North Tract or elsewhere. It was, however, acknowledged by the testifying experts in this case, despite disagreements as to the extent of error inherent in the model, to be the best available tool for calculating the effects of withdrawals of water within the boundary of the model. The NCF model was developed and calibrated over a period of years, is updated routinely as data becomes available, and has undergone peer review. Aquifer Performance Tests In order to gather site-specific data regarding the characteristics of the aquifer beneath the Sleepy Creek property, a series of three aquifer performance tests (APTs) was conducted on the North Tract. The first two tests were performed by Sleepy Creek, and the third by the District. An APT serves to induce stress on the aquifer by pumping from a well at a high rate. By observing changes in groundwater levels in observation wells, which can be at varying distances from the extraction well, one can extrapolate the nature of the subsurface. In addition, well-completion reports for the various withdrawal and observation wells provide actual data regarding the composition of subsurface soils, clays, and features of the property. The APT is particularly useful in evaluating the ability of the aquifer to produce water, and in calculating the transmissivity of the aquifer. Transmissivity is a measure of the rate at which a substance passes through a medium and, as relevant to this case, measures how groundwater flows through an aquifer. The APTs demonstrated that the Floridan aquifer is capable of producing water at the rate requested. The APT drawdown contour measured in the upper Floridan aquifer was greater than that predicted from a simple run of the NCF model, but the lateral extent of the drawdown was less than predicted. The most reasonable conclusion to be drawn from the combination of greater than expected drawdown in the upper Floridan aquifer with less than expected extent is that the transmissivity of the aquifer beneath the North Tract is lower than the NCF model assumptions. The conclusion that the transmissivity of the aquifer at the North Tract is lower than previously estimated means that impacts from groundwater extraction would tend to be more vertical than horizontal, i.e., the drawdown would be greater, but would be more localized. As such, for areas of lower than estimated transmissivity, modeling would over-estimate off-site impacts from the extraction. NCF Modeling Scenarios The initial NCF modeling runs were based on an assumed withdrawal of 2.39 mgd, an earlier -- though withdrawn - - proposal. The evidence suggests that the simulated well placement for the 2.39 mgd model run was entirely on the North Tract. Thus, the results of the model based on that withdrawal have some limited relevance, especially given that the proposed CUP allows for all of the requested 1.46 mgd of water to be withdrawn from North Tract wells at the option of Sleepy Creek, but will over-predict impacts from the permitted rate of withdrawal. A factor that was suggested as causing a further over-prediction of drawdown in the 2.39 mgd model run was the decision, made at the request of the District, to exclude the input of data of additional recharge to the surficial aquifer, wetlands and surface waters from the irrigation, and the resulting diminution in soil storage capacity. Although there is some merit to the suggestion that omitting recharge made the model results “excessively conservative,” the addition of recharge to the model would not substantially alter the predicted impacts. A model run was subsequently performed based on a presumed withdrawal of 1.54 mgd, a rate that remains slightly more than, but still representative of, the requested amount of 1.46 mgd. The 1.54 mgd model run included an input for irrigation recharge. The simulated extraction points were placed on the East Tract and North Tract in the general configuration as requested in the CUP application. The NCF is designed to model the impacts of a withdrawal based upon various scenarios, identified at the hearing as Scenarios A, B, C, and D. Scenario A is the baseline condition for the NCF model, and represents the impacts of all legal users of water at their estimated actual flow rates as they existed in 1995. Scenario B is all existing users, not including the applicant, at end-of-permit allocations. Scenario C is all existing users, including the applicant, at current end-of-permit allocations. Scenario D is all permittees at full allocation, except the applicant which is modeled at the requested (i.e., new or modified) end-of-permit allocation. To simulate the effects of the CUP modification, simulations were performed on scenarios A, C, and D. In order to measure the specific impact of the modification of the CUP, the Scenario C impacts to the surficial, upper Floridan, and lower Floridan aquifers were compared with the Scenario D impacts to those aquifers. In order to measure the cumulative impact of the CUP, the Scenario A actual-use baseline condition was compared to the Scenario D condition which predicts the impacts of all permitted users, including the applicant, pumping at full end-of-permit allocations. The results of the NCF modeling indicate the following: 2.39 mgd - Specific Impact The surficial aquifer drawdown from the simulated 2.39 mgd withdrawal was less than 0.05 feet on-site and off- site, except to the west of the North Tract, at which a drawdown of 0.07 feet was predicted. The upper Floridan aquifer drawdown from the 2.39 mgd withdrawal was predicted at between 0.30 and 0.12 feet on-site, and between 0.30 and 0.01 feet off-site. The higher off-site figures are immediately proximate to the property. The lower Floridan aquifer drawdown from the 2.39 mgd withdrawal was predicted at less than 0.05 feet at all locations, and at or less than 0.02 feet within six miles of the North Tract. 2.39 mgd - Cumulative Impact The cumulative impact to the surficial aquifer from all permitted users, including a 2.39 mgd Sleepy Creek withdrawal, was less than 0.05 feet on-site, and off-site to the north and east, except to the west of the North Tract, at which a drawdown of 0.07 feet was predicted. The cumulative impact to the upper Floridan aquifer from all permitted users, including a 2.39 mgd Sleepy Creek withdrawal, ranged from 0.4 feet to 0.8 feet over all pertinent locations. The cumulative impact to the lower Floridan aquifer from all permitted users, including a 2.39 mgd Sleepy Creek withdrawal, ranged from 1.0 to 1.9 feet over all pertinent locations. The conclusion drawn by Mr. Andreyev that the predicted impacts to the lower Floridan are almost entirely from other end-of-permit user withdrawals is supported by the evidence and accepted. 1.54 mgd - Specific Impact The NCF model runs based on the more representative 1.54 mgd withdrawal predicted a surficial aquifer drawdown of less than 0.01 feet (i.e., no drawdown contour shown) on the North Tract, and a 0.01 to 0.02 foot drawdown at the location of the East Tract. The drawdown of the upper Floridan aquifer from the CUP modification was predicted at up to 0.07 feet on the property, and generally less than 0.05 feet off-site. There were no drawdown contours at the minimum 0.01 foot level that came within 9 miles of Silver Springs. The lower Floridan aquifer drawdown from the CUP modification was predicted at less than 0.01 feet (i.e., no drawdown contour shown) at all locations. 1.54 mgd - Cumulative Impact A comparison of the cumulative drawdown contours for the 2.36 mgd model and 1.54 mgd model show there to be a significant decrease in predicted drawdowns to the surficial and upper Floridan aquifers, with the decrease in the upper Floridan aquifer drawdown being relatively substantial, i.e., from 0.5 to 0.8 feet on-site predicted for the 2.36 mgd withdrawal, to 0.4 to 0.5 feet on-site for the 1.54 mgd model. Given the small predicted individual impact of the CUP on the upper Floridan aquifer, the evidence is persuasive that the cumulative impacts are the result of other end-of-permit user withdrawals. The drawdown contour for the lower Floridan aquifer predicted by the 1.54 mgd model is almost identical to that of the 2.36 mgd model, thus supporting the conclusion that predicted impacts to the lower Floridan are almost entirely from other end-of-permit user withdrawals. Modeled Effect on Silver Springs As a result of the relocation of the extraction wells from the East Tract to the North Tract, the NCF model run at the 1.54 mgd withdrawal rate predicted springflow at Silver Springs to increase by 0.15 cfs. The net cumulative impact in spring flow as measured from 1995 conditions to the scenario in which all legal users, including Sleepy Creek, are pumping at full capacity at their end-of-permit rates for one year3/ is roughly 35.4 cfs, which is approximately 5 percent of Silver Springs’ current flow. However, as a result of the redistribution of the Sleepy Creek withdrawal, which is, in its current iteration, a legal and permitted use, the cumulative effect of the CUP modification at issue is an increase in flow of 0.l5 cfs. Dr. Kincaid agreed that there is more of an impact to Silver Springs when the pumping allowed by the CUP is located on the East Tract than there is on the North Tract, but that the degree of difference is very small. Dr. Knight testified that effect on the flow of Silver Springs from relocating the 1.46 mgd withdrawal from the East Tract to the North Tract would be “zero.” The predicted increase of 0.15 cfs is admittedly miniscule when compared to the current Silver Springs springflow of approximately 675 cfs. However, as small as the modeled increase may be -- perhaps smaller than its “level of certainty” -- it remains the best evidence that the impact of the CUP modification to the flow of Silver Springs will be insignificant at worst, and beneficial at best. Opposition to the NCF Model Petitioners submitted considerable evidence designed to call the results generated by the District’s and Sleepy Creek’s NCF modeling into question. Karst Features A primary criticism of the validity of the NCF model was its purported inability to account for the presence of karst features, including conduits, and their effect on the results. It was Dr. Kincaid’s opinion that the NCF model assigned transmissivity values that were too high, which he attributed to the presence of karst features that are collecting flow and delivering it to springs. He asserted that, instead of assuming the presence of karst features, the model was adjusted to raise the overall capacity of the porous medium to transmit water, and thereby match the observed flows. In his opinion, the transmissivity values of the equivalent porous media were raised so much that the model can no longer be used to predict drawdowns. That alleged deficiency in the model is insufficient for two reasons. First, as previously discussed in greater detail, the preponderance of the evidence in this case supports a finding that there are no karst features in the vicinity of the North Tract that would provide preferential pathways for water flow so as to skew the results of the NCF model. Second, Dr. Kincaid, while acknowledging that the NCF model is the best available tool for predicting impacts from groundwater extraction on the aquifer, suggested that a hybrid porous media and conduit model would be a better means of predicting impacts, the development of which would take two years or more. There is no basis for the establishment of a de facto moratorium on CUP permitting while waiting for the development of a different and, in this case, unnecessary model. For the reasons set forth herein, it is found that the NCF model is sufficient to accurately and adequately predict the effects of the Sleepy Creek groundwater withdrawals on the aquifers underlying the property, and to provide reasonable assurance that the standards for such withdrawals have been met. Recharge to the Aquifer Petitioners argued that the modeling results showing little significant drawdown were dependent on the application of unrealistic values for recharge or return flow from irrigation. In a groundwater model, as in the physical world, some portion of the water extracted from the aquifer is predicted to be returned to the aquifer as recharge. If more water is applied to the land surface than is being accounted for by evaporation, plant uptake and evapotranspiration, surface runoff, and other processes, that excess water may seep down into the aquifer as recharge. Recharge serves to replenish the aquifer and offset the effects of the groundwater withdrawal. Dr. Kincaid opined that the NCF modeling performed for the CUP application assigned too much water from recharge, offsetting the model's prediction of impacts to other features. It is reasonable to assume that there is some recharge associated with both agricultural and public supply uses. However, the evidence suggests that the impact of recharge on the overall NCF model results is insignificant on the predicted impacts to Silver Springs, the issue of primary concern. Mr. Hearn ran a simulation using the NCF model in which all variables were held constant, except for recharge. The difference between the “with recharge” and “without recharge" simulations at Silver Springs was 0.002 cfs. That difference is not significant, and is not suggestive of adverse impacts on Silver Springs from the CUP modification. Dr. Kincaid testified that “the recharge offset on the property is mostly impacting the surficial aquifer,” and that “the addition of recharge in this case didn't have much of an impact on the upper Floridan aquifer system.” As such, the effect of adding recharge to the model would be as to the effect of groundwater withdrawal on wetlands or surface water bodies, and not on springs. As previously detailed, the drawdown of the surficial aquifer simulated for the 2.39 mgd “no recharge” scenario were less than 0.05 feet on-site and off-site, except for a predicted 0.07 foot drawdown to the west of the North Tract. The predicted drawdown of the surficial aquifer for the 1.54 mgd “with recharge” scenario was 0.02 feet or less. The preponderance of the evidence supports a finding that drawdowns of either degree are less than that at which adverse impacts to wetlands or surface waters would occur. Thus, issues related to the recharge or return flows from irrigation are insufficient to support a finding or conclusion that the NCF model failed to provide reasonable assurance that the standards for issuance of the CUP modification were met. External Boundaries The boundaries of the NCF model are not isolated from the rest of the physical world. Rather, groundwater flows into the modeled area from multiple directions, and out of the modeled area in multiple directions. Inflows to the model area are comprised of recharge, which is an assigned value, and includes water infiltrating and recharging the aquifer from surface waters; injection wells; upward and downward leakage from lower aquifers; and flow across the external horizontal boundaries. Outflows from the model area include evapotranspiration; discharge to surface waters, including springs and rivers; extraction from wells; upward and downward leakage from lower aquifers; and flow against the external model boundaries. Dr. Kincaid testified that flow across the external model boundary is an unknown and unverifiable quantity which increases the uncertainty in the model. He asserted that in the calibrated version of the model, there is no way to check those flows against data. His conclusion was that the inability of the NCF model to accurately account for external boundary flow made the margin of error so great as to make the model an unreliable tool with which to assess whether the withdrawal approved by the proposed CUP modification will increase or decrease drawdown at Silver Springs. The District correlates the NCF model boundaries with a much larger model developed by the United States Geological Survey, the Peninsula of Florida Model, more commonly referred to as the Mega Model, which encompasses most of the State of Florida and part of Southeast Georgia. The Mega Model provides a means to acknowledge that there are stresses outside the NCF model, and to adjust boundary conditions to account for those stresses. The NCF is one of several models that are subsets of the Mega Model, with the grids of the two models being “nested” together. The 1995 base year of the NCF model is sufficiently similar to the 1993-1994 base year of the Mega Model as to allow for a comparison of simulated drawdowns calculated by each of the models. By running a Mega Model simulation of future water use, and applying the change in that use from 1993 base year conditions, the District was able to come to a representative prediction of specific boundary conditions for the 1995 NCF base year, which were then used as the baseline for simulations of subsequent conditions. In its review of the CUP modification, the District conducted a model validation simulation to measure the accuracy of the NCF model against observed conditions, with the conditions of interest being the water flow at Silver Springs. The District ran a simulation using the best information available as to water use in the year 2010, the calculated boundary conditions, irrigation, pumping, recharge, climatic conditions, and generally “everything that we think constitutes that year.” The discharge of water at Silver Springs in 2010 was measured at 580 cfs. The discharge simulated by the NCF model was 545 cfs. Thus, the discharge predicted by the NCF model simulation was within six percent of the observed discharge. Such a result is generally considered in the modeling community to be “a home run.” Petitioners’ objections to the calculation of boundary conditions for the NCF model are insufficient to support a finding that the NCF model is not an appropriate and accurate tool for determining that reasonable assurance has been provided that the standards for issuance of the CUP modification were met. Cumulative Impact Error As part of the District’s efforts to continually refine the NCF, and in conjunction with a draft minimum flows and levels report for Silver Springs and the Silver River, the cumulative NCF model results for the period of baseline to 2010 were compared with the simulated results from the Northern District Model (NDF), a larger model that overlapped the NCF. As a result of the comparison, which yielded different results, it was discovered that the modeler had “turned off” not only the withdrawal pumps, but inputs to the aquifer from drainage wells and sinkholes as well. When those inputs were put back into the model run, and effects calculated only from withdrawals between the “pumps-off” condition and 2010 pumping conditions, the cumulative effect of the withdrawals was adjusted from a reduction in the flow at Silver Springs of 29 cfs to a reduction of between 45 and 50 cfs, an effect described as “counterintuitive.” Although that result has not undergone peer review, and remains subject to further review and comparison with the Mega Model, it was accepted by the District representative, Mr. Bartol. Petitioners seized upon the results of the comparison model run as evidence of the inaccuracy and unreliability of the NCF model. However, the error in the NCF model run was not the result of deficiencies in the model, but was a data input error. Despite the error in the estimate of the cumulative effect of all users at 2010 levels, the evidence in this case does not support a finding that the more recent estimates of specific impact from the CUP at issue were in error. NCF Model Conclusion As has been discussed herein, a model is generally the best means by which to calculate conditions and effects that cannot be directly observed. The NCF model is recognized as being the best tool available for determining the subsurface conditions of the model domain, having been calibrated over a period of years and subject to peer review. It should be recognized that the simulations run using the NCF model represent the worst—case scenario, with all permittees simultaneously drawing at their full end-of-permit allocations. There is merit to the description of that occurrence as being “very remote.” Thus, the results of the modeling represent a conservative estimate of potential drawdown and impacts. While the NCF model is subject to uncertainty, as is any method of predicting the effects of conditions that cannot be seen, the model provides reasonable assurance that the conditions simulated are representative of the conditions that will occur as a result of the withdrawals authorized by the CUP modification. Environmental Resource Permit The irrigation proposed by the CUP will result in runoff from the North Tract irrigated pastures in excess of that expected from the improved pastures, due in large measure to the diminished storage capacity of the soil. Irrigation water will be applied when the soils are dry, and capable of absorbing water not subject to evaporation or plant uptake. The irrigation water will fill the storage space that would exist without irrigation. With irrigation water taking up the capacity of the soil to hold water, soils beneath the irrigation pivots will be less capable of retaining additional moisture during storm events. Thus, there is an increased likelihood of runoff from the irrigated pastures over that expected with dry soils. The increase in runoff is expected to be relatively small, since there should be little or no irrigation needed during the normal summer wet season. The additional runoff may have increased nutrient levels due to the increased cattle density made possible by the irrigation of the pastures. The CUP has a no—impact requirement for water quality resulting from the irrigation of the improved pasture. Thus, nutrients leaving the irrigated pastures may not exceed those calculated to be leaving the existing pre-development use as improved pastures. Retention Berms The additional runoff and nutrient load is proposed to be addressed by constructing a system of retention berms, approximately 50,0004/ feet in length, which is intended to intercept, retain, and provide treatment for runoff from the irrigated pasture. The goal of the system is to ensure that post—development nutrient loading from the proposed irrigated pastures will not exceed the pre—development nutrient loading from the existing improved pastures. An ERP permit is required for the construction of the berm system, since the area needed for the construction of the berms is greater than the one acre in size, and since the berms have the capability of impounding more than 40 acre-feet of water. The berms are to be constructed by excavating the top nine inches of sandy, permeable topsoil and using that permeable soil to create the berms, which will be 1 to 2 feet in height. The water storage areas created by the excavation will have flat or horizontal bottoms, and will be very shallow with the capacity to retain approximately a foot of water. The berms will be planted with pasture grasses after construction to provide vegetative cover. The retention berm system is proposed to be built in segments, with the segment designed to capture runoff from a particular center pivot pasture to be constructed prior to the commencement of irrigation from that center pivot. A continuous clay layer underlies the areas in which the berms are to be constructed. The clay layer varies from 18 to 36 inches below the ground surface, with at least one location being as much as five feet below the ground surface. As such, after nine inches of soil is scraped away to create the water retention area and construct the berm, there will remain a layer of permeable sandy material above the clay. The berms are to be constructed at least 25 feet landward of any jurisdictional wetland, creating a “safe upland line.” Thus, the construction, operation, and maintenance of the retention berms and redistribution swales will result in no direct impacts to jurisdictional wetlands or other surface waters. There will be no agricultural activities, e.g., tilling, planting, or mowing, within the 25-foot buffers, and the buffers will be allowed to establish with native vegetation to provide additional protection for downgradient wetlands. As stormwater runoff flows from the irrigated pastures, it may, in places, create concentrated flow ways. Redistribution swales will be built in those areas to spread any remaining overland flow of water and reestablish sheet flow to the retention berm system. At any point at which water may overtop a berm, the berm will be hardened with rip—rap to insure its integrity. The berms are designed to intercept and collect overland flow from the pastures and temporarily store it behind the berms, regaining the soil storage volume lost through irrigation. A portion of the runoff intercepted by the berm system will evaporate. The majority will infiltrate either through the berm, or vertically into the subsurface soils beneath it. When the surficial soils become saturated, further vertical movement will be stopped by the impermeable clay layer underlying the site. The runoff water will then move horizontally until it reemerges into downstream wetland systems. Thus, the berm system is not expected to have a measurable impact on the hydroperiod of the wetlands on the North Tract. Phosphorus Removal Phosphorus tends to get “tied up” in soil as it moves through it. Phosphorus reduction occurs easily in permeable soil systems because it is removed from the water through a chemical absorption process that is not dependent on the environment of the soil. As the soils in the retention areas and berms go through drying cycles, the absorption capacity is regenerated. Thus, the retention system will effectively account for any increase in phosphorus resulting from the increased cattle density allowed by the irrigation such that there is expected to be no increase in phosphorus levels beyond the berm. Nitrogen Removal When manure is deposited on the ground, primarily as high pH urine, the urea is quickly converted to ammonia, which experiences a loss of 40 to 50 percent of the nitrogen to volatization. Soil conditions during dry weather conditions are generally aerobic. Remaining ammonia in the manure is converted by aerobic bacteria in the soil to nitrates and nitrites. Converted nitrates and nitrites from manure, along with nitrogen from fertilizer, is readily available for uptake as food by plants, including grasses and forage crops. Nitrates and nitrites are mobile in water. Therefore, during rain events of sufficient intensity to create runoff, the nitrogen can be transported downstream towards wetlands and other receiving waters, or percolate downward through the soil until blocked by an impervious barrier. During storm events, the soils above the clay confining layer and the lower parts of the pervious berms become saturated. Those saturated soils are drained of oxygen and become anaerobic. When nitrates and nitrites encounter saturated conditions, they provide food for anaerobic bacteria that exist in those conditions. The bacteria convert nitrates and nitrites to elemental nitrogen, which has no adverse impact on surface waters or groundwater. That process, known as denitrification, is enhanced in the presence of organic material. The soils from which the berms are constructed have a considerable organic component. In addition to the denitrification that occurs in the saturated conditions in and underlying the berms, remaining nitrogen compounds that reemerge into the downstream wetlands are likely to encounter organic wetland-type soil conditions. Organic wetland soils are anaerobic in nature, and will result in further, almost immediate denitrification of the nitrates and nitrites in the emerging water. Calculation of Volume - BMPTRAINS Model The calculation of the volume necessary to capture and store excess runoff from the irrigated pastures was performed by Dr. Wanielista using the BMPTRAINS model. BMPTRAINS is a simple, easy to use spreadsheet model. Its ease of use does not suggest that it is less than reliable. The model has been used as a method of calculating storage volumes in many conditions over a period of more than 40 years. The model was used to calculate the storage volumes necessary to provide storage and treatment of runoff from fifteen “basins” that had a control or a Best Management Practice associated with them. All of the basins were calculated as being underlain by soils in poorly-drained hydrologic soil Group D, except for the basin in the vicinity of Pivot 6, which is underlain by the more well-drained soil Group A. The model assumed about percent of the property to have soil Group A soils, an assumption that is supported by the evidence. Soil moisture conditions on the property were calculated by application of data regarding rainfall events and times, the irrigation schedule, and the amount of irrigation water projected for use over a year. The soil moisture condition was used to determine the amount of water that could be stored in the on-site soils, known as the storage coefficient. Once the storage coefficient was determined, that data was used to calculate the amount of water that would be expected to run off of the North Tract, known as the curve number. The curve number is adjusted by the extent to which the storage within a soil column is filled by the application of irrigation water, making it unable to store additional rainfall. As soil storage goes down, the curve number goes up. Thus, a curve number that approaches 100 means that more water is predicted to run off. Conversely, a lower curve number means that less water is predicted to run off. The pre-development curve number for the North Tract was based on the property being an unirrigated, poor grass area. A post-development curve number was assigned to the property that reflected a wet condition representative of the irrigated soils beneath the pivots. In calculating the storage volume necessary to handle runoff from the basins, the wet condition curve number was adjusted based on the fact that there is a mixture of irrigated and unirrigated general pasture within each basin to be served by a segment of the retention berm system, and by the estimated 15 percent of the time that the irrigation areas would be in a drier condition. In addition, the number was adjusted to reflect the 8 to 10 inches of additional evapotranspiration that occurs as a result of irrigation. The BMPTRAINS model was based on average annual nutrient-loading conditions, with water quality data collected at a suitable point within Reach 22, the receiving waterbody. The effects of nutrients from the irrigated pastures on receiving waterbodies is, in terms of the model, best represented by average annual conditions, rather than a single highest-observed nutrient value. Pre-development loading figures were based on the existing use of the property as unirrigated general pasture. The pre-development phosphorus loading figure was calculated at an average event mean concentration (EMC) of 0.421 milligrams per liter (mg/l). The post—condition phosphorus loading figure was calculated at an EMC of 0.621 mg/l. Therefore, in order to achieve pre-development levels of phosphorus, treatment to achieve a reduction in phosphorus of approximately 36 percent was determined to be necessary. The pre-development nitrogen loading figure was calculated at an EMC of 2.6 mg/l. The post—condition nitrogen loading figure was calculated at an EMC of 3.3 mg/l. Therefore, in order to achieve pre-development levels of nitrogen, treatment to achieve a reduction in nitrogen of approximately 25 percent was determined to be necessary. The limiting value for the design of the retention berms is phosphorus. To achieve post-development concentrations that are equal to or less than pre-development concentrations, the treatment volume of the berm system must be sufficient to allow for the removal of 36 percent of the nutrients in water being retained and treated behind the berms, which represents the necessary percentage of phosphorus. In order to achieve the 36 percent reduction required for phosphorus, the retention berm system must be capable of retaining approximately 38 acre—feet of water from the 15 basins. In order to achieve that retention volume, a berm length of approximately 50,000 linear feet was determined to be necessary, with an average depth of retention behind the berms of one foot. The proposed length of the berms is sufficient to retain the requisite volume of water to achieve a reduction in phosphorus of 36 percent. Thus, the post-development/irrigation levels of phosphorus from runoff are expected to be no greater than pre-development/general pasture levels of phosphorus from runoff. By basing the berm length and volume on that necessary for the treatment of phosphorus, there will be storage volume that is greater than required for a 25 percent reduction in nitrogen. Thus, the post-development/irrigation levels of nitrogen from runoff are expected to be less than pre- development/general pasture levels of nitrogen from runoff. Mr. Drummond admitted that the design of the retention berms “shows there is some reduction, potentially, but it's not going to totally clean up the nutrients.” Such a total clean-up is not required. Rather, it is sufficient that there is nutrient removal to pre-development levels, so that there is no additional pollutant loading from the permitted activities. Reasonable assurance that such additional loading is not expected to occur was provided. Despite Mr. Drummond’s criticism of the BMPTRAINS model, he did not quantify nutrient loading on the North Tract, and was unable to determine whether post-development concentrations of nutrients would increase over pre-development levels. As such, there was insufficient evidence to counter the results of the BMPTRAINS modeling. Watershed Assessment Model In order to further assess potential water quantity and water quality impacts to surface water bodies, and to confirm stormwater retention area and volume necessary to meet pre-development conditions, Sleepy Creek utilized the Watershed Assessment Model (WAM). The WAM is a peer-reviewed model that is widely accepted by national, state, and local regulatory entities. The WAM was designed to simulate water balance and nutrient impacts of varying land uses. It was used in this case to simulate and provide a quantitative measure of the anticipated impacts of irrigation on receiving water bodies, including Mill Creek, Daisy Creek, the Ocklawaha River, and Silver Springs. Inputs to the model include land conditions, soil conditions, rain and climate conditions, and water conveyance systems found on the property. In order to calculate the extent to which nutrients applied to the land surface might affect receiving waters, a time series of surface water and groundwater flow is “routed” through the modeled watershed and to the various outlets from the system, all of which have assimilation algorithms that represent the types of nutrient uptakes expected to occur as water goes through the system. Simulations were performed on the North Tract in its condition prior to acquisition by Sleepy Creek, in its current “exempted improved pasture condition,” and in its proposed “post—development” pivot-irrigation condition. The simulations assessed impacts of the site conditions on surface waters at the point at which they leave the property and discharge to Mill Creek, and at the point where Mill Creek merges into the Ocklawaha River. The baseline condition for measuring changes in nutrient concentrations was determined to be that lawfully existing at the time the application was made. Had there been any suggestion of illegality or impropriety in Sleepy Creek’s actions in clearing the timber and creating improved pasture, a different baseline might be warranted. However, no such illegality or impropriety was shown, and the SJRWMD rules create no procedure for “looking back” to previous land uses and conditions that were legally changed. Thus, the “exempted improved pasture condition” nutrient levels are appropriate for comparison with irrigated pasture nutrient levels. The WAM simulations indicated that nitrogen resulting from the irrigation of the North Tract pastures would be reduced at the outflow to Mill Creek at the Reach 22 stream segment from improved pasture levels by 1.7 percent in pounds per year, and by 0.6 percent in milligrams per liter of water. The model simulations predicted a corresponding reduction at the Mill Creek outflow to the Ocklawaha River of 1.3 percent in pounds per year, and 0.5 percent in milligrams per liter of water. These levels are small, but nonetheless support a finding that the berm system is effective in reducing nitrogen from the North Tract. Furthermore, the WAM simulations showed levels of nitrogen from the irrigated pasture after the construction of the retention berms to be reduced from that present in the pre- development condition, a conclusion consistent with that derived from the BMPTRAINS model. The WAM simulations indicated that phosphorus from the irrigated North Tract pastures, measured at the outflow to Mill Creek at the Reach 22 stream segment, would be reduced from improved pasture levels by 3.7 percent in pounds per year, and by 2.6 percent in milligrams per liter of water. The model simulations predicted a corresponding reduction at the Mill Creek outflow to the Ocklawaha River of 2.5 percent in pounds per year, and 1.6 percent in milligrams per liter of water. Those levels are, again, small, but supportive of a finding of no impact from the permitted activities. The WAM simulations showed phosphorus in the Ocklawaha River at the Eureka Station after the construction of the retention berms to be slightly greater than those simulated for the pre-development condition (0.00008 mg/l) -- the only calculated increase. That level is beyond miniscule, with impacts properly characterized as “non- measurable” and “non-detectable.” In any event, total phosphorus remains well below Florida’s nutrient standards. The WAM simulations were conducted based on all of the 15 pivots operating simultaneously at full capacity. That amount is greater than what is allowed under the permit. Thus, according to Dr. Bottcher, the predicted loads are higher than those that would be generated by the permitted allocation, making his estimates “very conservative.” Dr. Bottcher’s testimony is credited. During the course of the final hearing, the accuracy of the model results was questioned based on inaccuracies in rainfall inputs due to the five-mile distance of the property from the nearest rain station. Dr. Bottcher admitted that given the dynamics of summer convection storms, confidence that the rain station rainfall measurements represent specific conditions on the North Tract is limited. However, it remains the best data available. Furthermore, Dr. Bottcher testified that even if specific data points simulated by the model differ from that recorded at the rain station, that same error carries through each of the various scenarios. Thus, for the comparative purpose of the model, the errors get “washed out.” Other testimony regarding purported inaccuracies in the WAM simulations and report were explained as being the result of errors in the parameters used to run alternative simulations or analyze Sleepy Creek’s simulations, including use of soil types that are not representative of the North Tract, and a misunderstanding of dry weight/wet weight loading rates. There was agreement among witnesses that the WAM is regarded, among individuals with expertise in modeling, as an effective tool, and was the appropriate model for use in the ERP application that is the subject of this proceeding. As a result, the undersigned accepts the WAM simulations as being representative of comparative nutrient impacts on receiving surface water bodies resulting from irrigation of the North Tract. The WAM confirmed that the proposed retention berm system will be sufficient to treat additional nutrients that may result from irrigation of the pastures, and supports a finding of reasonable assurance that water quality criteria will be met. With regard to the East Tract, the WAM simulations showed that there would be reductions in nitrogen and phosphorus loading to Daisy Creek from the conversion of the property to irrigated pasture. Those simulations were also conservative because they assumed the maximum number of cattle allowed by the nutrient balance, and did not assume the 30 percent reduction in the number of cattle under the NMP so as to allow existing elevated levels of phosphorus in the soil from the sod farm to be “mined” by vegetation. Pivot 6 The evidence in this case suggests that, unlike the majority of the North Tract, a small area on the western side of the North Tract drains to the west and north. Irrigation Pivot is within that area. Dr. Harper noted that there are some soils in hydrologic soil Group A in the vicinity of Pivot 6 that reflect soils with a deeper water table where rainfall would be expected to infiltrate into the ground. Dr. Kincaid’s particle track analysis suggested that recharge to the surficial aquifer ultimately discharges to Mill Creek, except for recharge at Pivot 11, which is accounted for by evapotranspiration, and recharge at Pivot 6. Dr. Kincaid concluded that approximately 1 percent of the recharge to the surficial aquifer beneath the North Tract found its way into the upper Floridan aquifer. Those particle tracks originated only on the far western side of the property, and implicated only Pivot 6, which is indicative of the flow divide in the Floridan aquifer. Of the 1 percent of particle tracks entering the Floridan aquifer, some ultimately discharged at the St. John’s River, the Ocklawaha River, or Mill Creek. Dr. Kincaid opined, however, that most ultimately found their way to Silver Springs. Given the previous finding that the Floridan aquifer beneath the property is within the Silver Springs springshed for less than a majority of the time, it is found that a correspondingly small fraction of the less than 1 percent of the particle tracks originating on the North Tract, perhaps a few tenths of one percent, can reach Silver Springs. Dr. Bottcher generally agreed that some small percentage of the water from the North Tract may make it to the upper Floridan aquifer, but that amount will be very small. Furthermore, that water reaching the upper Floridan aquifer would have been subject to the protection and treatment afforded by the NMP and the ERP berms. The evidence regarding the somewhat less restrictive confinement of the aquifer around Pivot 6 is not sufficient to rebut the prima facie case that the CUP modification, coupled with the ERP, will meet the District’s permitting standards. Public Interest The primary basis upon which Sleepy Creek relies to demonstrate that the CUP is “consistent with the public interest” is that Florida's economy is highly dependent upon agricultural operations in terms of jobs and economic development, and that there is a necessity of food production. Sleepy Creek could raise cattle on the property using the agriculturally-exempt improved pastures, but the economic return on the investment would be questionable without the increased quality, quantity, and reliability of grass and forage crop production resulting from the proposed irrigation. Sleepy Creek will continue to engage in agricultural activities on its properties if the CUP modification is denied. Although a typical Florida beef operation could be maintained on the property, the investment was based upon having the revenue generation allowed by grass-fed beef production in order to realize a return on its capital investment and to optimize the economic return. If the CUP modification is denied, the existing CUP will continue to allow the extraction of 1.46 mgd for use on the East Tract. The preponderance of the evidence suggests that such a use would have greater impacts on the water levels at Silver Springs, and that the continued use of the East Tract as a less stringently-controlled sod farm would have a greater likelihood of higher nutrient levels, particularly phosphorus levels which are already elevated.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law set forth herein it is RECOMMENDED that the St. Johns River Water Management District enter a final order: approving the issuance of Consumptive Use Permit No. 2-083-91926-3 to Sleepy Creek Lands, LLC on the terms and conditions set forth in the complete Permit Application for Consumptive Uses of Water and the Consumptive Use Technical Staff Report; and approving the issuance of Environmental Resource Permit No. IND-083-130588-4 to Sleepy Creek Lands, LLC on the terms and conditions set forth in the complete Joint Application for Individual and Conceptual Environmental Resource Permit and the Individual Environmental Resource Permit Technical Staff Report. DONE AND ENTERED this 29th day of April, 2015, in Tallahassee, Leon County, Florida. S E. GARY EARLY Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 29th day of April, 2015.

Florida Laws (27) 120.54120.569120.57120.60120.68373.016373.019373.036373.042373.0421373.069373.079373.175373.223373.227373.229373.236373.239373.246373.406373.413373.4131373.414403.067403.087403.9278.031 Florida Administrative Code (12) 28-106.10828-106.21740C-2.30140C-2.33140C-44.06540C-44.06662-302.30062-330.05062-330.30162-4.24062-4.24262-40.473
# 7
CONSERVANCY OF SOUTHWEST FLORIDA vs G.L. HOMES OF NAPLES ASSOCIATES II, LTD., AND SOUTH FLORIDA WATER MANAGEMENT DISTRICT, 06-004922 (2006)
Division of Administrative Hearings, Florida Filed:Lauderdale Lakes, Florida Dec. 05, 2006 Number: 06-004922 Latest Update: Jul. 18, 2007

The Issue The issue in this case is whether the South Florida Water Management District (SFWMD, or District) should issue a Modification to Environmental Resource Permit (ERP) No. 11- 02055-P, Application No. 060713-9, to G.L. Homes of Naples Associates II, Ltd. (G.L. Homes, or Applicant), which authorizes modifications to the surface water management system (SWMS) for a residential development known as Saturnia Falls (the Project).

Findings Of Fact PARTIES The District is a water management district with the power and duty to exercise regulatory jurisdiction over the administration and enforcement of ERP criteria, pursuant to the provisions of Part IV, Chapter 373, Florida Statutes, and Title 40E, Florida Administrative Code, and Sections 373.413, 373.414, and 373.416, Florida Statutes. G.L. Homes is an entity with the administrative, legal, and financial capabilities of undertaking the activity in accordance with the terms and conditions of the 2006 ERP, meeting the criteria in Rule 40E-4.301(1)(j). The Conservancy was duly incorporated in 1966 under the laws of the State of Florida as a not for-profit corporation and has it headquarters in Collier County, Florida. G.L. Homes contests the Conservancy's assertion of "associational standing." But there is no question as to the Conservancy's "citizen standing" under Section 403.412(6), Florida Statutes. The Conservancy has approximately 6,200 members, with approximately 4,200 residing in Collier County. Twenty-five current members in good standing who reside in Collier County were identified during the hearing. The Conservancy's purpose is to "protect and sustain the natural environment of southwest Florida through advocacy, education, research, land acquisition and other lawful means." Specific purposes relevant to the subject matter of this case include: "to acquire and protect sanctuaries, greenbelts, parks, and beaches"; "to assist governing bodies to remedy present pollution and to prevent future pollution of water, air, and our waterfronts and beaches"; and "to encourage and stimulate the interests of residents and visitors to the area, to increase their knowledge of, and to promote the preservation of the southwest Florida natural environment." The Conservancy also asserts standing under Section 403.412(5), Florida Statutes. In furtherance of its corporate purpose, the Conservancy owns approximately 300 acres of land for preservation in Collier County, including a 46-acre parcel located on the Cocohatchee River downstream from the proposed Saturnia Falls development. The Conservancy also conducts scientific research in the waters of the Wiggins Pass Estuary downstream from the proposed Saturnia Falls development, including water quality monitoring and research on seagrass restoration. Further impacts to the water quality in the Cocohatchee River would affect the value of the Conservancy's property for conservation and would affect its interests in research in the area. These interests of the Conservancy would be adversely affected if the 2006 ERP were issued improperly. The Conservancy's assertion of "associational standing" is based on the testimony of eight of its members who engage in various recreational activities, including boating, fishing, bird-watching, nature study, and observation of wildlife. Some visit Corkscrew Swamp Sanctuary and the Corkscrew Regional Ecosystem Watershed (CREW) to view endangered wood storks and other wildlife. Some also visit and recreate in downstream waters, such as the Wiggins Pass Estuary, for fishing, boating, or wildlife observation. These interests would be adversely affected if the 2006 ERP were issued improperly. PROJECT DESCRIPTION AND PERMITTING HISTORY The Project site is located one mile north of Immokalee Road, approximately 2 miles east of 1-75 and lies near the CREW lands in Collier County. The entire Project site consists of approximately 646 acres, of which 533.1 acres are wetlands. The Project has a permitting history dating back to 1997, when the previous owner, Robert Vocisano, applied to construct a development called Wildewood Lakes. The Wildewood Lakes application was denied in 1998, at least in part because wetland impacts were not reduced and eliminated to the extent practicable, and was mediated pursuant to Section 120.573, Florida Statutes. After three years of responding to additional requests for information, the application was submitted to the Governing Board for approval in May 2002. This ERP, referred to as “the 2002 ERP,” authorized the construction and operation of a SWMS to serve a residential and golf course development, discharging to the Cocohatchee Canal via a conveyance channel/Flow-way known as the Mirasol Flow-way (Flow-way). The Flow-way feature was to be built on lands owned by three different property owners, one of whom was the owner of the Terafina Project, and was intended to address flooding and storage criteria in the BOR and alleviate flooding problems in the region that resulted from previous drainage and development projects that altered the natural sheet-flow through the region to the Cocohatchee and Imperial Rivers, and on to the Gulf Coast. As reported in the Staff Report for the 2004 ERP, studies current at the time indicated that, during the initial part of the rainy season, the wetland systems in the vicinity of the proposed Flow- way carried the flow between the Corkscrew Swamp and the Cocohatchee Canal with the peak stages contained with the limits of the wetland areas. However, as the wet season progressed, the wetland vegetation impeded the conveyance of flow and resulted in elevated water stages that inundated properties adjacent to those wetlands, including portions of the eastern half of the Project. There were approximately 288 acres of direct impacts to wetlands under the 2002 ERP. There was a total of 291.20 acres of onsite preserve, including 259.97 acres of wetlands and 31.23 acres of uplands. Part of the Flow-way was to be located within the eastern third of the property (225.74 acres, including 217.80 acres of wetlands and 7.94 acres of uplands), which would be preserved after construction of part of the Flow- way in 23 of those acres. There also would be off-site mitigation in the form of a payment of $1,232,000 "specifically for the purchase of 154 acres . . . of land within CREW, a project within the District's Save Our Rivers Program." Of that total, $712,404 was to be deposited in an account for the land purchase, $437,206 in an account to pay for restoration work within the CREW project, and $82,390 in an escrow account for general operations and maintenance costs incurred by the District within the CREW project. On March 10, 2004, the Governing Board approved a modification to the 2002 ERP authorizing the construction and operation of the Project, at the time known as the Terafina PUD. This ERP is referred to as “the 2004 ERP.” The 2004 ERP removed the golf course and proposed a residential development within the same 646-acre parcel. It also discharged to the Cocohatchee Canal via the Flow-way. The 2004 ERP modified the Project to consist of: single-family residential areas; a recreation area; internal roadway; onsite wetland preserve areas within the development of approximately 73.99 acres; and 210 acres of wetland preserve east of the development, which included the Flow-way, and is referred to as the Eastern Preserve. The 2004 ERP proposed to impact approximately 280 acres of wetlands, slightly less than in the 2002 ERP. To mitigate for the impacts, the 2004 ERP authorized onsite mitigation consisting of the preservation and enhancement of 253.04 acres of wetlands, preservation of 31.27 acres of uplands, creation of 0.1 acres of wetlands, and offsite mitigation by a payment to the District for the purchase, restoration, and management of lands in CREW. Apparently by mistake, the amount of the CREW payment was reduced to $1,001,000, with $418,404 to go into the purchase account, $437,206 to go into the restoration account, and $82,390 to go into the escrow account for general operations and maintenance. In addition, the time for deposit of the funds was extended to June 30, 2004. The District included Special Condition No. 18 in the 2004 ERP, delaying any construction under the 2004 ERP until the Flow-way was completed. However, the United States Army Corps of Engineers (ACOE) refused to permit construction of the Flow-way. On July 13, 2006, G.L. Homes submitted an application to modify the 2004 ERP (the 2006 Application), which is the subject of this proceeding. (A letter modification was issued on October 5, 2006, authorizing installation of a 48" outfall pipe within the Logan Boulevard right-of-way to convey the discharge from the Project to the Cocohatchee Canal. This letter modification was not challenged by the Conservancy and is not at issue in this proceeding.) On November 9, 2006, SFWMD proposed issuance of the 2006 ERP authorizing the construction and operation of the residential development now known as Saturnia Falls (the 2006 ERP). The 2006 Staff Report proposes elimination of the Flow- way, and enhancement and preservation of the 23.5 acres that would have been located in the eastern third of the Project area, similar to the rest of the Eastern Preserve. The SWMS also was altered, and the Staff Report noted that the CREW payment was made in June 2004 in the amount of $1,260,000 "as funding for the off-site mitigation in CREW," which was said to have "provided a substantial amount of up-front mitigation in CREW." The Conservancy did not challenge the 2002 ERP or the 2004 ERP but did challenge the 2006 ERP. THE MODIFIED SURFACE WATER MANAGEMENT SYSTEM In addition to removal of the 23.5-acre segment of the Flow-way from the Eastern Preserve, the current proposal would modify the SWMS under the 2004 ERP by replacing the 80-foot weir at Lake 9, which was the sole final outfall under the 2004 ERP, with two operable Water Control Structures (WCS), located at the eastern (WCS-2) and western (WCS-1) boundaries of the Project, as the final outfall structures. The 80-foot weir in the 2004 ERP consisted of a rectangular notch in the 17.7 foot NGVD berm between Lake 9 and the Eastern Preserve, with a crest elevation of 13.8 foot NGVD and a 5 foot wide, .4 foot deep rectangular notch (that is, with an invert elevation of 13.4 foot NGVD) within the 80-foot weir, which served as a bleeder for water quality. The structure was fixed, and water was to pass freely through the bleeder and over the weir depending on the water levels on either side of the structure. In contrast, the structures proposed in the 2006 ERP are operable based on water levels in the Eastern Preserve. WCS- 1 is located in Lake 4 and discharges to the Cocohatchee Canal via a 48" reinforced concrete pipe located in the Logan Boulevard right-of-way. WCS-2 is located to the east of the development and discharges to the Eastern Preserve and then ultimately to the Cocohatchee Canal. As modified under the 2006 ERP, the SWMS continues to consist of eleven controlled sub-basins with a total area of 397.46 acres. The remainder of the proposed Project also is the same as under the 2004 ERP, including road alignments, type and number of houses, lots, lakes and grading information, and wetland impacts. It is the position of the Applicant and the District that the mitigation proposal also is identical; but Petitioner takes the position that proposed onsite mitigation will be adversely affected by the proposed modifications and that offsite mitigation no longer has the same benefit, so that mitigation no longer fully offsets the wetland impacts. The SWMS is set at the control elevation of 13.4 feet NGVD, which represents the wet season water table (WSWT) for the currently existing wetlands. The seasonal high water level for the wetlands was determined to be approximately 14.0 feet NGVD. When water levels in the Eastern Preserve are below 14.00 feet NGVD (typically in the dry season), the SWMS discharges to the Eastern Preserve through WCS-2, which is located in the perimeter berm to be constructed with sloping banks and a crest elevation of 17.7 feet NGVD between the Eastern Preserve and one of the western wetland preserves, called preserve P-5. WCS-2 consists of a 23-foot weir fitted with an operable bleeder at the control elevation of 13.40 feet NGVD, and a fixed discharge V-Notch weir with an invert elevation of 14.20 feet NGVD, and a crest elevation of 15.40 feet NGVD. This discharge will flow southerly through the Eastern Preserve to the receiving waterbody, the Cocohatchee Canal. WCS-1 will be closed during these periods. The maximum discharge rate under these conditions will be 15.28 cubic feet per second (cfs) to the Eastern Preserve. Based on the hydraulic modeling results, the Eastern Preserve experiences levels below 14 feet NGVD approximately 70% of the time on an annual basis. When water levels in the Eastern Preserve are above 14.00 feet NGVD (typically in the wet season), the SWMS will discharge predominately to the west via WCS-1 to the Cocohatchee Canal. When the water level in the Eastern Preserve reaches 14.00 ft NGVD, the operable bleeder on WCS-2 will close and the operable bleeder/discharge structure on WCS-1 will open. During the 25- year 3-day storm, the maximum discharge rate through WCS-1 is 13.50 cfs. During these conditions, discharge will also occur through the fixed 60-degree V-notch in WCS-2, with a maximum discharge of 2.10 cfs, ensuring bidirectional flow of water so long as the water level in the SWMS stays above 14.20 feet NGVD. The total discharge rate from both structures under this condition is 15.61 cfs. During the 25-year 3-day storm event, water levels in the Eastern Preserve fluctuate from 13.40 feet NGVD to 15.31 feet NGVD. When the water levels in the Eastern Preserve are higher than 14.20 feet NGVD, and the water level in the SWMS is lower than 14.20 feet NGVD, water from the Eastern Preserve will enter into the SWMS through the 60-degree V-Notch in WCS-2. The SWMS is designed to receive water from the Eastern Preserve to provide flood storage and hydrology to the onsite wetlands within the development. THE ERP PERMITTING CRITERIA In order to obtain an ERP, an applicant must satisfy the conditions for issuance set forth in Rules 40E-4.301 and 40E-4.302. In this case, the evidence must be viewed under Rule 40E-4.331(2)(a), pertaining to modification of permits, which requires the District to review permit modification applications “using the same criteria as new applications for those portions of the project proposed for, or affected by, the modification.” The test in this case is not whether the District properly evaluated the 2004 ERP, but whether the areas proposed to be modified or affected by the modification meet the applicable conditions for issuance. Rule 40E-4.301(1) requires an applicant to provide reasonable assurance that the construction, alteration, operation, maintenance, removal or abandonment of a SWMS: Will not cause adverse water quantity impacts to receiving waters and adjacent lands; Will not cause adverse flooding to on- site or off-site property; Will not cause adverse impacts to existing surface water storage and conveyance capabilities; Will not adversely impact the value of functions provided to fish and wildlife and listed species by wetlands and other surface waters; Will not adversely affect the quality of receiving waters such that the water quality standards set forth in Chapters 62- 4, 62-302, 62-520, 62-522, 62-550, F.A.C., including any antidegradation provisions of paragraphs 62-4.242(1)(a) and (b), subsections 62-4.242(2) and (3), and Rule 62-302.300, F.A.C., and any special standards for Outstanding Florida Waters and Outstanding National Resource Waters set forth in subsections 62-4.242(2) and (3), F.A.C., will be violated; Will not cause adverse secondary impacts to the water resources; Will not adversely impact the maintenance of surface or ground water levels or surface water flows established pursuant to Chapter 373.042, F.S.; Will not cause adverse impacts to a work of the District established pursuant to Section 373.086, F.S.; Will be capable, based on generally accepted engineering and scientific principles, of being performed and of functioning as proposed; Will be conducted by an entity with the sufficient financial, legal and administrative capability to ensure that the activity will be undertaken in accordance with the terms and conditions of the permit, if issued; and Will comply with any applicable special basin or geographic area criteria established in Chapter 40E-41, F.A.C. The parties stipulated that the Project either complies with Rules 40E-4.301(1)(g),(h),(j), and (k), and Sections 4.3.8, 7.5, and 9.0 of the BOR, or that those rules are not applicable. THE SURFACE WATER MANAGEMENT CRITERIA Water Quantity (Rule 40E-4.301(1)(a)) As indicated, the 2006 modifications eliminate the Flow-way and change the manner in which water flows in and out of the proposed SWMS. Otherwise, there are no changes to the engineered features of the SWMS. Rule 40E-4.301(1)(a) requires that G.L. Homes demonstrate that the Project will not cause adverse water quantity impacts to receiving waters and adjacent lands, and not exceed the capacity of the downstream receiving water bodies. Section 6.2 of the BOR requires that a project be designed so it is consistent with the downstream carrying capacity of the receiving waters. The receiving waterbody for this Project is the Cocohatchee Canal. The allowable discharge rate for the Cocohatchee Canal is 15.9 cfs. The Project’s calculated rate of discharge is 15.6 cfs, so the Project does not exceed the allowable discharge rate. The Project's discharge rate is lower in 2006 (15.6 cfs) than it was in the 2004 ERP (291 cfs). Petitioner argued that the significant difference in discharge rates between the 2006 and the 2004 ERPs violated the District’s water quantity criteria. But the discharge rate calculated in 2004 was associated with the Flow-way and entailed a different overall analysis for the entire area served by the Flow-way. G.L. Homes provided reasonable assurances that the discharge rate allowed for its Project would not be exceeded, as required in Section 6.2 of the BOR. G.L. Homes complied with Section 6.3 of the BOR which requires the 25-year, 3-day storm event to be used when computing the discharge rate for the Project. Section 6.8 of the BOR is entitled “Offsite Lands.” Compliance with this Section requires that a project allow the passage of drainage from offsite areas to downstream areas, which is necessary to demonstrate that off-site receiving waterbodies are not being adversely affected. G.L. Homes complied with Section 6.8 by conducting a hydrologic analysis, using the 25-year, 3-day storm event, which demonstrated that discharge would be directed to WCS-1 and WCS-2, allowing for the passage of drainage from offsite areas to the downstream areas. Section 6.10 of the BOR requires that the design of the Project conserve water and not over-drain wetlands. There is nothing about the modifications that violate Section 6.10. In this case, the control elevations have been set at 13.4 feet NGVD, which is the average WSWT. The WSWT was established using biological indicators to determine the average elevation in the Project’s wetlands during the wet season. Setting the control elevation at the WSWT does not violate Section 6.10. To the contrary, when water levels are at or above the control elevation, the design helps prevent the wetlands from being drawn down below 13.4 feet NGVD, and not over-drain them. The WSWT of 13.4 was permitted in the 2004 ERP. The structures also allow for the interchange of water from the Eastern Preserve into the preserve wetlands within the SWMS. This exchange of water helps preserve the Project’s environmental values. Setting the control elevation at 13.4 also reduces unnecessary runoff from the Project, retaining the water for recharge. In addition, the ability of the SWMS to accept flows from the Eastern Preserve also conserves freshwater by preventing that water from being discharged downstream. As indicated, when water levels in the Eastern Preserve are below the control elevation, no water will enter the SWMS from the Eastern Preserve. During those times, it is possible that wetlands within the SWMS will be drained into the deep lakes dug as part of the project. However, that would not be the result of 2006 modifications but would be inherent in the previously-approved SWMS. The 2006 modifications do not re-open the soundness of that previously-approved part of the design. Section 6.10 also requires that a project not lower water tables so that the existing rights of others would be adversely affected. Again, by setting the control elevations at the WSWT, the water table is not expected to be lowered so as to affect the existing rights of others. The Project also must demonstrate that the site’s groundwater recharge characteristics will be preserved through the design of the SWMS. G.L. Homes complied by setting the control elevations at the WSWT, allowing standing water in the wetland preserves to recharge the groundwater. Section 6.11 addresses Detention and Control Elevations which are intended to assist in complying with the provisions of Section 6.10. By designing WCS-1 and WCS-2 at control elevation 13.4, the Project maintains the detention component and the control (wetland protection) elevations under the previously-approved SWMS. The Required Design Information and Assumptions are contained in Section 8.0 of the BOR. This Section includes various assumptions and information regarding the design of the SWMS. By incorporating these assumptions into the Project, G.L. Homes complied with Section 8.0. Flooding (Rule 40E-4.301(1)(b)) This Rule requires G.L. Homes to demonstrate that the Project will not cause adverse flooding to onsite or offsite property. Section 6.4 requires that building floors be designed to be protected from a 100-year, 3-day storm event. G.L. Homes complied with this provision by providing construction plans demonstrating that the building floors are being built higher than the 100-year, 3-day storm event. Likewise, Section 6.5 pertains to providing flood protection for the Project’s roads and parking lots. G.L. Homes complied with this provision by exceeding the District’s 5-year design criteria, and instead designing the roads and parking lots using the 25-year, 3-day storm event. G.L. Homes was required to comply with the Historic Basin Storage provision in Section 6.7, which requires the Project to replace or otherwise mitigate the loss of historic basin storage provided by the site. In this case, the amount and extent of historic storage that is being displaced by the 2006 ERP is the same as that in the 2004 ERP. However, the replacement or mitigation for loss of historic basin storage is reduced due to elimination of the Flow-way. Instead of relying on the Flow-way to address this criterion, G.L. Homes relied on the “Saturnia Falls Slough Hydraulic Study” prepared by Taylor Engineering, the “Taylor Report” (RJ Ex. 32), which demonstrates the current flood levels in the Eastern Preserve and other adjacent properties and wetlands, and that the Project’s configuration would not affect the basin’s historic storage. Lastly, to demonstrate that the Project will not cause adverse flooding to offsite properties, G.L. Homes was required to comply with Section 6.9, Minimum Drainage. This provision requires that the SWMS recover, consistent with the environmental criteria in 6.10 of the BOR, within 12 days or less. The Taylor Report also demonstrated that the Project will recover from the design storm event in time to provide the required attenuation for the next storm event, while preserving environmental or wetland features. There may be times when the recovery may exceed 12 days, but the need to protect the hydrology of the wetlands required the control elevations to be set at 13.4 ft NGVD. Balanced against Section 6.10, G.L. Homes still complies with Section 6.9. Accordingly, G.L. Homes provided reasonable assurances demonstrating that the 2006 ERP will not cause adverse flooding to on-site or off-site property, satisfying Rule 40E- 4.301(1)(b). Storage and Conveyance (Rule 40E-4.301(1)(c)) Rule 40E-4.301(1)(c) requires that an applicant demonstrate that the proposed development will not adversely impact existing surface water storage and conveyance capabilities. In order to accomplish this demonstration, applicants are to consider the capability of the adjacent properties to both store and convey stormwater runoff from their developments. Section 6.6 of the BOR, entitled Floodplain Encroachment, specifies the parameters by prohibiting a net encroachment into the floodplain, between the average WSWT and the 100-year event, which will adversely affect the existing rights of others. G.L. Homes addressed this criterion through the analysis submitted and contained in the Taylor Report. The Taylor Report used the hydrologic model, HEC-HMS, and hydraulic model, HEC-RAS, to provide a simulation of flood stages propagating through the Eastern Preserve and the adjacent wetland system. This analysis assessed the existing flood stages within the offsite areas, starting at the Cocohatchee Canal and ending approximately 2-3 miles northeast of the eastern boundary of the Project. The analysis captured the expected flood levels during both the 25-year, 3-day and the 100-year, 3-day storm events in the area's current condition, and then compared the analysis of the two storm events considering the Project in its development condition. The analysis relied on the Project’s proposal to remove the current melaleuca infestation from the Eastern Preserve as part of the Project’s post-development condition. The Taylor Report concluded that the removal of such exotics would remove a flow impediment and allow the water to flow through the Eastern Preserve at a higher rate, and therefore at lower flood stages. The Taylor Report made these conclusions while accounting for the development as well as the mitigation-required plantings. The Taylor Report, along with Mr. Hull’s testimony, demonstrated that even with the mitigation reaching full maturity, the removal of melaleuca results in lower flood stages than the study area is currently experiencing. The evidence was that the model used by Taylor Engineering, the HEC-RAS model, is an appropriate model to determine flood stages and to calculate the floodplain conveyance. Furthermore, although Petitioner attacked the choice of inputs, mainly the “Manning’s n coefficients” used to determine the roughness or the friction provided by current and post-development vegetation, the balance of the evidence supports the coefficients contained in the Taylor Report as reasonable and within the ranges of the cited data and models. Petitioner’s expert, Dr. Van Lent, who conducted no analysis of his own, admitted that HEC-RAS was an accepted tool to use for floodplain conveyance and that the other models he suggested are either inappropriate or rarely used by ERP applicants. The Applicant provided reasonable assurances demonstrating that the 2006 ERP will not cause adverse impacts to existing surface water storage and conveyance capabilities, satisfying Rule 40E-4.301(1)(c). However, that is not to say that the 2006 ERP replaces the storage and conveyance capabilities that would have been provided under the 2004 ERP with the proposed Flow-way, which also required removal of melaleuca and required the same mitigation plantings except within the Flow-way itself. To the contrary, storage and conveyance capability under the 2004 ERP clearly would have been greater. Wetland Impacts (Rule 40E-4.301(1)(d)) This Rule provision, while typically associated with the wetland ERP criteria review, also applies to the SWMS through Section 6.12 of the BOR, which requires that a lake system be designed so that an adverse gradient is not created between the lakes and wetland areas. G.L. Homes complied with this criterion by setting the control elevation at 13.4 feet NGVD, the WSWT, for the lake system, the SWMS wetland preserves and the Eastern Preserve, ensuring no gradient (or difference in elevation) between the wetland elevation and the lake elevation. Petitioner argued that additional analysis regarding the timing and levels of inundation in the wetland preserves is necessary to fully determine the impacts to the wetlands. Contrary testimony indicated that setting the control elevations within the development area at the WSWT protects the onsite wetlands and ensures that those wetlands will function as expected. Mr. Waterhouse testified that additional analysis, such as groundwater or evapotranspiration, is not necessary because the Project was designed so that the control elevation that affects the lake levels and the wetlands are the same. The testimony was that, since the control elevation was set using the WSWT, the timing and levels within the wetlands will not be affected by the revised SWMS, and that no additional modeling, as recommended by Dr. Van Lent, is necessary because the SWMS complies with Section 6.12. As indicated, it is questionable on this record whether wetlands within the SWMS will be drained during dry conditions by adjacent deep lakes. No such analysis was presented in evidence in this case. However, such an impact on the wetlands within the SWMS would not be the result of 2006 modifications but would be inherent in the previously-approved SWMS. The 2006 modifications do not re-open the soundness of that previously-approved part of the design. As for the 2006 modifications, the evidence was persuasive that no additional analysis regarding the timing and levels of inundation in the wetland preserves is necessary to determine that the elimination of the 80-foot weir and its replacement with WCS-1 and WCS-2 will not impact the wetlands. Water Quality (Rule 40E-4.301(1)(e)) Rule 40E-4.301(1)(e) requires an applicant to provide reasonable assurances that the Project will not adversely affect the quality of receiving waters such that water quality standards will be violated. Section 5.2 describes the District’s standard water quality criteria. This provision, requiring a minimum of one inch detention of stormwater, is referred to as a “presumptive criterion” because it is presumed that if an applicant provides the required one inch of detention, Class III water quality standards and rule requirements will be met. In this case, G.L. Homes provides one inch of detention in its lake system in the exact manner it did in the 2004 ERP. A difference from the 2004 to the 2006 ERP is the classification of the Cocohatchee Canal, the Project’s receiving waterbody, as impaired for iron and dissolved oxygen (DO). Therefore, G.L. Homes was also required to comply with Section 4.2.4.5 of the BOR to demonstrate that it is not contributing to the impairment. See also Fla. Admin. Code R. 40E-4.301(2). Section 4.2.4.5, entitled "Where Ambient Water Quality Does Not Meet State Water Quality Standards," states as follows: If the site of the proposed activity currently does not meet state water quality standards, the applicant must demonstrate compliance with the water quality standards by meeting the provisions in 4.2.4.1, 4.2.4.2, and 4.2.4.3, as applicable, and for the parameters which do not meet water quality standards, the applicant must demonstrate that the proposed activity will not contribute to the existing violation. If the proposed activity will contribute to the existing violation, mitigation may be proposed as described in subsection 4.3.1.4. To comply, G.L. Homes must show that neither short- term (4.2.4.1) nor long-term (4.2.4.2) water quality impacts will occur. G.L. Homes complied with the short-term requirements by submitting the Construction Pollution Prevention Plan (CPPP), detailing how water quality will be protected during the construction process. In addition to the inch of treatment, the long-term water quality requirement was addressed, in part, by the Urban Stormwater Management Plan (USMP), which details various source controls or best management practices (BMPs) to be implemented once the Project is built and operating. These BMPs help keep pollutants out of the lake system. In addition to the BMPs, the USMP requires G.L. Homes to institute a water quality monitoring plan and submit results to the District for review after the Project is developed. Dr. Harper concurred with Petitioner that the USMP as proposed (in R.J. 28, § 6.0) was deficient in certain respects and recommended that it be clarified or supplemented to specify testing for oxygen, iron, nitrogen, phosphorus, hardness, and a few heavy metals, namely copper, lead, and zinc. Dr. Harper also concurred and recommended that that samples should be collected at both WCS-1 or WCS-2, not just at one of them, depending on which structure is discharging water at the time of sampling. (Dr. Harper confirmed the propriety of testing three times per year, which is a common frequency for monitoring in situations like this.) Mr. Waterhouse agreed with Dr. Harper's additions/clarifications and testified that the USMP, as supplemented and clarified, would comply with District’s criteria. G.L. Homes accepted Dr. Harper's additions/clarifications to the USMP. Another component of Section 4.2.4.5 requires additional assurance for parameters that do not meet water quality standards. The District prepared the “Terrie Bates Water Quality Memo dated June 11, 2004,” referred to as “the Bates Memo,” to provide guidance on the implementation of Section 4.2.4.5 for projects which discharge into an impaired waterbody. The Bates Memo suggests that an additional 50 percent of treatment, among other BMPs, be incorporated into a SWMS. G.L. Homes complied with the Bates Memo because runoff from the lakes, after meeting the one inch detention treatment requirement, spills into the wetland preserves within the SWMS for an additional 50 percent of treatment. In terms of operation of the SWMS, this is no different from the 2004 ERP, but the 2006 ERP simply calculates and takes credit for the additional treatment that was also provided by the onsite wetlands in the 2004 ERP. It is uncontested that the wetland preserves within the development are not impaired and are only required to meet Class III water quality standards. When the stormwater spills into the SWMS wetland preserves, it is presumed to meet Class III water quality standards due to the one inch of detention treatment. Accordingly, the SWMS wetland preserves can be used to provide the additional 50 percent of treatment. The Bates Memo also lists seven BMPs as potential options to consider, in addition to the extra 50 percent treatment volume. G.L. Homes is implementing 6 of the 7 items as follows: (1) the CPPP, which is a stormwater pollution prevention plan; (2) an operation plan or long-term plan addressing routine maintenance is included in the USMP; (3) planting littoral zones; (4) some utilization of onsite wetlands for additional treatment downstream of the SWMS by discharging into the Eastern Preserve wetland system through WCS-2 at times; (5) a site-specific water quality evaluation for the Project’s pre- and post-development conditions is addressed by the Harper Report (RJ Ex. 25); and (6) a Water Quality Monitoring Plan, which is required under the USMP. Petitioner erroneously argued that the Bates Memo does not allow the 50 percent treatment to occur in the preserve wetlands within the development. The argument stems from the phrase “in addition to the extra 50% treatment volume” at the bottom of page 3 of the memo, and bullet No. 5 on page 4, which recommends “treatment in wetlands downstream of the SWMS.” Absent any analysis of her own or any experience in the application of the Bates Memo, Ms. Hecker contended that the Bates Memo precludes the use of onsite wetlands. The argument is contradictory and confusing because Hecker admits that the preserve wetlands within the development are not downstream of the SWMS, and acknowledges that the Eastern Preserve is the wetland downstream of the SWMS. Ms. Hecker, along with Mr. Boler, ultimately admitted that criteria exist allowing the use of wetlands as part of the SWMS. Mr. Waterhouse, who has vastly more experience with the District’s water quality criteria than Ms. Hecker, and participated in the drafting of the Bates Memo, refuted Ms. Hecker’s position about the intent of the Bates Memo, citing to Section 5.3.1 of the BOR as additional support for the use of onsite wetlands for water quality treatment. In addition to these water quality submittals, G.L. Homes also provided a water quality analysis specific to the Project prepared by Dr. Harvey Harper. The analysis, entitled “Evaluation of Water Quality Issues Related to the Saturnia Falls Project” (RJ Ex. 25), referred to as the “Harper Report,” analyzed the Project’s pre- and post-development pollutant loads to help demonstrate that the Project would not contribute to the impairment of the Cocohatchee Canal. The Harper Report estimated the removal efficiency of the SWMS lakes to determine how much pollutant removal would be achieved by the lakes on the Project. Dr. Harper relied solely on the lakes without accounting for any of the additional treatment expected to occur in the wetlands or from the source control BMPs contained in the USMP, which means his report errs on the conservative side in those respects. Although the Canal is impaired for dissolved oxygen (DO), it is uncontested that a nutrient analysis is the appropriate method to assess DO conditions. The Harper Report, as summarized in the table below, concluded that the Project would result in lower post-development loading rates than the pre-development loading rates for nutrients. Nitrogen (N) Pre-Development Total N Load 390.6 kg Post-Development Removal (Dry4) Total N Load 204.99 kg Post-Development Removal (Wet5) Total N Load 194.69 kg Phosphorus (P) Pre-development Total P Load 15.12 kg Post-Development Removal (Dry) Total P Load 5.29 kg Post-Development Removal (Wet) Total P Load 4.49 kg The Harper Report compared the Post-Development Total Basin Loading numbers for P (136.43 kg) and for N (922.57 kg), on an average annual basis, coming from the residential areas (roads and lots) to the Post-Development Removal Loads for P [5.29 kg (dry) and 4.49 kg (wet)] and for N [204.99 kg (dry) and 194.69 kg (wet)] discharging from the lakes after treatment. The calculations demonstrated that approximately 77 percent of N would be removed by the lakes in the dry season conditions and approximately 78 percent would be removed in the wet season conditions. Approximately 95 percent of P would be removed by the lakes in both the dry and wet season conditions. Additional removal and treatment above these percentages is expected due to a number of other source control measures not accounted for in the Harper Report. The Harper Report also concluded that iron discharges from the SWMS would be extremely low and substantially less than the Class III standard of 1 mg/l. Petitioner presented no evidence to counter this conclusion. Petitioner questioned the validity of Harper Report’s use of wetlands as part of the loading calculations, and attacked his underlying methodology. Petitioner's witnesses called it "bad science" to attribute pollutant loading to wetlands because wetlands remove nutrients from the water column and because attributing nutrient loading to wetlands would make it easier to obtain a permit to destroy wetlands. However, none of Petitioner's witnesses were able to credibly defend the position that wetlands cannot contribute to the loading calculations and at times conceded to this fact. Generally, wetlands can in fact contribute some nutrients that pass through without being taken up by wetland vegetation, either because the water is moving through the wetlands too fast or because the nutrient load in the wetland overtaxes the wetland's ability to take up nutrients. That does not necessarily mean that the nutrient load attributable to a wetland will be greater than the load attributable to other post-development land uses. Indeed, the only post-development land use characterized by Dr. Harper as having a lower pollutant load than a wetland was low- intensity commercial, and that was only for total nitrogen. (Dr. Harper's use of data from some distance away in Corkscrew Swamp as the basis for characterizing the pollutant loadings for the onsite wetlands, instead of data from a closer monitoring station in the Cocohatchee Canal weir, was justified; his use of that data instead of collecting data onsite was a valid criticism, but there was not enough evidence in support of that criticism to undermine the additional assurance derived from Dr. Harper's work.) As for the argument that the "Harper method" makes it easier to obtain a permit to destroy wetlands, there are many regulatory criteria other than just water quality that are supposed to be considered before a permit is issued to impact wetlands. Another component of Petitioner’s attack on the Project’s water quality compliance included vague references to an 80 percent removal efficiency. In actuality, the 80 percent removal efficiency is not adopted or incorporated into any District rule criteria. In any event, the Harper Report and other evidence give reasonable assurance that, along with other source controls, the proposed SWMS probably will remove 80 percent of pollutants on an average annual basis. Lastly, the District clarified why Section 4.2.8 of the BOR, regarding cumulative impacts for water quality, was not applicable in this case. Since no contribution or impacts to water quality are expected, a cumulative impacts analysis is not necessary to assess the extent of the impacts. The combination of all these water quality measures, when taken together, give reasonable assurance that the 2006 ERP will not adversely affect the quality of receiving waters such that State water quality standards will be violated, and that Rule 40E-4.301(1)(e) will be satisfied. Engineering Principles (Rule 40E-4.301(1)(i)) Rule 40E-4.301(1)(i) requires an applicant to provide reasonable assurances that the SWMS will be capable, based on generally-accepted engineering and scientific principles, of being performed and of functioning as proposed. Section 7.0 of the BOR specifies implementation of the Rule. Since WCS-1 and WCS-2 are proposed as operable structures, the District is requiring that G.L. Homes enter into an operable Control Structure Agreement with the Big Cypress Basin Board. The agreement provides for the Big Cypress Basin Board to operate and maintain the two operable structures, instead of the Saturnia Falls Homeowners Association. As Mr. Waterhouse explained, this is a reasonable and logical requirement. WETLAND ERP CRITERIA As with the SWMS criteria, the wetland criteria review of this modification compares the Project to 2004 ERP. Functions To Fish & Wildlife And Listed Species (Subsection 40E- 4.301(1)(d)) Rule 40E-4.301(1)(d) requires an applicant to provide reasonable assurances to demonstrate that the construction, alteration, operation, maintenance, removal, or abandonment of a SWMS will not adversely impact the value of functions provided to fish and wildlife and listed species by wetlands and other surface waters. Section 4.2.2 of the BOR provides further specificity to ensure that a project will not impact the abundance and diversity of fish, wildlife and listed species. The 2006 ERP makes no changes or modification to the 280 acres of wetland impacts allowed in the 2004 ERP. Since the impacts remain the same, the 2006 ERP does not modify or affect the values the wetlands provide to either the abundance or diversity of fish and wildlife, compared to the 2004 ERP. Review of this criterion was determined in the 2004 ERP and should not be re- opened. Section 4.2.2.3 of the BOR addresses the functional assessment of the values provided by the Project’s wetlands. The wetland values were not reassessed in the 2006 ERP because the wetland impacts remain the same as in the 2004 ERP. The evidence was that the current value of the wetlands remains low due to heavy melaleuca infestation, with 75 percent coverage in most locations. While Petitioner may disagree with how the current wetlands were evaluated, nothing in this modification request requires a reassessment of their value. Accordingly, the value of the wetlands currently onsite has not changed, and this criteria should not be re-opened. Section 4.2.2.4 of the BOR requires that a regulated activity not adversely impact the hydroperiod of wetlands or other surface waters. Specifically, the criterion states as follows: [An] applicant must provide reasonable assurances that the regulated activity will not change the hydroperiod of a wetland or other surface water, so as to adversely affect wetland functions or other surface water functions as follows: Whenever portions of a system, such as constructed basins, structures, stormwater ponds, canals, and ditches, are reasonably expected to have the effect of reducing the depth, duration or frequency of inundation or saturation in a wetland or other surface water, the applicant must perform an analysis of the drawdown in water levels or diversion of water flows resulting from such activities and provide reasonable assurance that these drawdowns or diversions will not adversely impact the functions that wetlands and other surface waters provide to fish and wildlife and listed species. Increasing the depth, duration, or frequency of inundation through changing the rate or method of discharge of water to wetlands or other surface waters or by impounding water in wetlands or other surface waters must also be addressed to prevent adverse effects to functions that wetlands and other surface waters provide to fish and wildlife and listed species. Different types of wetlands respond differently to increased depth, duration, or frequency of inundation. Therefore, the applicant must provide reasonable assurance that activities that have the potential to increase discharge or water levels will not adversely affect the functioning of the specific wetland or other surface water subject to the increased discharge or water level. Whenever portions of a system could have the effect of altering water levels in wetlands or other surface waters, applicants shall be required to: monitor the wetland or other surface waters to demonstrate that such alteration has not resulted in adverse impacts; or calibrate the system to prevent adverse impacts. Monitoring parameters, methods, schedules, and reporting requirements shall be specified in permit conditions. Subsection (a) applies if the Project was expected to reduce the depth, duration, or frequency of inundation or saturation in any of the Project’s wetlands. Subsection (b) applies if the Project is expected to increase the depth, duration, or frequency of inundation through changing the rate or method of discharge of water to wetlands or other surface waters. Subsection (c) requires monitoring of the wetlands to determine the effects of the hydrological changes. Persuasive engineering and biological testimony demonstrated that no change (neither a reduction nor an increase) in the hydrology on the preserved wetlands or the Eastern Preserve will occur from what was permitted in the 2004 ERP. By analyzing the various biological indicators onsite, control elevations within the SWMS and the wetlands (both the Eastern Preserve and onsite preserve wetlands) were set at 13.4 feet NGVD, which is the WSWT. This matched the control elevation under the 2004 ERP. Ms. Bain and Mr. Passarella both testified that the hydroperiods in the wetlands would remain the same as in the 2004 ERP during normal conditions, the most important indicator of wetland success, and that the wetlands would be unaffected by the modifications. The WSWT is a common indicator of average wet season water levels in a wetland, which generally is the best indicator of maintaining appropriate hydrology and thereby maintaining the expected level of wetland function. However, as indicated, the deep lakes next to preserved wetlands within the SWMS could draw down those wetlands during dry conditions; but the potential lake effect was present in the 2004 ERP. Both Dr. Van Lent and Jason Lauritsen conceded that, with the elimination of the Flow-way, the hydrology in the Eastern Preserve would be better in the 2006 ERP than in the 2004 ERP. But, as indicated, there was no detailed analysis of wetland impacts from the 2006 modifications because G.L. Homes and the District took the position that no detailed analysis was necessary since the control elevation remained unchanged. Petitioner attempts to cast doubt as to the level of data reviewed by the District to conclude that no changes will occur in the hydrology of the wetlands. But the additional modeling recommended by Petitioner is unnecessary and unwarranted in the face of the biological indicators collected from the Project site over several years. These biological indicators are reliable and customary information to use when ensuring compliance with Section 4.2.2.4. They also resulted in the same control elevation that was set in the 2004 ERP. Petitioner never disputed the credibility of the biological indicators, nor did they present any contrary evidence (either a model or otherwise) that purported to show the wetlands would not function as permitted in the 2004 ERP based on these indicators. Instead, they simply asserted that additional analysis should be done. Although not precipitated by this criterion, G.L. Homes will conduct monitoring of the wetlands by implementing the Monitoring Plan as additional reasonable assurances that the wetlands will not be affected. Secondary Impacts To Water Resources (Subsection 40E- 4.301(1)(f)) Rule 40E-4.301(1)(f) and Section 4.2.7 of the BOR require a demonstration that the proposed activities will not cause adverse secondary impacts to the water resources. No secondary impact analysis was done because the site plan and wetland impacts remained unchanged from the 2004 ERP. Additional Wetland Provisions (Subsection 40E-4.301(3) and 40E- 4.302 Subsection 40E-4.301(3) addresses the remaining wetland criteria in the BOR, including mitigation and elimination or reduction of impacts. Rule 40E-4.302(1)(b) addresses the cumulative impacts analysis contained in Section 4.2.8 of the BOR. No assessment of elimination and reduction of wetland impacts was done because the wetland impacts remain unchanged from the 2004 ERP. The 2006 modifications do not warrant another elimination and reduction analysis. No cumulative impacts analysis is necessary because, as in the 2004 ERP, all proposed mitigation for wetland impacts are within the same drainage basin (West Collier) as the impacts. Logically, if the mitigation proposed for the 2006 modifications fully offsets the wetland impacts, there will be no impacts to cumulate with others impacts of other development activities. On the other hand, if the mitigation does not fully offset the impacts, the application will be denied for that reason, without the need for a cumulative impacts analysis. Section 4.3 of the BOR specifies criteria for mitigation proposed as part of an ERP application. Both G.L. Homes and the District took the position that, similar to the wetland impacts, the proposal for both onsite and offsite mitigation did not change from the 2004 ERP, and that no detailed analysis of the mitigation proposal, or comparison to wetland impacts, was required. Indeed, the onsite mitigation proposal--which includes preservation, restoration of wetlands by removing melaleuca, and the creation of four shallow depressional areas for wood stork habitat--remains unchanged from the 2004 ERP, including the Grading and Planting Plan, the Monitoring Plan, and Mitigation, Monitoring and Maintenance Plan. It was proven that the Flow- way footprint never was considered to be either a wetland impact or a part of the mitigation proposal, and that its removal from the Eastern Preserve does not decrease the amount or the value of the mitigation. (Actually, its removal probably increases the value of the mitigation, but the amount of any such increase was not analyzed or quantified.) It also was proven that the onsite wetlands will not be adversely affected as a result of the 2006 modifications so as to decrease their mitigation value, as Petitioner contended. Petitioner also raised the concern that the wetland mitigation within the SWMS would not function as permitted in the 2004 ERP due to the storage of the additional 50 percent within those wetlands, thereby affecting the mitigation assessment. However, as already indicated, when the water reaches those internal wetland preserves, it will have been treated to Class III water quality standards. In addition, operationally, the water also would have been stored in those wetlands under the 2004 ERP; the only difference is that the 2006 modifications calculate and claim credit for the storage, which was not necessary or done for the 2004 ERP. In addition to the onsite mitigation, G.L. Homes previously had been permitted to provide offsite mitigation in the form of a $1.26 million cash payment to the District. The payment was for the purchase, restoration, and enhancement of 154 acres of lands within the boundaries of the District’s environmental restoration project called CREW. Payment of cash for use by the District is addressed in Section 4.3.1.8 of the BOR. These types of offsite mitigation opportunities are referred to as a regional offsite mitigation areas or “ROMAs.” Unlike most mitigation banks, ROMAs, such as CREW, involve a land acquisition component and are owned and operated by the District. G.L. Homes and the District take the position that, under Section 4.3.1.8 of the BOR, and the previous 2004 ERP, G.L. Homes’ responsibilities ended when it paid the cash donation to the District. They take the position that the mitigation is unaffected by the modification, and that re- opening of the offsite mitigation requirement is unwarranted. However, while the Staff Report characterizes the $1.26 million payment as "a substantial amount of up-front mitigation for the proposed wetland impacts," no land in CREW has been purchased as of yet. In addition, the evidence was that, as a result of the passage of time and market forces, it unlikely that 154 acres of land within CREW can be purchased, enhanced, and maintained with the funds paid to the District under the 2004 ERP. Indeed, for a number of reasons, including the lack of willing sellers to participate in the CREW ROMA, in 2004 the District stopped accepting payment of funds to purchase land in CREW as an acceptable form of mitigation for wetland impacts. As a result, it no longer can be said that the proposed mitigation package, which includes and relies on the use of the funds to purchase, enhance, and maintain 154 acres in CREW, fully offsets the proposed wetland impacts. (In addition, under Rule 40E- 4.331(2)(a), any new mitigation proposal would have to analyzed using the Uniform Mitigation Assessment Methodology, Rule 62- 345.100.) Finally, if the offsite mitigation outside the drainage basin is used, a cumulative impact analysis will be necessary. Public Interest Test (Rule 40E-4.302(1) In addition to complying with Rule 40E-4.301, since the Project is located in, on, or over wetlands, G.L. Homes must also address the criteria contained in the Public Interest Test, Rule 40E-4.302 and Section 4.2.3 of the BOR, by demonstrating that the Project is not contrary to the public interest. (Since the Project is not within an OFW or does not significantly degrade an OFW, the higher standard of “clearly in the public interest” does not apply.) The District considers and balances the following seven factors in determining compliance with the test: Whether the regulated activity will adversely affect the public health, safety, or welfare or the property of others (40E-4.302(1)(a)1.); 93. G.L. Homes provided reasonable assurances that the Project will not cause any onsite or offsite flooding, nor will the Project cause any adverse impacts to adjacent lands because the SWMS is designed in accordance with District criteria and the post-development peak rate of discharge does not exceed the allowable discharge rate. The Project is considered neutral as to this factor. However, it appears from the evidence that the 2002 ERP and the 2004 ERP viewed those proposals as positive as to this factor due to the inclusion of the Flow-way in an effort to alleviate regional flooding. Whether the regulated activity will adversely affect the conservation of fish and wildlife, including endangered or threatened species, or their habitats (40E-4.302(1)(a)2.); 94. As indicated, the Project proposes onsite mitigation which has not changed from the 2004 ERP, but passage of time and market conditions have changed the offsite mitigation proposal. As a result, it no longer can be said based on the evidence in this case that the overall mitigation proposal offsets potential impacts to fish and wildlife, including wood stork habitat, even though the mitigation plan for the Eastern Preserve would improve wood stork habitat from its current melaleuca-infested condition. For these reasons, the Project cannot be considered positive as to this factor. Whether the regulated activity will adversely affect navigation or the flow of water or cause harmful erosion or shoaling (40E-4.302(1)(a)3.); 95. The Project will not adversely affect navigation. In addition, no evidence was introduced to suggest that the Project’s construction would result in harmful erosion or shoaling. The balance of the testimony pertaining to the flow of water in the Project indicated that it will not be adversely affected. Although there will be reduced discharge to the Eastern Preserve as a result of the 2006 modifications, the Project is considered neutral as to this factor. In contrast, it appears from the evidence that the 2002 ERP and the 2004 ERP would have viewed those proposals as positive as to this factor due to the inclusion of the Flow-way in an effort to alleviate regional flooding. Whether the regulated activity will adversely affect the fishing or recreational values or marine productivity in the vicinity of the activity (40E-4.302(1)(a)4.); 96. The Project does not provide any fishing, recreational values, or marine productivity. Therefore, the Project is neutral as to this factor. Whether the regulated activity will be of a temporary or permanent nature (40E-4.302(1)(a)5.); 97. The Project is permanent in nature and is considered neutral as to this factor because reasonable assurances have not been given that mitigation will fully offset the permanent wetland impacts. Whether the regulated activity will adversely affect or will enhance significant historical and archaeological resources under the provisions of Section 267.061, F.S. (40E- 4.302(1)(a)6.); 98. There are no significant archeological or historical resources that will be adversely affected by the Project. In addition, no new information was received by the District indicating that historical resources would be impacted. Therefore, the Project is considered neutral as to this factor. The current condition and relative value of functions being performed by areas affected by the proposed regulated activity (40E-4.302(1)(a)7.); As found, reasonable assurance has not been given that the current condition and relative value of functions being performed by the areas affected by the Project will be fully offset by mitigation. Therefore, the Project should be considered negative as to this factor. On balance, the Project, overall, is negative when measured against these criteria. Accordingly, it must be determined that reasonable assurance has not been given that the Project, as a whole, is not contrary to the public interest.

Conclusions DOAH has jurisdiction over the parties and the subject matter of this proceeding pursuant to Sections 120.569 and 120.57, Florida Statutes. Under Section 403.412(6), Florida Statutes: Any Florida corporation not for profit which has at least 25 current members residing within the county where the activity is proposed, and which was formed for the purpose of the protection of the environment, fish and wildlife resources, and protection of air and water quality, may initiate a hearing pursuant to s. 120.569 or s. 120.57, provided that the Florida corporation not for profit was formed at least 1 year prior to the date of the filing of the application for a permit, license, or authorization that is the subject of the notice of proposed agency action. It is concluded that use of virtually the identical statutory language is not mandatory for standing under this statute and that the Conservancy meets the requirements for standing under this statute. Party status under Sections 120.569 and 120.57, Florida Statutes, also can be based on proof that "substantial interests will be affected by proposed agency action." § 120.52(12)(b), Fla. Stat. This requires proof of "an injury in fact which is of sufficient immediacy and is of the type and nature intended to be protected" by the substantive law. § 403.412(5), Fla. Stat. See also Agrico Chemical Co. v. Dept. of Environmental Reg., 406 So. 2d 478 (Fla. 2d DCA 1981). An organization like the Conservancy may allege and prove either that its own substantial interests or those of a substantial number of its members will be affected. See Florida Home Builders Ass'n v. Dept. of Labor and Employment Security, 412 So. 2d 351 (Fla. 1982); Farmworker Rights Organization, Inc. v. Dept. of Health, etc., 417 So. 2d 753 (Fla. 1st DCA 1982). In addition, Section 403.412(5), Florida Statutes, provides: No demonstration of special injury different in kind from the general public at large is required. A sufficient demonstration of a substantial interest may be made by a petitioner who establishes that the proposed activity, conduct, or product to be licensed or permitted affects the petitioner's use or enjoyment of air, water, or natural resources protected by this chapter. The Conservancy made a sufficient demonstration under this statute that the proposed 2006 ERP will affect its use or enjoyment of water and natural resources protected by Chapter 403. As a result, the Conservancy also proved standing under Sections 120.569 and 120.57, Florida Statutes. Because the Conservancy has "citizen standing" under Section 403.412(6), Florida Statutes, as well as standing under Sections 120.569 and 120.57, Florida Statutes, it is not necessary to decide G.L. Homes' challenge to the Conservancy's "associational standing." It also is unnecessary and premature to determine whether any party would be entitled under Section 120.68(1), Florida Statutes, to judicial review of the final order entered in this case as "a party who is adversely affected." It is believed that such a determination, if it becomes necessary, can be made upon the evidence in the record. BURDENS OF PROOF AND PERSUASION This is a de novo proceeding designed to formulate final agency action. See Florida Department of Transportation v. J.W.C. Company, Inc., 396 So. 2d 778, 786-787 (Fla. 1st DCA 1981); and § 120.57(1)(k), Fla. Stat. As an ERP applicant, G.L. Homes has the ultimate burden of proof and burden of persuasion. See J.W.C. Company, Inc., 396 So. 2d at 786-789. In light of the evidence presented in this case, the option suggested in the J.W.C. case to shift the burden of presenting evidence was not useful. ERP CRITERIA The permitting criteria for G.L. Homes' proposed Project are found in Parts I and IV of Chapter 373, Florida Statutes, Florida Administrative Code Chapter 62-345, Florida Administrative Code Rules 40E-4.301 and 40E-4.302, and the BOR, which is adopted by reference in Rule 40E-4.091(1)(a). For its proposed Project to be permitted, G.L. Homes must give reasonable assurance of compliance with those criteria. Issuance of an ERP must be based solely on compliance with applicable permit criteria. See Council of the Lower Keys v. Charley Toppino & Sons, Inc., 429 So. 2d 67 (Fla. 3d DCA 1983). Reasonable assurance contemplates a substantial likelihood that the project will be successfully implemented. See Metropolitan Dade County v. Coscan Florida Inc., 609 So. 2d 644 (Fla. 3d DCA 1992). Absolute guarantees are not necessary, and a permit applicant is not required to eliminate all contrary possibilities or address impacts that are only theoretical and cannot be measured in real life. See City of Sunrise v. Indian Trace Community Development District, et al., DOAH Case No. 91- 6036, 1991 Fla. ENV LEXIS 6997, 92 ER FALR 21 (DOAH 1991, SFWMD 1992); Manasota-88, Inc. v. Agrico Chemical Co. and Department of Environmental Regulation, DOAH Case No. 87-2433, 1990 Fla. ENV LEXIS 38 (DOAH Jan. 5, 1990; DER Feb. 19, 1990). The test in this case is not whether the District properly evaluated the 2004 ERP, but whether the areas proposed to be modified or affected by the modification met the applicable conditions for issuance. When a permittee seeks to modify an existing permit, the District’s review includes only that portion of the existing permit that is proposed to be modified or is affected by the modification. Fla. Admin. Code R. 40E-4.331(2). See also Friends of the Everglades, Inc., v. Dep't. of Envt'l. Reg., 496 So. 2d 181, 183 (Fla. 1st DCA 1986); Behrens v. Boran, ORDER NO. SWF 02-052, ER FALR 257 (SWFWMD Aug. 27, 2002), DOAH Case No. 02-0282, 2002 Fla. ENV LEXIS 192 (DOAH July 29, 2002); Kunnen v. Southwest Fla. Water Mgmt. Dist., ORDER NO.: SWF 02-003, DOAH Case No. 01-2571, 2002 Fla. ENV LEXIS 4 (DOAH Dec. 17, 2001; SWFWMD Jan. 29, 2002). The "reasonable assurance" requirement applies to the activities for which permitting is presently sought and, except to the extent affected by the proposed modification, does not burden the applicant with "providing 'reasonable assurances' anew with respect to the original permit." Friends of the Everglades, supra at 183. Accordingly, Petitioner’s arguments that certain criteria must be revisited because they were not properly addressed in previous permits is irrelevant to this proceeding; but previously-decided criteria must be reviewed again to the extent that proposed modifications affect those criteria. CONSIDERATION OF THE ERP CRITERIA In order to provide reasonable assurances that a Project will not be harmful to the water resources of the District, the applicant must satisfy the conditions for issuance set forth in Rules 40E-4.301 and 40E-4.302. In this case, the evidence must be viewed under the rule pertaining to modification of permits. Rule 40E-4.331(2)(a) requires the District to review permit modification applications “using the same criteria as new applications for those portions of the project proposed for, or affected by, the modification.” Surface Water Management Criteria Water Quantity and Flooding Rule 40E-4.301(1)(a) and (b) address adverse water quantity to receiving water bodies and flooding either onsite and offsite. As found, G.L. Homes complied with the applicable criteria to satisfy both of these rules. Storage and Conveyance Rule 40E-4.301(1)(c) requires G.L. Homes to provide reasonable assurances that the Project will not adversely impact storage and conveyance capabilities. As found, the submittal of the Taylor Report provides reasonable assurances that the Project will not adversely affect the conveyance of water. Moreover, although some criticism was aimed at the choice of the friction coefficients used in the Taylor Report, the evidence as a whole proves that the coefficients in the Taylor Report are reasonable and scientifically defensible. Water Quality Rule 40E-4.301(1)(e) requires G.L. Homes to provide reasonable assurances that the Project will not result in adverse water quality impacts. As found, coupled with the clarifications/additions to the USMP suggested by Dr. Harper and accepted by G.L. Homes, the numerous water quality submittals demonstrated compliance with this Rule, including assurances regarding the impairment status of the Cocohatchee Canal. While Petitioner leveled numerous criticisms against the Project’s ability to comply with water quality, none of the criticisms rose to the level of “contrary evidence of equivalent quality.” Taken as whole, and balanced against Petitioner’s lack of equivalent evidence and credible witnesses, the preponderance of the evidence demonstrates that, with the Monitoring Plan additions/clarifications, G.L. Homes meets the District’s water quality criteria. Engineering Principles As required by Rule 40E-4.301(1)(i), G.L. Homes has provided reasonable assurances to demonstrate that the SWMS will be capable, based on generally accepted engineering and scientific principles, of being performed and functioning as proposed. Wetlands Criteria Elimination and Reduction, Secondary and Cumulative Impacts 115. Rules 40E-4.301(1)(f) and (2) and 40E-4.302(1)(b) require G.L. Homes to demonstrate compliance with the following District criteria pertaining to wetland impacts: (1) elimination and reduction; (2) secondary impacts; and (3) cumulative impacts. As found, the 2006 ERP proposes no changes or modifications to the wetlands impacts approved in the 2004 ERP. Therefore, Petitioner’s arguments that these assessments were either not done or done improperly in the previous permit are not valid bases to relitigate those issues. Accordingly, elimination and reduction, secondary impacts, and cumulative impacts addressed in the 2004 ERP are not properly litigated in this modification proceeding, except to the extent that they are affected by the proposed modifications. While the proposed modifications do not affect either elimination and reduction or secondary impacts, they could affect cumulative impacts, depending on whether offset mitigation needed to fully offset wetland impacts is accomplished in the West Collier drainage basin. Wetland Values and Functions to Fish and Wildlife Rule 40E-4.301(1)(d) requires G.L. Homes to provide reasonable assurances that the Project will not adversely impact the value and functions provided to fish and wildlife and listed species by wetlands. Rule 40E-4.301(3) requires an applicant to comply with the District’s mitigation provisions in the BOR. As found, Petitioner’s contention that the revised SWMS affected the values and functions provided to fish and wildlife, particularly the wood stork, was not supported by the weight of the evidence as to onsite mitigation. However, the passage of time and market conditions affected the offsite mitigation proposed and presumably evaluated for the 2004 ERP, and the impacts and mitigation were not re-evaluated for the 2006 ERP. Under Rule 40E-4.331(2), they must be re-evaluated using UMAM, as required by Rule 62-345.100. Public Interest Test The public interest test is limited in scope to only the seven factors set forth in Rule 40E-4.302(2). As found above, after a balancing of the factors, reasonable assurance was not provided that the Project is not contrary to the Public Interest.

Recommendation Based upon the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the proposed 2006 ERP be denied. If it is granted, it should include the additions/clarifications to the USMP suggested by Dr. Harper and accepted by G.L. Homes. DONE AND ENTERED this 15th day of May, 2007, in Tallahassee, Leon County, Florida. S J. LAWRENCE JOHNSTON Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 15th day of May, 2007.

Florida Laws (12) 120.52120.569120.57120.573120.68253.04267.061373.042373.086373.416403.4126.10
# 8
JAMES D. ENGLISH, JR., AND CYPRESS CREEK PARTNERSHIP vs SOUTH FLORIDA WATER MANAGEMENT DISTRICT AND TELEGRAPH CYPRESS WATER MANAGEMENT DISTRICT, 92-006900 (1992)
Division of Administrative Hearings, Florida Filed:Fort Myers, Florida Nov. 18, 1992 Number: 92-006900 Latest Update: Jul. 10, 1995

The Issue Whether the application of Telegraph Cypress Water Management District to modify an existing surface water management system permit should be granted.

Findings Of Fact The South Florida Water Management District (District) is a public corporation in the State of Florida existing pursuant to Chapter 25270, Laws of Florida, 1949, and operating pursuant to Chapter 373, Florida Statutes, and Chapter 40E, Florida Administrative Code. The District is a multipurpose water management agency with principal offices in West Palm Beach, Florida. Telegraph Cypress Water Management District (TCWMD) is a water control district organized pursuant to Chapter 298, Florida Statutes. Agricultural operations have been conducted within the TCWMD for more than 30 years by the landowner, Babcock Florida Company. The TCWMD is the permittee of record. James D. English, Jr., owns, along with other members of his family, an orange grove and pasture in Lee County, Florida. The English family has owned the property for approximately 120 years. On November 10, 1992, James D. English, Jr., and the Panacea Timber Company filed a petition for formal administrative hearing challenging the District's intent to issue SWM Permit Modification No. 08-00004-S. Cypress Creek Partnership is a Florida General Partnership of which James D. English, Jr., is a principal. The partnership engages in agricultural activities in Lee County, Florida. The Alva Cemetery, Inc., is a Florida not-for-profit corporation which owns and manages a cemetery facility in Lee County Florida. The cemetery has been in active use for approximately 120 years. In recent years, Alva Cemetery has experienced occasions of excess water encroaching onto the cemetery property. On November 12, 1992, Alva Cemetery, Inc., filed a petition for administrative hearing challenging the District's intent to issue SWM Permit Modification No. 08-00004-S. James D. English, Jr., Cypress Creek Partnership and Alva Cemetery, Inc., are herein referred to as Petitioners. The TCWMD and the Petitioner English share a common property boundary. The Alva Cemetery is surrounded by the English property. All lands involved in this matter historically drain towards the Caloosahatchee River. The TCWMD includes approximately 89,120 acres of land located in Charlotte and Lee Counties, Florida. The land uses within the TCWMD include agricultural, cattle, and timber operations. Generally, the fields have been leased to third party farmers who use the field for several years. When the fields are not actively farmed, they are returned to a fallow state and used as pasture land until fertility is restored at which time they are reactivated for farming. Active farms fields are generally surrounded by a perimeter ditch and dike system. Pumps may be used to water and de-water the fields. When the field is returned to a fallow state, the ditch and dike system are not maintained and become less prominent either by action of weather or by intent. Pumps are not present. All of the TCWMD lies generally north to northwest of the property owned by the Petitioners. Surface waters flow onto the Petitioners' lands from the north. The Telegraph-Cypress system is unique and is the largest of its kind in South Florida Water Management District jurisdiction. The TCWMD system includes storage/detention facilities, control structures, pumping stations and an extensive network of internal canals. There are nine separate water management basins within the TCWMD. The Petitioners asserted that the water management basins identified by the District and the TCWMD are incorrect. The greater weight of the evidence establishes that the District's identification and delineation of the nine basins is based on historical hydrologic characteristics of the TCWMD and is a reasonable determination of basin boundaries. The land encompassed by the instant application for permit modification includes three of the nine basins and encompasses approximately 51,400 acres of the TCWMD. Surface water discharge from the relevant farm fields flows via the internal canal network and sheet flow to the three common detention basins: Telegraph Swamp, North Telegraph Swamp ("Telegraph North") and Curry Lake. The Telegraph North basin lies to the north of and discharges into the Telegraph Swamp basin and includes 13,799 acres of which 4,094 acres are farm fields. The drainage into the Curry Lake basin does not impact either the Telegraph North or Telegraph Swamp basins or the Petitioners' properties. The evidence establishes that as to the Telegraph North and Curry Lake drainage basins, the permit modification meets applicable permitting criteria. There is no credible evidence to the contrary. Telegraph Swamp is the largest of the three relevant detention systems. The Telegraph Swamp basin includes a total of 32,707 acres of which 4,381 acres are farm fields. Telegraph Swamp is a 4,390-acre wetland vegetated by cypress trees and sawgrass, with a base of muck soils, humus, topsoil, leaf litter and other organic material. Located at the south end of Telegraph Swamp are surface water management control structures (the Big Island Dike) built in 1975 and permitted in the original 1980 permit. The structures include three broad-crested weirs and one flash-board weir. Telegraph Swamp has been compared to a "sponge" capable of absorbing vast quantities of surface water discharges within the TCWMD before the control structures at the south end of the swamp are over-topped. Water discharged from the control structures flows through canals and creeks to the Caloosahatchee River. During storm events water is discharged over the control structures and into a swamp area south of Big Island Dike. From there, the water flows southerly, into Telegraph Creek, Big Island Canal and Cypress Creek and then into the Caloosahatchee. The Petitioners expressed concern that TCWMD could inappropriately discharge water from the control gates in the Telegraph Swamp weir. Based on evidence admitted at the hearing, the permit modification should include the following special condition: Discharge structures in the Telegraph Swamp basin shall remain fixed so that discharge cannot be made below the control elevations, except that structure gates and weirs may only be removed during emergency conditions upon notification to and consent by the District's Fort Myers Service Center regulatory area manager or designee. The Basis of Review for Surface Water Management Permit Applications within the South Florida Water Management District--September 1989, incorporated into Chapter 40E, Florida Administrative Code, provides the applicable water quantity permitting criteria relevant to this proceeding. The Petitioners assert that the control gates are required to be locked in accordance with Basis of Review section 3.2.4.1.b, which states: Discharge structures shall be fixed so that discharge cannot be made below the control elevation, except that emergency devices may be installed with secure locking devices. Either the District or an acceptable govern- mental agency will keep the keys for any such devices. The Petitioners are correct. The rule requires secure locking devices. Such condition should be added to the permit The keys may remain with the TCWMD as "an acceptable governmental agency." In 1980, the District issued Surface Water Management Permit No. 08- 00004-S for the TCWMD to operate an existing surface water management system for an existing agricultural operation. The 1980 permit specifically authorizes "[o]peration of a water management system serving 89,120 acres of agricultural lands by a vast network of internal drainage and irrigation canals, a major dike, a major canal and 4 water control structures discharging via small tributary creeks and sloughs into the Caloosahatchee River." Although the permit has been subsequently modified, the authorization to operate the system has not been amended. While District enforcement staff have occasionally noted "performance deficiencies" on the TCWMD property, there have been no permit violations by the permittee. Deficiencies which have been called to the TCWMD's attention have been resolved. Special condition number five to the 1980 permit provides that "[d]ischarges of water onto adjacent lands may be continued to the extent that increased problems are not caused by such discharges." The Petitioners assert that the District has failed to acknowledge that water discharged from the Telegraph Cypress system flows into the Cypress Creek canal and has failed to consider the impact on the Cypress Creek receiving body. However in the staff report to the 1980 permit states as follows: The Telegraph Cypress basin has three major drainage outlets. These are Trout Creek on the west, Telegraph Creek in the center and Cypress Creek to the east. There is a fourth outlet in the northeastern corner of the property known as Jack's Branch, however, this outlet is small compared to the three major ones. Much of Telegraph's southeastern area was previously drained by Spanish Creek and County Line Canal. This historical drainage pattern was blocked when a company which is presently known as Golden Grove constructed a dike across their northern boundary. This dike causes increased flow in a westerly direction around the west end of the dike, thence southerly towards Cypress Creek. This increased flow has caused excess water problems to property owners downstream. In addition, the dike has blocked virtually all flow to Spanish Creek. The evidence fails to establish that, as asserted by the Petitioners, the District has failed to acknowledge the discharge of water to Cypress Creek or to consider the condition of the Cypress Creek receiving body. In the instant case, the condition of the Cypress Creek receiving body was not re- addressed because the permit modification being sought will cause no additional adverse impacts on existing conditions. Although not individually numbered and identified in the original 1980 permit, the evidence establishes that in 1980, all of the farm fields which are subject to this permit modification application were in existence. The applicant seeks no new water control structures. Other than that required to reactivate fallow farm fields, there is no new construction proposed in the instant application. The Petitioners assert that the instant permit modification application will result in construction of new farm fields. The evidence is contrary to the assertion. Proposed permit special condition No. 10 states that the permit does not include the construction of any new farm fields. The farm fields covered in the staff report would be permitted for reactivation from a fallow state without further permitting activity in the future, and without individual retention for each farm field. The modifications to the original 1980 permit have increased the total farm land area. There is no evidence that, except as specifically permitted and approved by the District, there has been alteration of historical discharge rates or routes. There has been considerable confusion regarding the permitting status of the operations as farm fields have been reactivated. Such reactivation entails grading and leveling fields, reconstruction of ditches and dikes and installation of pumping equipment. In order to provide for standardization in farm field reactivation, and to better monitor such activities, the District requested that the TCWMD seek to modify the existing permit. On February 8, 1991, the TCWMD submitted an application to modify the existing permit for the purpose of reactivating the existing farm fields located within the Telegraph North, Telegraph Swamp, and Curry Lake drainage basins. The proposed SWM permit modification authorizes the continued use of the previously permitted surface water management system for existing active and fallow farm fields and allows the reactivation of currently fallow farm fields without further permit modification by the District. Proposed SWM permit special condition No. 16 states that the District requires notification in letter form 30 days prior to all farm field reactivation activities. The proposed modification of the permit will provide the District with an enhanced ability to inspect the reactivated farm fields. Inherent in such reactivation is ditching and diking of the fields. Such operations have been authorized since the 1980 permit was issued. The work associated with field reactivation will be conducted in accordance with existing design criteria as set forth in the application. Based on evidence admitted at the hearing, the permit modification should include the following special condition: Ditches and dikes associated with the farm fields encompassed by this authorization shall be constructed/maintained in conformance with the "Typical Field Layout And Detail Sheet," revised 10/12/93. The evidence establishes that the operations of the TCWMD as proposed by the permit modification application are within the authorization of the existing permit as previously modified. Otherwise stated, the award of this modification will have no substantial impact on the operation of the permitted surface water management system. The modification will result in no additional discharge of surface water from the control structures. The District has established water quantity criteria intended to insure that adverse impacts do not occur due to excess discharge. (Based upon the Hearing Officer's ruling on a District's Motion in Limine, water quality issues were not addressed at hearing.) The criteria are set forth at Chapter 40E-4.301, Florida Administrative Code, and in the Basis of Review. In relevant part, the District criteria require an applicant to provide reasonable assurances that the surface water management system provides adequate flood drainage and protection, that the system will not cause adverse water quantity impacts on receiving waters and adjacent lands, and that the system will not cause adverse impacts on surface and groundwater levels and flows. Modification of a permit must not result in additional adverse off-site impacts. In this case, reasonable assurances have been provided that the proposed modification will not exacerbate the historical and current drainage conditions. The permit modification application at issue does not propose to alter the rates or routes of water currently authorized for discharge from Telegraph Swamp. Reactivation of the farm fields will not impact receiving bodies in any manner different from that which presently exists under previous permits. In providing reasonable assurances, the TCWMD analyzed the water storage capacity available in the detention basins, performed flood routing projections and calculated peak discharge rates for the permit area. As required by the district, the TCWMD utilized a standard hypothetical 25-year/3- day storm event in order to determine whether sufficient capacity was available to handle the resulting stormwater. The projections provide reasonable assurances that the common detention areas have the capacity to provide adequate flood drainage and protection and are accepted. Rule 40E-4.091(1)(a), Florida Administrative Code, incorporates by reference a document identified as the "Basis of Review for Surface Water Management Permit Applications within the South Florida Water Management District--September 1989" Section 3.2.1.2.b requires that: the proposed project modification must meet the allowable discharge rate; and the allowable discharge rate for a previously permitted project is that which was set in the previous permit. The TCWMD prepared and submitted discharge calculations establishing that the post-development discharges will not exceed the discharge rate previously accepted by the District. Since 1984, the District has previously accepted a peak allowable discharge rate of 39 cubic feet per second per square mile (csm). The csm figure is based upon the historical TCWMD discharge rate within the Caloosahatchee River basin. As previously stated, reactivation of the farm fields will not impact the receiving bodies in any manner different from that which presently exists under previous permits. The District asserts that the 39csm discharge rate has been "permitted" since the 1984 modification was approved. The Petitioner asserts that the 39csm discharge rate has never been "permitted" by the District. The evidence establishes that since the 1984 application for permit modification, the discharge rate of 39csm has been utilized by TCWMD and has been accepted by the District, but that the actual permits do not specifically identify the discharge rate as 39csm. In projecting discharge rates, the TCWMD used a time of concentration of one hour. The time of concentration (T.O.C.) is the time in which water would move from the farm fields to the control structure in each sub-watershed. Otherwise stated, a projected T.O.C. of one hour means that the storm water would move from the field to the control structure in one hour. The T.O.C. of one hour is a conservative estimate and likely substantially overestimates the speed at which the water will move. The three basin areas contain a total of more than 80 square miles. Water will travel an average distance of two miles from field to detention basin through ditches, swales and existing low areas. Again conservatively, the TCWMD did not include projected travel time through such conveyances, resulting in a longer T.O.C. and resulting in a higher peak discharge rate than is probable. Although there appeared to be some confusion on the part of the District staff as to the application of the T.O.C. by the TCWMD, the TCWMD engineer who performed the calculation testified at hearing and was qualified as an expert witness in civil engineering, hydrology and surface water management. His testimony and projections are reasonable and are credited. Proposed SWM permit modification special condition No. 11 states that farm field discharge shall be directed to and conveyed via existing ditches, wetlands and/or sheetflow areas per existing site conditions. No new outfall ditches are permitted under this modification. Flood routings were calculated assuming all farm fields would be activated simultaneously and pumping the maximum capacity of 390 gallons per minute per acre (the equivalent of 20-21 inches of surface water pumped from each field daily). It is highly unlikely that all farm fields would be active simultaneously or that stormwater would continue to fall with such velocity to permit continued pumping at maximum capacity for an extended period. Even based on the conservative assumptions utilized by the TCWMD engineers, the projected peak discharge rate at the Telegraph Swamp control structure is 37csm to 38.5csm, within the maximum of 39csm previously accepted by the District. The computer modeling performed by the TCWMD engineer in calculating the peak discharge rate is accepted as reasonable. The TCWMD did not include offsite inflow in its analysis of projected capacity or discharge rates. There is anecdotal evidence that on occasion, water may flow into TCWMD from Jack's Branch or from across roadways to the north and west of the TCWMD; however, given the vast storage capacity of the TCWMD detention areas, there is no evidence that the quantity of offsite inflows is of such significance as to render the TCWMD projections unreasonable. As previously stated, the TCWMD calculations are reasonable and are accepted. The evidence establishes that the peak discharge rate resulting from approval of the instant permit modification will not exceed 39csm. The Petitioners offered their own peak discharge rate calculations, based on a "worst possible case scenario." The assumptions on which the Petitioners' projections are based are unreasonable and are rejected. Based on recommendations received at the hearing, the permit modification should include the following special condition: Pumped discharge from farm fields for which pumps are not currently installed shall be limited to 75 gallons per minute per acre of farmed area. Pumps are currently installed in fields number 7, 8, 9, 10, 12, 14, 15, 24 north and south, 28, east half of 34, 64, 67, 68, 69 and 80. The Petitioners assert that the system is currently causing adverse impacts to their properties in the form of flooding. The greater weight of the evidence establishes that the system presently does not cause adverse water quantity impacts on receiving waters and adjacent lands, and does not cause adverse impacts on surface and groundwater levels and flows. The evidence establishes that award of the application for permit modification will not adversely alter the current operations. It is clear that the Petitioners have been impacted by changes in the historical drainage patterns in the area; however, such changes had substantially occurred by 1980 when the original permit was issued. The greater weight of the credited evidence establishes that such impacts are not the result of the activities authorized in the original 1980 permit and in subsequent modifications, but instead are the result of unrelated actions by third parties not involved in this administrative proceeding. There is no credible evidence that the permit modification sought in the instant proceeding will adversely affect the Petitioners. The 1980 permit addresses existing water quantity problems in the area of the TCWMD project. For example, the construction of the Golden Grove Dike resulted in blockage of historical drainage towards Spanish Creek and the diversion of excess waters into Cypress Creek. During the 1980's the District required that culverts be installed in the Golden Grove Dike which eventually restored some surface water flow through the dike construction and on towards the south, although during some storm events water flow continues around the dike and into Cypress Creek. The Petitioners offered anecdotal evidence as to reduced water flows in some local creeks and increased flows thorough Cypress Creek. The Respondent offered evidence indicating that water flow through Cypress Creek may be less than 30 years ago, due to the digging of a canal between Spanish Creek and Cow Slough and the extension of the Clay Gully Canal's diversion of water into Telegraph Swamp. None of the evidence on this point was persuasive, however it is not relevant. Clearly, the instant permit modification application will not adversely affect the existing situation in the receiving bodies. The Petitioners assert that other receiving waterways have become clogged with vegetation, debris or soil, have accordingly reduced capacities, and are unable to accommodate historical discharge levels. Based on the lack of capacity, the Petitioners suggest that waters move towards the eastern portion of Telegraph Swamp and are discharged, flow towards, into and over the banks of Cypress Creek, and flood their properties. The TCWMD conducted a study of backwater profiles based upon credited field data. The study is found to be reasonable and is credited. Based upon the study, approximately 90 per cent of the water discharged from Telegraph Swamp is conveyed to the Caloosahatchee via Big Island Canal, Telegraph Creek and the swamp area south of the control structure. The remaining 10 per cent of the water enters the Bullhead Strand-Lightered Canal-Cypress Creek watercourse. Water flows from Telegraph Swamp into Cypress Creek via Bullhead Strand and the South Lightered Canal, however, the canal has become so restricted by vegetation that it provides little direct water flow between the strand and the creek and is more properly regarded as an area of enhanced sheet flow. The evidence does not establish that the surface water traveling from Bullhead Strand to Cypress Creek is of significance. Coupled with the existence of the Big Island Canal (which connects Telegraph Swamp to Telegraph Creek) it is unlikely that post-development surface water discharged from the Telegraph Swamp into Cypress Creek exceeds pre-development discharges. The Petitioners claim that two culverts in the Big Island canal restrict the flow of water through the canal and result in increased discharge to the east and to Cypress Creek. The greater weight of the evidence establishes that during period of time when the culverts are unable to accommodate water flow, the water travels into a broad flood plain, around the culverts and returns to the Big Island Canal. The evidence establishes that the proposed modification will not result in additional adverse off-site impacts. The adverse conditions affecting Cypress Creek existed at the time of the 1980 permit and are addressed in the staff report to that permit and to subsequent permit modifications. There is no credible evidence that modification of the permit as sought in this case will result in adverse impacts beyond those which have existed at the time of the award of the original permit. The Petitioners assert that the fields included within the permit modification application lack individual retention areas. The lack of individual detention areas is immaterial in this case where sufficient downstream detention capacity is available through the common detention areas. The Petitioners asserts that the Telegraph Swamp is an "above-ground impoundment" and that as such is fails to comply with requirements related to such water storage systems. The Telegraph Swamp is not a typical "above-ground impoundment" as that term is routinely applied by the District. The regulations addressed by the Petitioners clearly state that they are not intended to be inclusive and are intended to provide guidelines and basic performance criteria for commonly encountered south Florida situations. Telegraph Swamp is not a commonly encountered south Florida situation. There is no evidence that the decision not to apply the "above-ground impoundment" regulations to the Telegraph Swamp is unreasonable. The Petitioner suggest that the TCWMD application for permit modification is deficient and fails to provide information in compliance with the Basis of Review. The Basis of Review is directed towards applications for new construction. The District reasonably does not interpret the all elements of the Basis of Review to apply to existing operations. The original staff report for this permit modification application fails to acknowledge that Cypress Creek is a receiving body. However, as stated previously, the 1980 application and subsequent modifications have clearly addressed the fact that Telegraph Swamp waters discharge to Cypress Creek via intervening waterways. The failure to include the reference in the staff report to this application for modification is irrelevant.

Recommendation Based on the foregoing, it is hereby RECOMMENDED that the South Florida Water Management District enter a Final Order issuing Surface Water Management Permit Modification No. 08-00004-S including the additional permit conditions set forth herein, to the Telegraph Cypress Water Management District. DONE and RECOMMENDED this 1st day of April, 1994 in Tallahassee, Florida. WILLIAM F. QUATTLEBAUM Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, FL 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 1st day of April, 1994. APPENDIX TO RECOMMENDED ORDER, CASES NO. 92-6900 and 92-6901 To comply with the requirements of Section 120.59(2), Florida Statutes, the following constitute rulings on proposed findings of facts submitted by the parties. Petitioners James D. English and Cypress Creek Partnership The proposed findings of fact submitted by Petitioners James D. English and Cypress Creek Partnership consist of unnumbered paragraphs. Pages forty-five through fifty-nine of the proposed findings of fact submitted by Petitioners James D. English and Cypress Creek Partnership were stricken as set forth in the Order On Motion To Strike issued March 29, 1994. The paragraphs of pages five through forty-four of the proposed findings of fact submitted by Petitioners James D. English and Cypress Creek Partnership have been consecutively numbered and are accepted as modified and incorporated in the Recommended Order except as follows: 1-2. Rejected, argument, not findings of fact. 7-9. Rejected, argument, not findings of fact. The staff report is not dispositive. 10-12. Rejected. The greater weight of the evidence establishes that, although the 39csm figure is not set forth in the permit, as of the 1984 modification, the TCWMD calculations have been based on a peak discharge rate of 39csm and that the District has accepted the calculations previously. The applicable criteria in the instant case require that the allowable discharge rate for a previously permitted project is that which was set in the previous permit. 13. Rejected, recitation of testimony is not finding of fact. 15-16. Rejected, argument, not finding of fact, irrelevant, cumulative. 17-18. Rejected, recitation of testimony is not finding of fact. 19. Rejected, contrary to the greater weight of credible and persuasive evidence which establishes that 39csm has been the peak discharge rate accepted by the District since 1984. The flow rate projected by the TCWMD does not exceed the accepted peak discharge rate. 24. Rejected, recitation of testimony is not finding of fact. 26-28. Rejected, recitation of testimony is not finding of fact. 29-30. Rejected, argument, not finding of fact. Rejected, irrelevant. Rejected, argument, not finding of fact. Rejected, irrelevant. The greater weight of the credible and persuasive evidence establishes that 39csm has been the District's accepted peak discharge rate and that this modification will not result in peak discharge rates in excess of that which has been previously accepted. Rejected, not supported by the greater weight of credible and persuasive evidence. The assumptions underlying the Petitioners' calculation of theoretical maximum discharge are rejected as unreasonable. Rejected, unnecessary. 36-45. Rejected, irrelevant. The anecdotal evidence fails to establish that offsite inflows are of such quantity as to render the TCWMD projections unreasonable. The proposed findings also consist of recitation of testimony or argument and are not findings of fact. 46-52. Rejected, contrary to the greater weight of credible and persuasive evidence. The evidence fails to establishes that the swamp is an "above-ground impoundment" as that term is routinely applied by the District. The proposed findings also consist of recitation of testimony or argument and are not findings of fact. 53-67. Rejected, irrelevant. An applicant for a permit modification is not required to supply every item on the checklist. An application for a modification to an existing permit often need not contain all the items described. 69. Rejected, cumulative. 70-71. Rejected, argument, not finding of fact. 72-81. Rejected, not supported by the greater weight of credible and persuasive evidence which establishes that the identification and delineation of the nine basins is based on historical hydrologic characteristics of the TCWMD and is a reasonable determination of basin boundaries. The proposed findings also consist of recitation of testimony or argument and are not findings of fact. 82. Rejected, subordinate. 83-85. Rejected, irrelevant. The confusion on the part of District staff as to what T.O.C. was utilized by the TCWMD engineer is irrelevant. This proceeding is not a review of preliminary staff activity. The applicant must establish entitlement to the permit at the hearing. 86-87. Rejected, recitation of testimony is not finding of fact. Rejected. The confusion on the part of District staff as to what T.O.C. was utilized by the TCWMD engineer is irrelevant. Rejected, unnecessary. Rejected, recitation of testimony is not finding of fact. 91-94. Rejected, irrelevant, the discharge projections calculated by the TCWMD as explicated at the hearing are credited. In any event, the evidence establishes that this modification will result in no additional discharge of surface water from the control structures. 95-97. Rejected, irrelevant. The evidence establishes that this modification will result in no additional discharge of surface water from the control structures. Petitioner Alva Cemetery Petitioner Alva Cemetery's proposed findings of fact are accepted as modified and incorporated in the Recommended Order except as follows: 2. Rejected, not supported by the greater weight of credible and persuasive evidence. 4-5. Rejected, irrelevant. Rejected, irrelevant. This is a de novo hearing, not a review of preliminary staff work. The evidence at hearing establishes that the permit modification will not cause additional adverse affect on existing receiving bodies. Rejected, irrelevant. The evidence fails to establish that Hall Creek and Fichter Creek are receiving bodies of such capacity that their omission from staff report is material. Rejected, irrelevant. Rejected, irrelevant. The evidence fails to establish that offsite inflows are of such quantity as to be relevant. 11. Rejected, not supported by the greater weight of credible and persuasive evidence. The Applicant's analysis is credited. As to T.O.C., even the less conservative T.O.C. projections indicate a peak discharge rate within that previously accepted by the District. 12-13. Rejected, irrelevant. Rejected, irrelevant. Such return overflows are unnecessary in this situation where the detention areas have the capacity to provide adequate flood drainage and protection. Rejected, not supported by the greater weight of credible and persuasive evidence. Rejected, not supported by the greater weight of credible and persuasive evidence. 18-20. Rejected, cumulative. 21. Rejected, immaterial. There is no evidence that this permit modification application will cause additional adverse impact on receiving bodies. The failure to address nonexistent impacts is immaterial. Rejected, errors in staff report are irrelevant. The evidence admitted at hearing is accepted as correct. First paragraph is rejected, cumulative. Second paragraph is rejected, not supported by the greater weight of credible and persuasive evidence. Rejected, anecdotal testimony is not supported by the greater weight of credible and persuasive evidence. Rejected. The greater weight of credible and persuasive evidence establishes that all farm fields affected by this permit modification application were in existence by the 1980 permit. Rejected, not supported by the greater weight of credible and persuasive evidence. The assumptions underlying the Petitioners' calculation of theoretical maximum discharge are rejected as unreasonable. Rejected, irrelevant. The greater weight of credible and persuasive evidence fails to establish that the cemetery flooding is related to actions by the TCWMD. Further, the evidence fails to establish that, even if the flooding was related to the TCWMD, the instant permit modification application will cause additional adverse impacts. Respondent Telegraph Cypress Water Management District Respondent Telegraph Cypress Water Management District's proposed findings of fact are accepted as modified and incorporated in the Recommended Order except as follows: 18. Rejected, subordinate. 19-20. Rejected, not credited and unnecessary. Rejected as to assertion that the 39csm discharge rate was set in the 1984 permit modification, not supported by the evidence. Review of the document admitted into evidence as the 1984 modification fails to reveal that the figure of 39csm is set forth therein. Rejected, cumulative. Rejected, unnecessary. Respondent South Florida Water Management District Respondent South Florida Water Management District's proposed findings of fact are accepted as modified and incorporated in the Recommended Order except as follows: 30. Rejected as to assertion that the 39csm discharge rate was set in the 1984 permit modification, not supported by the evidence. Review of the document admitted into evidence as the 1984 modification fails to reveal that the figure of 39csm is set forth therein. Pages 17-19 of the Proposed Recommended Order set forth revisions to the staff report which originally form the basis for the preliminary agency action in this matter. As the hearing is a de novo review of this matter, it is unnecessary for this Recommended Order to address the revision of the staff report, which has limited probative value. COPIES FURNISHED: Tilford C. Creel Executive Director South Florida Water Management District Post Office Box 24680 West Palm Beach, Florida 33416 Melville G. Brinson, Esquire 1415 Hendry Street Fort Myers, Florida 33902 Frank A. Pavese, Sr. Esquire 1833 Hendry Street Fort Myers, Florida 33902 Scott Barker, Esquire Post Office Box 159 Fort Myers, Florida 33902 John J. Fumero, Esquire Toni M. Leidy, Esquire South Florida Water Management District 3301 Gun Club Road West Palm Beach, Florida 33416

Florida Laws (7) 120.57120.68373.114373.413373.617380.06403.812 Florida Administrative Code (4) 40E-4.09140E-4.10140E-4.30140E-4.331
# 9
SUMTER CITIZENS AGAINST IRRESPONSIBLE DEVELOPMENT, INC.; KENNETH ROOP; AND AUBREY VARNUM vs SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT AND VILLAGES WATER CONSERVATION AUTHORITY, 02-001124 (2002)
Division of Administrative Hearings, Florida Filed:Bushnell, Florida Mar. 20, 2002 Number: 02-001124 Latest Update: Aug. 12, 2002

The Issue Whether proposed Water Use Permits Nos. 20012236.000 (the Potable Water Permit) and 20012239.000 (the Irrigation Permit) and proposed Environmental Resource Permit No. 43020198.001 (the ERP) should be issued by the Respondent, Southwest Florida Water Management District (the District).

Findings Of Fact The Parties The individual Petitioners, Farnsworth, Roop, and Varnum are all Florida citizens and residents of Sumter County. None of the individual Petitioners offered any evidence relating to direct impacts that the ERP would have on their property. With respect to the Potable Water and Irrigation Permits, anecdotal testimony was presented by Petitioners and Wing and Weir relating to well failures and sinkholes in the area. Two Petitioners, Roop and Varnum, live in close proximity to the property encompassed by the three permits. Petitioner Farnsworth’s property is approximately three and a half miles from the project boundary. Wing and Weir live approximately four and a half to five and 18 miles from the project site, respectively. SCAID is a Florida not-for-profit corporation that has approximately 130 members. Farnsworth, the president of SCAID, identified only Roop and Varnum as members who will be directly affected by the activities to be authorized by the permits. The District is the administrative agency charged with the responsibility to conserve, protect, manage, and control water resources within its boundaries. The Utility and the Authority are limited liability companies, of which the Villages Inc. is the managing partner. The Villages Inc. is a Florida corporation. The Utility, which will serve as a provider of potable water, is regulated by the Public Service Commission, while the Authority which will provide irrigation water, is not. The Villages Inc., Development The Villages Inc. is a phased, mixed use, retirement community, which is located at the intersecting borders of Lake, Marion, and Sumter Counties. Development has been on going since at least 1983, with a current planning horizon of the year 2019. Currently, there are 15,362 constructed dwelling units in the built-out portion of the Villages Inc. that are located in Lake County and the extreme northeast corner of Sumter County. The portion located in Marion County is 60 percent complete, with 750 homes completed and another 600 under construction. Approximately another 22,000 residences are planned for development in Sumter County by the year 2012, with an additional 10,200 by the year 2019. However, the Potable Water and Irrigation Permits are only for a six-year duration, and the ERP has a duration of only six years. None of the permits authorize development activities beyond that time frame. Generally speaking, the three permits at issue include an area owned by the Villages Inc. that lies in northeast Sumter County South of County Road 466 and North of County Road 466A. However, it is not projected that this entire area will be built-out during the terms of three proposed permits. Area Hydrology and Topography In the area of the Villages Inc., there is a layer of approximately five to ten feet of sand at the land surface, which is underlain by ten to 70 feet of a clayey sand. Both of these constitute the surficial aquifer and are extremely leaky, allowing water to percolate easily through to a lower layer. Except in the vicinity of Lake Miona, there is no water in the surficial aquifer except after rainfall events. The clayey sand layer is underlain by the Upper Floridan, a limestone unit. The top of this limestone layer ("the top of the rock") occurs at fluctuating depths of between 30 and 70 feet. At approximately 350 to 400 feet below the land surface, there begins a transition to a denser unit that serves as a confining layer between the Upper Floridan production zone and the Lower Floridan production zone. This confining layer, which was confirmed by drilling at three locations in the Villages Inc. is approximately 150 feet thick in the area of the Villages Inc. Another transition, this time to a less dense formation, begins at approximately 550 to 600 feet, which is considered the top of the Lower Floridan production zone. While testing conducted on the project site indicated almost no leakage between the Upper and Lower Floridan production zones, it is generally known by experts that there is some exchange of water between the two layers. Both the Upper and the Lower Floridan contain water that meets potable water standards and both are considered water production zones. The water quality of the two zones is not significantly different. The project area is prone to karst activity, that is, the formation of sinkholes. Sinkholes are formed as a result of the collapse of the overburden above subsurface cavities which have been formed through a very gradual dissolution of limestone, thus resulting in a "sink" at the land surface. Surface water bodies in the area include Lake Miona, Black Lake, Cherry Lake, and Dry Prairie, as well as several other small wetlands. The Potable Water and Irrigation Permits The potable water permit is for the withdrawal from the Upper Floridan Aquifer of 1.164 million gallons of water per day (MGD), on an annual average, for potable use in residences and both commercial and recreational establishments. It also limits the maximum withdrawal during peak months to 2.909 MGD. The Irrigation Permit is for the withdrawal from the Lower Floridan Aquifer of 2.850 MGD, on an annual average, for use in irrigation. The peak month usage rate permissible under the proposed permit would be 9.090 MGD. Water withdrawal under the Irrigation Permit will be used for the irrigation of residential lawns, common areas, commercial landscaping, and golf courses. Modeling of Drawdowns In assessing the impacts of proposed water withdrawals from an aquifer, District personnel considered effects on the aquifers and on-surface water features in the area. Computer- generated models of the predicted effects of the Potable Water and Irrigation Permits withdrawals provided one of the principal bases for this assessment. The primary geologist assigned to review the permit applications reviewed two of the models submitted by the Utility and the Authority (jointly the WUP Applicants) and ran one personal model of her own in order to predict the effects of the proposed withdrawals on the aquifers, as well as on any wetlands and other surface water bodies. In particular, the models predict both the vertical and horizontal extent to which the withdrawals may lower the level of water within the aquifers and in-surface waters under various conditions. One of the models submitted by the WUP Applicants predicted drawdowns during a 90-day period of no rainfall while the other predicted the impacts of the withdrawals over the life of the permits, considered cumulatively with the effects of withdrawals from the already-existing Villages' development in Sumter, Marion, and Lake Counties. The District’s geologist modeled the impacts of the withdrawals over the life of the permits and included the cumulative effects of all of the current Villages' withdrawals in Sumter County. All of these models included the combined effects of both the proposed Potable Water and the Irrigation Permits. Based upon these models, it is concluded that there will be no significant drawdowns as a result of the withdrawals authorized by the proposed water use permits. Specifically, the only predicted drawdown in the surficial aquifer (0.25 feet of drawdown) is in an area where there are no natural surface water features. Drawdown in the Upper Floridan is predicted at between 0.1 and 0.2 feet, while the drawdown in the Lower Floridan is predicted at a maximum of 1.5 feet. These minor drawdowns are not expected to cause any adverse impacts. Transmissivity is the rate at which water moves horizontally through the aquifer. In areas with high transmissivity, the results of water withdrawals from an aquifer will generally be low in magnitude, but broad in lateral extent. Water withdrawals from areas of low transmissivity will result in cones of depression that are more limited in lateral extent, but steeper vertically. The use of too high a transmissivity rate in a model, would overpredict the horizontal distance of the drawdowns caused by withdrawals, but would underpredict the vertical drawdown in the immediate vicinity of the withdrawal. Conversely, use of too low a transmissivity would over-predict the effects in the immediate vicinity of the withdrawal but underpredict the lateral extent of the drawdown. The WUP Applicants’ models used a transmissivity value for the Lower Floridan Aquifer of 100,000 feet squared per day ("ft.2/d'). The WUP Applicants’ consultant derived the transmissivity values from a regional model prepared by the University of Florida. The regional model uses a transmissivity value for the entire region of 200,000 ft.2/d for the Lower Floridan. While that transmissivity is appropriate for assessing large-scale impacts, on a more localized level, the transmissivity of the aquifer may be lower. Therefore, the WUP Applicants’ consultant met with District representatives and agreed to use a value half that used in the University of Florida model. A similar approach was used for the transmissivity value used in modeling effects in the Upper Floridan. Notably, specific transmissivity values recorded in four wells in the Villages Inc. area were not used because two of these wells were only cased to a depth of just over 250 feet, with an open hole below that to a depth of 590 feet. Thus, the transmissivity measured in these wells reflect conditions in the confining layer at the immediate location of the wells - not the transmissivity of the Lower Floridan production zone. Further, site-specific information on transmissivity, measured during pump tests at individual wells, does not correlate well to the transmissivity of the aquifer, even at short distances from the well. Transmissivities measured at individual wells are used to determine the depth at which the pump should be set in the well, not to determine the transmissivity of the aquifer. Thus, the use of transmissivities derived from the regional model, but adjusted to be conservative, is entirely appropriate. Moreover, using a transmissivity in her modeling of the project impacts of 27,000 ft.2/d for the Lower Floridan Aquifer, the district geologist’s model predicted no adverse impacts. Leakance is the measure of the resistance of movement vertically through confining units of the aquifer. The leakance value used by the District for the confining layer between the Upper and Lower Floridan was taken from the University of Florida model. Tests conducted on the site actually measured even lower leakance values. Thus, the evidence establishes that the leakance value used in the WUP Applicants’ and the District’s modeling for the Floridan confining layer was reasonable and appropriate. Competent, substantial evidence also establishes that the leakance value used for Lake Miona was reasonable. The WUP Applicants submitted to the District substantial data, gathered over several years, reflecting the balance of water flowing into Lake Miona and the lake’s levels in relation to the potentiometric surface. This documentation verified the leakance value used for Lake Miona in the modeling. Finally, the District modeling used appropriate boundary condition parameters. The District modeling used what is known as the "constant head" boundary and assumes the existence of water generated off-site at the boundaries. Such a boundary simulates the discharge of the aquifer at a certain level. The use of constant head boundaries is an accepted practice. The modeling conducted on behalf of the District and the Applicants provides a reasonable assurances that the Potable Water and Irrigation Permits will not cause adverse water quality or quantity changes to surface or groundwater resources, will not cause adverse environmental impacts to natural resources, and will not cause pollution of the aquifer. Furthermore, because the predicted drawdowns are so insignificant, reasonable assurances have been provided that the withdrawals will not adversely impact existing off-site land uses or existing legal withdrawals. The modeling also provides reasonable assurances that the withdrawals will not be harmful to the water resources of the District. Moreover, monitoring requirements included in the proposed Potable Water and Irrigation Permits provide additional reasonable assurance that – should the withdrawal effects exceed those predicted by the modeling – such effects are identified and necessary steps are taken to mitigate for any potential impacts. The District has reserved the right to modify or revoke all or portions of the water use permits under certain circumstances. Specifically, the proposed Potable Water Permit requires a monitoring plan that includes the following pertinent provisions: There shall be no less than three control wetland and ten onsite wetland monitoring sites; A baseline monitoring report, outlining the current wetland conditions; * * * A statement indicating that an analysis of the water level records for area lakes, including Miona Lake, Black Lake, Cherry Lake, Lake Deaton and Lake Griffin, will be included in the annual report; A statement indicating that an analysis of the spring flow records for Gum Spring, Silver Spring, and Fenney Spring, will be included in the annual report; * * * Wildlife analyses for potentially impacted wetlands, lakes, and adjacent property owner uses or wells, including methods to determine success of the mitigation; A mitigation plan for potentially impacted wetlands, lakes, and adjacent property owner uses or wells, including methods and thresholds to determine success of the mitigation; An annual report of an analysis of the monitoring data . . . . Similar provisions are included in the proposed irrigation permit. The WUP Applicants, in conjunction with the District, have developed sites and methodologies for this monitoring. Reasonable Demand The water to be withdrawn under the proposed Potable Water Permit will serve 10,783 people. This total results from the simple multiplication of the number of residences to be built during the next six years (5,675) by the average number of residents per household (1.9). Those numbers are based upon historical absorption rates within the Villages Inc. development since 1983, an absorption rate that doubles approximately every five years. The Utility proposed a per capita use rate of 108 gallons per day for potable use only. District personnel independently verified that per capita rate, based upon current usage in the existing portions of the Villages Inc. and determined that the rate was reasonable. Based upon the population projections and the per capita rate, the District determined that there is a reasonable demand for the withdrawal of the amount of water, for potable purposes, that is reflected in the Potable Water Permit. The Utility has provided reasonable assurance regarding the Utility’s satisfaction of this permitting criterion. As to the irrigation permit, the Villages Inc. plans, within the next six years, to complete the construction of 1,911 acres of property that will require irrigation. The amount of water originally requested by the Authority for irrigation withdrawals was reduced during the course of the application process at the request of the District. The District determined the reasonable amount of irrigation water needed through the application of AGMOD, a computer model that predicts the irrigation needs of various vegetative covers. Since the Authority intends to utilize treated wastewater effluent as another source of irrigation water, the District reduced the amount of water that it would permit to be withdrawn from the Lower Floridan for irrigation. The District, thus, determined that the Authority would need 1.59 MGD annual average for recreational and aesthetic area irrigation and 1.26 MGD annual average for residential lawn irrigation, for a total of 2.85 MGD. The Villages Inc. also plans to accumulate stormwater in lined ponds for irrigation use. However, unlike its treatment of wastewater effluent, the District did not deduct accumulated stormwater from the amount of water deemed necessary for irrigation. This approach was adopted due to the inability to predict short-term rainfall amounts. The uncontroverted evidence of record establishes reasonable assurances that there is a reasonable demand for the amount of water to be withdrawn under the proposed irrigation permit. Conservation and Reuse Measures Both the Utility and the Authority applications included proposed measures for the conservation and reuse of water. The conservation plan submitted in conjunction with the irrigation permit application provides for control valves to regulate both the pressure and timing of irrigation by residential users; contractual restrictions on water use by commercial users; xeriscaping; and an irrigation control system for golf course irrigation that is designed to maximize the efficient use of water. In addition, in the proposed permits, the District requires the Utility and the Authority to expand upon these conservation measures through such measures as educational efforts, inclined block rate structures, and annual reporting to assess the success of conservation measures. The Authority also committed to reduce its dependence on groundwater withdrawals through the reuse of wastewater effluent, both from the on-site wastewater treatment facility and through contract with the City of Wildwood. Reasonable assurances have been provided that conservation measures have been incorporated and that, to the maximum extent practicable, reuse measures have been incorporated. Use of Lowest Available Quality of Water In addition to the reuse of treated wastewater effluent, the Authority intends to minimize its dependence on groundwater withdrawals for irrigation use through the reuse of stormwater accumulated in lined ponds. Thirty-one of the lined stormwater retention ponds to be constructed by the Villages Inc. are designed as a component of the irrigation system on-site. Ponds will be grouped with the individual ponds within each group linked through underground piping. There will be an electronically controlled valve in the stormwater pond at the end of the pipe that will be used to draw out water for irrigation purposes. These lined stormwater ponds serve several purposes. However, the design feature that is pertinent to the reuse of stormwater for irrigation is the inclusion of additional storage capacity below the top of the pond liner. No groundwater will be withdrawn for irrigation purposes unless the level of stormwater in these lined ponds drops below a designed minimum irrigation level. Groundwater pumped into these ponds will then be pumped out for irrigation. Thus, the use of groundwater for irrigation is minimized. The Authority has met its burden of proving that it will use the lowest quality of water available. With respect to the potable permit, the evidence establishes that there are only minor differences between the water quality in the Upper Floridan and Lower Floridan in this area. The Upper Floridan is a reasonable source for potable supply in this area. Thus, reasonable assurances have been provided by the Utility that it will utilize the lowest water quality that it has the ability to use for potable purposes. Waste of Water In regard to concerns that the design of the Villages Inc.'s stormwater/irrigation system will result in wasteful losses of water due to evaporation from the surface of the lined ponds, it must be noted that there are no artesian wells relating to this project and nothing in the record to suggest that the groundwater withdrawals by either the Utility or the Authority will cause excess water to run into the surface water system. Additionally, the evidence establishes that, to the extent groundwater will be withdrawn from the Lower Floridan and pumped into lined stormwater ponds, such augmentation is not for an aesthetic purpose. Instead, the groundwater added to those ponds will be utilized as an integral part of the irrigation system and will be limited in quantity to the amount necessary for immediate irrigation needs. Finally, the water to be withdrawn will be put to beneficial potable and irrigation uses, rather than wasteful purposes. Under current regulation, water lost from lined stormwater ponds through evaporation is not considered as waste. Thus, the Authority and the Utility have provided reasonable assurances that their withdrawals of groundwater will not result in waste. The ERP The stormwater management system proposed by the Villages Inc. will eventually serve 5,016 acres on which residential, commercial, golf course, and other recreational development will ultimately be constructed. However, the proposed permit currently at issue is preliminary in nature and will only authorize the construction of stormwater ponds, earthworks relating to the construction of compensating flood storage, and wetland mitigation. Water Quality Impacts The stormwater management system will include eight shallow treatment ponds that will be adjacent to Lake Miona and Black Lake and 45 lined retention ponds. Thirty-one of these lined ponds will serve as part of the irrigation system for a portion of the Villages Inc.'s development. All of these ponds provide water quality treatment. The unlined ponds will retain the first one inch of stormwater and then overflow into the lakes. The ponds provide water quality treatment of such water before it is discharged into the lakes. The water quality treatment provided by these ponds provides reasonable assurances that the project will not adversely impact the water quality of receiving waters. While they do not discharge directly to surface receiving waters, the lined retention ponds do provide protection against adverse water quality impacts on groundwater. There will be some percolation from these ponds, from the sides at heights above the top of the liner. However, the liners will prevent the discharge of pollutants through the highly permeable surface strata into the groundwater. The Villages Inc. designed the system in this manner in response to concerns voiced by the Department of Environmental Protection during the DRI process regarding potential pollutant loading of the aquifer at the retention pond sites. Furthermore, by distributing the accumulated stormwater - through the irrigation system - over a wider expanse of vegetated land surface, a greater degree of water quality treatment will be achieved than if the stormwater were simply permitted to percolate directly through the pond bottom. There is no reasonable expectation that pollutants will be discharged into the aquifer from the lined ponds. If dry ponds were used, there would be an accumulation of pollutants in the pond bottom. These measures provide reasonable assurances that there will be no adverse impact on the quality of receiving waters. Water Quantity Impacts With regard to the use of lined retention ponds, as part of the Villages Inc.’s stormwater system and the impact of such ponds on water quantity, the evaporative losses from lined ponds as opposed to unlined ponds is a differential of approximately one (1) inch of net recharge. The acreage of the lined ponds - even measured at the very top of the pond banks - is only 445 acres. That differential, in terms of a gross water balance, is not significant, in view of the other benefits provided by the lined ponds. As part of the project, wetlands will be created and expanded and other water bodies will be created. After rainfalls, these unlined ponds will be filled with water and will lose as much water through evaporation as would any other water body. The design proposed by the Villages Inc., however, will distribute the accumulated stormwater across the project site through the irrigation of vegetated areas. The documentation submitted by the Villages Inc. establishes that the ERP will not cause adverse water quantity impacts. The Villages Inc. has carried its burden as to this permitting criterion. Flooding, Surface Water Conveyance, and Storage Impacts Parts of the project are located in areas designated by the Federal Emergency Management Administration (FEMA) as 100-year flood zones. Specifically, these areas are located along Lake Miona, Black Lake, between Black Lake and Cherry Lake, and at some locations south of Black Lake. Under the District’s rules, compensation must be provided for any loss of flood zone in filled areas by the excavation of other areas. The District has determined, based upon the documentation provided with the Villages Inc.’s application, work on the site will encroach on 871.37 acre feet of the FEMA 100-year flood zone. However, 1,051.70 acre feet of compensating flood zone is being created. The Villages Inc. proposes to mitigate for the loss of flood zone primarily in the areas of Dry Prairie and Cherry Lake. At present, Cherry Lake is the location of a peat mining operation authorized by DEP permit. Mining has occurred at that site since the early 1980s. The flood zone mitigation proposed by the Villages Inc. provides reasonable assurance that it will sufficiently compensate for any loss of flood basin storage. The Villages Inc.'s project provides reasonable assurance that it will neither adversely affect surface water storage or conveyance capabilities, surface or groundwater levels or surface water flows nor cause adverse flooding. Each of the 45 retention ponds to be constructed on-site will include sufficient capacity, above the top of the pond liner, to hold a 100-year/24-hour storm event. This includes stormwater drainage from off-site. In addition, these ponds are designed to have an extra one foot of freeboard above that needed for the 100-year/24-hour storm, thus providing approximately an additional 100 acres of flood storage beyond that which will be lost through construction on-site. Furthermore, the Villages Inc. has proposed an emergency flood plan. In the event of a severe flood event, excess water will be pumped from Dry Prairie, Cherry Lake, and Lake Miona and delivered to the retention ponds and to certain golf course fairways located such that habitable living spaces would not be endangered. Environmental Impacts and Mitigation There are 601 acres of wetlands and surface waters of various kinds in the Villages Inc.’s project area. Forty-one acres of wetlands will be impacted by the work that is authorized under the ERP. Each of these impacted wetlands, along with the extent of the impact, is listed in the ERP. The impacts include both fill and excavation and all will be permanent. When assessing wetland impacts and proposed mitigation for those impacts, the District seeks to ensure that the activities proposed will not result in a net loss of wetland functionality. The object is to ensure that the end result will function at least as well as did the wetlands in their pre-impact condition. Functional value is judged, at least in part, by the long term viability of the wetland. While small, isolated wetlands are not completely without value, large wetland ecosystems – which are less susceptible to surrounding development – generally have greater long-term habitat value. The District’s policy is that an applicant need not provide any mitigation for the loss of habitat in wetlands of less than 0.5 acre, except under certain limited circumstances, including where the wetland is utilized by threatened or endangered species. Some wetlands that will be impacted by the Villages Inc.’s project are of high functional value and some are not as good. The Villages Inc. proposes a variety of types of mitigation for the wetlands impacts that will result from its project, all of which are summarized in the ERP. In all, 331.55 acres of mitigation are proposed by the Villages Inc. First, the District proposes to create new wetlands. Approximately 11 acres of this new wetland will consist of a marsh, which is to be created east of Cherry Lake. Second, it proposes to undertake substantial enhancement of Dry Prairie, a 126-acre wetland. Currently – and since at least the early nineties – Dry Prairie received discharge water from the peat mining operation at Cherry Lake. Without intervention, when the mining operations stop, Dry Prairie would naturally become drier than it has been for several years and would lose some of the habitat function that it has been providing. The Villages Inc.’s proposed enhancement is designed to match the current hydroperiods of Dry Prairie, thus ensuring its continued habitat value. Third, the Villages Inc. has proposed to enhance upland buffers around wetlands and surface waters by planting natural vegetation, thus providing a natural barrier. Placement of these buffers in conservation easements does not provide the Villages Inc. with mitigation credit, since a 25-foot buffer is required anyway. However, the District determined that the enhancement of these areas provided functional value to the wetlands and surface waters that would not be served by the easements alone. Fourth, the Villages Inc. will place a conservation easement over certain areas, including a 1500-foot radius preserve required by the Fish and Wildlife Conservation Commission (FWCC) around an identified eagles’ nest. These areas will also be used for the relocation of gopher tortoises and, if any are subsequently located, of gopher frogs. While the Villages Inc. is also performing some enhancement of this area, it will receive no mitigation credit for such enhancement – which was required to meet FWCC requirements. However, since the conservation easement will remain in effect in perpetuity, regardless of whether the eagles continue to use the nest, the easement ensures the continued, viability of the area’s wetlands and provides threatened and endangered species habitat. In order to provide additional assurances that these mitigation efforts will be successful, the District has included a condition in the proposed permit establishing wetland mitigation success criteria for the various types of proposed mitigation. If these success criteria are not achieved, additional mitigation must be provided. With the above described mitigation, the activities authorized under the ERP will not adversely impact the functional value of wetlands and other surface waters to fish or wildlife. The Villages Inc. has met its burden of providing reasonable assurances relating to this permit criterion. Capability of Performing Effectively The Villages Inc. has also provided reasonable assurances that the stormwater management system proposed is capable of functioning as designed. The retention ponds proposed are generally of a standard-type design and will not require complicated maintenance procedures. In its assessment of the functional capability of the system, the District did not concern itself with the amount of stormwater that the system might contribute for irrigation purposes. Rather, it focused its consideration on the stormwater management functions of the system. The question of the effectiveness of the system for irrigation purposes is not relevant to the determination of whether the Villages Inc. has met the criteria for permit issuance. Consequently, the record establishes that the documentation provided by the Villages Inc. contains reasonable assurances that the stormwater system will function effectively and as proposed. Operation Entity The Villages Inc. has created Community Development District No. 5 (CDD No. 5), which will serve as the entity responsible for the construction and maintenance of the stormwater system. CDD No. 5 will finance the construction through special revenue assessment bonds and will finance maintenance through the annual assessments. Similar community development districts were established to be responsible for earlier phases of the Villages Inc. The ERP includes a specific condition that, prior to any wetlands impacts, the Villages Inc. will either have to provide the District with documentation of the creation of a community development district or present the District with a performance bond in the amount of $1,698,696.00. Since the undisputed testimony at hearing was that CDD No. 5 has, in fact, now been created, there are reasonable assurances of financial responsibility. Secondary and Cumulative Impacts The Villages Inc.’s application also provides accurate and reliable information sufficient to establish that there are reasonable assurances that the proposed stormwater system will not cause unacceptable cumulative impacts upon wetlands or other surface waters or adverse secondary impacts to water resources. The system is designed in a manner that will meet water treatment criteria and there will be no secondary water quality impacts. Further, the use of buffers will prevent secondary impacts to wetlands and wetland habitats and there will be no secondary impacts to archeological or historical resources. In this instance, the stormwater system proposed by the Villages Inc. will function in a manner that replaces any water quantity or water quality functions lost by construction of the system. In its assessment of the possible cumulative impacts of the system, the District considered areas beyond the bounds of the current project, including the area to the south that is currently being reviewed under the DRI process as a substantial deviation. The District’s environmental scientist, Leonard Bartos, also reviewed that portion of the substantial deviation north of County Road 466A, in order to determine the types of wetlands present there. Furthermore, the District is one of the review agencies that comments on DRI and substantial deviation applications. When such an application is received by the District’s planning division, it is routed to the regulatory division for review. The District includes its knowledge of the DRIs in its determination that there are no cumulative impacts. Reasonable assurances have been provided as to these permitting criteria. Public Interest Balancing Test Because the proposed stormwater system will be located in, on, and over certain wetlands, the Villages Inc. must provide reasonable assurances that the system will not be contrary to the public interest. This assessment of this permitting criteria requires that the District balance seven factors. While the effects of the proposed activity will be permanent, the Villages Inc. has provided reasonable assurances that it will not have an adverse impact on the public health, safety, or welfare; on fishing or recreational values; on the flow of water; on environmental resources, including fish and wildlife and surface water resources; or on off-site properties. Furthermore, the District has carefully assessed the current functions being provided by the affected wetland areas. With respect to historical or archeological resources, the Villages Inc. has received letters from the Florida Department of State, Division of Historical Resources, stating that there are no significant historical or archeological resources on the project site that is the subject of this permit proceeding. Thus, the evidence establishes reasonable assurances that the Villages Inc.'s stormwater system will not be contrary to the public interest. Additionally, the District and Applicant presented uncontroverted evidence that the proposed project will not adversely impact a work of the District, and that there are no applicable special basin or geographic area criteria.

Recommendation Based on the foregoing findings of fact and conclusions of law, it is: RECOMMENDED that a final order be entered issuing Water Use Permit Nos. 20012236.000 and 20012239.000 and Environmental Resource Permit No. 43020198.001, in accordance with the District’s proposed agency action. DONE AND ENTERED this 24th day of June, 2002, in Tallahassee, Leon County, Florida. DON W. DAVIS Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 24th day of June, 2002.

Florida Laws (5) 120.569120.57373.203380.06403.412
# 10

Can't find what you're looking for?

Post a free question on our public forum.
Ask a Question
Search for lawyers by practice areas.
Find a Lawyer