The Issue The issues are whether Georgia-Pacific Corporation is entitled to the issuance of an industrial wastewater facility permit under the National Pollutant Discharge Elimination System program that would authorize it to discharge industrial wastewater to the St. Johns River in Putnam County, Florida, and whether Georgia-Pacific Corporation has met the statutory criteria for a related administrative order for the interim discharge to Rice Creek in Putnam County, Florida.
Findings Of Fact Based upon all of the evidence, the following findings of fact are determined: The Parties Respondent, Department of Environmental Protection (Department), is the state agency authorized under Chapter 403, Florida Statutes, to regulate discharges of wastes to waters of the State. Under approval from the United States Environmental Protection Agency (EPA), the Department administers the National Pollutant Discharge Elimination System (NPDES) permitting program in the State. The Department also enforces specific water quality standards that have to be achieved in order to ensure protection of the designated uses of surface waters in the State. Respondent, Georgia-Pacific Corporation (Georgia- Pacific), owns and operates a bleached and unbleached kraft pulp and paper mill in Putnam County, Florida. The plant presently discharges treated wastewater to Rice Creek, a Class III water of the State, and a tributary of the St. Johns River. Petitioner, Putnam County Environmental Council, Inc. (PCEC), alleged in the Petition for Formal Administrative Hearing (Petition) that it is a non-profit Florida corporation headquartered in Palatka, Florida. However, other than a statement by one witness that PCEC was incorporated on an undisclosed date prior to the hearing, PCEC failed to present any evidence to establish its corporate status or residency in the State of Florida. According to the same witness, the organization was created in an unincorporated status in 1991, and it currently has 65 members who use and enjoy the St. Johns River for recreational purposes. Petitioner, Stewards of the St. Johns River, Inc. (SSJR), also alleged in the Petition that it is a non-profit Florida corporation with headquarters in Jacksonville, Florida. Like PCEC, SSJR failed to prove its corporate status or residency in the State of Florida. Although the number of members in SSJR is unknown, "many" of its members are boaters and "most" live along the St. Johns River. Petitioner, Linda Young, is Southeast Regional Coordinator for the Clean Water Network and a citizen of the State of Florida. As such, she has standing to "intervene" in this action under Section 403.412(5), Florida Statutes. In this complex case, the parties have presented extensive and conflicting evidence regarding the factual issues raised by the pleadings. In resolving the numerous conflicts in that testimony, the undersigned has accepted the more credible and persuasive evidence, as set forth in the findings below. The Applicant's Mill Operation Georgia-Pacific's Palatka mill was built in the 1940's before the establishment of Department water quality standards and classifications. Because of the nature of the pulping process, the mill has not been able to fully meet water quality standards in Rice Creek because of poor dilution. Georgia-Pacific receives wood chips from a sister facility and purchases residual chips from local wood products facilities. Those chips are separated into pine and hardwood, conveyed into the pulp processing facility, and loaded into digesters, that is, industrial-sized pressure cookers, which cook the chips for several hours. Pulp from the digesters goes to the brown kraft, bleached kraft, and tissue manufacturing facilities. Water in the manufacturing process is used, re-used, and recirculated until it cannot be used again, at which point it is conveyed into a primary wastewater clarifier, which is used to settle out fiber and other settleable solids. Additional wastewater sources are collected in sumps located in the facility, which are discharged into the primary clarifier. The underflow from the primary clarifier flows into a solids settling area (sludge pond) while the water from the primary clarifier passes into a secondary treatment system. The secondary treatment system uses aerobic and facultative biological treatment. Stormwater at the facility also flows into the treatment system. The secondary treatment system consists of four ponds in series: Pond 1, 485 acres, aerated with over 1600 horsepower of aeration; Pond 2, 175 acres, with 140 horsepower of aeration; Pond 3, 130 acres, with 120 horsepower of aeration; and Pond 4, 100 acres. Pond 4 is a quiescent basin, used to settle solids in the wastewater before discharge. The treatment system has a very long hydraulic detention time; once water enters the system, it remains there for 50 to 60 days. After treatment, a side stream of roughly 8,000,000 gallons per day of treated effluent is withdrawn, oxygenated with liquid oxygen, and discharged at two locations in Rice Creek: 3.4 miles upstream from the St. Johns River (Outfall D-001); and 2.4 miles upstream from the St. Johns River (Outfall D-002). Under low flow conditions, effluent from the Georgia-Pacific mill dominates the flow in Rice Creek. The Application Process Rice Creek is a small tributary of the St. Johns River, particularly in its upper reaches where Georgia- Pacific's effluent discharge occurs. Over the years, there have been exceedances of certain Class III water quality standards including specific conductance, color, and periodically whole effluent toxicity. Because of this, and during the permit review process, the Department began considering alternatives for mitigating or eliminating those existing concerns with the facility's discharge. In October 1992, Georgia-Pacific applied to the Department for the renewal of its existing wastewater discharge permit. In June 1994, Georgia-Pacific submitted an application to the Department for the construction and operation of an industrial wastewater treatment and disposal system. This application included a request to relocate Georgia-Pacific’s existing discharge to the St. Johns River. Because Georgia-Pacific submitted timely permit applications, it is authorized to continue operations based on an "administratively extended permit." In June 1994, Georgia-Pacific also applied to the EPA for a permit under the NPDES program. In October 1994, the EPA acknowledged receipt of a timely application for the renewal of Georgia-Pacific's existing NPDES permit, advising Georgia-Pacific by letter that its permit was automatically extended and that continued operation was authorized in accordance with the existing permit and 5 U.S.C. Section 558(c). On May 24, 1995, the Department advised Georgia- Pacific that the EPA had granted the Department the authority to administer the NPDES program and that its state permit and existing NPDES permit were deemed combined into one order. In response to a Department request, in November 1995, Georgia-Pacific submitted to the Department an antidegradation review for the relocation of its discharge. After Georgia-Pacific applied to the Department for a renewal of its NPDES permit, the Department directed Georgia-Pacific to provide alternatives that would ensure compliance with water quality standards. Georgia-Pacific submitted a proposal to construct a pipeline that would enable it to discharge its effluent to the middle of the St. Johns River. Under that proposal, Georgia-Pacific would achieve compliance with water quality standards as a result of greater dilution in the St. Johns River. Based on a review of Georgia-Pacific's submittal, the Department determined that Georgia-Pacific could in fact achieve water quality standards by constructing a pipeline to the St. Johns River. Likewise, the EPA concluded that Georgia-Pacific could receive a permit to discharge to the St. Johns River through a pipeline, without additional process improvements. Although the Department concluded that compliance could be achieved solely by the construction of a pipeline, it began discussions with Georgia-Pacific and EPA in order to examine other approaches that might lead to compliance in Rice Creek. These discussions culminated in a decision that Georgia-Pacific would invest substantial funds in the installation of additional technology and also be assured of some ultimate means to achieve compliance with water quality standards. On May 1, 2001, the Department issued a Notice of Intent to Issue an industrial wastewater permit, together with an Order Establishing Compliance Schedules Under 403.088(2)(f), Florida Statutes (the Administrative Order). In late January 2002, Georgia-Pacific submitted a request to the Department asking for consideration of two changes to the proposed permit: first, a request to relocate a groundwater monitoring well; and second, a request to review the Department's proposed mixing zone in the St. Johns River for the transparency standard. The Department also proposes a minor change in permit conditions to allow approval of the bleach plant monitoring plan to take place within sixty days after the issuance of the final permit. Both of Georgia- Pacific's requests were reviewed by the Department, and it has recommended that they be included in the proposed permit. Technology-Based Effluent Limits and Water Quality- Based Effluent Limits When considering a permit application such as the one here, the Department reviews the application to determine compliance with technology-based effluent limits (TBELs) and water quality-based effluent limits (WQBELs). TBELs are minimum industry standards that all facilities must meet regardless of their discharge location. They are predominantly production-based, and they limit the mass of pollutants that may be discharged based on the mass of product produced. Those limits generally reflect EPA's assessment of the industry standard regarding what can be met in a given discharge. In the preparation of a permit, the Department practice is to first determine the TBELs that would apply. In contrast, a WQBEL reflects how low the discharge must be (or how effective treatment must be) for a given parameter to meet water quality standards. Relief mechanisms such as mixing zones are inherent in WQBELs. A WQBEL is necessary only for those parameters for which there is a reasonable potential for the facility either to exceed the water quality standard or come close to exceeding the standard. As a matter of agency practice, the Department does not impose a limit unless there is a reasonable potential to exceed a standard. In order to determine whether there is such a reasonable potential for exceeding a standard, the Department will review past operations and other information it may have regarding the characteristics of the discharge. For a discharge such as the one proposed in the present case, a "Level II" WQBEL is required. The Department's Point Source Section, with expertise in the field of water quality modeling, analyzes the Level II WQBEL. Georgia-Pacific must meet certain technology-based standards, such as those set forth in the Cluster Rule. The Cluster Rule has been promulgated by the EPA and adopted by the Department and requires the installation of technologies to eliminate the use of elemental chlorine in the bleaching process. The Palatka facility far exceeds (performs better than) technology-based effluent limits. In March 1998, the Department created a document titled "Level II Water Quality Based Effluent Limitations for the Georgia Pacific Corp. Palatka Mill" (the WQBEL Technical Report]. The WQBEL Technical Report has a typed notation on the title page reading "March 1998 -- Final." The WQBEL Technical Report contained the following effluent discharge limitations: The following are the effluent limitations for the Georgia-Pacific Palatka mill discharge to the St. Johns River based upon results from the Level II WQBEL. Review comments from EPA Region 4 are included in the correspondence section. Parameter Limitation Discharge 60 MGD Daily Maximum BOD5 Summer (June 1 - November 30) 3,500 lbs/day maximum thirty day average Winter (December 1 – May 31) 7,170 lbs/day maximum thirty day average TSS Summer (June 1 - November 30) 5,000 lbs/day maximum thirty day average Winter (December 1 – May 31) 10,000 lbs/day maximum thirty day average Dissolved Oxygen 2.7 mg/l minimum Specific conductance 3,220 umhos/cm daily maximum Un-Ionized Ammonia Nitrogen Summer (June 1 - November 30) .11 ug/l daily maximum Winter (December 1 – May 31) .13 ug/l daily maximum Iron (Total Recoverable) 2.91 mg/l daily maximum Cadmium (Total Recoverable) 3.46 ug/l daily maximum Lead (Total Recoverable) 5.87 ug/l daily maximum Zinc (Total Recoverable) 480 ug/l daily maximum When the WQBEL Technical Report was approved in 1998, the Department's Northeast District Office did not prepare a separate formal notice of approval. The WQBEL Technical Report was transmitted by memorandum from the Water Quality Assessment Section to the Department's Director of District Management for the Northeast District on April 13, 1998, where it remained on file. The WQBEL Technical Report complied with the plan of study previously approved by the Department, and it met the requirements of Rule 62-650.500, Florida Administrative Code. Both the Department and EPA staff concurred with the approval of the WQBEL Technical Report. They agreed that the construction of a pipeline and the relocation of the discharge to the St. Johns River would yield a net environmental benefit without additional process improvements. Upgrades Implemented and Required in the Proposed Agency Actions As described more fully below, Georgia-Pacific has modified its production and treatment processes in such a manner as to improve its overall environmental performance. In installing some of those modifications, Georgia-Pacific undertook what was required by federal and state law. For others, Georgia-Pacific has exceeded what it was required to do under state or federal law. To comply with the Cluster Rule, Georgia-Pacific eliminated two bleach plants and installed a new bleach plant, one which uses chlorine dioxide as opposed to elemental chlorine. The implementation of this technology is primarily aimed at eliminating the mechanism for the formation of dioxin in the bleaching plant. Compliance with the Cluster Rule generally requires, among other things, conversion to an elemental chlorine-free bleaching system. Georgia-Pacific is in compliance with the Cluster Rule. Under the Cluster Rule, Georgia-Pacific is required to sample for dioxin at its bleach plant, with a limit of under 10 picograms per liter. Georgia-Pacific has experienced reductions in the color of its effluent as the result of the chlorine dioxide conversion as well as reductions in specific conductance. The reductions in specific conductance are particularly significant because Georgia-Pacific has decreased its effluent flow, which would ordinarily increase specific conductance in the absence of additional improvements. After conversion to chlorine dioxide, Georgia- Pacific began monitoring for parameters defined by the Cluster Rule. In that monitoring, Georgia-Pacific has tested "non- detect" for dioxin and chlorinated phenolics. Specifically, Georgia-Pacific has monitored dioxin in its effluent, as well as within its process –- before dilution with other wastewater –- and the monitoring results at both locations are likewise "non-detect" for dioxin. Furthermore, levels of chloroform and adsorbable organic halides (AOX) have been well within the limits imposed by the proposed permit and the Cluster Rule. Georgia-Pacific has voluntarily agreed to install by April 15, 2006, an oxygen delignification system, or a like system that produces similar or better environmental benefits. Oxygen delignification is a precursor to bleaching, which removes lignins from the fiber before the product is bleached. This process is significant because lignin consumes chemicals, impedes bleaching, and prohibits achieving brightness targets in the bleach plant. The cost associated with the oxygen delignification system is $22,700,000. This commitment is reflected in the proposed Administrative Order and Permit. Oxygen delignification has been identified as having significant benefits in terms of reducing the color and specific conductance of effluent. Georgia-Pacific voluntarily agreed to install by August 15, 2003, a new brownstock washing system to replace four existing brownstock washing lines. A brownstock washer is a piece of equipment that washes organics away from fiber, after pulping and before oxygen delignification. The cost of this equipment is approximately $30,000,000. This commitment is reflected in the Administrative Order and Permit. The new brownstock washers are not required by Department rules, but they will be helpful in reducing the specific conductance of effluent. Georgia-Pacific has also voluntarily agreed to install a green liquor dregs filter. This system would remove dregs from the effluent system and reduce specific conductance and color in the effluent. The cost of the green liquor dregs filter is $1,100,000. This commitment is reflected in the Administrative Order and Permit. Under the proposed agency action, Georgia-Pacific is likewise required to install additional equipment for the implementation of its best management practices program to minimize leaks and spills in the process sewer. This equipment, including controls on the brownstock washer system, and the installation of a spill control system, pumps, and piping, has been installed at a cost of $7,100,000. Georgia-Pacific has also optimized the performance of its treatment system through the relocation of its aerators in the treatment ponds and modifying its nutrient feed system. This has led to reduced levels of biological oxygen demand (BOD) in the discharge, as well as improved treatment for total suspended solids. In addition, Georgia-Pacific has voluntarily installed a reverse osmosis system to recycle certain internal streams, which in turn has led to reductions in specific conductance, at a cost of $3,300,000. To comply with the proposed agency actions, Georgia- Pacific expects to expend a total of approximately $170,000,000 for upgrades for the purpose of producing environmental benefits. Additional money is earmarked for other environmental performance issues, such as water conservation. Except for technology-based limits adopted by rule, the Department does not dictate how a facility achieves compliance with water quality standards. Georgia-Pacific demonstrated that its environmental performance is substantially better than required by technology-based limits. Based on the foregoing, it is reasonable to find that Georgia-Pacific’s commitments to process improvements will lead to a general improvement in water quality in the receiving waters. Relocation of the Discharge As noted above, because of the minimal dilution available in Rice Creek, Georgia-Pacific has never been fully able to achieve water quality standards in Rice Creek, a Class III water body. Rice Creek continues to exceed water quality criteria for specific conductance and color; historically, the discharge had experienced exceedences for the chronic toxicity criterion. Under present conditions, with Georgia-Pacific discharging to Rice Creek and Rice Creek flowing to the St. Johns River, elevated levels of color are experienced along the shoreline of the St. Johns River in the area of existing grass beds. Modeling shows that under current flow conditions from Rice Creek, those color effects are observed on the northwest bank near the confluence of Rice Creek with the St. Johns River. If the discharge is relocated to the St. Johns River and discharged near the river bottom through a diffuser, it will beneficially change the distribution of color impacts both to Rice Creek and the St. Johns River. Color in Rice Creek will improve, returning to its background color of 100 to 150 platinum cobalt units (pcu). Specific conductance within Rice Creek will also be markedly reduced. Because the input will occur in the middle of the St. Johns River, with higher flows and greater turbulence, there will no longer be relatively highly colored water flowing along the shoreline. Therefore, the relocation will provide a significant benefit of moving highly colored water away from grass beds and will mitigate against any existing effects on those grass beds. It is beneficial to relocate discharges to the middle of a stream, as opposed to the edge of a shoreline, where effluent tends to hug the shoreline. Therefore, regardless of the process improvements, there will be a net environmental improvement by relocating the discharge to the middle of the St. Johns River The discharge from the proposed diffuser will be comparatively benign, in comparison to the present flow from Rice Creek into the St. Johns River. This is because the effluent would not reach or hug the shoreline in such a scenario but rather would be diluted in rising to the surface, as well as by its lateral movement in the direction toward the river bank. The relocation of the discharge to the middle of the St. Johns River will cause improvements through localized changes in concentrations near the diffuser and the confluence of Rice Creek and the St. Johns River. Based on the foregoing, it is found that Georgia- Pacific’s proposed discharge into the St. Johns River will not result in water quality degradation, but will instead lead to a general improvement in water quality. Proposed Conditions in the Permit and Administrative Order Before certifying completion of the required manufacturing process improvements, Georgia-Pacific is required to submit to the Department a report on its ability to optimize the modifications, as well as a separate report which would determine whether Georgia-Pacific can meet certain limits that would enable a continuing discharge to Rice Creek. If the water quality improvements are sufficient to achieve standards in Rice Creek, the permit would be reopened and Georgia-Pacific would be required to maintain the present discharge location to Rice Creek. Otherwise, Georgia-Pacific would be authorized to construct the pipeline to the St. Johns River. The permit is drafted so that Georgia-Pacific will verify the need for mixing zones, as well as the dimensions of proposed mixing zones, after process improvements are complete. The Administrative Order imposes interim effluent limitations during the compliance period described in that Order. The Administrative Order contains "report-only" conditions for certain parameters. For those parameters which do not have interim limits, there is no appropriate standard to apply because information on effluent and water quality conditions is incomplete. The Department also found it unreasonable to impose interim limits that will be met only after Georgia-Pacific completes the improvements requested by the Department. Under Department practice, it is reasonable to impose "report only" conditions for parameters when it is unclear whether the discharge for the facility presents a concern for potential exceedences of water quality standards. In addition, "report only" conditions are used when a facility is undertaking an effort to address problems for certain parameters during a period necessary to achieve compliance. The proposed permit includes mixing zones in the St. Johns River for dissolved oxygen, total recoverable iron, total recoverable cadmium, total recoverable lead, un-ionized ammonia, turbidity, and specific conductance. The length of each of those mixing zones is 16.5 meters, that is, limited to the rise of plume. A mixing zone is also required for transparency, which will require a length of 734 meters. Within 12 months after certifying completion of the manufacturing process improvements, Georgia-Pacific will be required to re-evaluate the need for mixing zones and effluent limits and re-open the permit as necessary to include final mixing zones, effluent limits, and monitoring requirements. Compliance with Ambient Water Quality Standards The Petition contends that Georgia-Pacific has not provided reasonable assurances that it would comply with the following standards: nutrients (paragraph 18); dissolved oxygen (paragraph 20); chronic toxicity (paragraph 21); total suspended solids (paragraph 23); iron (paragraph 25); and phenolic compounds (paragraph 26). Although no water quality standard is directly applicable, Petitioners also addressed the following water quality issues: biological oxygen demand (BOD) (paragraph 20); dioxin, "related compounds," chlorinated organics, AOX, and chemical oxygen demand (COD) (paragraph 22); color (paragraph 24); and total suspended solids (TSS), which is alleged to include total organic carbon (TOC) (paragraph 94). Petitioners asserted that dioxin, chlorinated organics, TSS, and AOX are significant in considering compliance with the "free-from" standard in Rules 62- 302.500(1) and 62-302.530. In determining whether water quality standards will be met, those allegations should only be considered in reference to those adopted standards for the "free-from" standard. The effluent data establishes that Georgia-Pacific will consistently meet the proposed permit limits for discharge to Rice Creek. Georgia-Pacific's treatment facility has the capacity to comply with the proposed permit limits for discharge to Rice Creek, and there is a very high degree of assurance that it has the capability to comply with those standards in the future. In addition, Georgia-Pacific's treatment facility is able to meet the WQBELs established for discharge into the St. Johns River. Evaluation and modeling demonstrate that if a discharge to the St. Johns River is undertaken, the St. Johns River will meet Class III water standards at the edge of the mixing zone if Georgia-Pacific complies with its proposed effluent limits. Also, the effluent will meet all applicable effluent guidelines and technology-based standards adopted in the Florida Administrative Code. The effluent will not settle, form deposits, or create a nuisance, and it will not float as debris, scum, or oil. Finally, the effluent will not produce color, odor, taste, or other conditions so as to create a nuisance. Georgia-Pacific performed an analysis to determine the effluent limits that would be necessary to achieve water quality standards. This analysis included water quality modeling, which is a method of summing up inputs and losses, calculating the amount of material in a system, and determining the concentration of a substance. The model was used to geometrically represent the St. Johns River, Etonia Creek, and the reach of the St. Johns River within the study area, which extended from Buffalo Bluff (15 miles upstream of the confluence of Rice Creek and the St. Johns River) to Mile Point 50. Rice Creek enters the St. Johns River at Mile Point 74. When a model is performed, the model will yield estimates or predictions of concentrations throughout a water body. Those predictions can be compared to field observations and measurements; if the model is done properly, the calculated numbers should agree with the measured numbers. Modeling is used to evaluate future conditions based on hypothetical future changes to the system. The modeling methods and advanced time-variable models employed by Georgia- Pacific's consultants were approved by the Department. Georgia-Pacific prepared a plan of study to obtain field data in the St. Johns River for the purpose of assuring that the models would simulate observed concentrations of constituents. The Department approved that plan of study and published a notice of approval. The Department also approved the quality assurance project plan for the collection of water quality data in Georgia-Pacific's modeling efforts. After approval of the plan of study and quality assurance project plan, Georgia-Pacific's consultants performed water quality surveys in November 1994 and May 1995. The models employed by Georgia-Pacific's consultants were calibrated and produced the observed water quality results. The proposed diffuser would be located about one foot from the bottom of the channel. As designed, the plume would leave the proposed diffuser and spread out, with the upper part of the plume going to the surface of the water. The plume model calculates the dilution at the centerline of the plume, where there would be a minimum of dilution. This method of using the centerline as a reference point leads to a conservative analysis, and it would require the Applicant to achieve more dilution than might otherwise be necessary to achieve water quality standards. For regulatory purposes, the Department usually uses the maximum height of the rise of the plume to determine a mixing zone, the point at which concentrations along the centerline of the plume would level off. Because of that practice, for certain parameters where the required mixing zone is less than the distance of the rise of the plume, a decrease in effluent limits would not lead to a decrease in the size of the mixing zone. Tidal actions will cause re-entrainment, that is, the movement of dissolved substances back into the plume area. This factor reduces the dilution factor that otherwise would apply to the system. This factor is accounted for in modeling by tying in a diffuser computation to a water quality model. The modeling employed by Georgia-Pacific assumes 7Q10 conditions, that is, a conservative assumption that flow is equal to the lowest one-week average for a ten-year period, where there is little dilution. The employment of this conservative method would minimize the probability of exceedences in the receiving water body. The projection employed by Georgia-Pacific's consultants was even more conservative because the 7Q10 flow rate is assumed to apply through a 60-day average flow, a condition that may never occur, and would not be expected to occur once in ten years. In contrast, the use of time-variable simulations would lead to less stringent permitting requirements. The permit provides reasonable assurance that the construction, modification, or operation of the treatment system will not discharge or cause pollution in violation of Department standards. The permit provides reasonable assurance that, based on the effluent limitations determined by the Department in the WQBEL Technical Report, water quality standards would be met outside the area of the proposed mixing zone for specific conductance, dissolved oxygen, un-ionized ammonia, iron, cadmium, lead, and zinc. Based on additional analysis as reflected in Georgia-Pacific's proposed amendment to the draft permit, Georgia-Pacific would achieve compliance with the transparency standard with the mixing zone described in its proposed amendment, that is, with a total length of 734 meters. The chronic toxicity criterion is a biological measurement which determines whether organisms are impaired by effluent. If impairment is demonstrated, the test does not indicate what component of the effluent is causing the effect. Georgia-Pacific is required to conduct testing for acute and chronic toxicity twice a year. Current tests undertaken in May and October 2001 are representative of effluent conditions after Georgia-Pacific undertook conversion of the bleach plant to chlorine dioxide. Those tests demonstrate that Georgia-Pacific is in compliance with the acute and chronic toxicity criterion since the conversion to chlorine dioxide bleaching. Georgia-Pacific is also in compliance with the biological integrity standard, based on the most recent fifth-year inspection. Because of the flow characteristics and the characteristics of pulp mill effluent, the pollutants associated with the effluent are not assimilated as the effluent travels from the point of discharge, through Rice Creek, to the St. Johns River. The particulates associated with pulp mill effluent are so small or fine that they will remain in suspension and thus not settle out in Rice Creek. In addition, because Rice Creek is channelized, there is no sloping side that would enable the growth of vegetation that would filter the water. Furthermore, even if there was a sedimentation process occurring in Rice Creek, no additional sedimentation would occur after the system reaches an equilibrium point. Although Rice Creek does cause a small decrease in BOD through oxidation, Georgia-Pacific has compensated for that factor by the injection of oxygen in the effluent. Thus, the direct piping of effluent to the St. Johns River (as opposed to a discharge into Rice Creek, which flows into the St. Johns River) would not result in any significant increase in pollutant loading to the St. Johns River. In addition, the construction of a pipeline would take place only after additional technologies have been implemented to maximize pollutant reduction. Compliance with the Reasonable Assurance Standard Georgia-Pacific has provided reasonable assurances for the proposed permit to be issued for a discharge into the St. Johns River. This finding is based upon Georgia-Pacific's ability to meet the effluent standards described in the draft permit, and modeling results demonstrating that, with the proposed mixing zones for certain parameters, a discharge into St. Johns River, as designed, will not result in a violation of Class III standards. Mixing Zones In Section H of their Petition, Petitioners challenged the proposed mixing zones set forth in the proposed Permit. Petitioners generally alleged that the proposed mixing zones were "enormous" and that they failed to comply with certain rules restricting mixing zones. In their Petition, Petitioners articulated three theories to support the proposition that the mixing zones were illegal: first, that the mixing zones would include a nursery area of indigenous aquatic life, including beds of aquatic plants of the type listed in Rule 63-302.200(16); second, that the mixing zone, by itself, would lead to a violation of the minimum criteria in Rule 62-302.500; and third, that the mixing zones, or a combination of those mixing zones, would result in a significant impairment of Class III uses in the St. Johns River. Petitioners were authorized to amend their Petition to add additional allegations to paragraphs 17 and 67 of their original Petition regarding the mixing zone. Under those amendments, Petitioners alleged that Georgia-Pacific’s proposed amendment to the draft permit would (a) improperly expand the mixing zone; (b) fail to account for the length of the diffuser; (c) improperly substitute "transparency" for "color"; and (d) prevent isolation of transparency impacts from color in the discharge. However, there is no evidence which ties those allegations to any regulatory standard that would affect the proposed agency action. Petitioners also contended that color was a surrogate for chemical oxygen demand, as well as for substances that are alleged to cause chronic or acute toxicity. However, as shown by the testimony of Department witness Maher, the permit condition for "color" was a surrogate only for the transparency standard. No evidence to support a contrary inference was presented. Petitioners also made general allegations that the proposed mixing zones are illegal, without a clear indication of what is deemed illegal about the mixing zones. Although the Petition includes a general argument in opposition to mixing zones, Petitioners were unable to suggest a legal basis for alleging that the mixing zones were illegal. For example, Petitioners alleged that certain mixing zones are enormous but failed to articulate why they are so enormous as to be illegal. They did not allege that the Department had erred by allowing a larger mixing zone than Georgia-Pacific should have received under applicable rules. Indeed, such a position would be antithetical to Petitioners' allegations that Georgia-Pacific had failed to achieve water quality standards for a number of parameters. The accepted testimony establishes that Georgia-Pacific's proposed mixing zones will comply with Department rules. No persuasive evidence was presented to the contrary. Because the effluent quality will differ from present conditions after completion of the process improvements, the proposed mixing zones will not be final until after process improvements have been made, the operation has been stabilized, and the mixing zones have been re- verified. No mixing zones are authorized in the Administrative Order. The Administrative Order contains a table setting forth potential mixing zones that are used as a benchmark to determine whether Georgia-Pacific can meet water quality standards in Rice Creek. The table sets out a series of hypothetical mixing zones at 800 meters, that is, the maximum presumptive distance afforded without additional relief mechanisms. Because no mixing zones are proposed to take effect in Rice Creek, there can be no issue of "illegal" mixing zones in Rice Creek. Within a range of potential discharge flows, from 20 MGD to 60 MGD, water quality standards will be met within the area of the proposed mixing zones for all parameters for which mixing zones are required. Mixing zones are allowed by Department rules and are considered a part of Florida water quality standards. In the context of the Department's permitting review, if a modeling analysis shows that the concentration of a pollutant in effluent is greater than the water quality criterion, the Department will determine if the amount of dilution in the receiving water is sufficient to assimilate the pollutants of concern. The Department will then determine either the length (in the case of a river) or area (in the case of an estuary) of a water body that would be necessary to achieve compliance through dilution. Based on chloride levels, the St. Johns River at the area of concern would not be considered an estuary under Department rules. Each of the proposed mixing zones would be less than 800 meters in length (as allowed by Department rule) and less than 125,600 square meters in area (a limitation that would apply only if the area was an estuary). The proposed discharge will comply with all minimum rule requirements with respect to mixing zones, such as those for dissolved oxygen, turbidity, and the absence of acute toxicity. Likewise, the proposed mixing zones will not impact any nursery areas for indigenous aquatic life. Nutrient Issues In Section I, Petitioners contested the Department's decision to not require effluent limits to prevent a violation of the narrative water quality criterion for nutrients. For reasons addressed in the undersigned's Order dated February 14, 2002, that issue is waived based because of Petitioners' failure to file a timely challenge to the WQBEL Technical Report. In addition, based on the findings set out below, Georgia-Pacific has provided reasonable assurances that it will not violate the narrative standard for nutrients. Further, the evidence shows that effluent limits for nutrients are not presently warranted. Petitioners presented testimony that the St. Johns River may be nitrogen-limited or phosphorous-limited at different times of the year, which means that concentrations of one or the other would limit algae growth at different times of the year. Relative light levels, as well as the penetration of light, also affect algae growth. Georgia-Pacific’s treatment system requires the addition of ammonia because ammonia or nitrate is a necessary nutrient for the growth of bacteria in the treatment system. Ammonia and nitrate are both nutrients. Although there can be a conversion from one form to the other, that conversion does not affect the net loss or gain of nutrients. Although nutrient issues are of concern to water bodies, it is absolutely necessary in a biological treatment system to have sufficient nutrients for the operation of the system to treat parameters such as BOD. The Georgia-Pacific facility is achieving a high level of treatment while managing its system at a minimum level of nutrient addition. Management of a treatment system requires attention not only to the influent and effluent, but also monitoring of conditions within the system itself to assure adequate treatment. Georgia-Pacific is continuing to refine its procedures for doing so. The State has adopted what is referred to as the "5- 5-3-1" (advanced wastewater treatment) limitation for municipal treatment plants that discharge to surface waters. This standard refers to five milligrams per liter for BOD, five milligrams per liter for suspended solids, three milligrams per liter for total nitrogen, and one milligram per liter for total phosphorous. This limitation has been in effect for many years and remains one of the most stringent state standards in the nation. Georgia-Pacific's facility would be in compliance with those standards for nitrogen and phosphorous. Effluent from the Georgia-Pacific mill increases the concentration of total nitrogen in Rice Creek, relative to background conditions. However, because of the relatively higher flow of the St. Johns River, when the load from the mill is transported to the St. Johns River, the increase in nitrogen concentration is so small as to be imperceptible. Nitrogen loading from Georgia-Pacific's Palatka mill on a long-term average (prior to upgrades of its treatment plant) has been measured at 1,196 pounds per day. The average loading at Buffalo Bluff, which is far upstream of Rice Creek and the Georgia-Pacific Palatka mill, is 36,615 pounds per day. Additional nonpoint sources contribute approximately 12,000 pounds per day in the study area. Thus, the loading from the Georgia-Pacific mill represents a 2.4 percent increase in nitrogen levels on the St. Johns River, a difference that cannot be measured. The largest point source of nutrients in the lower St. Johns River is the Buckman wastewater treatment plant in Duval County. That facility does not have nutrient limits on its discharge permit. Rice Creek does not provide any treatment (as opposed to dilution) for nitrogen in Georgia-Pacific's effluent. A review of probability distributions for nitrogen concentrations upstream and downstream of Rice Creek demonstrated that Rice Creek had no influence on nitrogen levels in the St. Johns River. Phosphorous concentrations from the effluent, if discharged to the St. Johns River, would dilute rapidly, decreasing to .2 milligrams per liter within the water column, five to six feet below the surface, after discharge from the diffuser, below the area in which light is absorbed at the surface of the water column. Chlorophyll-A is a parameter that is typically used as a measure of phytoplankton in the water column. Concentration distributions for chlorophyll-A at Buffalo Point (upstream of Rice Creek) matched concentrations for the same parameter at Racey Point, a station far downstream of Rice Creek. This analysis confirms that the inputs coming into the St. Johns River System from Rice Creek do not have a significant influence on the water quality of the St. Johns River, with respect to nutrients. With a discharge coming directly to the St. Johns River, and with nutrient loading being the same as from Rice Creek, the nutrient loading would not influence the St. Johns River. The Department does not have sufficient information at the present to impose a nutrient limit on Georgia-Pacific. The draft permit accounts for this issue through a re-opener clause which would authorize a limit when that information is available, if such a limit is necessary. Allegations Regarding "Deformities in Fish" Section J of the Petition includes allegations that Georgia-Pacific failed to provide reasonable assurances regarding adverse physiological response in animals under Rule 62-302.530(62), and that Georgia-Pacific has failed to provide reasonable assurances that its discharge will not be mutagenic or teratogenic to significant, locally occurring wildlife or aquatic species, or to human beings, under Rule 62- 302.500(1)(a)5. Petitioners suggest that the permit cannot be granted as proposed because it lacks effluent limits for (unstated) substances that are alleged to create potential violations of the free-from standard. This argument is barred as a matter of law for the reasons stated in the Order dated February 14, 2002. In addition, based on the following findings, this argument has been rejected because Georgia- Pacific has met the reasonable assurances standard without effluent limits on those unstated (and unknown) substances that are alleged to cause violations of those rules. Petitioners presented evidence that paper mill effluent in general contains chemicals which could cause the masculinization of the females in certain fish species, as well as hormonal effects in males. However, witness Koenig did not offer any testimony that Georgia-Pacific’s effluent, in particular, contained such chemicals. Dr. Koenig had collected no data and had not conducted any field studies in Rice Creek to support his testimony; rather, he relied on articles published by others and provided by Petitioner Linda Young. In agency practice and interpretation of the free- from standard in Rule 62-302.530(62), Florida Administrative Code, the question of whether a change is adverse depends on the overall community or population of that particular species. Tellingly, Petitioners did not present any competent evidence, through Dr. Koenig's testimony or otherwise, that Georgia-Pacific's effluent presents the potential for adverse effects on the overall community or population of any species. Dr. Koenig testified at length from his reading of studies performed by other scientists regarding changes in the hormone levels and gonadosomatic index (the relative weight of gonads) of fish in the St. Johns River in the vicinity of Rice Creek. In his testimony, Dr. Koenig relied on two published articles to address conditions in the vicinity of Rice Creek, both of which were primarily authored by M. Sepulveda. One of those articles showed hormonal changes taking place in a laboratory study where largemouth bass were exposed to mill effluent. That study also showed a change in the gonadosomatic index in the subject fish. Dr. Koenig did not offer any opinion that such changes would be adverse or that they would affect the reproduction of those fish. The other study was a field study with samples of fish at various regions in the vicinity of Rice Creek. This study did not include any fish from Rice Creek, but did include fish from the confluence of Rice Creek and the St. Johns River, as opposed to reference streams. The study showed lower levels of hormones in fish from the area of that confluence, but also showed similar effects at a reference stream 40 kilometers away. No testimony was presented to support the inference that the effects represented in the two studies were adverse, within the meaning of the free-from rule. Moreover, the data from those two studies were collected in 1996, 1997, and 1998, or before Georgia-Pacific converted its bleach plant to chlorine dioxide bleaching in March 2001. Therefore, Dr. Koenig had no data to support any theory that under current effluent conditions, Georgia-Pacific is producing or will produce compounds that would cause any changes of hormone concentrations in fish. With respect to the phenomenon of fish masculinization in Rice Creek, Petitioners' experts had no data to support a competent opinion on this subject. To support his testimony, Dr. Koenig only read one article that purported to demonstrate fish masculinization in 11-Mile Creek and the Fenholloway River, and one letter from an employee of the St. Johns River Water Management District [Young Exhibit 8A] that referred to "external anatomical anomalies" near Georgia-Pacific discharge points. The article attached to that letter and included in Young Exhibit 8A addressed data collected in Escambia County, and does not address conditions in Rice Creek. Petitioners attempted to present the theory that the potential for endocrine disruption or fish masculinization resulting from paper mill effluent would violate the free-from standard. As a condition to issuance of the permit, the Department proposes to require Georgia-Pacific to obtain approval of a plan of study to analyze the potential for significant masculinization effects from the discharge. Under the proposed conditions, Georgia-Pacific is required to determine the minimum concentration at which such effects may be detected. By its terms, the proposed permit may be reopened to adjust effluent limitations or monitoring requirements if the masculinization study shows a need for them. Department witness Brooks acknowledged a general concern for endocrine disruption resulting from paper mill effluent. In particular, Mr. Brooks referred to studies which showed that paper mill effluent could cause the elongation of an anal fin in the females of certain fish species. However, Mr. Brooks observed that although this appeared to be a physiologic response, there was no evidence or reason to believe that this effect was an adverse effect. Reports regarding masculinization, that is, the elongation of anal fins in female fish, are suspect because (among other reasons) the studies do not account for variances that would be expected based on the independent variables of sex, age, and growth. In any case, the data from those reports do not demonstrate significant, adverse effects in exposed populations. A critical and unbiased review of the published literature shows that impacts of masculinization are biologically interesting but preliminary in nature. Department witness Maher observed that the masculinization effect occurs naturally, and that the Department's plan of study is intended to determine whether this natural phenomenon becomes problematic or is enhanced by activity at the mill. Initial information reviewed by the Department indicates that the phenomenon is no longer experienced when a mill converts to a chlorine dioxide (ECF) bleaching process, as Georgia-Pacific has done in converting to ECF. According to witness Brooks, the observed effect known as "fish masculinization" is not confirmed to result from endocrine disruption. The Department has concluded that it has reason to be concerned about the potential for fish masculinization. From the Department's viewpoint, it is not clearly understood what is causing this effect. It has been shown that there is a direct relationship between concentration (or dilution) and the observation of those effects. This conclusion is consistent with Dr. Koenig's testimony, which observed a decline in observed effects based on the dosage or concentration of effluent. The Department has reviewed evidence showing that, with dilution, the effect of fish masculinization "go[es] away." In the Department's analysis of the fish masculinization issue in the present permit, the Department is requiring process improvements that would reduce this phenomenon, if it exists, in Rice Creek. In addition, if the discharge is relocated to the St. Johns River, the additional dilution would ameliorate the concern regarding fish masculinization, and the phenomenon will "go away." To give an even higher level of assurance that the resource will be protected, the Department is requiring a study to evaluate and confirm that the issue is resolved. The process changes required in the permit, the potential for further dilution in the St. Johns River if it becomes necessary, and the evaluations required in the permit condition render it very likely that any potential for fish masculinization will be mitigated. Thus, to the extent that fish masculinization could be deemed a violation of the free- from standard, Georgia-Pacific has provided reasonable assurances that it will not cause the masculinization of fish in the St. Johns River. Petitioners did not offer any credible evidence establishing that any specific compound or substance would cause the alleged effects of endocrine disruption or fish masculinization. Indeed, Dr. Koenig acknowledged that he was unable to find in his literature search the mechanism or chemical that is alleged to cause fish masculinization. Likewise, Petitioners were unable to suggest any concentration of that substance which would lead to those alleged effects. Dr. Koenig expressed a belief that chlorinated organic compounds from the paper manufacturing process may be responsible for endocrine disruption. Dr. Koenig also opined that within the general process of paper manufacturing, the bleaching process in particular was a concern. To the extent that Dr. Koenig may have had a concern regarding endocrine disruption from his review of studies performed using data from 1996 through 1998, it is reasonable to conclude that this concern is ameliorated by Georgia-Pacific's conversion to chlorine dioxide bleaching in March 2001. There is no evidence to establish a relationship between the presence or absence of dioxin and fish masculinization. Compliance with Dissolved Oxygen Standard (and BOD Concerns) In Section K, Petitioners disputed whether Georgia- Pacific had provided reasonable assurance of compliance with the adopted dissolved oxygen standard. The proposed permit contains different permit limits for BOD for winter and summer, because the impacts of discharges are different during those parts of the year. Georgia-Pacific has shown a substantial downward trend for BOD. The Georgia-Pacific facility discharges mass loadings of BOD at quantities which are much less than what is required to meet discharge standards. A review of effluent data shows that even for the worst period for performance, Georgia-Pacific's effluent was well below the proposed permit limits for BOD. A review of BOD discharges over the period of January 2000 to August 2001 demonstrates a consistent ability of the facility to meet the proposed permit limits, as well as a general trend of improvement that reflects Georgia-Pacific’s upgrade of the treatment system. Georgia-Pacific will meet the minimum standards for dissolved oxygen in mixing zones. With additional process improvements, Georgia-Pacific will also experience additional environmental benefits in the reduction of chemical oxygen demand. N. Dioxin and "Related Compounds" As to dioxin, Petitioners alleged in Section L of their Petition that Georgia-Pacific may discharge dioxin in concentrations that could cause a violation of the free-from standard. The proposed permit includes a permit condition for a plan of study to assess levels of "TCDD" and "TCDF" in fish tissue in the receiving waters. Department witness Brooks was unaware of any regulatory authority to require fish tissue sampling for dioxin. Department engineer Kohn was also uncertain of any regulatory authority for the Department to test for dioxin in fish tissue. Mr. Kohn agreed with the proposition that when a proposed permit condition is not specifically authorized by rule or statute, the condition must be withdrawn if the applicant objects. However, in this case, Georgia-Pacific did not object to the inclusion of a permit limit of .014 picograms per liter of dioxin in its final effluent. As noted above, Georgia-Pacific established that under its current effluent conditions, following conversion to chlorine dioxide bleaching, the facility is "non-detect" for dioxin. The Department does not have any adopted standards for fish tissue concentrations. Petitioners presented very little evidence of dioxin concentration in fish tissue following Georgia-Pacific's conversion to ECF bleaching, and they opposed the introduction of such data into evidence. A review of available data shows that there was not a statistically significant difference between the level of bioaccumulation of dioxin in fish tissue in Rice Creek versus a reference creek. The Florida Department of Health has concluded, based on review of prior fish tissue data, that a fish consumption advisory for Rice Creek was not warranted. Total Suspended Solids In Section M, Petitioners have alleged that TSS in the effluent would cause various environmental problems. However, Petitioners did not allege that TSS in the effluent would lead to a violation of water quality standards, and they did not present any accepted testimony or other evidence to support such a theory. There is no adopted water quality standard for TSS. According to the WQBEL Technical Report, effluent levels of TSS are generally comparable to background levels in the St. Johns River. The primary wastewater clarifier is designed to remove fiber or other settleable solids from the effluent before it travels to the secondary treatment system. Total suspended solids in Georgia-Pacific's effluent are primarily derived from biota in the treatment system, rather than fiber from the industrial process. Georgia-Pacific has shown a substantial downward trend for TSS. The facility reliably discharges TSS at quantities which are much less than what is required to meet proposed effluent limits. A review of discharge data for TSS demonstrates that Georgia-Pacific would perform in full compliance with the proposed permit limits. Petitioners presented no evidence to the contrary. Petitioners likewise presented no evidence to quantify any impacts from TSS. Color, the Transparency Standard, and Related Issues Petitioners have also alleged that the color in Georgia-Pacific's effluent would lead to nuisance conditions in violation of Rule 62-302.500(1)(a). However, they did not allege any potential violation of the one parameter traditionally associated with effluent color: the Department's transparency standard. Elevated levels of color in the effluent reduces the ability of light to penetrate into the water column, with potential effects on the growth of aquatic plants. This is translated into a "compensation point," that is, the water depth at which the light level reaches one percent. The state transparency standard prohibits a discharge from causing a decrease in the compensation point of more than ten percent, relative to natural background. The rate of decrease of light within a water column is related to increased color levels. Analysis performed by Georgia-Pacific's consultants shows that a ten percent change in compensation depth corresponds to a seventeen percent increase in color above natural background levels. Under the proposed permit, color was used as a surrogate, or alternative measure, for compliance with the transparency standard. Color was not used as a surrogate for any parameter other than transparency. Georgia-Pacific will, with additional process improvements, see additional environmental benefits in reducing the color of its effluent. For the purpose of the application, Georgia-Pacific's modeling analysis assumed that based on process improvements, its effluent would have a color of 1202 pcu. EPA's technical team had opined that Georgia- Pacific would, with process improvements, achieve a reduction in color to 500 pcu. Georgia-Pacific had opined that the improvements would achieve a color of 1202 pcu. Department witness Owen opined that the color reduction would be in a range between those two figures. Petitioners did not present any contrary evidence as to the ability of additional process improvements to reduce effluent color. Accordingly, using the most conservative (least optimistic) figure, Georgia-Pacific has provided reasonable assurances that before a discharge to the St. Johns River would be authorized, it will reduce the color of its effluent to 1202 pcu. The proposed permit takes into account the potential that Georgia-Pacific's process improvements will achieve greater improvements in color than anticipated. Under the proposed permit, the Department would reduce the size of the proposed mixing zone if Georgia-Pacific demonstrates that the color of its effluent is lower than projected. The modeling analysis further demonstrates that based on a discharge to the St. Johns River, assuming an effluent color of 1202 pcu, the change in compensation depth is greater than ten percent in the vicinity of the proposed diffuser. A 734-meter mixing zone for transparency would be required for a discharge to the middle of the St. Johns River. The required area for such a mixing zone is 64,000 square meters. Antidegradation Review In Section P, Petitioners have generally alleged that the Department failed to conduct a proper antidegradation analysis. More specifically, they alleged that the proposed discharge would reduce the quality of the receiving waters below the classification established for them. Because Georgia-Pacific presently discharges to Rice Creek, and because a separate relief mechanism (the Administrative Order) authorizes the discharge to Rice Creek, it appears that the antidegradation issues relate solely to the proposed discharge into the St. Johns River. If the relocation had resulted in degradation of the receiving water, the Department would have regulatory authority in its Rule 62-4.242(1)(c) to consider whether Georgia-Pacific could minimize its discharge through other discharge locations, the use of land application, or reuse. However, Petitioners failed to allege in their Petition that the Department misapplied that regulatory authority. Moreover, under Department practice, when a new discharge or relocation of a discharge will result in an environmental benefit, it is not necessary to conduct a review of other discharge options. The Department undertakes an antidegradation analysis in, among other scenarios, cases where a discharge will result in achievement of minimum water quality standards for a given designated use but will lead to an incremental lowering of water quality. The purpose of this analysis is to assure that the societal benefits of the discharge outweigh the cost of that incremental lowering. The proposed permit will not lead to the increase in discharge of any parameter, and the permit is more stringent and adds additional parameters or limits. In addition, there is a trend of improved performance for the treatment system. In the present case, the Department has concluded that the proposed project will result in a significant improvement in water quality by the reduction of pollutants associated with exceedences of water quality standards in Rice Creek. Regardless of whether the discharge remains in Rice Creek or is relocated to the St. Johns River, the proposed Permit and Administrative Order will lead to an improvement in water quality as opposed to a degradation of water quality. Based on improvements with respect to specific conductance parameters, the ability to relocate the discharge into the middle of the St. Johns River where better mixing will occur (relative to the confluence of Rice Creek), and anticipated improvements in grass beds, the proposed pipeline will lead to a net environmental benefit in the St. Johns River and Rice Creek. The project as set forth in the proposed Permit and Administrative Order will be clearly in the public interest because it will result in full achievement of water quality standards and full compliance with the designated use of the receiving water body. The project will result in a substantial reduction in pollutant loading in Rice Creek and the St. Johns River, regardless of the whether the discharge will be located in Rice Creek or in the St. Johns River. The Department adequately evaluated other discharge locations, alternative treatment, and disposal alternatives. Studies, including a land application pilot project, demonstrated that land application was not feasible based upon impacts to groundwater resources. In their Petition, Petitioners did not dispute the Department's analysis of those factors under applicable rules. Given these considerations, it is found that Georgia-Pacific has provided reasonable assurances that it will meet water quality standards, and it is evident that Georgia-Pacific will not reduce the quality of the St. Johns River below its Class III designation. Further, the proposed discharge will be clearly in the public interest for the purpose of antidegradation analysis. Further, the proposed discharge into the St. Johns River is important to and beneficial to the public health, safety, and welfare, taking into account the policies set forth in Rules 62-302.100 and 62-302.300, Florida Administrative Code. The proposed discharge into the St. Johns River will not adversely affect the conservation of fish and wildlife, including endangered or threatened species, or their habitats. Instead, the proposed discharge would provide a benefit to fish and wildlife, and their habitats. No persuasive evidence was presented that the proposed discharge to the St. Johns River would adversely affect the fishing or water-based recreational values or marine productivity in the vicinity of the proposed discharge. Indeed, the record demonstrates a beneficial effect as to those factors. The proposed discharge has not been shown to be inconsistent with the applicable Surface Water Improvement and Management Plan (SWIM plan). Rather, the evidence shows that the proposed discharge would promote the implementation of the applicable SWIM plan. Monitoring Issues Section Q in the Petition generally challenged the adequacy of proposed monitoring requirements. As to this issue, the monitoring conditions imposed in the proposed permit are sufficient to ensure compliance with the proposed permit. Petitioner Young's witness Gilbert agreed that the proposed monitoring conditions were adequate to determine the result of process changes, that the proposed monitoring conditions were comprehensive, and that those conditions were beyond what the Department normally required. The Department does not propose to engage in water quality sampling at the end of the diffuser or at the edge of the mixing zone because of the technical difficulties associated with such an endeavor. Instead, the process for determining compliance is to determine the condition of the effluent and simulate water quality conditions of the receiving water body under low-flow conditions (when the river would be most vulnerable to pollution discharges). Such an approach is more protective because it eliminates variables that may not be representative of worst-case conditions. The evidence shows that the size of Georgia- Pacific's facility renders it impracticable for Georgia- Pacific to compromise the integrity of sampling results, as suggested by Petitioners. Flow Limitations In their Petition, Petitioners also contended that the proposed agency action violates Rules 62-4.240(3)(a) and 62-620.310(9)(a) by failing to specify the volume of discharge or flows. Under Department practice, flow must be specified but is not necessarily limited. Flow was adequately specified in the proposed permit, where the facility is described as 40 MGD wastewater treatment facility with a 22 MGD expected average flow. Volume limits are indirectly set through the establishment of a mixing zone and through mass loading limits in the permit, such as the loading limits for BOD and suspended solids. When flow is increased and the concentration of the effluent remains constant, the flow would be limited by the mass limits in the permit. Furthermore, the pipe and diffuser will have a hydraulic limitation, that is, a physical limitation on the amount that can physically be discharged. The pipeline and diffuser are hydraulically limited to 60 MGD based on the current design. Over a ten-year period, Georgia-Pacific has shown a trend toward reduced effluent flow. For example, in 1991, Georgia-Pacific discharged just under 40,000,000 gallons per day (GPD). In 2001, the discharge was less than 24,000,000 GPD. As a result of water conservation measures, Georgia- Pacific has been able to achieve a substantial reduction in effluent flow even when it experienced increased storm water flow into the treatment system. Because of stormwater inputs into the treatment system, it is very difficult to set a flow limit on the discharge from a pulp and paper mill. Indeed, the Department does not typically impose volume limits on NPDES permits for pulp and paper mills. Where volume or flow limits are imposed on pulp and paper mills, they are necessary in order to assure compliance with a specific standard. The Administrative Order Georgia-Pacific has submitted plans and a reasonable schedule for constructing, installing, or placing into operation an approved pollution abatement facility or alternative waste disposal system. No contrary evidence was presented, and no alternative construction schedule was proposed by Petitioners. In assessing a schedule to achieve compliance, the Department considered the time necessary to construct additional improvements as well as the reasonableness of the time period in light of Georgia-Pacific's capital investment. As part of this analysis, the Department also considered Georgia-Pacific's commitment to go beyond what they were legally required to do in environmental upgrades. The schedule of compliance is reasonable, given the cost and magnitude of the improvements required of Georgia-Pacific. Georgia-Pacific needs permission to continue its discharge to Rice Creek for a period of time necessary to complete research, planning, construction, installation, and operation of an approved and acceptable pollution abatement facility or alternative waste disposal system. The time period described in the Administrative Order will enable Georgia-Pacific to maximize the operation of the process improvements in order to determine if the discharge can meet water quality standards in Rice Creek. Given the cost and magnitude of the improvements required in the permit and Administrative Order, the schedule of compliance set forth in the Administrative Order is reasonable. There is no present, reasonable alternative means of disposing of wastewater other than to discharge it into waters of the State. In their Petition, Petitioners contested the Department's general antidegradation analysis but did not allege that any alternative means of disposal were improperly overlooked. The Department does not have specific regulatory authority to require facilities such as Georgia-Pacific to consider re-use as part of its antidegradation analysis, as it does with domestic waste discharges. Nonetheless, the Department did look at re-use and land application and determined that they were not feasible alternatives. Although it was not specifically required to do so by rule, Georgia- Pacific had exhausted every reasonable means to re-use (rather than discharge) water from its facility. Under earlier authorizations, Georgia-Pacific was not required to achieve standards for color, conductance, and chronic toxicity in Rice Creek. The granting of an operation permit will be in the public interest. This is because Putnam County will suffer an adverse economic impact if the facility is shut down and there will be net environmental benefits achieved through compliance with the requirements set forth in the Permit and Administrative Order. The Permit requires Georgia-Pacific to submit a written report to the Department if it appears that a mixing zone is needed for chronic whole effluent toxicity.
Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the Department of Environmental Protection enter a final order (1) issuing proposed permit number FL0002763 to Georgia-Pacific Corporation, as set forth in Department Exhibit 175, and with the change in the permit conditions as requested in Georgia-Pacific Exhibit 102 and proposed by the Department during the hearing, and (2) approving Administrative Order No. 039-NE as set forth in Department Exhibit 176. DONE AND ENTERED this 3rd day of July, 2002, in Tallahassee, Leon County, Florida. ___________________________________ DONALD R. ALEXANDER Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 3rd day of July, 2002. COPIES FURNISHED: Kathy C. Carter, Agency Clerk Department of Environmental Protection 3900 Commonwealth Boulevard Tallahassee, Florida 32399-3000 Timothy Keyser, Esquire Keyser & Woodward, P.A. Post Office Box 92 Interlachen, Florida 32148-0092 Ralf G. Brookes, Esquire 1217 East Cape Coral Parkway, No. 107 Cape Coral, Florida 33904-9604 Jessica C. Landman, Esquire 1200 New York Avenue, Northwest Suite 400 Washington, D.C. 20005 Terry Cole, Esquire Jeffrey Brown, Esquire Oertel, Hoffman, Fernandez & Cole, P.A. Post Office Box 1110 Tallahassee, Florida 32302-1110 Teri L. Donaldson, Esquire Department of Environmental Protection 3900 Commonwealth Boulevard Mail Station 35 Tallahassee, Florida 32399-3000 Francine M. Ffolkes, Esquire Thomas R. Gould, Esquire Department of Environmental Protection 3900 Commonwealth Boulevard Mail Station 35 Tallahassee, Florida 32399-3000
Findings Of Fact Petitioner, Jack E. Moore is the owner of real property in Fort Myers Beach known as Lot 9 of Indian Bayou, a subdivision in Section 33, Township 46 South, Range 24 East, Lee County, Florida. Moore's property is bordered on the north by the waters of Indian Bayou and Estero Bay. The northern portions of Moore's property are vegetated by juvenile and mature red and black mangroves. Red and black mangrove are the dominant species of vegetation on the northernmost portions of the property, waterward of the fill pad on which Moore's house is built. On April 19, 1983, Petitioner applied to DER for a permit to dredge approximately 1480 cubic yards to a depth of 4' mean low water to create a boat basin behind his house on the property referenced above, and to construct a walkway and fishing dock encompassing approximately 1,235 square feet. The proposed project lies and would be performed in waters of the State of Florida. On April 25, 1983, DER notified Petitioner that his application was incomplete and that certain specified information was necessary to evaluate the application and to deem it complete. On May 24, 1983, DER received additional information from Petitioner, in response to its request. However, certain information was still lacking, including aerial photographs, a hydrographic survey, and consent from the Department of Natural Resources (DNR) for the use of state-owned lands which may be involved in the project. On June 1, 1983, DER notified Petitioner that all of the requested information had not been submitted. Petitioner did not respond to DER's correspondence. On July 19, 1983, DER requested Petitioner to notify DER if he wanted to proceed with his application. Petitioner responded on August 1, 1983, that he needed additional time to supply requested information. On September 20, 1983, Petitioner sought advice from DER about whether he could delete the dredging portion of his project and get approval only for the proposed walkway and dock. DER responded by letter on September 28, 1983, notifying Petitioner that the proposal was a major modification of his application, and enclosing a form to be submitted to DER along with such modification. The letter notified Petitioner that even if only the dock was sought to be permitted, DNR approval would still be required, and DER has no control over the DNR approval process. Petitioner did not contact DER in response to its latest correspondences. On November 28, 1983, DER then issued a notice of intent to deny the application for Petitioner's failure to provide necessary information which would render the application complete and fully reviewable by the DER staff. Petitioner has still not provided aerial photographs, a hydrographic survey, or DNR approval to DER, and offered no such evidence at hearing. The aerial photographs are necessary to review the project's potential impacts on surrounding properties and water bodies. The hydrographic survey is essential since Petitioner is proposing to entrain a large body of water which may not be able to meet State water quality standards. DNR approval is required by statute before DER can issue a permit that may involve state-owned lands. The Petitioner's testimony and evidence merely established his belief that he originally thought the dock and channel project exempt, that he thought settlement of federal litigation with the U.S. Army Corps of Engineers and his predecessor in title, permitted the installation of his rip-rap seawall and fill and that, at DER's behest, he later dismantled the dock and partially refilled the hand-dug channel leading to it. Nowhere in Petitioner's case was evidence offered of reasonable assurances that the "pollution events, envisioned by the authority cited below, will not occur, nor that DNR approval of the use of State submerged lands for the project has been secured.
The Issue The issue in DOAH Case No. 98-3901 is whether Respondent Deep Lagoon Boat Club, Ltd., is entitled to a maintenance dredging exemption from environmental resource permitting. The issue in DOAH Case No. 98-5409 is whether Respondent Deep Lagoon Boat Club, Ltd., is entitled to an environmental resource permit for the construction of a surface water management system.
Findings Of Fact The Parties Respondent Deep Lagoon Boat Club, Ltd. (Applicant), owns and operates Deep Lagoon Marina. In DOAH Case No. 98-3901, Petitioner and Intervenor challenge Applicant's claim of an exemption to maintenance dredge three canals serving the marina. In DOAH Case No. 98-5409, Petitioner challenges Applicant's request for an environmental resource permit to construct and operate a surface water management system on the uplands on which the marina is located. By stipulation, Petitioner has standing. Intervenor is a nonprofit organization of natural persons, hundreds of whom reside in Lee County. The primary purpose of Intervenor is to protect manatees and their habitat. Many of the members of Intervenor use and enjoy the waters of the State of Florida, in and about Deep Lagoon Marina, and would be substantially affected by an adverse impact to these waters or associated natural resources, including manatees and their habitat. Deep Lagoon Marina is within the jurisdiction of the South Florida Water Management District (SFWMD). By agreement with SFWMD, Respondent Department of Environmental Protection (collectively, with the predecessor agency, DEP) is the agency with permitting jurisdiction in DOAH Case No. 98-5409. The Marina Deep Lagoon is a short, largely mangrove-lined waterway that runs north into the Caloosahatchee River. The Caloosahatchee River runs west from Lake Okeechobee past Fort Myers to the Gulf of Mexico. Deep Lagoon Marina is on Deep Lagoon, less than one-half mile from the Caloosahatchee River. Deep Lagoon Marina comprises uplands and three canals adjoining MacGregor Boulevard south of downtown Fort Myers. Deep Lagoon Marina presently consists of 61 wet slips, 200 dry slips, and other marina-related buildings. One of Applicant's predecessors in interest dredged the three canals in the 1950s or 1960s, and a marina has existed at this location since that time. As a result of a purchase in 1997, Applicant owns the uplands and either owns the submerged bottoms of the canals or has a legitimate claim to such ownership. The attorney who examined the title at the time of the 1997 conveyance testified that the canals are entirely landward of the original mean high water line, so that the then-owner excavated the canals out of privately owned upland. Thus, the attorney opined that the canal bottom is privately owned. Some question may exist as to the delineation of the historic mean high water line, especially regarding its location relative to the waterward edge of the red mangrove fringe, which DEP would consider part of the historic natural waterbody. There may be some question specifically concerning title to the bottom of the northernmost canal where it joins Deep Lagoon. However, the proof required of Applicant for present purposes is considerably short of the proof required to prove title, and the attorney's testimony, absent proof to the contrary, is sufficient to demonstrate the requisite ownership interest to seek the exemption and permit that are the subject of these cases. From north to south, Deep Lagoon Marina comprises the north canal, which is about 1200 feet long and bounded on the north by a red mangrove fringe 10-20 feet wide; a peninsula; the central canal, which is also known as the central or main basin and is roughly the same length as the north canal; a shorter peninsula; and the south canal, which is about half the length of the central canal and turns to the southeast at a 45-degree angle from the midway point of the central canal. The three canals are dead-end canals, terminating at their eastern ends a short distance from MacGregor Boulevard. Manatees and Boating The Caloosahatchee River is critical habitat for the endangered West Indian manatee. Up to 500 manatees use the river during the winter. When, during the winter, the water cools, the animals congregate in waters warmed by the thermal discharge from a power plant about 13 miles upstream of Deep Lagoon. When, during the winter, the water warms, the manatees swim downstream, past and into Deep Lagoon searching for food. Manatees frequently visit Deep Lagoon. It is one of the few places between the power plant and the Gulf where manatees can find a quiet place, relatively free of human disturbance, to rest and feed. Within Deep Lagoon, the Iona Drainage District ditch runs parallel to the north canal, separated from the canal by the previously described mangrove fringe. The Iona Drainage District ditch empties into Deep Lagoon just north of the mouth of the north canal. Manatees frequently visit the ditch because it is a seasonal source of freshwater, which the manatees drink. Manatees visit the north canal due to its moderate depths and proximity to the freshwater outfalls of the Iona Drainage District ditch. Manatee mortality from watercraft is extremely high in the immediate vicinity of Deep Lagoon, and the mortality rate has increased in recent years. The rate of manatee deaths from collisions with watercraft has increased with the popularity of motorboating. Boat registrations in Lee County rose from 13,000 in 1974 to 36,000 in 1997. The potential for mitigation offered by the enactment of speed zones has been undermined by the fact that nearly half of the boaters fail to comply with the speed limits. Water Quality The Caloosahatchee River is laden with sediments, partly due to intermittent discharges from Lake Okeechobee. Seagrass in the riverbottom cannot grow in water much deeper than four feet. Some seagrass grows at the mouth of Deep Lagoon, but little seagrass extends into the lagoon itself. The water quality in the canals is very poor for dissolved oxygen and copper. Applicant stipulated that the water quality in Deep Lagoon violates state standards for dissolved oxygen, copper, and coliform bacteria. In 1997, the canals violated water quality standards for dissolved oxygen nearly each time sampled during the wet season and one-third of the times sampled during the dry season. The dissolved oxygen levels violated even the lower standards for Class IV agricultural waters two-thirds of the times sampled during the wet season. In 1997, the canals violated water quality standards for copper in the water column each time sampled during the wet season and two-thirds of the times sampled during the dry season. During three of the dry season samplings, copper levels were 20 to 30 times lawful limits. The three lowest wet season copper levels were double lawful limits. Copper is a heavy metal that is toxic to a wide range of marine organisms. Copper is applied to boat hulls to prevent marine life from attaching to the hulls. In 1997, the canals violated water quality standards for total coliform bacteria (for any single reading) three of the 60 times sampled during the dry season and one of the 56 times sampled during the wet season. The canals violated the more relaxed, 20-percent standard (which is violated only if 20 percent of the readings exceed it) during the wet season, but not during the dry season. In 1997, the canals violated water quality standards for lead in the water column in one sample (by 25 percent) out of 36, but did not violate water quality standards for oil and grease or fecal coliform bacteria. Results of testing for mercury in the water column (as opposed to sediments) are not contained in the record. As compared to 1987, the water quality in the canals has improved in all but one important respect. In 1987, the water column readings for copper were five to six times higher than the highest 1997 reading. In 1987, the total coliform bacteria were too numerous to count because the colonies had grown together in the sample. However, comparing the April 1987 data with the May 1997 data for the same approximate times of day and the same locations, the dissolved oxygen levels in the three canals have declined dramatically in the last 10 years. Ten years ago, in a one-day sampling period, there were no reported violations; ten years later, in a one-day sampling period, there were four violations. Even worse, the amount of dissolved oxygen in the water during daylight hours has been halved in the last 10 years with a smaller decrease during nighttime hours. Original Permit There are three types of permits relevant to these cases. The first is a dredge and fill permit (sometimes referred to in the record as a wetland resource permit or water resource permit)(DAF permit). The second is a surface water management (sometimes referred to in the record as a management and storage of surface water (MSSW) permit or stormwater management permit)(SWM permit). The third is an environmental resource permit (ERP). Several years ago, responding to a mandate from the Legislature, DEP and the water management districts consolidated DAF permits, which historically were issued by DEP, and SWM permits, which historically were issued by the water management districts, into ERPs. At the time of this change, DEP adopted, within the jurisdictional areas of each water management district, certain of the rules of each district. In 1988, DEP issued a DAF permit to Applicant's predecessor in title for additional wet slips (as modified, the Original Permit). Due partly to the likelihood of the replacement of some older, smaller slips with larger slips, there is some uncertainty as to the precise number of wet slips that Applicant would be able to construct under the Original Permit. However, Applicant would be able to construct approximately 89-113 new wet slips, with an additional 14,440 square feet of overwater decking, so as to raise its marina capacity to 150-174 wet slips. Applicant also plans to construct 227 dry slips, so as to raise its marina capacity to 427 dry slips, and add 115,000 square feet of buildings, including a restaurant. In general, the Original Permit authorizes Applicant to renovate and expand an existing marina from 61 wet slips to 174 wet slips by: excavating 0.358 ac of uplands to create a flushing canal, installing 375 linear feet of seawall along the sides of the flushing canal, excavating 2.43 ac of submerged bottom to remove contaminated sediments, backfilling 2.41 acres of the dredged area (the main basin and south canal to -7 ft. MLW and the north canal to -6 ft. MLW) with clean sand, renovating the existing 61 slips, and constructing an additional 14,440 square feet of overwater decking for 113 new slips, providing after-the-fact authorization for construction of 2 finger piers, creating a 400 sq. ft. mangrove fringe, constructing 180 linear feet of seawall in the vicinity of the mangrove fringe, and relocating and upgrading fueling facilities. The record contains various references to "MLW" or "mean low water," "MHW" or "mean high water," and "NGVD" or "National Geodetic Vertical Datum." The drawings attached to the Original Permit state that MHW equals 0.96 feet NGVD and MLW equals about 0.40 feet NGVD. The Original Permit authorizes activities to proceed in three phases: First, the majority of the water quality improvement measures will be implemented as required in Specific Condition 5. Second, the over water docking structures will be constructed and the fueling facilities will be upgraded and relocated as required in Specific Conditions 6 and 7. Third, the new slips will be occupied in accordance with the phasing plan in Specific Condition 9. Specific Condition 5 imposes several requirements designed "to ensure a net improvement in water quality." Among these requirements is that Applicant must obtain the ERP that is the subject of DOAH Case No. 98-5409 (New Permit). Specific Condition 5 states: In order to ensure a net improvement to water quality within the basin, the construction of any new docking structures or installation of any new pilings shall not occur until the below-listed conditions (A-K) have been met. . . . A baseline water quality study . . .. A stormwater treatment system providing treatment meeting the specifications of Florida Administrative Code 40E-4 for all discharges into the basins from the project site shall be constructed. . . . The boat wash area shall be re-designed and constructed as shown on Sheets 23 and 23A. All water in the washdown area shall drain into the catch basin of the wastewater treatment system shown on Sheet 23. The water passing through the wastewater treatment system shall drain to the stormwater management system which was previously approved by the South Florida Water Management District. The filters of the wastewater treatment system shall be maintained in functional condition. Material cleaned from the filter shall be disposed of in receptacles maintained specifically for that purpose and taken to a sanitary landfill. This system shall be maintained in functional condition for the life of the facility. [As cited, this subparagraph contains modifications stated in a letter dated March 26, 1997, from DEP to Applicant's predecessor in interest.] Contaminated sediments shall be dredged from the areas shown on Sheets 5 and 7 of 23. A closed-bucket clam shell dredge shall be used. The north canal shall be dredged to at least -9.9 feet MLW and backfilled with clean sand to -6 feet MLW. The [main] basin shall be dredged to at least -7.3 feet MLW and backfilled with clean sand to -7 feet MLW. The south canal shall be dredged to at least -10.5 feet MLW and backfilled with clean sand to at least -7.0 feet MLW. Backfilling shall be completed within 120 days of completion of dredging. . . . The sediments shall be placed directly in sealed trucks, and removed to a self-contained upland disposal site which does not have a point of discharge to waters of the state. A channel, 260 ft. long, 60 ft. wide, with a bottom elevation of -4.5 ft. MLW shall be excavated between the north canal and the main basin to improve flushing. * * * K. Upon completion [of] conditions A-J above, renovation of the existing 61 wet slips and construction of the 113 additional wet slips may proceed with the understanding that construction of all 113 additional slips is at the risk of the permittee and that if the success criteria in the monitoring and occupancy program are not met, removal of all or part of the additional slips may be required by the Department. Specific Condition 8 addresses the phasing of occupancy of the wet slips. Specific Condition 8 provides: Occupancy of the additional 113 wet slips shall occur in two phases, described below. Permanent occupancy of the slips shall require [DEP] approval, contingent upon the water quality monitoring program demonstrating a statistically significant (Specific Condition 9) net improvement for those parameters which did not meet State Water Quality Standards in the baseline study. The permittee agrees that if [DEP] determines that net improvement has not occurred, or if violations of other standards occur, and if the corrective measures described in Specific Condition 10 are not successful, all of the additional slips occupied at that time shall be removed. . . . Phase I--Upon completion of the baseline water quality study and the work specified in Specific Condition No. 5, the existing 61 slips and an additional 56 slips, totalling 117 slips, may be occupied. . . . If at the end of one year of monitoring, the data generated from the water quality monitoring program shows a statistically significant improvement over baseline conditions, for those parameters in violation of State Water Quality Standards, and no violations of additional parameters, . . . the new 56 slips which were occupied shall be considered permanent. Phase II--Upon written notification from [DEP] that Phase I was successful, the remaining 57 additional slips may be occupied. Water and sediment quality monitoring shall continue for two years after the occupancy of 140 of the 174 slips. If a statistically significant net improvement to water quality over baseline conditions for those parameters in violation of State Water Quality Standards [sic] and no violation of additional parameters is shown by the monitoring data, and confirmed by [DEP] in writing, the additional slips shall be considered permanent. * * * Specific Condition 11 adds: Implementation of the slip phasing plan described in Specific Condition 8 shall be contingent on compliance of boaters with existing speed zones in the Caloosahatchee River and trends in manatee and [sic] mortality. . . . Approval of additional slips will depend upon manatee mortality trends and boater compliance with speed zones in the Caloosahatchee River and additional slips may not be recommended. . . . Based on the results of the evaluations of Phases I and II, [DEP] may require that slips be removed to adequately protect manatees. Specific Condition 12 requires the construction of a 400 square-foot intertidal area for the planting of mangroves to replace the mangroves lost in the construction of the flushing channel. Specific Condition 14 prohibits liveaboards at the marina. Specific Condition 15 adds various manatee-protection provisions. Plan Views C and D, which are part of the Original Permit, depict submerged bottom elevations for the north and central canals, as well as from the south canal at its intersection with the central canal. Dated August 30, 1995, these "existing" bottom elevations across the mouth of the north canal are about -7, -8, and -4 feet (presumably MLW; see second note to Plan View B). The western two-thirds of the north canal passes over bottoms of about -6 feet MLW. Proceeding east, the bottom deepens to -7 to -9 feet MLW before it tapers up to -7, -6, and finally -3 feet MLW at the head; and the eastern third of the north canal passes over bottoms of about -7 feet MLW that tapers up to -6 feet and -3 feet MLW. The submerged bottom at the mouth of the central canal is about -8 to -9 feet MLW. The bottom drops to -6 to -10 feet MLW at the intersection with the south canal. Proceeding east, the bottom deepens slightly as it reaches the head, where it is -8 feet MLW. The submerged bottom of the south canal runs from -9 feet MLW at the intersection with the central canal and runs about 0.5 feet deeper at the head. Petitioner and others challenged the issuance of the Original Permit in 1988. The permit challengers appealed a final order granting the Original Permit and certifying, under the federal Clean Water Act, that state water quality standards were met. DEP premised its certification on the concept that water quality standards encompassed a net improvement in water quality of the poorly flushed canals. In Sheridan v. Deep Lagoon Marina, 576 So. 2d 771, 772 (Fla. 1st DCA 1991), the court, relying on the above-described 1987 water quality data, noted the "very poor water quality" of Deep Lagoon, as reflected in part by the presence of oil and grease 20 times the Class III standard, copper 13 times the standard, lead 20 times the standard, mercury 1000 times the standard, and coliform bacteria "too numerous to count." However, the court affirmed the issuance of the Original Permit under the statutory authorization of a permit where ambient water quality does not meet applicable standards, but the activity will provide a net improvement to the waters. On the certification issue, though, the court reversed and remanded. The court held that the hearing officer erroneously excluded evidence on DEP's certification of the activity as in compliance the federal Clean Water Act. Following remand, DEP issued a final order issuing the Original Permit. On the certification issue, the final order revoked the earlier certification of compliance and, citing 33 United States Code Section 1341 as authority, waived certification as a precondition to federal permitting. Maintenance Dredging: DOAH Case No. 98-3901 Background The contentions of Petitioner and Intervenor as to maintenance dredging are: the proposed dredging exceeded what was necessary to restore the canals to original design specifications or original configurations; the proposed dredging exceeded the maximum depth allowable for maintenance dredging of canals; the work was not conducted in compliance with Section 370.12(2)(d), Florida Statutes; the spoil was not deposited on a self-contained upland site to prevent the escape of the spoil into waters of the state; and the dredge contractor did not use control devices and best management practices for erosion and sediment control to prevent turbidity, dredged material, and toxic or deleterious substances from discharging into adjacent waters during maintenance dredging. On March 3, 1998, Applicant's engineering consultant submitted drawings to DEP with notification that Applicant intended to "maintenance dredge the internal canals of Deep Lagoon Marina," in conformity with Rule 62-312.050(e), Florida Administrative Code. The letter describes the proposed dredging as mechanical "with no discharge back into Waters of the State." The letter assures that Applicant's contractor will use turbidity curtains "around the dredging and spoil unloading operation" and advises that the contractor will unload the spoil "to the north peninsula upland area." The letter states that the dredging "will be to the design depth/existing canal center line depth of -7 NGVD," which was established by the Original Permit, and will be "done in conjunction with the required dredging under [Original Permit] Condition 5(D)." The consultant attached to the March 3 letter several drawings showing the dredging of all three canals. For each canal, the drawings divide the dredging into two areas. For 1.82 acres, the contractor would dredge contaminated materials from the dead-ends of the three canals (for the south canal, a portion running from the head along the northeast half of the canal) and then replace these materials with clean backfill material. This information is for background only, as the Original Permit authorized this contaminant dredging. For 4.84 acres, which run through the remainder of the three canals, the contractor would maintenance dredge in accordance with the cross-sections provided with the letter. The cross-sections for the north canal reveal relatively extensive dredging beyond the vegetation lines on both sides of the canal bottom. The dredging would extend up to, but not beyond, the edges of the prop roots of the mangroves on both sides of the canal bottom. The contours reveal variable, proposed slope profiles for the submerged sides of the canals, but the dredging would substantially steepen the submerged slopes of the north canal. It is difficult to estimate from the cross-sections the average depth and width to be dredged from the north canal, but it appears that the cross-sections proposed the removal of substantial spoil (an average of 4-6 feet) from areas from 20-40 feet from each side of the deepest point in the north canal. The dredging would alter the two most affected cross-sections, which are just inside the mouth of the north canal, by widening the deepest part of the canal bottom by 85 feet--from about 15 feet to about 100 feet. The drawings proposed much smaller alterations to the bottoms of the central and south canals: typically, spoil about 2 feet deep and 20 feet wide. All but one of the cross-sections revealed that spoil would be dredged only from one side of the deepest point. Additionally, the dredging in these canals would not involve any submerged vegetation; all but one of the canal sides was lined by existing seawalls. By letter dated March 13, 1998, DEP stated that it had determined that, pursuant to Rule 40E-4.051(2)(a), Florida Administrative Code, the proposed activity was exempt from the requirement that the Applicant obtain an ERP. The letter warns that, pursuant to Chapter 62-302, Florida Administrative Code, the construction and operation of the project must not cause water quality violations. The letter adds that DEP may revoke its determination of exemption if the "basis for the exemption is determined to be materially incorrect, or if the installation results in water quality violations." The letter provides a point of entry for persons whose substantial interests are affected by DEP's determination. Following receipt of DEP's letter acknowledging the exemption, Applicant's contractor proceeded to maintenance dredge the three canals. The dredging of the north canal took eight weeks. Applicant's contractor also performed the contaminant dredging and clean backfilling authorized by the Original Permit. As indicated in the March 3 letter and permitted in the Original Permit, the contaminant dredging took place at the dead-end heads of the north and central canals and along the northeast half of a slightly longer section of the south canal, starting from its dead-end head. In maintenance dredging the canals, Applicant's contractor did not exceed the specifications regarding depth and width stated in its March 3 letter. To the contrary, the contractor sometimes dredged slightly narrower or slightly shallower profiles than stated in the March 3 letter. For example, the contractor dredged the north canal to -6 feet NGVD (or -5.6 feet MLW), rather than -7 feet NGVD, as shown in the March 3 letter. The Depths, Widths, and Lengths of Dredging The March 3 letter asserts that -7 feet NGVD is the permitted elevation of the canal bottoms, pursuant to the Original Permit. This is incorrect in two respects. First, the assertion in the March 3 letter of a -7 foot permitted bottom elevation is incorrect for all but the relatively small part of each canal that DEP has determined is contaminated. The Original Permit specifies design elevations for canal bottoms only in the contaminated area within each canal. Nothing in the Original Permit permits bottom elevations for any portion of the bottoms of the three canals outside of these three contaminated areas. Second, the assertion in the March 3 letter of a -7 foot permitted bottom elevation is incorrect, even for the contaminated areas. The March 3 letter states -7 feet NGVD, but the Original Permit specifies bottom elevations, for contaminated areas only, of -7 feet MLW in the south and central canals and -6 feet MLW in the north canal. Thus, due to the differences between NGVD and MLW, the March 3 letter proposes dredging that would deepen the south and central canals by about five inches deeper than the depth permitted in the Original Permit and the north canal by one foot five inches deeper than the depth permitted in the Original Permit. Moreover, nothing in the record clearly establishes all aspects of the original design specifications of the three canals, whether permitted or not, or even all aspects of their original dredged configurations, if not permitted. There is no dispute concerning one aspect of the dredged configuration of the three canals: their lengths. Although there may be some dispute as to the original mean high water line near the mouths of the north and central canals, the original length of the canals is evident from the uplands that presently define them. As to the depth of the canals, although direct evidence is slight, Applicant has sufficiently proved indirectly the depths of the mouths of the canals pursuant to original design specifications or, if not designed, original configurations. The proved bottom elevations are -7 feet NGVD for each canal. Applicant proved these depths based on the prevailing elevations in Deep Lagoon in the vicinity of the mouths of the north and central canal and bottom elevations in areas of Deep Lagoon that are not prone to sedimentation. Additional proof of the bottom elevation of -7 feet NGVD at the mouths of the canals is present in the slightly higher permitted bottom elevations at the dead- ends of the north and central canals and landward portion of the south canal. There is some problem, though, with the proof of the depth of the canal bottoms between their mouths and heads (or, for the south canal, its landward portion of known contamination). Although the problem of the depth of the canals between their heads and mouths might be resolved by inferring a constant bottom elevation change from the deeper mouth to the shallower head, an unresolveable issue remains: the width of this maximum depth. As already noted, without deepening the deepest part of either cross-section, the contractor widened the deepest points along two cross-sections by 85 feet each. In terms of navigability and environmental impact, the width of the maximum depth of a canal is as important as its maximum depth. As to the width of the lowest bottom elevations of the canals, Applicant has produced no proof of original design specifications or, if not designed, original configurations. Nor has Applicant produced indirect proof of historic widths. Nothing in the record supports an inference that Applicant's predecessor in interest originally dredged the canal bottoms as wide as Applicant "maintenance" dredged them under the claimed exemption. Nothing in the record supports an inference that Applicant's predecessor geometrically dredged the canals so that their sides were perpendicular to their bottoms. Nothing in the record describes a sedimentation problem that might have narrowed the canals by such an extent that the dredging of the present widths, especially in the north canal, would be restorative. Nothing in the record even suggests that the original motive in dredging was navigability, which might have yielded relatively wide canal bottoms, versus upland fill, which would yield canal bottoms as wide as needed, not for navigability, but for uplands- creation. After consideration of all the evidence, no evidence supports a finding that the proposed dredging profiles, in terms of the widening of the areas of lowest elevation in each canal bottom, bear any resemblance whatsoever to the original canal profiles, as originally (or at any later point) designed or, if not designed, as originally (or at any later point) configured. It is at least as likely as not that this is the first time that these canal bottoms, especially the north canal bottom, have ever been so wide at any bottom elevation approaching -7 feet NGVD. There is simply no notion of restoration or maintenance in the dredging that produced these new bottom profiles for these three canals. Transforming MLW to NGVD, -5 feet MLW is -4.6 feet NGVD. All proposed and actual maintenance dredging in the three canals dredged the canal bottoms to elevations lower than -5 feet MLW (or -4.6 feet NGVD), despite the absence of any previous permit for construction or maintenance of the canal from the Trustees of the Internal Improvement Trust Fund or the United States Army Corps of Engineers. Impact of Dredging on Manatees and Spoil Containment Prior to dredging, Applicant deployed turbidity curtains around the mouths of the two canals that discharge directly into Deep Lagoon. In this case, the turbidity curtains performed two functions. They contained turbidity and resuspended bottom contaminants within the mixing zone behind (or landward of) the curtains, and they excluded manatees from the dangerous area behind the curtains where the dredging was taking place. Petitioner and Intervenor object to the use of the turbidity curtains on two general grounds. First, they claim that the curtains failed to contain turbidity and resuspended contaminants from escaping the mixing zone. Second, they claim that the curtains adversely affected manatees. As executed, the maintenance dredging did not result in the release of turbidity or resuspended contaminants outside of the mixing zone due to the use of turbidity curtains. Applicant's contractor ensured that the curtains extended from the water surface to the canal bottom and sufficiently on the sides to prevent the escape of turbidity or resuspended contaminants. Although the March 3 letter did not indicate where the contractor would deploy the turbidity curtains, the important point, in retrospect, is that the contractor properly deployed the curtains. There is some question whether turbidity or resuspended contaminants flowed across the mangrove fringe and into the Iona Drainage District ditch. Applicant's witness testified that water flows across the fringe only during the highest three or four tides per month. Petitioner and Intervenor's witness testified that water flows across the fringe as often as twice per day. The actual frequency is likely somewhere between these two extremes, but, regardless of the frequency, there is insufficient evidence to find that any turbidity or resuspended contaminants flowed from the north canal into the Iona Drainage District ditch. Nor did the deployment of the turbidity curtains injure, harm, possess, annoy, molest, harass, or disturb any manatees. Applicant and its contractor carefully checked each canal for manatees before raising the turbidity curtains at the mouth of each canal, so as not to trap any manatees in the area behind the curtains. By ensuring that the curtains extended to the canal bottom and extended fully from side to side, they ensured that the curtains excluded manatees during the dredging. There is no evidence that a manatee could have entered the north canal from the Iona Drainage District ditch by crossing the red mangrove fringe; any breaks in the fringe were obstructed by prop roots that prevented even a kayaker from crossing the fringe without portaging. Applicant and its contractor checked for manatees during dredging operations. Petitioner and Intervenor contend that the mere presence of the turbidity curtains in an area frequented by manatees adversely affected the animals. However, this argument elevates a speculative concern with a manatee's response to encountering an obstruction in its normal path over the practical purpose of curtains in physically obstructing the animal so as to prevent it from entering the dangerous area in which the dredge is operating, as well as the unhealthy area of turbidity and resuspended contaminants in the mixing zone. Under the circumstances, the use of the turbidity curtains to obstruct the manatees from visiting the dredging site or mixing zone did not adversely affect the manatees. In general, there is no evidence of any actual injury or harm to any manatees in the course of the dredging or the preparation for the dredging, including the deployment of the turbidity curtains. Petitioner and Intervenor offered evidence that maintenance dredging would result in more and larger boats and deterioration of water quality, which would both injure the manatees. However, as noted in the conclusions of law, the Administrative Law Judge excluded from DOAH Case No. 98-3901 such evidence concerning long-term impacts upon the manatees following the dredging. As for spoil containment, Applicant's contractor segregated the contaminated spoil from noncontaminated spoil by placing the contaminated spoil in a lined pit in the uplands. The contractor also brought onto the uplands clean fill mined from a sand quarry for backfilling into the dredged contaminated areas. There is evidence of the clean fill subsiding from its upland storage site and entering the canal waters in the mixing zone. Partly, this occurred during the loading of the barge, which transported the clean fill to the dead-end heads of the canals where the fill was placed over the newly dredged bottoms. The fill escaped into the water at a location about 100 feet long along the north seawall of the central canal, but the evidence does not establish whether this location was within the contaminated area at the head of the canal or whether the maintenance or contaminant dredging had already taken place. If the fill subsided into the water inside of the contaminated head of the south canal and the subsidence occurred prior to the contaminant dredging, the subsidence was harmless because the contractor would remove the fill during the dredging. If the fill subsided into the water inside the contaminated head of the south canal and the subsidence occurred after the contaminant dredging, the subsidence was harmless because the contractor intended to add the fill at this location. If the fill subsided into the water outside of the contaminated head of the south canal and the subsidence occurred prior to maintenance dredging, the subsidence was harmless because the contractor would remove the fill during the dredging. If the fill subsided into the water outside the contaminated head of the south canal and the subsidence occurred after the maintenance dredging, the subsidence was harmless because it restored the canal bottom to a higher elevation following the dredging to an excessively low elevation. The subsidence of the clean fill into the water along the north side of the central canal is the only material that entered the water from the uplands during the dredging. Specifically, there is no evidence of dredged spoil entering the water from the uplands during or after the dredging. There is also no evidence that the maintenance dredging significantly impacted previously undisturbed natural areas. There is no evidence of such areas within the vicinity of Deep Lagoon Marina. New Permit: DOAH Case No. 98-5409 New Permit Seeking to satisfy certain of the requirements of Original Permit Specific Condition 5, Applicant filed with DEP, on December 10, 1997, an application for an ERP and water quality certification to construct a surface water management system to serve 15.4 acres of its 24-acre marina. Prior to its reformulation as an ERP, the New Permit sought by Applicant would have been a SWM permit. The application notes that the general upland elevation is 5 feet NGVD and that stormwater runoff presently sheetflows directly to adjacent waterways without any treatment. During the application process, Applicant's engineer Christopher Wright, submitted a letter dated February 27, 1998, to Jack Myers, who is a Professional Engineer II for DEP. In response to a request from DEP for a "written procedure . . . to assure the proper functioning of the proposed . . . system," the letter states: Since the system is not designed as a retention system and does not rely upon infiltration to operate properly[,] operation and maintenance is minimal. Items that will need regular maintenance are limited to removal of silt and debris from the bottom of the drainage structures and the bleed down orifice of the control structure. A maintenance and inspection schedule has been included in this re-submittal as part of Exhibit 14. In relevant part, Exhibit 14 consists of a document provided Mr. Wright from the manufacturer of the components of the surface water management system. The document states that the manufacturer "recommends that the landowner use this schedule for periodic system maintenance . . .." The document lists 16 sediment-control items, but it is unclear whether all of them are incorporated into the proposed system. Four items, including sediment basins, require inspections quarterly or after "large storm events" and maintenance consisting of the removal of sediment; the "water quality inlet" requires inspections quarterly and maintenance consisting of "pump[ing] or vacuum[ing]"; the "maximizer settling chamber" requires inspection biannually and maintenance consisting of "vacuum[ing] or inject[ing] water, suspend silt and pump chamber"; and the "chamber" requires inspection annually and the same maintenance as the maximizer settling chamber. The proposed system includes the water quality inlet and one of the two types of chambers. By Notice of Intent to Issue dated November 5, 1998, DEP provided notice of its intent to issue the New Permit and certification of compliance with state water quality standards, pursuant to Section 401 of the Clean Water Act, 33 United States Code Section 1341. On February 6, 1999, DEP revised the notice of intent by withdrawing its certification of state water quality compliance. As it did with the Original Permit, DEP again waived state water quality certification. This waiver is consistent with a letter dated February 2, 1998, in which then-DEP Secretary Virginia Wetherell announced that DEP would waive state water quality certification for all activities in which the agency issues an ERP based on the "net improvement" provisions of Section 373.414(1)(b), Florida Statutes. The notices of intent (collectively, NOI) recite the recent permitting history of the marina. This history includes the Original Permit, a since-expired MSSW permit issued in 1988 by SFWMD, and then-pending requests--apparently all since granted--to revise the Original Permit by replacing the flushing canal with culverts, relocating a travel lift from the main canal to the north canal, and adding liveaboards to the marina. (Although mentioned below, these revisions, in and of themselves, do not determine the outcome of DOAH Case No. 98-5409.) Reviewing the proposed development for the site, the NOI states that the northerly part of the project would contain an indoor dry boat storage barn, a marina service operation consisting of a ship store and miscellaneous buildings, a harbor master building, an upgraded fueling facility, a parts and service center, a restaurant, retail and commercial facilities, and paved parking areas. The southerly part of the project would contain a new indoor dry boat storage barn, a boat dealership building, and paved parking areas in place of the existing buildings. The NOI states that the proposed water quality treatment system would comprise dry detention systems of several underground vaults with an overall capacity based on the total impervious area, including roofs, receiving 2.5 inches of rain times the percentage of imperviousness. Given the relatively high imperviousness of the finished development, this recommended order considers the percentage of imperviousness to be 100, but ignores the extent to which the post-development pervious surfaces would absorb any rainfall. For storms producing up to 2.5 inches of runoff, the proposed surface water management system, of which the underground vaults are a part, would trap the runoff and provide treatment, as sufficiently sized contaminants settled into the bottom of the vaults. Because the vaults have unenclosed bottoms, the proposed system would provide incidental additional treatment by allowing stormwater to percolate through the ground and into the water table. However, the system is essentially a dry detention system, and volumetric calculations of system capacity properly ignored the incidental treatment available through percolation into the water table. The New Permit notes that the wet season water table is 1.2 feet NGVD, and the bottom of the dry detention system is 2.5 feet NGVD. This relatively thin layer of soil probably explains why DEP's volumetric calculations ignored the treatment potential offered by percolation. The relatively high water table raises the possibility, especially if Applicant does not frequently remove the settled contaminants, that the proposed system could cause groundwater contamination after the thin layer of soil is saturated with contaminants. In any event, the system is not designed for the elimination of the settled contaminants through percolation. The treatment system for the boat wash areas would be self-contained, loop-recycle systems that would permit the separation of oil and free-settling solids prior to reuse. However, the NOI warns that, "during heavy storm events"-- probably again referring to more than 2.5 inches of runoff--the loop-recycle systems would release untreated water to one of the underground vaults, which would, in turn, release the untreated water into the canals. Due to the location of the boat wash areas, the receiving waters would probably be the north canal. As reflected in the drawings and the testimony of Mr. Wright, the surface water management system would discharge at three points: two in the north canal and one in the south canal. (Vol. I, p. 206; future references to the Transcript shall cite only the volume and page as, for example, Vol. I, p. 206). 67. The NOI concludes that Applicant has provided affirmative reasonable assurance that the construction and operation of the activity, considering the direct, secondary and cumulative impacts, will comply with the provisions of Part IV of Chapter 373, F.S., and the rules adopted thereunder, including the Conditions for Issuance or Additional Conditions for Issuance of an environmental resource permit, pursuant to Part IV of Chapter 373, F.S., Chapter 62-330, and Sections SFWMD--40E-4.301 and 40E-4.302, F.A.C. The construction and operation of the activity will not result in violations of water quality standards and will not degrade ambient water quality in Outstanding Florida Waters pursuant to Section 62-4.242, F.A.C. The Applicant has also demonstrated that the construction of the activity, including a consideration of the direct, secondary, and cumulative impacts, is clearly in the public interest, pursuant to Section 373.414(1)(a), F.S. However, the design capacity of the proposed surface water management system raises serious questions concerning the water quality of the discharges into the canals. Mr. Wright initially testified that the surface water management system would be over-taxed by "an extreme storm event, probably a 25- year storm event . . .." (Vol. I, pp. 208-09). The record contains no evidence of the frequency of the storm event that produces 2.5 inches of runoff for the relatively impervious post- development uplands; the record contains no evidence even of the frequency of the storm event that produces 2.5 inches of rainfall. According to Mr. Wright, the 25-year storm would typically produce 8-10 inches of rain. (Vol. I, pp. 223 and 233). As already noted, the relatively large area of imperviousness following upland development and the relative imperviousness of the upland soils present at the site suggest that the runoff will be a relatively large percentage of the rainfall produced by any given storm event. It thus appears that the design capacity of the system is for a storm substantially smaller and substantially more frequent than the 25-year storm. Attached to the NOI is a draft of the New Permit, which contains numerous specific conditions and conforms in all respects with the NOI. Omitting any mention of SFWMD's Basis of Review, the New Permit addresses, among other things, the operation, inspection, and maintenance of the components of the proposed system. As set forth in the testimony of Michael Bateman, who is a Professional Engineer III and statewide stormwater coordinator for DEP, the surface water management system's operation depends on periodic pumping of the "thick, fine sediment," which appears to be a "cross between mud and sand" and will be laden with oil, grease, metals, and other contaminants. (Vol. II, p. 66). However, contrary to Mr. Bateman's assurance that the New Permit requires the periodic pumping or removal of contaminants that have precipitated out of the runoff in the dry detention system and dropped to the bottom sediment (Vol. II, p. 20), neither the NOI nor the New Permit requires, in clear and enforceable language, the periodic removal of settled solids from the underground vaults or their manner of disposal. New Permit Specific Condition 8 requires that Applicant maintain the boat wash area in "functioning condition," although specific inspection and maintenance requirements are omitted from the New Permit. New Permit Specific Condition 7 requires that Applicant "inspect and clean" all stormwater inlets "as necessary, at least once a month and after all large storm events," although the New Permit fails to specify that cleaning shall be by either pumping or vacuuming. By contrast to the marginally adequate inspection and maintenance provisions applicable to the boat wash area (inspections are required in Specific Condition 6, cited below) and stormwater inlets, the New Permit completely fails to specify enforceable inspection and maintenance requirements for the underground vaults. New Permit Specific Condition 6 addresses the operation of the vault as follows: Upon completion of the construction of the stormwater collection and underground vault (Infiltrator) systems and on an annual basis thereafter by September 30 of each year, the Permittee shall submit reports to the Department as to the storage/treatment volume adequacy of the permitted system. The reports shall also include, but not be limited to, the condition of stormwater inlets and control structures as to silt and debris removal and the condition of the inlet wire mesh screens to function properly. The boat wash down areas shall be inspected for proper operation, i.e., no signs of wash water overflows from the containment area, condition of the containment area curbing, etc. Such reports shall include proposal of technique and schedule for the maintenance and/or repair of any deficiencies noted and shall be signed and sealed by a Florida registered Professional Engineer. A report of compliance with the aforementioned proposal shall be submitted by the Professional Engineer to the Department upon completion of the proposed work which shall be accomplished within three months of the initial report for each year. New Permit Specific Condition 6 requires annual reports concerning the sufficiency of the capacity of the underground vaults (first sentence), annual reports of the status of silt- and debris-removal from the inlets and control structures and the condition of the inlet wire mesh screens (second sentence), inspection at no stated intervals of the boat wash area (third sentence), and annual reports with suggestions of maintenance schedules and repairs for the items mentioned in the first two sentences (fourth sentence). New Permit Specific Condition 6 promises only the preparation of a maintenance schedule at some point in the future. Failing to supply an enforceable inspection and maintenance program, Specific Condition 6 indicates that Applicant shall consider in the future techniques and scheduling of maintenance, presumably based on the report concerning system capacity. Such a requirement may or may not impose upon Applicant an enforceable obligation to adopt an enforceable inspection and maintenance program in the future, but it does not do so now. There is no reason why the New Permit should not impose upon Applicant an initial, enforceable inspection and maintenance program incorporating, for example, the clear and enforceable requirements that Applicant inspect all of the underground vaults no less frequently that once (or twice, if this is the applicable recommendation of the manufacturer) annually and, at clearly specified intervals, remove the sediments by resuspending the sediments in the water, pumping out the water, and disposing of the effluent and sediments so they do not reenter waters of the state. Although the record does not disclose such requirements, Applicant could possibly find manufacturer's recommendations for the boat wash components and incorporate them into an enforceable inspection and maintenance program more detailed than that contained in Specific Condition 8. However, for the reasons noted below, water quality considerations require a substantial strengthening of such a program beyond what is set forth in this paragraph as otherwise acceptable. At present, the bottom line on inspection and maintenance is simple: the New Permit does not even incorporate by reference the manufacturer's recommended inspection and maintenance schedule, which Mr. Wright provided to Mr. Myers. Nor was this shortcoming of the New Permit in its treatment of inspection and maintenance necessarily missed by Mr. Wright. He testified that he submitted to DEP the manufacturer's maintenance program (Vol. I, p. 205), but when asked, on direct, if the "permit in any way incorporate[s] the commitment in your application to this maintenance?" Mr. Wright candidly replied, "That I don't know." (Vol. I, p. 206). Satisfaction of Basis of Review Section 5 Basis of Review Section 5--specifically Section 5.2.1(a)--imposes the "volumetric" requirement of 2.5 inches times the percentage of imperviousness, as discussed above and in the conclusions of law. Petitioner does not dispute Applicant's compliance with this volumetric requirement, and the record amply demonstrates such compliance. Applicability of Basis of Review Section 4 The main issues in this case are whether the environmental and water quality requirements of Basis of Review Section 4 apply to the direct, secondary, and cumulative impacts of the proposed activity. Because the record lacks any indication of other relevant pending or vested permits, without which, as noted in the conclusions of law, one cannot assess cumulative impacts, the remainder of the findings of fact will not discuss cumulative impacts, although, to some extent, increased boating pressure constitutes a secondary impact and a cumulative impact. Without regard to the differences between direct and secondary impacts, DEP has taken the position in this case that it could lawfully issue the New Permit upon satisfaction of the volumetric requirements of Basis of Review Section 5 and without consideration of the requirements of Basis of Review Section 4. In large part, DEP's witnesses justify this position by reliance on the historic differences between DAF permits and SWM permits and the fact that the New Permit is a former-SWM ERP. As discussed in detail in the conclusions of law, the Basis of Review imposes different requirements upon former-DAF and former-SWM ERPs, although the Basis of Review does not refer to DAF or SWM permits by their former names. The identifying language used in the Basis of Review for former-DAF ERPs is "regulated activity" "located in, on, or over surface waters or wetlands." References to "regulated activity" without the qualifying clause indicate that the following requirement applies to former-DAF ERPs and former-SWM ERPs. Several witnesses for DEP and Applicant testified that Applicant was entitled to the New Permit upon satisfaction of the volumetric requirements of Basis of Review Section 5. For example, Mr. Wright testified that the water quality requirements for the New Permit required only a "cookbook calculation" to determine volume. (Vol. I, p. 204). Agreeing with a question that analysis of the water quality portion of the system requires "simply a straightforward mathematical calculation," Mr. Wright testified that the quality of discharged water, following treatment, will comply with state water quality standards in storms producing no more than 2.5 inches of runoff. (Vol. I, pp. 210-11). When asked to explain his answer, Mr. Wright testified, "It's kind of an implied situation, in that if you follow the guidelines that you are required to follow with respect to the calculations of water quality, that the end product is going to be in compliance with state standards." (Vol. I, p. 211). DEP witnesses agreed with Mr. Wright's analysis. For instance, Mr. Bateman testified, "The stormwater portion of the Basis of Review gets at that question [meeting water quality standards] by stating, 'if you follow the design criteria in the basis, you are presumed to meet water quality standards.'" (Vol. II, p. 40). Mr. John Iglehart, the program administrator for DEP's South District Office in Fort Myers, testified on the same point: "if . . . you meet the criteria, the engineering criteria, than you have met the presumption that you meet the rule." (Vol. III, p. 52). Mr. Myers also agreed, testifying, "with the stormwater management system, it's for the most part, let's say, fairly cut and dried as far as meeting criteria that is established within these rules and Basis of Review." (Vol. III, p. 144). He added: "Since the criteria for reviewing stormwater management systems and the discharge is based upon a presumed compliance with stormwater criteria and with state water quality, it is presumed it [the proposed system] does meet it." (Vol. III, p. 148). Mr. Bateman explained the historic basis for the water quality presumption given surface water management systems that meet the volumetric requirements: the ERP is a combination of the surface water management rules and the environmental . . ., the dredge-and-fill, and they didn't merge, they didn't marry very well in certain areas. In stormwater we look at--it's a technology- based criteria. We say, "If you build it this way, treat 80 percent of the average annual pollutant load, we're going to give you the permit on the presumption that you're doing the best you can. You're going to meet standards. Once you get into the wetlands, we take--we put on whole new sets of glasses. ALJ: Are you saying that the old dredge-and- fill is more performance-based, and the old MSSW is more technology-based, in that if you've put in the required technology, you've done your job? WITNESS: That is--yes. Dredge-and-fill is a more case by case. We look at the water quality. We look at ambient conditions. We look at hydrographics [here, largely tidal flushing]. It's more like a waste load allocation in that we're very specific. In stormwater, we can't afford to be. MS. HOLMES: So what you're saying is you can't point to the specific rule provision or regulation that excludes these criteria from surface water management systems? WITNESS: Well, you have to read [Basis of Review] Section 4 as a whole. 4.1 is specific to wetlands and other surface waters. 4.2 is environmental review. I mean, if you look at the thing in total, and the--and I realize it's confusing. But these rules are exactly the same in all the water management districts. They were developed together as the wetland criteria, the new dredge-and-fill criteria. They're exactly the same. The stormwater rules of all the [water management districts] is all different. That is for another day, making those all consistent. So these environmental wetland- type dredge-and-fill criteria are all the same, and they refer to in-water impact. [All references in the transcript to "end water" should have been "in-water."] ALJ: What do you mean by that term, "in- water impact?" WITNESS: In other words, dredge-and-fill impact. Construct and--I can't-- MS. HOLMES: May I continue, then? ALJ: Let him answer. What were you going to say? WITNESS: I think it takes a little knowledge of how these [rules] developed to know how they're applied, unfortunately. In other water management districts, it's clearer that these are in-water impacts. (Vol. II, pp. 57-59). In testifying to the exclusivity of the volumetric requirements in Basis of Review Section 5, with respect to former-SWM ERPs, these witnesses likewise opined that the secondary-impact analysis required in Basis of Review Section 4 also was inapplicable to the New Permit. For example, after testifying both ways on the necessity of considering secondary impacts in issuing former-SWM ERPs, Mr. Bateman concluded, "I'm not sure that [the requirement of considering secondary impacts] applies in this case. Certainty the rules apply, I mean, the rules apply. But certain rules are not applicable in this particular instance. I mean, I'm trying to think of a secondary impact associated with stormwater system, and it's difficult for me to do so." (Vol. II, p. 45). Mr. Bateman then testified that DEP did not consider such secondary impacts, as additional boat traffic, and probably did not consider cumulative impacts, such as other marinas. (Vol. II, pp. 51-52). In response to a question asking to what extent DEP considered post-development inputs of contaminants, such as heavy metals, when issuing a former-SWM ERP, Mr. Bateman testified: I have to tell you, very little. I mean, we--stormwater is pretty black and white. The link to secondary and cumulative impact is generally associated with in-water impact. And I realize the line is a little grey here. When we build a Wal-Mart, we don't think about how many cars it's going to put on [U.S. Route] 41 and what the impact might be to an adjacent lake. We just don't. It would be a little burdensome. In this case, I mean, it's a little greyer. (Vol. II, p. 47). Mr. Bateman was then asked to compare the relative impacts from a vacant, but developed, upland without a surface water management system with a proposed activity that would add a surface water management system to facilitate an intensification of land uses on the site so as to add new contaminants to the runoff. Mr. Bateman testified that DEP would apply only the volumetric requirement and not address the complex issue of weighing the potential environmental benefit of a new surface water system against the potential environmental detriment of contaminant loading (at least in storm events greater than the design storm event). Mr. Bateman explained: "The way it works, it is not a water quality-based standard. In other words, we don't go in and say it's so many pounds [of contaminants] per acre per year now. We're going to make it this many pounds per acre per year, and look at it in a detailed fashion. We do the [Best Management Practices], retain an inch and you're there." (Vol. II, p. 49). Agreeing with Mr. Bateman that DEP was not required to consider secondary impacts resulting from the regulated activity, Mr. Iglehart testified: "It's our thought that we don't really look at secondary and cumulative impacts for the stormwater permit. . . . If it [the former-SWM ERP application] meets the criteria, it gets the permit. That--in the ERP, the previous dredge-and-fill side looks at the secondary and cumulative. The stormwater just--like Mr. Bateman testified." (Vol. III, p. 52). After some ambivalence, Mr. Myers also testified that DEP was not required to consider secondary impacts for the New Permit: WITNESS: . . . I did not or I do not consider secondary impacts for the stormwater management system. MS. HOLMES: So, what about cumulative impacts? WITNESS: No. MS. HOLMES: So it's your testimony that you did not review secondary and cumulative impacts-- WITNESS: That's correct. MS. HOLMES: --of this system? WITNESS: What I can say is that the existing system out there, from what I can tell, does not have any stormwater treatment. Basically, it's running off into the canals. The proposed project will provide stormwater treatment for, not only the new construction, which is proposed mainly on the northern peninsula, but it is also provided for that area which is now existing, it will provide stormwater treatment for that area also. And I consider that--I don't consider that to be a secondary impact. I see it as an offsetting improvement to potential as far as the water quality. (Vol. III, pp. 144-45). As discussed in detail in the conclusions of law, these witnesses have misread the provisions of the Basis of Review applicable to the New Permit. As noted in the conclusions of law, the requirements in the Basis of Review of analysis of secondary and cumulative impacts upon water quality and manatees are not limited to in-water or former-DAF activities. Satisfaction of Basis of Review Section 4 Direct vs. Secondary Impacts In terms of construction, the direct impacts of the proposed surface water management system are negligible. Nothing in the record suggests that the construction of the proposed system will violate any of the requirements of Basis of Review Section 4. In terms of maintenance, the direct impacts of the proposed surface water management system are negligible, except for the omission from the New Permit of any provision for the safe disposition of the contaminant removed from the underground vaults. However, the maintenance issues are better treated with the operation issues. In terms of operation, the direct impacts of the proposed surface water management system are substantial. As discussed in the conclusions of law, the analysis of the direct impacts of the operation of the proposed system is limited to the current level of uplands and marine activity at the marina. These direct impacts involve two aspects of the operation of the proposed system: the design capacity and the inspection and maintenance (including disposal of sediment) of the system components. As discussed in the conclusions of law, the secondary impacts involve the intended and reasonably expected uses of the proposed system. These impacts consist of the increased uplands and marine uses associated with the addition of 100 new wet slips, 227 new dry slips, and 115,000 square feet of building space with a restaurant. Apart from their contention that Applicant is required only to satisfy the volumetric requirements of Basis of Review Section 5, Applicant and DEP have contended that Petitioner is estopped from raising direct and secondary impacts because DEP considered these impacts when issuing the Original Permit four years ago. Perhaps the most obvious factual problem with this contention is that it ignores that the New Permit authorizes, for the first time, the construction of the 227 new dry slips and 115,000 square feet of buildings. As counsel for DEP pointed out during the hearing, the Original Permit was a DAF permit and did not extend to these upland uses. The contention that DEP considered these developments as secondary impacts because they were shown on drawings attached to the Original Permit gives too much significance to nonjurisdictional background items shown in drawings without corresponding textual analysis. More generally, the efforts of DEP and Applicant to restrict the scope of this case rely on a misreading of Original Permit Specific Condition 5. The purpose of Original Permit Specific Condition 5 is to "ensure a net improvement to water quality." The purpose of each of the requirements under Specific Condition 5 is to achieve an actual, not presumptive, improvement in water quality. Prohibiting the issuing agency from fully analyzing the direct and secondary impacts of the proposed surface water management system reduces the likelihood that the ensuing New Permit will perform its role, as envisioned in the Original Permit, of helping to achieve an actual, net improvement in water quality. The concept of a "net" improvement is exactly what DEP's witnesses disclaim having done in this case--balancing the potential environmental benefits to the water resources from the proposed surface water management system against the potential environmental detriments to the water resources from the development and land uses that are intended or reasonably expected to result from the construction of the proposed system. The failure to analyze the net gain or loss inherent in this important provision of Specific Condition 5.B undermines the likelihood that the effect of Specific Condition 5.B--a net improvement in water quality--will be achieved. It is therefore illogical to rely on Specific Condition 5.B, as DEP does, as authority for an artificially constrained analysis of the eligibility of the proposed system for a former-SWM ERP. The estoppel argument also ignores that Original Permit Specific Condition 5.B anticipated that the issuing agency would be SFWMD. It is unclear how the parties to the Original Permit, including DEP, would bind what appeared at the time to have to be SFWMD in the exercise of its lawful authority in issuing SWMs or former-SWM ERPs. The attempt of Applicant and DEP trying to limit the scope of this case also overlooks numerous changed circumstances since the issuance of the Original Permit. Changed circumstances militating in favor of the comprehensive analysis mandated for former-SWM ERPs include: increased trends in manatee mortality; increased boating pressure; persistent water quality violations in terms of dissolved oxygen, copper, and total coliform bacteria; a dramatic deterioration in dissolved oxygen levels; the initial presentation for environmental permitting of the previously unpermitted 227 additional dry slips and the 115,000 square feet of buildings; the current canal bottom profiles resulting from excessively deep maintenance dredging; the absence of an updated flushing study; and the failure to dredge the flushing canal required by the Original Permit. Disregarding the environmental and water quality requirements of Basis of Review Section 4 in this case would thus repudiate Specific Condition 5.B, especially when, among other things, the water quality of the canals has deteriorated dramatically with respect to dissolved oxygen, the canals continue to suffer from serious copper violations, the canals were recently maintenance dredged to excessive depths, no flushing study has examined these subsequent developments, and the intended uses to be facilitated by the New Permit more than double the capacity of the existing marina. 2. Water Quality The direct impacts of the proposed surface water management system, based on current levels of uplands and marine use at the marina, would adversely affect the quality of the receiving waters, in violation of Basis of Review Section 4.1.1(c). The excessively increased depths of the canals, especially with respect to the substantially widened depths of the north canal, raise the potential of water quality violations, especially given the history of this site. Potential sources of contaminants exist today in the canal bottoms, uplands, and marine activity associated with the marina. The potential for water quality violations, especially with respect to dissolved oxygen, increases in the absence of an updated flushing study. The potential also increases with the introduction of liveaboards and failure to dredge the flushing canal (or its replacement with culverts). In the face of these current threats to water quality, the New Permit fails to require a system with adequate capacity to accommodate fairly frequent storm events and fails to impose clear and enforceable inspection, maintenance, and disposal requirements for the underground vaults. Although better, the inspection and maintenance requirements for the stormwater inlets and boat wash area unnecessarily present enforcement problems. The effect of these failures in design capacity and inspection and maintenance is synergistic. Deficiencies in vault capacity mean that storms will more frequently resuspend the settled contaminants in the vaults and flush them out into the canal waters. Excessively long maintenance intervals and poor maintenance procedures will increase the volume of contaminants available to be flushed out into the canal waters. Improper disposition of removed contaminants endangers other water resources. The introduction of untreated or inadequately treated water into the canals means the introduction of two substances that will contribute to the current water quality violations. Organics, such as from the boat wash operations and other uplands uses, will raise biochemical oxygen demand, which will accelerate the deterioration in dissolved oxygen levels. Copper removed during boat wash operations, leaching from painted hulls, or remaining in the uplands from past marina operations will also enter the canals in this fashion. On these facts, Applicant has failed to provide reasonable assurance that the operation of the proposed surface water management system will not result, in the long-term, in water quality violations. Applicant has failed to demonstrate that the operation of the proposed system, even as limited to existing levels of use of the uplands and marine waters, will not contribute to existing violations of dissolved oxygen and copper levels. Obviously, the situation is exacerbated by consideration of the uses intended and reasonably expected to follow the construction of the proposed system. With the growing popularity of boating in Lee County over the past 20 years, it is reasonably likely that an expanded marina operation, located close to downtown Fort Myers, will successfully market itself. Thus, many more boats will use the marina because it will offer more wet and dry slips and new buildings, including a restaurant, and the pressure on water quality will intensify with the intensification of these uses. The added intensity of upland and marine uses will contribute to the above-described violations of water quality standards for dissolved oxygen and copper, probably will contribute to the above-described violations of water quality standards for total coliform bacteria and lead, and may contribute to the recurrence of water quality violations for other parameters for which the canals were previously in violation. On these facts, Applicant has failed to provide reasonable assurance that the direct and secondary impacts of the proposed system will not adversely affect the water quality of the canals. 3. Manatees and Manatee Habitat By letter dated June 26, 1998, from a DEP Environmental Specialist to a DEP permitting employee, the Environmental Specialist provided an initial opinion concerning the revisions that Applicant sought to the Original Permit so as to allow liveaboards, replace the flushing canal with culverts, and relocate the travel lift to the north canal. The letter accompanies a Manatee Impact Review Report, also dated June 26, 1998. The Manatee Impact Review Report notes the pending application for the New Permit. The report considers at length the extent of manatee use of Deep Lagoon and the nearby portions of the Caloosahatchee River. The Manatee Impact Review Report states: This project [i.e., the relocation of the boat lift to the north canal, addition of liveaboards, and conversion of the flushing canal to flushing culverts] is expected to add a significant number of boats to this system, significantly increase the level of boat traffic, and change boat traffic patterns in the study area. The vessels from this project are expected to produce significant adverse impacts to manatees that use the Deep Lagoon in the immediate vicinity of the project, as well as in the boater's sphere of influence of the project. Secondary adverse impacts include lethal and sublethal watercraft-related injuries, disturbance contributing to stress, and alteration of natural behaviors. The secondary impacts expected with this project are compounded by the cumulative secondary effects from other facilities in this system. Just south of this project site, another marina was recently constructed (Sun City Corporation aka Gulf Harbor Marina aka River's Edge), which has approximately 190 wet slips. Since October 1995, there have been seven watercraft-related deaths within five miles of this project location. The Gulf Harbor Marina was constructed in late 1995, and was almost fully occupied during 1996. Watercraft-related manatee deaths increased significantly during this time, with one in December 1995, two in 1996 and four in 1997. Additional on-water enforcement by the City of Cape Coral was considered part of the offsetting measures to address the expected impacts to manatees from increases in boat density. This offsetting measure, however, appears to be ineffectual at this time. The Manatee Impact Review Report concludes that the north canal and its mouth are "particularly important" for manatee because of the availability of freshwater from the adjoining Iona Drainage District ditch immediately north of the north canal and "historical use indicates that this area appears to be the most frequently used area in the Deep Lagoon system." The report cautions that the relocated travel lift may significantly increase the number of boats in the little-used north canal, whose narrowness, coupled with moored, large boats on the one side, "would produce significant, adverse impacts to the endangered manatee." The Manatee Impact Review Report finds that Applicant failed to provide reasonable assurance regarding the conservation of fish and wildlife, unless several new conditions were added. These conditions include prohibitions against boat launching along the shoreline of the north canal and the addition of manatee-exclusion grating to any culverts that may be approved. As defined in this recommended order, the direct impacts upon manatees from the proposed surface water management system would be moderate. As defined in this recommended order, direct impacts would not involve any increase in boating pressure. The greater impacts would be in the deterioration of two measures of water quality that are crucial to manatees: dissolved oxygen and copper. However, the secondary impacts are dramatic, not de minimis, and arise from the intended and reasonably expected uses to follow from the construction of the proposed surface water management system. The increased boat traffic intended and reasonably expected from more than doubling the marina capacity, through the addition of 100 wet slips and 227 dry slips, and the addition of 115,000 square feet of buildings, including a restaurant, would adversely impact the value of functions provided to manatees by the affected surface waters. Manatee mortality has increased as boat traffic has increased. Substantial numbers of boaters have ignored speed limits. Quality manatee habitat in this critical area along the Caloosahatchee River is not plentiful. On these facts, Applicant has failed to provide reasonable assurance that the secondary impacts of the proposed system will not adversely impact the abundance and diversity of wildlife and listed species, of which manatees are one, and the habitat of wildlife and listed species. 4. Minimization and Mitigation Due to their contention that Basis of Review Section 4 does not apply to this case, DEP and Applicant did not demonstrate compliance with the minimization and mitigation sections of Basis of Review Section 4. However, the record supports the possibility of design alternatives for water quality impacts, if not manatee impacts, that DEP and Applicant must consider before reanalyzing the direct, secondary, and cumulative impacts of the proposed system on the water resources and, if appropriate, potential mitigation options. Mr. Bateman testified that SFWMD is the only district that permits surface water management systems relying on the settling out of sediments in the bottom of a storage-type detention system. (Vol. II, p. 18). He explained that other districts rely on systems that, taking advantage of the three to four feet typically minimally available between ground surface and the top of the water table, retain the runoff and allow it to percolate into the ground. (Vol. II, p. 19). One relatively straightforward design alternative, which would address water quality issues, would be to perform a flushing study; analyze applicable drainage level of service standards imposed by state, regional, and local authorities; and increase the capacity of the surface water management system to accommodate the runoff from storms of sufficient size and frequency that would be accommodated by the proposed system. Another feature of this design alternative would be to impose for each component of the system a detailed, enforceable program of inspection, maintenance, and contaminant-disposal. This program would incorporate the manufacturer's recommendations for the manner and minimum frequency of inspection and maintenance, but would require more frequent removal of contaminated sediments during periods when larger storms are more numerous (e.g., a specified wet season) or more intense (e.g., a specified hurricane season), as well as any periods of the year when the marine and upland uses are greatest (e.g., during the winter season, if this is the period of greatest use). As testified by Mr. Bateman, the proximity of the water table to the surface, as well as South Florida land costs, discourage reliance upon a conventional percolation-treatment system, even though the site's uplands are 5 feet NGVD and the water table is 1.2 feet NGVD. The bottom of the proposed system is 2.5 feet NGVD, which leaves little soil for absorption. If the nature of the contaminants, such as copper, does not preclude reliance upon a percolation-treatment system, DEP and Applicant could explore design alternatives that incorporate more, shallower vaults, which would increase the soil layer between the bottom of the vaults and the top of the water table. If the technology or contaminants preclude reliance upon such an alternative, the parties could consider the relatively costly alternative, described by Mr. Bateman, of pool-like filters with an "actual filtration device." (Vol. II, pp. 19-20). The preceding design alternatives would address water quality concerns, including as they apply to manatees, but would not address the impact of increased boating upon manatees. The record is not well developed in this regard, but DEP and Intervenor have considerable experience in this area, and it is premature to find no suitable means of eliminating or at least adequately reducing the secondary impacts of the proposed system in this crucial regard as well. In any event, Applicant has failed to consider any design alternatives to eliminate or adequately reduce the direct and secondary impacts of the proposed surface water management system. Having failed to consider minimization, DEP and Applicant have failed to identify the residual direct and secondary impacts that might be offset by mitigation. Applicant has thus failed to mitigate the direct and secondary impacts of the proposed surface water management system.
Recommendation It is RECOMMENDED that the Department of Environmental Protection enter a final order revoking its determination of an exemption for maintenance dredging in DOAH Case No. 98-3901 and denying the application for an environmental resource permit in DOAH Case No. 98-5409. DONE AND ENTERED this 24th day of November, 1999, in Tallahassee, Leon County, Florida. ROBERT E. MEALE Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 24th day of November, 1999. COPIES FURNISHED: Kathy Carter, Agency Clerk Office of the General Counsel Department of Environmental Protection Mail Station 35 3900 Commonwealth Boulevard Tallahassee, Florida 32399-3000 Teri Donaldson, General Counsel Department of Environmental Protection Mail Station 35 3900 Commonwealth Boulevard Tallahassee, Florida 32399-3000 T. Elaine Holmes, Attorney 14502 North Dale Mabry, Suite 200 Tampa, Florida 33618 David Gluckman Gluckman and Gluckman 541 Old Magnolia Road Crawfordville, Florida 32327 Matthew D. Uhle Humphrey & Knott, P.A. 1625 Hendry Street Fort Myers, Florida 33901 Francine M. Ffolkes Senior Assistant General Counsel Department of Environmental Protection 3900 Commonwealth Boulevard Mail Station 35 Tallahassee, Florida 32399-3000
The Issue Whether the proposed project will cause or contribute to violations of applicable state water quality standards contained in Rule 17-3, Florida Administrative Code. Whether the public interest criteria of Section 403.918, Florida Statutes will be et. Whether the Respondent DER should grant the applicant RONTO a dredge and fill permit pursuant to the Notice of Intent dated February 8, 1988, in DER File No. 111353525.
Findings Of Fact The Respondent RONTO is the owner and developer of real property contiguous to state waters in Collier Bay at Marco Island, Collier County, Florida. The proposed project is a 4,704 square foot multifamily dock with thirty-eight boat slips. Most of the slips are designed for small boats that are 22 feet or less in length. Three slips are designed to allow the mooring of boats 35 feet or greater in length. This dock is planned to be a private facility which will be used for dockage only. The proposed dock is subject to the Respondent DERs permitting requirements because the construction activity is to take place in Collier Bay (Class II Waters) and the dock structure exceeds 1,000 square feet in size. There is no dredging associated with the project. The facility will extend into the bay from a canal which is directly connected to a deep water channel. A large portion of the dock will be outside of the canal, and the slips provided for larger boats will be located on the south side of the dock in the deeper water. Because the bay is a relatively shallow water body with a number of sand bars, the north side of the dock is designed to accommodate smaller boats which have less draft. The Petitioner is the owner of a single family home within the development which is adjacent to the proposed dock. All that is separating the Petitioner's backyard from the dock site is the canal. This canal is one hundred feet wide. The Petitioner filed a petition in which he disputed the appropriateness of the Intent to Issue filed February 8, 1988. In support of his position, the Petitioner identified a number of areas of controversy which he contends should cause the Respondent DER to reverse its preliminary decision to grant the dredge and fill permit on this project. Water Quality During the application process for the permit, the Respondent DER required water quality sampling done in the bay. Respondent DER designated three general locations from which the samples should be taken. One sample was requested from the mouth of Collier Bay as a control site. The next sample was to be taken from the mouth of the canal, and the third was to be obtained from the water directly under the proposed docks. The samples were collected by the Big Cypress Service Company and sent to an independent, state certified laboratory for analysis. The analysis revealed extremely high levels of lead, cadmium, and zinc in the sediments at all three sampling locations. All three samples exceeded the guidelines established by the Respondent DER's chemistry department to indicate potential water quality problems. In order to determine if sampling error had occurred, a second set of samples was requested by the Respondent DER. This set of samples was gathered by the Big Cypress Service Company in essentially the same locations as the first set. It was sent to a different state certified laboratory for analysis. The results of the analysis of the second set of samples did not show any elevated levels of metals. The first set of samples was considered to be inaccurate by DER because the reported concentrations of metals were not compatible with the project site. There were no indications that a toxic metal dump site which could logically cause such concentrations of metal to occur was located in the area. Even if some toxic metal dumping had occurred in the area, the control sample taken from the mouth of the bay should have revealed lower levels of the metals in its contents due to the flushing activity that occurs there. Because of the factual and logical inconsistencies, DER concluded that an error was made in the gathering of the first set of samples or in the laboratory analysis of them. The results of the analysis of the second set of samples met state water quality standards. They were accepted by DER as accurate and reflective of site conditions. The laboratory analysis of the second set of samples demonstrates that Collier Bay currently meets the criteria for surface waters and the more stringent standards placed upon Class II Waters. During the hearing, the Petitioner did not submit any contrary, reliable evidence based on objective or empirical information which was sufficient to rebut the prima facie showing that the second set of samples accurately reflects the water conditions at the construction site. Water Depths and Water Habitats There are sufficient water depths, based upon the Bathymetric profile and the appraisal and site inspection by the Respondent DER, for a dock to be built at the proposed site. The Bathymetric profile submitted into evidence was completed in June of 1988, prior to the administrative hearing. Although there were photographs and testimony presented which show that a sand bar exists at the mouth of the canal, the Bathymetric profile is found to be determinative of water depths at the site because of its recent compilation and because seasonal fluctuations in water levels cause photographs and testimony to be less reliable. Sea grasses create a positive habitat for the development of animal and fish wildlife. They promote sediment stabilization and provide a pollution filtration system. The placement of the dock at the proposed site will adversely impact upon the development of sea grasses in the canal and the shallow waters to the north and the northeast of the project. Fish, Fowl and Animal Wildlife There was insufficient evidence presented to establish that the local bird and fish habitats will be adversely impacted by the proposed dock. There was no evidence that the dock site is a bird roosting area, although an eagle has fished at that location on a regular basis. Bird life such as the ospreys in the area will be unaffected by human disturbances. Manatees have been regularly sighted in the Collier Bay area in large numbers. The evidence as to potential harm to this endangered species from the building of the proposed dock is inconclusive. Navigation The proposed dock will increase boat traffic in the bay. Due to the location, boats seeking to leave the dock to go to the river will speed across the shallow area to the north and northeast of the dock. Higher speeds are necessary to create a shallow draft to prevent the boats from running aground. There is no competent evidence to show that this activity will increase boating dangers within the bay. The proposed new channel from the dock to the existing channel on the eastern side of the bay will not create a new navigational hazard. Speeding boats from the south will have a clear view of the boats in the new channel for an extended period of time before they actually meet in the channel intersection. Mitigation In order to mitigate the possibility of the project having an adverse impact on the water quality, the Respondent RONTO proposed certain measures it would take to improve water quality at the site. The application for the permit was amended to include the following: "A riprap/mangrove area will be created between the existing seawall and the proposed docks. Monitoring and remedial actions will be performed to assure an 80 percent survival of the red mangroves." In order to create the riprap/mangrove area, the dock was redesigned to be placed several feet away from the seawall. It is anticipated that this small restoration program will promote sediment stabilization. This stabilization will become important when the project is completed because waste or debris resulting from the increased boat traffic will be expected to settle at the bottom of the canal and accumulate in sediments. The program will assist in keeping the sediments down in the canal bottoms. During the construction of the project, the placing of the pilings will cause turbidity which will affect the water quality standards on a short- term basis. In order to mitigate the temporary damage from pile placement, the Respondent RONTO will use turbidity screens to contain all generated turbidity. The riprap and the mangroves will assist in the functions of the biological systems at the site. As stated previously, the project will affect the sea grasses in the canal as well as those to the north and northeast of the project. The new positive habitat which will be created at the site will provide a more effective pollution filtration system than the one currently provided by the sea grasses. Because of the depth of the canal, and the inability of the sea grasses to attach and grow well around the site, the current conditions within the canal are unstable. The restoration program will be more stable than the sea grasses because of the nature of the program and because the Respondent RONTO will warrant the survival of eighty percent of the red mangroves for the life of the permit. The mangroves will also provide for the uptake of nutrients in the water column. This will help to support the development of marine life at the site. It is anticipated that there will be additional attachment opportunities and greater protection for the young marine life. The primary production of fish and wildlife species will be enhanced by the restoration program. Mangroves provide a habitat for approximately ninety per cent of the commercially valuable fish and shellfish species in the area. The riprap will provide a habitat for oysters, barnacles, and other marine organisms. As a result, there should be an increase in crabs and other marine life in the area. The Respondent RONTO has been required by the Respondent DER to space the deck planks at least three-eighths of an inch apart in order to allow for additional penetration of light through the planks. This will allow for photosynthesis to occur in plant life in the water. Plant production is encouraged in order to help maintain the adequate levels of dissolved oxygen for the Class II Waters in the canal area. Also, because of ecological development, the production of primary plant life provides the opportunity for additional marine life in the area. The riprap will stabilize the slope at the base of the seawall. This will prevent erosion in that area. To safeguard against injury or death to manatees in the bay area from the increase in boats, particularly boats which may be speeding to reach the river through the shallow areas, the Respondent RONTO has volunteered to place an educational display on the upland. This display will notify the boaters using the facility that manatees frequent the area. It will give them information about their habits and practices. In addition, the Respondent DER and the Department of Natural Resources are requiring the installation of manatee caution signs at the dock and in the access channels in Collier Bay. The entire bay is designated as an idle speed zone. There are numerous "no wake" and "idle speed" signs in the bay. If the boaters obey the boating rules and regulations within the bay and remain on the lookout for manatees as required, the addition of the thirty eight boat slips should have a minimal adverse impact on the manatee population. In order to mitigate the potential navigational problems the additional boats could cause in the bay, the Respondent DER has required the Respondent RONTO to clearly mark the proposed navigational channel from the docks to marker six in the existing channel with U.S. Coast Guard approved markers. These markers will be spaced one hundred feet apart. The marking of this new channel should eliminate some of the current navigational problems in the bay. The markers, by their location, will discourage boaters from entering the shallow areas north of the proposed docks. Balancing of Interests In the dredge and fill application appraisal, site review, and notice of intent to issue, the Respondent DER considered and balanced all of the required statutory criteria to determine that the project is not contrary to the public interest or applicable water quality standards. Areas of Controversy All of the areas of controversy raised by the Petitioner which are within the Division of Administrative Hearings' jurisdiction have been sufficiently met by the reasonable assurances of Respondent RONTO and the permit conditions required by Respondent DER. Based upon the evidence presented, it is concluded that the harms anticipated by the Petitioner will not occur.
Findings Of Fact This hearing was occasioned by the Respondent's denial of (an) environmental permit(s) requested by the Petitioner, Baker Cut Point Company, a corporation owned by James C. Dougherty. The Respondent has asserted permit jurisdiction pursuant to Chapters 253 and 403, Florida Statutes, and attending regulatory provisions of Chapter 17, Florida Administrative Code. The Petitioner requested a formal hearing to consider the matters in dispute, and that hearing was conducted on the dates indicated before and in keeping with Subsection 120.57(1), Florida Statutes. The Petitioner owns land in Monroe County, Florida, identified as Buccaneer Point. This parcel of land is a peninsula which extends from the west side of Key Largo, Florida, and has as its essential features two interior lakes and well-defined mangrove stands to include red mangroves (Rhizophora mangle) and black mangroves (Avicennia germinans). This parcel of land is bordered on the north by Buttonwood Sound and on the south by Florida Bay, navigable water bodies. Respondent's Exhibit No. 1, admitted into evidence, depicts the present condition of the parcel of land, with the exception of proposals involved in the permit review process, which are the subject of this Recommended Order and the companion case of James C. Dougherty v. State of Florida, Department of Environmental Regulation, DOAH Case No. 80-1055. At present, the two lakes do not offer normal access to Buttonwood Sound and Florida Bay, nor do they offer an interior water connection between the two lakes. The southernmost lake does have intermittent water exchange with Florida Bay. Those lakes are identified as North Lake and South Lake. The Petitioner had initially applied for permission to place 75,000 cubic yards of clean limerock fill at the project site and indicated that the fill would be placed landward of the mean high water line. That fill would have covered approximately 17.56 acres in the residential subdivision. The application was made on October 27, 1978. See Petitioner's Exhibit No. 20, admitted into evidence. The Respondent issued an Intent to Deny the permit connected with that request, and that Intent to Deny was issued on April 3, 1980, asserting permit jurisdiction by the Respondent under the provisions of Chapters 253 and 403, Florida Statutes. See Petitioner's Exhibit No. 5, admitted into evidence. The Petitioner modified the permit application effective April 24, 1981. Under the terms of the revised permit application, the Petitioner would place limerock fill over 5.7 acres, including mangroves, constituting approximately 30,000 cubic yards of fill. Additionally, the applicant modified the permit request to include filling the exterior rim of the interior lakes to create a littoral zone and the placement of a berm at that exterior. See Petitioner's Exhibit No. 6, admitted into evidence. The project, as contemplated, allows for a preserve area of mangroves along the northern end of the peninsula and also employs a "pad" concept to preserve the mangrove acreage where fill is to be placed. Those "pads" for houses would be bordered by six- inch dikes to divert upland runoff which might find its way into the interior lakes on the property. The fill material to be placed in those areas, other than the lakes, would be placed above or landward of the line of mean high water, as determined by the mean high water line survey found in Petitioner's Exhibit No. 1, admitted into evidence, dating from December, 1975, and whose methodology was approved on January 15, 1980, for purposes of Chapter 177, Florida Statutes, through the offices of the State of Florida, Department of Natural Resources. This factual determination is also borne out by a review of the Petitioner's Exhibit No. 6, in pari materia with Respondent's Exhibit No. 1 and Petitioner's Exhibit No. 1. As the lakes are now constituted, the placement of the limerock fill at the fringe of the lakes would not be waterward of the line of mean high water; however, when the placement of this fill material is considered in view of the permit request made in Division of Administrative Hearings' Case No. 80-1055, which permit request attempts to open up the lakes by direct water connection to the aforementioned navigable water bodies, then the placement of the fill would be below the line of mean high water. See Petitioner's Exhibit No. 6. Therefore, treatment of the placement of fill for purposes of this case will be considered on a basis that the lakes remain landlocked and the matter of the placement of this fill will be a matter assumed in the Division of Administrative Hearings' Case No. 80-1055, dealing with an attempt to open those lakes by direct water connection to navigable waters of the State. Although the mangrove areas to be filled by the project are landward of the mean high water line, those mangroves are inundated by water at times and considered to be "submerged lands" adjacent to the State water bodies, Buttonwood Sound and Florida Bay. If the mangroves are removed, part of the ecosystem's ability to filter sediments and nutrients contained in stormwater runoff of adjacent upland areas and from tidal flows will be destroyed and will affect water quality considerations for adjacent open bay estuarine or marine systems. The extensive root system of the mangroves and associated vegetation assist in stabilization of estuarine shoreline sediments and attenuation of storm generated tides. Even though some of the mangroves in the proposed area for fill are in a stressed condition, i.e., a condition in which their growth is stunted, if left alone, those mangroves would flourish and provide the same water quality functions as healthy mangroves. A biologist presented by the Petitioner identified the number of mangrove species, the number of mangroves, the diameter of those mangroves and the height of canopies of the mangroves in areas of the project site. These items were summarized through the use of the Holdridge Complexity Index, which measures structural complexity of mangroves within the sites. See Petitioner's Exhibit No. 17, admitted into evidence. In particular, four such station pairs were studied and the pairs were constituted of a station within the basin of the mangrove stand and a station at the fringe of the mangroves. There was a site at each proposed waterway and a site at the northeastern and western points of the peninsula, the area of the proposed mangrove preserve. See Petitioner's Exhibit No. 6, admitted into evidence. This study indicated that fringe mangroves are more developed than the ones in the heart of the basins. This study also revealed that the upland fill would remove primarily black mangroves. The removal of the mangroves and placement of fill would be in furtherance of the creation of twelve to fourteen residential lots, the majority of which would be located on Florida Bay. See Petitioner's Exhibit No. 6. In furtherance of the intention to offer these lots for sale, the Petitioner has sold one of the lots on Florida Bay for $95,000 on or about June 2, 1981. If the proposed utilization of the property in question was not allowed, the Petitioner stands to lose money in his investment in the face of preliminary developmental expenses which, at present, exceed monetary returns from the sale of lots. The area in which the upland fill would be placed is porous limerock, which allows water to seep through and be transported underground to adjoining water bodies, both on site and off site, in addition to the runoff from the upland areas. To address these concerns, the Petitioner has planned for the installation of dikes in the various upland areas which are to be built to prohibit drainage into the remaining mangrove areas and ambient waters. The littoral zones around the edge of the inland lakes would promote marine and wetland vegetation which assists in the function of filtration of sediments and nutrients. On the subject of water quality considerations, the use of the clean limerock fill, which is calcium carbonate, would tend to stabilize seawater at its natural PH level, thereby allowing the specific conductance (measurement of salinity) of the lakes and surrounding ambient waters to remain in a natural state in terms of direct effects of the fill material. On the subject of contamination of water by copper, normally, seawater contains 3 micrograms per liter of copper. In a project such as this one, it is not expected that higher amounts of copper would be found, and the limerock contains only trace amounts of copper, if any. Specific testing done at the project site reveals less than 1 microgram per liter of copper in the North Lake and 4 micrograms per liter in the South Lake. Therefore, the activity is not expected to increase the levels of copper to the extent that measurements exceed 500 micrograms per liter in either the lakes or surrounding waters. In dealing with the substance of zinc, seawater contains as much as 30 micrograms per liter of zinc. Sampling by the Petitioner indicated 2 micrograms per liter in the North Lake and 8 micrograms per liter in the South Lake of that substance. The activity and the development is not expected to increase the levels of zinc to the extent that measurements exceed 1,000 micrograms per liter in either the lakes or surrounding waters. In sampling for lead content, the samples revealed less than 50 micrograms per liter of lead and the placement of limerock fill will not cause the amounts of lead in the lakes and surrounding waters to exceed 50 micrograms per liter. Testing for phenolic compounds at the site revealed that these materials were below established standards of the Respondent, and it is not expected that those standards will be exceeded through activities proposed in this permit process. The testing for oils and greases indicated less than 1 milligram per liter of oils and greases, which is below the State's standard of 15 milligrams per liter, and the activities proposed at the project site are not anticipated to exceed 15 milligrams per liter of oils and greases. Normal PH for coastal waters is 6 to 8.5, and the PH levels of the lakes and ambient waters in the area were in the range of 8, except for measurements done in the winter at the North Lake, where they were shown to be 7.5. The placement of limerock fill will not cause an imbalance in the pH readings. The activity as proposed will not add substances which are created by industrial or agricultural means or cause other discharges, colors or odors, or otherwise promote a nuisance condition in the ambient waters or the lakes. Measurement was made to toxic materials in the way of synthetics, organics or heavy metals. Those tests in the lakes and ambient waters showed heavy metals to be at low levels. There were no sources revealed of synthetics or organics. (The calcium carbonate found in the limerock fill would assist in breaking down lawn pesticides into phosphate.) In summary, the filling, as proposed, is not expected to promote the introduction of toxic substances into the lakes or surrounding waters. The placement of the clean limerock fill in the upland area is not expected to cause problems with turbidity in the lakes or ambient waters, which turbidity would exceed 50 Jackson Units above background. The filling will not affect dissolved, oxygen levels of the surrounding waters. Biochemical oxygen demand, the measurement of demand for oxygen of organic and chemical materials in the water, will not be influenced by the placement of the clean limerock fill related to surrounding waters. The limerock fill is not expected to introduce other oxygen demanding materials into the subject waters, such that dissolved oxygen levels would be lowered by BOD loading. There will be no problem with dissolved solids, in this instance, salts, due to the fact that calcium carbonate fill would not affect the dissolved solids in the ambient waters or in the lakes. Coastal water PH normally measures 6 to 8.5 and PH for open waters in the range of 1. Placement of calcium carbonate fill on the uplands would not cause the PH in the Class II waters in Everglades National Park, which is 300 feet east of Baker Cut Point, to vary above or below normal levels for either coastal or open waters. In addition, there would be no discharge of toxic substances from the calcium carbonate fill into the Class II waters herein described. Tests conducted in the vicinity of homesites utilizing septic tanks, and specifically as sampled in waters adjacent to Buccaneer Point and the subject lakes in a development known as Private Park and Buttonwood Sound , indicated less than one fecal coliform bacterium per 100 milliliters. See Petitioner's Exhibit No. 14, admitted into evidence. Anticipated setbacks for additional septic tanks to be associated with the buildup at the project site would be in keeping with the requirements of Monroe County, Florida, and harmful septic tank leachate is not expected to be a problem.
Findings Of Fact On October 2, 1978, Respondent, Paul Sage, filed an application with DER seeking a permit to construct a boat ramp adjacent to his home, which is located on Crooked Lake in southeastern Polk County. Crooked Lake is a 5,538 acre meandered navigable freshwater lake. Approximately 25 percent of the shoreline of Crooked Lake has been developed into residential areas, and the remainder of the shoreline is grove and pastureland. Water levels in the lake have fluctuated considerably over the past decade. The parties have conceded for the Purpose of this proceeding that the mean high waterline of Crooked Lake is located at 120.4 feet mean sea level. Due to the aforementioned fluctuation in water level, the actual water's edge at the time of the bearing in this cause was considerably below the mean high waterline. In fact, on May 20, 1979, the water level of Crooked Lake stood at 115.5 feet mean sea level, whereas on September 27, 1978, when the drawings attached to Respondent's application were prepared, the water level was at 116.9 feet mean sea level. In any event, it is not contested that the entire length of the proposed boat ramp for which a permit is sought in this proceeding would be below the line of mean high water, and therefore on state owned land. In his application, Respondent sought a permit to construct a 12-foot wide, 4-inch thick concrete boat ramp which would extend 186 feet waterward of the mean high water line. Respondent testified at the final hearing in this cause, however, that be wished a permit which could allow construction of a boat ramp of sufficient length to allow a water depth of 3 to 4 feet at its lakeward terminus to allow launching of water craft from a trailer. Due to fluctuating water levels, the eventual ramp length necessary could be more or less than the 186 feet requested in the permit application. In preparing his permit application, Respondent made no actual measurement to determine what the depth of the lake was 186 feet from the mean high waterline, relying instead on his own estimate. The permit application does not disclose the manner in which Respondent plans to construct the proposed ramp. No detailed engineering or construction data were submitted with the application. The application form simply reflects the Respondent's intention to place 27.3 cubic yards of fill material waterward of the mean high waterline, and 6.5 cubic yards of fill material landward of that line. Although the DER permit application appraisal indicates that the ramp is to be constructed of poured concrete, that fact is not reflected in the application. Indeed, in his testimony at the final hearing in this cause, the Respondent suggested that the ramp might be constructed of poured concrete up to the water's edge, and that preformed concrete slabs would then be utilized for the remaining length of the ramp. As indicated above, there is nothing in the application form, and nothing in the record of this proceeding, to indicate what, if any, measures will be taken during construction to insure non-violation of state water quality standards. Further, although the permit application indicates that no dredging or excavation activities will be associated with this project, the Respondent's testimony at the final hearing was to the contrary. The Respondent testified that because of the slope of the land toward the lake, and his desire to construct a level boat ramp, it would be necessary to "cut" and relocate portions of the lake bottom. The exact location of these "cuts", the volume of materials involved, and the manner by which they would be removed and/or relocated are net apparent from the record. Respondent intends to construct the proposed ramp for his own personal use. He also indicated at the final hearing that he might allow neighbors to use the ramp without charge, since the nearest public ramp is approximately ten miles distant. The ramp would not, however, be used for commercial purposes. Respondent testified that he would expect to use the proposed ramp for launching his own boats approximately three times per year. Adjoining property owners on either side of Respondent have indicated that they have no objection to the granting of the requested permit. In addition, in the permit application review process, DER solicited and received comments from the State of Florida, Department of Natural Resources, and the Army Corps of Engineers. Aquatic vegetation in the area of the proposed project consists primarily of maiden cane, torpedo grass and water pennywort. This vegetation is growing within 12 feet of the water's edge as of the date of final hearing in this cause and rings the lake's shoreline to a distance of approximately 100 feet lakeward of the present waterline. Construction of the proposed project would prevent growth of rooted aquatic vegetation on 2,232 square feet of lake bottom, although some species of plants and animals might use the concrete from which the ramp would be constructed as a substrate. However, it appears from the record that no qualitative or quantitative analysis of the impact of the proposed project on the natural resources of the area was performed by the applicant. The DER representative who performed the permit application appraisal testified at the final hearing that the 12-foot width of the proposed boat ramp comprised only one-fifth of the owner's property frontage on the lake, and therefore would constitute a minimal disturbance for purposes of giving the applicant access to the open water of the lake. However, it does not appear from the record that the DER representative considered the impact of the 186-foot length of the proposed structure in arriving at his conclusion to recommend issuance of the permit. No actual measurements were made by either the permit applicant or DER to substantiate the applicant's claim that the filling of 186 feet of state-owned bottomland is necessary to furnish reasonable access from the applicant's property to the open waters of the lake. The Petitioner is an organization, composed of either persons owning property bordering on Crooked Lake, or recreational users of that lake. As such, it appears that both Petitioner and its members would be substantially affected by proposed agency action in this cause.
The Issue The issue is whether Respondent HBJ Investments, Inc. is entitled to an environmental resource permit to facilitate the construction of the Betty Jones Spa on property adjacent to property owned by Petitioner.
Findings Of Fact On November 17, 1998, Respondent HBJ Investments, Inc. (Applicant) filed an application (Application) with the South Florida Water Management District (District) for an environmental resource permit (ERP). The Application is for a Standard General (minor systems) ERP. The Application states that the proposed surface water management system is to serve a 11,564 square foot health spa with associated infrastructure improvements, such as parking, utilities, landscaping, and a stormwater detention facility. Section H of the Application responds to form questions that are intended to determine whether an application meets the requirements of a standard general ERP for a minor surface water system. Among the threshold requirements is that the proposed discharges from the site "will meet State water quality standards, and the surface water management system will meet the applicable technical criteria for stormwater management in the Basis of Review." Another threshold requirement is that the proposed activities will not cause significant adverse impacts individually or cumulatively. The Application states that the water quality treatment system will be on-line detention with effluent filtration. The Application and related documents describe the system in greater detail. The system consists of drains, inlets, a swale, an underground vault to provide effluent filtration through a sand filter and perforated pipe, an internal oil and grease skimmer, a control box, and a 15-inch diameter reinforced concrete pipe providing outfall from the vault. By Notice of Final Agency Action for Approval dated February 4, 1999, the District proposed the issuance of a "Standard General for Minor Surface Water Management Systems" ERP for the construction, operation, and maintenance of the proposed system (Permit). Permit Specific Condition 2 requires: "The discharges from this system shall meet state water quality standards as set forth in Chapter 62-302 and Rule 62-4.242, F.A.C., for class waters equivalent to the receiving waters." Permit Specific Condition 8 requires, for vault systems, that the system become dry within 72 hours after a rainfall event. Permit Specific Condition 9 requires the operation and maintenance entity to submit inspection reports for inspections to be performed every 18 months. Permit Specific Condition 10 requires a water quality monitoring program for systems, such as the proposed system, using an internal oil and grease skimmer. This condition obligates HBJ to take three samples during each of the first two annual rainy seasons following the commencement of operation of the system. The monitoring must take place immediately after rainfall events of sufficient magnitude to cause a discharge from the outfall structure. If the discharged water does not meet water quality standards for oil and grease, as established by Rule 62.302.510(3)(k), Florida Administrative Code, then the permittee must alter the system to attain compliance for this water quality parameter. The subject parcel is bounded by Fourth Avenue South on the north, First Street South on the east, Second Street South on the west, and an unnamed alley on the south. This site is just south of Al Lang Field. In its present state, the parcel is nearly entirely pervious surface. Some of the stormwater flowing onto the parcel percolates into the soils, and the remainder flows into City of Saint Petersburg stormwater sewers, from which it is carried about two city blocks to Tampa Bay, where it is discharged. The parcel was formerly used for single-family residential housing, but is now mostly cleared. The runoff from the site presently carries mostly sediments. After the proposed construction, 79 percent of the parcel would consist of impervious surface. Although small areas of the developed parcel might remain vegetated, and thus add nutrients into the runoff, the primary change in the runoff will consist of the addition of automobile-related contaminants, including, but not limited to, oil and grease. HBJ's engineer designed the proposed surface water management system to treat the first one-half inch of stormwater runoff. The engineer's report notes, in a letter dated November 13, 1998, that siltation in the vault reduces storage volume, so it is "required that cleaning be done every six (6) months." The report suggests the removal of grass clippings from the parking area, so that they are not transported to the retention vault. The report suggests that the underdrain system should be backflushed periodically, and the control structure should be checked monthly and all debris cleared. In general, the system would collect runoff from the roof downspouts and parking area. The system would provide treatment of the first 1/2 inch of runoff by capturing it in the vault, where it would filter through a layer of several cubic feet of sand before entering a perforated pipe leading to the City stormwater sewer. Runoff from rainfall in excess of the first 1/2 inch would receive little, if any, treatment. It is implicit that the first 1/2 inch of rainfall contains the first flush of contaminants from impervious surfaces. Nothing in the record specifies the efficacy of treatment provided by this standard, although it obviously is less than 100 percent efficient because of the higher standard imposed upon systems discharging into Outstanding Florida Waters (OFW). However, a pre- and post-development analysis of the runoff from the subject parcel would reveal an unknown additional volume of runoff from the developed site, due to the replacement of pervious surface with impervious surface. It is unclear whether the developed site would generate a reduced volume of sediments in this increased volume of runoff. Although little vegetated surface would exist post-development, the record does not reveal the extent to which the pre-development pervious area fails to capture the sediments prior to their entering the City stormwater system. More problematic are the automobile-related contaminants, such as oil and grease, that will be introduced into the runoff by the developed site. Presumably, the runoff from the undeveloped site contains few, if any, such contaminants. Thus, any automobile-related contaminants discharged from the surface water management system would likely be an increase from the amount of such contaminants presently discharged from the site. The runoff from the developed site would enter the City of Saint Petersburg stormwater sewer system and would be released in the nearby Tampa Bay. The record does not disclose the stormwater sewer line transporting the discharge, nor the outfall of the line into Tampa Bay. By stipulation, the parties agreed that Tampa Bay is an OFW and that discharge from the developed site would enter the City of Saint Petersburg stormwater sewer system. Tampa Bay is classified as Class II waters, which are approved for shellfish harvesting. The record does not disclose the point of discharge of the City stormwater line that would receive discharge from the developed site. However, the proximity of the site to Tampa Bay strongly suggests that the outfall would be in Tampa Bay, and it is only slightly less probable that the outfall would be at a point in the bay in the immediate vicinity of the site. The record suggests that the waters of Tampa Bay likely to receive the discharge from the site are impaired. For example, water quality conditions mandated the closing of "Lower Tampa Bay" to shellfish harvesting, for an unstated period of time, effective at sunset on July 5, 1999. Also, the Department of Environmental Protection listed two bayous in the immediate vicinity of the site as noncompliant with federal water quality standards due to excessive coliform bacteria counts and nutrients and insufficient levels of dissolved oxygen. The Basis of Review (BOR) is a document adopted by the District. It contains specific "criteria" for permitting. However, as BOR Section 1.3 explains, the goal of these criteria is to meet District water resource objectives, and the criteria are "flexible." Alternative methods of meeting "overall objectives" may be acceptable, depending upon the "magnitude of specific or cumulative impacts." The criteria, which are flexible, are the means by which the District assures that it meets its objectives, which are not flexible. BOR Section 3.1.0 recognizes that "a wide array of biological, physical and chemical factors affect the functioning of any wetland or other surface water community. Maintenance of water quality standards in applicable wetlands and other surface waters is critical to their ability to provide many of these functions." BOR Section 3.1.0 elaborates: "It is the intent of the Governing Board [of the District] that the criteria in subsections 3.2 through 3.2.8 be implemented in a manner which achieves a programmatic goal and a project permitting goal of no net loss of wetlands or other surface water functions." BOR Section 3.1.1 requires that an applicant provide "reasonable assurance" of several things. BOR Section 3.1.1(a) requires that "a regulated activity will not adversely impact the value of functions provided to fish, wildlife and listed species, including aquatic and wetland dependent species, by wetlands and other surface waters and other water related resources of the District. (paragraph 40D-4.301(1)(d), F.A.C.) (see subsection 3.2.2)." BOR Section 3.1.1(c) provides that: a regulated activity will not adversely affect the quality of receiving waters such that the water quality standards set forth in Chapters 62-3, 62-4, 62-302, 62-520, 62-522 and 62-550, F.A.C., including any antidegradation provisions of Sections 62-4.242(1)(a) and (b), 62-4.242(2) and (3), and 62-302.300 and any special standards for Outstanding Florida Waters . . . set forth in sections 62-4.242(2) and (3), F.A.C., will be violated (paragraph 40D-4.301(1)(e), F.A.C.). BOR Section 3.1.1(d) provides that "a regulated activity . . . located in close proximity to Class II waters . . . will comply with the additional criteria in subsection 3.2.5 (paragraph 40D-4.302(1)(c), F.A.C.)." BOR Section 3.1.l(f) provides that "a regulated activity will not cause adverse secondary impacts to the water resources (paragraph 40D-4.301(1)(f), F.A.C.) (see subsection 3.2.7)." BOR Section 3.1.1(g) provides that "a regulated activity will not cause adverse cumulative impacts upon wetlands and other surface waters . . . (paragraph 40D-4.302(1)(b), F.A.C.) (see subsection 3.2.8)." BOR Section 3.2.4 provides that an applicant must provide "reasonable assurance that the regulated activity will not violate water quality standards in areas where water quality standards apply. . . . The following requirements are in addition to the water quality requirements found in Chapter 5." BOR Section 3.2.4.2(c) provides that the applicant must address the long-term water quality impacts of a proposed system, including "prevention of any discharge or release of pollutants from the system that will cause water quality standards to be violated." BOR Section 3.2.5 provides: The special value and importance of shellfish harvesting waters to Florida's economy as existing or potential sites of commercial and recreational shellfish harvesting and as a nursery area for fish and shell fish is recognized by the District. In accordance with section 3.1.1.(d), the District shall: (b) deny a permit for a regulated activity in any class of waters where the location of the system is adjacent or in close proximity to Class II waters, unless the applicant submits a plan or proposes a procedure which demonstrates that the regulated activity will not have a negative effect on the Class II waters and will not result in violations of water quality standards in the Class II waters. BOR Section 3.2.7 provides that an applicant must provide "reasonable assurance" that "a regulated activity will not cause adverse secondary impacts to the water resource" as described in this section. However, this section explicitly disregards negligible or remotely related secondary impacts. BOR Section 3.2.8 provides that an applicant must provide "reasonable assurance" that "a regulated activity will not cause unacceptable cumulative impacts upon wetlands and other surface waters " BOR Section 4.2 limits off-site discharge "to amounts which will not cause adverse off-site impacts." For a proposed activity within an open drainage basin, as is the subject proposed activity, the allowable discharge is (presumably the greatest of) any amount determined in previous District permits, the legally allowable discharge at the time of the permit application, or historic discharge. Historic discharge is the peak rate at which runoff leaves a parcel of land by gravity under existing site conditions. BOR Section 5.1 requires that proposed discharges meet applicable state water quality standards. This chapter of the BOR requires that proposed systems satisfy certain quantitative criteria, depending on the type of water treatment system. However, BOR Section 5.1 warns: in certain instances a design meeting those standards may not result in compliance with the state water quality standards referenced above. Unless an applicant has provided reasonable assurance that a design will not cause or contribute to a violation of state water quality standards, the District may apply more stringent design and performance standards than are otherwise required by this chapter. Projects designed to the criteria found in this section shall be presumed to provide reasonable assurance of compliance with the state water quality standards referenced above. . . . BOR Section 5.2 sets quantitative criteria for various types of surface water management systems. The subject system is a detention, on-line treatment system. BOR Section 1.7.5 defines "detention" as the "delay of storm runoff prior to discharge into receiving waters." BOR Section 1.7.28 defines "on-line treatment system" as a "dual purpose system that collects project runoff for both water quality and water quantity requirements. Water quality volumes are recovered through percolation and evaporation while water quantity volumes are recovered through a combination of percolation, evaporation, and surface discharge." BOR Section 5.2.b applies to "[d]etention with effluent filtration system (manmade underdrains)." BOR Section 5.2.b.1 provides that proposed activities draining less than 100 acres "shall treat the runoff from . . . the first one-half inch runoff." BOR Section 5.2.b.6 adds: "Maintenance of filter includes proper disposal of spent filter material." BOR Section 5.2.c applies to "on-line treatment system[s]." This section also requires the treatment of the first one-half inch of runoff. However, BOR Section 5.2.e provides: Projects discharging directly into Outstanding Florida Waters (OFW) shall be required to provide treatment for a volume 50 percent more than required for the selected treatment system . . .. Applicant has provided reasonable assurance that the proposed surface water management system would not cause adverse water quantity impacts to receiving waters and adjacent lands and would not cause flooding. In terms of water quantity, the proposed system is designed to meet the requirements of the ten-year storm. The subject site is a short distance from Tampa Bay, and, as already noted, it is very likely that the runoff discharges into Tampa Bay at a location not far from the subject site. Thus, water quantity and flooding are irrelevant to this case. However, Applicant has not provided reasonable assurance that the proposed surface water management system would not cause adverse impacts to the value of functions provided to fish and wildlife by nonwetland surface waters and would not adversely affect the quality of receiving waters. The receiving waters of the discharge from the subject site are Class II waters that are OFW. However, these waters are also impaired sufficiently as to be in violation of certain federal water quality standards and to require the closure, at least at times, of shellfish harvesting. There are three deficiencies in the proposed permit. First, it does not specify, in clear and enforceable language, an inspection and maintenance program, which includes the undertaking by the Applicant to backwash the system at specified intervals, to replace the sand filtration medium at specified intervals, to dispose of the sand filtration medium so that the captured contaminants do not reenter waters of the state, to monitor the water discharged from the oil and grease skimmer at specified intervals following the first two years' monitoring, and generally to take any necessary action to correct deficiencies uncovered from inspections. Second, the treatment of the first 1/2 inch of runoff is insufficient for the system, which is discharging directly into an OFW. BOR Section 5.2.e raises this standard to 3/4 inch. Direct discharges requires the identification of the first receiving waters. Receiving waters are waters of the state that are classifiable as Class I-V waters. Receiving waters thus do not include waters in a stormwater sewer pipe, which are not waters of the state nor are they classifiable. Water quality determinations often require comparison of the quality of the discharged water with quality of the receiving waters. The off-site piping of the discharged water does not preclude such comparison. In such case, the analysis extends to the first receiving waters into which the pipe empties. The District's argument to the contrary invites circumvention of those provisions enacted and promulgated for the protection of OFWs. For example, several owners of land abutting an OFW could establish a jointly owned stormwater sewer line so that the point of comparison for their discharge would be the waters in the pipe rather than the OFW. Third, Applicant failed to submit a plan or propose a procedure demonstrating that the proposed activity would not have a negative effect on the Class II waters of Tampa Bay and would not result in violations of water quality standards in these Class II waters. The District failed to determine the outfall of the discharge from the subject site, so it failed to enforce the requirement of the plan required by BOR 3.2.5 for the protection of the special value of Class II waters. Although required to account for cumulative impacts, the plan will necessarily reflect the characteristics of the site--e.g., 1.6 acres contributing largely automobile-based contaminants and not nutrients--and the characteristics of the receiving waters--e.g., Tampa Bay is vast and relatively impaired, though, in the vicinity of the subject site, more likely due to excessive nutrients.
Recommendation It is RECOMMENDED that the Southwest Florida Water Management District enter a final order denying the ERP application of HBJ Investments, Inc. DONE AND ENTERED this 23rd day of December, 1999, in Tallahassee, Leon County, Florida. ROBERT E. MEALE Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 23rd day of December, 1999. COPIES FURNISHED: E. D. "Sonny" Vergara, Executive Director Southwest Florida Water Management District 2379 Broad Street Brooksville, Florida 34609-6899 John R. Thomas Wyckoff & Thomas, P.A. 233 Third Street North, Suite 102 Saint Petersburg, Florida 33701 Michael Jacobs Director, Legal Affairs 25 Second Street North, Suite 160 Saint Petersburg, Florida 33701 Anthony J. Mutchler Assistant General Counsel Southwest Florida Water Management District 2379 Broad Street Brooksville, Florida 34609-6899
Findings Of Fact By application filed on October 29, 1980, Respondent/Applicant, Harvey B. Ulano, sought the issuance of a permit from Respondent, Department of Environmental Regulation, to authorize the construction of a private pier for mooring a sailboat at 2640 Northwest Collins Cove Road, Stuart, Florida. A copy of the permit application may be found as DER Exhibit 1. The property in question lies on the North Fork of the St. Lucie River in St. Lucie County. The River is classified as a Class III Water of the Sate. Respondent/Applicant's proposal was received by the Department and reviewed for compliance with applicable State water quality standards. The Department concluded that all statutory and rule requirements, criteria, standards and provisions had been met, including those pertaining to biological productivity impact, water quality and navigation. On January 23, 1981, the Department issued its Letter of Intent to Issue a permit with certain conditions therein, including a prohibition against any dredging and filling associated with the project, the required restoration of submerged lands disturbed by construction activities to their original configuration, the employment of an effective means of turbidity control, and a prohibition against live aboards on boats docked at the pier. A copy of the Letter of Intent to Issue may be found as DER Exhibit 2. The applicant intends to construct a 276 foot long pier from an existing concrete retaining wall on his property which fronts the St. Lucie River. The pier will be built at a perpendicular angle with the shoreline and will be 6 feet wide for the first 240 feet, and 12 feet wide for the remainder of its length. There will be no building or boathouse constructed on the dock, nor will pilings extend above the docking until the area where the boats will be tied. The river is approximately 1500 to 2000 feet wide at the proposed project site. However, the depth of the water close to the shoreline is not sufficient to moor larger boats at low tide. Therefore, it is necessary that the length of the pier be 276 feet in order to insure a minimum 3-foot water depth at all times. Applicant's lot is odd-shaped in size. The waterfront footage is approximately 135 feet. Its sides measure approximately 330 feet on the north boundary and 200 feet on the south. The property of Petitioner, Werner Jungmann, adjoins that of Applicant on the south side and also fronts the river. The pier will be constructed on the northwest corner of Ulano's property, which is the most distant point from Jungmann. Because of the odd shapes of the Applicant's and Petitioner's lots, the end of the pier will project slightly within the lakeward extension of Jungmann's property line. However, the design of the pier is such that it should not obstruct or impair the view of the river now enjoyed by the Petitioner. Navigation in the river and existing channel adjacent to the pier will not be affected by the proposed activity. The shallow water depth in the river next to the shoreline already precludes movements by boats close to the shore. The Department has imposed certain conditions upon the construction and future use of the pier (DER Exhibit 2). These conditions, together with the plans submitted by Applicant (DER Exhibit 1), constitute reasonable assurances that the short-term and long-term effects of the proposed activity will not result in violations of the water quality criteria, standards, requirements and provisions of the Florida Administrative Code, and that the proposed activity will not discharge, emit or cause pollution in contravention of Department standards, rules or regulations.
Recommendation Based on the foregoing findings of fact and conclusions of law, it is RECOMMENDED that the Department of Environmental Regulation issue Respondent/Applicant, Harvey B. Ulano, a permit to construct a private pier for mooring a sailboat on the North Fork, St. Lucie River, subject to those conditions set forth in the Department's Letter of Intent to Issue dated February 23, 1981. DONE and ENTERED this 29th day of May, 1981, in Tallahassee, Florida. DONALD R. ALEXANDER Hearing Officer Division of Administrative Hearings The Oakland Building 2009 Apalachee Parkway Tallahassee, Florida 32301 Filed with the Clerk of the Division of Administrative Hearings this 29th day of May, 1981. COPIES FURNISHED: Ernon N. Sidaway, III, Esquire Post Office Box 3388 Fort Pierce, Florida 33454 Alfred J. Malefatto, Esquire Assistant General Counsel Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32301 Edward B. Galante, Esquire Suite 310 Florida National Bank Building 301 East Ocean Boulevard Stuart, Florida 33494
Findings Of Fact Joyce K. Anderson and Thomas Barnett have filed an application for issuance of a permit to dredge and fill a small area in the littoral, or "near shore," zone of Gillis Pond, a "sandhill lake" lying in what is known as the "sandhill region" of Central Florida, generally northeast of Gainesville. The dredging and filling as now proposed would be on and waterward of two lakefront lots jointly owed by the permit applicants. They seek by their application, authorization to dredge and fill at only one site on the waterward margin of the two lots with that modified project area reduced in size to a dimension of 12 feet by 25 feet. Fifteen feet of the project would be waterward of the shoreline. The Respondent, the Department of Environmental Regulation, is an agency of the State of Florida charged with the duty of enforcing, as pertinent hereto, the provisions of Chapter 403, Florida Statutes, and Chapter 17-3 and 4, Florida Administrative Code, enforcing the water quality standards contained therein as they relate to dredge and fill projects of this sort, with concomitant permitting jurisdiction over such projects. The permit applicants desire this dredge and fill permit in order to make a safe, comfortable swimming area for Mrs. Anderson's family and friends. Mrs. Anderson desires to remove the tree stumps, roots and vegetation existing in the littoral zone area of the above dimensions in order to make access directly from the shore more comfortable and pleasant, especially for small children who are unable to swim in the deep water off the waterward end of the existing dock. Mrs. Anderson already has a 56 foot dock extending from her property into the lake. The water is 7 feet deep at the waterward end of the dock and the littoral zone containing aquatic vegetation extends beyond the length of the dock in a waterward direction. The project area would extend waterward of the shoreline, a distance of 15 feet, and would parallel the shoreline approximately a distance of 12 feet. The littoral zone vegetation at the site, however, extends waterward from the shoreline 50 to 60 feet. The proposed area to be dredged is quite small in size in relation to the total linear shoreline of the subject lake of approximately 4,000 feet. The dredged material would be excavated to a depth of approximately 6 inches over that 12 by 15 foot area and replaced with clean sand fill. The dredged material removed from the site would be secured on an upland site such that nutrient pollutants from that dredged material could not be leached or carried back into the lake through storm water runoff. Approximately one-third of the shoreline of the lake is bordered by a marsh or wet prairie which is approximately as large in area as the lake itself. The dominant vegetative species in the project area and surrounding the lake, including the marsh, are submerged freshwater species listed in Rule 17- 4.02(17), Florida Administrative Code, including maidencane, sawgrass and a rare aquatic plant, websteria confervodies. Gillis Pond is a Class III water of the state, although its water quality parameters, or some of them, clearly exceed in quality, the minimum standards for Class III waters. Gillis Pond is what is termed an "ultra- oligotrophic lake, which means that its waters are characterized by a high level of transparency and very low nutrient content, that is to say that they are essentially pristine in nature. An oligotrophic lake such as this is very sensitive to any addition of nutrient pollutants. Even a small addition of nutrients to such water can cause an imbalance in the fauna and flora which have evolved to become dependent upon a low nutrient aquatic environment. Specifically, the rare aquatic plant named above is very sensitive to any enhanced nutrient levels and thus serves as a barometer of the water quality in this body of water. The addition of any nutrient pollutants to the lake, even in small amounts, might alter the chemical balance of the water in a derogatory manner so that the websteria confervodies might be eliminated. The elimination of this species from the littoral zone vegetation band surrounding the lake would likely result in other forms of vegetation supplanting it, altering the balance and makeup of the community of fauna and flora native to the lake and possibly hastening the progress of the lake toward eutrophication and degradation. The present water quality in the lake is such that dissolved oxygen and other criteria are better than the Class III water quality standards. The vegetation in the littoral zone of the lake and extending out as much as 50 to 60 feet waterward performs a significant function in uptaking and fixing nutrient pollutants that wash into the lake from storm water runoff from the surrounding uplands. Inasmuch as 30 to 40 feet of this belt of littoral zone vegetation would remain waterward of the dredged and filled area if the permit is granted, the nutrient uptake function of the vegetation in the littoral zone would not be significantly degraded. There are two locations where littoral zone vegetation has been removed in a similar fashion and water quality and flora and fauna communities characteristic of an oligotrophic lake are still present and healthy. Further, there is an extremely low nutrient level in the lake at the present time, and no significant amount of nutrient pollutants are leached or washed into the lake through septic tanks, storm water runoff or other sources. There is no question that the project as proposed would result in some slight, transitory degradation of water quality in the form of increased turbidity and reduced transparency. Turbidity will be caused during and shortly after the dredging and filling operation itself, caused by stirring up of bottom peat or sediments and by removal of a 12 by 15 foot area of aquatic vegetation in the littoral zone of the lake. Turbidity curtains in still waters such as involved here, can substantially reduce the spread of turbidity caused by the stirring up of bottom material and can substantially reduce the period of its suspension in the water by containing it at the dredged site. The vast majority of the littoral zone vegetation surrounding and waterward of the area to be dredged will remain such that the nutrient uptake function will be essentially undisturbed, thus any adverse impact on water quality will be insignificant. In terms of cumulative effect of allowing a multiplicity of such projects, not even a 10 percent loss of the littoral zone band of vegetation in the lake, which would be the maximum possible loss if all riparian land owners were allowed a similar size dredged and filled area on the front of their lots, would cause a violation of Department water quality standards. Parenthetically, it should be pointed out that such riparian owners cannot be prevented by any water quality criteria in Chapter 403 or Chapter 17, Florida Administrative Code, from having access to the lake in front of their lots. Such human traffic will have the gradual affect of destroying a significant amount of the littoral zone vegetation on and waterward of those lots (which is a cause and result the Department is powerless to regulate). By confining the destruction of littoral zone vegetation to such a small area as that involved in the application at bar and thus guaranteeing adequate, comfortable access for the riparian owner, the survivability of the remaining critical littoral zone vegetation will be significantly enhanced.
Recommendation Having considered the foregoing Findings of Fact, Conclusions of Law, the evidence in the record and the candor and demeanor of the witnesses, it is, therefore RECOMMENDED: That the application of Joyce K. Anderson and Thomas Barnett for a dredge and fill permit as described in the modified and amended application be GRANTED; provided, however, that turbidity curtains are used during all dredging and filling activity and for a reasonable time thereafter until turbidity caused by the project has settled out of the water column. DONE and ENTERED this 26th day of September, 1983, in Tallahassee, Florida. P. MICHAEL RUFF, Hearing Officer Division of Administrative Hearings The Oakland Building 2009 Apalachee Parkway Tallahassee, Florida 32301 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 26th day of September, 1983. COPIES FURNISHED: Tim Keyser, Esquire Post Office Box 92 Interlachen, Florida 32048 Dennis R. Erdley, Esquire Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32301 Joyce K. Anderson and Thomas Barnett 6216-B, Southwest 11th Place Gainesville, Florida 32601 Victoria Tschinkel, Secretary Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32301
Findings Of Fact Petitioner is the owner and developer of a parcel of land located on the eastern side of the northern end of Key Largo, Monroe County, Florida. Located in the middle of that parcel is a dead-end east-west canal approximately two feet deep at its eastern end where it opens to the Atlantic Ocean and approximately twenty feet deep at its western dead-end. The canal is approximately fifty feet wide. A plug at the mouth of the canal previously prevented boat traffic from entering and exiting the canal. Petitioner's predecessor in title permitted the plug to partially erode, and Petitioner's president had some of the boulders which helped form the plug removed. The digging of the canal, the placement of the plug, and the partial removal of the plug were performed without benefit of state and federal permits. Petitioner's development plan is that twenty single-family homes will surround the canal, with each home being serviced by a septic tank and a boat dock. On the oceanside of the partial plug is a small depressed area which was dredged at the same time that the canal itself was dredged. Surrounding that depressed area is very shallow water. Petitioner proposes to remove the plug from the existing canal and shallow the canal to a uniform depth of -10 feet and two years later to a uniform depth of -6 feet. Petitioner further proposes to dredge an access channel from the mouth of the canal northward for a distance of approximately 480 feet where it would join with an existing channel. The access channel proposed to be dredged would be approximately fifty feet wide and six feet deep at low tide. The area to be dredged to create the access channel is classified as Class III waters, is within the Florida Keys Special Waters, and is also classified as Outstanding Florida Waters. The waters outside the existing canal where Petitioner proposes to dredge the access channel are also located within John Pennekamp State Park, the site of a natural coral reef. Due to the disparity in depths between the shallow waters outside the existing canal which are only one or two feet deep and the depth of the existing canal which is as deep as twenty feet, the canal itself experiences a very long flushing time. The lengthy flushing time causes the waters in the existing canal to fall below minimum state water quality standards The area proposed to be dredged for the navigational access channel is thickly vegetated by a productive seagrass and algae community. The area is in excellent condition, and the seagrass and algae community is very healthy. The seagrass and algae communities serve as habitat for thousands of organisms, including juvenile lobster and other small plants and animals; serve as a food source for animals; stabilize sediments through their root structures; reduce pollution by filtering pollutants from the water; are a natural feature of the John Pennekamp State Park, and are part of the ecological unit that is important for the survival of reef corals. The proposed dredging of the access channel would destroy an area of approximately one-half acre. Excessive turbidity is often a problem with dredge and fill activities, and reef coral need clear water for survival. Once dredged, the proposed access channel would not be expected to revegetate. Further, the proposed dredged channel will violate state water quality standards for dissolved oxygen. The proposed navigational access channel would connect the mouth of the existing canal with the Post channel to the north of Petitioner's property. The Post channel dug in approximately 1971 is also six feet deep, violates state water quality standards for dissolved oxygen, and has never revegetated even though replanting of vegetation has been attempted. The destruction of the one-half acre area of healthy productive habitat would adversely affect fish and other marine wildlife, resulting in a decrease in fishery production and marine productivity. The residential subdivision will be a source of pollutants from, among other things, septic tanks, fertilizers, stormwater run-off from paved areas, boats, and boat engines, into the existing canal in violation of state water quality standards for Class III waters and would lower the ambient water quality of the adjacent Outstanding Florida Waters. The long flushing time of the canal, even if shallowed as proposed, will result in the waters of the canal failing to meet state water quality standards. Any pollutants or organic material entering or blown into the canal will remain in the canal to be broken down by bacteria which consume oxygen, resulting in low dissolved oxygen in violation of state water quality standards. Further, pollutants will be exported periodically into the receding waters outside the canal, resulting in degradation of those Outstanding Florida Waters. The project is not in the public interest since the project will result in water quality violations and in the destruction of an area of highly productive shallow water habitat. The adverse cumulative impacts of allowing riparian landowners along the Florida Keys to dredge access channels are overwhelming.
Recommendation Based upon the foregoing Findings of Fact and Conclusions of Law, it is, therefore, RECOMMENDED that a Final Order be entered: Denying Petitioner's application for a permit for its proposed project, and Dismissing Intervenor Izaak Walton League, Mangrove Chapter, as a party to this proceeding. DONE AND ORDERED in Tallahassee, Leon County, Florida, this 5th day of November, 1989. LINDA M. RIGOT Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, FL 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 30th day of November, 1989. APPENDIX TO RECOMMENDED ORDER DOAH CASE NO. 88-1813 Petitioner's proposed findings of fact numbered 1 and 2(a) have been rejected as being contrary to the weight of the evidence in this cause. Petitioner's proposed findings of fact numbered 2(b) and 2(d) have been rejected as not being Supported by the evidence in this cause. Petitioner's proposed finding of fact numbered 2(c) has been rejected as being irrelevant to the issues under consideration in this cause. The Department's proposed findings of fact numbered 1-10 and 12-22 have been adopted either verbatim or in substance in this Recommended Order. The Department's proposed finding of fact numbered 11 has been rejected as being unnecessary for determination of the issues herein. Intervenor's proposed findings of fact numbered 1- 13, 16, 18, 20, and 21 have been adopted either verbatim or in Substance in this Recommended Order. Intervenor's proposed finding of fact numbered 15 has been rejected as being unnecessary for determination of the issues in this cause. Intervenor's proposed finding of fact numbered 19 has been rejected as not constituting a finding of fact but rather as constituting a conclusion of law. COPIES FURNISHED: Pamela P. Garvin, Esquire Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32399 Cayetano F. Alfonso, President Sunland Estates, Inc. 17400 Northwest 17th Avenue Miami, Florida 33056 Maureen B. Harwitz, Esquire 2390 Bayview Lane North Miami, Florida 33181 Daniel H. Thompson, General Counsel Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32399-2400 Dale H. Twachtmann, Secretary Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32399-2400