The Issue The issues to be determined in this proceeding are: whether the challengers have standing; and (2) whether Proposed Rule 40E-8.221(2) is an invalid exercise of delegated legislative authority.
Findings Of Fact Based on the parties' stipulations and the evidence adduced at the final hearing, the following findings of fact are made: The Parties The District is a government entity existing and operating pursuant to chapter 373, Florida Statutes, as a multi- purpose water management district. The District has the power and duty to adopt MFLs consistent with the provisions of part I of chapter 373. Sanibel is a barrier island sanctuary in Lee County and a duly-formed municipality with a population of more than 6,000. Sanibel is situated at the mouth of the Caloosahatchee River, within the Caloosahatchee's greater estuarine area. Sanibel is known primarily for its natural beauty, including clear blue waters, shell beaches, world-class sport fisheries, and wildlife refuges. That is why tourists come from around the globe to visit Sanibel, and why Sanibel's residents move and remain there. Sanibel actively participated in the rulemaking process for the Proposed Rule from its inception. Sanibel submitted two technical comment letters to the District during the development of the Proposed Rule. Sanibel's natural resources director, James Evans, attended numerous public and technical meetings associated with the development of the Proposed Rule, speaking on the record at each of the public meetings prior to the adoption hearing by the District's governing board. The Town, located on Estero Island in Lee County, is also a barrier island community and duly-formed municipality with a population of more than 6,000. The Town is situated just south of the mouth of the Caloosahatchee River and on the southeastern edge of the Caloosahatchee River's greater estuarine area. The Town is known primarily for its natural beauty, including clear blue waters, shell beaches, world-class sport fisheries, and wildlife refuges. Cape Coral is a duly-formed municipality in Lee County and is the largest city between Tampa and Miami, with a population in excess of 150,000. Cape Coral is bordered on the south by the Caloosahatchee River and has over 400 miles of navigable canals and waterways, all of which are within the Caloosahatchee River's greater estuarine area. In addition, Cape Coral has an assigned load reduction allocation under the Basin Management Action Plan (BMAP) for the Caloosahatchee River Estuary (CRE) due to it being designated as impaired for dissolved oxygen and nutrients. Maintaining sufficient flow in the Caloosahatchee River would have a direct impact on Cape Coral's ability to meet its assigned load reduction allocation. In addition to living on or near the water, a substantial number of the residents of Sanibel, Cape Coral, and the Town engage in water-based recreational activities such as swimming, fishing, boating, kayaking, paddle boarding, bird watching, and nature observation in and around the Caloosahatchee River's greater estuarine area. Fort Myers is a duly-formed municipality in Lee County and has a population of approximately 80,000. Fort Myers is bordered by the CRE throughout its entire jurisdictional boundary. Fort Myers owns and maintains a yacht basin (Ft. Myers Yacht Basin), which includes a mooring field and an anchorage field in the Caloosahatchee River. Fort Myers presented testimony that commercial crabbing and recreational fishing have declined and that it has suffered economic harm due to water quality issues. Fort Myers owns the submerged land in the Caloosahatchee River from Marker 39 to Marker 58, and islands in the river. One such island will be used as a park for recreational activities such as canoeing, kayaking, and hiking for visitors to enjoy the Caloosahatchee River. Fort Myers also owns and operates piers and a public boat ramp within the Caloosahatchee River. Fort Myers' dock master has observed declines in seagrasses in the Caloosahatchee River during his 19-year career working at the Ft. Myers Yacht Basin. Fort Myers has adopted a Harbor Management Plan for the management of its mooring and anchorage fields in the Caloosahatchee River. Fort Myers has also been assigned a load reduction allocation under the BMAP for the CRE, and is responsible for a certain amount of pollution reduction over time. Bonita Springs is a municipality of more than 50,000 in Lee County. The borders of Bonita Springs include portions of Estero Bay, which, along with San Carlos Bay and the Caloosahatchee River, is part of the greater Lower Charlotte Harbor Estuary. Bonita Springs includes wildlife refuges, such as the Estero Bay Aquatic Preserve and Lovers Key State Park and Recreation Area. While Bonita Springs' strategic priorities include environmental protection and water quality, it does not have environmental staff or test water quality. Bonita Springs participates in Estero Bay Management and the Charlotte Harbor National Estuary Program (CHNEP). Bonita Springs provides financial assistance to the Caloosahatchee Citizen Sea Grass Gardening Project. Concerns regarding harm to the CRE and tape grasses are shared by a significant number of residents in Bonita Springs and Estero, including injury to the quality of life and recreational uses such as swimming, boating, and kayaking in the waterways. Estero is a municipality of more than 30,000 in Lee County. Estero borders the eastern portion of Estero Bay. Estero includes wildlife refuges, such as Estero Bay Aquatic Preserve and Koreshan State Park. While Estero has environmental policies, it does not have environmental staff or test water quality. Estero makes financial contributions to CHNEP. Estero is concerned that the Proposed Rule will affect its water quality, which could affect its residents' quality of life. Estero believes it could be harmed by poor water quality because its residents are portable retirees who can move away, or tourists who can choose not to visit. Captiva Island is situated at the mouth of the Caloosahatchee River, within the Caloosahatchee's greater estuarine area. CCP is a Florida not-for-profit corporation representing property owners, businesses, and the community of Captiva Island. Captiva Island is part of unincorporated Lee County and is located north of Sanibel. CCP has 200 financial contributors comprised of property owners, businesses, and residents on Captiva Island. CCP's mission includes protection of clean off-shore water, diverse and healthy marine life, and robust native vegetation along with the protection of mangrove fringe and water quality. CCP works with Lee County on provisions of the County's comprehensive plan, which include the quality of adjacent waters. CCP relied on the expertise of James Evans, the director of natural resources for Sanibel, and on the Sanibel- Captiva Conservation Foundation (SCCF). CCP was advised that the Proposed Rule was not sufficient to protect the environment and Vallisneria americana (Vallisneria) or tape grass during the dry season. Caloosahatchee River and Estuary The watershed of the Caloosahatchee River covers approximately 861,058 acres. The watershed consists of four sub-watersheds, three of which are upstream of the S-79 structure. The Tidal Caloosahatchee Basin sub-watershed (estuarine system) is downstream of the S-79 structure. The S-79 structure captures all the upstream discharges of fresh water that go into the estuarine system through the S-79 structure. Major tidal tributaries of the Tidal Caloosahatchee Basin are the Orange River and Telegraph Creek, which drain into the upper estuary downstream of the S-79 structure. Fresh water inflows from these and other tributaries also contribute fresh water into the estuarine system. The Caloosahatchee River was originally a natural watercourse running from its origin at Lake Flirt to San Carlos Bay. It is currently defined as the "surface waters that flow through the S-79 structure, combined with tributary contributions below S-79 that collectively flow southwest to San Carlos Bay." Fla. Admin. Code. R. 40E-8.021(2). Man-made alterations to the Caloosahatchee River began as early as 1884, but major alterations began in the 1930s with the authorization and construction of the C-43 Canal. The C-43 Canal runs 41.6 miles from Lake Okeechobee at Moore Haven, i.e., from the S-77 structure, to Olga, i.e., the S-79 structure. The C-43 Canal serves as a conveyance feature to drain water from the three sub-watersheds located upstream of the S-79 structure and convey regulatory discharges of water from Lake Okeechobee. In 1957, the United States Army Corps of Engineers (USACOE) prepared a report focused on drainage, flood control, and navigation needs of the Caloosahatchee River Basin, and one recommendation was construction of the S-79 structure. The key objectives of the S-79 structure were to eliminate undesirable salinity in the lower Caloosahatchee River, prevent the rapid depletion of water supplies, and raise the prevailing dry weather water table levels. The S-79 structure was constructed in 1965. It is a lock and dam structure that is also known as the Franklin Lock and Dam. The S-79 structure captures all upstream fresh water discharges that go into the CRE. The S-79 structure demarcates the head of the CRE, which extends 26 miles downstream to Shell Point, where it empties into San Carlos Bay in the southern portion of the greater Lower Charlotte Harbor Estuary. Most of this surface water flow takes a southerly route, flowing to the Gulf of Mexico under the Sanibel Causeway that crosses San Carlos Bay. When fresh water inflows are high, tidal action pushes some of this water back up into Matlacha Pass and Pine Island Sound. Additionally, some water exits to the south and flows into Estero Bay through Matanzas Pass. Salinity exhibits a strong gradient in the CRE. Changes in the watershed upstream of the S-79 structure have profoundly influenced the delivery of fresh water to the CRE. Runoff is now more variable with higher wet season flows and lower dry season discharges. Large volumes of fresh water during the wet season can flush salt water from the tidally-influenced sections of the water body, resulting in low salinity conditions throughout most of the CRE. In contrast, fresh water inflow at the S-79 structure can stop entirely during the dry season, especially during significant drought events. This results in saline intrusion that can extend upstream to the S-79 structure. Fluctuations of this magnitude at the head and mouth of the system cause mortality of organisms at both ends of the salinity gradient. Downstream of the S-79 structure, the CRE was significantly altered by multiple dredging activities, including the removal of extensive shoals and oyster bars. Seven automobile bridges, a railroad trestle, and the Sanibel Causeway were built between the 1880s and 1960s. A large canal network was built along the northern shoreline of the CRE in Cape Coral. To provide navigational access from the canal network to deeper water, multiple access channels were dredged within the CRE. Alterations to the delivery of fresh water combined with structural changes to the tidally-influenced sections of the water body have had lasting ecological consequences. These include the loss of extensive shoals and oyster bars, loss of a flourishing bay scallop fishery, and significant decline in seagrass cover in deeper areas. MFLs An MFL is the limit at which further withdrawals would be significantly harmful to the water resources or ecology of the area. The District's rules define significant harm as the "temporary loss of water resource functions, which results from a change in surface or ground water hydrology, that takes more than two years to recover, but which is considered less severe than serious harm." Fla. Admin. Code R. 40E-8.021(31). The rule further specifies that a water body's specific water resource functions addressed by an MFL are defined in the MFL technical support document. Id. MFLs are calculated using the best information available. The regulatory agency is required to consider changes and structural alterations to watersheds, and the constraints such changes or alterations placed on the hydrology of an affected watershed. Certain waterbodies may not serve their historical hydrologic functions and recovery of these waterbodies to historical hydrologic conditions may not be economically or technically feasible. Accordingly, the regulatory agencies may determine that setting an MFL for such a water body based on its historical condition is not appropriate. Caloosahatchee MFL For the CRE, MFL criteria were designed to protect the estuary from significant harm due to insufficient fresh water inflows and were not guidelines for restoration of estuarine functions to conditions that existed in the past. The MFL criteria consider three aspects of the flow in terms of potential significant harm to the estuary: (1) the magnitude of the flow or the volume of fresh water entering the estuary; (2) the duration of time that flows can be below the recommended level before causing significant harm; and (3) the return frequency, or the number of times the MFL can be violated over a number of years before it results in significant harm, recognizing that natural climatic variability will be expected to cause fresh water inflows to fall below recommended levels at some natural frequency. The CRE MFL initially adopted in 2001 was primarily based on the salinity tolerance of one valued ecosystem component (VEC). The VEC was Vallisneria americana or tape grass, a fresh water aquatic plant that tolerates low levels of salinity. A major assumption of this approach was that flow and salinity conditions that protect Vallisneria would also protect other key organisms in the estuary. The 2001 CRE MFL was based on a regression model for estimating the relationship between surface salinity measured at the Ft. Myers monitoring station located in the Ft. Myers Yacht Basin and discharge at the S-79 structure. Although the District monitors surface and bottom salinity at multiple stations in the CRE, the Ft. Myers monitoring station is located centrally in the CRE and at the historical downstream extent of the Vallisneria habitat. The Ft. Myers monitoring station also has the most comprehensive period of record of monitoring data available. The fixed data sondes that monitor surface and bottom salinity are located at 20 percent and 80 percent of total river depth measured at mean low water. The data sondes continuously measure temperature and specific conductivity and, depending on the manufacturer, contains programs that calculate salinity. Those calculations are based on standards recognized and used worldwide by estuarine, marine, and oceanographic scientists.1/ The regression model only implicitly included inflows from the Tidal Caloosahatchee Basin sub-watershed downstream of the S-79 structure. To address this, during the 2003 re-evaluation, a linear reservoir model of Tidal Caloosahatchee Basin inflows was developed. The regression model results showed that a total inflow from S-79 plus the Tidal Caloosahatchee Basin of about 500 cubic feet per second (cfs) was required to produce a salinity of 10 at the Ft. Myers monitoring station. Thus, the 2001 CRE MFL of 300 cfs measured at the S-79 structure would produce a salinity of 10 at the Ft. Myers monitoring station only with additional inflow from the downstream Tidal Caloosahatchee Basin sub- watershed. However, that additional inflow estimate was highly uncertain. The conclusion was that actual flow measurements over a period of time were needed in order to perform more robust calibrations for the new models that were being developed. The Re-evaluation The District's re-evaluation effort began in 2010 after the Conservancy of Southwest Florida filed a petition requesting review of the Caloosahatchee MFL. At the time, the governing board denied the petition but directed staff to undertake additional research and monitoring to ensure a future revision would be supported by the best information available. The first step was to review the September 2000 Final Peer Review Report (PRR) for the initial adoption. The 2000 PRR identified several items the District should consider, including a hydrodynamic salinity model, a numerical population model for Vallisneria, quantification of habitat value for Vallisneria, and documentation of the effects of minimum flows on downstream estuarine biota. The 2000 PRR documented concerns that the current MFL was based solely on the salinity tolerance of Vallisneria and recommended using multiple indicator species. To address those recommendations, the District conducted studies to evaluate multiple ecological indicators, such as zooplankton, aquatic vegetation, oysters, benthic communities, and blue crabs, in the Caloosahatchee from the S-79 structure to beyond Shell Point. In addition, the District collected flow data from the Tidal Caloosahatchee Basin sub-watershed for at least five years to develop watershed, flow, and hydrodynamic models that could properly simulate inflows and salinity responses. When the initial research was complete in 2016, the District published the Draft Science Document containing 11 component studies. In September 2016, the District held a two- day Science Symposium to present the 11 component studies and gather public comment. In response to public comment, the District performed additional evaluations, modeling, and updated the component studies to produce a Draft Technical Document. A Peer Review Panel reviewed the Draft Technical Document, which included the Draft Science Document. The Peer Review Panel has over 150 years of combined relevant scientific experience. The Peer Review Panel toured the CRE by air and water. The District also held a Peer Review Session to engage the public and obtain feedback. The Peer Review Panel's 2017 report (PRP report) stated that the District had "crafted a well-executed and well- documented set of field and laboratory studies and modeling effort" to re-evaluate the CRE MFL. The PRP report supported the 11 component studies, the modeling, the evaluations, and the initial proposed rule language. The Final Technical Document published in January 2018 incorporated five different models and additional science, examining the entire watershed and the criteria itself. The Final Science Document was Appendix A to the Final Technical Document and contained the scientific research and analysis that was done for the 11 component studies, the modeling, and the additional scientific analyses performed in response to public and stakeholder input. The District initiated rule development in December 2017. Rule development workshops were held in February and June 2018 and a stakeholder technical meeting was held in May 2018. The District validated the comments after each workshop and meeting, and revised the proposed rule language. The District published its Notice of Proposed Rule on July 23, 2018.2/ At its September 13, 2018, meeting, the District's governing board held a public hearing on the Proposed Rule. The mayors of Sanibel, Cape Coral, and the Town publicly commented at the hearing. After considering public comments, the governing board adopted the Proposed Rule. The District documented and responded to each public comment, memorializing the information in the Final Technical Document. Later, after the rule workshops and May 2018 technical meeting, the District prepared and presented all of the updated information, including public comment, at the September 2018 adoption hearing. Thus, the District's re-evaluation process was open and transparent. The Re-evaluated Caloosahatchee MFL The science supporting the re-evaluation involved a comprehensive assessment of the effects of diminished dry season fresh water inflows on the CRE. The dry season was chosen for two reasons. First, because it is well-established that the upstream migration of salt combined with reduced fresh water inflow alters the health and productivity of estuarine habitats. Second, because the dry seasons are the times when the current MFL criteria are likely to be exceeded or violated. The 11 component studies targeted specific concerns regarding physical and ecological characteristics. Together they offered a holistic understanding of the negative effects of diminished fresh water inflow on estuarine ecology. The re-evaluated MFL criteria were developed using a resource-based approach. The approach combined the VEC approach and the habitat overlap concept. The habitat overlap approach is based on the idea that estuaries serve a nursery function and salinity determines the distribution of species within an estuary, including distribution during different life stages. The combined approach studied the minimum flow requirements of the various indicator species in terms of magnitude, duration, and return frequency, resulting in the following three aspects of the flow: (1) for magnitude, a 30-day moving average flow of 400 cfs measured at the S-79 structure; for duration, an MFL exceedance occurs during a 365-day period when the 30-day moving average flow at S-79 is below 400 cfs and the 30-day moving average salinity exceeds 10 at the Ft. Myers salinity monitoring station; and (3) for return frequency, an MFL violation occurs when an exceedance occurs more than once in a five-year period. The magnitude component is based on the salinity requirements of Vallisneria, along with results from the 11 studies modeling salinity and considering the salinity requirements of the other VECs. The duration component is based mainly on the estimates of rate of loss of Vallisneria shoots when salinity rises above 10 and the recovery rate of the shoots when salinities fall back below 10. Return frequency was determined based on long-term rainfall records rather than flow measurements from the S-79 structure, which the PRP report felt was well justified. In addition to the component studies, the re-evaluated MFL criteria and existing recovery strategy were evaluated using a suite of hydrologic and ecological models simulating long-term fresh water inflow to the CRE associated with varying management options, the resulting salinity in the CRE, and the ecological response of indicator species that are sensitive to low fresh water inflows. Five models were utilized. Three models simulated fresh water inflows to the CRE: two for S-79 flows; and one for Tidal Caloosahatchee Basin sub-watershed flows. The other two models were a three-dimensional hydrodynamic salinity model and a Vallisneria model. Tidal Caloosahatchee Basin sub-watershed has a number of tributaries that drain fresh water into the CRE. The flow at several of the tributaries was monitored for a five-year period. The measured flow was used to calibrate a watershed model and conduct a long-term simulation. The results showed an average fresh water inflow for all seasons of approximately 430 cfs. The average fresh water inflow during the dry season was 245 cfs while the wet season average fresh water inflow was 613 cfs. Fresh water inflow from the Tidal Caloosahatchee Basin sub- watershed was approximately 20 percent of total fresh water inflow to the CRE while 80 percent was released through the S-79 structure. Petitioners' and Intervenors' Objections 400 cfs Is Too Low Sanibel relied on a memorandum prepared by Dr. David Tomasko (Tomasko report) concerning his company's review of the January 2018 Final Technical Document supporting the Proposed Rule. The Tomasko report, dated October 23, 2018, was in the form of a "technical memorandum" outlining "preliminary findings." The Tomasko report was admitted as a joint exhibit; however, Dr. Tomasko did not testify at the final hearing. The Tomasko report is hearsay that was not used to supplement or explain competent direct evidence. Although hearsay is admissible in this proceeding, it cannot be the sole basis for a finding of fact.3/ See § 120.57(1)(c), Fla. Stat. The District's expert witnesses, who testified at the final hearing, explained that ten of the 11 component studies identified average indicator flows at S-79 ranging from 237 to 545 cfs with standard deviations ranging from plus or minus 57 to plus or minus 774 cfs.4/ The District's experts performed three different evaluations of those flow results. They identified the mean of all the means, calculated the median of the means, and performed a probability density function. The flow results for each of the three evaluations were 381 cfs, 400 cfs, and 365 cfs, with standard deviations that ranged from plus or minus 277 cfs to plus or minus 706 cfs. The District's experts testified that the three flow results are indistinguishable from a statistical point of view. The District chose 400 cfs because it was the highest flow result, and, therefore, the most protective of the three. The Petitioners and Intervenors failed to present evidence that showed any deficiencies in the District's component studies, hydrologic, hydrodynamic, or statistical modeling, or analysis of compliance data. The preponderance of the evidence established that the District used the best available science to calculate the MFL criteria. The District did not act arbitrarily or capriciously when it chose 400 cfs as the magnitude component of the MFL criteria. Inclusion of Salinity in the MFL Criteria The preponderance of the evidence also established that Vallisneria continues to be a particularly useful indicator of environmental conditions in the CRE. It supports essential ecological goods and services, is sensitive to salinity fluctuations at the ecosystem scale, and has value to a variety of stakeholders. The location of Vallisneria habitat in the upper CRE and its negative response to increased salinity made it an excellent candidate as an ecological indicator for fresh water inflow. A combination of field monitoring, mesocosm studies, and modeling results allowed the application of Vallisneria responses as a platform to quantify the effects of high salinity duration in the upper CRE. Component Study Eight reviewed the development and initial application of a simulation model for Vallisneria in the CRE. The Vallisneria model was used to evaluate the salinity conditions that led to net annual mortality, or, in other words, the duration of high salinity exposure that led to decreased Vallisneria shoots versus the duration of low salinity conditions required for recovery. Component Study Seven included an analysis of the relationship between the number of consecutive days where salinity at the Ft. Myers monitoring station was greater than 10 and the percentage of initial Vallisneria shoots remaining at the end of each high salinity period. To further evaluate the duration element associated with the MFL criteria, the field monitoring data contained in Component Study Seven was evaluated with the mesocosm and modeling results. All three sources were analyzed similarly to derive a combined curve showing high salinity exposure duration that is significantly harmful to Vallisneria. The model also provided information that was used to quantify the duration of low salinity conditions required for Vallisneria to recover a relative fraction of shoots after high salinity exposure. Merging the exposure and recovery evaluations facilitated a determination of the unfavorable salinity duration that could significantly harm Vallisneria habitat. With significant harm defined as the environmental harm from which two years are required to recover, the determination was that Vallisneria should experience no more than 55 consecutive days of salinity greater than 10. However, stakeholders expressed concerns regarding the percentage loss of Vallisneria habitat after 55 days of high salinity exposure. In response, the District conducted further analysis of modeling results and revised the duration component to accept the stakeholder recommendation, now expressed in the Proposed Rule, of a 30-day moving average salinity greater than 10. The Petitioners and Intervenors argued that by expressing the MFL as a "flow plus salinity component" the Proposed Rule enlarges, modifies, or contravenes the specific provisions of law implemented. However, the duration component is part of compliance and represents the duration of time that flows can be below the recommended level before causing significant harm to the indicator species Vallisneria. The MFL in the Proposed Rule is a 30-day moving average flow of 400 cfs measured at the S-79 structure. Flow is both measured and operationally controlled at the S-79 structure. However, as previously found, there are other sources of fresh water entering the CRE downstream of the S-79 structure. The District does not control and cannot control these downstream sources, which modeling reveals contribute approximately 20 percent of total fresh water inflow to the CRE. By including salinity, the District can account for fresh water inflows coming from the tidal basin when there are low or no flows at S-79 since the significant harm threshold in the CRE is directly related to salinity tolerance of the indicator species Vallisneria. The District's experts also testified that salinity can be used as a flow component because it is not affected by chemical or biological processes and is an indicator of how much fresh water is entering the system.5/ Salinity is included in the duration component of the MFL criteria and is an exceedance criterion because the science established that the salinity gradient is crucial to the overall health of the CRE. Including salinity in the duration component of the MFL criteria achieves the purpose of the statutory mandate to set MFLs that are designed to avoid significant harm to the water resources and ecology of the area. No Unit of Measurement for Salinity The Petitioners and Intervenors argued that the Proposed Rule is vague because the language does not contain any units for salinity. The UNESCO calculation is the standard equation used by the estuarine and marine science community to convert specific conductivity and temperature data to salinity. The District's experts testified that the UNESCO calculation reports salinity as a ratio, which is a dimensionless number and has no units. The District uses the UNESCO calculation and performs the conversion in a spreadsheet that it maintains. In some instances, certain brands of data sondes are programmed to perform the calculation and provide the salinity number. The preponderance of the evidence established that use of the practical salinity unit (PSU) is not technically correct. PSU is a misnomer, a pseudo-unit equivalent to a unitless salinity number. The Petitioners' and Intervenors' expert witness, Dr. Anthony Janicki, conceded there is no difference between reporting salinity as unitless or as PSU. And although technically incorrect, he suggested that placing the word "practical" or putting "PSU" in the Proposed Rule would reduce confusion and vagueness. However, since the preponderance of the evidence established that use of PSU is not technically correct, the use of a pseudo-unit would actually cause confusion instead of reduce confusion. The Petitioners and Intervenors also argued that the Proposed Rule is vague because the language does not state that the method of measuring salinity is specific conductivity, or that the equation used to convert specific conductivity and temperature data to salinity is the standard developed by UNESCO. The Petitioners and Intervenors essentially argued that members of the public and those who may be regulated by the Proposed Rule are left to guess about the method or methods used to measure salinity. Because the Proposed Rule identifies and locates by latitude and longitude coordinates the Ft. Myers salinity monitoring station as the location where salinity would be measured for compliance, the Proposed Rule language is not vague. The Proposed Rule is not vague because it does not describe the data sondes, what parameters are measured by the data sondes, and how those parameters are converted to a salinity number. Salinity Monitoring Location and Mean Low Water The Petitioners and Intervenors argued that the Proposed Rule is vague for failing to define the phrase "20% of the total river depth at mean low water," and is arbitrary or capricious for failing to include more than one salinity monitoring station. Total river depth or the water column depth is a standardized measurement that is made from the surface down to the bottom of the river bed. Mean low water is commonly understood in the oceanographic and coastal sciences community as the average of all low tides over the time period defined as the national tidal datum epic. The District's expert witness, Dr. Cassondra Armstrong, testified that mean low water can be determined by using two documents prepared by the National Oceanographic and Atmospheric Administration (NOAA), i.e., the NOAA tide charts and glossary. The District's expert witnesses testified that "20% of the total river depth at mean low water" is the location of the data sonde at the Ft. Myers monitoring station that measures surface salinity. This is also the depth at which Vallisneria is located in the CRE. Since, the Proposed Rule language simply identifies the location of the existing data sonde at the Ft. Myers salinity monitoring station, the language is not vague. The preponderance of the evidence established that the Ft. Myers salinity monitoring station has two salinity data sondes, the one at 20 percent of the total river depth and the other at 80 percent. The data sonde at 20 percent of the total river depth was identified in the Proposed Rule for the following reasons. First, this is the depth where Vallisneria grows and is representative of the salinity exposure for Vallisneria. Second, it guarantees the data sonde is always submerged and able to record data. Third, it has the most comprehensive period of record of monitoring data available. As previously found, Vallisneria continues to be a particularly useful indicator of environmental conditions in the CRE. The location of Vallisneria habitat in the upper CRE and its negative response to increased salinity made it an excellent candidate as an ecological indicator for fresh water inflow. Because the preponderance of the evidence established that Vallisneria continues to be a particularly useful indicator of environmental conditions in the CRE, the choice of the Ft. Myers monitoring station is not arbitrary or capricious. Water Resource Functions vs. Environmental Values The District's MFL rule specifies that a water body's specific water resource functions addressed by an MFL are defined in the MFL technical support document. See Fla. Admin. Code R. 40E-8.021(31). The Final Technical Document identified the relevant water resource functions of the CRE as fish and wildlife habitats, estuarine resources, water supply, recreation, navigation, and flood control. The Petitioners and Intervenors argued that the environmental values listed in Florida Administrative Code Chapter 62-40, also known as the Water Resource Implementation Rule, were not adequately addressed in the Final Technical Document. A proposed rule challenge is not the proper forum to determine whether a proposed rule is consistent with the Water Resource Implementation Rule. Such a determination is within the exclusive jurisdiction of the Department of Environmental Protection under section 373.114(2), Florida Statutes. Consistency of the District's Proposed Rule with the Water Resource Implementation Rule of the Department of Environmental Protection is not a basis in this proceeding for a finding that the Proposed Rule is an invalid exercise of delegated legislative authority. Other Issues The Petitioners and Intervenors raised other issues during the hearing, although not specifically argued in their proposed final order. Since those issues were identified as disputed issues in the Joint Pre-hearing Stipulation, they are addressed below. 1. Elimination of Single-day Exceedance Criterion During the rulemaking process, Sanibel and SCCF sent the District a letter requesting justification for eliminating the single-day exceedance salinity criterion in the current rule. The District staff evaluated the available Caloosahatchee River MFL compliance record, dating back to when the MFL was adopted in September 2001. The District maintains a historical record of MFL monitoring data and reviewed it to determine if the single-day exceedance salinity criterion was exceeded before the 30-day moving average criterion. The compliance record showed five exceedance events of the single-day salinity criterion have occurred. However, the compliance record also showed that the 30- day moving average salinity criterion had already been exceeded before the five events occurred. In other words, the single-day criterion was never exceeded before the 30-day moving average criterion. Based on this evaluation, the District eliminated the single-day exceedance salinity criterion because it did not provide any additional resource protection. The District's decision was not arbitrary or capricious. 2. Not Using the Latest Model Evaluation of recommended MFL criteria and a recovery strategy for the CRE were greatly aided by integration of a suite of hydrologic and ecological models simulating (1) long-term fresh water inflow associated with varying management options, (2) the resulting salinity in the estuary, and (3) ecological response of indicator species that are sensitive to low fresh water inflows. Five models were specifically utilized, including three models for simulations of fresh water inflows to the CRE, a three-dimensional hydrodynamic salinity model, and a Vallisneria model. The three models simulating fresh water inflows included (1) the South Florida Water Management Model (SFWMM) to simulate fresh water discharges at S-79, which includes regional operations of Lake Okeechobee and incorporates Caloosahatchee River irrigation demands; (2) the C-43 Reservoir Model, which uses the SFWMM-simulated daily S-79 flow as input and simulates the management benefit of the C-43 Reservoir; and (3) the Watershed (WaSh) Model to simulate tidal tributary inflow from the Tidal Caloosahatchee Basin sub-watershed. The Caloosahatchee Hydrodynamic/Salinity Model was based on the Curvilinear Hydrodynamic Three-dimensional Model (CH3D) modeling framework with the functionality of simulating the spatial salinity structure across the entire estuary. The Vallisneria Model took the CH3D modeled salinity as input to simulate Vallisneria growth at critical locations in the estuary. The District did review the more recent Environmental Fluid Dynamic Code (EFDC) model developed for the Caloosahatchee Total Maximum Daily Load (TMDL) and being used by the Department of Environmental Protection. The District's expert witness, Dr. Detong Sun, testified that until 2014, the hydrodynamic part of the EFDC model was not working well. He testified that in 2016, the District still had concerns and suggested the use of the District's continuous monitoring data from seven locations across the CRE rather than grab samples for model calibration. Dr. Sun's opinion was that the EFDC model has improved in recent years, but was still behind the CH3D model in terms of performance. The District's expert witness, Dr. Amanda Kahn, testified that the water quality component of the EFDC model was not appropriate for this re-evaluation because the MFL is about water quantity, not water quality. The water quality component of the EFDC model addresses nutrient loadings, not minimum flows. Dr. Kahn also testified that in setting MFL criteria for the CRE, salinity was not a water quality component. Salinity was used as a water quantity component because it does not change with biological processes and can be a measure of how much fresh water is coming into the system. Based on a preponderance of the evidence, the District's decision not to use the EFDC model was not arbitrary or capricious. 3. Seasonality The Petitioners and Intervenors argued that the District is required to set an MFL that varies by season. For the CRE, the District set MFL criteria that protect the system from low flow that would occur in either the wet or dry season. As previously found, the re-evaluation studies focused on the dry season for two reasons: first, because it is well-established that the upstream migration of salt combined with reduced fresh water inflow alters the health and productivity of estuarine habitats; and second, because the dry seasons are the times when the current MFL criteria are likely to be exceeded or violated. The MFL statute states that "when appropriate, [MFLs] may be calculated to reflect seasonal variations." § 373.042(1)(b), Fla. Stat. The preponderance of the evidence showed that for the CRE, it was not necessary to set an MFL that varied by season. Improper Purpose The Petitioners, Sanibel, Cape Coral, and the Town, did not participate in this proceeding primarily to harass or to cause unnecessary delay or for frivolous purpose or to needlessly increase the cost of litigation. The Petitioners did not participate in this proceeding for an improper purpose. The Intervenors, Fort Myers, Estero, Bonita Springs, and CCP, did not participate in this proceeding primarily to harass or to cause unnecessary delay or for frivolous purpose or to needlessly increase the cost of litigation. The Intervenors did not participate in this proceeding for an improper purpose.
The Issue The issue is whether the applicant for an Environmental Resource Permit ("ERP"), the City of Deltona ("City" or "Applicant"), has provided reasonable assurance that the system proposed complies with the water quantity, environmental, and water quality criteria of the St. Johns River Water Management District's ("District") ERP regulations set forth in Florida Administrative Code Chapter 40C-4, and the Applicant's Handbook: Management and Storage of Surface Waters (2005).
Findings Of Fact The District is a special taxing district created by Chapter 373, Florida Statutes, charged with the duty to prevent harm to the water resources of the District, and to administer and enforce Chapter 373, Florida Statutes, and the rules promulgated thereunder. The City of Deltona is a municipal government established under the provisions of Chapter 165, Florida Statutes. The Lake Theresa Basin is comprised primarily of a system of interconnected lakes extending from Lake Macy in the City of Lake Helen to the Butler Chain of Lakes (Lake Butler and Lake Doyle). The Lake Theresa Basin is land-locked and does not have a natural outfall to Lake Monroe and the St. Johns River. In 2003, after an extended period of above-normal rainfall in the Deltona area, the lakes within the land-locked Lake Theresa Basin staged to extremely high elevations that resulted in standing water in residential yards, and rendered some septic systems inoperable. Lake levels within the Lake Theresa Basin continued to rise and were in danger of rising above the finished floor elevations of some residences within the basin. On March 25, 2003, the District issued an Emergency Order (F.O.R. No. 2003-38) authorizing the construction and short-term operation of the Lake Doyle and Lake Bethel Emergency Overflow Interconnection. Since wetland and surface water impacts would occur, the Emergency Order required the City of Deltona to obtain an ERP for the system. The project area is 4.1 acres, and the system consists of a variable water structure on the west shore of Lake Doyle connected to a series of pipes, swales, water control structures, and wetland systems which outfall to a finger canal of Lake Bethel, with ultimate discharge to Lake Monroe and the St. Johns River. The first segment of the system extends downstream from the weir structure on the west shore of Lake Doyle via a pipe entrenched in the upland berm of the Sheryl Drive right-of-way. The pipe passes under Doyle Road and through xeric pine-oak uplands to the northeast shore of a large (approximately 15 acres) deepwater marsh. Water flows south through the deepwater marsh where it outfalls through four pipes at Ledford Drive. Two of the four pipes are overflow structures, controlled by canal gates. The pipes at Ledford Drive discharge into a ditch and into a large (greater than 20 acres) shallow bay swamp. The south end of the bay swamp is defined (and somewhat impounded) by a 19th Century railroad grade. Water flows through the bay swamp where it outfalls through five pipes at the railroad grade. Three of the five pipes are overflow structures, controlled by channel boards. The pipes at the railroad grade discharge to a 1500-foot long finger canal that was dug some time during the period 1940-1972 from the north central shore of Lake Bethel. The overflow interconnection system has three locations whereby the system can be shut down: 1) Lake Doyle--a control weir, controlled by three sluice gates; 2) Ledford Drive--two thirty-inch reinforced concrete pipes, controlled by canal gates; and 3) railroad grade--three thirty-inch reinforced concrete pipes, controlled by channel boards (collectively referred to as "Overflow Structures"). The Overflow Structures are designed to carry the discharge of water from Lake Doyle to Lake Bethel. With the Overflow Structures closed the system returns to pre-construction characteristics, meaning there will be no increase or decrease in the quantity or quality of water throughout the path of the system as a result of the project. An unequivocal condition of the permit is that the system would operate with all of the Overflow Structures closed. As an added assurance, the City proposes to place a brick and mortar plug in the Lake Doyle weir structure outfall pipe to prevent any discharge from the weir. The City has submitted to the District preliminary plans for a future phase in which the system would be modified for the purpose of alleviating high water levels within the Lake Theresa Basin when the water level in Lake Doyle rises above an elevation of 24.5 feet. The District shall require a separate permit application to be submitted for such future plans. Petitioner, Barbara Ash, has lived on Lake Theresa for 19 years. Ms. Ash lives upstream from the area of the weir that will be plugged in accordance with the ERP. She does not trust either the City of Deltona to comply with or the District to enforce the conditions of the ERP applied for by the City. Petitioner, Barbara Ash, also served as the qualified representative for Petitioners, Francell Frei, Bernard J. and Virginia Patterson, and Ted and Carol Sullivan. Ms. Ash represented that Ms. Frei has lived on Lake Theresa for 12 years, and both the Pattersons and the Sullivans live on Lake Louise, which is within the area of concern in this proceeding. Petitioner, Diana Bauer, has lived on Lake Theresa since February 2004. She fears that the lake will become too dry if the system is allowed to flow. She also believes the wildlife will be adversely affected if the water levels are too low since many species need a swampy or wet environment to thrive. She fears her property value will decrease as a result of the approval of the ERP. She also does not trust either the City to comply with or the District to enforce the conditions of the ERP. Petitioner, Howard Ehmer, lives two to three hundred yards down Lake Theresa from Ms. Bauer. He is concerned about the lake bed being too dry and attracting people on all terrain vehicles who enjoy driving around the lake bottom. He is concerned about his property value decreasing if the lake bed is dry. Further, when the lake level is too low, people cannot enjoy water skiing, boating, and fishing on Lake Theresa. Petitioner, Phillip Lott, a Florida native, has also owned and lived on property abutting Lake Theresa since 1995. Mr. Lott has a Ph.D. in plant ecology, and M.P.A. in coastal zone studies, an M.B.A. in international business, and a B.S. in environmental resource management and planning. Mr. Lott has been well acquainted with the water levels on Lake Theresa for many years. Based upon his personal observations of the lake systems in the Deltona area over the years, Mr. Lott has seen levels fluctuate greatly based upon periods of heavy and light rainfall. Mr. Lott is concerned that the District will permit the City to open the weir to let water flow through the system and cause flooding in some areas and low water levels in other areas. He fears that the District will allow the water to flow and upset the environmental balance, but he admits that this ERP application is for a closed system that will not allow the water to flow as he fears. Mr. Lott similarly does not trust the City to comply with and the District to enforce the conditions of the ERP. Petitioners, James E. and Alicia M. Peake, who were represented by Steven L. Spratt at hearing as their qualified representative, live on Lake Louise, which is interconnected with the Lake Theresa basin. The Peakes are concerned that if the level of Lake Louise drops below 21 feet, nine inches, they will not be able to use the boat launch ramps on the lake. Petitioner, Steven L. Spratt, also lives on Lake Louise, and is concerned about the water levels becoming so low that he cannot use the boat launch on the lake. He has lived on the lake since 2000, and remembers when the water level was extremely low. He fears that approval of the ERP in this case will result in low levels of water once again. Petitioner, Gloria Benoit, has live on Lake Theresa for two years. She also enjoys watching recreational activities on the lake, and feels that approval of the ERP will devalue her lakefront property. Ms. Benoit appeared at the first day of the hearing, but offered no testimony on her behalf. J. Christy Wilson, Esquire, appeared prior to the final hearing as counsel of record for Petitioners, Steven E. Larimer, Kathleen Larimer, and Helen Rose Farrow. Neither Ms. Wilson nor any of the three Petitioners she represented appeared at any time during the hearing, filed any pleadings seeking to excuse themselves from appearing at the final hearing, or offered any evidence, testimony, pre- or post- hearing submittals. Petitioner, Gary Jensen, did not appear at hearing, did not file any pleadings or papers seeking to be excused from appearing at the final hearing, and did not offer any evidence, testimony, pre- or post-hearing submittals. Both the City and the District recognize that areas downstream from the project site, such as Stone Island and Sanford, have experienced flooding in the past in time of high amounts of rainfall. The system proposed by the City for this ERP will operate with the overflow structures closed and a brick and mortar plug in the outfall pipe to prevent water flow from Lake Doyle to Lake Bethel. So long as the overflow structures are closed, the system will mimic pre-construction flow patterns, with no increase in volume flowing downstream. The District has considered the environment in its proposed approval of the ERP. The area abutting the project is little urbanized and provides good aquatic and emergent marsh habitat. With the exception of the western shore area of the deepwater marsh ("west marsh area"), the bay swamp and remaining deepwater marsh area have good ecological value. In the 1940's, the west marsh area was incorporated into the drainage system of a poultry farm that occupied the site. This area apparently suffered increased nutrient influxes and sedimentation that contributed to a proliferation of floating mats of aquatic plants and organic debris. These tussocks reduced the deepwater marsh's open water and diminished the historical marsh habitat. Water under the tussocks is typically anoxic owing to total shading by tussocks and reduced water circulation. Thick, soft, anaerobic muck has accumulated under the matted vegetation. Exotic shrubs (primrose willow Ludwigia peruvania) and other plants (cattails Typha spp.) dominate the tussocks. The construction of the project, from the 2003 Emergency Order, resulted in adverse impacts to 1.3 acres of wetlands having moderately high- to high ecological value and 0.2 acres of other surface waters. The 0.2 acre impact to other surface waters was to the lake bottom and the shoreline of Lake Doyle where the weir structure was installed. The 0.3 acres of wetland impacts occurred at the upper end of the deepwater marsh where the pipe was installed. The largest wetland impact (1.0 acre) was to the bay swamp. The bay swamp is a shallow body dominated by low hummocks and pools connected inefficiently by shallow braided channels and one acre is filled with a 1-2 foot layer of sediment following swamp channelization. Disturbance plants (e.g., primrose willow, Ludwigia peruvania, and elderberry Sambucus Canadensis) now colonize the sediment plume. Pursuant to the District's elimination and reduction criteria, the applicant must implement practicable design modifications, which would reduce or eliminate adverse impacts to wetlands and other surface waters. A proposed modification, which is not technically capable of being done, is not economically viable, or which adversely affects public safety through endangerment of lives or property is not considered "practicable." The City reduced and/or eliminated the impacts to the lake bottom and shoreline of Lake Doyle and deepwater marsh, to the extent practicable. The impacts were the minimum necessary to install the weir structure and pipe for the system; the weir structure and pipe were carefully installed on the edges of the wetland and surface water systems, resulting in a minimum amount of grading and disturbance. To compensate for the loss of 1.3 acres of wetlands and 0.2 acres of other surface waters, the City proposes to preserve a total of 27.5 acres of wetlands, bay swamp, marsh, and contiguous uplands. Included in this 27.5 acres are 6.4 acres of the west marsh, which are to be restored. The parties stipulated that the mitigation plan would adequately compensate for losses of ecological function (e.g. wildlife habitat and biodiversity, etc.) resulting from the project. Water quality is a concern for the District. Lake Monroe is included on the Florida Department of Environmental Protection's verified list of impaired water bodies for nitrogen, phosphorous, and dissolved oxygen. Water quality data for Lake Monroe indicate the lake has experienced high levels of nitrogen and phosphorous and low levels of dissolved oxygen. Prior to construction of the project, there was no natural outfall from the Lake Theresa Basin to Lake Monroe and therefore no contribution from this basin to nitrogen and phosphorous loadings to Lake Monroe. Lake Colby, Three Island Lakes (a/k/a Lake Sixma), and the Savannah are surface waters within the Lake Theresa Basin for which minimum levels have been adopted pursuant to Florida Administrative Code Chapter 40C-8. The system will operate with the overflow structures closed and a brick and mortar plug in the outfall pipe to prevent water flow from Lake Doyle to Lake Bethel, resulting in no outfall from the Theresa Basin to Lake Monroe. Minimum flows established for surface waters within the Lake Theresa Basin will not be adversely impacted. Under the first part of the secondary impact test, the City must provide reasonable assurance that the secondary impacts from construction, alteration, and intended or reasonable expected use of the project will not adversely affect the functions of adjacent wetlands or surface waters. The system is designed as a low intensity project. As proposed, little activity and maintenance are expected in the project site area. The reasonably expected use of the system will not cause adverse impacts to the functions of the wetlands and other surface waters. None of the wetland areas adjacent to uplands are used by listed species for nesting or denning. In its pre-construction state, the project area did not cause or contribute to state water quality violations. Under the second part of the secondary impact test, the City must provide reasonable assurance that the construction, alteration, and intended or reasonably expected uses of the system will not adversely affect the ecological value of the uplands to aquatic or wetland dependent species for enabling existing nesting or denning by these species. There are no listed threatened or endangered species within the project site area. Under the third part of the secondary impact test, and as part of the public interest test, the District must consider any other relevant activities that are closely linked and causally related to any proposed dredging or filling which will cause impacts to significant historical and archaeological resources. When making this determination, the District is required, by rule, to consult with the Division of Historical Resources. The Division of Historical Resources indicated that no historical or archaeological resources are likely present on the site. No impacts to significant historical and archaeological resources are expected. Under the fourth part of the secondary impact test, the City must demonstrate that certain additional activities and future phases of a project will not result in adverse impacts to the functions of wetlands or water quality violations. The City has submitted to the District preliminary plans for a future phase in which the system would be modified for the purpose of alleviating high water levels within the Lake Theresa Basin when the level in Lake Doyle rises above an elevation of 24.5 feet. Based upon the plans and calculations submitted, the proposed future phase, without additional measures, could result in minor increases in the loadings of nitrogen and phosphorous to Lake Monroe. Lake Monroe is included on the Florida Department of Environmental Protection's verified list of impaired water bodies due to water quality data indicating the lake has experienced high levels of nitrogen and phosphorous, and low levels of dissolved oxygen. Under this potential future phase, there would be an outfall from the Lake Theresa Basin to Lake Monroe. To address the impact on water quality of this potential future phase, the City has submitted a loading reduction plan for nitrogen, phosphorous, and dissolved oxygen. The plan includes compensating treatment to fully offset the potential increased nutrient loadings to Lake Monroe. Specifically, the loading reduction plan includes: Construction and operation of compensating treatment systems to fully offset anticipated increased nutrient loadings to Lake Monroe. Weekly water quality monitoring of the discharge from Lake Doyle for total phosphorous and total nitrogen. A requirement that the overflow structure be closed if the total phosphorous level reaches 0.18 mg/l or higher or the total nitrogen level reaches 1.2 mg/l or higher in any given week and will remain closed until levels fall below those limits. The implementation of these water quality mitigation measures will result in a net improvement of the water quality in Lake Monroe for nitrogen, phosphorous, or dissolved oxygen. The future phase was conceptually evaluated by the District for impacts to wetland functions. The future phase as proposed could result in adverse impacts to wetland functions. Operation of the system with the overflow structures open could impact the bay swamp and deepwater marsh. The City has demonstrated that any adverse impacts could be offset through mitigation. Based upon the information provided by the City and general engineering principles, the system is capable of functioning as proposed. The City of Deltona will be responsible for the operation, maintenance, and repair of the surface waster management system. A local government is an acceptable operation and maintenance entity under District rules. The public interest test has seven criteria. The public interest test requires the District to evaluate only those parts of the project actually located in, on, or over surface waters or wetlands, to determine whether a factor is positive, neutral, or negative, and then to balance these factors against each other. The seven factors are as follows: the public health, safety, or welfare of others; conservation of fish and wildlife and their habitats; fishing, recreational value, and marine productivity; temporary or permanent nature; 5) navigation, water flow, erosion, and shoaling; 6) the current condition and relative value of functions; and 7) historical and archaeological resources. There are no identified environmental hazards or improvements to public health and safety. The District does not consider impacts to property values. To offset any adverse impacts to fish and wildlife and their habitats, the City has proposed mitigation. The areas of the project in, on, or over wetlands do not provide recreational opportunities. Construction and operation of the project located in, on, or over wetlands will be permanent in nature. Construction and operation of the project located in, on, or over wetlands will not cause shoaling, and does not provide navigational opportunities. The mitigation will offset the relative value of functions performed by areas affected by the proposed project. No historical or archaeological resources are likely on the site of the project. The mitigation of the project is located within the same drainage basin as the project and offsets the adverse impacts. The project is not expected to cause unacceptable cumulative impacts.
Recommendation Based upon the Findings of Fact and Conclusions of Law, it is RECOMMENDED that a Final Order be entered granting the City of Deltona's application for an environmental resource permit with the conditions set forth in the Technical Staff Report, and dismissing the Petitions for Formal Administrative Hearing filed by Gary Jensen in Case No. 04-2405, and by Steven E. Larimer, Kathleen Larimer, and Helen Rose Farrow in Case No. 04-3048. DONE AND ENTERED this 27th day of May, 2005, in Tallahassee, Leon County, Florida. S ROBERT S. COHEN Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 27th day of May, 2005. COPIES FURNISHED: George Trovato, Esquire City of Deltona 2345 Providence Boulevard Deltona, Florida 32725 Diana E. Bauer 1324 Tartan Avenue Deltona, Florida 32738 Barbara Ash, Qualified Representative 943 South Dean Circle Deltona, Florida 32738-6801 Phillip Lott 948 North Watt Circle Deltona, Florida Howard Ehmer Nina Ehmer 32738-7919 1081 Anza Court Deltona, Florida 32738 Francell Frei 1080 Peak Circle Deltona, Florida 32738 Bernard T. Patterson Virginia T. Patterson 2518 Sheffield Drive Deltona, Florida 32738 Kealey A. West, Esquire St. Johns River Water Management District 4049 Reid Street Palatka, Florida 32177 J. Christy Wilson, Esquire Wilson, Garber & Small, P.A. 437 North Magnolia Avenue Orlando, Florida 32801 Gloria Benoit 1300 Tartan Avenue Deltona, Florida 32738 Gary Jensen 1298 Tartan Avenue Deltona, Florida 32738 James E. Peake Alicia M. Peake 2442 Weatherford Drive Deltona, Florida 32738 Steven L. Spratt 2492 Weatherford Drive Deltona, Florida 32738 Ted Sullivan 1489 Timbercrest Drive Deltona, Florida 32738 Kirby Green, Executive Director St. Johns River Water Management District 4049 Reid Street Palatka, Florida 32177
The Issue Whether the applicants own the property in question? Whether the project would comply with the criteria of the South Florida Water Management District contained in Basis of Review for Surface Water Management Systems, specifically Sections 3.1.3 and 3.2? Whether flood protection would be inadequate or septic tanks unsuitable or whether the public health and safety would be compromised or the ultimate purchasers be deprived of usage of the property due to inundation in violation of Chapter 373, Florida Statutes (1981), or Rule 40E-4.301(1), Florida Administrative Code?
Findings Of Fact Ms. Williamson and Messrs. Leggett and Collins hold in fee simple a triangular 117.24-acre parcel in Okeechobee County as tenants in common under a warranty deed executed in their favor by one W. C. Sherman. They propose to develop the property as a trailer park (complete with airstrip) large enough to accommodate 109 trailers. To this end, soil would be dug up from the center of the property and used to raise the elevation of the surrounding land above the 100-year floodplain. (T. 47) The applicants have a dredging permit from the Department of Environmental Regulation authorizing them to excavate 629,889 cubic yards. They are proposing to dig to a depth of 76 feet below ground. This would create an 18-acre body of water ("Poe's Lake") which would overflow a V-notched weir into a county canal. The county canal would take the water to C- 38, one of the large canals to which the Kissimmee River has been relegated, at a point about 18 miles upstream from Lake Okeechobee. Runoff would wash over residential lots and roadways; the site would be graded to assure drainage into Poe's Lake. The minimum road crest elevation would be 30 feet NGVD ("[a]round twenty-nine feet" T.52), as compared to the control elevation for surface waters of 28.5 feet NGVD. WATER QUALITY The developers plan septic tanks for wastewater treatment. At the close of all the evidence, counsel for the applicants stated that sanitary sewers could be installed instead. Respondents' Proposed Recommended Order, p. With all the housing units in use, at least 10,900 gallons of effluent would seep into the ground from the tanks daily. There would be some evapotranspiration, but all the chemicals dissolved in the effluent would eventually end up in the groundwater. During the dry season, septic tank effluent would cause mounding of the groundwater and some groundwater movement toward, and eventual seepage into, Poe's Lake. The eventual result would be eutrophication and the growth of algae or macrophytes on the surface of Poe's Lake. This would cause dissolved oxygen violations in Poe's Lake. Discharges from the lake would inevitably occur, aggravating the situation in C-38, which already experiences dissolved oxygen levels below 5.0 milligrams per liter in the rainy summer months. Some fraction of the nutrients in the effluent from the septic tanks would ultimately reach Lake Okeechobee itself. The sheer depth of the excavation would create another water quality problem. Under the anaerobic conditions that would obtain at the bottom of Poe's Lake, bacteria acting on naturally occurring sulfates would produce hydrogen sulfide, ammonia and various other reduced organic nitrogen compounds. These substances are toxic to human beings and would, in some indeterminate quantity, enter the groundwater from Poe's Lake. This would affect the taste and perhaps the potability of water from any well nearby. It would be "possible to design a better system where there would be nutrient removal and a greatly reduced probability of violation of the dissolved oxygen criterion and obviation of the potential for ground water contamination." (T. 200) Installation of a baffle on the weir would serve to prevent buoyant debris from entering surface waters of the state. BASIS OF REVIEW Official recognition was taken of the "Basis of Review for Surface Water Management Permit Applications Within the South Florid Water Management District," parts of which all parties agree pertain in the present proceedings. Among the criteria stated in this document are: 3.1.3 Waste and Wastewater Service - Potable water and wastewater facilities must be identified. The Applicant for a Surface Water Management Permit must provide information on how these services are to be provided. If wastewater disposal is accomplished on-site, additional information will normally be requested regarding separation of waste and storm systems. 3.2.1.4 Flood protection - Building floors shall be above the 100 year flood elevations, as determined from the most appropriate information, including Federal Flood Insurance Rate Maps. Both tidal flooding and the 100 year, 3 day storm event shall be considered in determining elevations. b. Commercial and industrial projects to be subdivided for sale are required to have installed by the permittee, as a minimum, the required water quality system for one inch of runoff detention or one half inch of runoff retention from the total developed site. State standards - Projects shall be designed so that discharges will meet State water quality standards, as set forth in Chapter 17-3, Retention/detention criteria - Retention and/or detention in the overall system, including swales, lakes, canals, greenways, etc., shall be provided for one of the three following criteria or equivalent combinations thereof . . . Wet detention volume shall be provided for the first inch of runoff from the developed project, or the total runoff from a 3-year, 1-hour rainfall event, whichever is greater. Dry detention volume shall be provided equal to 75 percent of the above amounts computed for wet detention. Retention volume shall be provided equal to 50 percent of the above amounts computed for wet detention. 3.2.4.1 Discharge structures should include gratings for safety and maintenance purposes. The use of trash collection screens is desirable. Discharge structures shall include a "baffle" system to encourage discharge from the center of the water column rather than the top or bottom. 3.2.4.4.2 b. Control elevations should be no higher than 2 feet below the minimum road centerline elevation in the area served by the control device in order to protect the road subgrade. Simply detaining runoff before discharging it offsite will not insure that the water quality standards set forth in Chapter 17-3 will be met. Whether the standards are met depends on, among other things, the composition of the runoff. FWF'S INTEREST Among the purposes of the FWF, as stated in its charter, Shall be to further advance the cause of conservation in environmental protection, to perpetuate and conserve fish and wildlife, oil, water, clean air, other resources of the State and so manage the use of all natural resources, that this generation and posterity will receive the maximum benefit from the same. (T. 248-9) Four or five thousand Floridians belong to FWF. FWF members "make use" (T. 250) of the waters of Lake Okeechobee, the Kissimmee River and specifically of the waters in C-38. PROPOSED FINDINGS CONSIDERED The applicants and FWF filed post hearing memoranda and proposed recommended orders including proposed findings of fact which have been considered in preparation of the foregoing findings of fact. They have been adopted, in substance, for the most part. To the extent they have been rejected, they have been deemed unsupported by the weight of the evidence, immaterial, cumulative or subordinate.
Recommendation Upon consideration of the foregoing, it is RECOMMENDED: That SFWMD deny the pending application for surface water management permit. DONE and ENTERED this 29th day of November, 1983, in Tallahassee, Florida. ROBERT T. BENTON II, Hearing Officer Division of Administrative Hearings The Oakland Building 2009 Apalachee Parkway Tallahassee, Florida 32301 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 29th day of November, 1983. COPIES FURNISHED: Dennis J. Powers, Esquire Gunster, Yoakley, Criser & Stewart 400 South County Road Palm Beach 33480 Terrell K. Arline, Esquire 325-C Clematis Street West Palm Beach, Florida 33401 Irene Kennedy Quincey, Esquire 3301 Gun Club Road West Palm Beach, Florida 33406 Charles P. Houston, Esquire 324 Datura Street, Suite 106 West Palm Beach, Florida 33401
The Issue Whether proposed Water Use Permits Nos. 20012236.000 (the Potable Water Permit) and 20012239.000 (the Irrigation Permit) and proposed Environmental Resource Permit No. 43020198.001 (the ERP) should be issued by the Respondent, Southwest Florida Water Management District (the District).
Findings Of Fact The Parties The individual Petitioners, Farnsworth, Roop, and Varnum are all Florida citizens and residents of Sumter County. None of the individual Petitioners offered any evidence relating to direct impacts that the ERP would have on their property. With respect to the Potable Water and Irrigation Permits, anecdotal testimony was presented by Petitioners and Wing and Weir relating to well failures and sinkholes in the area. Two Petitioners, Roop and Varnum, live in close proximity to the property encompassed by the three permits. Petitioner Farnsworth’s property is approximately three and a half miles from the project boundary. Wing and Weir live approximately four and a half to five and 18 miles from the project site, respectively. SCAID is a Florida not-for-profit corporation that has approximately 130 members. Farnsworth, the president of SCAID, identified only Roop and Varnum as members who will be directly affected by the activities to be authorized by the permits. The District is the administrative agency charged with the responsibility to conserve, protect, manage, and control water resources within its boundaries. The Utility and the Authority are limited liability companies, of which the Villages Inc. is the managing partner. The Villages Inc. is a Florida corporation. The Utility, which will serve as a provider of potable water, is regulated by the Public Service Commission, while the Authority which will provide irrigation water, is not. The Villages Inc., Development The Villages Inc. is a phased, mixed use, retirement community, which is located at the intersecting borders of Lake, Marion, and Sumter Counties. Development has been on going since at least 1983, with a current planning horizon of the year 2019. Currently, there are 15,362 constructed dwelling units in the built-out portion of the Villages Inc. that are located in Lake County and the extreme northeast corner of Sumter County. The portion located in Marion County is 60 percent complete, with 750 homes completed and another 600 under construction. Approximately another 22,000 residences are planned for development in Sumter County by the year 2012, with an additional 10,200 by the year 2019. However, the Potable Water and Irrigation Permits are only for a six-year duration, and the ERP has a duration of only six years. None of the permits authorize development activities beyond that time frame. Generally speaking, the three permits at issue include an area owned by the Villages Inc. that lies in northeast Sumter County South of County Road 466 and North of County Road 466A. However, it is not projected that this entire area will be built-out during the terms of three proposed permits. Area Hydrology and Topography In the area of the Villages Inc., there is a layer of approximately five to ten feet of sand at the land surface, which is underlain by ten to 70 feet of a clayey sand. Both of these constitute the surficial aquifer and are extremely leaky, allowing water to percolate easily through to a lower layer. Except in the vicinity of Lake Miona, there is no water in the surficial aquifer except after rainfall events. The clayey sand layer is underlain by the Upper Floridan, a limestone unit. The top of this limestone layer ("the top of the rock") occurs at fluctuating depths of between 30 and 70 feet. At approximately 350 to 400 feet below the land surface, there begins a transition to a denser unit that serves as a confining layer between the Upper Floridan production zone and the Lower Floridan production zone. This confining layer, which was confirmed by drilling at three locations in the Villages Inc. is approximately 150 feet thick in the area of the Villages Inc. Another transition, this time to a less dense formation, begins at approximately 550 to 600 feet, which is considered the top of the Lower Floridan production zone. While testing conducted on the project site indicated almost no leakage between the Upper and Lower Floridan production zones, it is generally known by experts that there is some exchange of water between the two layers. Both the Upper and the Lower Floridan contain water that meets potable water standards and both are considered water production zones. The water quality of the two zones is not significantly different. The project area is prone to karst activity, that is, the formation of sinkholes. Sinkholes are formed as a result of the collapse of the overburden above subsurface cavities which have been formed through a very gradual dissolution of limestone, thus resulting in a "sink" at the land surface. Surface water bodies in the area include Lake Miona, Black Lake, Cherry Lake, and Dry Prairie, as well as several other small wetlands. The Potable Water and Irrigation Permits The potable water permit is for the withdrawal from the Upper Floridan Aquifer of 1.164 million gallons of water per day (MGD), on an annual average, for potable use in residences and both commercial and recreational establishments. It also limits the maximum withdrawal during peak months to 2.909 MGD. The Irrigation Permit is for the withdrawal from the Lower Floridan Aquifer of 2.850 MGD, on an annual average, for use in irrigation. The peak month usage rate permissible under the proposed permit would be 9.090 MGD. Water withdrawal under the Irrigation Permit will be used for the irrigation of residential lawns, common areas, commercial landscaping, and golf courses. Modeling of Drawdowns In assessing the impacts of proposed water withdrawals from an aquifer, District personnel considered effects on the aquifers and on-surface water features in the area. Computer- generated models of the predicted effects of the Potable Water and Irrigation Permits withdrawals provided one of the principal bases for this assessment. The primary geologist assigned to review the permit applications reviewed two of the models submitted by the Utility and the Authority (jointly the WUP Applicants) and ran one personal model of her own in order to predict the effects of the proposed withdrawals on the aquifers, as well as on any wetlands and other surface water bodies. In particular, the models predict both the vertical and horizontal extent to which the withdrawals may lower the level of water within the aquifers and in-surface waters under various conditions. One of the models submitted by the WUP Applicants predicted drawdowns during a 90-day period of no rainfall while the other predicted the impacts of the withdrawals over the life of the permits, considered cumulatively with the effects of withdrawals from the already-existing Villages' development in Sumter, Marion, and Lake Counties. The District’s geologist modeled the impacts of the withdrawals over the life of the permits and included the cumulative effects of all of the current Villages' withdrawals in Sumter County. All of these models included the combined effects of both the proposed Potable Water and the Irrigation Permits. Based upon these models, it is concluded that there will be no significant drawdowns as a result of the withdrawals authorized by the proposed water use permits. Specifically, the only predicted drawdown in the surficial aquifer (0.25 feet of drawdown) is in an area where there are no natural surface water features. Drawdown in the Upper Floridan is predicted at between 0.1 and 0.2 feet, while the drawdown in the Lower Floridan is predicted at a maximum of 1.5 feet. These minor drawdowns are not expected to cause any adverse impacts. Transmissivity is the rate at which water moves horizontally through the aquifer. In areas with high transmissivity, the results of water withdrawals from an aquifer will generally be low in magnitude, but broad in lateral extent. Water withdrawals from areas of low transmissivity will result in cones of depression that are more limited in lateral extent, but steeper vertically. The use of too high a transmissivity rate in a model, would overpredict the horizontal distance of the drawdowns caused by withdrawals, but would underpredict the vertical drawdown in the immediate vicinity of the withdrawal. Conversely, use of too low a transmissivity would over-predict the effects in the immediate vicinity of the withdrawal but underpredict the lateral extent of the drawdown. The WUP Applicants’ models used a transmissivity value for the Lower Floridan Aquifer of 100,000 feet squared per day ("ft.2/d'). The WUP Applicants’ consultant derived the transmissivity values from a regional model prepared by the University of Florida. The regional model uses a transmissivity value for the entire region of 200,000 ft.2/d for the Lower Floridan. While that transmissivity is appropriate for assessing large-scale impacts, on a more localized level, the transmissivity of the aquifer may be lower. Therefore, the WUP Applicants’ consultant met with District representatives and agreed to use a value half that used in the University of Florida model. A similar approach was used for the transmissivity value used in modeling effects in the Upper Floridan. Notably, specific transmissivity values recorded in four wells in the Villages Inc. area were not used because two of these wells were only cased to a depth of just over 250 feet, with an open hole below that to a depth of 590 feet. Thus, the transmissivity measured in these wells reflect conditions in the confining layer at the immediate location of the wells - not the transmissivity of the Lower Floridan production zone. Further, site-specific information on transmissivity, measured during pump tests at individual wells, does not correlate well to the transmissivity of the aquifer, even at short distances from the well. Transmissivities measured at individual wells are used to determine the depth at which the pump should be set in the well, not to determine the transmissivity of the aquifer. Thus, the use of transmissivities derived from the regional model, but adjusted to be conservative, is entirely appropriate. Moreover, using a transmissivity in her modeling of the project impacts of 27,000 ft.2/d for the Lower Floridan Aquifer, the district geologist’s model predicted no adverse impacts. Leakance is the measure of the resistance of movement vertically through confining units of the aquifer. The leakance value used by the District for the confining layer between the Upper and Lower Floridan was taken from the University of Florida model. Tests conducted on the site actually measured even lower leakance values. Thus, the evidence establishes that the leakance value used in the WUP Applicants’ and the District’s modeling for the Floridan confining layer was reasonable and appropriate. Competent, substantial evidence also establishes that the leakance value used for Lake Miona was reasonable. The WUP Applicants submitted to the District substantial data, gathered over several years, reflecting the balance of water flowing into Lake Miona and the lake’s levels in relation to the potentiometric surface. This documentation verified the leakance value used for Lake Miona in the modeling. Finally, the District modeling used appropriate boundary condition parameters. The District modeling used what is known as the "constant head" boundary and assumes the existence of water generated off-site at the boundaries. Such a boundary simulates the discharge of the aquifer at a certain level. The use of constant head boundaries is an accepted practice. The modeling conducted on behalf of the District and the Applicants provides a reasonable assurances that the Potable Water and Irrigation Permits will not cause adverse water quality or quantity changes to surface or groundwater resources, will not cause adverse environmental impacts to natural resources, and will not cause pollution of the aquifer. Furthermore, because the predicted drawdowns are so insignificant, reasonable assurances have been provided that the withdrawals will not adversely impact existing off-site land uses or existing legal withdrawals. The modeling also provides reasonable assurances that the withdrawals will not be harmful to the water resources of the District. Moreover, monitoring requirements included in the proposed Potable Water and Irrigation Permits provide additional reasonable assurance that – should the withdrawal effects exceed those predicted by the modeling – such effects are identified and necessary steps are taken to mitigate for any potential impacts. The District has reserved the right to modify or revoke all or portions of the water use permits under certain circumstances. Specifically, the proposed Potable Water Permit requires a monitoring plan that includes the following pertinent provisions: There shall be no less than three control wetland and ten onsite wetland monitoring sites; A baseline monitoring report, outlining the current wetland conditions; * * * A statement indicating that an analysis of the water level records for area lakes, including Miona Lake, Black Lake, Cherry Lake, Lake Deaton and Lake Griffin, will be included in the annual report; A statement indicating that an analysis of the spring flow records for Gum Spring, Silver Spring, and Fenney Spring, will be included in the annual report; * * * Wildlife analyses for potentially impacted wetlands, lakes, and adjacent property owner uses or wells, including methods to determine success of the mitigation; A mitigation plan for potentially impacted wetlands, lakes, and adjacent property owner uses or wells, including methods and thresholds to determine success of the mitigation; An annual report of an analysis of the monitoring data . . . . Similar provisions are included in the proposed irrigation permit. The WUP Applicants, in conjunction with the District, have developed sites and methodologies for this monitoring. Reasonable Demand The water to be withdrawn under the proposed Potable Water Permit will serve 10,783 people. This total results from the simple multiplication of the number of residences to be built during the next six years (5,675) by the average number of residents per household (1.9). Those numbers are based upon historical absorption rates within the Villages Inc. development since 1983, an absorption rate that doubles approximately every five years. The Utility proposed a per capita use rate of 108 gallons per day for potable use only. District personnel independently verified that per capita rate, based upon current usage in the existing portions of the Villages Inc. and determined that the rate was reasonable. Based upon the population projections and the per capita rate, the District determined that there is a reasonable demand for the withdrawal of the amount of water, for potable purposes, that is reflected in the Potable Water Permit. The Utility has provided reasonable assurance regarding the Utility’s satisfaction of this permitting criterion. As to the irrigation permit, the Villages Inc. plans, within the next six years, to complete the construction of 1,911 acres of property that will require irrigation. The amount of water originally requested by the Authority for irrigation withdrawals was reduced during the course of the application process at the request of the District. The District determined the reasonable amount of irrigation water needed through the application of AGMOD, a computer model that predicts the irrigation needs of various vegetative covers. Since the Authority intends to utilize treated wastewater effluent as another source of irrigation water, the District reduced the amount of water that it would permit to be withdrawn from the Lower Floridan for irrigation. The District, thus, determined that the Authority would need 1.59 MGD annual average for recreational and aesthetic area irrigation and 1.26 MGD annual average for residential lawn irrigation, for a total of 2.85 MGD. The Villages Inc. also plans to accumulate stormwater in lined ponds for irrigation use. However, unlike its treatment of wastewater effluent, the District did not deduct accumulated stormwater from the amount of water deemed necessary for irrigation. This approach was adopted due to the inability to predict short-term rainfall amounts. The uncontroverted evidence of record establishes reasonable assurances that there is a reasonable demand for the amount of water to be withdrawn under the proposed irrigation permit. Conservation and Reuse Measures Both the Utility and the Authority applications included proposed measures for the conservation and reuse of water. The conservation plan submitted in conjunction with the irrigation permit application provides for control valves to regulate both the pressure and timing of irrigation by residential users; contractual restrictions on water use by commercial users; xeriscaping; and an irrigation control system for golf course irrigation that is designed to maximize the efficient use of water. In addition, in the proposed permits, the District requires the Utility and the Authority to expand upon these conservation measures through such measures as educational efforts, inclined block rate structures, and annual reporting to assess the success of conservation measures. The Authority also committed to reduce its dependence on groundwater withdrawals through the reuse of wastewater effluent, both from the on-site wastewater treatment facility and through contract with the City of Wildwood. Reasonable assurances have been provided that conservation measures have been incorporated and that, to the maximum extent practicable, reuse measures have been incorporated. Use of Lowest Available Quality of Water In addition to the reuse of treated wastewater effluent, the Authority intends to minimize its dependence on groundwater withdrawals for irrigation use through the reuse of stormwater accumulated in lined ponds. Thirty-one of the lined stormwater retention ponds to be constructed by the Villages Inc. are designed as a component of the irrigation system on-site. Ponds will be grouped with the individual ponds within each group linked through underground piping. There will be an electronically controlled valve in the stormwater pond at the end of the pipe that will be used to draw out water for irrigation purposes. These lined stormwater ponds serve several purposes. However, the design feature that is pertinent to the reuse of stormwater for irrigation is the inclusion of additional storage capacity below the top of the pond liner. No groundwater will be withdrawn for irrigation purposes unless the level of stormwater in these lined ponds drops below a designed minimum irrigation level. Groundwater pumped into these ponds will then be pumped out for irrigation. Thus, the use of groundwater for irrigation is minimized. The Authority has met its burden of proving that it will use the lowest quality of water available. With respect to the potable permit, the evidence establishes that there are only minor differences between the water quality in the Upper Floridan and Lower Floridan in this area. The Upper Floridan is a reasonable source for potable supply in this area. Thus, reasonable assurances have been provided by the Utility that it will utilize the lowest water quality that it has the ability to use for potable purposes. Waste of Water In regard to concerns that the design of the Villages Inc.'s stormwater/irrigation system will result in wasteful losses of water due to evaporation from the surface of the lined ponds, it must be noted that there are no artesian wells relating to this project and nothing in the record to suggest that the groundwater withdrawals by either the Utility or the Authority will cause excess water to run into the surface water system. Additionally, the evidence establishes that, to the extent groundwater will be withdrawn from the Lower Floridan and pumped into lined stormwater ponds, such augmentation is not for an aesthetic purpose. Instead, the groundwater added to those ponds will be utilized as an integral part of the irrigation system and will be limited in quantity to the amount necessary for immediate irrigation needs. Finally, the water to be withdrawn will be put to beneficial potable and irrigation uses, rather than wasteful purposes. Under current regulation, water lost from lined stormwater ponds through evaporation is not considered as waste. Thus, the Authority and the Utility have provided reasonable assurances that their withdrawals of groundwater will not result in waste. The ERP The stormwater management system proposed by the Villages Inc. will eventually serve 5,016 acres on which residential, commercial, golf course, and other recreational development will ultimately be constructed. However, the proposed permit currently at issue is preliminary in nature and will only authorize the construction of stormwater ponds, earthworks relating to the construction of compensating flood storage, and wetland mitigation. Water Quality Impacts The stormwater management system will include eight shallow treatment ponds that will be adjacent to Lake Miona and Black Lake and 45 lined retention ponds. Thirty-one of these lined ponds will serve as part of the irrigation system for a portion of the Villages Inc.'s development. All of these ponds provide water quality treatment. The unlined ponds will retain the first one inch of stormwater and then overflow into the lakes. The ponds provide water quality treatment of such water before it is discharged into the lakes. The water quality treatment provided by these ponds provides reasonable assurances that the project will not adversely impact the water quality of receiving waters. While they do not discharge directly to surface receiving waters, the lined retention ponds do provide protection against adverse water quality impacts on groundwater. There will be some percolation from these ponds, from the sides at heights above the top of the liner. However, the liners will prevent the discharge of pollutants through the highly permeable surface strata into the groundwater. The Villages Inc. designed the system in this manner in response to concerns voiced by the Department of Environmental Protection during the DRI process regarding potential pollutant loading of the aquifer at the retention pond sites. Furthermore, by distributing the accumulated stormwater - through the irrigation system - over a wider expanse of vegetated land surface, a greater degree of water quality treatment will be achieved than if the stormwater were simply permitted to percolate directly through the pond bottom. There is no reasonable expectation that pollutants will be discharged into the aquifer from the lined ponds. If dry ponds were used, there would be an accumulation of pollutants in the pond bottom. These measures provide reasonable assurances that there will be no adverse impact on the quality of receiving waters. Water Quantity Impacts With regard to the use of lined retention ponds, as part of the Villages Inc.’s stormwater system and the impact of such ponds on water quantity, the evaporative losses from lined ponds as opposed to unlined ponds is a differential of approximately one (1) inch of net recharge. The acreage of the lined ponds - even measured at the very top of the pond banks - is only 445 acres. That differential, in terms of a gross water balance, is not significant, in view of the other benefits provided by the lined ponds. As part of the project, wetlands will be created and expanded and other water bodies will be created. After rainfalls, these unlined ponds will be filled with water and will lose as much water through evaporation as would any other water body. The design proposed by the Villages Inc., however, will distribute the accumulated stormwater across the project site through the irrigation of vegetated areas. The documentation submitted by the Villages Inc. establishes that the ERP will not cause adverse water quantity impacts. The Villages Inc. has carried its burden as to this permitting criterion. Flooding, Surface Water Conveyance, and Storage Impacts Parts of the project are located in areas designated by the Federal Emergency Management Administration (FEMA) as 100-year flood zones. Specifically, these areas are located along Lake Miona, Black Lake, between Black Lake and Cherry Lake, and at some locations south of Black Lake. Under the District’s rules, compensation must be provided for any loss of flood zone in filled areas by the excavation of other areas. The District has determined, based upon the documentation provided with the Villages Inc.’s application, work on the site will encroach on 871.37 acre feet of the FEMA 100-year flood zone. However, 1,051.70 acre feet of compensating flood zone is being created. The Villages Inc. proposes to mitigate for the loss of flood zone primarily in the areas of Dry Prairie and Cherry Lake. At present, Cherry Lake is the location of a peat mining operation authorized by DEP permit. Mining has occurred at that site since the early 1980s. The flood zone mitigation proposed by the Villages Inc. provides reasonable assurance that it will sufficiently compensate for any loss of flood basin storage. The Villages Inc.'s project provides reasonable assurance that it will neither adversely affect surface water storage or conveyance capabilities, surface or groundwater levels or surface water flows nor cause adverse flooding. Each of the 45 retention ponds to be constructed on-site will include sufficient capacity, above the top of the pond liner, to hold a 100-year/24-hour storm event. This includes stormwater drainage from off-site. In addition, these ponds are designed to have an extra one foot of freeboard above that needed for the 100-year/24-hour storm, thus providing approximately an additional 100 acres of flood storage beyond that which will be lost through construction on-site. Furthermore, the Villages Inc. has proposed an emergency flood plan. In the event of a severe flood event, excess water will be pumped from Dry Prairie, Cherry Lake, and Lake Miona and delivered to the retention ponds and to certain golf course fairways located such that habitable living spaces would not be endangered. Environmental Impacts and Mitigation There are 601 acres of wetlands and surface waters of various kinds in the Villages Inc.’s project area. Forty-one acres of wetlands will be impacted by the work that is authorized under the ERP. Each of these impacted wetlands, along with the extent of the impact, is listed in the ERP. The impacts include both fill and excavation and all will be permanent. When assessing wetland impacts and proposed mitigation for those impacts, the District seeks to ensure that the activities proposed will not result in a net loss of wetland functionality. The object is to ensure that the end result will function at least as well as did the wetlands in their pre-impact condition. Functional value is judged, at least in part, by the long term viability of the wetland. While small, isolated wetlands are not completely without value, large wetland ecosystems – which are less susceptible to surrounding development – generally have greater long-term habitat value. The District’s policy is that an applicant need not provide any mitigation for the loss of habitat in wetlands of less than 0.5 acre, except under certain limited circumstances, including where the wetland is utilized by threatened or endangered species. Some wetlands that will be impacted by the Villages Inc.’s project are of high functional value and some are not as good. The Villages Inc. proposes a variety of types of mitigation for the wetlands impacts that will result from its project, all of which are summarized in the ERP. In all, 331.55 acres of mitigation are proposed by the Villages Inc. First, the District proposes to create new wetlands. Approximately 11 acres of this new wetland will consist of a marsh, which is to be created east of Cherry Lake. Second, it proposes to undertake substantial enhancement of Dry Prairie, a 126-acre wetland. Currently – and since at least the early nineties – Dry Prairie received discharge water from the peat mining operation at Cherry Lake. Without intervention, when the mining operations stop, Dry Prairie would naturally become drier than it has been for several years and would lose some of the habitat function that it has been providing. The Villages Inc.’s proposed enhancement is designed to match the current hydroperiods of Dry Prairie, thus ensuring its continued habitat value. Third, the Villages Inc. has proposed to enhance upland buffers around wetlands and surface waters by planting natural vegetation, thus providing a natural barrier. Placement of these buffers in conservation easements does not provide the Villages Inc. with mitigation credit, since a 25-foot buffer is required anyway. However, the District determined that the enhancement of these areas provided functional value to the wetlands and surface waters that would not be served by the easements alone. Fourth, the Villages Inc. will place a conservation easement over certain areas, including a 1500-foot radius preserve required by the Fish and Wildlife Conservation Commission (FWCC) around an identified eagles’ nest. These areas will also be used for the relocation of gopher tortoises and, if any are subsequently located, of gopher frogs. While the Villages Inc. is also performing some enhancement of this area, it will receive no mitigation credit for such enhancement – which was required to meet FWCC requirements. However, since the conservation easement will remain in effect in perpetuity, regardless of whether the eagles continue to use the nest, the easement ensures the continued, viability of the area’s wetlands and provides threatened and endangered species habitat. In order to provide additional assurances that these mitigation efforts will be successful, the District has included a condition in the proposed permit establishing wetland mitigation success criteria for the various types of proposed mitigation. If these success criteria are not achieved, additional mitigation must be provided. With the above described mitigation, the activities authorized under the ERP will not adversely impact the functional value of wetlands and other surface waters to fish or wildlife. The Villages Inc. has met its burden of providing reasonable assurances relating to this permit criterion. Capability of Performing Effectively The Villages Inc. has also provided reasonable assurances that the stormwater management system proposed is capable of functioning as designed. The retention ponds proposed are generally of a standard-type design and will not require complicated maintenance procedures. In its assessment of the functional capability of the system, the District did not concern itself with the amount of stormwater that the system might contribute for irrigation purposes. Rather, it focused its consideration on the stormwater management functions of the system. The question of the effectiveness of the system for irrigation purposes is not relevant to the determination of whether the Villages Inc. has met the criteria for permit issuance. Consequently, the record establishes that the documentation provided by the Villages Inc. contains reasonable assurances that the stormwater system will function effectively and as proposed. Operation Entity The Villages Inc. has created Community Development District No. 5 (CDD No. 5), which will serve as the entity responsible for the construction and maintenance of the stormwater system. CDD No. 5 will finance the construction through special revenue assessment bonds and will finance maintenance through the annual assessments. Similar community development districts were established to be responsible for earlier phases of the Villages Inc. The ERP includes a specific condition that, prior to any wetlands impacts, the Villages Inc. will either have to provide the District with documentation of the creation of a community development district or present the District with a performance bond in the amount of $1,698,696.00. Since the undisputed testimony at hearing was that CDD No. 5 has, in fact, now been created, there are reasonable assurances of financial responsibility. Secondary and Cumulative Impacts The Villages Inc.’s application also provides accurate and reliable information sufficient to establish that there are reasonable assurances that the proposed stormwater system will not cause unacceptable cumulative impacts upon wetlands or other surface waters or adverse secondary impacts to water resources. The system is designed in a manner that will meet water treatment criteria and there will be no secondary water quality impacts. Further, the use of buffers will prevent secondary impacts to wetlands and wetland habitats and there will be no secondary impacts to archeological or historical resources. In this instance, the stormwater system proposed by the Villages Inc. will function in a manner that replaces any water quantity or water quality functions lost by construction of the system. In its assessment of the possible cumulative impacts of the system, the District considered areas beyond the bounds of the current project, including the area to the south that is currently being reviewed under the DRI process as a substantial deviation. The District’s environmental scientist, Leonard Bartos, also reviewed that portion of the substantial deviation north of County Road 466A, in order to determine the types of wetlands present there. Furthermore, the District is one of the review agencies that comments on DRI and substantial deviation applications. When such an application is received by the District’s planning division, it is routed to the regulatory division for review. The District includes its knowledge of the DRIs in its determination that there are no cumulative impacts. Reasonable assurances have been provided as to these permitting criteria. Public Interest Balancing Test Because the proposed stormwater system will be located in, on, and over certain wetlands, the Villages Inc. must provide reasonable assurances that the system will not be contrary to the public interest. This assessment of this permitting criteria requires that the District balance seven factors. While the effects of the proposed activity will be permanent, the Villages Inc. has provided reasonable assurances that it will not have an adverse impact on the public health, safety, or welfare; on fishing or recreational values; on the flow of water; on environmental resources, including fish and wildlife and surface water resources; or on off-site properties. Furthermore, the District has carefully assessed the current functions being provided by the affected wetland areas. With respect to historical or archeological resources, the Villages Inc. has received letters from the Florida Department of State, Division of Historical Resources, stating that there are no significant historical or archeological resources on the project site that is the subject of this permit proceeding. Thus, the evidence establishes reasonable assurances that the Villages Inc.'s stormwater system will not be contrary to the public interest. Additionally, the District and Applicant presented uncontroverted evidence that the proposed project will not adversely impact a work of the District, and that there are no applicable special basin or geographic area criteria.
Recommendation Based on the foregoing findings of fact and conclusions of law, it is: RECOMMENDED that a final order be entered issuing Water Use Permit Nos. 20012236.000 and 20012239.000 and Environmental Resource Permit No. 43020198.001, in accordance with the District’s proposed agency action. DONE AND ENTERED this 24th day of June, 2002, in Tallahassee, Leon County, Florida. DON W. DAVIS Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 24th day of June, 2002.
Findings Of Fact Respondent Communities Financial Corporation is a Florida corporation engaged in the subdivision and sale of real property. In 1971 CFC purchased approximately twenty-two sections, or 22 square miles, of real property ("the land") in Township 34 South, Range 33 East, Okeechobee County, Florida, which it proposed to sell as individual one-and-one-quarter (1-1/4) acre lots. The subsequent development of that land is the subject of this proceeding. Respondent Coquina Water Management District ("Coquina") was organized pursuant to Chapter 298, Florida Statutes, by judgment of the Circuit Court for Okeechobee County, Florida to perform drainage activities on the land. The land which CFC purchased in 1971 was originally platted in 1912 in a grid system with roads, drainage canals, and ditches. Extensive drainage was required for use of the land because it was very flat and had a high water table. Approximately one-half of the land was subject to flooding. After it was originally platted it was utilized for cattle ranching with drainage ditches connecting the low areas to encourage runoff. Ten-acre tracts surrounded by dikes and two to three foot deep ditches were used for tomato farming. Such agricultural ditching covered approximately 15 square miles of the property. At one time a hotel was situated on a portion of the property. North-South and East-West roads and a 5,000-foot airstrip were constructed across the property. The East-West road along the South boundary of the property, which is now a state road, has an adjacent drainage ditch which received ranchland water runoff from property east of the land. In 1971 and 1972 CFC registered the platted lots for sale with the Division of Florida Land Sales and Condominiums ("Land Sales") of the State of Florida Department of Business Regulation. In the normal course of compiling the documentation to be submitted for registration, CFC contacted several state regulatory agencies to determine whether such agencies required CFC to obtain permits for development of the property. CFC provided those agencies copies of its drainage plans, which included roads, swales, canals, and control structures. The State of Florida Department of Natural Resources ("DNR") stated that the construction of improvements as planned in the development would not be subject to that agency's jurisdiction for purposes of a dredge and/or fill permit. The State of Florida Department of Pollution Control ("DPC"), predecessor of DER, first stated in a letter of October 4, 1971, to Mr. Moseley Collins, who submitted a "plan of reclamation to DPC, that it had no regulatory responsibilities over the project: In response to your request for comments this Department has conducted a preliminary review of the proposed plan. We have no basic objections to the overall plan of development and believe it could be platted as shown. Specific details as to drainage techniques will be reviewed at a latter [sic] date. It is brought to you [sic] attention that although we have no regulatory responsibili- ties in this area we will welcome the opportunity to review cross sections and details at a latter [sic] date. We thank you for the opportunity to review a project of this magnitude at an early date. [Emphasis added.] The DPC, in a letter of March 30, 1972, to Collins, also observed that: This Department has conducted a review of the revised plan for the subject project and endorse the approach that you are contemplating in developing these areas. I have coordinated with other agencies and organizations and they concur with the approach. We would like to review the project at a future date to deter- mine the method of construction of the swales or greenways to move the water from one lake to another through the complete watershed area. You and your client are to be commended on this approach. From the preliminary layout you can see the possibilities for the potential develop- ment of an area for residential usage that will retain a large percentage of the natural resources and minimize the downstream effect on the overall watershed. Please advise when you want to review the project in greater detail. [Emphasis added.] In connection with the registration of the development, CFC submitted to Land Sales the above-referenced letters from DNR and DPC, detailed evidence of the proposed plan of development, and a public offering statement for use in solicitation of lot sales from the general public. Each offering statement contains several statements to the effect that "this is not a homesite subdivision." Land Sales approved use of the offering statement. In using it to solicit sales, CFC committed to the purchasers that it would complete the required road and drainage improvements by December 31, 1979. CFC commenced sales of lots in the development in 1971. The Agreements for Deed approved by Land Sales and subsequently entered into by CFC with lot purchasers required CFC to deliver improved lots by December 31, 1979. Most of the land sales were made between 1971 and 1973. (6,412 lots were sold and 1,146 were conveyed by June 23, 1977.) Approximately eighty percent of the lots have been sold to date. Up to one-half of the approximately nine thousand lot purchasers hold legal title to their lots pursuant to deeds issued to them by CFC upon full payment. CFC began construction of the promised improvements, consisting of roads and drainage, in 1972. At the present time approximately $1,000,000 of improvements have been completed and approximately $750,000 remain to be completed. In 1973 or 1974, CFC and Coquina submitted plans for the surface water management system which CFC proposed to construct for the property to the South Florida Water Management District ("SFWMD"). The initial plan of development called for the construction of a road and canal system. At the request of SFWMD, the plan was subsequently changed to a road and swale system, and the configuration of one of the control structures was changed. The design changes resulted in more water retention on the property and the preservation of sensitive areas. After several years of analysis and review of the design plan, inspection of the project site, and a public hearing, SFWMD granted conceptual approval for the surface water management system to be constructed by CFC in 1977. The conceptual approval was partially based on the SFWMD staff's assessment than pollutant loadings from the property after development would be less than existing loadings, and that adverse water quality impacts as a result of the proposed development were unlikely. The 1977 SFWMD conceptual approval of the drainage plan for the development was followed by the issuance of a construction permit for the westernmost seven sections on March 15, 1979. Throughout this period construction was continuing. The drainage system as approved consists of grassed lot, roadside, and collector "swales" together with a retention area comprised of natural wetlands in the area of the property known as Ash Slough. The volume of water leaving the property after development will be the same as that leaving the property before development. The drainage conveyances are designed with gradually sloping sides, vary to widths of over 100 feet for the larger collector conveyances, and have depths varying from 2 feet for the "lateral" swales to 3 feet for the larger collector swales. The groundwater table in the area of the project site varies from zero to approximately 30 inches below ground surface. The swales were designed at the request of SFWMD in lieu of the canals proposed within the same easements in the original drainage plan for the development. It appears from the evidence that these drainage conveyances are designed so as to contain contiguous areas of standing or flowing water only following the occurrence of rainfall or flooding. Although some testimony indicated that these conveyances contained contiguous areas of standing water, these observations were made either at isolated times during the progress of construction or soon after a major hurricane passed through the area. Since the purpose of the "swales" is to facilitate drainage from the property, it would appear necessary from an engineering viewpoint to allow some period of time after construction of the swales for them to stabilize to make a valid determination that they will not function as designed. Accordingly, it would not appear unusual that the swales contain areas of standing water until they have been given ample opportunity to stabilize. On the basis of the record in this proceeding, a determination simply cannot be made at this point in time that the swales will not function as designed. Following DPC's initial determination of no jurisdiction in 1971 and 1972, it and DER, its successor agency, were not involved with the project until 1974, when DPC received an inquiry concerning land sales matters from the U.S. Department of Housing and Urban Development. In 1975, a DER staff member conducted a critical review of the Project and filed an internal memorandum faulting the project on the same essential grounds that are the basis for the Notice of Violation issued June 1, 1979. DER representatives participated in various SFWMD meetings from 1975 to 1977 when the conceptual approval of the drainage plan for the project was discussed. During this period, SFWMD forwarded copies of various materials dealing with the project to DER. Further, a DER representative attended the public hearing on September 8, 1977, when the conceptual approval of the project was granted by SFWMD. Respondents' first indication of DER's renewed interest in the development was a letter from DER Subdistrict Manager Warren Strahm to Robert Birenbaum on June 23, 1977. This letter stated, in part, that: The above referenced application/staff report has been supplied to this office by the South Florida Water Management District (SFWMD). It has been determined that your project is subject to Chapters 403 and/or 253, Florida Statutes. A review of drainage plans by our staff indicates the referenced project will comply with Chapter 403, Florida Statutes permit requirements for pollutant discharge. Since these plans have been incorporated into the SFWMD permit, no discharge permit or monitoring in addition to SFWMD permit requirement will be required by the Department at this time. It appears, however, that the referenced project may fall within the permitting requirements set forth in Chapter 17-4, Florida Administrative Code. Pursuant to F.A.C. 17-4.28(2) should any excavation take place in submerged lands or within the transitional zone of submerged lands, dredge and fill permits will be required by this Department prior to commencement of said activi- ties. [Emphasis added.] Please contact Mr. Roger G. Gallop, at the Fort Pierce Branch Office, telephone (305) 464-8525, at your convenience in order to discuss the need for a construction dredge and fill permit. Thank you for your cooperation. Three months later, in a letter from James Brindell to Coquina, Respondents were notified that: A review, by this agency, of the plans associated with your Surface Water Management Permit Applica- tion No. 02187-A indicates that permits will be required from the Department of Environmental Regulation pursuant to Chapter 403 and/or Chapter 253, Florida Statutes for the construction con- templated. Specifically, permits will be required for the construction and operation of discharge structures as well as for any dredging and/or filling in the waters of the state including the submerged lands and transitional zone of these submerged lands. Additionally, certification pursuant to section 401 of F.L. 92-500 may be required. Formal or conceptual appova1 of your project by the South Florida Water Management District does not imply that your project will satisfy the requirements of this agency. Please contact Mr. Warren G. Strahm, Subdistrict Manager, 3301 Gun Club Road, West Palm Beach, phone 305/689-5800, at your earliest convenience concerning application for these permits. (Emphasis added). This letter was followed one-and-one-half months later by a "Letter of Notice" from DER advising Respondents that DER had reason to believe the project was in violation of Chapter 403, Florida Statutes, and requesting CFC to cease any further work. Throughout this series of correspondence, CFC and Coquina maintained that DER did not have permit jurisdiction. This position was reasserted in a letter of November 1, 1977, from Emerson Allsworth, counsel for Coquina, to DER. During this period, numerous meetings were held involving representatives of Respondents and DER in which Respondents were urged by DER to apply for permits. Respondents failed to do so, and, on June 1, 1979, DER issued its Notice of Violation. Natural drainage from the property occurs southwestward into an area known as Ash Slough; southward from the central portion of the property into Gore Slough; and from the northeast section of the property into Company Slough. The headwaters of both Ash Slough and Gore Slough originate on the project site and periodically extend off Respondents' property to the south to join the waters of Chandler Slough. Chandler Slough, in turn, eventually empties into Lake Okeechobee 11 to 15 miles from the property. Company Slough also extends off the project site eastward onto the lands of others. There is, however, insufficient evidence in this record from which to conclude that Company Slough regularly exchanges flow with any other body of water. A "slough", as that term is used in the context of this proceeding, is a surface conveyance pathway for waters whose lateral boundaries are not as well-defined as a stream bed, and whose rate of flow is relatively slow. Due to the flat topography of the project site, Ash, Gore and Company Sloughs have imprecise boundaries, and their rates of flow appear to range at various times from very slow to nonexistent. By Cease and Desist Order dated March 28, 1978, the United States Army Corps of Engineers required Respondents to halt any further work then being conducted on the project, asserting that work in progress at that time was being conducted in waters of the United States, including adjacent wetlands, without first having acquired a permit from the Corps of Engineers. This Order provided, in part, that: Section 301(a) of the [Federal Water Pollution Control Act Amendments of 1972] makes it unlawful to discharge dredged or fill material into waters of the United States unless author- ized by a Section 404 permit issued by the Secretary of the Army acting through the Chief of Engineers. Section 10 of the River and Harbor Act of 1899 prohibits the excavation or depositing of material or erecting any struc- tures in navigable waters of the United States unless authorized by a Department of the Army permit. The work referred to in the paragraph above is deemed to have occurred in waters subject to these statutory requirements without the requisite permits and is considered unlaw- ful by this office. Prior to 25 July, the Corps of Engineers limited the requirement for Section 404 type permits to areas either below the mean high water line in tidal areas or below the ordinary high water line of rivers and streams which either now sup- port, had supported, or were capable of supporting interstate commerce. However, on 25 July 1975, the regulatory juris- diction of the District was expanded to all waters of the United States and adjacent wetlands. [Emphasis add.] Subsequently, however, by memorandum dated May 17, 1978, the United States Army Corps of Engineers determined that it did not have jurisdiction over Respondent's activities for the following reasons: In the northeast and eastern portion of the tract the flagponds and saw grass prairies are isolated with no discernible drainage sloughs or patterns. The other area of concern, in the south west sector, contains isolated ponds and an old man-made drainage canal that comprises shallow, intermittent potholes above the natural headwaters of Ash and Gore Sloughs. There was no recognizable flow in any part of the canal and the point at which average annual flow appear to be 5 c.f.s. or greater is located to the south a considerable distance from the subject tract. The project, as proposed, will not destroy or threaten any endangered species or their habitat nor adversely impact water quality of the ultimate receiving waters in Kissimmee River and Lake Okeechobee. In 1971, the Soil Conservation Service of the United States Department of Agriculture classified Ash and Gore Sloughs, as well as Fish Slough, to which Company Slough is alleged by DER to connect, as "intermittent". This determination is supported by hydrological data compiled by the South Florida Water Management District which shows no net flow in Chandler Slough for as many as six months in 1975 and four months in 1976. In the South Florida Water Management District report concerning flow patterns in Chandler Slough, it was pointed out that: The climate in this portion of Florida is subtropical with warm summers and moderate winters. Rainfall is seasonal with about 75 percent of the total occur- ring in a well-defined wet season, from May to October. This distribution of rainfall results in considerable surface water flow during part of the year. During the late winter and early spring many of the creeks and sloughs, such as Chandler Slough, become completely dry. [Emphasis added.] In addition, testimony in the record in this proceeding establishes that on at least one occasion during the time in which construction on the property was being conducted, Company Slough was completely dry. There is no data in the record quantifying the annual flow of water from Ash and Gore Sloughs into Chandler Slough. Further, there is no evidence concerning the periodicity of any such water exchanges between Ash and Gore Sloughs and Chandler Slough. As indicated above, the evidence establishes that Chandler Slough, which is the larger collector slough into which both Ash and Gore sloughs allegedly discharge, periodically becomes "completely dry." DER witnesses testified that they had observed contiguous areas of standing water in Ash, Gore and Company Sloughs during visits to the site, and had also determined the existence of an exchange of waters between Ash, Gore and Company Sloughs with other sloughs connecting to Chandler Slough by analyzing aerial photographs. However, those aerial photographs were not made a part of the record in this proceeding. Additionally, the relatively few visits to the site by these witnesses, in the absence of validly derived data establishing pertinent flow rates, is insufficient to establish "normal" conditions in the area. This is especially true in light of the aforementioned countervailing determinations based upon data compiled by the United States Army Corps of Engineers, the United States Department of Agriculture and the South Florida Water Management District. The evidence shows that some of the types of vegetation listed in DER's vegetation indices by which DER determines whether areas are "submerged lands" or "transitional zones" of submerged lands have been found on the project site. Among the types of vegetation observed in and around Ash, Gore and Company Sloughs are maidencane, water willow, pickerelweed, button bush, saw grass and St. John's wort. Although these species were detected in some locations by visual observation, apparently no attempt was made to quantify these plants vis-a-vis other vegetative types, nor were any physical measurements made to locate their boundaries. In a report dated August 26, 1977, the SFWMD attempted to identify the acreage, but not boundaries, of wetlands on the development site. The findings of that report show that approximately 2,014 of 14,080 acres, or 14.3 percent of the total site, contains wetlands vegetation. The report also indicates that the wetlands vegetation is scattered in different locations over the site, with the median occurrence being 68 acres per 640-acre section. DER presented quantified evidence showing turbidity readings in the Ash Slough area of the development during the construction of swales in August, 1979, of 325 Jackson Units and November and December, 1979, of 155 and 176 Jackson Units, respectively. It should be noted that these readings were performed after the filing of the Notice of Violation herein. Although samples of August 6, 1979, were taken without a background sample in Ash Slough, the evidence establishes that background readings in Ash Slough were less than 25 Jackson Units. The evidence clearly establishes that DER's water quality sampling and analysis were conducted in accordance with applicable requirements of Chapter 17, Florida Administrative Code. The evidence establishes that these readings are attributable to construction of swales and control structures and would not be expected to continue after completion of construction. There is no evidence to show the duration of the discharges resulting in these turbidity readings, nor is there any showing of actual damage to animal, plant or aquatic life. Petitioner and Respondent have submitted proposed findings of fact in this proceeding. To the extent that those findings of fact are not adopted in this Recommended Order, they have been specifically rejected as being either irrelevant to the issues in this cause, or as not having been supported by the evidence.
The Issue Whether Petitioner Ross has standing to challenge the issuance of the WUP? Whether the District should approve the Application and enter a final order that issues the WUP?
Findings Of Fact The Parties Petitioner Ross Petitioner Ross is a resident of Pinellas County, (referred to by him at hearing as "the most urbanized county in the State of Florida"). Besides residing there, Petitioner Ross operates a farm on his property in the County. The City's experts reasonably projected and mapped a 0.5 foot drawdown contour surrounding the well field that is the subject of this proceeding. The contour defines "the cone of depression" associated with the well field. See Tr. 136. Mr. Ross' property is outside the cone of depression, to its south and west. The overall groundwater gradient in the area of the well field is from the east to the west. The water pumped from the well field does not pull water from the west because the pumping withdrawal will not reduce the potentiometric surface gradient enough to reverse the current gradient. Mr. Ross' property and the well on his property are "way outside," tr. 138, the well field and the 0.5 drawdown contour surrounding the well field. Based on the amount of drawdown reasonably projected by the well field, the effect on Mr. Ross' property could not be measured because it would be so slight. If the water in his well were to rise after the WUP is implemented, it would be impossible to tell whether the water rose "because the pump's turned off or because it rained the day before." Tr. 163. The District The District is the administrative agency charged with the responsibility to conserve, protect, manage, and control the water resources within its geographic boundaries. The District administers and enforces chapter 373, and the rules promulgated pursuant thereto. Among those rules are those that relate to the consumptive use of water found in chapter 40D-2. The City The City of Tarpon Springs is the applicant for the WUP that is the subject of this proceeding. The City's application seeks to modify an existing permit. The Existing Permit The City has an existing Water Use Permit (the "Existing Permit") from the District. Originally granted in 1976, it allows for withdrawal of fresh groundwater for public supply. The Existing Permit was last renewed in October of 2005 for a ten-year period. It expires in October of 2015. Under the Existing Permit, the withdrawal capacity is 1.38 million gallons per day annual average and allows for seven production wells. The Application and its Modification The City submitted the Application in July, 2008. The Application at that time was for 25 wells in a brackish water well field for a proposed brackish groundwater reverse osmosis plant that the City plans to build. The City's intent originally was to apply for a permit separate from the Existing Permit.1/ In September of 2009, however, the City requested that the Application be considered a modification of the Existing Permit. In honoring the request, the District changed the number assigned to the Application to "20000742.010."2/ The Application was also modified with regard to the number of production wells in the brackish well field. The number was reduced from 25 to 22, "due to land acquisition efforts indicating that the maximum number of wells . . . required for the project would be 22." Tr. 54. The Application contains an introduction that summarized the City's water supply system and its water supply plans, a completed Individual Water Use Permit Application form, a completed Public Supply Supplemental form, and an Impact Analysis Report (the "Report"). The Report states that the ground-water flow model "MODFLOW"3/ was used to perform the impact analysis. Assessment of average annual and peak month withdrawal impacts in the Upper Floridan and surficial aquifers used the SWFWMD District Wide Regulation Model Version 2 ("DWRM2"). One of the enhancements the DWRM2 offers over earlier model versions is "integrated focused telescopic mesh refinement (FTMR) which allows the model grid user to refine the model grid spacing to focus on specific areas within the District."4/ The Report included the FTMR model grid, total drawdown scenarios in the Upper Floridan Aquifer and the surficial aquifer, and a peak month drawdown scenario. The Application also included a summary of the regional hydro-geology, a summary of the City's wastewater system, a description of the City's potable water supply, an historical operating protocol and a proposed well field management plan for the City's new brackish water well field, a service area and well field location aerial, a table showing the general hydrostratigraphy in northern Pinellas County, a summary of seasonal fluctuations which addressed the conditions for issuance of a permit as set forth in rule 40D-2.381, a summary of the City's reclaimed water system, well location maps, wetland maps, Water Use Permit maps and schedules, the City's well field protection ordinance, maps pertaining to the proposed service areas, a water conservation letter, and water conservation information. The 22 new production wells in the brackish water well field will provide enough water once treated at the proposed reverse osmosis membrane treatment plant to enable the City to supply the anticipated potable water demand for all of the City's customers through the year 2015. Installation of the additional production wells will increase the annual average quantity of groundwater pumpage to 4,200,000 gallons per day ("gpd") and the peak month quantity to 6,300,000 gpd. Review of the Application by the District led to four requests by the District for additional information. The City responded to each. The responses included a well construction and aquifer testing program report, a Water Quality/Water Level Well Impact Mitigation Plan, a Water Quality Action Plan, a revised Water Quality/Water Level Well Impact Mitigation Plan, a revised Water Quality Action Plan and a second revision of the Water Quality Action Plan, a second Water Quality/Water Level Well Impact Mitigation Plan, a proposed Environmental Monitoring Plan, a third revised Water Quality Action Plan, a third revised Water Quality/Water Level Well Impact Mitigation plan, and the final Environmental Monitoring Plan. Draft Water Use Permit On October 8, 2010, the District gave notice of its intent to issue a permit that would modify the City's Existing Permit for public supply use. Attached to the notice is a Draft WUP. The modification includes the development of a brackish water well field with 22 additional production wells to allow the City to self-supply the anticipated potable water demand in 2015 for a customer base of approximately 34,259 persons. The annual average quantity authorized by the WUP is 4,200,000 gpd and the permitted peak month quantity increases to 6,300,000 gpd.5/ Special conditions of the Draft WUP require the City to maintain meters on existing and proposed withdrawal points; record and report monthly meter readings; confirm meter accuracy every five years; monitor and report the water quality and aquifer water levels; maintain an adjusted per capita rate of 150 gpd or less; conduct and report water audits; submit annual reports of residential water use, reclaimed water supplied, per capita water use rates, and well field operations; investigate withdrawal-related well complaints; conduct a well field inventory prior to the activation of the proposed production wells; comply with the environmental monitoring plan; set water quality concentration limits prior to the activation of the proposed production wells; and submit an Annual Water Quality Report and an annual Well Field Report. Criteria in Rule for Issuance of WUPs The District utilizes rule 40D-2.381 (the "Rule") in its review of water use permit applications. The Rule opens with the following: In order to obtain a Water Use Permit, an Applicant must demonstrate that the water use is reasonable and beneficial, is consistent with the public interest, and will not interfere with any existing legal use of water . . . Rule 40D-2.381(1), Tab 1 of the Binder Containing the Matters Officially Recognized, pp. 7-8. The Rule requires that the applicant make the required demonstrations through the provision of "reasonable assurances, on both an individual and a cumulative basis that the water use," id., will meet 14 conditions listed in subsections (a) through (n).6/ Condition (a) Condition (a) requires that the City demonstrate that the water use is necessary to fulfill a certain reasonable demand. To meet this condition, the City provided a population estimate through the end of the permit term and also provided a per capita rate that the City had used in the last five years. Calculations set forth in a table prepared at the request of the City show the population projections and projected water demands over a period from 2008 through 2030. These calculations provide reasonable assurances that the proposed water use meets Condition (a). Condition (b) Condition (b) requires that the City must demonstrate that the water use will not cause quantity or quality changes that adversely affect the water resources, including both surface water and groundwater. The City provided a groundwater model showing the anticipated groundwater drawdowns within the Upper Floridan and surficial aquifers. The City also completed a study on the wells within the sections of the actual proposed well field. Based upon the modeling, the drawdowns are not large enough to cause any impacts to quantity or quality of the water in the area. The City has a Water Quality/Water Level Well Impact Mitigation Plan, should there be any complaints of impact, to correct any problems after implementation of the WUP. The well field is designed with 22 supply wells. All 22 wells need not be operated at the same time to meet the water demand. Wells beyond those needed by demand have been designed into the well field so that there can be rotational capacity. Pumping at lower rates from among the 22 wells on a rotational basis is a management tool for protecting the resource and minimizing the effects of the withdrawals. The City's monitoring program provides for the collection of water levels from a large number of wells either on a monthly or quarterly basis to assess water level fluctuations in the Upper Floridan and surficial aquifers. The City also has numerous wells that will sample for chloride sulfates, total dissolved solids (TDS) and other water quality constituents on a monthly and quarterly basis to ensure that the conditions of issuance continue to be met. The City will submit groundwater pumping data on a monthly basis from all the production wells so that the District can determine that the City is indeed adhering to the quantities reflected in the WUP. Groundwater in the Upper Floridan Aquifer flows in a westward direction towards the Gulf of Mexico. The location of the proposed wells is in an urban land use area near the Gulf Coast. The wells will capture brackish groundwater that would otherwise flow westward into the Gulf. Brackish groundwater from the City's service area is the lowest quality water available for public supply in the area. The City plans to construct a reverse osmosis facility to utilize available brackish groundwater. The brackish groundwater pumped from the well field is an alternative supply source. Isolated from the regional system, it will be used for public supply in the service area. The high number of low-capacity wells will provide rotational ability for the City to manage the quantity and quality of the water resource in the area of the well field. Maximum drawdown within the well field area due to the average annual withdrawal is approximately 3 feet, with an additional 1.5 feet during peak month withdrawal. This amount of drawdown is not likely to impact other wells in the area. Condition (c) Condition (c) requires the City to demonstrate that water use will comply with the provisions of 4.2 of the WUP Basis of Review, incorporated by reference in rule 40D-2.091, regarding adverse impacts to wetlands, lakes, streams, estuaries, fish and wildlife or other natural resources. The Anclote River and associated wetlands are tidally influenced and will not be adversely impacted by the proposed withdrawal. Other wetlands in the well field area examined by a District biologist identified several isolated wetlands of concern. Isolated wetlands are generally more sensitive to withdrawal of groundwater than wetlands connected to larger basins. Initially, the City's proposed drawdowns were deemed to be unacceptable to the District because of the impact to the isolated wetlands of concern. As a first step, the City reduced the quantities of water to be withdrawn. Subsequently, an extensive Wetland Monitoring Plan was developed that included a mitigation plan if adverse impacts did occur to wetlands. Storm-water runoff will be the primary factor controlling the functions of the wetland areas. Mitigation measures, should any adverse impact become too great, include reduction of well field pumping, augmentation with well water, potable water and other feasible sources, and the purchase of mitigation credits. Condition (d) Condition (d) requires the City to demonstrate that the water use will not interfere with a reservation of water as set forth in rule 40D-2.302. The groundwater modeling that the City provided the District indicates that there are no adverse impacts to the minimum flows and levels ("MFLs") in the Anclote River or the water level at the Tarpon Road Deep Well. There are, therefore, no impacts to reservations of water. Condition (e) Condition (e) requires the City to demonstrate that the water use will comply with the provisions of 4.3 of the WUP Basis of Review,7/ regarding MFLs. The closest MFL site is the Upper Floridan Aquifer monitoring well called Tarpon Road Deep, located approximately 2.4 miles southeast of the well field. The impact analysis model results show that at the annual average withdrawal rate of 4.20 million gallons per day ("mgd") approximately 0.1 feet of drawdown at this MFL site is currently projected to occur, assuming static pumping conditions in all other regional groundwater withdrawals. This amount of drawdown will not cause the water level at the Tarpon Road Deep Well to fall below its minimum level. The District is in the process of setting an MFL for the Anclote River. Based on the operation of the new well field and the City's continued operation of their freshwater discharge to the Anclote River from their reclaimed water facility, there will be no impact to the Anclote River. Condition (f) Condition (f) requires the City to demonstrate that the water use will utilize the lowest water quality the City has the ability to use, provided that its use does not interfere with the recovery of a water body to its established MFL and it is not a source that is either currently or projected to be adversely impacted. The City is using brackish water, the lowest water quality available to be used for public supply. The City will be treating it at a reverse osmosis water treatment plant. Water of this quality is not available for others to use without special treatment. Based upon the modeling provided by the City, there are no anticipated impacts to MFLs or any other water body resources. Condition (g) Condition (g) requires the City to demonstrate that the water use will comply with section 4.5 of the WUP Basis of Review,8/ regarding saline intrusion. Groundwater in the Upper Floridan Aquifer in the area of the well field is brackish. The well field's design allowing well rotation minimizes changes in water quality during operation. The amount of drawdown and the fact that water levels will remain above sea level suggests that saline water intrusion will not occur. The reported potentiometric surface in the area of the well is approximately five feet NGVD while the land surface is roughly five feet higher at approximately ten feet NGVD. The City's monitoring and mitigation programs will address adverse impacts from saline intrusion should they occur. Condition (h) Condition (h) requires the City to demonstrate that the water use will not cause the pollution of the aquifer. Soil and groundwater contamination is documented at the Stauffer Management Company site located approximately 3,000 feet west of the well field. The drawdown from the well field is calculated to be about one foot at the Stauffer site. That level of drawdown will not induce migration of contaminants because the upward head differential from the Upper Floridan Aquifer to the surficial aquifer will be altered and the Stauffer site is down gradient of the well field. Testimony from Mr. Wiley established that the aquifers should not be contaminated by the City's withdrawals despite the presence of the Stauffer site: [T]here is a known source of contamination approximately 3,000 feet from the new well field to the west, Stauffer Chemical Company. With the small amount of drawdown that's caused in the Upper Floridan aquifer and the surficial aquifer, there's no potential for the withdrawals to cause pollution of the aquifer. Tr. 254-55. Mr. Wiley's opinion was reached primarily based on the use of the groundwater flow model to determine the drawdown at the Stauffer site and through review of groundwater levels in the Floridan and the surficial aquifers. The United States Environmental Protection Agency (the "EPA") is in charge of managing the contamination at the Stauffer site. A remediation plan has been developed based, in part, on EPA records. The remediation plan includes the construction of a barrier wall in the subsurface around the contaminated area to prevent contaminated groundwater from migrating. The City's groundwater monitoring wells will detect movement of contaminants toward the well field. The monitoring of the wells and the mitigation plan will assist in preventing pollution of the aquifers. Condition (i) Condition (i) requires the City to demonstrate that the water use will not adversely affect offsite land uses existing at the time of the application. Primary existing land uses within the City's service area are residential, commercial, and light industrial. The proposed withdrawal will not adversely impact these land uses as shown in Figure 10 of the City Exhibit 1. Five sink holes are known to exist in the general area around the well field. The closest is approximately 1,000 feet from a proposed well location. Maximum drawdown at the distance is approximately 2 feet. This amount of drawdown does not significantly increase the potential for sinkhole activity. Condition (j) Condition (j) requires that the City demonstrate the water use will not adversely impact an existing legal withdrawal. The Pasco County Utilities' wells located to the north of the well field are listed on the WUP as plugged. Wells owned by Crest Ridge Utility Corp. are located within 0.5 to 0.8 miles of the well field. Drawdown at these wells, due to the average annual withdrawal, is approximately one foot, with an additional 0.4 feet during peak month withdrawal. This amount of drawdown will not create a water level impact at these wells. Maximum drawdown at domestic wells in the area due to the average annual withdrawal is approximately three feet, with an additional 1.5 feet during peak month withdrawal. This amount of drawdown is not likely to impact other wells in the area. The City's mitigation plan addresses any adverse impact that might occur from the City's withdrawal. Condition (k) Condition (k) requires the City to demonstrate that the water use will incorporate water conservation measures. The existing per capita use rate for the City's service area is 110 gpd. Its position well below the district goal of 150 gpd per person demonstrates that the City's water conservation measures are effective. The City uses an inclined block rate structure which encourages water conservation. It also encourages water conservation through a reclaimed water system that encourages conservation of public water supply. It currently uses a little over one million gallons per day of reclaimed water. The City also conserves water through a leak protection program, a water loss audit program, adherence to the District's watering restrictions and provision of a low-flow toilet rebate program through the County, a landscape code, and the provision of educational materials to users. Condition (l) Condition (l) requires the City to demonstrate that the water use will incorporate the use of alternative water supplies to the greatest extent possible. The City has an extensive reclaimed water program. It provides reclaimed water for its golf course, for residential irrigation, for public parks and recreation, and for public schools. The City expanded its reclaimed water storage system recently by doubling the amount of reclaimed water that it is able to store for redistribution. Condition (m) Condition (m) requires the City to demonstrate that the water use will not cause water to go to waste. The City performs an unaccounted-for water audit of its system as required by a special condition of its existing WUP. The unaccounted-for water use is approximately 4 percent, well below the District guidelines. Furthermore, the City's per capita use rate of 110 gpd is well within the District's goal of 150 gpd per person. The City also has an extensive reclaimed water system which offsets potable water supply and prohibits wasted drinking water as an irrigation source. Condition (n) Condition (n) requires that the City demonstrate that the water use will not otherwise be harmful to the water resources within the District. Facts found above support a conclusion that the City has provided reasonable assurances that it meets this condition. In addition, the water that is pumped locally by the City will offset the need for ground water that would have otherwise been obtained from elsewhere in the region. Notices The District published its Notice of Proposed Agency Action in the Tampa Tribune on October 22, 2010. The District published its Notice of Proposed Agency Action in the St. Petersburg Times on October 24, 2010.
Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is recommended that the Southwest Florida Water Management District enter a Final Order determining that Petitioner Ross lacks standing and that his Petition, therefore, be dismissed. Should it be determined in a Final Order that Petitioner Ross has standing, it is recommended that the Southwest Florida Water Management District enter a Final Order that issues Water Use Permit No. 20000742.010 to the City of Tarpon Springs. DONE AND ENTERED this 14th day of April, 2011, in Tallahassee, Leon County, Florida. S DAVID M. MALONEY Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 14th day of April, 2011.
The Issue The issue in this case is whether the Southwest Florida Water Management District (the District) should grant the application of the Misty Creek Country Club, Inc. (the Club), to modify MSSW Permit No. 400037.
Findings Of Fact Background Petitioners are owners of property adjacent to Lake No. 7 of the Misty Creek Country Club in a development called The Preserves at Misty Creek-- specifically, lot 113 (Robert and Lee Werner), lot 114 (Charles and Rosemary Biondolillo), lots 115 and 115A (Ignatius and Judith Bertola), lots 117 and 117A (Don and Halina Bogdanske), lots 118 and 118A (Louis and Betty Mitchell), lots 119 and 119A (George and Dorothy Holly), lots 120 and 120A (John and Maureen Higgins), and lot 121 (William and June Spence). Respondent, the Misty Creek Country Club (the Club), operates a golf course and country club located at The Preserves at Misty Creek under a 99-year lease with Gator Creek Lands, the developer of The Preserves at Misty Creek. Existing System Design and Application for Permit Modification In 1985, Respondent Southwest Florida Water Management District, issued a surface water management permit for development of a 730-acre residential development and golf course. The District subsequently issued to the Club operation phase authorization for the surface water management system associated with the golf course portion of the development in March of 1992. Under the original permit, Lake No. 7 was part of the overall stormwater management system for the golf course. The lake is approximately seven and half to eight acres in size and is part of a total drainage basin of approximately twenty-eight acres. As originally designed, Lake No. 7 is a detention with filtration system. An underdrain in the side of the bank provides water quality treatment, filtering out oils and greases, fertilizers and other contaminants. A control elevation of 31.02 was established for Lake No. 7 through construction of a weir. Between elevation 31.00 and 31.02, water discharges through the underdrain system providing water quality treatment. Above elevation 31.02, water flows over the control structure into Lake No. 6, and ultimately discharges to Cow Pen Slough, which is Class III waters of the state. The Club presently has a water use permit from the District which allows withdrawal of groundwater for irrigation of the golf course. Groundwater is stored in Lake No. 7 prior to use for irrigation when needed to augment water in the lake. Special Condition Number 2 of the water use permit required the Club to investigate the feasibility of using reclaimed or reuse water in lieu of groundwater for irrigation purposes at the golf course. As a result of the investigation required by Special Condition Number 2 of the water use permit, the Club filed an application with the District to modify its surface water management permit to allow for the introduction of reuse water into Lake No. 7. Under that application, there would have been no significant modifications to the stormwater management system. Reuse water would have replaced groundwater as a source for augmenting water in the lake when needed for irrigation. An eight-inch service line would convey the reuse water to Lake 7, and a float valve would control the introduction of reuse water into Lake No. 7. When water levels in the lake fell below elevation 30.5', the float valve would open the effluent line to allow introduction of reuse water into the lake; when the water elevation in the lake reached 31.0', the float valve would shut off the flow of water. There would be gate valves on either side of the structure that could be manually closed, if necessary, to stop the flow of reuse water into the lake if the float valve malfunctioned. Club personnel would have access to the gate valves and could manually stop the flow of reuse water into the lake if necessary. On August 9, 1995, just days prior to the final hearing in this matter, the Club proposed to modify its application to make certain structural changes in the design of the surface water management system. Specifically, the Club proposed to plug the window in the weir, raise the elevation of the weir or control structure to elevation 33.6, raise the elevation of the berm along the north end of Lake No. 7 adjacent to the weir to elevation 33.6, and plug the underdrain. The purpose of the proposed modifications to the design of the system was to assure that no discharge from Lake No. 7 would occur up to and including the 100-year storm event. A 100-year storm event is equal to 10 inches of rainfall in a 24-hour period. Source and Quality of Reuse Water The Club also entered into an agreement with Sarasota County to accept reuse water from the county's new Bee Ridge wastewater treatment facility. That agreement specifies the terms under which the Club will accept reuse water from the County. The County's Bee Ridge facility is presently under construction and is not yet operating. As permitted by the Department of Environmental Protection, the Bee Ridge wastewater treatment facility will use a Bardenpho waste treatment system which is a licensed process to provide advanced waste treatment. The construction permit establishes effluent limits for the facility that are comparable to a level of treatment known as advanced secondary treatment, but the County Commission for Sarasota County has instructed the County staff to operate the Bee Ridge facility as an advanced waste treatment plant. Advanced waste treatment is defined by the quality of the effluent produced. For advanced waste treatment, the effluent may not exceed 5 milligrams/Liter of biochemical oxygen demand (BOD) or total suspended solids (TSS), 3 milligrams/Liter of total nitrogen, or 1 milligram/Liter of total phosphorus. It also requires high level disinfection. Advanced secondary treatment requires the same level of treatment for TSS but the limit for nitrates is 10 milligrams/Liter. High level disinfection is also required for advanced secondary treatment. In Florida, reuse systems require a minimum of advanced secondary treatment. High level disinfection is the level of treatment that generally is accepted as being a reasonable level of treatment. The Bee Ridge permit issued to Sarasota County identifies the Club as one of the recipients of reuse water for irrigation. Condition Number 21 of that permit provides that the use of golf course ponds to store reuse water is not authorized under the County's permit until issuance of a separate permit or modification of the County's permit. Although the District did not require Misty Creek to submit any information about the modification of the County's permit, there was no basis for assuming that the County permit could not be modified. To the contrary, the permit provides that authorization may be obtained by permit modification. Under the late modification to the Club's application, the reuse water transmission line and float valve system, with backup manual gate valve system, is unchanged. So are the water elevations at which the float valve system will automatically introduce reuse water into Lake 7 and shut off. Sarasota County already has constructed the water transmission system that would deliver reuse water to the Club. At the request of the District, the Club provided copies of the drawings of the float valve structure as permitted by the Department of Environmental Protection. The District did not require certified drawings of that structure. But the District will require the Club to provide as-built drawings following completion of construction prior to the introduction of reuse water into Lake No. 7. Property Ownership Each of the Petitioners owns a residential lot adjacent to Lake No. 7. At the time of the Petitioners' purchase of the individual residential lots, the Club leased certain property immediately west of Lake No. 7 from the developer of The Preserve at Misty Creek. The leased premises included a piece of land extending into the lake known as the 19th green. As a result of negotiations between the Club and the developer, it was determined that the 19th green would be removed and the land between the approximate top of bank of Lake No. 7 and the private residential lots would be released from the Club's lease. The developer subsequently conveyed the property that had been released from the Club's lease to the individual lot owners (the "A" parcels listed in Finding 1). At the time of the conveyance of the additional parcels, the attorney for the developer prepared deeds for each individual parcel with a metes and bounds description off the rear of the residential lots to which they were being added. While the Club's application for modification of its surface water management permit was being processed by the District, counsel for Petitioners provided the District with copies of the individual deeds and questioned whether the Club had ownership or control of the land which was the subject of the application sufficient to meet the District's permitting requirements. In response to a request for information regarding the ownership of the property that was the subject of the application, the Club submitted to the District a topographical survey prepared by Mr. Steven Burkholder, a registered professional land surveyor with AM Engineering. The topographical survey depicted: the elevation of the water in the Lake No. 7 on the day that the survey was conducted, labeled "approximate water's edge"; the elevation of the "top of bank"; and the easternmost line of private ownership by Petitioners. Mr. Burkholder determined the line of private property ownership by reproducing a boundary survey attached to the individual deeds conveying the additional parcels to the Petitioners. He testified that he was confident that the topographical survey he prepared accurately represented the most easterly boundary of the Petitioners' ownership. The elevation of the line of private ownership as depicted on the survey prepared by Mr. Burkholder ranges from a low of approximately 34.5 to 35.2. The elevation of the line labeled "top of bank" ranges from a high of 35.6 to a low of 34.4. The elevation of the water in Lake No. 7 would be controlled by the elevation of the modified control structure which is proposed to be set at elevation 33.6. After modification of the surface water management system to retain the 100-year storm event, at no time would water levels in the lake rise above the existing elevation of the "top of bank." The Petitioners testified that they believed that they owned to the water's edge or edge of the lake, but Mr. Burkholder testified that a property boundary could not be determined based on an elevation depicting the water's edge because that line would change as the level of the water rose and fell. The Petitioners also presented evidence that the developer's attorney made representations to them that their ownership extended to the "approximate high water line." But there appears to be no such thing as an "approximate high water line" in surveying terms. Where the boundary of a lake is depicted on a survey it generally is depicted from top of bank to top of bank. In any event, the legal descriptions of the parcels conveyed to the Petitioners were not based on a reference to either a water line or the water's edge or the lake at all. Instead, the legal descriptions were based solely on a metes and bounds description off the rear of the residential lots. Notwithstanding some contrary evidence, if the Petitioners owned to the water's edge, such ownership would require the Petitioners to consent to or join in the amended application for the modification of the Club's surface water management permit. Information regarding the ownership or control and the legal availability of the receiving water system is required as part of the contents of an application under Rule 40D-4.101(2)(d)6. and 7., Florida Administrative Code. The amended application requires the ability to "spread" Lake 7 in the direction of the Petitioners' property. If the Petitioners own the property on which the Club intends to "spread" Lake 7 in order to make the amended application work, the Petitioners must consent or join. The issue of the legal ownership and control of the Petitioners and the Club currently is in litigation in state circuit court. If the state circuit court determines that the easterly boundary of the "A" parcels lies to the east of the "top of bank," consideration would have to be given to modifying any permit issued to the Club to insure that the designed "spread" of Lake 7 in a storm event up to and including a 100-year storm event does not encroach on the Petitioners' property. District Permit Requirements The District has never before processed an application for a surface water management permit allowing commingling of storm water and reuse water. The District applied Chapter 40D-4, Florida Administrative Code, in reviewing the Club's permit application. There are no specific provisions in Rule 40D-4 or the District's Basis of Review for Surface Water Management Permit Applications that address the commingling of stormwater and reuse water; on the other hand, no rules of the District prohibit the introduction of other types of water into a stormwater treatment pond so long as the requirements of Rule 40D-4 are met. The District has the authority to allow stormwater and reuse water to be commingled. Section 40D-4.301, Florida Administrative Code, contains the conditions for issuance of a surface water management permit. Permitting Criteria In order to obtain a surface water management permit to commingle stormwater and reuse water in Lake 7, the Club must provide reasonable assurances that the proposed modifications to its existing system will provide adequate flood control and drainage; not cause adverse water quality and quantity impacts on receiving waters and adjacent lands; not result in a violation of surface water quality standards; not cause adverse impacts on surface and groundwater levels and flows; not diminish the capability of the lake to fluctuate through the full range established for it in Chapter 40D-8, Florida Administrative Code; not cause adverse environmental impacts to wetlands, fish and wildlife or other natural resources; be effectively operated and maintained; not adversely affect public health and safety; be consistent with other public agency's requirements; not otherwise be harmful to water resources of the District; and not be against public policy. No surface or groundwater levels or flows have been set for this area of the District, so that permit criterion is not applicable to the Club's application. The Club's application will not impact wetlands or fish and wildlife associated with wetlands as described in F.A.C. Rule 40D-4.301(1)(f). There are no wetlands regulated by the District in the project site. The Club has submitted to the District an operation and maintenance plan for the modified surface water management system. The operation and maintenance plan is in compliance with the District's permitting criteria contained in Rule 40D-4.301(1)(g). The District's regulation with respect to the requirement that a project not adversely affect the public health and safety is based on the specific requirements of Chapter 40D-4, Florida Administrative Code, and the Club has complied with this criterion. The permitting criterion that a project must be consistent with the requirements of other public agencies was met by inclusion in the permit of Special Conditions Nos. 5 and 6, Limiting Condition No. 3 and Standard Condition No. 3, which require that the surface water management permit be modified if necessary to comply with modifications imposed by other public agencies. The District's regulation with respect to the requirement that a project not otherwise be harmful to the water resources within the District is based on the specific requirements of Chapter 40D-4, Florida Administrative Code, and the Club has complied with this criterion. The District's regulation with respect to the requirement that a project may not be against public policy is based on the specific requirements of Chapter 40D-4, Florida Administrative Code, and the Club has complied with that criterion. The project will not have an adverse impact on water quality or quantity in receiving waters or adjacent lands. Under the District's regulations, the project would not be permittable if it caused flooding on property owned by other persons. Two concerns regarding off-site flooding were raised by Petitioners: first, the potential for flooding of the Petitioners' property; and, second, the potential for flooding of secondary systems connecting to Lake No. 7 such as private roads in the development. The project would violate the requirements of Section 40D-4.301(1)(a), Florida Administrative Code, which requires that a proposed project provide adequate flood protection and drainage, if raising the weir and berm elevation to 33.6 would cause the level of water in Lake No. 7 to move laterally up the bank and encroach on property owned by Petitioners. However, the Club has given reasonable assurances that the Petitioners own only to the "top of bank" and that raising the weir elevation to 33.6 would not cause water levels to rise above the "top of bank" of the lake. If it is determined in pending state circuit court proceedings that the Petitioners own beyond the "top of bank," any permit for the Club's project might have to be modified to avoid flooding the Petitioners' property. With respect to potential flooding of secondary systems, such as adjacent roadways, raising the elevation of water in Lake No. 7 would decrease the capacity of the storm sewers draining into the Lake. However, the proposed modifications would not increase the area of impervious surface in the drainage basin or decrease the size of the lake, and water levels in the roadways probably would not rise much higher than under present circumstances. The existing storm sewer system is only designed for a 10-year storm event, so the supplemental effect on roadway flooding from retaining a 100-year storm event in Lake No. 7 probably would be negligible. The Club gave reasonable assurances that any increase in water levels on the roadways from the proposed modifications would not be considered a significant adverse effect because it still would not affect public access. Sarasota County's land development regulations allow flooding in streets of up to 12 inches for a 100-year storm event, nine inches for a 25-year storm event, and six inches for a 10-year storm event. No portion of the proposed project area is within the 100-year floodplain. The project will not have an adverse effect on water quantity attenuation or cause flooding of the Petitioners' property or secondary systems, such as adjacent roadways. Petitioners have protested the effect that this project will have on water quality within Lake No. 7, itself. Surface water quality standards do not apply within a stormwater pond. Stormwater ponds are essentially pollution sinks intended to receive polluted runoff. Where there is no discharge from a pond, water quality treatment is irrelevant. Lake 7 is not a "water resource within the District" pursuant to Section 40D-4.301(1)(j), Florida Administrative Code, and potential impact on water quality in Lake No. 7 should not be considered. Section 40D-4.301(1)(j) limits the issues to be considered by the District to downstream water quality, water quantity, floodplain impacts, and wetlands impacts. The commingling of wastewater effluent treated to a level of advanced secondary or advanced waste treatment (reuse water) would improve water quality within a stormwater treatment pond at least 90 to 95 percent of the time. Stormwater is very low quality compared to reuse water. In most respects, reuse water also will be better quality than the well water presently being used to augment the pond. It is expected to be better quality than unimpacted water in the receiving waterbody with respect to nitrogen content and only slightly worse with respect to phosphorus content. The addition of reuse water should not promote more algal growth; rather, it should reduce the likelihood of algal growth. It also should not increase the incidences of fish kills in Lake 7. Nor should it alter the nutrient concentrations in Lake 7 so as to result in an imbalance of the natural population of aquatic flora and fauna. In the draft permit originally proposed to be issued to the Club, permit conditions required that water quality be monitored at the point of discharge to waters of the state. This requirement was eliminated from the revised permit as the District determined that it was not necessary in light of the modification of the system to retain the 100-year storm event. The subject design does not account for recovery of the water quality treatment volume within a specified period of time. However, there is no such requirement in District rules when a pond entirely retains the 100-year storm event, as is the case with this project. Even if there were a discharge from the surface water management system in a storm event up to and including a 100-year storm event, the Club gave reasonable assurances that water quality standards in the receiving waterbody would not be violated because of the effects of dilution. This project will not cause discharges which result in any violations of applicable state water quality standards for surface waters of the state. Based on a number of factors, including the peak rate factor, the curve number and the seasonal high water elevation, the water level in Lake 7 would reach an elevation of 33.57 if a 100-year storm event occurs. This results in the retention of the 100-year storm in Lake 7. The District only considers the 100-year storm event, by itself. It does not consider other rainfall events before or after it. However, the District does presume that ponds are at their seasonal high water level when the 100-year storm event occurs and that the ground is saturated. With respect to the seasonal high water level, there was substantial conflicting testimony. The Club's consultant used a seasonal high water level of 31.0' for Lake No. 7 in his calculations. This was based on a geotechnical engineering report prepared by Ardaman & Associates. A seasonal high water elevation of 31.0' was also used in the original permit application in 1985. In concluding that the seasonal high water level should be 31.0, the Ardaman report relied on several assumptions, including plugging of the underdrain and overflow weir and no discharges into or pumping out of the lake. These assumptions were made to establish an historical water level. The Petitioners' consultant disputed the determination in the Ardaman report that the seasonal high for Lake No. 7 was 31 on the grounds that the report indicated groundwater levels of 32.8 on three sides of the lake. He also felt that water levels would rise in the lake over time as a result of it being, allegedly, a closed system. While he did not have an opinion as to what the appropriate seasonal high should be, he felt it would be higher than 31 but lower than 32.8. However, he did no modeling with respect to calculating a seasonal high water level and would normally rely on a geotechnical engineer, such as Ardaman & Associates, to calculate seasonal high water levels. The District generally does not receive information as extensive and detailed as that included in the Ardaman report when it reviews permit applications. Among other things, the Ardaman report indicates a gradient across Lake No. 7 which makes the determination of the seasonal high for the lake difficult. The groundwater flow gradient results from the fact that the elevation of Lake No. 6 is approximately three feet lower than the elevation in Lake No. 7. The elevation determined by Ardaman may well be conservative in that the seasonal high of 31 is above the midpoint of the gradient. Although Lake 7 will be designed as an essentially closed system, it will have inflow from rainfall, surface runoff, introduction of reuse water and groundwater inflow, and outflows by way of evapotranspiration, withdrawal for irrigation purposes, and groundwater outflows. To alleviate any concerns about the validity of the seasonal high, it would be reasonable to include a permit condition requiring the Club to monitor the water level in Lake 7 on a daily basis, using staff gauges, after modification of the control structure. If such monitoring indicated that the seasonal high water level exceeds 31.0, the District could consider options to address that situation, including reducing the level at which reuse water is introduced into the lake or requiring water quality monitoring at the point of discharge to receiving waters. Groundwater quality is regulated by the Department of Environmental Protection, not by the District. The DEP permit issued to Sarasota County for disposal of reuse water at the Club golf course requires the installation of two groundwater monitoring wells, one in fairly close proximity to Lake No. 7. The Overlooked Pond There is a small retention pond northwest of Lake 7, near lot 113. Neither the Club nor the District considered the effect of the Club's late modification of its application on the retention pond northwest of Lake 7 and adjacent properties. Lake 7 and the retention pond to its northwest are connected by an equalizer pipe. As a result, water levels in the pond will be affected by water levels in Lake 7. There was no evidence as to the elevations of the banks of the retention pond. There was no evidence as to whether the modifications to the Club's application will result in flooding of properties adjacent to the pond. There was no evidence that the Club owns or controls the retention pond or the properties adjacent to it that might be affected by flooding that might result from the modifications to the Club's application.
Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is recommended that the Southwest Florida Water Management District enter a final order denying the Club's amended application. RECOMMENDED this 19th day of October, 1995, in Tallahassee, Florida. J. LAWRENCE JOHNSTON Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 19th day of October, 1995. APPENDIX TO RECOMMENDED ORDER, CASE NO. 95-2196 To comply with the requirements of Section 120.59(2), Fla. Stat. (1993), the following rulings are made on the parties' proposed findings of fact: Petitioners' Proposed Findings of Fact. 1.-2. Accepted and incorporated. Accepted and incorporated to the extent not subordinate or unnecessary. However, there was other evidence from which it can be determined that Lake 7 is part of the Club's lease. Accepted and incorporated. However, there was other evidence from which it can be determined that Lake 7 is part of the Club's lease and from which the western extent of the Club's leasehold interests in Lake 7 can be determined. Accepted and incorporated. But the topographic survey, together with other evidence, does show the eastern extent of the Petitioners' property in relation to the "top of bank" of Lake 7 and the western extent of the Club's leasehold interests in Lake 7. Rejected as contrary to the greater weight of the evidence that uses must be "specifically authorized" in that the lease authorizes the use of the premises for a "golf course," which is presumed to include uses inherent to the operation of a golf course that may not be further specified in the lease, such as drainage facilities, like Lake 7, and facilities for irrigation of the golf course. Otherwise, accepted and incorporated to the extent not subordinate or unnecessary. Rejected as contrary to the greater weight of the evidence. Accepted but subordinate and unnecessary. Rejected as contrary to the greater weight of the evidence that the Club does not pay for the maintenance of Lake 7, at least as between the Club and its lessor, which is the subject of the pertinent lease provision. (There was evidence as to a dispute between the Club and the Petitioners, or at least some of them, as to who is responsible for maintenance of land in the vicinity of the western extent of Lake 7 and the eastern extent of the Petitioners' property. Rejected as contrary to the greater weight of the evidence. Rejected as contrary to the greater weight of the evidence to the extent that there are "A" parcels between lots 115 through 120 and Lake 7. Otherwise, accepted and incorporated. Accepted and incorporated. Not clear whether all of the activities listed in the second sentence are done in the entire area up to the water's edge but, otherwise, accepted and incorporated. Accepted, but subordinate to facts contrary to those found, and unnecessary. Accepted; subordinate to facts found. Rejected. The intent of the parties is not clear and is the subject of litigation in state circuit court. 17.-18. Accepted that some probably used the words "to the water's edge"; others may have said "to the lake" or "to the approximate high water line." Regardless of what they said, the legal consequences are being litigated in state circuit court. Subordinate to facts contrary to those found, and unnecessary. 19.-20. Accepted and incorporated to the extent not subordinate or unnecessary.. Last sentence, accepted but subordinate and unnecessary. The rest is rejected as contrary to the greater weight of the evidence. Accepted but subordinate and unnecessary. The evidence was sufficient to place on Exhibit M-16 the boundary lines of the "A" parcels, as depicted on the Alberti boundary survey that was attached to the individual deeds to all of the "A" parcels, in relation to the "top of bank" of Lake 7 and other topographical features depicted on Exhibit M-16. The 0.679 acre total for the "A" parcels was merely transcribed from the Alberti boundary survey (probably incorrectly, as the boundary survey seems to indicate the acreage to be 0.674, plus or minus.) Rejected as contrary to the greater weight of the evidence. The modification itself would not cause the water level to rise. If, due to the combined influence of all the pertinent factors, the water level in Lake 7 rises, it will spread more than before the modifications, up to a maximum spread of approximately ten feet. Rejected as contrary to the greater weight of the evidence. The Club gave reasonable assurances that the spread would be contained within its leasehold interest. However, consideration would have to be given to modifying the permit if the state circuit court determines in the pending litigation that the easterly boundary of the "A" parcels lies to the east of the "top of bank." Accepted and incorporated to the extent not conclusion of law. Accepted. Self-evident and unnecessary. Accepted and incorporated. Accepted, but subordinate, and unnecessary. Accepted and incorporated. Rejected as contrary to the greater weight of the evidence. It does not prohibit it; it just does not authorize it. It provides that authorization may be obtained by permit modification. Accepted and incorporated to the extent not subordinate or unnecessary. 32.-36. Accepted but subordinate and unnecessary. (Evidence was presented at final hearing.) 37. Rejected as contrary to the greater weight of the evidence that discharges will be "likely." (Accepted and incorporated that no discharges are expected as a result of storm events up to and including a 100-year storm event unless preceding conditions predispose the system to discharge during a 100-year storm event.) 38.-39. Accepted but subordinate and unnecessary. (As for 39., very little construction will be required for the proposed project.) Rejected as contrary to the greater weight of the evidence. First, Lake 7 will not be "maintained" at 31'; rather, when it falls below 30.5', a half inch will be added. Second, it is not clear that the Ardaman report established an "artificially low seasonal high water level." (There is a hydraulic gradient across Lake 7 from east to west, approximately. The Ardaman report assumed no flow into or out of Lake 7; it also assumed no pumpage into or out of the lake.) Rejected as contrary to the greater weight of the evidence that it is based "solely" on that assumption. Accepted and incorporated that it is based on that and on other assumptions. Accepted and incorporated. Accepted but subordinate and unnecessary. (Evidence was presented at final hearing.) Rejected as not supported by evidence. Rejected as contrary to the greater weight of the evidence to the extent that the impact is obvious--the water level in the pond will be approximately equal to the water level in Lake 7. Rejected as contrary to the greater weight of the evidence. The modification itself would not cause the water level to rise. If, due to the combined influence of all the pertinent factors, the water level in Lake 7 rises, so will the water level in the pond. 47.-48. Accepted and incorporated. 49.-50. Accepted but subordinate and unnecessary. 51.-52. Accepted and incorporated. Respondents' Proposed Findings of Fact. 1.-7. Accepted and incorporated. 8. Rejected as contrary to the greater weight of the evidence in that there was more to the application than just substitution of reuse for well water. 9.-10. Accepted and incorporated. 11. Accepted and incorporated to the extent not subordinate or unnecessary. 12.-22. Accepted and incorporated. Rejected as not proven. (The two District witnesses disagreed.) Even if true, subordinate to facts contrary to those found. Accepted and incorporated. Accepted and incorporated to the extent not subordinate or unnecessary, or conclusion of law. Accepted and incorporated. Accepted and incorporated to the extent not conclusion of law. 28.-29. Accepted; subordinate to facts found, and in part conclusion of law. 30. Accepted. First sentence, incorporated; second sentence, subordinate to facts found, and in part conclusion of law. 31.-35. Accepted and incorporated to the extent not subordinate or unnecessary, or conclusion of law. Accepted and incorporated. Accepted and incorporated to the extent not subordinate or unnecessary, or conclusion of law. Accepted but subordinate to facts contrary to those found. 39.-40. Accepted and incorporated to the extent not subordinate or unnecessary. 41.-43. Accepted and incorporated. Accepted and incorporated to the extent not conclusion of law. Last sentence, accepted and incorporated to the extent not conclusion of law; rest, accepted but subordinate to facts contrary to those found, and in part conclusion of law. Accepted and incorporated to the extent not subordinate or unnecessary. Accepted, but subordinate, and unnecessary. Accepted and incorporated. First sentence, accepted but subordinate to facts contrary to those found; second sentence, accepted and incorporated to the extent not conclusion of law. Accepted and incorporated to the extent not subordinate or unnecessary. 51.-52. Accepted and incorporated. 53.-55. Accepted, but subordinate to facts found, and unnecessary. 56. Accepted and incorporated. 57.-62. Accepted and incorporated to the extent not subordinate or unnecessary. 63. Accepted and incorporated to the extent not conclusion of law. COPIES FURNISHED: Patricia A. Petruff, Esquire D. Robert Hoyle, Esquire Dye & Scott, P.A. 1111 Third Avenue West Bradenton, Flroida 34206 Mary F. Smallwood, Esquire Ruden, Barnett, McClosky, Smith, Schuser & Russell, P.A. 215 South Monroe Street, Suite 815 Tallahassee, Florida 32301 Mark F. Lapp, Esquire Assistant General Counsel Southwest Florida Water Management District 2379 Broad Street Brooksville, Florida 34609-6899 Peter G. Hubbell Executive Director Southwest Florida Water Management District 2379 Broad Street Brooksville, Florida 34609-6899 Edward B. Helvenston,Esq. General Counsel Southwest Florida Water Management District 2379 Broad Street Brooksville, Florida 34609-6899