Elawyers Elawyers
Ohio| Change
Find Similar Cases by Filters
You can browse Case Laws by Courts, or by your need.
Find 49 similar cases
STEVEN L. SPRATT vs CITY OF DELTONA AND ST. JOHNS WATER MANAGEMENT DISTRICT, 05-003664 (2005)
Division of Administrative Hearings, Florida Filed:Deltona, Florida Oct. 06, 2005 Number: 05-003664 Latest Update: Jun. 26, 2006

The Issue This case involves a challenge to St. Johns River Water Management District’s (District or SJRWMD) intended issuance of an Environmental Resource Permit (ERP) granting the City's Application No. 4-127-97380-1, for the construction and operation of a surface water management system for a retrofit flood-relief project known as Drysdale Drive/Chapel Drive Drainage Improvements consisting of: excavation of the Drysdale Drive pond (Pond 1); improvement to the outfall at Sterling Lake; and the interconnection of Pond 1 and four existing drainage retention areas through a combination of pump stations and gravity outfalls (project or system). The issue is whether the applicant, the City of Deltona (City or Deltona), has provided reasonable assurance the system complies with the water quantity, environmental, and water quality criteria of the District’s ERP regulations set forth in Chapter 40C-4, Florida Administrative Code,1 and the Applicant’s Handbook: Management and Storage of Surface Waters (2005) (A.H.).2

Recommendation Based upon the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the St. Johns River Water Management District enter a final order issuing to the City of Deltona an ERP granting the City's Application No. 4-127-97380-1, subject to the conditions set forth in the Technical Staff Report. DONE AND ENTERED this 17th day of March, 2006, in Tallahassee, Leon County, Florida. S J. LAWRENCE JOHNSTON Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 17th day of March, 2006.

Florida Laws (2) 120.57373.4136
# 1
MANASOTA-88, INC. vs IMC-PHOSPHATES COMPANY AND DEPARTMENT OF ENVIRONMENTAL PROTECTION, 01-001080 (2001)
Division of Administrative Hearings, Florida Filed:Bradenton, Florida Mar. 15, 2001 Number: 01-001080 Latest Update: Nov. 25, 2002

The Issue Petitioners and Intervenors challenge the Department of Environmental Protection's (Department) Notice of Intent to Issue Environmental Resource Permit (ERP) No. 0142476-003 to IMC Phosphates Company (IMC) for proposed mining of phosphate at the Manson Jenkins Property (Property) located in Manatee County, Florida. The ultimate issue is whether IMC has provided reasonable assurance that the applicable requirements of Chapters 373 and 403, Florida Statutes, and relevant rules promulgated thereunder, have been satisfied justifying entitlement to an ERP.

Findings Of Fact The Parties Respondent, IMC, is a general partnership authorized to do business in the State of Florida and is the applicant in these proceedings. IMC has applied for an ERP to mine, reclaim, and conduct associated activities on the Property in Manatee County, Florida. These activities shall be referred to as the "Manson Jenkins Project." The Department administers the ERP program for various activities including phosphate mining and reviewed the ERP application for the Manson Jenkins Project. Petitioner, DCAP, is a not-for-profit corporation. Alan Behrens and Joe Fernandez reside in DeSoto County and joined in the DCAP Petition. Petitioner, Charlotte County, and Intervenors, Sarasota County and Lee County, are political subdivisions of the State of Florida. Intervenor, the Authority, is a regional water supply authority established under Section 373.196, Florida Statutes, and created by interlocal agreement to supply wholesale drinking water to its member governments and to approximately 100,000 residents of Charlotte, DeSoto, and Sarasota counties, most of whom reside in Charlotte County. Intervenors, ECOSWF and Manasota-88, are not-for-profit environmental organizations. IMC and the Department agreed to the standing of the Petitioners and Intervenors to participate in these proceedings. Environmental Resource Application General In 1993, the Legislature directed the Department and the water management districts to combine the Management and Storage of Surface Water (MSSW) program, administered by the water management districts pursuant to Chapter 373, Florida Statutes, and the Dredge and Fill Program, administered by the Department pursuant to Chapter 403, Florida Statutes, into a single permitting program, the ERP Program. The Department and the water management districts worked jointly to merge the two programs. The process was completed in 1995, when the rules implementing the ERP Program took effect. The MSSW permits were issued by the water management districts for construction activities that would significantly alter surface water flow or otherwise affect surface water management systems. The dredge and fill permits were issued by the Department for activities proposed in surface waters and wetlands. The ERPs are now issued by the Department pursuant to Chapter 373, Florida Statutes, which requires the issuance of an ERP for any construction activities in or seeking to alter certain waters and wetlands. ERP applications for phosphate mining are submitted to, processed and evaluated by, the Department's Bureau of Mine Reclamation (Bureau) pursuant to Chapter 373, Florida Statutes, and specific rules. By law and interagency agreement, the Department issues ERPs for proposed phosphate mining operations. The Bureau conducts an initial review and may request additional information. Upon review of the initial application and responses, the Bureau determines whether the application is complete. Unless waived by the applicant, the Bureau has 90 days within which to take agency action, i.e., either grant or deny the application. ERPs are divided into the construction and operation phases. During the construction phase of a phosphate mining operation, an applicant conducts the mining and related activities, including the actual preparation and mining of the land. After mining, an applicant pumps sand tailings back into the mine cuts, re-contours the land and plants the appropriate vegetation, also known as the reclamation process. After reclamation, the Department inspects the site and determines whether on-site wetlands can be properly reconnected to waters of the state. Reconnection typically occurs when the Department determines that the site functions as a self-sustaining natural system, and water quality standards are met. Following reconnection, the operational stage of the ERP begins because the property is then a natural site and self-sustained. Throughout the construction and operation phases, the Department continually inspects the property. A site will not be released from permit requirements until all permit conditions have been met. For ERP permits issued within the Southwest Florida Water Management District (SWFWMD), the Department incorporated by reference certain sections of Chapters 40D-1, 40D-4, 40D-40, and 40D-45, Florida Administrative Code, and specific provisions of the Basis of Review for Environmental Resource Permit Applications (1995) (ERP BOR), as its permitting criteria. See Rule 62-330.200(3)(a)-(e), Florida Administrative Code. The main permitting criteria followed by the Department in issuing ERP permits for activities within the SWFWMD are contained in Rule 40D-4.301, Florida Administrative Code (Conditions for Issuance of Permits), and Rule 40D-4.302, Florida Administrative Code (Additional Conditions for Issuance of Permits). Both rules became effective in 1995. Prior to the merger of the Department and the water management districts' functions under the Department's regulatory umbrella, the various districts had slightly different conditions for the issuance of permits. The Department and all of the districts developed one version of these rules, which were then adopted by the four districts (without the Northwest Water Management District, which does not implement the program) to promote uniformity. In turn, the Department incorporated the above-mentioned rules by reference. Thus, for example, Rules 40D-4.301 and 40D-4.302 are a blending of the previous MSSW rules with the previous dredge and fill rules. In evaluating ERP permit applications, the Department considers the SWFWMD's (as well as other water management districts) historical interpretation of the rules which have been adopted by the Department, although the Department is not bound to adopt former SWFWMD interpretations nor does the Department defer to the SWFWMD's interpretation of these rules. Until this proceeding, the Bureau evaluated adverse water quantity and flow impacts based on a standard that limited post-mining flows and mass volume to 105 percent and 85 percent of the pre-mining flows and volumes, respectively. As a direct result of the filing of a challenge to this policy, the Department will not rely on this policy as a basis for decision in this proceeding. See Charlotte County, Florida, and Peace River/Manasota Regional Water Supply Authority v. Department of Environmental Protection and IMC Phosphates Company, DOAH Case Nos. 01-2399RU and 01-2412RU (Settlement Agreement July 6, 2001). In this de novo proceeding, IMC has the burden to establish reasonable assurances in a variety of contexts. See, e.g., Rules 40D-4.301 and 40D-4.302, Florida Administrative Code. 2. The Manson Jenkins ERP Application Review Process On October 1, 1999, IMC submitted to the Department an application for an ERP for authorization to mine phosphate, reclaim, and conduct associated activities on the Property. The Manson Jenkins Project is an extension of the existing Fort Green Mine, which is contiguous to the Property. The Department reviewed the information contained in the initial application and issued a series of requests for additional information. IMC provided responses to these requests on February 7, June 5, July 15, September 6, and October 11, 2000. Thereafter, the Department determined that the application was complete and issued a Notice of Intent to Issue (NOI) an ERP to IMC on February 8, 2001. This NOI was published in the Bradenton Herald on February 12, 2001. The parties stipulated that "Chapters 373 and 403, Florida Statutes, and the rules promulgated pursuant thereto are the applicable law in this proceeding." However, the parties disagree regarding which specific statutes and rules apply here. 3. Draft Environmental Resource Permit The Department's NOI includes a draft ERP. This permit is issued under the authority of Part IV of Chapter 373, Florida Statutes, and Chapter 62, Florida Administrative Code. The draft ERP authorizes IMC, in part, "to mine or disturb approximately 361 acres of wetlands for phosphate mining and associated activities . . . . The mitigation/reclamation will consist of approximately 537.8 acres of wetlands . . . . The project will also disturb 1988.1 acres of uplands for phosphate mining and associated activities [and t]he reclamation will consist of 1811.3 acres of uplands . . ." in a variety of land formations. IMC voluntarily agreed to provide a two-phased Conservation Easement consisting of not less than 521 acres, consisting "of [during phase one] not less than 182 acres associated with the no-mine area of the West Fork of Horse Creek, which shall be preserved from mining associated disturbance" and, during phase two, "an additional 339 acres of created wetlands and encompassed stream associated with the West Fork of Horse" Creek. The Conservation Easement is not considered part of the mitigation offered by IMC. The Conservation Easement authorizes the Property owners to use these areas after reclamation and release of the Property. The draft ERP contains general conditions, and specific conditions requiring, in part, monitoring to assure that the proposed mitigation of waters and wetlands is completed in accordance with success criteria contained in the draft ERP; monitoring to assure that groundwater levels are maintained at appropriate levels in areas undisturbed by mining or mining related activities; and numerous other legally enforceable conditions of approval. Phosphate Mining Geological Background and Phosphate Mining Process Millions of years ago, the oceans were rich in phosphorous. At that time, central Florida was under water. Over geological time, certain organisms decayed and settled to the bottom of the ocean. After the waters receded, deposits of phosphate were covered by land. Essentially, phosphate is the product of marine deposits. Although deposits are located in other states, such as Idaho and North Carolina, the largest phosphate rock deposit in the United States is in Central Florida, including the Manson Jenkins Property. The deposits of phosphate-bearing material are referred to as the "matrix," which consists of one-third phosphate, one-third sand, and one-third clay. On the Manson Jenkins Property, the entire matrix or ore body is approximately 15 to 18 feet thick. This phosphate matrix layer is buried under a layer of soils, rocks, sand, and clay, known as the "overburden," which is up to approximately 33 feet thick. There is a layer beneath the matrix which is 150 to 200 feet thick which is a confining layer of dense clay and separates the surficial aquifer from the intermediate aquifer. The phosphate to be mined on the Property is above the bed clay and the top of the intermediate aquifer system. Because the matrix is overlain by the overburden, the only way that it can be accessed and removed is through a surface mining operation. The first step prior to any land disturbance associated with phosphate mining is the installation of a "ditch and berm" system around the proposed mining area. The ditch and berm system is referred to by the Department and the United States Environmental Protection Agency (EPA) as a "best management practice" (BMP). The ditch and berm system for the Property will be designed and installed pursuant to specific criteria. This system is designed to preclude a direct release of impacted water from the mining area to adjacent land, and wetlands or waters, such as streams. The ditch and berm system can be expected to operate appropriately and efficiently if it is constructed, operated, and inspected in accordance with the design criteria described by IMC engineers. A properly designed, constructed, and operated ditch and berm recharge system will effectively maintain water levels outside of the mine areas. A berm is a small embankment which has an inspection roadway on top which is typically 12 to 15 feet wide and has a fairly flat downstream slope. The berm is designed to be flat and stable. The primary purpose of the berm is to prevent water that is collected in the ditch from overflowing into the preserved areas and other undisturbed areas and creating, among other things, potential water quality problems. This system is also designed to prevent water that may be associated with the mining activity from moving off-site to adjacent, undisturbed areas, including wetlands or waters and to protect the ecology of the area outside of the berm. Another function of the system, including the recharge ditches, is to maintain groundwater along the boundaries of the property line so that undisturbed areas outside the mining area will remain at pre-mining conditions. Water levels are actively maintained in the ditches surrounding mining areas to assure that the mining excavations do not drain groundwater from adjacent areas. Preserved areas are also surrounded by ditch and berm and recharge systems that hydrate the area so that, for example, existing wetlands are not degraded. Prior to mining a to-be-disturbed area, the ditch portion of the ditch and berm system acts to collect water and carry it to an area where it is pumped into a recirculation system. The ditch and berm system also typically acts as a recharge system. IMC will design, construct, and operate a recharge system that will maintain the water level in the area immediately adjacent to the mine cuts. The water that is in the recirculation system consists of rainfall, water from the deeper aquifer systems, water from the surficial aquifer system that drains into the mine cuts, and runoff that is captured behind the ditch and berm systems. Prior to mining, IMC will install monitor wells at regular intervals along the recharge ditches, which will be located adjacent to either preserved areas or adjacent to property owned by someone else other than IMC, who would be concerned about drawing the water level down beneath his property. The monitor well gauges will give an indication as to the baseline water levels, the fluctuations of the water level, and the high water levels along the preserved areas. The monitor well gauges can also be read to ensure that the water in the recharge ditch is getting into the ground and maintaining the water table at the same level it was prior to mining. Water can also be drawn from nearby wells which can be used to make up the water that seeps out of the recharge system. IMC currently operates approximately 75 miles of perimeter ditches and berms at various mining operations. IMC has resolved compliance issues relating to recharge ditches (because of dewatering concerns) on the Fort Green Mine. Compliance issues, including the Four Corners Mine, have been reported by IMC to the SWFWMD. Also, IMC has had other unpermitted discharges related to its ditches and berms, which have been resolved by consent orders. Compliance issues regarding the East Fork of the Manatee River have not been resolved completely, as the SWFWMD has not closed its enforcement files. IMC will continue to act to resolve these issues until reclamation is completed around the East Fork. Notwithstanding these compliance issues and the related problems, the weight of the evidence indicates that IMC is capable of designing, constructing, and maintaining the proposed ditch and berm system, including the recharge ditches, on the Property in order to avoid past problems which resulted in, for example, dewatering of property. These problems can be significant and, if left undetected and unremedied, can cause serious consequences. Careful and timely monitoring, and continued self-reporting of non-compliance by IMC is imperative. The SWFWMD has issued a consolidated water use permit for the Property. Under this permit, IMC has reduced its daily permitted pumping by an average of over 50 percent. Prior to mining, an alternate flow way (AFW) will also be constructed to carry water that was previously flowing from the northwestern portion (boundary) of the Property to the preserved area to the south of the Property. The AFW will temporarily replace the conveyance and storage of the portions of the West Fork of Horse Creek that will be mined. The AFW is likely to be removed in years 5 to 6 of mining. See Findings of Fact 87-94. Once the ditch and berm system is in place, the land is cleared to prepare for mining. The area is mined in strips or rows. After clearing, large electrically powered draglines remove the overburden layer to expose the phosphate-bearing matrix. The overburden is cast into an open adjacent mine cut, exposing the matrix for mining. These same draglines then extract the matrix and place it in depressions created at the mine which are called "slurry wells" or "pits." The matrix is then mixed with water in the pits to form a slurry which is conveyed hydraulically through a series of pipes and pumps to a "beneficiation" plant to remove the phosphate rock product from the matrix. The recovered phosphate matrix contains phosphate rock, clay, and sand. At the beneficiation plant, the phosphate rock, sand, and clay are physically separated. The phosphate rock is stored prior to additional processing required to convert it to fertilizer at off-site facilities. The sand is hydraulically transported back to the mining areas for use in land reclamation. The clays are generated from the beneficiation process and hydraulically transported to a clay settling area (CSA) where they are dewatered prior to reclamation. IMC plans to construct and operate two CSAs on the Property. However, the weight of the evidence indicates that approval of the ERP application at issue here, does not approve these CSAs because they have to be permitted and operated under separate Department regulations. See Findings of Fact 244-247 and 268. CSAs are a repository for the clay material. They are generally built in mined-out areas and built with the overburden material that is dragline cast in the mine cut. CSAs are necessary because, unlike sand which readily drains through water, clay materials are very light; and it takes time for the clays to settle out of the water, so the water can be reused in the re-circulation system. IMC expects that the two CSAs on the Property will ultimately be designed to handle the equivalent amounts of clays that will be mined from the Manson Jenkins Project. There will also be two CSAs immediately to the east of the Property on the Fort Green Mine, which will be operating as a result of the mining on the Property. Specifically, the CSAs proposed for the Property are expected to be constructed in mined-out areas (the northeast portion of the Property) and are expected to be surrounded by engineered dams approximately 40 feet above the surrounding land surface grade. One of the CSAs will encompass approximately 540 acres and the other 520 acres. After the clay is initially settled, specialized equipment will be used to dig drainage ditches and take other steps to expedite the settling process. This will allow a "crust" to form on the top of the clay surface. Thereafter, the dams surrounding the CSA (which are composed of overburden material) will be pushed in to cover a portion of the settled clays. The area will then be primarily uplands with relatively small wetland systems present. Years ago, settling areas would be reclaimed in 10 to 15 years. Today, with special mobile equipment, CSAs can be reclaimed within 3 to 5 years. Reclamation of the CSAs on the Property is expected to be completed within the 15 year timeframe contemplated for mining and reclamation activities. Once the matrix has been removed from a mining area segment, land reclamation commences. IMC expects to use four, different land reclamation techniques, including but not limited to, crustal development reclamation and land and lakes reclamation. These methods were described in detail during the hearing. Manson Jenkins Project Pre-Mining Conditions (Historical and Current Conditions of the Property) The Property encompasses approximately 2,808 acres in northeast Manatee County, Florida, which is largely owned by FP- 1 and FP-2 Corporations. IMC has a lease to mine the Property, having obtained these rights in 1993 when IMC entered into a partnership with Agrico Chemical Company, who, in turn, acquired the mining lease in 1986. The lease prohibits the owners from using the Property during mining, until it is released from reclamation. The owners have the right to use the Property prior to mining and after reclamation. The Parties stipulated that there are no archeological or historical resources located at the Property. The Peace River starts in Polk County, north of Bartow, and flows through Wauchula and Arcadia, and southwesterly to Charlotte Harbor. Horse Creek begins in the southern portion of Polk and Hillsborough Counties and flows south through Hardee County, approximately 40 miles to the confluence of Horse Creek and the Peace River in DeSoto County. The eastern boundary of the Property is the Manatee County-Hardee County boundary line. The Property abuts land to the east that is being mined and reclaimed by IMC as part of its Fort Green Mine, and the Manson Jenkins Project is an extension of that mining operation. According to a 1940 composite aerial, as interpreted, the Property contained wetlands that had not been ditched or drained. At the time, the West Fork of Horse Creek had not been channelized. The aerial indicates that there was a line of wetlands and a series of elongated marshes strung together, like a string of sausages, running south along the West Fork, and a distinct, yet not continuous, channel running southeast toward the southern boundary of the Property. The 1940 aerial, as interpreted, also indicates that the upland areas of pines had been cut. Cattle grazing is also apparent. The upland, however, consisted of very dense and rich undergrowth of range grasses, palmettos, low shrubs, and other assorted species. As of 1950, herbaceous wetlands existed at the north end of the Property and a vegetative cover existed between that wetland and the forested portion of the Property at the southern end. At that time, there was no channelization. As of 1965, the West Fork of Horse Creek, in or around the middle of the Property, had been channelized and heavily ditched. The area in the northeastern portion of the Property had been impacted by agriculture and row crops. The wetlands had been drained and tied into these ditches. The native range had been removed. IMC and its predecessors did not participate in the drainage of the Property for agricultural purposes. The present condition of the Property is very similar to the condition as of 1965. There is an approximately 3-square-mile area north of the Property which drains through a marsh, down to the West Fork of Horse Creek. The West Fork of Horse Creek, which enters the northwest portion of the Property, bisects the entire length of the Property in a north-south direction, and is channelized. The West Fork of Horse Creek is a first order stream because of its location in the watershed. See Findings of Fact 234-236. There is a headwater marsh area which leads into the northwestern portion of the Property and is part of West Fork of Horse Creek. The uppermost portion of the West Fork on the Property, which will be mined, has been referred to as "a channelized or ditch portion" or a "wide ditch." This includes the headwater marsh area. There is a "complex of wetlands" in the northwest corner of the Property which contribute water flow down the West Fork. There is a large ditch in the middle of the headwater marsh which conveys most of the water through the system and down the center of the Property. This portion of the West Fork of Horse Creek does not have the upland vegetation that is usually associated with a stream bank. Its ecological value is less than what is generally found in other first order stream or headwater systems. While the experts diverge on this issue, the weight of the evidence indicates that while the headwater marsh area to the north of the Property and in the northern portion of the Property has hydrological importance, the West Fork of Horse Creek is not a regionally significant stream. The weight of the evidence indicates that the West Fork of Horse Creek is a tributary of Horse Creek which, in turn, is a tributary of the Peace River. However, it is unclear whether the West Fork of Horse Creek is a work of SWFWMD. Assuming that it is, reasonable assurances have been provided that this project will not cause adverse impacts to the West Fork of Horse Creek in light of the mitigation offered by IMC and the proposed reclamation of the area and the reasonable expectation that this area will be improved from its current state. See Finding of Fact 257. There is also an area on the West Fork of Horse Creek and to the southeast of the Property (Section 13) which will be preserved and not mined, which is a combination of a channel system and forested uplands and wetlands. Walker Road runs north and south and is located in the middle and west of the West Fork of Horse Creek on the Property. Walker Road follows the proposed AFW. There is also a dirt or shell road which runs west to east across the West Fork of Horse Creek on the Property and a spillway structure at this location. The spillway structure was used by the landowner in agricultural practices to control the flow of water to irrigate the crops in the northeastern portion of the Property. The Property is located in the West Fork of Horse Creek, Manatee River, and Myakka River Basins, and in the far western part of the Peace River Basin. IMC's ERP Application contains approximately 300 acres, west of Walker Road (part of Sections 2 and 11) and in the northwestern portion of the Property in the Manatee River Basin. (Approximately 17 acres of wetlands in this area will be mined and will be replaced with approximately 51 acres of wetlands. See Findings of Fact 95-96 and 211.) This area is not part of the Development of Regional Impact approved by Manatee County, although IMC plans to request permission from Manatee County to mine this area, and if approved, IMC would mine less than 200 acres. This portion essentially drains into the Manatee River. Further, IMC has included the southwest triangle of these 300 acres as a preservation area. This area contains, among other land covers, mixed wetland hardwoods and freshwater marshes. There is another portion of the Property in the Myakka River Basin, approximately 32 acres, located in the southwest corner of the site. (There is also a small wetland in this area consisting of approximately 4 acres of wetlands which will be replaced with approximately 12 acres of wetlands. See Findings of Fact 95-96.) This portion drains through a drainage ditch and eventually enters Wingate Creek and the Myakka River. The balance, and by far the largest portion of the Property, is located in the Peace River Basin. After leaving the Property boundary to the south, the West Fork of Horse Creek joins the main branch of Horse Creek approximately 3 to 3.5 miles south of the Property line. Horse Creek then joins the Peace River approximately 30 miles from the Property boundary. The Peace River then empties into Charlotte Harbor approximately 40 miles from the Property. Today, the predominant land use on the Property are improved pasture and agricultural ditches. In order to achieve this cover and use, an extensive surface drainage system was constructed to drain isolated marshes into the West Fork of Horse Creek and to reduce the flood stage elevations within the creek itself. In areas with less extensive ditching, the existing vegetative communities more closely approximate natural systems. The improved pasture has been planted with bahia grass and other exotic pasture grasses. In recent years, a large portion of the pasture area has been converted into a sod farm and the sod has been stripped from that area leaving a large area of bare semi-vegetative soil. The Property is not pristine or close to its original condition, although, as argued by Charlotte County and others, portions of the Property do provide ecological functions. The wetlands on the Property have been subjected to extensive agricultural ditching. The main ditch is quite wide and deep, and there are many side ditches that proceed into smaller wetlands. There are also some lands that have not experienced conversion to improved pasture which, for the most part, are scheduled for preservation. IMC plans to mine, in part, the channelized portion of the West Fork of Horse Creek from north to south to the preserved area where the more heavily vegetated and forested portion of the natural stream channel of the West Fork of Horse Creek is located. This area will be blocked off during mining by a ditch and berm system. IMC will construct an AFW to carry the water that was previously flowing from the northern area (that is not part of this project and is not owned by IMC) around the area to be mined in the stream channel, which will be reconnected into the preserved area to the south. See Findings of Fact 87-94. From a hydrological standpoint, the to-be-mined marsh and channelized stream segment will be replaced with a flow- through marsh and recreated stream segment that connects the area to the north with the preserved portion of the West Fork of Horse Creek. The uplands will be placed back to the same elevations existing pre-mining and additional wetlands added. The marsh and the vegetative part of the stream will be slightly bigger. Proposed Mining Activities (Mine Sequence for the Property) IMC proposes to mine 2,348 acres of the 2,808 acres on the Property in approximately 6 to 9 years. The mining activities at the Property will follow the general sequence outlined above. Reclamation is expected to begin within 3 to 4 years after the commencement of mining operations, except for the CSAs. The mining and reclamation activities are expected to completed within 15 years. IMC will construct an AFW in year one (and prior to mining) of the mining activities. The AFW should be tied into the preserved area in the southern portion of the Property as soon as feasible in order to minimize the impacts to this area and downstream. The AFW is necessary because IMC intends to mine approximately 1.6 miles of the channelized or ditched marsh and stream portion of the West Fork of Horse Creek located in the northwest to middle portion of the Property. The AFW is designed to temporarily replace the conveyance and storage of the portions of the West Fork of Horse Creek that will be mined north of the preserved area. The AFW will carry water that was previously flowing from the northwestern boundary of the Property to the preserved areas to the southern portion of the Property. In this manner, if constructed and operated properly, it is expected that the proposed mining and related activities at the project area will not cause adverse flooding to on-site or off-site property and will not cause adverse impacts to existing surface water storage and conveyance capabilities. Further, the AFW and downstream areas will not be expected to suffer from erosion as a result of the installation of the AFW. The slopes and bottom of the AFW will be a vegetated channel designed to receive surface water runoff from the area north of the Property and convey it southward and then eastward back into that portion of the West Fork of Horse Creek on the Property which is part of the area being preserved in the southern portion of the Property. The bottom of the AFW will be vegetated with wetland type vegetation and will provide a habitat for fish and other wildlife. The AFW will not be used until the vegetation has become established. Vegetation is an effective method for minimizing erosion in a flow way or stream as described here. The design recommendations also require that the ends of the access corridor be stabilized so if they are subjected to overflow during the 25-year or 100-year storm event, they will be protected from erosion. Any sharp bends in the AFW will be stabilized prior to being put into service. The size of the AFW (50 feet wide) was revised and adjusted so it could carry the expected flows without backing the water up and causing water elevation to be above that which existed historically. The actual design of the AFW has been modified in accordance with the ERP conditions. The Draft ERP, "Specific Condition 4. c." provides: An alternate flow way shall replace the headwater marsh and wetlands of the West Fork of Horse Creek during site preparation, mining, and until the reclamation is re- connected. The alternate flowway will begin south of the north project boundary and end at the north end of the preserved wetlands, as shown on Figure IV F. The alternate flowway will convey water from areas north of the north project boundary south into the unmined portions of the West Fork of Horse Creek. The AFW shall be constructed as a trapezoidal channel with a minimum bottom of with [sic] of 50 feet and side slopes no steeper than 3 ft horizontal to 1 foot vertical, (3H to 1V). A recharge ditch and associated berms shall be placed along the entire east side and portions of the west side of the alternate flowway as noted in Figures IV F and IV F(a). To ensure maximum water quality treatment, the flowway will be planted with a variety of herbaceous wetland species such as pickerel weed Peak level recording devices will be placed at the north end, south end, and just north of the half Section line of Section 11. The top of the recording tube and the cross section elevations of the alternate flowway will be surveyed at the time of installation. This data will be submitted with the first monitoring report. Stream flows will be measured in conjunction with the quarterly mine inspection at each peak level station until the reclamation is reconnected to the West Fork unmined area. IMC-Phosphates shall submit monthly flow data and rainfall data to the bureau for review and approval. IMC-Phosphates shall not conduct any activities that result in a violation of Class III water quality standards within the West Fork [of] Horse Creek flowway. If at any time the water quality fails to meet [C]lass III standards, the bureau shall be immediately notified and corrective measures implemented. The reconstructed stream channel, like the AFW, will be vegetated and not placed into service until the vegetation is established. IMC proposes to disturb 361 acres of jurisdictional wetlands on the Property. This acreage comprises approximately 4, 17, and 330 (approximately 351 acres according to Dr. Durbin) acres in the Myakka, Manatee, and Peace River Basins, respectively. The balance of the Property will be reclaimed as uplands. See Findings of Fact 218-219. IMC will reclaim 538 acres of wetlands for the 361 acres of disturbed wetlands, consisting of approximately 12, 51, 475 acres of wetland mitigation in the Myakka, Manatee, and Peace River Basins, respectively. IMC proposes to preserve approximately 316 acres (approximately 45 percent of the wetlands on-site) of jurisdictional wetlands on the Property, including over 70 percent of the forested wetlands on-site. By eliminating existing agricultural ditching and providing appropriate mitigation, and by providing upland buffers around the wetlands, the post-reclamation condition of the Property is expected to be better than the current condition of the Property. Conditions for Issuance Water Quantity Impacts Surface Water General During the final hearing, substantial evidence was presented concerning the potential impact of mining on surface water flows across the Property and downstream. Pursuant to Rule 40D-4.301(1)(a) and (b), Florida Administrative Code, an ERP applicant must provide reasonable assurance that its proposed activities will not cause adverse water quantity impacts to receiving waters and adjacent lands and will not cause adverse flooding to on-site or off-site property. Dr. Garlanger is an expert in hydrology and hydrologic modeling with special expertise in surface and ground water systems associated with phosphate mining operations and reclaimed mined lands. IMC requested Dr. Garlanger to assess the potential impacts of the proposed mining and reclamation on the hydrology of the Property, and also to assess the potential hydrological or hydrogeological impacts downstream from the site to wetlands or waters of the state. Dr. Garlanger used models to assist him in assessing the nature, scope, and the extent of any future impacts resulting from the phosphate mining. Modeling requires the making of calculations relating one variable to another. Scientists, such as Dr. Garlanger and others who testified during this final hearing, who run comparative water balance models to calculate the differences in daily stream flow leaving a project site at the project boundary, must take into account several factors associated with the hydrological cycle, including the following: 1) the typography of the site; 2) the hydraulic conductivity or permeability of different soil levels; 3) the transmissivity of the different aquifer systems; 4) the geometry of the stream channel; 5) the amount and timing of rainfall on-site; 6) the amount of surface runoff; 7) the amount of evapotranspiration (ET); 8) the amount of deep recharge to the Floridan aquifer system; 9) the amount of groundwater outflow, including that portion of which makes it to the stream and becomes base flow; and 10) the temperature, wind speed, and amount of solar radiation, because they control ET. Each of these issues was reasonably evaluated by Dr. Garlanger. The weight of the evidence supports the accuracy, completeness, and conclusions of Dr. Garlanger's modeling work. Dr. Garlanger has been reviewing hydrological aspects of mining projects since 1974 for phosphate mining projects that require hydrological and hydrogeological analysis reflecting the unique aspects of mining operations. Dr. Garlanger explained how professional judgment was applied in his engineering calculations and how his model input data are reasonable. He also explained that he used reasonable information estimates to conduct this particular modeling work, which are consistent with measured data. Surface water flows are dependent on two sources: rainfall runoff from adjacent areas and groundwater that enters surface water streams and is sometimes referred to as "base flow." The weight of the evidence demonstrated that during mining activities the act of confining mining areas by the ditch and berm system would capture the rainfall runoff on these areas and thus reduce that rainfall runoff contribution to the ditched segment of the West Fork of Horse Creek (prior to the time that it is mined), the AFW during its operation, and the reclaimed West Fork of Horse Creek (during the time that mining continues to occur in the vicinity). During the active mining and reclamation activities, the ditch and berm system operates to maintain groundwater levels in areas undisturbed by mining at pre-mining conditions. Water levels are actively maintained in the ditches surrounding mining areas to assure that the mining excavations do not drain groundwater from adjacent areas. Thus, during the active mining and reclamation activities, the base flow component of surface water is not likely to be affected. The weight of the evidence demonstrates that the base flow contribution to surface water flows through the AFW, when operational, will be somewhat higher than is present in the West Fork of Horse Creek during pre- mining conditions. After mining and reclamation are complete, the ditch and berm systems will no longer be needed and present at the Property, and thus rainfall runoff is not expected to be captured thereby. More wetlands, however, will be present at the Property after reclamation is completed than are now present. These wetlands tend to "use," through ET, more water than a comparably sized upland area. Thus, after reclamation is completed, there will be a reduction in the amount of water contributed from the Property to the flow of water in the reclaimed and preserved portions of the West Fork of Horse Creek. The weight of the evidence indicates that the proposed mining and reclamation activities at the Property will not cause any adverse impacts on surface water quantity at the Property during active mining and reclamation or thereafter, and that there will be no adverse impacts at downstream locations. 2. Rainfall Predictive modeling was carried out by Dr. Garlanger to assess the potential significance of rainfall runoff capture and base flow reductions anticipated during mining and after reclamation of the Property. The model efforts simulated stream flow conditions on a daily basis, assuming that the Property experienced rainfall of the same frequency and duration as had occurred during a 19-year period from 1980 to 1998 at the Wauchula rainfall gauge. The amount of rainfall drives the hydrological model because it determines the amount of groundwater outflow, the amount of surface water runoff, and basically determines the amount of stream flow. The volume and timing of rainfall are important factors to consider; information regarding the variability of rainfall is a critical input into any model. In mining operations, discharge volumes correspond directly to rainfall. When rainfall volumes increase, mining operations' discharges increase. When rainfall volumes decrease, mining operations' discharges decrease. Thus, rainfall is the primary controlling factor in the volume of water discharge from a phosphate mine. The Property is located in the Peace River Basin. See Finding of Fact 75. Information is available from the National Climatic Data Center (Center), the government archive for climatic data, which indicates the occurrences of annual rainfall in the Peace River Basin between 1933 and 2000. The Center is a reasonable source of rainfall data. From 1933 through 2000, the arithmetic average of the rainfall in the Peace River Basin was 52.3 inches. (The average rainfall was collected from five stations throughout the Peace River Basin and then averaged.) However, within this period, there is significant variation in rainfall between the high and low rainfalls. There have only been four occurrences when the rainfall has been between 51 and 54 inches during this time frame. The record low rainfall of 35.9 inches occurred in 2000 in a significant drought year. The highest rainfalls have been in the 72 to 75-inch range and near 75 inches on two occasions; thus, a model must be based on more than one year of data. Dr. Garlanger examined the daily rainfall for a 19- year period between January 1980 and December 1998. This rainfall was measured at Wauchula, which is a town in the Peace River Basin almost due east of the Property and located on the Peace River. The weather station collects daily rainfall data and the Center is the source of this information. The average rainfall at Wauchula for this 19-year period is 52.17 inches, similar to the 1933 through 2000 period mentioned above, and also indicates that there is significant daily variability of rainfall. The claim that the accuracy of Dr. Garlanger's modeling is questionable because IMC's modeling "only uses rainfall information from the Wauchula rain gauge" is not persuasive. Dr. Garlanger reasonably chose this particular period of time, 1980 to 1998, and the location for several reasons. First, the data was available from the Center and is reliable. Second, the average rainfall that he used in the Peace River Basin is the average from five stations in the Basin, not just from one station. Third, Dr. Garlanger also considered the data from a rain gauging station approximately 3 miles downstream from the Property where Horse Creek crosses State Road 64, and the average rainfall was about 52.2 inches, which is similar to the 19-year period of data for the Peace River Basin. It is also argued that Dr. Garlanger "fabricated certain rainfall data." In rebuttal, Dr. Garlanger agreed that a data gap of approximately 7 months existed in the rainfall record at the Wauchula station, which he used. He described the efforts made by his assistant in supplying data for the missing period of record, which included an examination of the average rainfall for the other 18 years, for a particular day which was missing from the original data set. The weight of the evidence shows the calculations for these missing months out of the entire 19-year record did not adversely affect the overall conclusions of Dr. Garlanger's modeling work, including the predicted impacts. It is also suggested that Dr. Garlanger's modeling work improperly "omits a 3 square mile of the West Fork of Horse Creek watershed . . . that is critical to judging environmental impacts and changes in flow on the Manson Jenkins Property." While the entire Horse Creek watershed exceeds 200 square miles, an area of approximately 10 square miles composes the Horse Creek watershed upstream of the Property. A portion of IMC's Fort Green Mine is located in the West Fork of Horse Creek watershed. This portion of the Fort Green Mine includes approximately 3 square miles of catchment area. While IMC's Fort Green Mine is not currently contributing surface runoff to the West Fork of Horse Creek, the 3 square miles lying in the Fort Green Mine catchment area still comprise part of the overall Horse Creek Basin. In order to properly evaluate any impact on existing flow expected from Manson Jenkins activities, Dr. Garlanger reasonably did not select the 10-square mile historic basin, which would include the 3 square miles of Fort Green Mine catchment area and which, if included in the modeling assumptions as part of the watershed, would produce more favorable, higher flows. Rather, Dr. Garlanger reasonably used the current condition or baseline condition, which is the approximately 10 square miles of the historic basin minus the 3- square mile catchment area of the Fort Green Mine, approximately 6.2 square miles, in order for a valid comparison to be made of the potential effects that Manson Jenkins activities would have on existing flow. Dr. Garlanger's exclusion of this 3-square mile area in his modeling for the project was prudent to predicting what, if any, flow impacts would occur on a daily basis and under existing conditions. Dr. Garlanger's modeling work reasonably predicted both (1) the runoff that would occur on a daily basis over the next twenty years if no mining were to occur and (2) the runoff that would occur given the same rainfall record during mining and post-reclamation conditions at the Property. It was reasonable to use the same rainfall record in comparing these two scenarios in order to get a model comparison that accounted for pre-mining, during-mining, and post-reclamation conditions. 3. Evapotranspiration The reasonableness of Dr. Garlanger's modeling work is illustrated by the predictive accuracy of Dr. Garlanger's ET data as compared to measured data. Dr. Garlanger's model estimated ET on a daily basis, and the same ET values were used by Dr. Garlanger for the same types of vegetation cover. Dr. Garlanger compared the predicted daily ET with the ET calculated on actual, measured stream flow data along with the estimate of the rainfall in the Horse Creek Basin for the period from 1980 through 1998. Dr. Garlanger's predicted ET for the Property was 39.2 inches per year. The ET data from Horse Creek at State Road 64 is 40.3 and at State Road 72 is 39.9. Thus, Dr. Garlanger's predicted ET was within 2 percent or 3 percent of the data from these stations where the stream flow was measured. 4. Flow Impacts Using the reasonable meteorological data assumptions noted above and applying accepted hydrological and other physical laws, Dr. Garlanger used the model to predict anticipated flow conditions at the Property and downstream. The modeling results demonstrate that flow in stream segments which receive rainfall runoff and base flow contribution from the Property would be reduced only during the relatively small percentage of time that the streams would normally exhibit high flow conditions. For example, at the southern Property boundary line, the flow in the West Fork of Horse Creek during active mining and reclamation activities is predicted to be reduced only during the higher flow periods which exist for 10-20 percent of the time during the year. For the remaining 80-90 percent of the year flow reductions are not anticipated. After reclamation is completed, flow in the West Fork of Horse Creek at the Property line is predicted to be reduced only during approximately 5 percent of the time during the year when high flows are experienced in the stream. The only impact of the anticipated flow reductions during high flow periods at the Property boundary will be to reduce the depth of the water within the channel of the stream at that point. At the southern boundary of the West Fork of Horse Creek as it leaves the Property boundary, during the operation of the AFW, there should be no decrease in average stream flow, and there may even be a net increase in stream flow. During years 6 through 13 of the mining/reclamation sequence, or the mine life, Dr. Garlanger calculated there would be a decreased stream flow leaving the Property boundary of approximately 1.4 cubic feet per second (cfs) on an annual average basis as a result of mining activity, assuming the average rainfall during that period is 52 inches and the area has the same rainfall distribution as in Wauchula from 1980-1998. (The 1.4 cfs decrease applies downstream as well, but reflects Dr. Garlanger's worst case assumption.) Dr. Garlanger further testified that the slight decrease in flow in the Horse Creek, corresponding to a decrease in flow depth of a few inches when the flow depth in the Horse Creek is between 7.5 feet and 12.8 feet, will not cause adverse water quantity impacts. Dr. Garlanger compared on a daily basis the predicted reduction in stream flow resulting from mining to the baseline pre-mining condition. This allowed Dr. Garlanger to predict the effect on the depth of water in the stream channel at various points in time during both high flows and low flows. Significantly, Dr. Garlanger's modeling work indicates that during higher rainfall events, that is, high flows, when most of the runoff would occur, the greatest effect as a result of mining occurs. Predictably, during the period when there are no rain events or small rain events, that is, when there is low flow, Dr. Garlanger's calculations show the Manson Jenkins activities have virtually no impact on flow. Consequently, the effects of IMC's proposed mining and reclamation activities are consistent with the permitting rules because IMC's mining activities will reduce rather than cause adverse flooding. Water leaving the Property travels downstream to Horse Creek and the Peace River and ultimately to Charlotte Harbor, about 40 miles downstream from the Property's southern boundary. Dr. Garlanger also assessed the timing and magnitude of flow reduction impacts at several points in these downstream locations. Once again, slight flow reductions during high flow conditions were predicted for downstream segments of Horse Creek and the Peace River with the magnitude of the flow reductions decreasing significantly as one moves farther downstream from the Property. It is expected that such reductions in depth will have no ecological significance. During low flow periods, no flow reduction impacts were predicted at these downstream locations. The flow in the Peace River at Arcadia and at Charlotte Harbor over the next 19-year period is not expected to be lower than the measured flow existing during the previous, historic 19-year period, such that any change will have an adverse water quantity impact. Water flowing from the Property ultimately enters the Peace River at a point downstream from the Arcadia gauging station where measurements are taken to control the ability of the Authority to withdraw water for municipal water supply purposes. Accordingly, the predicted reduction in flow during high flow conditions resulting from the permitted activities at the Property cannot be reasonably expected to adversely affect the Authority's legal rights to withdraw such water. See Findings of Fact 248-249. The Authority's water intake structure is located upstream (on the Peace River) of the confluence of Horse Creek and the Peace River. The predicted small reduction in flow during high flow conditions attributed to activities at the property, will have little or no impact on the Authority's capacity to withdraw water at that point. Furthermore, the freshwater-saltwater interface in the Peace River will be well downstream of the intake structure and cannot be expected to be impacted by any reasonably predicted reduction in freshwater flow caused by activities at the Property. The persuasive evidence in the record indicates that the predicted impacts calculated by permit opponents on the Peace River flow resulting from mining were not accurate. For example, pre-mining flow from both the wet season and the dry season is not identical and the calculation of average annual flow does not properly match wet and dry season flows. Additionally, the water quantity calculation errors included using the wrong number of days for both wet and dry season average flows, which overestimated the impact by 50 percent for the dry season and 100 percent for the wet season. Certain assumptions made by permit opponents concerning flow reductions due to industry-wide mining are not reliable. The assumptions concerning the amount of land that would be mined after 2025 exceeded actual available land to be mined by a significant percentage. It was assumed the area to be mined after 2025 is approximately 161,000 acres, when the amount of land that could be added to mining is less than 20,000 acres. (A high-side number might result in another 40,000 acres mined after 2025, which is approximately 25 percent of the estimates.) The overestimate of these assumptions resulted in a 100 percent higher reduction in flow in the Peace River at the Authority's water withdrawal point than would modeling estimates using reasonable assumptions. 5. "No-Flow Days" Analysis The record does not support the claim of an increase in the number of no-flow days in West Fork of Horse Creek at the Property boundary. The record shows there was no accounting (by party opponents) for the fact that flow from direct runoff is actually distributed over a period of time. The model incorrectly had runoff from a storm occur all on the day of the storm, rather than over a period of days. Contributing stream flow from the undisturbed area located upstream of the Property was also not considered. Dr. Garlanger's modeling data was not accurately transferred, and there is evidence that had the correct flow data from Dr. Garlanger's work been used, the increase in no-flow days would not have been calculated as they were and relied upon. Further, in rebuttal, and contrary to permit opponent's suggestion that Dr. Garlanger did not estimate no-flow days, Dr. Garlanger reevaluated his calculations and reconfirmed that, while there is an expected reduction in the flow, there is no increase expected in the number of no-flow days. Dr. Garlanger's modeling work is both professionally competent and reasonable in predicting Manson Jenkins activity flow impacts. 6. Model Calibration It is also argued that Dr. Garlanger's modeling work was "not calibrated." However, this argument is rejected based on the weight of the evidence. Dr. Garlanger explained that the model used for the Manson Jenkins Project was calibrated by the models used at another phosphate mine (the Ona Mine tract) located a few miles east of the Property. He also used the same input parameters for the Farmland-Hydro Mine in Hardee County. In this light, the model provided Dr. Garlanger with a reasonable estimate of both pre-mining or baseline condition and the post-reclamation condition, and also furnished him with a basis to estimate impacts during mining. In Dr. Garlanger's professional judgment, every input parameter used for the project's modeling work was reasonable and is accepted. Additionally, Dr. Garlanger compared the project groundwater outflow for the different sub-basins and found the outflow averaged 7.5 to 7.8 inches per year for all basins. Dr. Garlanger testified the measured groundwater outflows reported by W. Llewellyn, United States Geological Survey, averaged 7.7 to 8.9 inches per year in the Horse Creek Basin. Thus, Dr. Garlanger's modeling work, as to the groundwater component, was reasonably good predictive work. Furthermore, as discussed herein, the ET rate is one of the most important factors in determining the amount of water available to be discharged through the stream system. There is persuasive evidence that Dr. Garlanger calibrated the IMC model for ET. When referring to calibration, Dr. Garlanger referred to estimated ET from the different vegetative types on the Property. In this manner, Dr. Garlanger used the estimate of the average annual ET for the upland and for the upland wetlands. ET cannot be directly measured. Rather, it must be determined indirectly. Thus, estimates of the average annual ET are made by the modeler exercising professional judgment. The average daily ET value used in the modeling was determined based on total ET from the entire 218-square mile Horse Creek Basin down to the gauging site at Arcadia. Dr. Garlanger then determined what portion of the basin was upland, wetlands, or riverine wetlands, and what the ET values were for each of those systems. In disagreeing with Dr. Garlanger's model, permit opponents imply that Dr. Garlanger's ET numbers are unreliable as they "came from information . . . that indirectly measured ET for wetlands in the Everglades." Dr. Garlanger's initial ET used 50 inches per year for both riverine and upland wetlands. However, Dr. Garlanger knew that total ET rates for the system-types on the Property range between 36 and 39 inches per year. Thus, he had discussions with other hydrologic experts about his concern of using 50 inches of ET per year for both riverine and upland wetlands. In order to evaluate the appropriate ET rate for the Property, Dr. Garlanger also reviewed data from a study containing indirectly measured ET for wetlands in the Everglades, which systems can be compared to the wetlands at the Property. The Everglades data was contained in a scientific paper concerning a study performed in the Everglades by ecologists, limnologists, and physicists where they indirectly measured ET under various conditions. The Everglades professional study assisted Dr. Garlanger and other experts in determining, based on their professional judgment, what would be the appropriate and reasonable ET rate to use in the IMC model. 7. The Department's Review of the Models The Department, by and through the Bureau, reviewed the ERP Application for, among other things, comparison of pre- mining with post-mining conditions, the use of the AFW, and the best management practices of IMC, and concluded that reasonable assurances to issue the permit were provided under the permitting rules. Furthermore, the Department will continually evaluate the project's effects by the ongoing monitoring for impacts to site conditions, and the Department will perform quarterly inspections. It is typical for the Department to rely on the models and permit information that is submitted by the permit applicant's professional engineer. While Mr. Partney did not necessarily agree with portions of Dr. Garlanger's model analysis, he stated that "this approach is fine for planning and checking the feasibility of a plan." Mr. Partney maintained that, in his professional opinion, because the reclamation activity would result in a net improvement of the environment on the Property, an approximate 5 percent annual average decline in flow was not a concern. (Dr. Garlanger stated that a 5 percent or greater reduction of annual average flow is significant. However, for the reasons stated herein, Dr. Garlanger felt that the impacts would not be adverse.) Groundwater In the vicinity of the Property, groundwater is present in the unconfined surficial aquifer within the overburden and matrix and in the underlying confined intermediate and Floridan aquifer systems. Surficial groundwater levels in areas not disturbed by mining will be maintained by use of the ditch and berm system. Dr. Garlanger presented credible evidence that after reclamation, groundwater levels return to pre-mining elevations. Credible evidence was presented that in some cases, slightly more groundwater outflow to the streams and preserved areas is expected than to the same areas prior to mining. During active mining operations, there will be a short-term reduction in recharge of groundwater to the deeper aquifer systems in the immediate area of mining. This short- term reduction has no adverse impact upon water supply availability in the underlying aquifer systems and is largely offset by the increase referred to above. Underlying the CSAs, deep groundwater recharge will be increased over that experienced normally during the timeframe that the clays are settling. Once the clays are fully settled, deep recharge in these areas will be within the range that occurs naturally in the vicinity of the Property. Flooding 1. General Modeling submitted by IMC as part of the ERP application demonstrated that off-site flows after mining and reclamation would be in compliance with design requirements set forth in the 1995 SWFWMD Basis of Review adopted by reference by the Department. The AFW is specifically designed to assure that during its operation it had the capacity to carry anticipated flows from the drainage area north of the Property during high peak flow conditions without causing water to back up and flood that area or to cause flooding at downstream locations. After mining and reclamation, the reclaimed West Fork of Horse Creek will have sufficient capacity to handle anticipated storm events without causing flooding. The increased wetland acreage after reclamation will provide additional storage and attenuation of flood flows and, therefore, may actually reduce the possibility of flooding. It is asserted that IMC "did not evaluate the impact of long-duration flooding events." But, the ERP permitting criteria did not require long-duration flooding analysis of the natural systems as a condition for issuance of the permit. Even if IMC were obligated under the rules to specifically address long-duration flooding, the record shows there are no predicted adverse impacts from Manson Jenkins activities concerning long- duration flooding because the modeling shows any "event flooding" is likely to drain off before an adverse impact to a natural system would occur. 2. Recharge Ditches There is no substantial evidence to support permit opponents' claim that the flood analysis needs to be "redone" because of IMC's failure to account for the effects of seepage from the recharge ditches on the AFW. Dr. Garlanger predicted that the recharge ditches would result in an additional 3.26 cfs of flow in the AFW. Opponents' expert Mr. Zarbock testified that this additional increase was a reasonable calculation. Adding 3.2 cfs to the peak flow in the AFW predicted by the HEC-RAS model for the 100-year storm event results in a relatively small percent increase in the peak flow. This small increase in peak flow is an insignificant increase with no meaningful effect on the flood analysis and on actual water levels either upstream or downstream of the Property. Adding an additional 3.2 cfs of groundwater outflow to the West Fork of Horse Creek’s average annual flow of 5.5 cfs resulted in a 59 percent increase (not 99 percent as asserted by opponents) in the average annual flow, and is not expected to have a detrimental effect on the average flow in West Fork of Horse Creek, Horse Creek, Peace River, or Charlotte Harbor. 3. Integrity of Clay Settling Areas The weight of the evidence indicates that this ERP permit is not intended to address dam construction or to evaluate the sufficiency of dam design, both of which will be considered under other permitting processes. However, the record shows the proposed Manson Jenkins CSAs must be engineered dams designed, built, and operated to achieve full compliance with the stringent requirements of Rule 62-672, Florida Administrative Code, according to exacting standards concerning site investigation, soil testing, cross-section design work, stability analysis, and design safety factors. After construction, the dam will be inspected weekly. The Department does not require flood inundation studies for the type of dam proposed by IMC, although it is characterized by Mr. Partney as a significant hazard dam. These studies are only required by the Department for high-hazard dams, which the IMC dams are not. Additionally, Mr. Partney, Florida’s Dam Safety Engineer, advised that the Department has made recent changes that ensure that construction of the CSAs is improving. See Findings of Fact 244-247. Dr. Dunn admitted that "the probability of failure is low" for a CSA. IMC has been issued its Federal Clean Water Act NPDES Permit which authorizes IMC to conduct its operations, involving the use of water. The NPDES Permit also regulates the discharge of waters to the surface and ground. The NPDES permit has specific conditions to assure the safety of dams that IMC must comply with related to the construction and operation of the CSAs. Surface Water Storage and Conveyance Capabilities General Rule 40D-4.301(1)(c), Florida Administrative Code, requires the applicant to provide reasonable assurance that the project will not cause adverse impacts to existing surface water storage and conveyance capabilities. These issues are addressed in the prior section. However, additional issues are addressed below. 2. Depressional Storage Dr. Garlanger provided a reasonable explanation regarding whether an increase in depressional storage can be expected. Dr. Garlanger performed calculations based on the average thickness of phosphate matrix being mined. The removal of the phosphate rock from the matrix generally reduces the depth of the soil profile components by 1.7 feet. The overburden that is removed in order to access the phosphate matrix is "cast" back into the adjacent mine cuts and occupies a greater volume after it is removed for mining than it will prior to mining. In other words, the overburden "swells" after it is removed to expose the phosphate matrix. This "swelling" results in an increase in volume of the overburden somewhere between 10 percent and 15 percent. Thus, based on the measurements of the density of spoil piles performed by Dr. Garlanger, the overburden actually increases in thickness by about 3.3 feet, which would more than make up for the 1.7 feet reduction in thickness of the soil profile components resulting from the removal of the phosphate rock. Additionally, the sand and clay components of the matrix also increase in thickness after having been mined, processed at the beneficiation plant, and through the reclamation processes, which further increase the average thickness of the soil profile components. If there is an increase in the average thickness of the soil profile components, even though most of the increase is associated with the reclaimed clay areas, there cannot be an increase in depressional storage. 3. Reclaimed Land Forms and Reestablishing Hydrologic Regimes The storage and conveyance capabilities provided by the flow-through marsh and the stream segment that are proposed to replace the existing ditched segment will greatly enhance the surface water conveyance and storage capabilities on the Property. Specifically as to the AFW, IMC's engineers and consultants from Ardaman & Associates reasonably designed the AFW to adequately replace the conveyance and storage capabilities of the portion of the West Fork of Horse Creek that will be mined. Also, a Storm Water Management Plan, which is a required document by the Bureau, analyzed surface water discharges under both historic conditions and under post- reclamation conditions and determined sufficient storage and conveyance capabilities will exist during mining and post- reclamation. A primary purpose of the reclamation plan developed by IMC is to create a land use topography on the Property that will allow runoff to occur as it did under the pre-mining condition prior to the ditching that was completed decades ago. Even though land surface on average is higher due to the "swelling" of the materials used in reclamation, the reclamation is contoured so that there is no storage except for the storage that is purposefully left in the recreated wetlands. Party opponents claim that a review of other mine permit applications shows a hydrologic characteristic of "reduced runoff from storm events by approximately 15 percent of the pre-mining condition." However, Mr. Zarbock, in reviewing approved phosphate mine applications, did not see any such phosphate mine applications that showed a 15 percent (not higher than 12 percent) reduction in flow, nor could he identify any mine that experienced the percentage reduction in flow that he assumed in performing his calculations. Water Quality Impacts Surface Water Rule 40D-4.301(1)(e), Florida Administrative Code, requires reasonable assurance that the project will not adversely affect the quality of receiving waters such that enumerated water quality standards will be violated. The waters and associated wetlands of the West Fork of Horse Creek located on or downstream from the Property are Class III waters. Downstream from the Property, the West Fork meets Horse Creek and both Creeks continue as Class III waters until Horse Creek becomes Class I waters in DeSoto County. The Myakka River is Class III waters through Manatee County. (Approximately 4 acres of wetlands will be mined on the Property located in the Myakka River Basin, to be replaced with approximately 12 acres of wetlands. See Finding of Fact 77.) The Manatee River to the west of the Property, including the North and East Forks of the Manatee River, are Class I waters. See Rule 62-302.400(12)41, Florida Administrative Code (The Manatee River is a Class I river from "[f]rom Rye Ridge Road to the sources thereof ") The far northwestern portion of the Property is in the Manatee River Basin. (Approximately 17 acres of wetlands in this area are proposed for mining and will be replaced with approximately 51 acres of wetlands. See Findings of Fact 76 and 211.) These wetlands have a ditched connection between the these wetlands and other wetlands, which ultimately lead to the East Fork of the Manatee River. As a limnologist, Dr. Durbin agreed that these existing wetlands, even after reclamation, are part of the water source for the Manatee River watershed. Dr. Dunn stated that if the "[BMPs] operate as designed [he assumed], that there will not be water quality impacts" to the East Fork of the Manatee River during actual mining. Rather, he was concerned about (after mining and reclamation and before release) "potential water quality problems for those areas that contribute flow to the East Fork of the Manatee River," as Class I waters. Dr. Durbin reasonably explained that after mining and reclamation, the existing wetlands will be severed from the Manatee River because the agricultural ditching will be removed, which leads to the reasonable conclusion that the replaced wetlands will not have a surface water discharge into other wetlands which are ultimately tributaries to the East Fork of the Manatee River. Thus, the wetlands will not flow to surface waters that then enter Class I waters. Further, there are no expected measurable decreases in depth of flow to the Manatee and Myakka Rivers resulting from mining and reclamation activity on the Property, which might reasonably be expected to adversely impact the water quality of these rivers. There are no measurable impacts to any Outstanding Florida Waters (OFW)(no OFWs are located on the Property), including aquatic preserves, or to Class I or II waters, which are likely to result from this project. See Findings of Fact 193-195. The ditch and berm system around active mining and reclamation areas will preclude the direct release of waters impacted by mining to surface water bodies on the Property. The system is designed to isolate the unmined areas from surface water runoff that may be present in the mine area and to maintain water levels in undisturbed wetlands. See Findings of Fact 31-42. Waters collected in the ditch and berm system will be reused and recycled by IMC in the mining operations. Some portion of that water will be discharged through permitted discharge outfalls not located on the Property in accordance with IMC's currently valid Department NPDES Permit. Such discharges must comply with discharge water quality criteria set forth in the NPDES Permit. Permitted water discharges from these outfalls is necessary because IMC will need the ability to release water from the mine into nearby waters and streams. The activities on the Property are regulated pursuant to the Fort Green Mine NPDES Permit, and, in particular, outfalls 3 and 4 which discharge water into Horse Creek. (Outfalls number 1 and 2 discharge water into Payne Creek.) Over the past 5 years, in measuring the water quality of the water leaving the permitted outfalls, IMC is unaware of any violations of permit limits, including surface water quality standards at the Fort Green Mine site based on samples taken at the outfalls. In the event there is a concern regarding water quality at an outfall, a gate constructed at the outfall can be quickly closed to stop off-site flows. Water quality data from Payne Creek, where over two- thirds of the watershed has been mined and a good portion reclaimed, demonstrate that phosphate mining has not adversely impacted dissolved oxygen (DO) levels in the receiving stream, i.e., the concentrations are comparable to other streams. Payne Creek has had lower nitrogen concentrations in most years than other measured streams, such as Joshua Creek, which has had no mining. Water used to recharge the ditch and berm system and maintain groundwater levels will be of high quality and is not expected to cause or contribute to adverse water quality impacts should they reach area surface waters as a part of base flow. The predicted reductions in stream flow, either during active mining and reclamation or after reclamation is complete, are not expected to have an adverse impact on the water quality of surface waters flowing through the Property or at any point downstream. Freshwater flows have a major role in determining the salinity in an estuary. The small reduction in fresh water flow during high-flow conditions predicted during mining and after reclamation of the Property is not expected to cause adverse impacts to salinity levels in the Charlotte Harbor Estuary. The small predicted impact is of insufficient magnitude to be measurable and, therefore, to warrant a reasonable concern. During active mining and reclamation activities at the Property, off-site drainage entering the Property will be unaffected by mining operations. Augmented base flow will be of high quality and runoff from undisturbed areas that reach surface waters on the Property will be the same as prior to the time mining commenced. Evidence presented at the final hearing demonstrated that, once mining and reclamation activities have been completed and the West Fork of Horse Creek has been reclaimed, surface water bodies on the Property or downstream in the Horse Creek and Myakka River are expected to achieve all applicable Class III surface water quality criteria. The proposed mining and reclamation activities at the Property are not expected to cause or contribute to a violation of Class I standards in the Manatee River. Charlotte County's expert witness, Dr. Janicki, opined that the proposed mining and reclamation project will not cause a violation of any currently applicable numerical water quality standards. Water quality sampling at the Property indicates that DO levels lower than the Class III standards currently occur in the West Fork of Horse Creek and in wetland systems at the Property. This is not an uncommon occurrence in natural systems. The DO levels in reclaimed wetlands at the Property will essentially mimic conditions in naturally occurring wetlands, and it is not anticipated that DO levels in the reclaimed wetlands will be depressed any more than occurs in a natural system. With regard to the reclaimed West Fork of Horse Creek, the reclaimed stream will be at least equivalent to the current ditched segment with regard to DO levels, and it is likely that DO levels will be improved overall since the design of the system will provide for a meandering channel and for the placement of logs or other obstructions in the channel which should increase aeration and thus potentially elevate DO. Opponents' expert Dr. Dunn agreed the existing water quality in the West Fork of Horse Creek is not as good as it is in the main channel of Horse Creek. Water quality monitoring carried out by IMC on reclaimed areas demonstrates that water leaving the reclaimed areas and entering surface water bodies meets applicable water quality standards. IMC will be required to monitor the quality of water in the reclaimed wetlands areas on the Property and will not be authorized by the Department to connect the reclaimed areas to the surface water system unless monitoring data demonstrate that water quality criteria are met. Under IMC's ERP Application, prior to any reclaimed wetland being reconnected to the off-site surface waters, there is one full year of water quality sampling required in order to demonstrate that water quality standards are met before the wetland is connected to the natural system, which is an extra safeguard not required in non-mining ERP applications. Moreover, there is credible evidence in the record of IMC's historical and successful use of AFWs and their effect on water quality. A study done by the Department in 1994 stated that the water quality indicators in an operational AFW were better than those same indicators at a natural site that did not have alternate flow-way characteristics. The weight of the evidence indicated that the water quality and biological integrity of the AFW will be in full compliance with the permitting requirements and with the state water quality standards. The weight of the evidence in the record does not indicate that the mining and restoration of the West Fork of Horse Creek will result in violations of water quality standards, as the water quality leaving the site during mining and after reclamation will be similar to the water quality that currently exists on-site. There are several reasons why water quality will not be adversely impacted: (1) a substantial portion of the watershed for the West Fork of Horse Creek lies north of the Property, and the water coming from this area will still move through the Property into the preserve area and off- site; (2) IMC will use best management practice berms to keep any runoff from active mine areas or cleared areas from entering the wetlands and streams associated with the flow way over the reclaimed wetlands precluding degradation of the water quality from those areas; and (3) IMC will use clean water in the recharge ditch system which will be seeping into the surrounding wetlands and the stream that is essentially feeding the wetlands with clean water augmenting the flow downstream. Groundwater Groundwater quality monitoring in the vicinity of the phosphate mining operations has demonstrated that such operations will not adversely impact the quality of groundwater in the vertical aquifer adjacent to mining operations or in the deeper intermediate or Florida aquifer systems. Impacts to Wetlands and Other Surface Waters Functions Provided to Fish and Wildlife Pursuant to Rule 40D-4.301(1)(d), Florida Administrative Code, an ERP applicant must provide reasonable assurance that its proposed activities will not adversely affect the value of functions provided to fish and wildlife, and listed species including aquatic and wetland dependent species, by wetlands, other surface water, and other water-related resources of SWFWMD. Prior to mining, pedestrian-type surveys of the Property will be conducted of the Property to determine the listed wildlife in order to avoid impacting particular species. Some species, including gopher tortoises, would be relocated to an unmined area. The weight of the evidence shows that IMC will minimize impacts to fish and wildlife through (a) a Conservation Easement, which preserves those areas with an abundance of habitat diversity, (b) through best management practice berms, which protect water quality of adjacent systems, and (c) through the AFW, which will allow continuous movement of fish and wildlife from areas north and south of the Property as well as creation of additional habitats. IMC's efforts to avoid and minimize the potential for impacts to fish and wildlife during mining and reclamation satisfy permitting rule requirements. Fish and wildlife functions in areas to be mined or disturbed at the Manson Jenkins Project will be temporarily impacted. The areas to be impacted typically are of lower ecological value while IMC has agreed to preserve a substantial amount of the higher quality wetlands on the Property together with, in some cases, important adjacent upland habitats. The impacts that do occur will be mitigated by the replacement of the impacted systems by more and higher quality systems than existed prior to mining. This includes the enhancement of the project with the wildlife corridor through the middle of the Property and improvements to the stream system. The Conservation Easement can be expected to protect the "habitat mosaic of the corridor." (The Conservation Easement on the Property includes approximately 521 acres.) Credible evidence also shows that IMC will satisfy permitting rule requirements after mining. Under the reclamation plan there will be diverse, connected habitats instead of the existing pre-mining single ditch and, primarily, agricultural land cover. There is also empirical data in the record concerning reclamation indicating that reclaimed areas were equal to or better for fish and invertebrate use when compared to natural systems, and similar results are also expected for IMC's reclamation. Both state and federal agencies approved the work plan of IMC used to survey wildlife at the Property. IMC's wildlife surveys are reasonable, which enabled the preparation of a comprehensive wildlife management plan. Avoidance and Mitigation Avoidance Phosphate ore underlies the land surface beneath waters and wetlands. Thus, it is not possible to avoid disturbance of these systems and still mine the valuable resource. See generally Section 378.201, Florida Statutes. IMC and the Department evaluated the quality of the waters and wetlands proposed for disturbance at the Property as part of the permit application process. Most of the wetlands systems deemed to be of higher quality through the application of the WRAP (Wetland Rapid Assessment Procedure) analysis are being preserved. (The WRAP Procedure is an accepted procedure to evaluate wetland functions and assign a value based on several criteria. The first WRAP was developed by South Florida Water Management District. WRAP scores generally are numerical values that can be assigned on a per-unit-acre basis to wetlands that are an index of their functional value.) For all areas that are not avoided, IMC is required to take steps as part of its land reclamation process to mitigate the unavoidable impacts associated with mining the Property. It was suggested that IMC did not avoid impacts due to IMC's determination to mine approximately 17 acres of wetlands in the Manatee River Basin. This suggestion is not persuasive because over 316 acres of wetlands will be left unmined on the entire Property, which equates to approximately 45 percent of the wetlands on the Property, including over 70 percent of the forested wetlands on the Property. The weight of the evidence shows that IMC was prudent in balancing between avoidance of appropriate environmentally significant areas, such as some wetland systems, and the operational needs to reach the phosphate matrix that is underlying the Property. Also, approximately 3.7 tons of phosphate rock reserves underlie the preserved areas with a projected loss of total income of over $55 million. 2. Mitigation In the ERP Program, the term "mitigation ratio" refers to the wetlands or other surface waters and areas the applicant is proposing to, for example, create, restore, enhance, donate in kind, or preserve, versus the impacted wetlands. For example, a mitigation ratio of two to one means the applicant is proposing to mitigate or recreate two acres of wetlands for every acre that is being disturbed or impacted. Section 373.414(6)(b), Florida Statutes, provides that wetlands reclamation activities for, in part, phosphate mining undertaken "pursuant to chapter 378 shall be considered appropriate mitigation for [Part IV of Chapter 373] if they maintain or improve the water quality and the function of the biological systems present at the site prior to the commencement of mining activities." See also Section 3.3.1.6., Basis of Review. Mining, reclamation, and revegetation on the Property is expected to be completed within 15 years, including reclamation of the CSAs. The conceptual reclamation plan, which includes the Property, was approved by Department final agency action on March 20, 2001, pursuant to Chapter 378, Part III, Florida Statutes, and Chapter 62C-16, Florida Administrative Code. However, this approval does not mean that IMC is not required to prove reasonable assurances regarding its mitigation plan, which is discussed herein. Rule 62C-16.0051(4), Florida Administrative Code, requires the restoration of impacted wetlands on at least an acre-for-acre and type-for-type basis. Compliance with this provision is mandatory for phosphate mines. IMC's mitigation plan satisfies this acre-for-acre, type-for-type mitigation requirement. In addition to satisfying the mitigation guidelines contained in the permitting requirements, other factors such as (a) the low quality of the wetlands that are being disturbed due to historical ditching and draining to accommodate historical agricultural land uses, (b) the significant on-site preservation effort, and (c) the Integrated Habitat Network (IHN) that provides a regional benefit to wildlife and their habitats and to water quality and which represents mitigation beyond applicable requirements, all taken together demonstrate the appropriateness of IMC's mitigation plan. The total cost to IMC for wetlands mitigation at the Property is approximately $3.6 million. The number of acres of wetlands affected by the Manson Jenkins activities in the Myakka, Manatee, and Peace River Basins total approximately 361 acres. See Findings of Fact 76-77 and 95-96. IMC will reclaim 538 acres of wetlands as mitigation for the 361 acres of generally low quality wetlands that will be disturbed at the Property. The reclamation area wetlands will be designed to provide a diversity of habitat and function that does not presently exist at the Property. IMC's reclamation plan adequately mitigates for any impacts by creating approximately 538 total wetland acres distributed among these three basins. Additionally, those wetlands that are created will have associated upland buffers, which the existing wetlands do not, and these newly created buffers will provide additional, enhanced wildlife and water quality benefits at each created wetland. In the reclaimed landscape, a forested buffer is expected which will provide some wildlife and water quality benefits to each wetland. The created wetlands will be hydrated by the groundwater outflow from the recharge system. IMC has had experience in the reclamation of wetland systems in Florida. Since 1975, IMC and its predecessor company, Agrico Chemical Company, have reclaimed approximately 6,850 acres of wetlands. Biologists and reclamation experts Dr. Durbin and Dr. Clewell presented persuasive evidence that IMC is capable of successfully completing the proposed reclamation activity and that the ultimately reclaimed wetlands systems will restore long-term ecological value to the Property and adjacent areas. Nevertheless, restoration and reclamation of wetlands is not a perfect science; mistakes have been made, e.g., Dog Leg Branch, and are documented in this record. To his credit, Dr. Clewell agreed. However, several studies, including Charlotte Exhibits 29 and 31 and others, do not persuasively indicate that IMC's proposed reclamation and restoration proposal for the Manson Jenkins Project will not be successful or that IMC does not have the wherewithal and overall professional expertise to accomplish the desired result. The weight of the evidence demonstrates that IMC can effectively carry out the proposed reclamation plan as set forth in the ERP and that, with regard to waters and wetlands impacted by mining operations at the Property, it will effectively mitigate the unavoidable ecological losses associated with mining those areas. The ERP contains detailed success criteria for the required wetlands reclamation. Extensive monitoring is required and Department personnel carry out regular inspections of reclamation sites. Only after reclamation success criteria are achieved, including attainment of necessary water quality criteria, will the reclaimed wetlands be approved by the Department and reconnected to the natural system. Stated differently, the project will only be deemed to be officially successful after release by the Department. This does not mean, however, that reclaimed wetlands, including wetlands reclaimed by IMC, have not been or are not functional before release. This includes the Big Marsh. (It appears that the existence of nuisance species currently precludes the release of Big Marsh. Dr. Clewell advised that Big Marsh is very close to meeting all criteria for release right now. See Findings of Fact 231 and 265.) 3. Acre-for-Acre/Type-for-Type As noted above, Chapter 378, Florida Statutes, contains an acre-for-acre, type-for-type mitigation strategy for phosphate mining reclamation, and IMC's reclamation plan exceeds the one-to-one mitigation ratio contained in the mine reclamation rules of Chapter 378, Florida Statutes. Substantial evidence in the record exists to support the claim that the ecological value of the wetlands proposed to be reclaimed will be higher than the current ecological value of the wetlands that will be disturbed and are currently existing at the Property. There are two types of reclamation: herbaceous and forested reclamation. IMC has reclamation experience, and based on IMC's experts' evaluation of many reclaimed sites, the average WRAP value assigned to herbaceous systems is .64 and for forested systems is .73. The wetlands proposed to be disturbed at the Property have an average pre-mining score for herbaceous systems of .54 and for forested systems of .51. Once reclamation occurs, the reclaimed herbaceous systems at the Property will score 1.19 times the existing the value, or an approximate 20 percent improvement from the existing wetland systems at the Property. Significant ecological improvement is also evidenced for the Property's reclaimed forested wetlands that will have an improved value of approximately 43 percent. The evidence shows IMC used the WRAP procedure to value wetlands and the functions wetlands provide to fish and wildlife as well as the accompanying water quality and quantity issues at the Property. WRAP was used for the Manson Jenkins Project because it was required by similar permitting under the Clean Water Act for the United States Army Corps of Engineers. The Department participated in the evaluation of the methodology used, including auditing the results in the field and on paper. But the Department did not accept or reject the methodology per se. On the other hand, the "King Formula" used by permit opponents' expert Dr. Dunn to critique IMC's reclamation proposal is a "completely different approach" from the regulatory requirement of acre-for-acre, type-for-type that is applicable to this ERP application. Further, the "King Formula" has not been accepted by the Department as an appropriate methodology for ERP evaluations, nor has Dr. Dunn ever before relied on the "King Formula" to support any ERP permit that he assisted in obtaining. There is credible evidence that even if the permit opponents' mitigation calculation (or "King's Formula") is applied, IMC would need 1.15 to 1 replacement for herbaceous systems and 1.27 to 1 replacement for forested systems. The record reflects IMC is required under the proposed ERP permit to have 1.38 to 1 replacement for herbaceous systems and 2.28 to 1 replacement for forested systems. Thus, IMC is committed to a more functionally equivalent mitigation objective than is calculated using the opponents' method for evaluating mitigation ratios. 4. Restoration of the West Fork of Horse Creek and Headwater Marsh The record shows that IMC has a successful history of restoration generally and, specifically, reclaiming headwater marshes as part of their overall mitigation experience. IMC's reclamation efforts have been recognized with both state and federal awards. Two examples of reclamation projects which appear to be functionally successful, although not yet released by the Department, are Big Marsh, which is a 229-acre headwater marsh flowing into Horse Creek, and the approximately 200-acre, P-20 Marsh, which is a headwater of Horse Creek, and next to Big Marsh. Both Big Marsh and P-20 Marsh show comparable features, placement, and functions when compared to their pre-mining condition and their current post-reclamation condition. The restoration efforts at the P-20 Marsh are relevant because it is similar to the Property in that it too was cleared of vegetation and ditched. Testimony shows that the benthic macroinvertebrate organisms, which are important to the successful functioning of a headwater marsh, are reasonably expected to be recolonized in the reclaimed system at the Property in a variety of permit- required habitats, which habitats are ecologically better than the existing habitat conditions on the Property. Further, the benthic invertebrate populations existing in the area north of the Property will be connected to the reclaimed Property enabling recolonization of the reclaimed marsh. IMC presented credible evidence that the excavated portions of the West Fork of Horse Creek will have ongoing, functional value and the reclaimed headwater marsh and stream system will at least maintain, but likely improve the water quality and function of the excavated portions of the West Fork of Horse Creek. IMC's reclamation plan is to recreate West Fork of Horse Creek to more resemble a natural Florida stream with a meandering flow-away with trees that shade the stream and provide improved habitats for fish and wildlife. Moreover, the existing West Fork of Horse Creek, though properly identified as a "first order stream," is a very small system with intermittent flow. The stream ordering system is a method of classifying the size of streams in terms of watershed basins and sub-basins. A "first order stream" is the smallest of the set of streams making up an entire drainage basin and is more a landscape or hydrologic indicator and does not necessarily indicate a stream's ecological value. The West Fork of Horse Creek is not a regionally- significant stream because the existing conditions at the West Fork of Horse Creek are degraded as a result of agricultural ditching, the ecologically poor uplands surrounding the area, and the overall presence of agricultural land. More specifically, the area proposed for mining in the West Fork of Horse Creek is of "very low ecological value, relative to what another first-order or headwater system might be." 5. Temporal Lag It has been asserted that there will be some temporal lag of ecological function at the Property because certain reclaimed systems will take some time to become mature. (Temporal lag is the phrase given to a lag time between the impact to a wetland system and the replacement of the functions once offered by the wetland system. Chapter 62C, Florida Administrative Code, does not require consideration of temporal lag in determining reclamation requirements. The weight of the evidence presented, however, shows that more acres of wetlands will be reclaimed than are being disturbed and the reclaimed systems will be of higher ecological value than the stressed systems proposed for mining. Furthermore, the evidence at hearing demonstrated that the total amount of wetland acreage at the Property is not significantly reduced. Also, fairly early in the mining and reclamation sequence, the total number of wetland acres on the Property are reasonably expected to exceed pre-mining conditions. Even using the worst-case scenario as proposed by opponents to the permit application with longer temporal lag (6 years instead of 3 years for herbaceous systems and 40 years instead of 20 years for forested systems), the resulting calculated required herbaceous system ratio of 1.21 to 1 is still less than the permit's requirement of 1.38 to 1. Similarly, the forested system's worst-case calculated ratio using permit opponents' unwarranted temporal lag assumptions is 1.74 to 1, which is still less than the 2.28 to 1 permit requirement. Further, the evidence shows that doubling the time between the removal of the systems and mitigation, from 4 to 8 years, results in a herbaceous ratio of 1.39 to 1 and a forested ratio of 2.04 to 1, which indicates that even if the time between impacts and mitigation were doubled, IMC's reclamation plan would still be adequately mitigating for any impacts. 6. Iron and Manganese IMC's expert explained the scientific research performed on behalf of the Florida Institute of Phosphate Research involving 11 phosphate mines and more than 40 exploratory wells and borings to evaluate the water quality of mined lands. There were no exceedances of standards with the exception of iron and manganese, which were expected to exceed standards because Florida has high background concentrations of iron manganese oxide in the soil. There is no reason to believe Manson Jenkins’ activities will cause adverse impacts to wetlands due to "groundwater perturbations." 7. "Flocculation" (Iron Bacteria) There is credible evidence that iron bacteria is a naturally-occurring substance and is common in Florida soils. Dr. Durbin testified that iron bacteria is not a reasonable concern for the Manson Jenkins Project. A benefit provided by the proposed reclaimed streams, wetlands, and lakes is that these are natural treatment systems that, in the case of iron bacteria, will remove iron from the water and will not cause any off-site concerns. Secondary Impacts 1. General Rule 40D-4.301(1)(f), Florida Administrative Code, requires an applicant to provide reasonable assurance that the project will not cause adverse secondary impacts to the water resources. IMC presented credible evidence that the proposed mining and reclamation activities at the Project will not cause any adverse secondary impacts to the water resources. 2. Stability of CSA's and Associated Dams Mr. Partney, the Department's dam safety engineer, has been involved with the state of Florida's current dam safety program since its inception approximately six years ago, and has been in charge of the dam safety program since its inception. He testified that no inundation studies are necessary for the clay-settling ponds and their associated dams in this project because these are not high hazard dams. The record does not support permit opponents' statement that the proposed Manson Jenkins CSAs are considered high hazard dams. As a result, inundation studies are not required to be performed to determine the risk and consequences of a discharge. The Department's dam safety program rules are contained in Rule 62-672, Florida Administrative Code, and regulate the construction of the dams surrounding CSAs by specifically requiring soil testing, cross-section design work, and stability analysis, among other design safety factors that incorporate engineering practices employed by the United States Army Corps of Engineers under their dam construction rules. The dam failures that have occurred in the past were dams constructed prior to the implementation of this rule except for one, IMC's Hopewell Mine dam. This dam failure was investigated by a "blue ribbon panel," including Mr. Partney. The cause of the failure was determined, and the problem with that failure corrected in the current version of the rule. The weight of the evidence also supports IMC's commitment to dam safety as evidenced by IMC's response to this dam failure. IMC voluntarily agreed to remove all pre-rule, non-engineered dams from operations, and within one and a-half years, IMC had categorized, inventoried, and taken out of service all non-engineered structures. Also, IMC has a Site Preparedness Plan, otherwise called an emergency plan, that prescribes actions should the signs of a potential failure be detected. Weekly inspections are required and documented. The testimony of permit opponents' expert Dr. Dunn supports the fact that the probability of a failure of a CSA and its associated dam is low. Mr. Partney shares this view, i.e., CSAs are "extremely safe" and there is about a "one in two million chance or so of one of them failing." 3. Authority's Withdrawals from the Peace River The weight of the evidence indicates that the Manson Jenkins Project will not adversely affect the Authority's permitted limits on the withdrawal of water from the Peace River because the activities at the Property will not physically affect the flow of the Peace River, upstream of its confluence with Horse Creek at the Arcadia gauge station, which is the station that determines the Authority's permitted allowance to withdraw water. IMC's expert in environmental hydrodynamics and estuarine physics, credibly testified that the slight potential reduction in freshwater flow due to Manson Jenkins’ activities has little or no potential to negatively impact salinity concerns in downstream water bodies. 4. Ditch and Berm Protection of Wetlands There was credible testimony that the ditch and berm system is a best management practice to ensure the protection of the hydrologic systems adjoining the Property. See Findings of Fact 31-42. IMC's expert, Dr. Garlanger, is one of the co-authors of the criteria used by IMC to engineer these BMPs ditch and berm systems, and the weight of the evidence indicates that the proposed ditch and berm system will protect the water quality of the surrounding wetlands systems as well as maintain the hydrologic regime of the off-site systems. Minimum Flows and Levels Pursuant to Rule 40D-4.301(1)(g), Florida Administrative Code, an ERP applicant must provide reasonable assurance that its proposed activities will not adversely impact the maintenance of surface or ground water levels or surface water flows established pursuant to Section 373.042, Florida Statutes. This subsection references minimum flows and levels. The Department has not established minimum flows and levels. The water management districts establish minimum levels for aquifers and surface waters and minimum flows for surface water courses pursuant to Section 373.042, Florida Statutes. The Department is "very involved with the districts in developing those minimum flows and levels as part of [the Department's] supervisory authority." In the case of ERP applications filed with the Department for facilities located within SWFWMD's jurisdiction, it is the minimum flows and levels established by SWFWMD that are protected from adverse impact pursuant to Subsection 40D-4.301(1)(g). However, the weight of the evidence, especially the testimony of Department witnesses, indicates that minimum flow and levels adopted pursuant to Section 373.042, Florida Statutes, must be established by rule, and not a permit condition that only applies to one permittee, such as the Authority. SWFWMD has not established, by rule, a minimum flow or level pursuant to Section 373.042, Florida Statutes, for any water body impacted or potentially impacted by the proposed mining or reclamation at the Property, including the Peace River. The proposed mining and reclamation activity, therefore, will not adversely impact the maintenance of any minimum flows and levels established by law. Works of the District Rule 40D-4.301(1)(h), Florida Administrative Code, provides that reasonable assurance be given that a project will not cause adverse impacts to a work of the district, here SWFWMD, established pursuant to Section 373.086, Florida Statues. The weight of the evidence indicates there will be no adverse impact to any surface water body on or downstream of the Property either from a water quality standpoint or from a water quantity standpoint. Accordingly, there will be no adverse impacts to a "work of the district" established pursuant to Section 373.086, Florida Statutes. See also Finding of Fact 72. This proceeding is to determine IMC's entitlement to an ERP, not a "work of the district" permit. It has been the practice of the Department, that if an ERP is issued by the Department, the permittee does not need to also obtain a separate "work of the district" permit. However, SWFWMD's "work of the district" rule has not been adopted by the Department. Effective Performance and Function Engineering and Scientific Capability The mining and reclamation activities proposed for the Property are capable, based upon generally acceptable scientific principals, of being effectively performed and functioning as proposed, including the AFW, ditch and berm systems, the reclaimed wetland areas, and the reclaimed West Fork of Horse Creek Stream Channel. See Rule 40D-4.301(1)(i), Florida Administrative Code. Financial, Legal and Administrative Capability IMC has all necessary legal property rights to mine and reclaim the Property as lessee under a mining lease issued by the Property owners. IMC has demonstrated by the weight of the evidence that it is an entity with financial, legal and administrative capability of ensuring that the activities proposed at the Property will be undertaken in accordance with the terms and conditions of the ultimately issued ERP, including the additional agreed permit condition referenced below. See Rule 40D-4.301(1)(j), Florida Administrative Code. IMC is a large business with assets in excess of $1.6 billion. IMC also presented credible evidence that it has provided Manatee County with a reclamation bond in the amount of $17 million to cover all reclamation liability existing in Manatee County at that time, including the upcoming year that IMC plans to mine. IMC has agreed to provide Manatee County with a general surety bond of $1 million and an environmental risk insurance policy in the amount of $10 million. At hearing, the Department requested and IMC agreed to have the following permit condition added to the ERP upon issuance: At least thirty (30) days prior to the initiation of mining operations, the final version of the financial responsibility mechanism required by Section 3.3.7.6 of the Basis of Review shall be provided to and approved by the Department as required by Rule 40D-4.301(1)(j), Florida Administrative Code (October 1995) and Rule 62-330.200(3), Florida Administrative Code. After reclamation of the Property, IMC has in place a Conservation Easement that places restrictions, such as requiring all regulatory approvals to be obtained, and imposes required management practices in the event that agricultural operations are initiated by a third party. Credible evidence in the record supports IMC's historical efforts in reclaiming wetland systems such as Big Marsh despite suggestions that IMC has not demonstrated the capability to restore marsh systems because, e.g., Big Marsh has not been "released" by the Department. Although this system has not been "released," this system is ecologically valuable. See Findings of Fact 225 and 231. Public Interest Test Several statutory and rule criteria must be considered and balanced to determine whether IMC's proposed activity's on the Property are not contrary to the public interest. See Section 373.414(1), Florida Statutes; Rule 40D- 4.302(1)(a)1-5, and 7, Florida Administrative Code. Public Health Safety or Welfare or the Property of Others As noted elsewhere in this Recommended Order, the proposed project will not cause adverse water quality, water quantity or flooding on the Property or at any point off the Property. The mining and reclamation activities will be carried out within private property subject to security and control by IMC. The CSAs proposed to be constructed at the Property will be designed and constructed in accordance with strict regulatory requirements. A separate Department permit must be applied for and issued before construction of a CSA may commence. The weight of the evidence indicates that the chance of failure of any dam designed and constructed in accordance with current rule provisions is remote, e.g., one in two million according to Mr. Partney. See Findings of Fact 50-57, 161-165, and 244-247. 2. Conservation of Fish and Wildlife The proposed activity at the Property will not cause adverse impacts to natural systems that are not directly subject to disturbance. The ditch and berm system will protect adjacent areas from direct surface water impacts and will maintain groundwater conditions so that preserved wetland systems will continue to function during mining activities. The mining activities will be conducted in a sequence designed to minimize impacts on mobile wildlife species. By mining in the area farthest away from the preserved wetlands in the south and moving in that direction, these wildlife will be able to relocate into the preserved areas. During active mining operations, the mining areas provide value to wildlife. Many bird species use CSAs and active mine cuts during mine activities. Other animals, including raccoons, deer, possums, armadillos, snakes, and frogs use the mine areas while mining is being conducted. IMC has surveyed the Property to identify plant and animal species present at the site and developed a wildlife management plan which was included as part of the application with the ERP. This plan addresses potentially listed threatened or endangered species that could be found on the Property now or in the future and prescribes measures for protecting those listed species. The wildlife management plan comports with good scientific practice. The proposed reclamation will enhance conservation of fish and wildlife values over that currently present at the Property. Currently the site contains several small wetland systems spread out over the site connected by ditches. These wetlands are generally surrounded by pasture. The proposed reclamation plan will consolidate the wetlands into a larger contiguous mass along the West Fork of Horse Creek and will provide for an adjacent upland corridor. The upland corridor will provide additional habitats for species that may use it as a transitional zone between a wetland and an upland. IMC's voluntary establishment of a Conservation Easement over the preserved wetlands in the south portion of the Property and the reclaimed wetland system within and adjacent to the West Fork of Horse Creek in the north provide reasonable assurance that the fish and wildlife values inherent in these areas will be protected. (The Conservation Easement covers approximately 521 acres of wetlands on-site.) In addition, this system upon completion will act as a wildlife corridor of approximately 2.5 miles in length along the West Fork of Horse Creek and will connect to a larger network of habitat corridors known as the IHN. See Finding of Fact 216. IHN is a regional conceptual plan developed by the Department in 1992 for the entire Southern Phosphate District of Florida (1.3 million acres in Polk, Hardee, Hillsborough, Manatee, and DeSoto Counties) and is intended to link existing wildlife habitats, thereby allowing wildlife populations the ability to travel throughout reclaimed areas and publicly owned lands. 3. Navigation, Flow or Harmful Erosion or Shoaling The West Fork of Horse Creek on the Property is not a navigable waterway. The AFW will be vegetated before it is put into operation. It is specifically designed to handle high flow stream events, including the 100-year flood event, and will not erode or cause downstream erosion. Any sharp bends in the AFW way will be stabilized prior to use. The reclaimed West Fork of Horse Creek will be reclaimed as a natural system and will be able to manage high flows without experiencing erosion in the reclaimed stream channel or causing erosion downstream. 4. Fishing, Recreational Values or Marine Productivity The Property is privately owned and does not support public recreation or fishing activities. Following completion of mining reclamation activities, fish and wildlife values in the reclaimed wetlands and waters will be enhanced. 5. Temporary or Permanent Nature Phosphate mining, by its very nature, strips and deprives the land of existing resources, and its effects cannot be underestimated. Dr. Dunn characterizes phosphate mining as destroying the land. Nevertheless, phosphate mining is considered a temporary disturbance of the land, see Section 378.201, Florida Statutes, when compared to other types of activities. Unlike other types of activities, such as commercial or residential development, mining is completed within a finite period of time, and land reclamation follows thereafter resulting in the return of the land to other valuable land forms. 6. Current Conditions and Relative Value of Functions Performed by Affected Areas The proposed activity on the Property will not have an adverse effect on the condition and relative value of functions currently being performed at the Property in areas that will not be disturbed by mining. The areas to be disturbed by mining reflect man-induced changes over the years and provide relatively limited ecological value on the whole. Cumulative Impacts General The Department's method for evaluating the potential impacts from individual ERPs satisfies regulatory consideration of cumulative impacts of a project because so long as phosphate mines mitigate in the same drainage basin as the impacts of the proposed activity and meet the statutory and rule requirements, there will be no cumulative impacts. See Section 373.414(8)(b), Florida Statutes. The Department's evaluation includes the conceptual reclamation plan, which is mandated by Chapter 378, Florida Statutes, that describes the complete mining plan and activities for a site as well as the site's reclamation plans and the Integrated Habitat Network plan. Further, the Department's policy of analyzing similar projects (in the case of IMC's permit application that means other phosphate mines) is reasonable because phosphate mining is a temporary activity that reclaims the land to an enhanced natural system. Other types of development, such as residential and industrial, are not temporary in nature. Additionally, the Manson Jenkins Project received regional review and approval as part of IMC's Development of Regional Impact process from the Tampa Bay Regional Planning Council, which distributed information concerning the Manson Jenkins Project to the Central Florida Regional Planning Council and Manatee County. The weight of the evidence indicates that there will be no adverse water quality impacts on undisturbed areas at the Property or at any downstream location. There are no adverse water quantity impacts on or off the Property. Implementation of the reclamation plan approved by the Department pursuant to Chapter 378, Florida Statutes, and the mitigation which will be provided, as proven in this proceeding, will maintain or improve the water quality and the function of the biological systems present at the site prior to the commencement of mining activities and thus constitute appropriate mitigation. Such mitigation will occur on the Property and will be in the same drainage basins where the activities are proposed. 2. IMC's Cumulative Impact Calculations Although the Department does not require the type of cumulative impact analysis permit opponents suggest is needed, Dr. Garlanger testified that IMC performed an analysis on the Horse Creek Watershed Basin involving the existing Ft. Green and Four Corners Mines and the future Ona Mine. IMC assessed the impact of past, current, and future mining activities in the Peace River Basin on the flow in the Peace River Basin and on Horse Creek on a cumulative basis. The predictive cumulative impact assessment modeling performed by Dr. Garlanger analyzed the future long-term potential impacts on stream flow by determining the capture during previous mining activities as a baseline period and the resulting impact from the reclamation activities for that baseline. This was then compared with the potential decreases in runoff due to the capture in the areas that are planned to be mined and reclaimed in the future. The cumulative impact analysis performed by IMC made a predictive assessment through the year 2020, which includes mining at the Property as well as mining proposed for three new mines (Ona Mine, Pine Level Mine, and Farmland-Hydro Hardee County Mine) that are in the Horse Creek Basin and existing mines that would be mining at times up to the year 2020. In order to ensure a worst-case prediction, Dr. Garlanger in his analysis assumed that all the direct surface runoff from all of the mining areas would be captured within the mine recirculation systems and consumed in the process and not available to contribute to stream flow in the area. The analysis then assumed that to the extent an area was captured, it would reduce stream flow by that amount in the areas that normally would have flowed to the natural surface water systems. A cumulative impact analysis performed by IMC concluded that for approximately 70 to 80 percent of the time there is essentially no impact on the flow in Horse Creek. Further, reduction in flow during high-flow periods, which is approximately 10 percent of the time, would reduce the flow depth from 7.46 feet to approximately 7.18 feet or less than .3 of a foot and for one percent of the time the reduction in the flow would be from 12.8 to 12.6 feet. These are the predicted impacts if all the potential capture for Horse Creek occurred. The changes in the depths of these waters, during high-flow periods, will likely have a positive impact on decreasing the amount of flooding during a high-flow period. During other times there is no adverse impact from decreasing water by just a few inches out of several feet of water. The same type of cumulative analysis was performed for the entire Peace River Basin. The areas mined and the areas reclaimed were determined using the same maximum potential capture and decreased runoff due to reclamation. Calculations were performed as to the potential decreased stream flow in the Peace River above Arcadia and at Charlotte Harbor due to past, current, and future mining activities. Similar to the Horse Creek Basin analysis, Dr. Garlanger used the maximum potential capture and maximum decrease in the stream flow resulting from reclamation and calculated the maximum expected decrease in stream flow in the Peace River Basin above Arcadia and at Charlotte Harbor for both the baseline condition and the future mining period through the year 2020. This analysis determined that for approximately 80 percent of the time there will be no impact on the Peace River. The only impact is a small increase in flows during high-flow periods at the Arcadia station. Similarly, at the point where the Peace River empties into Charlotte Harbor, the differences in stream flow are practically immeasurable and, if anything, there is predicted a slight increase in flow. The flow will increase slightly because the average area that was captured during the baseline period decreases over time, meaning there is less area for rainfall capture within mining recirculation systems. Though the cumulative impact analysis performed by IMC does show a slight reduction in flow in the Horse Creek, the impact will be a decrease in the stream flow depth of less than 3 or 4 inches in water that is already 7.5 feet and 12.8 feet deep, respectively, which few inches will not cause any adverse impact. Further, the analysis showed that for the same rainfall the overall flow in the Peace River at Arcadia and at Charlotte Harbor through the period 2020 will actually be greater than during the past 19-year period. Furthermore, phosphate mining operations do pump water from the Floridan aquifer system to use in their operations. Deep groundwater pumping can contribute to reduced flow in the Peace River, but phosphate mine operators have substantially reduced their withdrawal of deep well groundwater over the last decade, and it is not anticipated that any substantial increase in use will occur in the future. IMC's withdrawals of groundwater for mining activities conducted at the company's mines, including the Property, have been authorized by the issuance of Water Use Permit No. 20114000 by SWFWMD. 3. Flow Impacts There is significant testimony concerning an analysis of the impacts of phosphate mining and reclamation on a watershed. IMC's expert Peter Schreuder performed an analysis involving the Peace River, Alafia, and Withlacoochee River Basins. Phosphate mining activities take place in the Peace River and Alafia River Basins and no phosphate mining activities taken place in the Withlacoochee River Basin. Each of these watersheds has a gauging station (a place where flows are electronically measured on a continual basis going out of a watershed) maintained by the United States Geological Survey. The analysis performed by IMC's expert compared the pattern of flow in watersheds where no phosphate mining was taking place with flow patterns in watersheds where phosphate mining was occurring. IMC's expert gathered data from the farthest downstream gauging station at each of these three watersheds; the data dated back to nearly 1935. This data provided actual measured flow data, with rainfall as the driving variable. The purpose of the analysis was to determine if phosphate mining was having an influence on flow. It is alleged that phosphate mining reduces flow. If the allegation is correct, the trend would be downward because less flow in the river would be expected. However, the weight of the evidence showed that under normal flow conditions, mined basins have more flow than unmined basins and in storm events the mined basins moderate the runoff to some minor degree by attenuating runoff and allowing for a slower and later release as beneficial, normal, base flow instead of flood flows. 4. Non-Mining Impacts There is convincing evidence in the record that other types of developments expected in the Peace River Basin, which include commercial and residential development as well as agricultural development, do not have the potential to capture surface runoff to the extent of mining activities. Additionally, residential and commercial development, because they result in lower evaporation due to the abundant impervious areas, result in an increased runoff in the basin. Thus, if these types of developments were included in the impact analysis, there would be an additional increase in runoff. G. Specific Conditions The draft ERP sets forth numerous general and specific conditions. Petitioners and Intervenors question the sufficiency of several specific conditions. In particular, Specific Condition 4.c. requires IMC to collect and report flow data from the AFW, but does not identify a reference stream or indicate what the Department is do with the data and how the data is to be evaluated. Mr. Partney convincingly suggested that these issues should be included in Specific Condition 4.c. On this record, it is difficult to conclusively determine which stream should be used as a reference stream. Pursuant to its special expertise, the Department should consider adding supplemental language to clarify these issues. See generally Reedy Creek Improvement District v. State, Department of Environmental Regulation, 486 So. 2d 642 (Fla. 1st DCA 1986). Specific Condition 12.b.i. requires that "[t]he created replacement stream for the West Fork of Horse Creek shall have a similar hydroperiod to the upper reaches of the preserved area of Horse Creek." Mr. Partney suggested that while "there may be some impacts going on," "they're not as significant in terms of the ratio of the impact to the ratio of the project area at that point. There would be--certain to be significant area of watershed that was not experiencing impacts. And a substantial portion of the Horse Creek in this area is preserved. So there is some assurance at that point that there will be sufficient natural conditions to give [the Department] the data [the Department] needs." Nevertheless, the monitoring of flow patterns is critical to the success of this project. In this light, the Department should endeavor to assure itself that the portion of the Horse Creek to be used for comparison is suitable for the purposes reflected in Specific Condition 12.b.i.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is recommended that a final order be rendered as follows: Petitioners and Intervenors have standing to challenge the issuance of ERP No. FL 0142476-003; IMC provided reasonable assurance that it has the ability to comply with the conditions of draft ERP No. FL 0142476-003; IMC has complied with all conditions for final issuance of draft ERP No. FL 0142476-003; ERP No. FL 0142476-003 be issued with the following additional permit condition: At least thirty (30) days prior to the initiation of mining operations, the final version of the financial responsibility mechanism required by Section 3.3.7.6 of the Basis of Review shall be provided to and approved by the Department as required by Rule 40D-4.301(l)(j), Florida Administrative Code (October 1995), and Rule 62-330.200(3), Florida Administrative Code. DONE AND ENTERED this 8th day of March, 2002, in Tallahassee, Leon County, Florida. CHARLES A. STAMPELOS Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 8th day of March, 2002. COPIES FURNISHED: Kathy C. Carter, Agency Clerk Department of Environmental Protection 3900 Commonwealth Boulevard Mail Station 35 Tallahassee, Florida 32399-3000 Teri L. Donaldson, General Counsel Department of Environmental Protection 3900 Commonwealth Boulevard Mail Station 35 Tallahassee, Florida 32399-3000 Aliki Moncrief, Esquire Earthjustice Legal Defense Fund Post Office Box 1329 Tallahassee, Florida 32303 Edward P. de la Parte, Jr., Esquire Vivian Arenas, Esquire De la Parte & Gilbert, P.A. Post Office Box 2350 Tampa, Florida 33601-2350 Martha Y. Burton, Esquire Charlotte County Attorney's Office 18500 Murdock Circle Port Charlotte, Florida 33948-1094 Alan Behrens 4070 Southwest Armadillo Trail Arcadia, Florida 34266 Douglas Manson, Esquire David M. Pearce, Esquire Carey, O'Malley, Whitaker & Manson, P.A. 712 South Oregon Avenue Tampa, Florida 33606 John R. Thomas, Esquire Thomas & Associates, P.A. 233 3rd Street, North, Suite 302 St. Petersburg, Florida 33701 Thomas L. Wright, Esquire Lee County Attorney's Office 2115 Second Street Post Office Box 398 Ft. Myers, Florida 33902 Alan W. Roddy, Esquire Sarasota County Attorney's Office 1660 Ringling Boulevard, Second Floor Sarasota, Florida 34236 Roger W. Sims, Esquire Rory C. Ryan, Esquire Jeff Donner, Esquire Holland & Knight LLP 200 South Orange Avenue, Suite 2600 Orlando, Florida 32801 Robert L. Rhodes, Esquire Holland & Knight LLP 2099 Pennsylvania Avenue, Northwest Washington, DC 20006 Susan L. Stephens, Esquire Holland & Knight LLP 315 South Calhoun Street, Suite 600 Tallahassee, Florida 32301 Patricia A. Petruff, Esquire Dye, Deitrich, Prather, Petruff & St. Paul, P.L. 1111 Third Avenue, Suite 300 Bradenton, Florida 34205 Craig D. Varn, Esquire Doreen Jane Irwin, Esquire 3900 Commonwealth Boulevard Mail Station 35 Tallahassee, Florida 32399-3000

Florida Laws (16) 120.569120.572.04373.016373.042373.086373.413373.414373.421378.201378.202378.203378.205378.2077.187.46
# 2
CARLOS M. BERUFF vs SOUTHWEST FLORIDA REGIONAL PLANNING COUNCIL, 99-004158 (1999)
Division of Administrative Hearings, Florida Filed:Bradenton, Florida Oct. 04, 1999 Number: 99-004158 Latest Update: Mar. 15, 2002

The Issue The issue is whether Petitioner is entitled to an environmental resource permit for a surface water management system and the alteration of a wetland in connection with the construction of two warehouses, paved parking and loading areas, a detention pond, and enhancement of the remainder of the existing wetland. If not otherwise entitled to the permit, an additional issue is whether Petitioner is entitled to the permit through an exemption, waiver, or variance from the standard requirements for mitigation.

Findings Of Fact Background Petitioner Carlos M. Beruff, as Trustee under Florida Land Trust No. 22 dated March 30, 1989 (Petitioner), purchased 85 acres of land in Manatee County for $1.2 million in May 1989. (All acreages are approximate.) The east boundary of the 85-acre parcel consists of about 1700 feet of frontage along U.S. Route 301. One month after the purchase, Petitioner sold 70 of the 85 acres for $1.6 million. In the intervening month, Petitioner incurred no significant expenses for development or marketing, although the development and marketing expertise of Carlos Beruff facilitated the $1.6 million sale. The 70 acres that were sold included the frontage on U.S. Route 301. The 15 acres remaining after the sale comprise two tracts of 9 and 5.88 acres. In these cases, Petitioner seeks an environmental resource permit (ERP) for activities involving the 5.88-acre parcel (Site). The 9-acre parcel occupies the northwest corner of the 85-acre parcel. The Site, which was platted in 1911, is the only noncontiguous land constituting the 85-acre parcel; it is 450 feet south of the remainder of the 85-acre parcel. The sole parcel between the Site and the remainder of the 85- acre parcel was originally owned by Lowe's and is now owned by Cheetah Technologies (Cheetah Parcel). The 5.88-acre Site is subject to a road right-of-way of 0.32 acres in favor of the Cheetah Parcel. Of the remaining 5.56 acres, 4.66 acres are wetland and 0.9 acres are upland. The 0.9 acres of upland are subject to an access easement of 0.42 acres, also in favor of the Cheetah Parcel, so the net available upland acreage is only 0.48 acres. The Cheetah Parcel occupies the northwest corner of U.S. Route 301 and Saunders Road (also known as 63rd Avenue East). The Site is immediately west and south of the Cheetah Parcel and occupies the northeast corner of Saunders Road and 24th Street East (also known as Arlin Road). The Site is about 530 feet west of the intersection of U.S. Route 301 and Saunders Road. U.S. Route 301 is a major arterial, and Saunders Road is at least a major collector road. The Site contains about 600 feet of frontage along Saunders Road and 465 feet of frontage along 24th Street East. The Site is in unincorporated Manatee County roughly midway between downtown Bradenton and downtown Sarasota. Saunders Road crosses a north-south railroad line approximately one-half mile west of the Site and Bowlees Creek about 650 feet west of the railroad track. The 9-acre parcel still owned by Petitioner is about 350 feet north-south by 1250 feet east-west. The western boundary of the 9-acre parcel runs along the east side of the railroad line. Like the other parcels involved in this case, the 9-acre parcel drains into Bowlees Creek. The Site is in an area characterized by industrial land uses, including warehouses, a junkyard, an industrial center, and a bakery. A halfway house for persons recently released from prison is located one-quarter mile to the west of the Site. The Site is zoned HM (heavy manufacturing), which is a limited, and thus valuable, zoning category in Manatee County. Respondent has issued three relatively recent surface water management permits that are relevant to these cases: a 1986 permit for the development of the Cheetah Parcel (Cheetah Permit), a 1988 permit for the widening of Saunders Road from two to four lanes (Saunders Road Permit), and a 1989 permit for the construction of a commercial park north of the Site known as 301 Park of Commerce (301 Permit). Bowlees Creek runs from north to south, emptying into Sarasota Bay across from Longboat Key. Sarasota Bay is an Outstanding Florida Water. Bowlees Creek drains a nine square-mile basin, which is about 21-25 percent developed. The Bowlees Creek basin is an open drainage basin. Due to flooding problems, Manatee County has imposed special limitations upon development within the Bowlees Creek basin. Among these limitations is that the rate of post- development runoff must be less than the rate of pre- development runoff--up to 50 percent less, according to expert witnesses for both sides (Lawrence Weber, Tr. Vol. III, pp. 118-19; and Daryl Flatt, Tr. Vol. IV, p. 230). By stipulation, the Site is at the extreme eastern end of the Bowlees Creek basin. In fact, the Site may have historically drained into Bowlees Creek and will drain into Bowlees Creek after, as described below, the northwest window is added to the surface water management system. In 1993 or 1994, Petitioner began the process of developing the Site following the sale five years earlier of the larger 70-acre parcel. Mr. Beruff has been in the development business for 20 years. His career began in 1980 when Mr. Beruff became an employee for U.S. Homes and Modern Builders; he became self-employed in 1984. Mr. Beruff has developed seven commercial and ten residential developments. Application Process Deciding to pursue warehouse development for the Site, Petitioner initiated the development process by hiring an engineer and environmental consultant. With the assistance of these consultants, Petitioner prepared its application for an ERP. By application dated October 9, 1998, and filed November 13, 1998, Petitioner requested that Respondent issue an individual ERP for the construction on the Site of a surface water management system in connection with the construction of two warehouse buildings, paved parking and loading areas, and a detention pond, as well as the enhancement of the remainder of the existing wetland (Application). The Application states that the total building, parking, and loading areas would be 58,026 square feet and that wetlands constitute 3.37 acres of the 5.88-acre Site. The site plan attached to the Application shows a "wetland preservation & enhancement" area of 1.592 acres at the north end of the Site. To the south, toward Saunders Road, are two buildings with paved parking and loading areas. On the southwest corner is a "stormwater treatment & attenuation" area. After several discussions with Respondent's staff, Petitioner modified the proposed development. In its latest revision, the footprint of the proposed development would occupy 2.834 acres of wetland, leaving 1.826 acres of wetland. On November 13, 1998, Petitioner filed a Petition for Exemption, Waiver or Variance as to Mitigation Requirements, seeking an exemption, waiver, or variance from all laws requiring offsite mitigation or additional onsite mitigation for the portion of the wetland that would be destroyed by the proposed development. Drainage At present, the Site receives runoff from a total of 27 acres. The offsite contributors of runoff are the Cheetah Parcel and a segment of Saunders Road east of 21st Street East. These locations have drained into the Site for hundreds of years. In general, drainage raises two distinct issues: water quality and water quantity. For an open drainage basin, the issue of water quantity expresses itself primarily in runoff discharge rate, although historic basin storage is also an issue. As discussed in the Conclusions of Law, the Respondent's Basis of Review identifies different storm events to which applicants must design different components of surface water management systems. For water quantity, the system may release no more than the permitted discharge rate in the design storm, which is the 25-year, 24-hour storm event. At present, the design storm would produce about eight inches of rain, although the same design storm, due to a different model or modeling assumptions, produced 9.5 inches of rain at the time of the issuance of the permit for the Cheetah Parcel. (The practical effect of this change in the calculation of the design storm is that the quantitative capacity of the surface water management system of the Cheetah Parcel is nearly 20 percent greater than would be required today.) For water quality, the system must capture the first inch of runoff (sometimes only the first half-inch of runoff, depending on the type of system and receiving waterbody). In contrast to the relatively infrequent 25-year storm, approximately 90 percent of the storms in Respondent's jurisdiction produce no more than one inch of runoff. The underlying premise is that the first inch of runoff contains nearly all of the contaminants that will be flushed from impervious surfaces. The Cheetah surface water management system features a wetland and a retention pond along the north property line of the Site. The Cheetah pond and wetland attenuate runoff before allowing it to drain south onto the Site. The Cheetah surface water management system also includes a swale running north along 24th Street East to take runoff eventually to Bowlees Creek. The Saunders Road surface water management system discharging onto the Site consists largely of an underground, offline storage and attenuation system that stores excess runoff, as compared to pre-development rates, in lateral pipes off a weir. Nothing in the record suggests that the surface water management systems authorized by the Cheetah Permit or the Saunders Road Permit fail to provide reasonable assurance that the discharged runoff is of satisfactory water quality. Following their respective permits in 1986 and 1988, respectively, the rates of discharge of runoff from the Cheetah Parcel and Saunders Road were no greater post- development than they had been pre-development. The Cheetah Parcel post-development and pre-development discharge rates were both 10.6 cubic feet per second (cfs). The Saunders Road post-development and pre-development discharge rates were both 32.4 cfs. In issuing the 301 Permit, Respondent authorized the construction of a drainage system that would take runoff north along 24th Street East and then west, eventually emptying into Bowlees Creek. Conforming to the previous drainage system, the new system replaced an open ditch with underground stormwater pipes. Of particular relevance to the Site, two prominent features of the system authorized by the 301 Permit were windows in the vicinity of the southwest and northwest corners of the Site (Southwest Window and Northwest Window). A window is an opening in the wall of a hardened structure whose purpose includes drainage. The opening is constructed at a certain elevation and a certain size to allow specified volumes or rates of water to pass into the structure and then offsite. The 301 Permit authorized the construction of a swale along the southwest corner of the Site to direct runoff discharging from the Saunders Road system into the Southwest Window. This swale has been construed. However, several problems have precluded the construction of the Southwest Window, probably permanently. The most serious problem, from an engineering perspective, is the failure to lay the stormwater pipe along 24th Street East at the proper depth. The stormwater pipe was erroneously installed at an elevation of 15.32 feet National Geodetic Vertical Datum (NGVD), and the Southwest Window was to have been cut at a control elevation of 14.75 feet NGVD. The discharge elevation of the Saunders Road outlet precludes raising the control elevation of the Southwest Window sufficiently to allow gravity drainage into the stormwater pipe. Exacerbating the discrepancy among the as-built elevations of the three structures is what appears to be a design problem belatedly recognized by Respondent. Respondent is justifiably concerned that the Southwest Window, at a control elevation of 14.75 feet NGVD, would draw down the water elevation of the Site's wetland, which is at a wet season elevation of 16.5 feet NGVD (now actually 17 feet NGVD, possibly due to the absence of the Southwest Window). A third problem with the Southwest Window is that the southwest corner of the Site was not historically a point of discharge, so the Southwest Window would deprive the Site's wetland of runoff. Fortunately, neither the Southwest nor the Northwest Window is essential for the proper operation of the surface water management system of 301 Park of Commerce, which largely depends on a series of lakes for treatment and attenuation. The Northwest Window was to be at elevation 16.5 feet NGVD, and its construction would provide needed drainage for the Site. In general, the Northwest Window does not raise the same concerns as does the Southwest Window. The Northwest Window is in the vicinity of the historic point of discharge for the Site and replaces a ditch permitted for the Cheetah Parcel to take runoff north along 24th Street East. The Northwest Window would also alleviate a standing-water problem at the northwest corner of the Site. However, Manatee County, which controls the right- of-way on which the Northwest Window is located and is responsible for its construction and maintenance, has discovered that it lacks a sufficient property interest to access the Northwest Window. The County has since initiated the process by which it can obtain the necessary interest, and, once completed, the County will cut the Northwest Window into the existing structure. Due to the role of the Northwest Window in draining the runoff in the area, including the Site, the Application reincorporates the Northwest Window, as it should have been constructed pursuant to the 301 Permit. Although the Cheetah and Saunders Road permits resulted in greater runoff volume entering the Site, more importantly to area drainage, these permits did not result in greater runoff rates and or in a deterioration in runoff water quality. Likewise, the failure to construct the Southwest Window and Northwest Window is not especially relevant to area drainage, nor is the likely inability ever to construct the Southwest Window. Far more important to area drainage is the fact that Petitioner proposes that the Site, post-development, would produce a runoff rate of 10.6 cfs, as compared to a pre-development runoff rate of 7 cfs. A serious adverse impact to area drainage, the proposed activity increases the runoff rate by 50 percent in a floodprone, 80-percent builtout basin--a basin of such sensitivity that Manatee County is imposing a post-development requirement of substantially reduced runoff rates. The cumulative impacts of the proposed development, together with existing developments, would be to cause substantial flooding of the Bowlees Creek basin. Petitioner's expert attempted to show that the runoff from the Site, which is at the extreme eastern end of the Bowlees Creek basin, would be delayed sufficiently so as not to exacerbate flooding. Respondent's expert thoroughly discredited this testimony due, among other things, to its reliance upon obsolete data and an unrealistic limitation upon the assumption of the direction of travel of storms. Similarly, Petitioner failed to prove that the authorized discharge rate for the 301 Permit is 42 cfs. This assertion is most succinctly, though not exclusively, rebutted by the fact that the 42-inch pipe can only accommodate 18 cfs. Even if the 42-inch pipe could accommodate a substantially greater runoff rate, Petitioner's expert would have erroneously inferred a permitted discharge rate from this increased capacity without negating the possibility that other structures in the 301 surface water management system effectively reduced the rate or that oversized structures existed to accommodate higher runoff rates in storms greater than the design storm. In addition to increasing the runoff rate by 50 percent, Petitioner's proposal would also reduce the historic basin storage by over 40 percent. Displaced basin storage moves downstream, increasing flood levels from fixed storm events. At present, the Site provides 8.68 acre-feet of historic basin storage. The Application proposes to replace this storage with storage in the wetland and retention pond totaling only 4.9 acre-feet. The loss of 3.8 acre-feet of basin storage means that this additional volume of water would, post-development, travel down Bowlees Creek. A final drainage deficiency in Petitioner's proposal arises out of a berm's proposed outside of the Northwest Window. A one-foot bust in the survey of Petitioner's expert would have resulted in this berm preventing runoff from entering the Site from the Cheetah Parcel, as runoff presently does. Respondent's expert suggested several possible alternatives that might result in a permittable project with respect to post-development runoff rates (the record is silent as to the effect of these alternatives upon historic basin storage, although it would seem that they would add storage). Reducing the area of destroyed wetlands to one acre would probably reduce the excess of post-development runoff rate to 1-2 cfs. Petitioner could then obtain offsetting attenuation through a variety of means, such as by obtaining an easement to use the wetland on the Cheetah Parcel, constructing an attenuation pond on the 9-acre parcel, or constructing underground vaults in the filled area of the wetland on the Site. Wetlands Except for the road right-of-way, the Site is undeveloped and forested. The presence of 25-year-old red maples militates against attributing the transition from an herbaceous to a forested wetland to the failure to install the Northwest and Southwest windows. More likely, this transition to the sub-climax species of red maple and willow (in the absence of a cypress source) is due to the repression of fire on the Site. Experts for the opposing sides differed sharply in their biological assessments of the wetland. Petitioner's expert described a stressed wetland whose impenetrable thicket provided habitat only to a lone rat and swarm of mosquitoes. Respondent's expert described a robust wetland featuring a luxuriant overstory of red maple and Carolina willow; an rich understory of ferns, and diverse wildlife ranging from birds in the air (direct evidence); fish, snails, and tadpoles in a small pond (direct evidence); and squirrel and opossum (indirect evidence) scampering (indirect evidence) among the buttonbush, elderberry, and wax myrtle (direct evidence). Undoubtedly, the wetland has been stressed; approximately 30 percent of the wetland vegetation is Brazilian pepper, which is a nuisance exotic. However, the wetland is well hydrated. Issuance of the Cheetah Permit was predicated, in part, upon the rehydration of the wetland on the Site. With the issuance of the Cheetah Permit and especially the Saunders Road Permit, the quality of water entering the wetland has improved by a considerable amount. As already noted, added volumes of runoff are entering the wetland since the issuance of these two permits, although post-development runoff rates are the same as pre-development runoff rates. On balance, the wetland is functioning well in providing habitat and natural drainage functions. Giving due weight to the current condition of the wetland, the enhancement offered by Petitioner does not approach offsetting the loss of wetland area. In return for destroying 2.83 acres of the wetland, Petitioner proposed the enhancement of the remaining 1.83 acres by removing exotic species to no more than 10 percent of the total vegetation. The mitigation is plainly insufficient because of the level of functioning of the entire wetland at present. Additionally, Petitioner has failed to demonstrate that the Brazilian pepper, which is the major nuisance exotic occupying the Site, is evenly distributed; to the contrary, it is present mostly outside the wetland, along a berm just outside of the wetland. The lack of seedlings and old specimens suggests that the Brazilian pepper population may not be stable and may itself be stressed. Petitioner's failure to show that the remaining wetland area has more than 10 percent infestation or is likely to suffer additional infestation further undermines the effectiveness of the proposed mitigation. Respondent has never issued an ERP for a proposed activity involving the alteration of wetlands when the enhancement mitigation ratio is as low as .65:1, as Petitioner proposes. In general, Respondent requires higher mitigation ratios when proposals involve wetlands enhancement, rather than wetlands creation, because the wetlands to be enhanced are already functioning--in these cases, at a relatively high level. Although Petitioner has been unwilling to consider such alternatives, numerous alternatives exist for offsite mitigation or mitigation banking, if insufficient area exists for adequate onsite mitigation. Lastly, Petitioner devoted considerable effort at hearing to portraying Respondent's handling of the Application as flawed and unfair. However, the evidence does not support these assertions. Most strikingly, Respondent's staff treated the drainage windows inconsistently, to the benefit of Petitioner. They treated the Northwest Window as installed for the purpose of calculating the pre-development runoff discharge rate to Bowlees Creek. Until the Northwest Window is installed, the actual rate is even lower. This approach is justifiable because the Northwest Window will be installed at some point. On the other hand, Respondent's staff ignored the higher wetland elevation on the Site, presumably resulting from the absence of the Southwest Window. However, this approach, which benefits Petitioner in calculating wetland drawdown effects, is unjustifiable because the Southwest Window probably will never be installed. Petitioner's specific complaints of unfair treatment are unfounded. For example, Petitioner suggested that Respondent credited Lowe's with wetland acreage for the littoral shelf of its wetland, but did not do so with the wetland on the Site. However, Petitioner produced no evidence of similar slopes between the two shelves, without which comparability of biological function is impossible. Additionally, Petitioner ignored the possibility that, in the intervening 14 years, Respondent may have refined its approach to wetland mitigation. Although occurring at hearing, rather than in the application-review process, Respondent's willingness to enter into the stipulation that the Site presently drains into Bowlees Creek, despite recent data stating otherwise, was eminently fair to Petitioner. Absent this stipulation, Respondent would have been left with the formidable prospect of providing reasonable assurance concerning drainage into the floodprone Bowlees Creek when the post-development rate was 10.6 cfs and the pre-development rate was 0 cfs.

Recommendation Based on the foregoing, it is RECOMMENDED that Respondent deny Petitioner's application for an environmental resource permit and for an exemption, variance, or waiver. DONE AND ENTERED this 29th day of February, 2000, in Tallahassee, Leon County, Florida. ___________________________________ ROBERT E. MEALE Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 29th day of February, 2000. COPIES FURNISHED: S. W. Moore Tracey B. Starrett Brigham. Moore, Gaylord, Schuster, Merlin & Tobin, LLP 100 Wallace Avenue, Suite 310 Sarasota, Florida 34237-6043 Mark F. Lapp Jack R. Pepper Assistant General Counsel Southwest Florida Water Management District 2379 Broad Street Brooksville, Florida 34609 E. D. "Sonny" Vergara Executive Director Southwest Florida Water Management District 2379 Broad Street Brooksville, Florida 34609-6899

Florida Laws (17) 120.54120.542120.569120.57267.061373.042373.086373.403373.406373.413373.414373.416373.421380.06403.031403.061403.201 Florida Administrative Code (6) 40D-4.09140D-4.30140D-4.30240D-40.30162-302.30062-4.242
# 3
FLORIDA WILDLIFE FEDERATION vs. GORDON V. LEGGETT, MOSELEY COLLINS, ET AL., 82-002235 (1982)
Division of Administrative Hearings, Florida Number: 82-002235 Latest Update: Jun. 21, 1991

The Issue Whether the applicants own the property in question? Whether the project would comply with the criteria of the South Florida Water Management District contained in Basis of Review for Surface Water Management Systems, specifically Sections 3.1.3 and 3.2? Whether flood protection would be inadequate or septic tanks unsuitable or whether the public health and safety would be compromised or the ultimate purchasers be deprived of usage of the property due to inundation in violation of Chapter 373, Florida Statutes (1981), or Rule 40E-4.301(1), Florida Administrative Code?

Findings Of Fact Ms. Williamson and Messrs. Leggett and Collins hold in fee simple a triangular 117.24-acre parcel in Okeechobee County as tenants in common under a warranty deed executed in their favor by one W. C. Sherman. They propose to develop the property as a trailer park (complete with airstrip) large enough to accommodate 109 trailers. To this end, soil would be dug up from the center of the property and used to raise the elevation of the surrounding land above the 100-year floodplain. (T. 47) The applicants have a dredging permit from the Department of Environmental Regulation authorizing them to excavate 629,889 cubic yards. They are proposing to dig to a depth of 76 feet below ground. This would create an 18-acre body of water ("Poe's Lake") which would overflow a V-notched weir into a county canal. The county canal would take the water to C- 38, one of the large canals to which the Kissimmee River has been relegated, at a point about 18 miles upstream from Lake Okeechobee. Runoff would wash over residential lots and roadways; the site would be graded to assure drainage into Poe's Lake. The minimum road crest elevation would be 30 feet NGVD ("[a]round twenty-nine feet" T.52), as compared to the control elevation for surface waters of 28.5 feet NGVD. WATER QUALITY The developers plan septic tanks for wastewater treatment. At the close of all the evidence, counsel for the applicants stated that sanitary sewers could be installed instead. Respondents' Proposed Recommended Order, p. With all the housing units in use, at least 10,900 gallons of effluent would seep into the ground from the tanks daily. There would be some evapotranspiration, but all the chemicals dissolved in the effluent would eventually end up in the groundwater. During the dry season, septic tank effluent would cause mounding of the groundwater and some groundwater movement toward, and eventual seepage into, Poe's Lake. The eventual result would be eutrophication and the growth of algae or macrophytes on the surface of Poe's Lake. This would cause dissolved oxygen violations in Poe's Lake. Discharges from the lake would inevitably occur, aggravating the situation in C-38, which already experiences dissolved oxygen levels below 5.0 milligrams per liter in the rainy summer months. Some fraction of the nutrients in the effluent from the septic tanks would ultimately reach Lake Okeechobee itself. The sheer depth of the excavation would create another water quality problem. Under the anaerobic conditions that would obtain at the bottom of Poe's Lake, bacteria acting on naturally occurring sulfates would produce hydrogen sulfide, ammonia and various other reduced organic nitrogen compounds. These substances are toxic to human beings and would, in some indeterminate quantity, enter the groundwater from Poe's Lake. This would affect the taste and perhaps the potability of water from any well nearby. It would be "possible to design a better system where there would be nutrient removal and a greatly reduced probability of violation of the dissolved oxygen criterion and obviation of the potential for ground water contamination." (T. 200) Installation of a baffle on the weir would serve to prevent buoyant debris from entering surface waters of the state. BASIS OF REVIEW Official recognition was taken of the "Basis of Review for Surface Water Management Permit Applications Within the South Florid Water Management District," parts of which all parties agree pertain in the present proceedings. Among the criteria stated in this document are: 3.1.3 Waste and Wastewater Service - Potable water and wastewater facilities must be identified. The Applicant for a Surface Water Management Permit must provide information on how these services are to be provided. If wastewater disposal is accomplished on-site, additional information will normally be requested regarding separation of waste and storm systems. 3.2.1.4 Flood protection - Building floors shall be above the 100 year flood elevations, as determined from the most appropriate information, including Federal Flood Insurance Rate Maps. Both tidal flooding and the 100 year, 3 day storm event shall be considered in determining elevations. b. Commercial and industrial projects to be subdivided for sale are required to have installed by the permittee, as a minimum, the required water quality system for one inch of runoff detention or one half inch of runoff retention from the total developed site. State standards - Projects shall be designed so that discharges will meet State water quality standards, as set forth in Chapter 17-3, Retention/detention criteria - Retention and/or detention in the overall system, including swales, lakes, canals, greenways, etc., shall be provided for one of the three following criteria or equivalent combinations thereof . . . Wet detention volume shall be provided for the first inch of runoff from the developed project, or the total runoff from a 3-year, 1-hour rainfall event, whichever is greater. Dry detention volume shall be provided equal to 75 percent of the above amounts computed for wet detention. Retention volume shall be provided equal to 50 percent of the above amounts computed for wet detention. 3.2.4.1 Discharge structures should include gratings for safety and maintenance purposes. The use of trash collection screens is desirable. Discharge structures shall include a "baffle" system to encourage discharge from the center of the water column rather than the top or bottom. 3.2.4.4.2 b. Control elevations should be no higher than 2 feet below the minimum road centerline elevation in the area served by the control device in order to protect the road subgrade. Simply detaining runoff before discharging it offsite will not insure that the water quality standards set forth in Chapter 17-3 will be met. Whether the standards are met depends on, among other things, the composition of the runoff. FWF'S INTEREST Among the purposes of the FWF, as stated in its charter, Shall be to further advance the cause of conservation in environmental protection, to perpetuate and conserve fish and wildlife, oil, water, clean air, other resources of the State and so manage the use of all natural resources, that this generation and posterity will receive the maximum benefit from the same. (T. 248-9) Four or five thousand Floridians belong to FWF. FWF members "make use" (T. 250) of the waters of Lake Okeechobee, the Kissimmee River and specifically of the waters in C-38. PROPOSED FINDINGS CONSIDERED The applicants and FWF filed post hearing memoranda and proposed recommended orders including proposed findings of fact which have been considered in preparation of the foregoing findings of fact. They have been adopted, in substance, for the most part. To the extent they have been rejected, they have been deemed unsupported by the weight of the evidence, immaterial, cumulative or subordinate.

Recommendation Upon consideration of the foregoing, it is RECOMMENDED: That SFWMD deny the pending application for surface water management permit. DONE and ENTERED this 29th day of November, 1983, in Tallahassee, Florida. ROBERT T. BENTON II, Hearing Officer Division of Administrative Hearings The Oakland Building 2009 Apalachee Parkway Tallahassee, Florida 32301 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 29th day of November, 1983. COPIES FURNISHED: Dennis J. Powers, Esquire Gunster, Yoakley, Criser & Stewart 400 South County Road Palm Beach 33480 Terrell K. Arline, Esquire 325-C Clematis Street West Palm Beach, Florida 33401 Irene Kennedy Quincey, Esquire 3301 Gun Club Road West Palm Beach, Florida 33406 Charles P. Houston, Esquire 324 Datura Street, Suite 106 West Palm Beach, Florida 33401

Florida Laws (2) 120.57120.60 Florida Administrative Code (1) 40E-4.301
# 4
WILLIAM H. AND PATRICIA H. MELLOR, ET AL. vs. COUNTY LINE DRAINAGE DISTRICT AND SOUTH FLORIDA WATER MANAGEMENT DISTRICT, 83-000082 (1983)
Division of Administrative Hearings, Florida Number: 83-000082 Latest Update: Jun. 21, 1991

Findings Of Fact The CLDD was established pursuant to Chapter 298, Florida Statutes, on August 4, 1967. Its purpose was to "reclaim" or render the land within its boundaries usable for agricultural purposes. The land comprising the CLDD consists of approximately 3,500 acres in Lee County, mostly planted in citrus trees. Pursuant to the requirements of Chapter 298, Florida Statutes, a "Plan of Reclamation" was prepared by consulting engineers for the CLDD's Board of Supervisors in August, 1967. That plan contains provisions for reclaiming lands within the CLDD's boundaries and for managing and controlling surface water within CLDD. The method of water control outlined in the 1967 reclamation plan included a dike and ditch system around the boundaries of CLDD with a series of interior canals to carry excess water away from the citrus trees. The land in the north part of he CLDD is higher than the south and water generally, naturally flows from north to south. The interior canals were designed to carry water in accordance with existing contours of the land and eventually discharge excess surface water to the rim ditches on the north and east sides of Spoil Area "M," which is south of the CLDD and which was then owned by the C&SFFCD, the predecessor agency to SFWMD. The system of drainage delineated in that 1967 plan, inaugurated pursuant to Chapter 298, Florida Statutes, was put into effect substantially as described therein. CLDD's 1967 plan was altered somewhat because of an agreement entered into on September 30, 1971, between the CLDD and neighboring landowner Kenneth Daniels. Pursuant to that agreement, the two parties agreed to extend the dike on the west side of the CLDD property and construct a ditch from a point 50 feet north of the northwest corner of the Petitioner Mellor's property, which new ditch was to run southwest across the Daniels' property and connect with Spanish Creek. That ditch or canal would thus connect the western rim ditch of the SFWMD's Spoil Area "M" with Spanish Creek and have the result that surface waters could be discharged from CLDD lands through the western rim ditch of Spoil Area "M" thence through the "Daniels' Ditch" finally discharging into the lower reaches of Spanish Creek. (see Exhibits 1 and 11) Because the western side or western rim canal of the SFWMD's Spoil Area "M" had not been used under the original plan of reclamation approved by the C&SFFCD, CLDD sought permission from C&SFFCD to use this western rim canal for the purpose stated pursuant to the agreement with Daniels. Thus, CLDD's proposed use of the rim canal of Spoil Area "M" would be confined to the western, northern and eastern perimeter canals and not the southern boundary canal. All affected landowners, Kenneth Daniels as well a Jake and Lilly Lee, agreed to those proposed installations and uses. The resulting agreement between CLDD and C&SFFCD was entered into on October 12, 1972, and describes the flood control District land to be used by CLDD as a 100 foot wide strip running along the west, north and east sides of Spoil Area "M," also know as "Aspic." This 100 foot wide strip of land running thusly is co-extensive with the rim ditch of Spoil Area "M." The CLDD was mandated by this agreement to install 72- inch pipes in the rim ditch at the southwest corner of the spoil area, just north of the Mellor property, giving a point of discharge from the western rim ditch into the Daniels' Ditch with similar pipes connecting that Daniels' Ditch with Spanish Creek, such that the canal between these two points could carry water from the west rim ditch to Spanish Creek. The easement incorporated in this agreement was to last for five years with an option for a five-year renewal, which option was exercised. At the end of this 10-year period, SFWMD, successor to C&SFFCD, notified CLDD that because its statutory authority had since changed, the easement could not be renewed and that CLDD would have to seek the subject permit so as to be authorized to use works and lands of the District. The requirements to be met by an applicant for a right-of-way permit such as this one are set out in Rule 40E-6.301, Florida Administrative Code, and SFWMD's permitting information manual, Vol. V, Criteria Manual for Use of Works of the District, July, 1981, which is incorporated by reference in that rule. In that connection, the permit at issue, if granted, would not cause an interference with the "works" of the District, that is dikes, ditches, flood control structures arid drainage structures because it would merely renew the pre-existing authorized use. The permit will not be inconsistent with an comprehensive water use plan developed by the District. Further, the permit applicant owns or leases the land adjacent to the portion of the "works of the District" involved herein that is the east, north and west rim ditches of Spoil Area "M," the Daniels' Ditch and the pipes at either end of it coupled with the water control structures at the southeast corner and southwest corners of Spoil Area "M," which control water entering the south rim ditch. CLDD has a surface water management permit, issued in August, 1980, which is a prerequisite to the granting of the subject right-of-way permit. It remains in full force and effect. That surface water management permit authorizes "operation of a water management system serving 3,642 acres of agricultural lands by a network of canals and control structures, with a perimeter dike and canal discharging into Cypress Creek." The "surface permit" authorized the system of drainage and discharge in existence at the time of its issuance, May 8, 1980. The system of drainage, at the day of the hearing, consisted of the same basic water flow and discharge pattern that existed for approximately 10 years, and this permit would allow that to be continued, thus, there will not be any additional effect on environmentally sensitive lands occasioned by an issuance of the subject right-of-way permit. The surface water management permit, by its terms, refers initially to the operation of a water management system" . . . discharging into Cypress Creek." The reference to "Cypress Creek" was an administrative error. The express language on the face of the permit authorization incorporates by reference the application, including all plans and specifications attached thereto, as addressed by the staff report, and those materials, including the staff report, are a part of the permit. The complete permit, including all those documents incorporated by reference, makes it clear that the authorization of the surface water management permit was that the system of drainage in existence at the time of permit issuance (1980) was that which was being approved, and that included discharge to Spanish Creek and not Cypress Creek. Discharge of water to Cypress Creek as an alternative was never recommended or authorized by that surface water management permit. This is clearly the intent expressed in the permit in view of the language contained in a special condition of that surface water management permit imposed by the SFWMD as a condition for issuance which stated as follows: Within 45 days of the issuance of this permit the permittee shall submit for staff approval a proposal and schedule for the elimination of the adverse impacts being created by the operation of the permittee's water management system, which can be legally and physically accomplished by the permittee. Adverse impacts are considered herein to be reduced flows to Spanish Creek and increased flows to Cypress Creek. Thus, it is obvious that the authorization of the surface water management permit was designed to provide for discharge into Spanish Creek and to enhance the flows to Spanish Creek pursuant to a required proposal which the permittee submitted to SFWMD. Thus, the right-of-way permit applied for herein is consistent with the valid surface water management permit held by the permit applicant in this proceeding. Petitioners William H. and Patricia H. Mellor are co-owners of parcels of property lying some distance south of Spoil Area "4" in the vicinity of the Caloosahatchee River. This property does not abut the spoil area at any point. Spanish Creek does cross their property several thousand feet south of the south boundary of the spoil area. In the past, particularly in 1982, water flowing from the south rim ditch of the spoil area through a break in the dike of that south rim ditch, has flowed through a ditch known as Dry Creek in a generally southerly direction under S.R. 78 and has washed out an access road constructed by William Mellor which leads from Highway 78 to his property. He had this washout repaired at his own expense in 1982. The washout was caused by water from CLDD flowing into the south rim canal of Spoil Area "M," that is, the ditch that traverses (and defines) the southerly boundary of the spoil area. Mr. Mellor admitted, however, that SFWMD had at least partially plugged the opening in the south rim ditch which had allowed flow down the Dry Creek ditch and wash out his road. If closed water control structures are maintained at the southwest and southeast corners of the spoil area ditches, then no water could flow into the south rim canal and no such injury could again be caused. Petitioner's Jim English and Patricia Mellor are co-owners of a 45- acre parcel of land located in the southwest corner of Spoil Area "M." The five acres forming the extreme southwest corner of the spoil area do not belong to these Petitioners, but are owned by one Lynwood Brown, who is not a party to this proceeding. The English/Mellor property forms a part of the spoil area, but does not adjoin or constitute any part of the spoil area which is sought to be used by CLDD through the proposed right-of-way use permit (as clarified by CLDD's stipulation). The south rim ditch, either part of, or adjoined by their property, has been used for water storage in the past (they maintain illegally) 1/ Mr. Tom Pancoast has observed Spanish Creek frequently over a nine- year period starting in approximately 1973. He has often used those waters during that period for fishing. During the early years of his use and observation of Spanish Creek, the water flowed out of Spanish Creek into the Caloosahatchee River. Beginning in about 1976, the water appeared to be flowing in the opposite direction, from the river into Spanish Creek. Contemporaneous with this hydrologic change, the creek has become increasingly characterized by siltation and hyacinth growth. Mr. William Mellor owns property along the course of Spanish Creek. He has used the stream for recreational purposes, picnicking where the stream traverses his property. In recent years there has occurred a marked increase in the growth or profusion of aquatic plants of unidentified types in the creek, reduced clarity and reduced flows or volumes of water in the creek. Witness English has made a similar observation. Witness James English has a substantial degree of training by formal education and experience in water management and drainage practices and methods, particularly as they relate to citrus grove development and management in southwest Florida. Mr. English has observed Spanish Creek regularly for most of his life, including the region of its headwaters in the "Cow Prairie Cypress," a remnant wetland cypress strand lying within the CLDD immediately north of Soil Area "M." The chief adverse impact of the CLDD water management system is reduced flow to Spanish Creek, especially its upper reaches since the advent of the "Daniels' Ditch" as a drainage route and discharge point into lower Spanish Creek. However, the only special condition on the issuance of the surface water management permit approving CLDD's extant water management system was the requirement that CLDD should submit a plan for eliminating that adverse effect, which it did (as Petitioner English admits). Beyond the submission of such a plan, no concrete action designed to restore historic flows to Spanish Creek has yet begun, however. The restoration of historic flows, adequate in volume and quality, to the entire creek system would require discharging water from CLDD's system to the Cow Prairie Cypress area at the headwaters of the creek rather than substantially further downstream at the present Daniels' Ditch site. The Petitioners' complaints (aside from the issue of adequacy of flows in Spanish Creek), although meritorious, are, because of stipulations asserted by CLDD during the course of this proceeding, now rendered moot. CLDD stipulated that it only seeks a permit to use the west, north and eastern spoil area ditches. It does not seek and stipulated that it will not use, at any time, the south rim ditch and will maintain water control structures so to block water from entering that ditch. This will alleviate the problem of potential storage of water on Petitioners English and Patricia Mellor's property and the erosion problem on Petitioners William and Patricia Mellor's property south of the spoil area. It was thus established that the issuance of the right-of-way permit will not cause the injuries these Petitioners have suffered in the past because of use of the south rim ditch for water drainage and storage.

Recommendation Having considered the foregoing Findings of Fact, Conclusions of Law, the evidence in the record and the candor and demeanor of the witnesses, it is, therefore RECOMMENDED: That the South Florida Water Management District grant the County Line Drainage District's application for a permit for utilization of works and lands of the District. Subject to the following special condition: Issuance of this right-of-way permit does not relieve the Respondent CLDD from the responsibility of complying with special condition number 1 of the surface water management permit number 36-00184-S. Respondent CLDD shall, within 30 days of date of permitting, submit a design to the satisfaction of the SFWMD staff which will prevent the ability of CLDD to discharge to the southern rim ditch, described above. DONE and ENTERED this 29th day of September, 1983, in Tallahassee, Florida. P. MICHAEL RUFF Hearing Officer Division of Administrative Hearings The Oakland Building 2009 Apalachee Parkway Tallahassee, Florida 32301 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 29th day of September, 1983.

Florida Laws (2) 120.57373.085 Florida Administrative Code (1) 40E-6.011
# 5
GEORGE HALLORAN vs SOUTH FLORIDA WATER MANAGEMENT DISTRICT, 92-006254 (1992)
Division of Administrative Hearings, Florida Filed:Key West, Florida Oct. 19, 1992 Number: 92-006254 Latest Update: Oct. 05, 1993

Findings Of Fact Based upon the oral and documentary evidence adduced at the final hearing and the entire record in this proceeding, the following findings of fact are made: The SFWMD is a public corporation in the state of Florida existing by virtue of Chapter 25270, Laws of Florida, 1949, and operating pursuant to Chapter 573, Fla. Stat., and Title 40E, Fla. Admin. Code, as a multi-purpose water management district, with its principal office in West Palm Beach, Florida. The Navy has proposed construction of a naval housing facility on the Peary Court site (the "Site") in Key West, Florida. The Site is approximately 25.89 acres and will provide 160 housing units for junior enlisted Navy and Air Force personnel and their families. The Site is the center of a larger, 37 acre drainage basin. The Site was formerly the location of military housing. However, for the past 18 years, the Site had been used by the City of Key West, with the assent of the Navy, for active and passive recreation for city residents. The Site contains a cemetery of historic value and a former military housing structure now being used by the Navy Key West Federal Credit Union with an associated parking area of paved asphalt. On February 6, 1992, the Navy submitted an application for a Surface Water Management District General Permit for the Project. The proposed surface water management system (the "System") was designed by Rice Creekmore, a registered professional engineer, and his company Johnson, Creekmore, and Fabray. The proposed System utilizes the existing topography and incorporates a number of drainage control mechanisms to manage the run-off from the Site. The System employs inlets, swales and culverts to direct stormwater run-off into dry detention areas (ponds) for pretreatment prior to discharging into seven 24-inch Class V injection wells (drainage wells). As discussed below, these injection wells must be permitted by the Florida Department of Environmental Regulation ("FDER"). The dry pond areas utilize key ditches, bottom elevation 1.0' NGVD, in order to hydraulically connect all of the dry pond areas together into one dry system prior to overflowing into the drainage wells beginning at elevation 1.5' NGVD. In other words, the detention ponds are interconnected with pipes. The design includes only one point where run-off would be discharged from the Site during any storm equal to a 25 year, three day storm event. That discharge would occur at the lowest point of the Site at the corner of Eisenhower and Palm. The water would be discharged through a V notch weir (the "Weir") into the City's stormwater system. An existing 12" storm drain line at the discharge point will be replaced by a 13.5" by 22.0" Reinforced Concrete Elliptical Pipe culvert. As discussed in more detail below, the System is designed so as to detain 1" of run-off within the dry detention ponds prior to any discharge through the Weir. After review of the application and submittals, the SFWMD issued a Notice of Intent to issue General Permit and Stormwater Discharge Certification No. 44-00178-S (the "Permit") on September 29, 1992. Petitioner and Intervenor timely petitioned for an administrative hearing challenging the SFWMD decision to award the Permit. There is no dispute as to the standing of either Petitioner or Intervenor. The SFWMD has adopted rules that set forth the criteria which an applicant must satisfy in order for a surface water management permit to issue. The criteria are set forth in Rule 40E-4, Florida Administrative Code. Rule 40E-4.301(1)(m) and 40E-4.091(1)(a) incorporate by reference The Basis of Review for Surface Water Management Permit Applications within South Florida Water Management District - April, 1987, ("The Basis for Review"). The Basis for Review explicates certain procedures and information used by the SFWMD staff in reviewing a surface water management permit application. The SFWMD issues general permits for projects of 40 acres or less that meet specific criteria. All other projects must obtain individual permits which are reviewed by the District Board. The specific rules relating only to general permits are set forth in Rule 40E-40. In addition, the Basis for Review sets forth certain technical requirements which must be met for the issuance of a general permit including general construction requirements and special requirements for wetlands. The Basis for Review also sets forth criteria for how a proposed system should address water quantity and water quality issues. The SFWMD assumes that water quantity and water quality standards will be met if a system satisfies the criteria set forth in the Basis for Review. Water Quantity Criteria Rule 40E-4.301(a), Florida Administrative Code, requires an applicant to provide reasonable assurances that a surface water management system will provide adequate flood protection and drainage. The purpose of the water quantity criteria is to insure that pre- development flows and post-development flows are equal. The SFWMD requires calculations of a project's projected post-development flow to guarantee that the post-development discharge rate will not be in excess of the pre-development discharge rate. These calculations are based on a 25 year, 3 day storm event. There is no stormwater management system in place at the Project Site. The pre-development topography results in a pre-development discharge point from the Site at the corner of Eisenhower Drive and Palm Avenue. At this point, a discharge or outfall pipe leads into the City of Key West's stormwater management system. The City's system ultimately discharge into Garrison Bight, a nearly waterbody which is discussed in more detail below. At the time the Navy began planning for the Project, the Navy was told that the discharge pipe had a capacity of accepting water at a rate of 40 cubic feet per second ("CFS"). The Navy initially designed a system to utilize this capacity. Subsequently, it was discovered that, due to the size of the pipe at the discharge point and the capacity of the pipes downstream in the City of Key West's stormwater management system, the City would not allow or accommodate a discharge of more than 11 CFS from the Site. Thus, the System had to be redesigned so that the discharge to the City's system would not exceed 11 CFS. The system was redesigned to incorporate the seven (7) Class V injection wells. The injection wells are intended to insure that discharge from the Project into the City stormwater system through the surface water discharge pipe at Eisenhower Drive and Palm Avenue will not exceed 11 CFS. The injection wells introduce treated stormwater into the ground before it reaches the discharge point. The pre-development rate of surface water discharge from Peary Court in a 25 year, 72 hour storm event was 55 CFS. This rate was calculated based upon a site survey, a determination of the existing amount of pervious versus impervious surface area, and a calculation made through a generally accepted civil-engineering computer program. 1/ This predevelopment discharge is the amount of water which would be expected to discharge off-site after percolation occurs. The number and size of the injection wells for the proposed system were determined based upon tests of an on-site twelve-inch fire well. The results of the tests revealed that the on-site test well could manage in excess of 2 CFS. Due to test limitations, the exact capacity could not be measured, but the capacity was clearly more than 2 CFS. These results were then compared with data obtained from the engineering firm of Post, Buckeley, Schuh & Jernigan for installed wells in the Florida Keys of a similar nature and size to the wells in the proposed surface water management system. The Post, Buckeley test results indicated that 24-inch wells had a capacity of 31 CFS. In addition, the design engineer consulted with South Florida Well Drillers, who have drilled other wells in the Florida Keys including 24-inch wells at the Key West airport which were completed shortly before the application for this Project. South Florida Well drillers found the capacity of 24-inch wells in Key West to be in the 25 to 30 CFS range. Based upon the results of the test well and the related reports described above, the project engineer based his design of the surface water management system on an estimated well capacity of 8.4 CFS for each well. These estimates were submitted by the Navy in its application and were appropriately determined to be reasonable by the SFWMD staff. Indeed, the evidence established that 8.4 CFS was a conservative estimate. The seven injection wells, at an estimated capacity of approximately 8.4 CFS each, provide in excess of 56 CFS of well discharge capacity, which is beyond the necessary discharge volume for the Project. Limiting Condition No. 13 of the Permit requires the Navy to obtain a well capacity test from a Florida Registered Professional Engineer or Professional Geologist following the installation of the first Class V injection well at the Site. If the results of this test indicate that the capacity of the well is different than that submitted by the Navy in its application, the Navy must apply for a permit modification to provide a design which incorporates a representative injection well flow-rate and an appropriate number of wells for the Site. In view of the reasonableness of the capacity rates utilized for the wells, it is unlikely that the results of the capacity test will result in any major design change in the proposed surface water management system. The use of the injection wells in the proposed surface water management system will significantly reduce the amount of run-off which would otherwise reach Garrison Bight from the Site. After the System is completed, it is expected that the amount of run-off from the Site that will reach Garrison Bight will be only 20 percent of the predevelopment amount. In addition, because there has previously been no management of the run-off from the Site and surrounding areas, there has been a frequent flooding problem at the corner of Eisenhower Drive and Palm Avenue after heavy rain storms. The proposed surface water management system will accommodate the overflow of water which historically occurred when discharges from Peary Court and the surrounding areas could not be accommodated by the Key West storm water management system. Petitioner and Intervenor suggest that the effect of tidal flow on the capacity of the wells was not fully considered. The evidence established that the design engineer considered normal high tides in calculating groundwater elevations. Respondent's engineering experts have concluded that the proposed surface water management system is effectively designed to accommodate the Florida Keys' tidal flows. Petitioner and Intervenor offered no expert testimony to refute this conclusion and/or to establish that the tides would impact the effectiveness of the proposed surface water management system. In the event that an extremely high tide occurs at the time of a storm, the detention ponds may hold standing water for a short time. This water would not be discharged off-site. There is no evidence that tidal influences would in any way adversely affect the System's ability to uptake pollutants in the "first- flush". The Class V shallow injection wells are an integral part of the proposed Peary Court surface water management system. Without the injection wells it is not clear whether the Project could meet the SFWMD water quantity criteria. The SFWMD does not have authority to permit Class V injection wells. FDER must permit those wells. The Peary Court site is not the first Florida Keys' project permitted by the SFWMD which utilizes injection wells. The surface water management permits for the other projects were issued contingent upon obtaining the necessary permits for the injection wells. Special Condition No. 14 of the Permit provides that the Permit is conditioned on the Applicant obtaining the applicable permits from FDER for the injection wells. During the interim while the Navy is seeking the FDER permits, it should be required to retain all run-off on-site. If the Navy is not able to obtain the necessary FDER permits for the injection wells, the Navy should be required to either retain all run-off on-site or propose an alternate design to meet the SFWMD's water quantity requirements. A modified permit application with a new Notice of Intent should be required for any alternate design. The following Special Condition Number 14 was offered by the SFWMD at the hearing (language revised from original condition is highlighted and underlined): THIS PERMIT IS ISSUED BASED ON THE APPLICANT OBTAINING THE NECESSARY CLASS V INJECTION WELL PERMITS FROM THE FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION (FDER). THE PERMITTEE SHALL SUBMIT AN APPROVED CLASS V DRAINAGE WELL PERMIT FROM FDER PRIOR TO OPERATION OF THE SURFACE WATER MANAGEMENT SYSTEM. IN THE INTERIM, THE PERMITTEE SHALL CERTIFY TO THE DISTRICT THAT NO OFF-SITE DISCHARGE WILL OCCUR UNTIL THE APPROVED CLASS V DRAINAGE WELLS ARE IN OPERATION. IF THE SURFACE WATER MANAGEMENT SYSTEM DESIGN MUST BE MODIFIED AS A RESULT OF FDER REQUIREMENTS OR IF THE CLASS V INJECTION WELL PERMITS ARE NOT ISSUED, THE APPLICANT SHALL APPLY FOR A PERMIT MODIFICATION TO PROVIDE A SURFACE WATER MANAGEMENT SYSTEM DESIGN WHICH SHALL MEET DISTRICT CRITERIA IN EFFECT AT THAT TIME. The proposed additional language requires the Navy to certify that no off-site discharges will occur until the injection wells are permitted and are operating. This revised language should be added to Special Condition No. 14 to clarify that the injection wells must be in operation prior to any off-site discharge from the surface water management system. Maintenance of the surface water management system entails upkeep of the dry detention areas and routine grass cutting, as well as inspection of the injection wells on a periodic basis to guard against clogging and reduced capacity. The system is essentially designed to operate without direct surveillance or intervention. Injection wells do not require any additional maintenance over and above that which is routinely required for other types of surface water management systems. The injection wells will require routine maintenance to ensure that manholes and inlets do not become clogged. Limiting Condition No. 8 of the Permit requires that the surface water management system, including the injection wells, be maintained. At the hearing, the SFWMD proposed that a condition be added to the Permit to further clarify the maintenance requirements. A condition requiring long-term maintenance would be desirable and reasonable. A new special condition should be added to the Permit requiring long-term maintenance of grass swales and inspections of injection wells for clogging. Acceptable language for such a condition would be: SPECIAL CONDITION NO. 15 The permittee shall provide long-term maintenance of the surface water management system, encompassing the injection wells, including, but not limited to, (a) maintenance of the vegetation in the grass swales and detention ponds and (b) routine inspections of wells and discharge structures for clogging. Water Quality Criteria As noted above, there is no designed system for surface water management and/or water quality pretreatment at the Site in its undeveloped state. Surface water run-off that can not be managed by the City of Key West's storm water management system collects in roads adjacent to the Site, resulting in adverse water quality and quantity impacts to adjacent land and receiving waters. The applicable water quality criteria, contained in Rule 40E-4.301, Florida Administrative Code, require an applicant to provide reasonable assurances that a surface water management system will not cause adverse water quality impacts to receiving waters and adjacent lands, and will not cause discharge which results in any violation of the standards and criteria of Chapter 17-302 for surface waters of the state. Rule 40E-4.301 provides that: In order to obtain a permit under this chapter, an applicant must give reasonable assurances that the surface water management system is consistent with the State Water Policy as set forth in Chapter 17-40, Florida Administrative Code (40E-4.301(1)(h), Florida Administrative Code. Rule 17-40.420 provides in pertinent part: Minimum Stormwater Treatment Performance Standards. When a stormwater management system complies with rules establishing the design and performance criteria for stormwater management systems, there shall be a rebuttable presumption that such systems will comply with state water quality standards. The Department and the Districts, pursuant to Section 373.436, Florida Statutes, shall adopt rules that specify design and performance criteria for new stormwater management systems which: 1. Shall be designed to achieve at least 80 percent reduction of the average annual load of pollutants that would cause or contribute to violations of state water quality standards. The Basis for Review, which is incorporated into Title 40E, Florida Administrative Code, by reference, further delineates the applicable water quality permit criteria for surface water management systems. Regarding water quality criteria, the Basis for Review provides: 3.2.2.1 State standards - Projects shall be designed so that discharges will meet state water quality standards, as set forth in Chapter 17-3 [revised to 17-302], Florida Administrative Code. The SFWMD's water quality criteria do not require chemical testing of stormwater for residential projects. The SFWMD's water quality criteria require that the design of a surface water management system meet applicable design/technology based criteria. Section 3.2.2.2 of the Basis for Review contains the specific water quality criteria for the design of a surface water management system. The SFWMD allows applicants to design their surface water management system using either dry or wet detention or dry or wet retention, so long as the treatment provided by the system meets water quality and quantity criteria. Dry detention consists of a system of grass swales and vegetative- covered ponds which detain water at a predetermined rate prior to off-site discharge. Wet retention can contain canals, ditches, lakes or ponds to retain water on-site. If a system is designed to meet the criteria specified in 3.2.2.2(a) of the Basis for Review and incorporates Best Management Practices ("BMP's") for the type of system proposed, the SFWMD presumes that water quality standards will not be violated. In determining which system is appropriate for a particular site, water quantity (flooding impacts) and water quality impacts must be balanced. In some cases, water quantity concerns may preclude certain types of water quality treatment methods. At the hearing in this case, Petitioner and Intervenor suggested that retention is superior to detention in designing surface water management systems. The evidence presented in this case was insufficient to support this conclusion. In any event, this contention focuses only on water quality considerations. One drawback to retention is that it may have on-site flooding impacts. With respect to this Project, the evidence indicates that retention may not have been an acceptable alternative because of possible adverse water quantity impacts. The Navy's proposed surface water management system was designed to utilize dry detention with filtration for treatment of surface water prior to discharge into the injection wells and/or off-site. The design uses a system of grass swales and grass-covered detention ponds to detain and filter pollutants from the surface water as it makes its way through the dry detention system. The System is designed to utilize as many grass swale areas as possible to filter or treat the surface water before it reaches the detention ponds which provide further treatment. The swales restrict the flow of water to approxmiately one half to one foot per second which allows for percolation and a tremendous amount of filtration. The System utilizes the natural topography of the Site to direct water through the dry detention system to the lowest point of the Site at the corner of Eisenhower Drive and Palm Avenue. Any water which makes it to this last detention pond and is not drained into one of the injection wells can flow through the discharge structure (the Weir) at 11 CFS and ultimately make it into Garrison Bight. Petitioner and Intervenor have suggested that the design of the proposed System is defective because water discharged from the cul-de-sacs in the Project design will flow directly into detention ponds without passing over any of the grass swales. The permit criteria do not specify that all surface water must contact grass swales prior to reaching a detention pond. While greater filtration is achieved the longer the run-off remains in the system, the evidence established that the detention ponds by themselves provide sufficient water quality treatment. With respect to all but one of the cul-de-sacs, the water must pass through at least two detention ponds before it is discharged. Run-off from the cul-de-sac closest to the Weir will receive treatment only in the last discharge pond. Petitioner and Intervenor questioned whether the run- off from this last cul-de-sac will receive adequate treatment, in other words, whether the "first flush" will be adequately detained prior to discharge, especially in circumstances when the detention pond is already wet. However, the evidence was insufficient to establish that their concerns are justified and/or that this situation would constitute a violation of water quality standards. This cul-de-sac is only 100 ft in diameter and accounts for no more than 8 percent of the total run-off from the Site. After considering all of the evidence, it is concluded that the water from the cul-de-sacs will be adequately treated in accordance with the permit criteria prior to any discharge. In assessing the Navy's proposed surface water management system the following criteria from the Basis for Review are pertinent in determining whether the proposed System will provide appropriate water quality treatment: 3.2.2.2 Retention and/or detention in the overall system, including swales, lakes, canals, greenways, etc., shall be provided for one of the three following criteria or equivalent combinations thereof. . .: Wet detention volume shall be provided for the first inch of run-off from the developed project, or the total run-off of 2.5 inches times the percentage of imperviousness, whichever is greater. Dry detention volume shall be provided equal to 75 percent of the above amounts computed for wet detention. If the receiving waterbody, is a "sensitive receiving water," which would include an Outstanding Florida Water, the following additional criteria regarding direct discharges are applicable: 3.2.2.2 d. Projects having greater than 40 percent impervious area and which discharge directly to sensitive receiving waters shall provide at least one half inch of dry detention or retention pretreatment as part of the required retention/detention. The SFWMD interprets the permitting criteria as creating a rebuttable presumption that a surface water management system that provides detention in accordance with BMP's of the first inch (1") of run-off from a Site, commonly referred to as the "first-flush", will meet state water quality standards. The "first-flush" occurs at the onset of a rainfall when most pollutants run off paved areas and percolate into the grass swales. It is an accepted design parameter that the "first flush" contains 90 percent of the pollutants which will be collected in the run-off. The 90 percent of the pollutants in the first flush are consequently retained on-site through pure percolation and never reach the discharge facility. Although Petitioner and Intervenor suggest that dry detention does not provide this degree of filtration, the evidence was insufficient to support this contention. The proposed System for this Project provides treatment for the first one inch (1") of run-off from the developed Project, thereby meeting the permitting criteria for sensitive receiving waters. Intervenor and Petitioner contend that the development of this Project will necessarily result in a larger amount of pollutants in the run-off from the Site. They argue that the Applicant has not provided reasonable assurances that capturing 90 percent of the increased level of pollutants in the first flush will meet water quality standards. As noted above, compliance with the permit criteria creates a rebuttable presumption that water quality standards will be met. Insufficient evidence was presented to overcome this rebuttable presumption. In calculating the appropriate volume for the dry detention ponds, the Project engineer used the Site's percentage of impervious area. The percentage of impervious area was determined in accordance with SFWMD criteria. The calculations do not account for any percolation from the impervious areas even though much of that run-off will pass through swales and other grassy areas of the Site. In addition, there is a built-in buffer between the berm elevation around the ponds and the expected water level in the ponds. These factors confirm that there is significant additional capacity in the ponds which is an overage or safety net. In sizing the detention ponds, the project engineer also factored in additional off-site water that will be coming on-site from Palm Avenue. This water currently ponds on Palm Avenue contributing to a recurring flooding problem in the area. This off-site water will be routed through an inlet and pumped directly into on-site detention areas thereby reducing flooding on Palm Avenue and providing some treatment for off-site run-off that was not previously treated before entering the City's stormwater system. As noted above, additional water quality criteria requirements apply to projects which discharge to an Outstanding Florida Water. These additional criteria are set forth in paragraph 40 above. Outstanding Florida Water or OFW is the designation given exclusively by the FDER to certain waterbodies in Florida which have special significance, either for ecological or recreational reasons. Outstanding Florida Waters are afforded the highest degree of water quality protection. The criteria for designation of waters as Outstanding Florida Waters is found in Chapter 17-302, Florida Administrative Code. When the SFWMD initially reviewed the Permit application for this Project, it erroneously assumed that Garrison Bight, the ultimate receiving body for the waters discharged from the project through the City stormwater system, was an OFW. Although the SFWMD applied water quality criteria for OFW's when it reviewed the subject permit application, the evidence at the hearing in this case established that Garrison Bight is not an Outstanding Florida Water. A FDER representative, qualified as an expert in the designation of Outstanding Florida Waters, testified that the Outstanding Florida Water designation does not apply to certain waterbodies that were degraded at the time of designation or did not have the significance or pristine water quality that merit special protection. The designation also does not apply to artificial waterbodies. Artificial waterbodies are defined in Rule 17-302.700(9)(i), Florida Administrative Code, as a waterbody created by dredging or excavation or by the filing in of its boundaries on at least two sides. The FDER has formally determined that Garrison Bight is not an Outstanding Florida Water because Garrison Bight is an artificial waterbody in accordance with the definition. Furthermore, Garrison Bight is the site of extensive boating and marina activities. The water quality of Garrison Bight is currently degraded in comparison to ambient conditions and offshore/unconfined water. In sum, the evidence established that proposed surface water management system meets or exceeds the current permit criteria. Consequently, the water flowing into Garrison Bight from the Site will be significantly less and much cleaner after the proposed surface water management system is installed than it currently is without a designed surface water management system.

Recommendation Based upon the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that a Final Order be entered approving the issuance of Surface Water Management General Permit No. 44-01785 in accordance with the Notice of Intent dated September 29, 1992 and the additional conditions noted in this Recommended Order. DONE AND ENTERED this 14th day of May, 1993, at Tallahassee, Florida. J. STEPHEN MENTON Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 14th day of May, 1993.

Florida Laws (9) 120.56120.57120.68373.114373.403373.413373.436373.617403.021 Florida Administrative Code (2) 40E-4.09140E-4.301
# 6
DEPARTMENT OF COMMUNITY AFFAIRS vs ROBERT CROWDER AND POLK COUNTY, 92-002959DRI (1992)
Division of Administrative Hearings, Florida Filed:Bartow, Florida May 14, 1992 Number: 92-002959DRI Latest Update: Jun. 06, 1996

The Issue The issue in this case is whether the development order issued by Polk County for Robert Crowder's development known as Paradise Country Estates complies with Chapter 380, Fla. Stat. (1991). The Department of Community Affairs' Petition for Appeal of Development Order (the DCA Petition) alleges that the development order is contrary to Polk County's 1985 comprehensive plan for the following reasons: Paragraph 11 of the DCA Petition alleges that the development order is contrary to the provisions of Policy 9, Objective III, "Natural Resources," of the Land Use Element (LUE) of the 1985 Plan. Policy 9 states: "Structures should be placed in a manner which will not adversely affect the natural flow regime and which will not reduce the recharge capabilities." Paragraph 12 of the DCA Petition alleges that the development order is contrary to the provisions of Policy 10, Objective III, "Natural Resources," of the LUE. Policy 10 states: "Placement of structures shall be consistent with sound flood plain management practices such as compliance with the Flood Disaster Protection Act of 1973." Paragraph 13 of the DCA Petition alleges that the development order is contrary to the provisions of Policy 11, Objective III, "Natural Resources," of the LUE and Policies 9 and 10 of the "Water Resource Objective" of the Conservation Element of the Plan. Respectively, these policies state: 11. Groundwater withdrawal should not exceed the safe yield per acre as determined by Water Management Districts or successor agencies. * * * Minimize the adverse impacts of development on resources of the Floridan Aquifer, wetlands and flood-detention areas. Protect the normal quantity, quality and flow of ground water and surface water which are necessary for the protection of resources of state and regional concern. Paragraph 14 of the DCA Petition alleges that the development order is contrary to a section of Part II of the Conservation Element of the Polk County Comprehensive Plan entitled "Rare and Unique Natural Resources," which describes the Green Swamp as a "rare and unique land area resource for conservation consideration" and also states: The potentiometric high of the Floridan Aquifer lies within this area. . . . The area has a high potential for recreational and natural enjoyment. . . . The Green Swamp area is the largest expanse of forest in Polk County, with abundant water and wooded areas to provide for wildlife habitats. This area has great significance as an area for conservation of land, air, water, open space and wildlife habitats. Paragraph 15 of the DCA Petition alleges that the development order is contrary to the following section on "Density" found in Part IV of the Conservation Element, entitled "Summary of Special Problems, Areas, Issues, and Relationships": The subject of development density is a particular issue of vital importance to the county. Low density development in some areas and high density in other areas is important so that demands for public facilities can be economically and efficiently handled, so that environmental degradation is minimized, and so that land, not suitable for development, can be saved for important natural functions. The present zoning ordinance classifies most of the county in a Rural Conservation (RC) classification that permits low density development without proper regard for those areas that are best suited for development. Portions of the county should be protected from development pressures and appropriate areas should be zoned to accommodate rational densities. The present level of protection, provided by the zoning system is not brought to bear for conservation purposes. Paragraph 16 of the DCA Petition alleges that the development order is contrary to Policy 14 of the "Water Resource Objective" of the Conservation Element of the Plan: "Protect or improve existing ground and surface-water quality." Paragraph 17 of the DCA Petition alleges that the development order is contrary to Policy 2, Objective I, "Agricultural Uses," in Part V of the LUE: Protect, to the maximum extent possible, agricultural lands from encroachment of incompatible land uses and any detrimental effects of development adjacent to agricultural areas. Paragraph 19 1/ of the DCA Petition alleges that the development order is contrary to Policy 2, Objective IV, "Residential Uses," in Part V of the LUE: Promote and encourage new residential development adjacent to established growth centers, to ensure the orderly use of land and the efficient provision of facilities and services. Paragraph 20 of the DCA Petition alleges that the development order is contrary to Section 5-1(6) of Polk County Ordinance 81-28 (the County Flood Protection and Surface Water Management Code). 2/ Article V is entitled "Flood Protection Standards." Section 5-1 provides in pertinent part: GENERAL STANDARDS: The following minimum standards shall apply to new construction and substantial improvements in all areas of special flood hazard, and to any development, other than phosphate mining, within 100 feet of a watercourse: * * * (6) On-site waste disposal systems shall be located to avoid impairment to them or contamination from them during flooding. Paragraph 21 of the DCA Petition alleges that the development order is contrary to Section 5-2(4) of Polk County Ordinance 81-28. 3/ Section 5-2 provides in pertinent part: SPECIFIC STANDARDS: The following minimum standards shall apply in all areas of special flood hazard where base flood elevation data has been provided: * * * Subdivision Proposals: All subdivision proposals and other proposed developments shall be reviewed by the County Engineer. [I]f the proposal is in an area of special flood hazard, it shall be reviewed to assure that the following standards are met: All such proposals shall be reasonably safe from flood waters resulting from the base flood. All such proposals shall have public utilities and facilities such as sewer, gas, electrical and water systems located and constructed to minimize flood damage. Base flood elevation data shall be provided for all such proposals. Roads shall be reasonably safe from flood waters resulting from the base flood. Paragraph 22 of the DCA Petition alleges that the development order is contrary to Section 6-2(3)(a) of Polk County Ordinance 81-28. Article VI of Polk County's Flood Protection and Surface Water Management Code is entitled "Water Management Standards." Section 6-2 provides in pertinent part: GENERAL STANDARDS: The following minimum standards shall apply to all development which occurs within an area of special flood hazard and to any man-made change to improved or unimproved real estate . . .. * * * (3) (a) The amount of site alteration within a wetlands soil association shall be limited to ten percent (10%) of the area of wetlands soil association within any given total site.

Findings Of Fact The Proposed Project and Location. The project site is on Dean Still Road in Polk County, approximately 2 miles west of State Road 33. It is approximately 6 and 1/2 miles from Polk City and 15 miles from the City of Lakeland. The proposed project is comprised of 356 lots on approximately 1280 acres with a gross density of 1 unit per 3.6 acres. Although the average lot size varies, the project was reviewed under the Southwest Florida Water Management District's (SWFWMD) criteria for rural development which requires that at least 90% of the lots be at least 2 acres in size (excluding jurisdictional wetlands), and 10% of the lots be at least 1 acre (excluding jurisdictional wetlands). The site has been zoned Rural Conservation under Polk County's Zoning Code for approximately 12 years. This designation allows a density up to 1 unit per acre. Individual water wells and on-site waste disposal systems (septic tanks) will be utilized for each home. There are no water or sewer extensions proposed for the site or for adjacent areas by any governmental entity. Access to the site from Polk City is along Dean Still Road, which is unpaved at this time. The County has plans to pave it in the near future. Of the 1280 acres comprising the project site, 362 acres have been claimed as jurisdictional wetlands and approximately 642 acres have been mapped within the 100-year floodplain by the Federal Emergency Management Agency (FEMA). 51 of the lots platted in the project are entirely within the FEMA 100- year flood plain. Several other lots contain large portions within FEMA 100- year flood plain. Despite the significant amount of wetlands and floodplains on the site, the project is designed so that no net loss will occur in the floodplains and less than 1% (.59%) of the jurisdictional wetlands will be impacted by development. Impervious conditions on the site will only increase by 2.8% after development. All structures will be set at or above the 100 year flood elevation, as calculated by the project engineers, and will be constructed in accordance with the County's flood protection standards. The project is designed so that post-development runoff is less than pre-development runoff and post-development drainage basins conform to pre-development drainage basins. Existing drainage patterns for the site are designed to be maintained. The property comprising the project has been used through the years for a variety agricultural purposes, including harvesting watermelons, soybeans, corn, and silage. It has been drained and ditched to facilitate these activities. It is currently being used for grazing cattle. A sod farm is located to the south of the property. Additional cattle grazing lands run south from there to Polk City. To the north of the site are ranchlands which run to the border of the Withlacoochee Wildlife Area. Immediately to the west of the site are 20-30 scattered mobile homes and additional ranchlands in a subdivision known as Evans Acres. This subdivision was initially approved by DCA in 1983, and was comprised of 48 lots on approximately 1,290 acres. The original lots ranged in size from 5 to 60 acres. Apparently, individuals have since split their lots and many of the existing lots are 2 to 5 acres in size. A few of the original lots are used for both residential and ranching purposes. Including the large and small lots, there are approximately 163 lots on the property comprising Evans Acres. On the property directly to the east of the site are approximately 16 mobile homes along Melody Lane. These existing homesite numbers are small and scattered when compared to the 356 lots proposed for Paradise Country Estates. Approximately 120 families live in the general vicinity of the proposed project. The Green Swamp. The project is within the Green Swamp Area of Critical State Concern (ACSC). The site is within the drainage basin of the Withlacoochee River, which has been designated an Outstanding Florida Water (OFW) and is approximately three and a half miles to the north. The Green Swamp ACSC was designated by the Legislature. Chapter 79- 73, 380.0551, Florida Statutes (1991). It was the second area to be designated and now is one of only four areas in the State retaining this designation. The Green Swamp was designated because the area's natural resources were considered to be of regional and statewide importance and because of concerns that uncoordinated development could endanger these resources. The Green Swamp is a regionally significant area for recharge of the Floridan Aquifer. The Green Swamp is unique because the top of the Floridan Aquifer is at or near the surface over much of the area. This creates what is known as the potentiometric high of the Floridan Aquifer. The potentiometric high pressurizes the Floridan Aquifer, permitting it to be used for drinking water wells. The Florida Aquifer serves as the principal source of drinking water for central Florida. It supplies the entire State with about 48 percent of its ground water supply. The potentiometric high also serves to hold back salt water intrusion into the Floridan. Recharge is important in maintaining the potentiometric high of the Floridan Aquifer. Although the Green Swamp has been characterized as a recharge area for the Floridan Aquifer, the actual recharge capabilities of the Green Swamp vary considerably throughout the region. Some areas within the Green Swamp, such as the high, dry, sandy ridge on the eastern boundary of the Green Swamp clearly are high recharge areas. In some areas, the Floridan Aquifer rises essentially to the ground surface, with no confining layer above it. In those areas, a considerable amount of surface water filters into the Floridan Aquifer. In other areas, including in the vicinity of the project site, recharge capability is considerably less. See "G. Review under the 1985 Plan and the Flood Protection and Surface Water Management Code, (3) Ground Water Recharge." The head waters of several rivers, including the Withlacoochee River, are in the Green Swamp. Polk County's Comprehensive Plan. Polk County's Comprehensive Plan, as amended by Polk County Ordinance 85-08 (Ordinance 85-08), is referred to as Polk County's 1985 comprehensive plan, or the 1985 plan. It includes a Land Use Element (LUE) and a Conservation Element. The Land Use Element. The 1985 Plan is a "policy plan." As a "policy plan," the LUE does not map land use classifications or densities or intensities of development. The different parts of the plan must be considered together to ascertain their meaning. As stated in the Foreward to the LUE: The Policy Plan is a flexible and realistic guide to future public decisions. Existing conditions are first determined and analyzed. Then, community goals are identified providing a process of finding out where we are and where we want to go. * * * . . .. The challenge is to determine the means of achieving the identified community goals at minimal cost and the least possible hardship on any segment of our society. Under the policies planning process this is accomplished by developing all possible alternative courses of action that will advance the community toward the desire goal. The policies are then a general statement of purpose and outlining broad principles toward which the plan is guided in the implementation stage. A policy plan does not detail specific actions or locations on a map. Rather it provides a broad framework within which day-to-day decisions are made in a consistent manner toward an identified goal. The ultimate product of those community goals will be the heritage of Polk County's future. At 4-2, the LUE discusses the need to give attention to "the proper distribution of population densities in keeping with sound planning practices, the physical capabilities of the land, and the relationship of the population and housing densities to existing or proposed transportation facilities and other community services." It then speaks to "Retention of Open Spaces": A second potential problem to be faced, as urban growth continues, is the potential loss of the open space characteristics that now contribute substantially to its desirability as a community in which to live and visit. To a large extent, the desirable characteristics are provided by extensive agricultural areas. Such uses are compatible with residential and other types of urban land uses and should be encouraged to remain to the maximum extent possible. Desirable open space is also presently provided by . . . wetland areas not suited for urban development. By encouraging such areas to remain in their present condition, a substantial amount of open space can be retained to provide the needed visual relief and openness necessary within a highly urbanized community. At 4-5, discussing "Retention of Unique Agricultural Lands," the LUE states that cattle raising and field crops are subject to potential intrusion by urban development and states: "The development of planning techniques, which will encourage the retention of important agricultural lands and provide for orderly urban development, thus becomes a matter of considerable importance." The Goals, Objectives, and Policies (GOPs) of the LUE starting at 5-1 include the following: General Goal: To maintain productive and mutually compatible use of lands and waters within Polk County in a manner consistent with the economic, physical and social needs, capabilities, and desires of Polk County and its citizens. Objective I - Agricultural Uses: To ensure that a sufficient quantity of appropriate lands are available and protected for productive agricultural uses necessary to a sound economic base. Policies: * * * 2. Protect, to the maximum extent possible, agricultural lands from encroachment of incompatible land uses and any detrimental effects of development adjacent to agricultural areas. * * * 5. Provide all possible incentives for the retention of lands into agricultural production. * * * Objective III - Natural Resources Minimize adverse impacts of development on valuable natural resources including the protection of water quality and quantity in surface and ground waters. Policies: * * * 2. The subdivision and platting of land shall be permitted in accordance with the zoning district applied to the property and in compliance with the Polk County Subdivision Regulations and Flood Protection/Surface Water Management Ordinance. * * * Site alteration should be permitted only when such alteration will not adversely affect the natural flow regime or the natural recharge capabilities of the site. Site alteration should be permitted only when such alteration will not result in the siltation of wetlands or reduce the natural retention and filtering capabilities of wetlands. Site alteration activities should provide for water retention and settling facilities; should maintain an overall site runoff equivalent to the natural flow regime prior to alteration and should maintain a runoff rate which does not cause erosion. * * * Storm water runoff should be released into the wetlands in a manner approximating the natural flow regime. Structures should be placed in a manner which will not adversely affect the natural flow regime and which well not reduce the recharge capabilities. Placement of structures shall be consistent with sound flood plain management practices such as compliance with the Flood Disaster Protection Act of 1973. Groundwater withdrawal should not exceed the safe yield per acre as determined by Water Management Districts or successor agencies. Objective IV - Residential Areas To ensure that an adequate supply of appropriately located lands are available for the development and maintenance of residential areas that can be efficiently and effectively provided with necessary public facilities and services. Policies: Promote and encourage the provision of a wide range of housing opportunities, in appropriate locations, to permit a choice of housing types to suit the particular needs of all citizens. Promote and encourage new residential development adjacent to established growth centers, to ensure the orderly use of land and the efficient provision of facilities and services. * * * Encourage new residential development that can be effectively served by the existing transportation facilities. Promote new residential development in non-urban areas, that is properly designed to combine with future adjacent development, to create a neighborhood of sufficient size to facilitate the efficient and effective provision of all necessary public facilities and services. Part VI of the LUE, entitled "Alternate Approaches," discusses the pros and cons of different concepts for planning and managing of growth. It settles on a "Resource-Responsive Concept" as the preferred growth alternative. This concept holds in part: Wherever possible, future growth should be encouraged to take place in or near established urbanized areas. Scattered growth incapable of functioning as meaningful self-contained communities should be discouraged. And it is preferable that the urbanizing area, as it extends over extensive areas within the County, not be developed in one continuous, monotonous maze of residential, commercial, and industrial uses - but that there be open space provided at appropriate intervals so as to provide visual relief and a sense of scale to the overall urban community. Such open space areas can be productively utilized for agricultural and conservation purposes or recreation areas, public facilities and services required. It is proposed that the most appropriate urban growth concept to meet such guide-lines and the policy statements of this land use plan be a resource-responsive growth concept. Under this concept, urban growth and development will be guided and encouraged with respect to its responsiveness to the natural and human resource capabilities of the County. Within any given area of the County, the resources will be careful evaluated in terms of their capability to support growth, and the physical form and intensity of development will be then shaped to provide the physical form and intensity of development will be then shaped to provide a balance with such resources. Prime resources to be considered are as follows: Natural Resources Topography and soil conditions Vegetation and tree cover Wildlife habitats present Drainage characteristics; relationship to rivers and lakes Natural water supply capabilities General aesthetic qualities Human Resources Transportation facilities (roads, railroads, airports) Available water supply and sewage facilities Community facilities, such as schools, parks, libraries Protective services, such as fire and police Established land uses within the area Economic conditions and potentials. Part VII of the LUE, entitled "Implementation," states: "Initial implementation of a Comprehensive Plan and initiation of the continuing planning process for growth management requires the establishment of principals and standards for measurement of proposed activities against the adopted policies of the community." It includes a section entitled "Principles and Standards for the Control and Distribution of Population Densities and Structural/Development Intensity," which provides in part: All Types of Urban Development: * * * Each new development or land use should follow sound land planning principles to maximize site advantages, avoiding when possible, adverse impacts on the natural resources and hazards to health, safety, or general welfare. * * * Residential Development: Low-density single-family development (1-4 units/acre), other than rural residences related to agricultural operations, shall be located in areas capable of being developed into stable, cohesive neighborhoods. In a section entitled "Legal Requirements of Implementation," it states that "all actions taken by local government, whether in the form of permitting private development to occur or in the provision of public facilities and services, are required to be fully consistent with the adopted Comprehensive Plan. The plan, once adopted, must occupy a central position in the consideration of all proposed development." In another section, entitled "Coordination with Other Plan Elements," it states that the "land use element cannot be implemented alone [but] must be coordinated with the [other elements]." In another section, entitled "Needed Improvements in the Zoning Ordinance," it is recognized that "it will be essential that a thorough review of the zoning ordinance be undertaken and that the ordinance be revised as appropriate to achieve consistency with overall planning objectives." It acknowledges that there were "major identified deficiencies in the current zoning regulations" and advises that "the following needs among others should be addressed as a minimum in making revisions to the zoning ordinance": "Revision of the Density Requirement in Residential Districts." Despite the admonitions in the 1985 Plan, to date there has been no revision of the land use classifications, densities, or intensities in the County's zoning code. As before the 1985 Plan was adopted, zoning in the Green Swamp ACSC remains Rural Conservation (RC) and allows up to one unit per acre residential development. The Conservation Element. Part II of the Conservation Element of the Polk County Comprehensive Plan is a "Summary of Natural Resources." At 2-18, there appears a section entitled "Rare and Unique Natural Resources," which describes the Green Swamp, as well as other natural resources in the County, as a "rare and unique land area resource for conservation consideration." At 2-19, as amended by Ordinance 85-08, this element of the comprehensive plan also states: This area comprises the hydrologic heartland of Central Florida and contains the headwaters of the Withlacoochee, Hillsborough, Peace and Oklawaha Rivers. The potentiometric high of the Floridan Aquifer lies within this area. . . . The area has a high potential for recreational and natural enjoyment. . . . The Green Swamp area is the largest expanse of forest in Polk County, with abundant water and wooded areas to provide for wildlife habitats. This area has great significance as an area for conservation of land, air, water, open space and wildlife habitats. Part IV of the Conservation Element is a "Summary of Special Problems, Areas, Issues, and Relationships." Starting at 4-2, it addresses the following: Displacement . . .. Cities in Polk County have historically developed on the ridges and the urbanized areas are spreading outward rapidly into the prime citrus lands and the "marginal" (flood prone) lands. There is considerable concern about urban development in wetland soils and flood prone areas. The double barreled concern for development in wetland soils and wetland areas is that they might well serve valuable natural functions and the private and public problems created by development subjected to flood damages. This property damage promotes public pressure for drainage in wet areas. The issue in wetland drainage and flood control is the jeopardy of natural functions that wetlands and water fluctuations provide in natural systems and flood damage costs. . . . [C]oncern for the growing demand for uplands development which steadily displaces [good pasture land] . . . relate[s] to the use of good pasture land for development. Density The subject of development density is a particular issue of vital importance to the county. Low density development in some areas and high density in other areas is important so that demands for public facilities can be economically and efficiently handled, so that environmental degradation is minimized, and so that land, not suitable for development, can be saved for important natural functions. The present zoning ordinance classifies most of the county in a Rural Conservation (RC) classification that permits low density development without proper regard for those areas that are best suited for development. Portions of the county should be protected from development pressures and appropriate areas should be zoned to accommodate rational densities. The present level of protection, provided by the zoning system is not brought to bear for conservation purposes. * * * Water * * * Another area of concern relates to the draw down and recha[r]ge of the Floridan Aquifer and is claimed to be a rational concern of an area much larger than Polk County. * * * Pollution Environmental pollution, as it relates to water, is a major local concern. * * * Water pollution is concerned because of its effects on recreation and tourism. Water degradation and the pollution of lakes and rivers tends to remove the intangible value that Polk County enjoys in thee form of its surface water resources. * * * Also, the related cost issues of municipal sewage treatment and disposal, effluent disposal techniques, septic tank useage are environmentally economic choices to be made by the public. Discussing the topic, "Preservation and Management," starting at 4-4, Part IV of the Conservation Element states in part: Many issues relate to what, how, or when something should be conserved. * * * Lakes, rivers and canals of the county are of concern as sources of flooding and as resources for flood control, if properly managed. Flood prone areas surrounding surface water have been identified for much of the county. These water bodies are also legitimate concerns as the habitat for fish and other wildlife that provide a significant value in their own right. The area of these water bodies are also special scenic and recreational values that contribute to tourism and development. Part V of the Conservation Element is where the "Goals, Objectives and Policies" are found. It start with some general observations, including in part: . . .. It can be expected, therefore, that the natural environment of the county will continue to undergo modification of one type or another in response to the needs of people. . . . The inventory of total space will, therefore, diminish as these changes take place, resulting in corresponding losses within particular categories of natural resources. What is important is that no critical loss of impairment of a natural resource take place; that development be managed so as to create minimum disturbance of the remaining natural resource systems; and that there be compensation replenishments of resources wherever possible. It then lists a General Goal and several resource-specific objectives and policies: General Goal: Maintain, protect, develop and utilized the natural resources in a manner that will balance and replenish the natural ecological systems and will best serve and promote the desired quality of life for Polk County resident, present and future. * * * Water Resource Objective: To conserve and protect the quality and quantity of water resources through proper management. * * * 6. Identify and protect significant acquifer [sic] recharge areas for maximum recharge capability and protect the water available for aquifer recharge. * * * Minimize the adverse impacts of development on resources of the Floridan Aquifer, wetlands and flood-detention areas. Protect the normal quantity, quality and flow of ground water and surface water which are necessary for the protection of resources of state and regional concern. Protect the functions of the Potentiometric High of the Floridan Aquifer. Prevent further salt-water intrusion into the Floridan Aquifer. Protect or improve existing ground and surface-water quality. Protect the water retention and biological-filtering capabilities of wetlands. Protect the natural flow regime of drainage basins. Rare and Unique Natural Resource Objective: To conserve and protect, through proper resources management, areas having unique natural characteristics and particularly sensitive environmental balance. * * * Policies: Identify all significant areas in Polk County deemed to have unique natural resource characteristics. Encourage proper management of unique wetland areas of the County as a vital water resource. Encourage a proper system for control of development in flood prone and wetland areas to regulate alternation [sic] of the natural system of water retention and storage during periods of heavy rainfall. Preserve and protect, to the maximum extent possible, all delineated areas having valuable unique resource characteristics. Part V of the Conservation Element concludes with a "Summary," which states in part: The objectives and policies set forth above should not be considered as controls to be rigidly applied in every instance of decision-making dealing with the natural environment. Rather, in dealing with resource conservation issues, guidance is preferable to control. . . . A number of potential implementation actions and programs, presented in the following part, will further assist in establishing the direction and scope of conservation activities in the County. Part VI of the Conservation Element is entitled "Implementation." While acknowledging at 6-1 that Polk County cannot establish an implementation program unilaterally, without regard to the co-responsibilities of other governmental authorities at the regional state and federal levels, it states at 6-2 that Polk County "can and should": Utilize the general objectives and policies established by this Element as considerations in all decision making concerning the use and improvement of land within the County. * * * 3. Utilize, to the fullest extent possible, the policies and implementation controls of other elements of the Polk County Comprehensive Plan, and those of other governmental entities having jurisdiction, to further the conservation of natural resources. Starting at 6-3, Part VI discusses the Conservation Element's "Relationship to Other Plans." At 6-4, after stating that the Conservation Element will be largely implemented through the policies and programs of other comprehensive plan elements, Part VI provides: Land Use Element - This element will provide the overall framework for conservation [sic] potentialities through the manner in which land uses are distributed, arranged, and interrelated throughout Polk County. Policies and implementation programs of this element will determine the degree to which new development is properly related to soil types and capabilities, natural habitats, flood prone areas, wetlands and unique resource areas of the County. Land regulatory controls such as zoning, subdivision regulations and development impact reviews provide the basic tools for implementation of the policies of the Land Use Element. Starting at 6-5, Part VI discusses "Guidelines for Implementation." At 6-5, it points out: The nature of conservation policy, being of such broad application and diversity of interest, requires that its effective implementation utilize many approaches, techniques and procedures. Its application is carried out, for the most part, in an indirect way as a by-product of other more direct decisions and actions relation to the development and growth of the County. It is essential, therefore, that Polk County draw upon all possible alternative mechanisms and techniques which will lead to the effective conservation of its natural resource systems. Among the various approaches which Polk County may utilize to further its conservation objectives are the following. * * * Influence in the allocation of resources to achieve the objectives of the conservation plan. Control of events which determine resources allocation in keeping with the conservation plan. * * * Specific procedures and techniques which may be utilized to facilitate the implementation process include the following. * * * 7. Protect natural water bodies and adjacent wetland areas through the regulation of development densities and proper management of stormwater runoff. This would require a cooperative effort with the Water Management Districts in identifying flood plains for various flood frequencies. Polk County's Flood Protection and Surface Water Management Code. Polk County's Flood Protection and Surface Water Management Code was enacted as Ordinance 81-28 and was amended by Ordinance 85-07. Article V is entitled "Flood Protection Standards." Section 5-1 provides in pertinent part: GENERAL STANDARDS: The following minimum standards shall apply to new construction and substantial improvements in all areas of special flood hazard, and to any development, other than phosphate mining, within 100 feet of a watercourse: * * * (6) On-site waste disposal systems shall be located to avoid impairment to them or contamination from them during flooding. Section 5-2 provides in pertinent part: SPECIFIC STANDARDS: The following minimum standards shall apply in all areas of special flood hazard where base flood elevation data has been provided: * * * Subdivision Proposals: All subdivision proposals and other proposed developments shall be reviewed by the County Engineer. [I]f the proposal is in an area of special flood hazard, it shall be reviewed to assure that the following standards are met: All such proposals shall be reasonably safe from flood waters resulting from the base flood. All such proposals shall have public utilities and facilities such as sewer, gas electrical and water systems located and constructed to minimize flood damage. Base flood elevation data shall be provided for all such proposals. Roads shall be reasonably safe from flood waters resulting from the base flood. Article VI of Polk County's Flood Protection and Surface Water Management Code is entitled "Water Management Standards." Section 6-2 provides in pertinent part: GENERAL STANDARDS: The following minimum standards shall apply to all development which occurs within an area of special flood hazard and to any man-made change to improved or unimproved real estate . . .. * * * (3) (a) The amount of site alteration within a wetlands soil association shall be limited to ten percent (10%) of the area of wetlands soil association within any given total site. Review under the 1985 Plan and the Flood Protection and Surface Water Management Code. Land Use, Density and Intensity. DCA alleges that the land use, density and intensity of the development Crowder proposes for the site is inconsistent with: (1) the section on "Density" found in Part IV of the Conservation Element, entitled "Summary of Special Problems, Areas, Issues, and Relationships"; (2) a section of Part II of the Conservation Element of the Polk County Comprehensive Plan entitled "Rare and Unique Natural Resources"; (3) Policy 2, Objective I, "Agricultural Uses," in Part V of the LUE; and (4) Policy 2, Objective IV, "Residential Uses," in Part V of the LUE. 6/ As previously stated, the 1985 Plan is a policy plan that does not map land use classifications or densities or intensities of development. Crowder's Paradise Country Estates is consistent with the County's Zoning Code, which has not changed since before the 1985 plan, and Zoning Map. The development was not otherwise reviewed for land use, density or intensity. But it is clear that the 1985 plan does not condone exclusive resort to the zoning code to determine the appropriateness of the land use, density and intensity for development in the Green Swamp ACSC. See, especially, the section entitled "Density" in Part IV of the Conservation Element of the Plan. In the Green Swamp ACSC, especially, reference must also be made to the Plan itself. See Part VII of the LUE, entitled "Implementation." It is not found that all residential use on the Crowder property would be, in itself, inconsistent with the 1985 Plan. But, taking into consideration all of its land use, density and intensity provisions, it must be found that the development order issued in this case, especially at its level of density and intensity and especially in the manner of its issuance, is inconsistent with the 1985 Plan. The crux of the problem with this development, like others in the Green Swamp ACSC already permitted by County development orders, is that, first, the 1985 comprehensive plan and the County zoning regulations in place at the time were inadequate and, second, the steps envisioned in the plan to make them adequate have not been taken. For the plan and the zoning regulations to be adequate, and for a development order for a project in the Green Swamp ACSC in Polk County to be consistent with the 1985 comprehensive plan, either: (1) the plan must be amended to map land use classifications, densities and intensities of development in the Green Swamp ACSC; (2) the zoning code must be amended as envisioned in the comprehensive plan for the Green Swamp ACSC; or (3) the County must evaluate development orders for projects in the Green Swamp ACSC on a case- by-case basis for consistency with the comprehensive plan. None of these three possibilities happened in this case. 7/ Flood Plain Delineation. Paragraph 12 of the DCA Petition alleges that the Crowder development violates Policy 10 of Objective III, "Natural Resources," of the LUE: "Placement of structures shall be consistent with sound flood plain management practices such as compliance with the Flood Disaster Protection Act of 1973." Specifically, it is alleged that the use of a Federal Emergency Management Agency (FEMA) undetailed "A" zone to map the flood prone area on the site, and the failure to perform a detailed study, did not comply with the Flood Disaster Protection Act of 1973. Other allegations in the DCA Petition also implicate the delineation of the flood prone areas on the site. See, (5) Ground and Surface Water Quality, below. A FEMA "A" zone is the zone depicting the area determined by FEMA to be flood prone. In this context, FEMA defines a "flood prone" area as an area flooded in a 100-year, 24-hour storm. At the time Polk County reviewed the Crowder project for approval of the roadway and construction drainage plans, FEMA was requiring that a detailed study be performed to delineate the flood prone area. Polk County apparently was not aware of this requirement and was not enforcing it. Nor, apparently, was Crowder's engineer aware of it. In any event, Crowder did not have a detailed study performed to delineate the flood prone area on the site, and the County did not require it. In approximately March, 1992, Polk County received a written communication from FEMA advising of the requirement for a detailed study of the flood prone area in the case of developments like Crowder's. Polk County now requires compliance with this FEMA requirement. Crowder did not rely simply on the FEMA undetailed "A" zone to map the flood prone area on the site. Crowder's engineers used the existing undetailed FEMA maps as a starting point for determining base flood elevations. The engineers digitized the areas which had been designated as flood prone on the FEMA panels. The engineer then overlayed the digitized FEMA map with the on- site wetlands survey of the property, which had been field-staked and field- shot. Topographical field shots of the property which had been conducted throughout the site at one foot intervals were also overlayed on the digitized FEMA map. In addition, the engineer took into consideration mapped wetlands soils and compared flooding conditions which had occurred on adjacent property to assess whether all areas actually prone to flooding had been characterized as flood prone on the FEMA map. The methodology used by the project engineers was based on sound engineering practices. Nonetheless, it does not qualify as a "detailed study" as far as FEMA is concerned. A "detailed study" would include the application of a computer program that would "route" hypothetical flood waters onto and through the property to ascertain flood elevations in different stages of the hypothetical flood. It is not possible to determine how a detailed study would change the delineation of the flood prone area in Crowder's proposal. The total area of flood prone area could either increase or decrease; it could increase in some places and decrease in others. As it is, several of the lots platted in the Crowder development would be entirely within both the FEMA undetailed "A" zone and the flood prone area mapped by Crowder's engineers. Ground Water Recharge. DCA alleges that platting Paradise Country Estates will adversely impact recharge of the Floridan Aquifer, contrary to Policy 9 and 11, Objective III, "Natural Resources," of the LUE, and Policies 9 and 10 of the "Water Resource Objective" of the Conservation Element, of the 1985 comprehensive plan. In the vicinity of the project site, the Floridan Aquifer comes to within 35 feet approximately of the ground surface. Above the Floridan Aquifer is a shallow aquifer, which rises to within approximately 12 inches of the surface. There is a layer of clastic soils (sand and clay) between the surficial aquifer and the Floridan Aquifer. This confining layer slows the rate of recharge to the Floridan. As a result, the project site is in an area having low, or even very low, to moderate recharge capabilities, at best. USGS Professional Paper 1403-E, which was released in 1990, uses groundwater modelling to quantify recharge rates, instead of using qualitative terms such as "low," or "poor," "moderate" and "high" to describe recharge capabilities. USGS Professional paper 1403-E reports that many areas in the Green Swamp previously labeled as good, moderate or high recharge areas are actually capable of only recharging at rates of 3 to 4 inches per year. The subject property appears to be in the 2 to 3 inch range per year for recharge according to USGS Professional Paper 1403-E. Only three known sample soil borings have been taken on the project site. As a result, the extent of permeability and overall thickness of the confining layer between the surficial and Floridan aquifers is not certain. But there is no reason to believe that there are any karst features or other geologic faults in the area that would allow for direct connections between the surficial and Floridan aquifers. The soil borings that have been taken on the site verify the various geological surveys and studies describing the recharge capabilities in the area. Due to the site's limited capabilities as a recharge area, it is unlikely that the platting of this site will result in any significant reduction in its natural recharge rate. The project is not inconsistent with Policy 9 or 11, Objective III, "Natural Resources," of the LUE, or Policies 9 or 10 of the "Water Resource Objective" of the Conservation Element, of the 1985 comprehensive plan. Individual Water Well Use. DCA alleges that the planned use of individual water wells in Crowder's Paradise Country Estates will impact the quantity of the Floridan Aquifer (and the surficial aquifer) contrary to Policy 11, Objective III, "Natural Resources," of the LUE, and Policies 9 and 10 of the "Water Resource Objective" of the Conservation Element, of the 1985 comprehensive plan. The potentiometric level of the Floridan Aquifer protects the Floridan Aquifer from salt-water intrusion. Significant de-watering of the aquifer caused by large municipal or industrial wells extracting a high volume of water from the aquifer at an intense rate can lower the potentiometric pressure, thus increasing the potential for salt-water intrusion into the aquifer. (Furthermore, the lowered potentiometric pressure creates a hydraulic gradient which encourages surface waters to percolate downward at a faster rate due to the decreased pressure in the Floridan Aquifer. See the preceding sections on Ground Water Recharge and the following section on Ground and Surface Water Quality.) Large municipal, industrial or agricultural wells which exceed 6 inches in diameter must obtain consumptive use permits from the SWFWMD. The Water Management District takes into account what the District determines to be a safe yield per acre when issuing a consumptive use permit. Small, residential wells are not subject to this permitting process as their impacts are much smaller and less intense, and not a concern with regard to their effect on the potentiometric pressure. For this reason, some coastal areas have begun using smaller, individual wells as an alternative to larger municipal wells. The Floridan Aquifer is replenishing itself fast enough for residential wells not to "de-water" or "draw down" the aquifer's supply of ground water. Residential wells do not lower the potentiometric pressure of the Floridan to a significant degree. Nor would they affect the normal supply of ground water, or contribute to salt-water intrusion. Pumping tests performed within two to three miles west of the project site which utilized several residential-size wells support the foregoing conclusions. For these reasons, it is found that the development will not adversely impact the normal supply of ground water and thus will not interfere with the functions of the potentiometric high of the Floridan Aquifer, including its protection against salt-water intrusion. Since the water wells would pump only from the Floridan Aquifer, they would not impact the supply of surface water. In regard to the use of water wells, the project is not inconsistent with Policy 11, Objective III, "Natural Resources," of the LUE, or with Policies 9 or 10 of the "Water Resource Objective" of the Conservation Element, of the 1985 comprehensive plan. Ground and Surface Water Quality. DCA alleges that Paradise Country Estates will result in unacceptable contamination of the Floridan Aquifer, the surficial aquifer, and the surface water (particularly the Withlacoochee River) contrary to Policies 9, 10 and 14 of the "Water Resource Objective" of the Conservation Element. Paragraph 20 of the DCA Petition alleges that the use of individual on-site disposal systems (OSDS), or septic tank systems, in violation of Section 5-1(6) of Polk County Ordinance 81-28 (the County Flood Protection and Surface Water Management Code), 8/ in particular, will be part of the cause of the unacceptable contamination (other causes being from lawn and garden maintenance and automotive wastes.) On-Site Disposal Systems. Chapter 10D-6, Florida Administrative Code, sets forth requirements for the use of on-site waste disposal, or septic tank, systems in the State of Florida. That chapter, which is administered by the Department of Health and Rehabilitative Services ("HRS") through local health departments, provides construction standards for the installation of on-site waste disposal systems. The septic tank serves as a holding tank designed to separate solids and floatable materials and allows anaerobic digestion of organic materials. The remaining effluent exits the tank into the soil infiltrative process, which is referred to as the drainfield. The drainfield is composed of gravel placed around perforated pipes, which are designed to evenly distribute and release the effluent into soil material where the effluent undergoes aerobic digestion. Eventually, any constituents remaining in the effluent which have not been absorbed by the root zone or otherwise decomposed reach the subsurface waters which are referred to as the surficial water table. Each individual lot owner will be required to obtain a permit from the local health department prior to installing an on-site waste disposal system. Prior to issuing a permit, HRS inspects each site to assess soil limitations and to conduct a percolation test to determine the seasonal high water table for the site. Because the soils on the site are severely limited for filtration purposes and the high water table is only 10 to 12 inches below the surface, individual lot owners will be required to mound their on-site waste disposal systems to overcome these limitations. Although the fill used to mound the systems will be comprised of suitable soils, it is possible that the foreign soils will absorb moisture from the existing soils on this site, a phenomenon referred to as capillary fringe affect. This phenomenon can cause those portions of the fill which come in direct contact with the existing soils on the site to lose their filtration capabilities. Unless the fill becomes saturated from other sources, it is unlikely that capillary fringe affect will render the filtration process ineffective. The effects of capillary fringe affect can be lessened by mixing fill with soils found on the site, a practice undertaken by contractors when installing on-site waste disposal systems. In addition, increasing the amount of fill used to mound the system would decrease the potential affects of this phenomenon. 9/ Floridan Aquifer Water Quality. In some areas of the Green Swamp, the Floridan Aquifer is actually considered a surficial aquifer since no confining layers of soil or clay separate the subsurface water from the Floridan Aquifer. These areas would typically be characterized as areas with high recharge capabilities (or high potential for contamination). However, throughout the project site, a confining layer exists which is composed of clayey sands which have a very low permeability. Therefore, there is relatively little interaction between the surficial aquifer and the Floridan Aquifer on this particular site. For this reason, the use of individual on-site waste disposal systems on this site would pose no significant risk to the water quality of the Floridan Aquifer. Surficial Aquifer and Surface Water Quality.-- As for the surficial aquifer and surface water quality, Chapter 10D-6, Florida Administrative Code, requires on-site waste disposal systems be located at least 75 feet from waterbodies. Normally, and when the systems are operating properly, this assures that adequate filtration and decomposition occurs before wastewater reaches surface waters on or near the site. But, in the case of the Crowder proposal, it is necessary to consider that at least some of the mounded systems will be subjected to flooding and will become saturated. Even based on the analysis by Crowder's engineers, 51 of the lots in Paradise Country Estates are entirely flood prone; there is no place to put an OSDS on those lots that is not flood prone. If a "detailed study" had been done, it is possible that more lots would be entirely within the flood hazard zone. Other lots not entirely within the flood zone may not be able to accommodate an OSDS on the part of the lot not within the flood zone. If the OSDS mound is saturated during flood conditions, the system will fail, and untreated waste, or inadequately treated waste, will be released into the surface flood waters. This waste water will move laterally across the project site. Roots may absorb some nitrates or other organic compounds; 10/ otherwise, the waste water and its constituents will remain in the surface water. Lateral movement across the site generally will be slow, as the site is relatively flat. Some of the waste water and its constituents will get into the surficial aquifer. There are ditches or canals alongside and on the site that will direct the rest of the surface water into Pony Creek and other tributories of the Withlacoochee River, an Outstanding Florida Water approximately three and a half miles to the north. The Department of Environmental Regulation issued a dredge and fill permit for the project's road network's impact on wetlands on the site. But it did not pass on the use of OSDS in the individual lots. It also erroneously referred to the Withlacoochee as a natural Class III, instead of an Outstanding Florida Water. See F.A.C. Rule 17-302.700(9)(i). The Southwest Florida Water Management District (SWFWMD) issued a surface water management permit for the project. In evaluating a permit application, SWFWMD considers surface water quality. But the focus of SWFWMD's inquiry is the pre- and post-development peak flows. Also, when it considers water quality, SWFWMD considers the impact of site alteration on water quality, not the impact of the use of OSDS on the site. In addition, the Crowder project was reviewed under special criteria for low-density rural subdivisions that do not require the submission of as much information. It was not clear from the evidence precisely how SWFMD evaluates water quality under those criteria. For these reasons, based on the evidence, it cannot be said that the Crowder project's OSDS will be meet the minimum standard of being "located to avoid impairment to them or contamination from them during flooding," as required by Section 5-1(6) of Polk County Flood Protection and Surface Water Management Code, or that the project will "protect the normal . . . quality of ground and surface water . . . necessary for the protection of resources of state and regional concern," as required by Policy 10 of the "Water Resource Objective" of the Conservation Element of the Plan. Finally, the project will not "protect or improve existing ground and surface-water quality," as required by Policy 14 of the "Water Resource Objective" of the Conservation Element of the Plan. Other Appeal Issues. Except as set forth above, the Crowder development did not violate the 1985 comprehensive plan and Flood Protection and Surface Water Management Code provisions cited in the DCA Petition. Agency Practice - Other Development in the Area. As previously described, Evans Acres, to the west of the Crowder site, was approved by DCA in 1983. (See Finding 10, above.) As approved, it was comprised of 48 lots on approximately 1,290 acres (a density of one unit per 27 acres). The original lots ranged in size from 5 to 60 acres. Unbeknownst to the DCA, individuals apparently have since split their lots and many of the existing lots are 2 to 5 acres in size. A proposed development known as Turkey Creek is located between the project site and Evans Acres. Turkey Creek is comprised of approximately 57 lots on 170 acres with a gross density of 1 unit per 3 acres. The physical characteristics of the Turkey Creek property, including the abundance of wetlands and floodplains, are essentially the same as the proposed project site. DCA appealed Turkey Creek in June of 1992. However, in that case, the County had been approximately two years late in rendering the Turkey Creek development order to the DCA. Meanwhile, the developer incurred development expenses and already had constructed roads and drainage facilities for the development. The developer, the County and DCA executed a settlement agreement which allows the development to proceed according to the original construction plans, but requires homeowners to install dual septic tank systems and have their septic tanks cleaned and inspected every three years. Several other developments, which are in the general vicinity of the project site and have many of the same physical characteristics, including Yearling Trace and Buck Hill, have been appealed by DCA. Yearling Trace is comprised of 108 units on approximately 544 acres. Buck Hill is comprised of 55 units on approximately 214 acres. Those projects were appealed by DCA in June and April, 1992. In some of these cases, the County did not timely render development orders to DCA in a timely manner. In the case of Buck Hill, the DCA had been mailed an unapproved copy of development plans in October, 1990; in early 1992, DCA contacted the County to inquire, as no County-approved development plans ever had been sent to the DCA. In many of these cases, substantial development expenses had been incurred; in some cases, roads and drainage facilities already had been constructed. DCA decided to settle the pending appeals in which the County was late rendering the development order, and in which the developer already had constructed roads and drainage facilities, consistent with the Turkey Creek settlement. In cases where the County was late rendering the development order, but the developer had not already constructed roads and drainage facilities, the DCA determined to settle not only for stipulations to upgrade the OSDS, as in the Turkey Creek settlement, but also for requirements that a "detailed" flood zone study be done, in accordance with the FEMA requirements. Prior to the DCA appeal, Crowder had expended approximately $31,000 in permit fees. In addition, he has incurred development costs, primarily for engineering fees and related services. Through the time of the final hearing, he had spent approximately $99,000 on engineering fees and services. (The evidence was not clear how much had been incurred by the time of the DCA appeal.) However, the County was not late in rendering the Crowder development order, and Crowder has not constructed roads or drainage facilities. In view of the different circumstances in Crowder's case, DCA's prior agency practices do not compel that Crowder's development be treated in the same manner, i.e., be settled on the same terms, as the Turkey Creek and the others. DCA has argued that FLWAC's Final Order in the case of Dept. of Community Affairs v. Narbi International Company, Inc. and Lake County, 14 FALR 3223 (1992), controls this case and requires the Crowder development order to be overturned on appeal. Narbi involved development Green Swamp ACSC, albeit in Lake County. Factually, there are many differences between Narbi and this case. The Narbi development order was a rezoning from agricultural with a residential density of up to one unit per five acres to a residential planned unit development (PUD) zoning with a density of one unit per 1.35 acres. Also, Lake County's comprehensive plan had an "urban containment policy," which DCA equated with its non-rule policy preventing "urban sprawl" or "leap-frog development." Thirdly, in Narbi, it was found that a geologic fault existed on the project site which allowed a direct connection from the surficial aquifer to the Floridan Aquifer. Because of the factual differences, Narbi does not control the outcome of Crowder's case. Conditions for Approval. Based on the testimony of its witnesses, DCA has proposed that, notwithstanding its deficiencies, the Crowder project can be approved if its density is lowered to between one unit per ten acres and one unit per 20 acres. The rationale of DCA's witnesses seems to be that the proposed lower density, in and of itself, would cure at least the most significant of the deficiencies. Since the Crowder development order under review was for approval of particular road and drainage plans, the plans would have to be redrawn at the lower density and resubmitted for approval by the County subject to the final order to be entered in this case. It is not possible for the Commission to approve, on condition of lowered density, the plans that were the subject of the development order in this case.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is recommended that the Florida Land and Water Adjudicatory Commission enter a final order rescinding and denying approval for the development order in this case. RECOMMENDED this 10th day of March, 1993, in Tallahassee, Florida. J. LAWRENCE JOHNSTON Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 10th day of March, 1993.

Florida Laws (4) 163.3184380.05380.0551380.07 Florida Administrative Code (5) 28-26.00228-26.00328-27.0079J-9.0039J-9.004
# 7
KAREN AHLERS AND JERI BALDWIN vs SLEEPY CREEK LANDS, LLC AND ST. JOHNS RIVER WATER MANAGEMENT DISTRICT, 14-002610 (2014)
Division of Administrative Hearings, Florida Filed:Palatka, Florida Jun. 03, 2014 Number: 14-002610 Latest Update: Oct. 24, 2016

The Issue The issue to be determined is whether Consumptive Use Permit No. 2-083-91926-3, and Environmental Resource Permit No. IND-083-130588-4 should be issued as proposed in the respective proposed agency actions issued by the St. Johns River Water Management District.

Findings Of Fact The Parties Sierra Club, Inc., is a national organization, the mission of which is to explore, enjoy, and advocate for the environment. A substantial number of Sierra Club’s 28,000 Florida members utilize the Silver River, Silver Springs, the Ocklawaha River, and the St. Johns River for water-based recreational activities, which uses include kayaking, swimming, fishing, boating, canoeing, nature photography, and bird watching. St. Johns Riverkeeper, Inc., is one of 280 members of the worldwide Waterkeepers Alliance. Its mission is to protect, restore, and promote healthy waters of the St. Johns River, its tributaries, springs, and wetlands -- including Silver Springs, the Silver River, and the Ocklawaha River -- through citizen- based advocacy. A substantial number of St. Johns Riverkeeper’s more than 1,000 members use and enjoy the St. Johns River, the Silver River, Silver Springs, and the Ocklawaha River for boating, fishing, wildlife observation, and other water-based recreational activities. Karen Ahlers is a native of Putnam County, Florida, and lives approximately 15 miles from the Applicant’s property on which the permitted uses will be conducted. Ms. Ahlers currently uses the Ocklawaha River for canoeing, kayaking, and swimming, and enjoys birding and nature photography on and around the Silver River. Over the years, Ms. Ahlers has advocated for the restoration and protection of the Ocklawaha River, as an individual and as a past-president of the Putnam County Environmental Council. Jeri Baldwin lives on a parcel of property in the northeast corner of Marion County, approximately one mile from the Applicant’s property on which the permitted uses will be conducted. Ms. Baldwin, who was raised in the area, and whose family and she used the resources extensively in earlier years, currently uses the Ocklawaha River for boating. Florida Defenders of the Environment (FDE) is a Florida corporation, the mission of which is to conserve and protect and restore Florida's natural resources and to conduct environmental education projects. A substantial number of FDE’s 186 members, of which 29 reside in Marion County, Florida, use and enjoy Silver Springs, the Silver River, and the Ocklawaha Aquatic Preserve, and their associated watersheds in their educational and outreach activities, as well as for various recreational activities including boating, fishing, wildlife observation, and other water-based recreational activities. Sleepy Creek Lands, LLC (Sleepy Creek or Applicant), is an entity registered with the Florida Department of State to do business in the state of Florida. Sleepy Creek owns approximately 21,000 acres of land in Marion County, Florida, which includes the East Tract and the North Tract on which the activities authorized by the permits are proposed. St. Johns River Water Management District (SJRWMD or District) is a water-management district created by section 373.069(1). It has the responsibility to conserve, protect, manage, and control the water resources within its geographic boundaries. See § 373.069(2)(a), Fla. Stat. The Consumptive Use Permit The CUP is a modification and consolidation of two existing CUP permits, CUP No. 2-083-3011-7 and CUP No. 2-083- 91926-2, which authorize the withdrawal of 1.46 mgd from wells located on the East Tract. Although the existing CUP permits authorize an allocation of 1.46 mgd, actual use has historically been far less, and rarely exceeded 0.3 mgd. The proposed CUP modification will convert the authorized use of water from irrigation of 1,010 acres of sod grass on the East Tract, to supplemental irrigation of improved pasture for grass and other forage crops (approximately 97 percent of the proposed withdrawals) and cattle watering (approximately three percent of the proposed withdrawals) on the North Tract and the East Tract. An additional very small amount will be used in conjunction with the application of agricultural chemicals. CUP No. 2-083-3011-7 is due to expire in 2021. CUP No. 2-083-91926-2 is due to expire in 2024. In addition to the consolidation of the withdrawals into a single permit, the proposed agency action would extend the term of the consolidated permit to 20 years from issuance, with the submission of a compliance report due 10 years from issuance. Sleepy Creek calculated a water demand of 2.569 mgd for the production of grasses and forage crops necessary to meet the needs for grass-fed beef production, based on the expected demand in a 2-in-10 drought year. That calculation is consistent with that established in CUP Applicant’s Handbook (CUP A.H.) section 12.5.1. The calculated amount exceeds the authorized average allocation of 1.46 mgd. Mr. Jenkins testified as to the District’s understanding that the requested amount would be sufficient, since the proposed use was a “scaleable-type project,” with adjustments to cattle numbers made as necessary to meet the availability of feed. Regardless of demand, the proposed permit establishes the enforceable withdrawal limits applicable to the property. With regard to the East Tract, the proposed agency action reduces the existing 1.46 mgd allocation for that tract to a maximum allocation of 0.464 mgd, and authorizes the irrigation of 611 acres of pasture grass using existing extraction wells and six existing pivots. With regard to the North Tract, the proposed agency action authorizes the irrigation of 1,620 acres of pasture and forage grain crops using 15 center pivot systems. Extraction wells to serve the North Tract pivots will be constructed on the North Tract. The proposed North Tract withdrawal wells are further from Silver Springs than the current withdrawal locations. The proposed CUP allows Sleepy Creek to apply the allocated water as it believes to be appropriate to the management of the cattle operation. Although the East Tract is limited to a maximum of 0.464 mgd, there is no limitation on the North Tract. Thus, Sleepy Creek could choose to apply all of the 1.46 mgd on the North Tract. For that reason, the analysis of impacts from the irrigation of the North Tract has generally been based on the full 1.46 mgd allocation being drawn from and applied to the North Tract. The Environmental Resource Permit As initially proposed, the CUP had no elements that would require issuance of an ERP. However, in order to control the potential for increased runoff and nutrient loading resulting from the irrigation of the pastures, Sleepy Creek proposes to construct a stormwater management system to capture runoff from the irrigated pastures, consisting of a series of vegetated upland buffers, retention berms and redistribution swales between the pastures and downgradient wetland features. Because the retention berm and swale system triggered the permitting thresholds in rule 62-330.020(2)(d) (“a total project area of more than one acre”) and rule 62-330.020(2)(e) (“a capability of impounding more than 40 acre-feet of water”), Sleepy Creek was required to obtain an Environmental Resource Permit for its construction. Regional Geologic Features To the west of the North Tract is a geologic feature known as the Ocala Uplift or Ocala Platform, in which the limestone that comprises the Floridan aquifer system exists at or very near the land surface. Karst features, including subterranean conduits and voids that can manifest at the land surface as sinkholes, are common in the Ocala Uplift due in large part to the lack of consolidated or confining material overlaying the limestone. Water falling on the surface of such areas tends to infiltrate rapidly through the soil into the Floridan aquifer, occasionally through direct connections such as sinkholes. The lack of confinement in the Ocala Uplift results in few if any surface-water features such as wetlands, creeks, and streams. As one moves east from the Ocala Uplift, a geologic feature known as the Cody Escarpment becomes more prominent. In the Cody Escarpment, the limestone becomes increasingly overlain by sands, shell, silt, clays, and other less permeable sediments of the Hawthorn Group. The North Tract and the East Tract lie to the east of the point at which the Cody Escarpment becomes apparent. As a result, water tends to flow overland to wetlands and other surface water features. The Property The North and East Tracts are located in northern Marion County near the community of Fort McCoy. East Tract Topography and Historic Use The East Tract is located in the Daisy Creek Basin, and includes the headwaters of a small creek that drains directly to the Ocklawaha River. The historic use of the East Tract has been as a cleared 1,010-acre sod farm. The production of sod included irrigation, fertilization, and pest control. Little change in the topography, use, and appearance of the property will be apparent as a result of the permits at issue, but for the addition of grazing cattle. The current CUPs that are subject to modification in this proceeding authorize groundwater withdrawals for irrigation of the East Tract at the rate of 1.46 mgd. Since the proposed agency action has the result of reducing the maximum withdrawal from wells on the East Tract to 0.464 mgd, thus proportionately reducing the proposed impacts, there was little evidence offered to counter Sleepy Creek’s prima facie case that reasonable assurance was provided that the proposed East Tract groundwater withdrawal allocation will meet applicable CUP standards. There are no stormwater management structures to be constructed on the East Tract. Therefore, the ERP permit discussed herein is not applicable to the East Tract. North Tract Topography and Historic Use The North Tract has a generally flat topography, with elevations ranging from 45 feet to 75 feet above sea level. The land elevation is highest at the center of the North Tract, with the land sloping towards the Ocklawaha River to the east, and to several large wet prairie systems to the west. Surface water features on the North Tract include isolated, prairie, and slough-type wetlands on approximately 28 percent of the North Tract, and a network of creeks, streams, and ditches, including the headwaters of Mill Creek, a contributing tributary of the Ocklawaha River. A seasonal high groundwater elevation on the North Tract is estimated at 6 to 14 inches below ground surface. The existence of defined creeks and surface water features supports a finding that the North Tract is underlain by a relatively impermeable confining layer that impedes the flow of water from the surface and the shallow surficial aquifer to the upper Floridan and lower Floridan aquifers. If there was no confining unit, water going onto the surface of the property, either in the form of rain or irrigation water, would percolate unimpeded to the lower aquifers. Areas in the Ocala Uplift to the west of the North Tract, where the confining layer is thinner and discontiguous, contain few streams or runoff features. Historically, the North Tract was used for timber production, with limited pasture and crop lands. At the time the 7,207-acre North Tract was purchased by Sleepy Creek, land use consisted of 4,061 acres of planted pine, 1,998 acres of wetlands, 750 acres of improved pasture, 286 acres of crops, 78 acres of non-forested uplands, 20 acres of native forest, 10 acres of open water, and 4 acres of roads and facilities. Prior to the submission of the CUP and ERP applications, much of the planted pine was harvested, and the land converted to improved pasture. Areas converted to improved pasture include those proposed for irrigation, which have been developed in the circular configuration necessary for future use with center irrigation pivots. As a result of the harvesting of planted pine, and the conversion of about 345 acres of cropland and non-forested uplands to pasture and incidental uses, total acreage in pasture on the North Tract increased from 750 acres to 3,938 acres. Other improvements were constructed on the North Tract, including the cattle processing facility. Aerial photographs suggest that the conversion of the North Tract to improved pasture and infrastructure to support a cattle ranch is substantially complete. The act of converting the North Tract from a property dominated by planted pine to one dominated by improved pasture, and the change in use of the East Tract from sod farm to pasture, were agricultural activities that did not require a permit from the District. As such, there is no impropriety in considering the actual, legal use of the property in its current configuration as the existing use for which baseline conditions are to be measured. Petitioners argue that the baseline conditions should be measured against the use of the property as planted pine plantation, and that Sleepy Creek should not be allowed to “cattle-up” before submitting its permit applications, thereby allowing the baseline to be established as a higher impact use. However, the applicable rules and statutes provide no retrospective time-period for establishing the nature of a parcel of property other than that lawfully existing when the application is made. See West Coast Reg’l Water Supply Auth. v. SW Fla. Water Mgmt. Dist., Case No. 95-1520 et seq., ¶ 301 (Fla. DOAH May 29, 1997; SFWMD ) (“The baseline against which projected impacts conditions [sic] are those conditions, including previously permitted adverse impacts, which existed at the time of the filing of the renewal applications.”). The evidence and testimony in this case focused on the effects of the water allocation on the Floridan aquifer, Silver Springs, and the Silver River, and on the effects of the irrigation on water and nutrient transport from the properties. It was not directed at establishing a violation of chapter 373, the rules of the SJRWMD, or the CUP Applicant’s Handbook with regard to the use and management of the agriculturally-exempt unirrigated pastures, nor did it do so. Soil Types Soils are subject to classifications developed by the Soil Conservation Service based on their hydrologic characteristics, and are grouped into Group A, Group B, Group C, or Group D. Factors applied to determine the appropriate hydrologic soil group on a site-specific basis include depth to seasonal high saturation, the permeability rate of the most restrictive layer within a certain depth, and the depth to any impermeable layers. Group A includes the most well-drained soils, and Group D includes the most poorly-drained soils. Group D soils are those with seasonal high saturation within 24 inches of the soil surface and a higher runoff potential. The primary information used to determine the hydrologic soil groups on the North Tract was the depth to seasonal-high saturation, defined as the highest expected annual elevation of saturation in the soil. Depth to seasonal-high saturation was measured through a series of seven hand-dug and augered soil borings completed at various locations proposed for irrigation across the North Tract. In determining depth to seasonal-high saturation, the extracted soils were examined based on depth, color, texture, and other relevant characteristics. In six of the seven locations at which soil borings were conducted, a restrictive layer was identified within 36 inches of the soil surface. At one location at the northeastern corner of the North Tract, the auger hole ended at a depth of 48 inches -- the length of the auger -- at which depth there was an observable increase in clay content but not a full restrictive layer. However, while the soil assessment was ongoing, a back-hoe was in operation approximately one hundred yards north of the boring location. Observations of that excavation revealed a heavy clay layer at a depth of approximately 5 feet. In each of the locations, the depth to seasonal-high saturation was within 14 inches of the soil surface. Based on the consistent observation of seasonal-high saturation at each of the sampled locations, as well as the flat topography of the property with surface water features, the soils throughout the property, with the exception of a small area in the vicinity of Pivot 6, were determined to be in hydrologic soil Group D. Hydrogeologic Features There are generally five hydrogeologic units underlying the North Tract, those units being the surficial aquifer system, the intermediate confining unit, the upper Floridan aquifer, the middle confining unit, and the lower Floridan aquifer. In areas in which a confining layer is present, water falling on the surface of the land flows over the surface of the land or across the top of the confining layer. A surficial aquifer, with a relatively high perched water table, is created by the confinement and separation of surface waters from the upper strata of the Floridan aquifer. Surface waters are also collected in or conveyed by various surface water features, including perched wetlands, creeks, and streams. The preponderance of the evidence adduced at the final hearing demonstrates that the surficial aquifer exists on the property to a depth of up to 20 feet below the land surface (bls). Beneath the surficial aquifer is an intermediate confining unit of dense clay interspersed with beds of sand and calcareous clays that exists to a depth of up to 100 feet bls. The clay material observed on the North Tract is known as massive or structureless. Such clays are restrictive with very low levels of hydraulic conductivity, and are not conducive to development of preferential flow paths to the surficial or lower aquifers. The intermediate confining unit beneath the North Tract restricts the exchange of groundwater from the surficial aquifer to the upper Floridan aquifer. The upper Floridan aquifer begins at a depth of approximately 100 feet bls, and extends to a depth of approximately 340 feet bls. At about 340 feet bls, the upper Floridan aquifer transitions to the middle confining unit, which consists of finely grained, denser material that separates the interchange of water between the upper Floridan aquifer and the lower Floridan aquifer. Karst Features Karst features form as a result of water moving through rock that comprises the aquifer, primarily limestone, dissolving and forming conduits in the rock. Karst areas present a challenging environment to simulate through modeling. Models assume the subsurface to be a relatively uniform “sand box” through which it is easier to simulate groundwater flow. However, if the subsurface contains conduits, it becomes more difficult to simulate the preferential flows and their effect on groundwater flow paths and travel times. The District has designated parts of western Alachua County and western Marion County as a Sensitive Karst Area Basin. A Sensitive Karst Area is a location in which the porous limestone of the Floridan aquifer occurs within 20 feet of the land surface, and in which there is 10 to 20 inches of annual recharge to the Floridan aquifer. The designation of an area as being within the Sensitive Karst Area Basin does not demonstrate that it does, or does not, have subsurface features that are karstic in nature, or that would provide a connection between the surficial aquifer and the Floridan aquifer. The western portion of the North Tract is within the Sensitive Karst Area Basin. The two intensive-use areas on the North Tract that have associated stormwater facilities -- the cattle unloading area and the processing facility -- are outside of the Sensitive Karst Area Basin. The evidence was persuasive that karst features are more prominent to the west of the North Tract. In order to evaluate the presence of karst features on the North Tract, Mr. Andreyev performed a “desktop-type evaluation,” with a minimal field survey. The desktop review included a review of aerial photographs and an investigation of available data, including the Florida Geological Survey database of sinkhole occurrence in the area. The aerial photographs showed circular depressions suggestive of karst activity west and southwest of the North Tract, but no such depressions on the North Tract. Soil borings taken on the North Tract indicated the presence of layers of clayey sand, clays, and silts at a depth of 70 to 80 feet. Well-drilling logs taken during the development of the wells used for an aquifer performance test on the North Tract showed the limestone of the Floridan aquifer starting at a depth below ground surface of 70 to 80 feet. Other boring data generated on the North Tract suggests that there is greater than 100 feet of clay and sandy clay overburden above the Floridan aquifer on and in the vicinity of the North Tract. Regardless of site-specific differences, the observed confining layer separating the surficial aquifer from the Floridan aquifer is substantial, and not indicative of a karst environment. Aquifer performance tests performed on the North Tract were consistent in showing that drawdown in the surficial aquifer from the tests was minimal to non-detectable, which is strong evidence of an intact and low-permeability confining layer. The presence of well-developed drainage features on the North Tract is further evidence of a unit of confinement that is restricting water from going deeper into the subsurface, and forcing it to runoff to low-lying surface water features. Petitioners’ witnesses did not perform any site- specific analysis of karst features on or around the Sleepy Creek property. Their understanding of the nature of the karst systems in the region was described as “hypothetical or [] conceptual.” Dr. Kincaid admitted that he knew of no conduits on or adjacent to the North Tract. As a result of the data collected from the North Tract, Mr. Hearn opined that the potential for karst features on the property that provide an opening to the upper Floridan aquifer “is extremely remote.” Mr. Hearn’s opinion is consistent with the preponderance of the evidence in this case, and is accepted. In the event a surface karst feature were to manifest itself, Sleepy Creek has proposed that the surface feature be filled and plugged to reestablish the integrity of the confining layer. More to the point, the development of a surficial karst feature in an area influenced by irrigation would be sufficient grounds for the SJRWMD to reevaluate and modify the CUP to account for any changed conditions affecting the assumptions and bases for issuance of the CUP. Silver Springs, the Silver River, and the Ocklawaha River The primary, almost exclusive concern of Petitioners was the effect of the modified CUP and the nutrients from the proposed cattle ranch on Silver Springs, the Silver River, and the Ocklawaha River. Silver Springs Silver Springs has long been a well-known attraction in Florida. It is located just to the east of Ocala, Florida. Many of the speakers at the public comment period of this proceeding spoke fondly of having frequented Silver Springs over the years, enjoying its crystal clear waters through famous glass-bottomed boats. For most of its recorded history, Silver Springs was the largest spring by volume in Florida. Beginning in the 1970s, it began to lose its advantage, and by the year 2000, Rainbow Springs, located in southwestern Marion County, surpassed Silver Springs as the state’s largest spring. Silver Springs exists at the top of the potentiometric surface of the Floridan aquifer. Being at the “top of the mountain,” when water levels in the Floridan aquifer decline, groundwater flow favors the lower elevation springs. Thus, surrounding springshed boundaries expand to take more water to maintain their baseflows, at the expense of the Silver Springs springshed, which contracts. Rainbow Springs shares an overlapping springshed with Silver Springs. The analogy used by Dr. Knight was of the aquifer as a bucket with holes at different levels, and with the Silver Springs “hole” near the top of the bucket. When the water level in the bucket is high, water will flow from the top hole. As the water level drops below that hole, it will preferentially flow from the lower holes. Rainbow Springs has a vent or outlet from the aquifer, that is 10 feet lower in elevation than that of Silver Springs. Coastal springs are lower still. Thus, as groundwater levels decline, the lower springs “pirate flow” from the upper springs. Since the first major studies of Silver Springs were conducted in the 1950s, the ecosystem of Silver Springs has undergone changes. The water clarity, though still high as compared to other springs, has been reduced by 10 to 15 percent. Since the 1950s, macrophytic plants, i.e., rooted plants with seeds and flowers, have declined in population, while epiphytic and benthic algae have increased. Those plants are sensitive to increases in nitrogen in the water. Thus, Dr. Knight’s opinion that increases in nitrogen emerging from Silver Springs, calculated to have risen from just over 0.4 mg/l in the 1950s, to 1.1 mg/l in 2004, and to up to 1.5 mg/l at present,1/ have caused the observed vegetative changes is accepted. Silver River Silver Springs forms the headwaters for the Silver River, a spring run 5 1/2 miles in length, at which point it becomes a primary input to the Ocklawaha River. Issues of water clarity and alteration of the vegetative regime that exist at Silver Springs are also evident in the Silver River. In addition, the reduction in flow allows for more tannic water to enter the river, further reducing clarity. Dr. Dunn recognized the vegetative changes in the river, and opined that the “hydraulic roughness” caused by the increase in vegetation is likely creating a spring pool backwater at Silver Springs, thereby suppressing some of the flow from the spring. The Silver River has been designated as an Outstanding Florida Water. There are currently no Minimum Flows and Levels established by the District for the Silver River. Ocklawaha River The Ocklawaha River originates near Leesburg, Florida, at the Harris Chain of Lakes, and runs northward past Silver Springs. The Silver River is a major contributor to the flow of the Ocklawaha River. Due to the contribution of the Silver River and other spring-fed tributaries, the Ocklawaha River can take on the appearance of a spring run during periods of low rainfall. Historically, the Ocklawaha River flowed unimpeded to its confluence with the St. Johns River in the vicinity of Palatka, Florida. In the 1960s, as part of the Cross-Florida Barge Canal project, the Rodman Dam was constructed across the Ocklawaha River north of the Sleepy Creek property, creating a large reservoir known as the Rodman Pool. Dr. Knight testified convincingly that the Rodman Dam and Pool have altered the Ocklawaha River ecosystem, precipitating a decline in migratory fish populations and an increase in filamentous algae. At the point at which the Ocklawaha River flows past the Sleepy Creek property, it retains its free-flowing characteristics. Mill Creek, which has its headwaters on the North Tract, is a tributary of the Ocklawaha River. The Ocklawaha River, from the Eureka Dam south, has been designated as an Outstanding Florida Water. However, the Ocklawaha River at the point at which Mill Creek or other potential surface water discharges from the Sleepy Creek property might enter the river are not included in the Outstanding Florida Water designation. There are currently no Minimum Flows and Levels established by the District for the Ocklawaha River. The Silver Springs Springshed A springshed is that area from which a spring draws water. Unlike a surface watershed boundary, which is fixed based on land features, contours, and elevations, a springshed boundary is flexible, and changes depending on a number of factors, including rainfall. As to Silver Springs, its springshed is largest during periods of more abundant rainfall when the aquifer is replenished, and smaller during drier periods when groundwater levels are down, and water moves preferentially to springs and discharge points that are lower in elevation. The evidence in this case was conflicting as to whether the North Tract is in or out of the Silver Springs springshed boundary. Dr. Kincaid indicated that under some of the springshed delineations, part of the North Tract was out of the springshed, but over the total period of record, it is within the springshed. Thus, it was Dr. Kincaid’s opinion that withdrawals anywhere within the region will preferentially impact Silver Springs, though he admitted that he did not have the ability to quantify his opinion. Dr. Knight testified that the North Tract is within the Silver Springs “maximum extent” springshed at least part of the time, if not all the time. He did not opine as to the period of time in which the Silver Springs springshed was at its maximum extent. Dr. Bottcher testified that the North Tract is not within the Silver Springs springshed because there is a piezometric rise between North Tract and Silver Springs. Thus, in his opinion, withdrawals at the North Tract would not be withdrawing water going to Silver Springs. Dr. Dunn agreed that the North Tract is on the groundwater divide for Silver Springs. In his view, the North Tract is sometimes in, and sometimes out of the springshed depending on the potentiometric surface. In his opinion, the greater probability is that the North Tract is more often outside of the Silver Springs springshed, with seasonal and year—to—year variation. Dr. Dunn’s opinion provides the most credible explanation of the extent to which the North Tract sits atop that portion of the lower Floridan aquifer that feeds to Silver Springs. Thus, it is found that the groundwater divide exists to the south of the North Tract for a majority of the time, and water entering the Floridan aquifer from the North Tract will, more often than not, flow away from Silver Springs. Silver Springs Flow Volume The Silver Springs daily water discharge has been monitored and recorded since 1932. Over the longest part of the period of record, up to the 1960s, flows at Silver Springs averaged about 800 cubic feet per second (cfs). Through 1989, there was a reasonable regression between rainfall and springflow, based on average rainfalls. The long-term average rainfall in Ocala was around 50 inches per year, and long-term springflow was about 800 cfs, with deviations from average generally consistent with one another. Between 1990 and 1999, the relationship between rainfall and springflow declined by about 80 cubic feet per second. Thus, with average rainfall of 50 inches per year, the average springflow was reduced to about 720 cfs. From 2000 to 2009, there was an additional decline, such that the total cumulative decline for the 20-year period through 2009 was 250 cfs. Dr. Dunn agreed with Dr. Knight that after 2000, there was an abrupt and persistent reduction in flow of about 165 cfs. However, Dr. Dunn did not believe the post-2000 flow reduction could be explained by rainfall directly, although average rainfall was less than normal. Likewise, groundwater withdrawals did not offer an adequate explanation. Dr. Dunn described a natural 30-year cycle of wetter and drier periods known as the Atlantic Multidecadal Oscillation (AMO) that has manifested itself over the area for the period of record. From the 1940s up through 1970, the area experienced an AMO wet cycle with generally higher than normal rainfall at the Ocala rain station. For the next 30-year period, from 1970 up to 2000, the Ocala area ranged from a little bit drier to some years in which it was very, very dry. Dr. Dunn attributed the 80 cfs decline in Silver Springs flow recorded in the 1990s to that lower rainfall cycle. After 2000, when the next AMO cycle would be expected to build up, as it did post—1940, it did not happen. Rather, there was a particularly dry period around 2000 that Dr. Dunn believes to have had a dramatic effect on the lack of recovery in the post-2000 flows in the Silver River. According to Mr. Jenkins, that period of deficient rainfall extended through 2010. Around the year 2001, the relationship between rainfall and flow changed such that for a given amount of rainfall, there was less flow in the Silver River, with flow dropping to as low as 535 cfs after 2001. It is that reduction in flow that Dr. Knight has attributed to groundwater withdrawals. It should be noted that the observed flow of Silver Springs that formed the 1995 baseline conditions for the North Central Florida groundwater model that will be discussed herein was approximately 706 cfs. At the time of the final hearing in August 2014, flow at Silver Springs was 675 cfs. The reason offered for the apparent partial recovery was higher levels of rainfall, though the issue was not explored in depth. For the ten-year period centered on the year 2000, local water use within Marion and Alachua County, closer to Silver Springs, changed little -- around one percent per year. From a regional perspective, groundwater use declined at about one percent per year for the period from 1990 to 2010. The figures prepared by Dr. Knight demonstrate that the Sleepy Creek project area is in an area that has a very low density of consumptive use permits as compared to areas adjacent to Silver Springs and more clearly in the Silver Springs springshed. In Dr. Dunn’s opinion, there were no significant changes in groundwater use either locally or regionally that would account for the flow reduction in Silver Springs from 1990 to 2010. In that regard, the environmental report prepared by Dr. Dunn and submitted with the CUP modification application estimated that groundwater withdrawals accounted for a reduction in flow at Silver Springs of approximately 20 cfs as measured against the period of record up to the year 2000, with most of that reduction attributable to population growth in Marion County. In the March 2014, environmental impacts report, Dr. Dunn described reductions in the stream flow of not only the Silver River, but of other tributaries of the lower Ocklawaha River, including the upper Ocklawaha River at Moss Bluff and Orange Creek. However, an evaluation of the Ocklawaha River water balance revealed there to be additional flow of approximately 50 cfs coming into the Ocklawaha River at other stations. Dr. Dunn suggested that changes to the vent characteristics of Silver Springs, and the backwater effects of increased vegetation in the Silver River, have resulted in a redistribution of pressure to other smaller springs that discharge to the Ocklawaha River, accounting for a portion of the diminished flow at Silver Springs. The Proposed Cattle Operation Virtually all beef cattle raised in Florida, upon reaching a weight of approximately 875 pounds, are shipped to Texas or Kansas to be fattened on grain to the final body weight of approximately 1,150 pounds, whereupon they are slaughtered and processed. The United States Department of Agriculture has a certification for grass—fed beef which requires that, after an animal is weaned, it can only be fed on green forage crops, including grasses, and on corn and grains that are cut green and before they set seed. The forage crops may be grazed or put into hay or silage and fed when grass and forage is dormant. The benefit of grass feeding is that a higher quality meat is produced, with a corresponding higher market value. Sleepy Creek plans to develop the property as a grass- fed beef production ranch, with pastures and related loading/unloading and slaughter/processing facilities where calves can be fattened on grass and green grain crops to a standard slaughter weight, and then slaughtered and processed locally. By so doing, Sleepy Creek expects to save the transportation and energy costs of shipping calves to the Midwest, and to generate jobs and revenues by employing local people to manage, finish, and process the cattle. As they currently exist, pastures proposed for irrigation have been cleared and seeded, and have “fairly good grass production.” The purpose of the irrigation is to enhance the production and quality of the grass in order to maintain the quality and reliability of feed necessary for the production of grass-fed beef. East Tract Cattle Operation The East Tract is 1,242 acres in size, substantially all of which was previously cleared, irrigated, and used for sod production. The proposed CUP permit authorizes the irrigation of 611 acres of pasture under six existing center pivots. The remaining 631 acres will be used as improved, but unirrigated, pasture. Under the proposed permit, a maximum of 1,207 cattle would be managed on the East Tract. Of that number, 707 cattle would be grazed on the irrigated paddocks, and 500 cattle would be grazed on the unirrigated improved pastures. If the decision is made to forego irrigation on the East Tract, with the water allocation being used on the North Tract or not at all, the number of cattle grazed on the six center pivot pastures would be decreased from 707 cattle to 484 cattle. The historic use of the East Tract as a sod farm resulted in high phosphorus levels in the soil from fertilization, which has made its way to Daisy Creek. Sleepy Creek has proposed a cattle density substantially below that allowed by application of the formulae in the Nutrient Management Plan in order to “mine” the phosphorus levels in the soil over time. North Tract Cattle Operation The larger North Tract includes most of the “new” ranch activities, having no previous irrigation, and having been put to primarily silvicultural use with limited pasture prior to its acquisition by Sleepy Creek. The ranch’s more intensive uses, i.e., the unloading corrals and the slaughter house, are located on the North Tract. The North Tract is 7,207 acres in size. Of that, 1,656 acres are proposed for irrigation by means of 15 center- pivot irrigation systems. In addition to the proposed irrigated pastures, the North Tract includes 2,382 acres of unirrigated improved pasture, of which approximately 10 percent is wooded. Under the proposed permit, a maximum of 6,371 cattle would be managed on the North Tract. Of that number, 3,497 cattle would be grazed on the irrigated paddocks (roughly 2.2 head of cattle per acre), and 2,374 cattle would graze on the improved pastures (up to 1.1 head of cattle per acre). The higher cattle density in the irrigated pastures can be maintained due to the higher quality grass produced as a result of irrigation. The remaining 500 cattle would be held temporarily in high-concentration corrals, either after offloading or while awaiting slaughter. On average, there will be fewer than 250 head of cattle staged in those high-concentration corrals at any one time. In the absence of irrigation, the improved pasture on the North Tract could sustain about 4,585 cattle. Nutrient Management Plan, Water Conservation Plan, and BMPs The CUP and ERP applications find much of their support in the implementation of the Nutrient Management Plan (NMP), the Water Conservation Plan, and Best Management Practices (BMPs). The NMP sets forth information designed to govern the day to day operations of the ranch. Those elements of the NMP that were the subject of substantive testimony and evidence at the hearing are discussed herein. Those elements not discussed herein are found to have been supported by Sleepy Creek’s prima facie case, without a preponderance of competent and substantial evidence to the contrary. The NMP includes a herd management plan, which describes rotational grazing and the movement of cattle from paddock to paddock, and establishes animal densities designed to maintain a balance of nutrients on the paddocks, and to prevent overgrazing. The NMP establishes fertilization practices, with the application of fertilizer based on crop tissue analysis to determine need and amount. Thus, the application of nitrogen- based fertilizer is restricted to that capable of ready uptake by the grasses and forage crops, limiting the amount of excess nitrogen that might run off of the pastures or infiltrate past the root zone. The NMP establishes operation and maintenance plans that incorporate maintenance and calibration of equipment, and management of high-use areas. The NMP requires that records be kept of, among other things, soil testing, nutrient application, herd rotation, application of irrigation water, and laboratory testing. The irrigation plan describes the manner and schedule for the application of water during each irrigation cycle. Irrigation schedules for grazed and cropped scenarios vary from pivot to pivot based primarily on soil type. The center pivots proposed for use employ high-efficiency drop irrigation heads, resulting in an 85 percent system efficiency factor, meaning that there is an expected evaporative loss of 15 percent of the water before it becomes available as water in the soil. That level of efficiency is greater than the system efficiency factor of 80 percent established in CUP A.H. section 12.5.2. Other features of the irrigation plan include the employment of an irrigation manager, installation of an on-site weather station, and cumulative tracking of rain and evapotranspiration with periodic verification of soil moisture conditions. The purpose of the water conservation practices is to avoid over application of water, limiting over-saturation and runoff from the irrigated pastures. Sleepy Creek has entered into a Notice of Intent to Implement Water Quality BMPs with the Florida Department of Agriculture and Consumer Services which is incorporated in the NMP and which requires the implementation of Best Management Practices.2/ Dr. Bottcher testified that implementation and compliance with the Water Quality Best Management Practices manual creates a presumption of compliance with water quality standards. His testimony in that regard is consistent with Department of Agriculture and Consumer Services rule 5M-11.003 (“implementation, in accordance with adopted rules, of BMPs that have been verified by the Florida Department of Environmental Protection as effective in reducing target pollutants provides a presumption of compliance with state water quality standards.”). Rotational Grazing Rotational grazing is a practice by which cattle are allowed to graze a pasture for a limited period of time, after which they are “rotated” to a different pasture. The 1,656 acres proposed for irrigation on the North Tract are to be divided into 15 center-pivot pastures. Each individual pasture will have 10 fenced paddocks. The 611 acres of irrigated pasture on the East Tract are divided into 6 center-pivot pastures. The outer fence for each irrigated pasture is to be a permanent “hard” fence. Separating the internal paddocks will be electric fences that can be lowered to allow cattle to move from paddock to paddock, and then raised after they have moved to the new paddock. The NMP for the North Tract provides that cattle are to be brought into individual irrigated pastures as a single herd of approximately 190 cattle and placed into one of the ten paddocks. They will be moved every one to three days to a new paddock, based upon growing conditions and the reduction in grass height resulting from grazing. In this way, the cattle are rotated within the irrigated pasture, with each paddock being used for one to three days, and then rested until each of the other paddocks have been used, whereupon it will again be used in the rotation. The East Tract NMP generally provides for rotation based on the height of the pasture grasses, but is designed to provide a uniform average of cattle per acre per year. Due to the desire to “mine” phosphorus deposited during the years of operation of the East Tract as a sod farm, the density of cattle on the irrigated East Tract pastures is about 30 percent less than that proposed for the North Tract. The East Tract NMP calls for a routine pasture rest period of 15 to 30 days. Unlike dairy farm pastures, where dairy cows traverse a fixed path to the milking barn several times a day, there will be minimal “travel lanes” within the pastures or between paddocks. There will be no travel lanes through wetlands. If nitrogen-based fertilizer is needed, based upon tissue analysis of the grass, fertilizer is proposed for application immediately after a paddock is vacated by the herd. By so doing, the grass within each paddock will have a sufficient period to grow and “flush up” without grazing or traffic, which results in a high—quality grass when the cattle come back around to feed. Sleepy Creek proposes that rotational grazing is to be practiced on improved pastures and irrigated pastures alike. The rotational practices on the improved East Tract and North Tract pastures are generally similar to those practiced on the irrigated pastures. The paddocks will have permanent watering troughs, with one trough serving two adjacent paddocks. The troughs will be raised to prevent “boggy areas” from forming around the trough. Since the area around the troughs will be of a higher use, Sleepy Creek proposes to periodically remove accumulated manure, and re-grade if necessary. Other cattle support items, including feed bunkers and shade structures are portable and can be moved as conditions demand. Forage Crop Production The primary forage crop on the irrigated pastures is to be Bermuda grass. Bermuda grass or other grass types tolerant of drier conditions will be used in unirrigated pastures. During the winter, when Bermuda grass stops growing, Sleepy Creek will overseed the North Tract pastures with ryegrass or other winter crops. Due to the limitation on irrigation water, the East Tract NMP calls for no over-seeding for production of winter crops. Crops do not grow uniformly during the course of a year. Rather, there are periods during which there are excess crops, and periods during which the crops are not growing enough to keep up with the needs of the cattle. During periods of excess, Sleepy Creek will cut those crops and store them as haylage to be fed to the cattle during lower growth periods. The North Tract management plan allows Sleepy Creek to dedicate one or more irrigated pastures for the exclusive production of haylage. If that option is used, cattle numbers will be reduced in proportion to the number of pastures dedicated to haylage production. As a result of the limit on irrigation, the East Tract NMP does not recommend growing supplemental feed on dedicated irrigation pivot pastures. Direct Wetland Impacts Approximately 100 acres proposed for irrigation are wetlands or wetland buffer. Those areas are predominantly isolated wetlands, though some have surface water connections to Mill Creek, a water of the state. Trees will be cut in the wetlands to allow the pivot to pass overhead. Tree cutting is an exempt agricultural activity that does not require a permit. There was no persuasive evidence that cutting trees will alter the fundamental benefit of the wetlands or damage water resources of the District. The wetlands and wetland buffer will be subject to the same watering and fertigation regimen as the irrigated pastures. The application of water to wetlands, done concurrently with the application of water to the pastures, will occur during periods in which the pasture soils are dry. The incidental application of water to the wetlands during dry periods will serve to maintain hydration of the wetlands, which is considered to be a benefit. Fertilizers will be applied through the irrigation arms, a process known as fertigation. Petitioners asserted that the application of fertilizer onto the wetlands beneath the pivot arms could result in some adverse effects to the wetlands. However, Petitioners did not quantify to what extent the wetlands might be affected, or otherwise describe the potential effects. Fertigation of the wetlands will promote the growth of wetland plants. Nitrogen applied through fertigation will be taken up by plants, or will be subject to denitrification -- a process discussed in greater detail herein -- in the anaerobic wetland soils. The preponderance of the evidence indicated that enhanced wetland plant growth would not rise to a level of concern. Since most of the affected wetlands are isolated wetlands, there is expected to be little or no discharge of nutrients from the wetlands. Even as to those wetlands that have a surface water connection, most, if not all of the additional nitrogen applied through fertigation will be accounted for by the combined effect of plant uptake and denitrification. Larger wetland areas within an irrigated pasture will be fenced at the buffer line to prevent cattle from entering. The NMP provided a blow-up of the proposed fencing related to a larger wetland on Pivot 8. Although other figures are not to the same scale, it appears that larger wetlands associated with Pivots 1, 2, 3, and 12 will be similarly fenced. Cattle would be allowed to go into the smaller, isolated wetlands. Cattle going into wetlands do not necessarily damage the wetlands. Any damage that may occur is a function of density, duration, and the number of cattle. The only direct evidence of potential damage to wetlands was the statement that “[i]f you have 6,371 [cattle] go into a wetland, there may be impacts.” The NMP provides that pasture use will be limited to herds of approximately 190 cattle, which will be rotated from paddock to paddock every two to three days, and which will allow for “rest” periods of approximately 20 days. There will be no travel lanes through any wetland. Thus, there is no evidence to support a finding that the cattle at the density, duration, and number proposed will cause direct adverse effects to wetlands on the property. High Concentration Areas Cattle brought to the facility are to be unloaded from trucks and temporarily corralled for inspection. For that period, the cattle will be tightly confined. Cattle that have reached their slaughter weight will be temporarily held in corrals associated with the processing plant. The stormwater retention ponds used to capture and store runoff from the offloading corral and the processing plant holding corral are part of a normal and customary agricultural activity, and are not part of the applications and approvals that are at issue in this proceeding. The retention ponds associated with the high-intensity areas do not require permits because they do not exceed one acre in size or impound more than 40 acre-feet of water. Nonetheless, issues related to the retention ponds were addressed by Petitioners and Sleepy Creek, and warrant discussion here. The retention ponds are designed to capture 100 percent of the runoff and entrained nutrients from the high concentration areas for a minimum of a 24—hour/25—year storm event. If rainfall occurs in excess of the designed storm, the design is such that upon reaching capacity, only new surface water coming to the retention pond will be discharged, and not that containing high concentrations of nutrients from the initial flush of stormwater runoff. Unlike the stormwater retention berms for the pastures, which are to be constructed from the first nine inches of permeable topsoil on the property, the corral retention ponds are to be excavated to a depth of six feet which, based on soil borings in the vicinity, will leave a minimum of two to four feet of clay beneath the retention ponds. In short, the excavation will penetrate into the clay layer underlying the pond sites, but will not penetrate through that layer. The excavated clay will be used to form the side slopes of the ponds, lining the permeable surficial layer and generally making the ponds impermeable. Organic materials entering the retention ponds will form an additional seal. An organic seal is important in areas in which retention ponds are constructed in sandy soil conditions. Organic sealing is less important in this case, where clay forms the barrier preventing nutrients from entering the surficial aquifer. Although the organic material is subject to periodic removal, the clay layer will remain to provide the impermeable barrier necessary to prevent leakage from the ponds. Dr. Bottcher testified that if, during excavation of the ponds, it was found that the remaining in-situ clay layer was too thin, Sleepy Creek would implement the standard practice of bringing additional clay to the site to ensure adequate thickness of the liner. Nutrient Balance The goal of the NMP is to create a balance of nutrients being applied to and taken up from the property. Nitrogen and phosphorus are the nutrients of primary concern, and are those for which specific management standards are proposed. Nutrient inputs to the NMP consist generally of deposition of cattle manure (which includes solid manure and urine), recycling of plant material and roots from the previous growing season, and application of supplemental fertilizer. Nutrient outputs to the NMP consist generally of volatization of ammonia to the atmosphere, uptake and utilization of the nutrients by the grass and crops, weight gain of the cattle, and absorption and denitrification of the nutrients in the soil. The NMP, and the various models discussed herein, average the grass and forage crop uptake and the manure deposition to match that of a 1,013 pound animal. That average weight takes into account the fact that cattle on the property will range from calf weight of approximately 850 pounds, to slaughter weight of 1150 pounds. Nutrients that are not accounted for in the balance, e.g., those that become entrained in stormwater or that pass through the plant root zone without being taken up, are subject to runoff to surface waters or discharge to groundwater. Generally, phosphorus not taken up by crops remains immobile in the soil. Unless there is a potential for runoff to surface waters, the nutrient balance is limited by the amount of nitrogen that can be taken up by the crops. Due to the composition of the soils on the property, the high water table, and the relatively shallow confining layer, there is a potential for surface runoff. Thus, the NMP was developed using phosphorus as the limiting nutrient, which results in nutrient application being limited by the “P-index.” A total of 108 pounds of phosphorus per acre/per year can be taken up and used by the irrigated pasture grasses and forage crops. Therefore, the total number of cattle that can be supported on the irrigated pastures is that which, as a herd, will deposit an average of 108 pounds of phosphorus per year over the irrigated acreage. Therefore, Sleepy Creek has proposed a herd size and density based on calculations demonstrating that the total phosphorus contained in the waste excreted by the cattle equals the amount taken up by the crops. A herd producing 108 pounds per acre per year of phosphorus is calculated to produce 147 pounds of nitrogen per acre per year. The Bermuda grass and forage crops proposed for the irrigated fields require 420 pounds of nitrogen per acre per year. As a result of the nitrogen deficiency, additional nitrogen-based fertilizer to make up the shortfall is required to maintain the crops. Since phosphorus needs are accounted for by animal deposition, the fertilizer will have no phosphorus. The NMP requires routine soil and plant tissue tests to determine the amount of nitrogen fertilizer needed. By basing the application of nitrogen on measured rather than calculated needs, variations in inputs, including plant decomposition and atmospheric deposition, and outputs, including those affected by weather, can be accounted for, bringing the full nutrient balance into consideration. The numeric values for crop uptakes, manure deposition, and other estimates upon which the NMP was developed were based upon literature, values, and research performed and published by the University of Florida and the Natural Resource Conservation Service. Dr. Bottcher testified convincingly that the use of such values is a proven and reliable method of developing a balance for the operation of similar agricultural operations. A primary criticism of the NMP was its expressed intent to “reduce” or “minimize” the transport of nutrients to surface waters and groundwater, rather than to “negate” or “prevent” such transport. Petitioners argue that complete prevention of the transport of nutrients from the property is necessary to meet the standards necessary for issuance of the CUP and ERP. Mr. Drummond went into some detail regarding the total mass of nutrients expected to be deposited onto the ground from the cattle, exclusive of fertilizer application. In the course of his testimony, he suggested that the majority of the nutrients deposited on the land surface “are going to make it to the surficial aquifer and then be carried either to the Floridan or laterally with the groundwater flow.” However, Mr. Drummond performed no analysis on the fate of nitrogen through uptake by crops, volatization, or soil treatment, and did not quantify the infiltration of nitrogen to groundwater. Furthermore, he was not able to provide any quantifiable estimate on any effect of nutrients on Mill Creek, the Ocklawaha River, or Silver Springs. In light of the effectiveness of the nutrient balance and other elements of the NMP, along with the retention berm system that will be discussed herein, Mr. Drummond’s assessment of the nutrients that might be expected to impact water resources of the District is contrary to the greater weight of the evidence. Mr. Drummond’s testimony also runs counter to that of Dr. Kincaid, who performed a particle track analysis of the fate of water recharge from the North Tract. In short, Dr. Kincaid calculated that of the water that makes it as recharge from the North Tract to the surficial aquifer, less than one percent is expected to make its way to the upper Floridan aquifer, with that portion originating from the vicinity of Pivot 6. Recharge from the other 14 irrigated pastures was ultimately accounted for by evapotranspiration or emerged at the surface and found its way to Mill Creek. The preponderance of the competent, substantial evidence adduced at the final hearing supports the effectiveness of the NMPs for the North Tract and East Tract at managing the application and use of nutrients on the property, and minimizing the transport of nutrients to surface water and groundwater resources of the District. North Central Florida Model All of the experts involved in this proceeding agreed that the use of groundwater models is necessary to simulate what might occur below the surface of the ground. Models represent complex systems by applying data from known conditions and impacts measured over a period of years to simulate the effects of new conditions. Models are imperfect, but are the best means of predicting the effects of stresses on complex and unseen subsurface systems. The North Central Florida (NCF) model is used to simulate impacts of water withdrawals on local and regional groundwater levels and flows. The NCF model simulates the surficial aquifer, the upper Floridan aquifer, and the lower Floridan aquifer. Those aquifers are separated from one another by relatively impervious confining units. The intermediate confining unit separates the surficial aquifer from the upper Floridan aquifer. The intermediate confining unit is not present in all locations simulated by the NCF model. However, the evidence is persuasive that the intermediate confining unit is continuous at the North Tract, and serves to effectively isolate the surficial aquifer from the upper Floridan aquifer. The NCF model is not a perfect depiction of what exists under the land surface of the North Tract or elsewhere. It was, however, acknowledged by the testifying experts in this case, despite disagreements as to the extent of error inherent in the model, to be the best available tool for calculating the effects of withdrawals of water within the boundary of the model. The NCF model was developed and calibrated over a period of years, is updated routinely as data becomes available, and has undergone peer review. Aquifer Performance Tests In order to gather site-specific data regarding the characteristics of the aquifer beneath the Sleepy Creek property, a series of three aquifer performance tests (APTs) was conducted on the North Tract. The first two tests were performed by Sleepy Creek, and the third by the District. An APT serves to induce stress on the aquifer by pumping from a well at a high rate. By observing changes in groundwater levels in observation wells, which can be at varying distances from the extraction well, one can extrapolate the nature of the subsurface. In addition, well-completion reports for the various withdrawal and observation wells provide actual data regarding the composition of subsurface soils, clays, and features of the property. The APT is particularly useful in evaluating the ability of the aquifer to produce water, and in calculating the transmissivity of the aquifer. Transmissivity is a measure of the rate at which a substance passes through a medium and, as relevant to this case, measures how groundwater flows through an aquifer. The APTs demonstrated that the Floridan aquifer is capable of producing water at the rate requested. The APT drawdown contour measured in the upper Floridan aquifer was greater than that predicted from a simple run of the NCF model, but the lateral extent of the drawdown was less than predicted. The most reasonable conclusion to be drawn from the combination of greater than expected drawdown in the upper Floridan aquifer with less than expected extent is that the transmissivity of the aquifer beneath the North Tract is lower than the NCF model assumptions. The conclusion that the transmissivity of the aquifer at the North Tract is lower than previously estimated means that impacts from groundwater extraction would tend to be more vertical than horizontal, i.e., the drawdown would be greater, but would be more localized. As such, for areas of lower than estimated transmissivity, modeling would over-estimate off-site impacts from the extraction. NCF Modeling Scenarios The initial NCF modeling runs were based on an assumed withdrawal of 2.39 mgd, an earlier -- though withdrawn - - proposal. The evidence suggests that the simulated well placement for the 2.39 mgd model run was entirely on the North Tract. Thus, the results of the model based on that withdrawal have some limited relevance, especially given that the proposed CUP allows for all of the requested 1.46 mgd of water to be withdrawn from North Tract wells at the option of Sleepy Creek, but will over-predict impacts from the permitted rate of withdrawal. A factor that was suggested as causing a further over-prediction of drawdown in the 2.39 mgd model run was the decision, made at the request of the District, to exclude the input of data of additional recharge to the surficial aquifer, wetlands and surface waters from the irrigation, and the resulting diminution in soil storage capacity. Although there is some merit to the suggestion that omitting recharge made the model results “excessively conservative,” the addition of recharge to the model would not substantially alter the predicted impacts. A model run was subsequently performed based on a presumed withdrawal of 1.54 mgd, a rate that remains slightly more than, but still representative of, the requested amount of 1.46 mgd. The 1.54 mgd model run included an input for irrigation recharge. The simulated extraction points were placed on the East Tract and North Tract in the general configuration as requested in the CUP application. The NCF is designed to model the impacts of a withdrawal based upon various scenarios, identified at the hearing as Scenarios A, B, C, and D. Scenario A is the baseline condition for the NCF model, and represents the impacts of all legal users of water at their estimated actual flow rates as they existed in 1995. Scenario B is all existing users, not including the applicant, at end-of-permit allocations. Scenario C is all existing users, including the applicant, at current end-of-permit allocations. Scenario D is all permittees at full allocation, except the applicant which is modeled at the requested (i.e., new or modified) end-of-permit allocation. To simulate the effects of the CUP modification, simulations were performed on scenarios A, C, and D. In order to measure the specific impact of the modification of the CUP, the Scenario C impacts to the surficial, upper Floridan, and lower Floridan aquifers were compared with the Scenario D impacts to those aquifers. In order to measure the cumulative impact of the CUP, the Scenario A actual-use baseline condition was compared to the Scenario D condition which predicts the impacts of all permitted users, including the applicant, pumping at full end-of-permit allocations. The results of the NCF modeling indicate the following: 2.39 mgd - Specific Impact The surficial aquifer drawdown from the simulated 2.39 mgd withdrawal was less than 0.05 feet on-site and off- site, except to the west of the North Tract, at which a drawdown of 0.07 feet was predicted. The upper Floridan aquifer drawdown from the 2.39 mgd withdrawal was predicted at between 0.30 and 0.12 feet on-site, and between 0.30 and 0.01 feet off-site. The higher off-site figures are immediately proximate to the property. The lower Floridan aquifer drawdown from the 2.39 mgd withdrawal was predicted at less than 0.05 feet at all locations, and at or less than 0.02 feet within six miles of the North Tract. 2.39 mgd - Cumulative Impact The cumulative impact to the surficial aquifer from all permitted users, including a 2.39 mgd Sleepy Creek withdrawal, was less than 0.05 feet on-site, and off-site to the north and east, except to the west of the North Tract, at which a drawdown of 0.07 feet was predicted. The cumulative impact to the upper Floridan aquifer from all permitted users, including a 2.39 mgd Sleepy Creek withdrawal, ranged from 0.4 feet to 0.8 feet over all pertinent locations. The cumulative impact to the lower Floridan aquifer from all permitted users, including a 2.39 mgd Sleepy Creek withdrawal, ranged from 1.0 to 1.9 feet over all pertinent locations. The conclusion drawn by Mr. Andreyev that the predicted impacts to the lower Floridan are almost entirely from other end-of-permit user withdrawals is supported by the evidence and accepted. 1.54 mgd - Specific Impact The NCF model runs based on the more representative 1.54 mgd withdrawal predicted a surficial aquifer drawdown of less than 0.01 feet (i.e., no drawdown contour shown) on the North Tract, and a 0.01 to 0.02 foot drawdown at the location of the East Tract. The drawdown of the upper Floridan aquifer from the CUP modification was predicted at up to 0.07 feet on the property, and generally less than 0.05 feet off-site. There were no drawdown contours at the minimum 0.01 foot level that came within 9 miles of Silver Springs. The lower Floridan aquifer drawdown from the CUP modification was predicted at less than 0.01 feet (i.e., no drawdown contour shown) at all locations. 1.54 mgd - Cumulative Impact A comparison of the cumulative drawdown contours for the 2.36 mgd model and 1.54 mgd model show there to be a significant decrease in predicted drawdowns to the surficial and upper Floridan aquifers, with the decrease in the upper Floridan aquifer drawdown being relatively substantial, i.e., from 0.5 to 0.8 feet on-site predicted for the 2.36 mgd withdrawal, to 0.4 to 0.5 feet on-site for the 1.54 mgd model. Given the small predicted individual impact of the CUP on the upper Floridan aquifer, the evidence is persuasive that the cumulative impacts are the result of other end-of-permit user withdrawals. The drawdown contour for the lower Floridan aquifer predicted by the 1.54 mgd model is almost identical to that of the 2.36 mgd model, thus supporting the conclusion that predicted impacts to the lower Floridan are almost entirely from other end-of-permit user withdrawals. Modeled Effect on Silver Springs As a result of the relocation of the extraction wells from the East Tract to the North Tract, the NCF model run at the 1.54 mgd withdrawal rate predicted springflow at Silver Springs to increase by 0.15 cfs. The net cumulative impact in spring flow as measured from 1995 conditions to the scenario in which all legal users, including Sleepy Creek, are pumping at full capacity at their end-of-permit rates for one year3/ is roughly 35.4 cfs, which is approximately 5 percent of Silver Springs’ current flow. However, as a result of the redistribution of the Sleepy Creek withdrawal, which is, in its current iteration, a legal and permitted use, the cumulative effect of the CUP modification at issue is an increase in flow of 0.l5 cfs. Dr. Kincaid agreed that there is more of an impact to Silver Springs when the pumping allowed by the CUP is located on the East Tract than there is on the North Tract, but that the degree of difference is very small. Dr. Knight testified that effect on the flow of Silver Springs from relocating the 1.46 mgd withdrawal from the East Tract to the North Tract would be “zero.” The predicted increase of 0.15 cfs is admittedly miniscule when compared to the current Silver Springs springflow of approximately 675 cfs. However, as small as the modeled increase may be -- perhaps smaller than its “level of certainty” -- it remains the best evidence that the impact of the CUP modification to the flow of Silver Springs will be insignificant at worst, and beneficial at best. Opposition to the NCF Model Petitioners submitted considerable evidence designed to call the results generated by the District’s and Sleepy Creek’s NCF modeling into question. Karst Features A primary criticism of the validity of the NCF model was its purported inability to account for the presence of karst features, including conduits, and their effect on the results. It was Dr. Kincaid’s opinion that the NCF model assigned transmissivity values that were too high, which he attributed to the presence of karst features that are collecting flow and delivering it to springs. He asserted that, instead of assuming the presence of karst features, the model was adjusted to raise the overall capacity of the porous medium to transmit water, and thereby match the observed flows. In his opinion, the transmissivity values of the equivalent porous media were raised so much that the model can no longer be used to predict drawdowns. That alleged deficiency in the model is insufficient for two reasons. First, as previously discussed in greater detail, the preponderance of the evidence in this case supports a finding that there are no karst features in the vicinity of the North Tract that would provide preferential pathways for water flow so as to skew the results of the NCF model. Second, Dr. Kincaid, while acknowledging that the NCF model is the best available tool for predicting impacts from groundwater extraction on the aquifer, suggested that a hybrid porous media and conduit model would be a better means of predicting impacts, the development of which would take two years or more. There is no basis for the establishment of a de facto moratorium on CUP permitting while waiting for the development of a different and, in this case, unnecessary model. For the reasons set forth herein, it is found that the NCF model is sufficient to accurately and adequately predict the effects of the Sleepy Creek groundwater withdrawals on the aquifers underlying the property, and to provide reasonable assurance that the standards for such withdrawals have been met. Recharge to the Aquifer Petitioners argued that the modeling results showing little significant drawdown were dependent on the application of unrealistic values for recharge or return flow from irrigation. In a groundwater model, as in the physical world, some portion of the water extracted from the aquifer is predicted to be returned to the aquifer as recharge. If more water is applied to the land surface than is being accounted for by evaporation, plant uptake and evapotranspiration, surface runoff, and other processes, that excess water may seep down into the aquifer as recharge. Recharge serves to replenish the aquifer and offset the effects of the groundwater withdrawal. Dr. Kincaid opined that the NCF modeling performed for the CUP application assigned too much water from recharge, offsetting the model's prediction of impacts to other features. It is reasonable to assume that there is some recharge associated with both agricultural and public supply uses. However, the evidence suggests that the impact of recharge on the overall NCF model results is insignificant on the predicted impacts to Silver Springs, the issue of primary concern. Mr. Hearn ran a simulation using the NCF model in which all variables were held constant, except for recharge. The difference between the “with recharge” and “without recharge" simulations at Silver Springs was 0.002 cfs. That difference is not significant, and is not suggestive of adverse impacts on Silver Springs from the CUP modification. Dr. Kincaid testified that “the recharge offset on the property is mostly impacting the surficial aquifer,” and that “the addition of recharge in this case didn't have much of an impact on the upper Floridan aquifer system.” As such, the effect of adding recharge to the model would be as to the effect of groundwater withdrawal on wetlands or surface water bodies, and not on springs. As previously detailed, the drawdown of the surficial aquifer simulated for the 2.39 mgd “no recharge” scenario were less than 0.05 feet on-site and off-site, except for a predicted 0.07 foot drawdown to the west of the North Tract. The predicted drawdown of the surficial aquifer for the 1.54 mgd “with recharge” scenario was 0.02 feet or less. The preponderance of the evidence supports a finding that drawdowns of either degree are less than that at which adverse impacts to wetlands or surface waters would occur. Thus, issues related to the recharge or return flows from irrigation are insufficient to support a finding or conclusion that the NCF model failed to provide reasonable assurance that the standards for issuance of the CUP modification were met. External Boundaries The boundaries of the NCF model are not isolated from the rest of the physical world. Rather, groundwater flows into the modeled area from multiple directions, and out of the modeled area in multiple directions. Inflows to the model area are comprised of recharge, which is an assigned value, and includes water infiltrating and recharging the aquifer from surface waters; injection wells; upward and downward leakage from lower aquifers; and flow across the external horizontal boundaries. Outflows from the model area include evapotranspiration; discharge to surface waters, including springs and rivers; extraction from wells; upward and downward leakage from lower aquifers; and flow against the external model boundaries. Dr. Kincaid testified that flow across the external model boundary is an unknown and unverifiable quantity which increases the uncertainty in the model. He asserted that in the calibrated version of the model, there is no way to check those flows against data. His conclusion was that the inability of the NCF model to accurately account for external boundary flow made the margin of error so great as to make the model an unreliable tool with which to assess whether the withdrawal approved by the proposed CUP modification will increase or decrease drawdown at Silver Springs. The District correlates the NCF model boundaries with a much larger model developed by the United States Geological Survey, the Peninsula of Florida Model, more commonly referred to as the Mega Model, which encompasses most of the State of Florida and part of Southeast Georgia. The Mega Model provides a means to acknowledge that there are stresses outside the NCF model, and to adjust boundary conditions to account for those stresses. The NCF is one of several models that are subsets of the Mega Model, with the grids of the two models being “nested” together. The 1995 base year of the NCF model is sufficiently similar to the 1993-1994 base year of the Mega Model as to allow for a comparison of simulated drawdowns calculated by each of the models. By running a Mega Model simulation of future water use, and applying the change in that use from 1993 base year conditions, the District was able to come to a representative prediction of specific boundary conditions for the 1995 NCF base year, which were then used as the baseline for simulations of subsequent conditions. In its review of the CUP modification, the District conducted a model validation simulation to measure the accuracy of the NCF model against observed conditions, with the conditions of interest being the water flow at Silver Springs. The District ran a simulation using the best information available as to water use in the year 2010, the calculated boundary conditions, irrigation, pumping, recharge, climatic conditions, and generally “everything that we think constitutes that year.” The discharge of water at Silver Springs in 2010 was measured at 580 cfs. The discharge simulated by the NCF model was 545 cfs. Thus, the discharge predicted by the NCF model simulation was within six percent of the observed discharge. Such a result is generally considered in the modeling community to be “a home run.” Petitioners’ objections to the calculation of boundary conditions for the NCF model are insufficient to support a finding that the NCF model is not an appropriate and accurate tool for determining that reasonable assurance has been provided that the standards for issuance of the CUP modification were met. Cumulative Impact Error As part of the District’s efforts to continually refine the NCF, and in conjunction with a draft minimum flows and levels report for Silver Springs and the Silver River, the cumulative NCF model results for the period of baseline to 2010 were compared with the simulated results from the Northern District Model (NDF), a larger model that overlapped the NCF. As a result of the comparison, which yielded different results, it was discovered that the modeler had “turned off” not only the withdrawal pumps, but inputs to the aquifer from drainage wells and sinkholes as well. When those inputs were put back into the model run, and effects calculated only from withdrawals between the “pumps-off” condition and 2010 pumping conditions, the cumulative effect of the withdrawals was adjusted from a reduction in the flow at Silver Springs of 29 cfs to a reduction of between 45 and 50 cfs, an effect described as “counterintuitive.” Although that result has not undergone peer review, and remains subject to further review and comparison with the Mega Model, it was accepted by the District representative, Mr. Bartol. Petitioners seized upon the results of the comparison model run as evidence of the inaccuracy and unreliability of the NCF model. However, the error in the NCF model run was not the result of deficiencies in the model, but was a data input error. Despite the error in the estimate of the cumulative effect of all users at 2010 levels, the evidence in this case does not support a finding that the more recent estimates of specific impact from the CUP at issue were in error. NCF Model Conclusion As has been discussed herein, a model is generally the best means by which to calculate conditions and effects that cannot be directly observed. The NCF model is recognized as being the best tool available for determining the subsurface conditions of the model domain, having been calibrated over a period of years and subject to peer review. It should be recognized that the simulations run using the NCF model represent the worst—case scenario, with all permittees simultaneously drawing at their full end-of-permit allocations. There is merit to the description of that occurrence as being “very remote.” Thus, the results of the modeling represent a conservative estimate of potential drawdown and impacts. While the NCF model is subject to uncertainty, as is any method of predicting the effects of conditions that cannot be seen, the model provides reasonable assurance that the conditions simulated are representative of the conditions that will occur as a result of the withdrawals authorized by the CUP modification. Environmental Resource Permit The irrigation proposed by the CUP will result in runoff from the North Tract irrigated pastures in excess of that expected from the improved pastures, due in large measure to the diminished storage capacity of the soil. Irrigation water will be applied when the soils are dry, and capable of absorbing water not subject to evaporation or plant uptake. The irrigation water will fill the storage space that would exist without irrigation. With irrigation water taking up the capacity of the soil to hold water, soils beneath the irrigation pivots will be less capable of retaining additional moisture during storm events. Thus, there is an increased likelihood of runoff from the irrigated pastures over that expected with dry soils. The increase in runoff is expected to be relatively small, since there should be little or no irrigation needed during the normal summer wet season. The additional runoff may have increased nutrient levels due to the increased cattle density made possible by the irrigation of the pastures. The CUP has a no—impact requirement for water quality resulting from the irrigation of the improved pasture. Thus, nutrients leaving the irrigated pastures may not exceed those calculated to be leaving the existing pre-development use as improved pastures. Retention Berms The additional runoff and nutrient load is proposed to be addressed by constructing a system of retention berms, approximately 50,0004/ feet in length, which is intended to intercept, retain, and provide treatment for runoff from the irrigated pasture. The goal of the system is to ensure that post—development nutrient loading from the proposed irrigated pastures will not exceed the pre—development nutrient loading from the existing improved pastures. An ERP permit is required for the construction of the berm system, since the area needed for the construction of the berms is greater than the one acre in size, and since the berms have the capability of impounding more than 40 acre-feet of water. The berms are to be constructed by excavating the top nine inches of sandy, permeable topsoil and using that permeable soil to create the berms, which will be 1 to 2 feet in height. The water storage areas created by the excavation will have flat or horizontal bottoms, and will be very shallow with the capacity to retain approximately a foot of water. The berms will be planted with pasture grasses after construction to provide vegetative cover. The retention berm system is proposed to be built in segments, with the segment designed to capture runoff from a particular center pivot pasture to be constructed prior to the commencement of irrigation from that center pivot. A continuous clay layer underlies the areas in which the berms are to be constructed. The clay layer varies from 18 to 36 inches below the ground surface, with at least one location being as much as five feet below the ground surface. As such, after nine inches of soil is scraped away to create the water retention area and construct the berm, there will remain a layer of permeable sandy material above the clay. The berms are to be constructed at least 25 feet landward of any jurisdictional wetland, creating a “safe upland line.” Thus, the construction, operation, and maintenance of the retention berms and redistribution swales will result in no direct impacts to jurisdictional wetlands or other surface waters. There will be no agricultural activities, e.g., tilling, planting, or mowing, within the 25-foot buffers, and the buffers will be allowed to establish with native vegetation to provide additional protection for downgradient wetlands. As stormwater runoff flows from the irrigated pastures, it may, in places, create concentrated flow ways. Redistribution swales will be built in those areas to spread any remaining overland flow of water and reestablish sheet flow to the retention berm system. At any point at which water may overtop a berm, the berm will be hardened with rip—rap to insure its integrity. The berms are designed to intercept and collect overland flow from the pastures and temporarily store it behind the berms, regaining the soil storage volume lost through irrigation. A portion of the runoff intercepted by the berm system will evaporate. The majority will infiltrate either through the berm, or vertically into the subsurface soils beneath it. When the surficial soils become saturated, further vertical movement will be stopped by the impermeable clay layer underlying the site. The runoff water will then move horizontally until it reemerges into downstream wetland systems. Thus, the berm system is not expected to have a measurable impact on the hydroperiod of the wetlands on the North Tract. Phosphorus Removal Phosphorus tends to get “tied up” in soil as it moves through it. Phosphorus reduction occurs easily in permeable soil systems because it is removed from the water through a chemical absorption process that is not dependent on the environment of the soil. As the soils in the retention areas and berms go through drying cycles, the absorption capacity is regenerated. Thus, the retention system will effectively account for any increase in phosphorus resulting from the increased cattle density allowed by the irrigation such that there is expected to be no increase in phosphorus levels beyond the berm. Nitrogen Removal When manure is deposited on the ground, primarily as high pH urine, the urea is quickly converted to ammonia, which experiences a loss of 40 to 50 percent of the nitrogen to volatization. Soil conditions during dry weather conditions are generally aerobic. Remaining ammonia in the manure is converted by aerobic bacteria in the soil to nitrates and nitrites. Converted nitrates and nitrites from manure, along with nitrogen from fertilizer, is readily available for uptake as food by plants, including grasses and forage crops. Nitrates and nitrites are mobile in water. Therefore, during rain events of sufficient intensity to create runoff, the nitrogen can be transported downstream towards wetlands and other receiving waters, or percolate downward through the soil until blocked by an impervious barrier. During storm events, the soils above the clay confining layer and the lower parts of the pervious berms become saturated. Those saturated soils are drained of oxygen and become anaerobic. When nitrates and nitrites encounter saturated conditions, they provide food for anaerobic bacteria that exist in those conditions. The bacteria convert nitrates and nitrites to elemental nitrogen, which has no adverse impact on surface waters or groundwater. That process, known as denitrification, is enhanced in the presence of organic material. The soils from which the berms are constructed have a considerable organic component. In addition to the denitrification that occurs in the saturated conditions in and underlying the berms, remaining nitrogen compounds that reemerge into the downstream wetlands are likely to encounter organic wetland-type soil conditions. Organic wetland soils are anaerobic in nature, and will result in further, almost immediate denitrification of the nitrates and nitrites in the emerging water. Calculation of Volume - BMPTRAINS Model The calculation of the volume necessary to capture and store excess runoff from the irrigated pastures was performed by Dr. Wanielista using the BMPTRAINS model. BMPTRAINS is a simple, easy to use spreadsheet model. Its ease of use does not suggest that it is less than reliable. The model has been used as a method of calculating storage volumes in many conditions over a period of more than 40 years. The model was used to calculate the storage volumes necessary to provide storage and treatment of runoff from fifteen “basins” that had a control or a Best Management Practice associated with them. All of the basins were calculated as being underlain by soils in poorly-drained hydrologic soil Group D, except for the basin in the vicinity of Pivot 6, which is underlain by the more well-drained soil Group A. The model assumed about percent of the property to have soil Group A soils, an assumption that is supported by the evidence. Soil moisture conditions on the property were calculated by application of data regarding rainfall events and times, the irrigation schedule, and the amount of irrigation water projected for use over a year. The soil moisture condition was used to determine the amount of water that could be stored in the on-site soils, known as the storage coefficient. Once the storage coefficient was determined, that data was used to calculate the amount of water that would be expected to run off of the North Tract, known as the curve number. The curve number is adjusted by the extent to which the storage within a soil column is filled by the application of irrigation water, making it unable to store additional rainfall. As soil storage goes down, the curve number goes up. Thus, a curve number that approaches 100 means that more water is predicted to run off. Conversely, a lower curve number means that less water is predicted to run off. The pre-development curve number for the North Tract was based on the property being an unirrigated, poor grass area. A post-development curve number was assigned to the property that reflected a wet condition representative of the irrigated soils beneath the pivots. In calculating the storage volume necessary to handle runoff from the basins, the wet condition curve number was adjusted based on the fact that there is a mixture of irrigated and unirrigated general pasture within each basin to be served by a segment of the retention berm system, and by the estimated 15 percent of the time that the irrigation areas would be in a drier condition. In addition, the number was adjusted to reflect the 8 to 10 inches of additional evapotranspiration that occurs as a result of irrigation. The BMPTRAINS model was based on average annual nutrient-loading conditions, with water quality data collected at a suitable point within Reach 22, the receiving waterbody. The effects of nutrients from the irrigated pastures on receiving waterbodies is, in terms of the model, best represented by average annual conditions, rather than a single highest-observed nutrient value. Pre-development loading figures were based on the existing use of the property as unirrigated general pasture. The pre-development phosphorus loading figure was calculated at an average event mean concentration (EMC) of 0.421 milligrams per liter (mg/l). The post—condition phosphorus loading figure was calculated at an EMC of 0.621 mg/l. Therefore, in order to achieve pre-development levels of phosphorus, treatment to achieve a reduction in phosphorus of approximately 36 percent was determined to be necessary. The pre-development nitrogen loading figure was calculated at an EMC of 2.6 mg/l. The post—condition nitrogen loading figure was calculated at an EMC of 3.3 mg/l. Therefore, in order to achieve pre-development levels of nitrogen, treatment to achieve a reduction in nitrogen of approximately 25 percent was determined to be necessary. The limiting value for the design of the retention berms is phosphorus. To achieve post-development concentrations that are equal to or less than pre-development concentrations, the treatment volume of the berm system must be sufficient to allow for the removal of 36 percent of the nutrients in water being retained and treated behind the berms, which represents the necessary percentage of phosphorus. In order to achieve the 36 percent reduction required for phosphorus, the retention berm system must be capable of retaining approximately 38 acre—feet of water from the 15 basins. In order to achieve that retention volume, a berm length of approximately 50,000 linear feet was determined to be necessary, with an average depth of retention behind the berms of one foot. The proposed length of the berms is sufficient to retain the requisite volume of water to achieve a reduction in phosphorus of 36 percent. Thus, the post-development/irrigation levels of phosphorus from runoff are expected to be no greater than pre-development/general pasture levels of phosphorus from runoff. By basing the berm length and volume on that necessary for the treatment of phosphorus, there will be storage volume that is greater than required for a 25 percent reduction in nitrogen. Thus, the post-development/irrigation levels of nitrogen from runoff are expected to be less than pre- development/general pasture levels of nitrogen from runoff. Mr. Drummond admitted that the design of the retention berms “shows there is some reduction, potentially, but it's not going to totally clean up the nutrients.” Such a total clean-up is not required. Rather, it is sufficient that there is nutrient removal to pre-development levels, so that there is no additional pollutant loading from the permitted activities. Reasonable assurance that such additional loading is not expected to occur was provided. Despite Mr. Drummond’s criticism of the BMPTRAINS model, he did not quantify nutrient loading on the North Tract, and was unable to determine whether post-development concentrations of nutrients would increase over pre-development levels. As such, there was insufficient evidence to counter the results of the BMPTRAINS modeling. Watershed Assessment Model In order to further assess potential water quantity and water quality impacts to surface water bodies, and to confirm stormwater retention area and volume necessary to meet pre-development conditions, Sleepy Creek utilized the Watershed Assessment Model (WAM). The WAM is a peer-reviewed model that is widely accepted by national, state, and local regulatory entities. The WAM was designed to simulate water balance and nutrient impacts of varying land uses. It was used in this case to simulate and provide a quantitative measure of the anticipated impacts of irrigation on receiving water bodies, including Mill Creek, Daisy Creek, the Ocklawaha River, and Silver Springs. Inputs to the model include land conditions, soil conditions, rain and climate conditions, and water conveyance systems found on the property. In order to calculate the extent to which nutrients applied to the land surface might affect receiving waters, a time series of surface water and groundwater flow is “routed” through the modeled watershed and to the various outlets from the system, all of which have assimilation algorithms that represent the types of nutrient uptakes expected to occur as water goes through the system. Simulations were performed on the North Tract in its condition prior to acquisition by Sleepy Creek, in its current “exempted improved pasture condition,” and in its proposed “post—development” pivot-irrigation condition. The simulations assessed impacts of the site conditions on surface waters at the point at which they leave the property and discharge to Mill Creek, and at the point where Mill Creek merges into the Ocklawaha River. The baseline condition for measuring changes in nutrient concentrations was determined to be that lawfully existing at the time the application was made. Had there been any suggestion of illegality or impropriety in Sleepy Creek’s actions in clearing the timber and creating improved pasture, a different baseline might be warranted. However, no such illegality or impropriety was shown, and the SJRWMD rules create no procedure for “looking back” to previous land uses and conditions that were legally changed. Thus, the “exempted improved pasture condition” nutrient levels are appropriate for comparison with irrigated pasture nutrient levels. The WAM simulations indicated that nitrogen resulting from the irrigation of the North Tract pastures would be reduced at the outflow to Mill Creek at the Reach 22 stream segment from improved pasture levels by 1.7 percent in pounds per year, and by 0.6 percent in milligrams per liter of water. The model simulations predicted a corresponding reduction at the Mill Creek outflow to the Ocklawaha River of 1.3 percent in pounds per year, and 0.5 percent in milligrams per liter of water. These levels are small, but nonetheless support a finding that the berm system is effective in reducing nitrogen from the North Tract. Furthermore, the WAM simulations showed levels of nitrogen from the irrigated pasture after the construction of the retention berms to be reduced from that present in the pre- development condition, a conclusion consistent with that derived from the BMPTRAINS model. The WAM simulations indicated that phosphorus from the irrigated North Tract pastures, measured at the outflow to Mill Creek at the Reach 22 stream segment, would be reduced from improved pasture levels by 3.7 percent in pounds per year, and by 2.6 percent in milligrams per liter of water. The model simulations predicted a corresponding reduction at the Mill Creek outflow to the Ocklawaha River of 2.5 percent in pounds per year, and 1.6 percent in milligrams per liter of water. Those levels are, again, small, but supportive of a finding of no impact from the permitted activities. The WAM simulations showed phosphorus in the Ocklawaha River at the Eureka Station after the construction of the retention berms to be slightly greater than those simulated for the pre-development condition (0.00008 mg/l) -- the only calculated increase. That level is beyond miniscule, with impacts properly characterized as “non- measurable” and “non-detectable.” In any event, total phosphorus remains well below Florida’s nutrient standards. The WAM simulations were conducted based on all of the 15 pivots operating simultaneously at full capacity. That amount is greater than what is allowed under the permit. Thus, according to Dr. Bottcher, the predicted loads are higher than those that would be generated by the permitted allocation, making his estimates “very conservative.” Dr. Bottcher’s testimony is credited. During the course of the final hearing, the accuracy of the model results was questioned based on inaccuracies in rainfall inputs due to the five-mile distance of the property from the nearest rain station. Dr. Bottcher admitted that given the dynamics of summer convection storms, confidence that the rain station rainfall measurements represent specific conditions on the North Tract is limited. However, it remains the best data available. Furthermore, Dr. Bottcher testified that even if specific data points simulated by the model differ from that recorded at the rain station, that same error carries through each of the various scenarios. Thus, for the comparative purpose of the model, the errors get “washed out.” Other testimony regarding purported inaccuracies in the WAM simulations and report were explained as being the result of errors in the parameters used to run alternative simulations or analyze Sleepy Creek’s simulations, including use of soil types that are not representative of the North Tract, and a misunderstanding of dry weight/wet weight loading rates. There was agreement among witnesses that the WAM is regarded, among individuals with expertise in modeling, as an effective tool, and was the appropriate model for use in the ERP application that is the subject of this proceeding. As a result, the undersigned accepts the WAM simulations as being representative of comparative nutrient impacts on receiving surface water bodies resulting from irrigation of the North Tract. The WAM confirmed that the proposed retention berm system will be sufficient to treat additional nutrients that may result from irrigation of the pastures, and supports a finding of reasonable assurance that water quality criteria will be met. With regard to the East Tract, the WAM simulations showed that there would be reductions in nitrogen and phosphorus loading to Daisy Creek from the conversion of the property to irrigated pasture. Those simulations were also conservative because they assumed the maximum number of cattle allowed by the nutrient balance, and did not assume the 30 percent reduction in the number of cattle under the NMP so as to allow existing elevated levels of phosphorus in the soil from the sod farm to be “mined” by vegetation. Pivot 6 The evidence in this case suggests that, unlike the majority of the North Tract, a small area on the western side of the North Tract drains to the west and north. Irrigation Pivot is within that area. Dr. Harper noted that there are some soils in hydrologic soil Group A in the vicinity of Pivot 6 that reflect soils with a deeper water table where rainfall would be expected to infiltrate into the ground. Dr. Kincaid’s particle track analysis suggested that recharge to the surficial aquifer ultimately discharges to Mill Creek, except for recharge at Pivot 11, which is accounted for by evapotranspiration, and recharge at Pivot 6. Dr. Kincaid concluded that approximately 1 percent of the recharge to the surficial aquifer beneath the North Tract found its way into the upper Floridan aquifer. Those particle tracks originated only on the far western side of the property, and implicated only Pivot 6, which is indicative of the flow divide in the Floridan aquifer. Of the 1 percent of particle tracks entering the Floridan aquifer, some ultimately discharged at the St. John’s River, the Ocklawaha River, or Mill Creek. Dr. Kincaid opined, however, that most ultimately found their way to Silver Springs. Given the previous finding that the Floridan aquifer beneath the property is within the Silver Springs springshed for less than a majority of the time, it is found that a correspondingly small fraction of the less than 1 percent of the particle tracks originating on the North Tract, perhaps a few tenths of one percent, can reach Silver Springs. Dr. Bottcher generally agreed that some small percentage of the water from the North Tract may make it to the upper Floridan aquifer, but that amount will be very small. Furthermore, that water reaching the upper Floridan aquifer would have been subject to the protection and treatment afforded by the NMP and the ERP berms. The evidence regarding the somewhat less restrictive confinement of the aquifer around Pivot 6 is not sufficient to rebut the prima facie case that the CUP modification, coupled with the ERP, will meet the District’s permitting standards. Public Interest The primary basis upon which Sleepy Creek relies to demonstrate that the CUP is “consistent with the public interest” is that Florida's economy is highly dependent upon agricultural operations in terms of jobs and economic development, and that there is a necessity of food production. Sleepy Creek could raise cattle on the property using the agriculturally-exempt improved pastures, but the economic return on the investment would be questionable without the increased quality, quantity, and reliability of grass and forage crop production resulting from the proposed irrigation. Sleepy Creek will continue to engage in agricultural activities on its properties if the CUP modification is denied. Although a typical Florida beef operation could be maintained on the property, the investment was based upon having the revenue generation allowed by grass-fed beef production in order to realize a return on its capital investment and to optimize the economic return. If the CUP modification is denied, the existing CUP will continue to allow the extraction of 1.46 mgd for use on the East Tract. The preponderance of the evidence suggests that such a use would have greater impacts on the water levels at Silver Springs, and that the continued use of the East Tract as a less stringently-controlled sod farm would have a greater likelihood of higher nutrient levels, particularly phosphorus levels which are already elevated.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law set forth herein it is RECOMMENDED that the St. Johns River Water Management District enter a final order: approving the issuance of Consumptive Use Permit No. 2-083-91926-3 to Sleepy Creek Lands, LLC on the terms and conditions set forth in the complete Permit Application for Consumptive Uses of Water and the Consumptive Use Technical Staff Report; and approving the issuance of Environmental Resource Permit No. IND-083-130588-4 to Sleepy Creek Lands, LLC on the terms and conditions set forth in the complete Joint Application for Individual and Conceptual Environmental Resource Permit and the Individual Environmental Resource Permit Technical Staff Report. DONE AND ENTERED this 29th day of April, 2015, in Tallahassee, Leon County, Florida. S E. GARY EARLY Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 29th day of April, 2015.

Florida Laws (27) 120.54120.569120.57120.60120.68373.016373.019373.036373.042373.0421373.069373.079373.175373.223373.227373.229373.236373.239373.246373.406373.413373.4131373.414403.067403.087403.9278.031 Florida Administrative Code (12) 28-106.10828-106.21740C-2.30140C-2.33140C-44.06540C-44.06662-302.30062-330.05062-330.30162-4.24062-4.24262-40.473
# 8
JAMES R. BENFIELD vs. DEPARTMENT OF ENVIRONMENTAL REGULATION, 88-000117 (1988)
Division of Administrative Hearings, Florida Number: 88-000117 Latest Update: Nov. 02, 1988

Findings Of Fact The Petitioner is the owner of five acres of undeveloped real property in Henderson Creek Basin, Naples, Collier County, Florida. The property is dominated at the tree canopy level by medium-sized cypress. The mid-story plant association is made up of a varying mix of wax myrtle, dahoon holly, seedling cypress, and a lesser amount of slash pine. Hypercium, stillingia, poverty grass, and xyris are the major components of the ground cover. In the vicinity of the proposed homesite, the ordinary mean water depth averages 2-4 inches, as indicated by the water marks on the stems of cypress, stillingia, and cypress knees. Based upon the dominant vegetation, the project site is within the jurisdiction of the Respondent for the regulatory purposes set forth by law. The Petitioner intends to build a house on the property for his personal use. In order to construct the residence, the Petitioner applied to the Respondent for a dredge an fill permit. In the application,, the Petitioner seeks a permit which would allow him to place 1,200 cubic yards of sand fill over a .17 acre area of the submerged land. The proposed location for the housepad, septic tank and drainfield is the center of the five acre parcel. This is the predominant area in which the Petitioner seeks to place the fill. A large portion of this part of the property is low and consists of wetlands. The project, as it is designed in the permit application, does not provide the Respondent with reasonable assurance that the applicable water quality standards for the geographical area will continue to be met. In fact, the proposal demonstrates that a violation of the standards will occur. The Petitioner recently cleared 14,340 square feet of the wetlands in the proposed homesite area. The cypress trees which ware removed acted as a pollution filtration system and aided in the cleansing of the standing waters on site. These waters eventually percolate down to the aquifer to become an important source of fresh water for the state. Without the trees, the water will lose an important aid in the natural purification process. In addition to the adverse impact on water quality, the project will interrupt the natural water flow and filtration which has historically occurred when the water located in the low wetland area on the property has overflowed and eventually run into Henderson Creek. The Respondent is required to consider this natural condition in its determination as to whether or not a permit should be issued. The Respondent has indicated that certain changes should be made to the project in order to make it eligible to receive a permit. The Respondent suggested that the Petitioner relocate the fill area for the house pad eighty- five feet to the west of the proposed site. The septic tank and drainfield should be moved one hundred and ten feet to the west. The drive should be reduced to a single lane which leads directly to the housepad. In addition, three culverts should be placed under the drive. The purpose of these modifications would be to minimize the impact of the project on the wetland site. The movement of the project away from the cypress area would minimize the damage to water quality that would occur if the septic system were placed in the wetlands. If the design for the lane and driveway were modified, the harm to the natural sheet flow of the water through the area on its route to the creek would be greatly reduced. Another suggested modification was to remove exotic vegetation which has been planted or which has begun to dominate in some areas because of the clearing of the property which took place before and after the Petitioner purchased the property. The Respondent also seeks a construction plan from the Petitioner which demonstrates that the fill areas will be adequately stabilized and that turbidity will be controlled during construction. The final modification suggested by the Respondent was for the Petitioner to place a deed restriction on the property which would protect the planting areas and the remainder of the wetlands on the site. The Petitioner's expert, Gary L. Beardsley, has recommended that the proposed circular entrance driveway be eliminated and that a single and straightened lane be substituted its place. He further recommended that one 12" diameter culvert should be installed under the lane near the housepad in order to facilitate or equalize any sheet flow on the downstream side. This recommendation is made to substitute for the agency's proposal that three culverts be placed under the straightened lane. In addition, the Petitioner's expert recommended that the septic drainfield be moved 30 feet westward to reduce the fill slope requirements by abutting the house and septic fill pads. The Petitioner should also be required to replant 5,265 square feet of wetland area that he cleared on site with the approval of the Collier Natural Resource Management Department, but without the approval of the Respondent. The Petitioner has not agreed to any of the proposed modifications, including those proposed by his own expert. The Respondent's request for a deed restriction is not necessary to the agency's regulatory function. There was no reason for the request presented at hearing by the agency.

Florida Laws (2) 120.57408.817
# 9
PHILLIP LOTT vs CITY OF DELTONA AND ST. JOHNS WATER MANAGEMENT DISTRICT, 05-003662 (2005)
Division of Administrative Hearings, Florida Filed:Deltona, Florida Oct. 06, 2005 Number: 05-003662 Latest Update: Jun. 26, 2006

The Issue This case involves a challenge to St. Johns River Water Management District’s (District or SJRWMD) intended issuance of an Environmental Resource Permit (ERP) granting the City's Application No. 4-127-97380-1, for the construction and operation of a surface water management system for a retrofit flood-relief project known as Drysdale Drive/Chapel Drive Drainage Improvements consisting of: excavation of the Drysdale Drive pond (Pond 1); improvement to the outfall at Sterling Lake; and the interconnection of Pond 1 and four existing drainage retention areas through a combination of pump stations and gravity outfalls (project or system). The issue is whether the applicant, the City of Deltona (City or Deltona), has provided reasonable assurance the system complies with the water quantity, environmental, and water quality criteria of the District’s ERP regulations set forth in Chapter 40C-4, Florida Administrative Code,1 and the Applicant’s Handbook: Management and Storage of Surface Waters (2005) (A.H.).2

Recommendation Based upon the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the St. Johns River Water Management District enter a final order issuing to the City of Deltona an ERP granting the City's Application No. 4-127-97380-1, subject to the conditions set forth in the Technical Staff Report. DONE AND ENTERED this 17th day of March, 2006, in Tallahassee, Leon County, Florida. S J. LAWRENCE JOHNSTON Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 17th day of March, 2006.

Florida Laws (2) 120.57373.4136
# 10

Can't find what you're looking for?

Post a free question on our public forum.
Ask a Question
Search for lawyers by practice areas.
Find a Lawyer