Elawyers Elawyers
Ohio| Change
Find Similar Cases by Filters
You can browse Case Laws by Courts, or by your need.
Find 49 similar cases
MILES REALTY, MARY REILEY, THEODORE CAREY, ET AL. vs. GAR-CON DEVELOPMENT, INC., AND DEPARTMENT OF ENVIRONMENTAL REGULATION, 83-000694 (1983)
Division of Administrative Hearings, Florida Number: 83-000694 Latest Update: Dec. 05, 1983

The Issue Whether Gar-Con's revised application for a permit to construct a sewage plant, and soakage trenches to dispose of the effluent, should be granted?

Findings Of Fact Eight to ten miles south of Melbourne Beach and 8.3 miles north of Sebastian Inlet, Gar-Con plans to develop a parcel of land stretching west from the Atlantic Ocean, across Highway A1A, to the Indian River. Gar-Con expects to build a motel and residential complex complete with tennis courts, parking garage, water treatment plant and the sewage treatment facility for which a construction permit is sought in these proceedings. The sewage treatment plant would be built on a site 480 feet west of Highway A1A and 90 feet south of Gar-Con's northern property line, at an elevation of 11 or 12 feet above mean sea level. Ocean Way Water and Sewer Association, Inc. is to be organized as a nonprofit corporation to own and operate the wastewater treatment facility. The Public Service Commission, through the director of its water and sewer treatment, has taken the position that the proposed "sewer system will fall within the exemption described in Section 367.022(7), Florida Statutes." DER's Composite Exhibit A. PACKAGE PLANT PROPOSED The facility Gar-Con proposes is designed to treat 100,000 gallons of sewage daily, which is the estimated "total flow" (T. 75) the sanitary engineer who designed the system anticipates from the development. Sewage generated by the development would flow to the plant, through a bar rack designed to remove rags and other large objects, and into aeration tanks where, over a 24 hour period, interaction with air and a biological mass would supply oxygen and cause the formation of biological floccules. The flocculant sewage would then move to a clarifier hopper. During its five hour stay there, solids which were not earlier segregated as the sewage moved over a weir into the clarifier, would be precipitated and removed. The clear, residual liquid would be pumped through one of two sand filters (each of which would also have granular activated carbon and be capable of filtering 100,000 gallons daily) into one of two chlorine contact chambers where a gas chlorinator would introduce chlorine for an hour. Under ordinary circumstances, the chlorinated effluent would then be pumped into one of two soakage trenches. The soakage trenches, each designed for use every other week, are to be gravel-filled ditches covered over first with felt paper, then with compacted fill. The gravel would lie at least one foot beneath the surface of the ground in a space ten feet wide and three feet deep stretching the 940 foot length of each soakage trench. Punctured like sieves, two six-inch PVC pipes would run through the gravel, sweating effluent from their pores. There is also a plan to dig a percolation pond or grassed swale five feet deep, 120 feet long and 80 feet wide near the wastewater treatment plant, which could serve as a receptacle for effluent, in case of "a 1:10 year storm or when the filters are down and/or if soakage trenches would need repair." Gar- Con's Exhibit 2-A. It would hold about 100,000 gallons. The solids caught by the weir, those extracted in the clarifying process, and those recovered from backwashing the filters would serve as catalyst for the aeration process as needed. Excess sludge, about 3,000 pounds monthly, would undergo "aerobic digestion," before being removed to Brevard County's Central Disposal Facility on Adamson Road, for disposal there. Gar- Con's Exhibit No. 7. Primary and secondary drinking water standards would be met by the effluent as it left the plant (although the engineer who designed the system would not drink the effluent himself), except that, from time to time, nitrate concentrations might reach 12 milligrams per liter, and except in the "event that a homeowner might put some type of [inorganic toxic or carcinogenic] material into the sewer system." (T. 86) The biological oxygen demand (BOD) would be ten milligrams per liter; suspended solids would probably amount to about five milligrams per liter; pH would probably be slightly under seven; nitrates would average approximately eight milligrams per liter but would "peak out at certain times during the year, for maybe extended periods up to two months, at twelve milligrams per liter," (T. 80); and there would be a chlorine residual after 60 minutes of two milligrams per liter. AMBIENT WATERS There would be no direct discharge to the Atlantic Ocean, Indian River or any other body of surface water, nor would any indirect effect on surface waters be measurable. No body of surface water lies within 500 feet of the site proposed for the plant and soakage trenches. Potable groundwater underlies the site; the groundwater table slopes toward the Atlantic Ocean, 9.5 to 12.5 feet below ground. "[D]uring the traditional rainy season," Gar-Con's Exhibit 2B, Attachment, p.3, the groundwater may rise to within seven feet of the surface. The PVC pipes in the soakage trenches are to be placed two and a half feet deep. As effluent percolated through the sandy soil, there would be "mounding" of the groundwater underneath the soakage trenches, and dispersal in all directions. Surface flow is to be diverted from the soakace trenches so that only rainwater falling directly on them would percolate down through the gravel beds. Taking soil characteristics into account, and assuming a "water table depth" of 20 feet, an engineer retained by Gar-Con predicted that "the maximum expected groundwater rises beneath the east and west trenches are 2.4 and 2.1 feet, respectively under a loading of 100,000 gpd for a period of 7 days." Gar-Con's Exhibit No. 3. The water table depth, "the height, the top of the groundwater from the first restrictive layer," (T. 172), is probably more like 40 feet than 20, which accounts in part for the "conservatism" of the mounding predictions. Under very severe weather conditions (a 100 year storm), groundwater would rise as high as the bottom of the trenches making them unavailable to receive effluent, but the effluent would not be forced above ground. In a 100 year flood, water would be expected to rise to seven feet above mean sea level. Under such conditions, people could be expected to evacuate the area. In a 25 year storm, the system could be expected to continue to function. Groundwater to the north and east of the proposed site was sampled, and the samples were analyzed. The water to the north had 380 milligrams of chlorides per liter and the water to the east had 450 milligrams of chlorides per liter. As it left the proposed treatment plant, the effluent would contain approximately 150 milligrams of chlorides per liter. SOUND AND LIGHT Lights like those used as street lights are to be installed at four places in the wastewater treatment plant. A timer, which can be overridden, would turn the lights on at dusk and off at eleven o'clock at night. The lights would illuminate the plant adequately. Pumps would move sewage to and through the proposed plant. Most of the pump motors would be submerged and unable to be heard. Two electric blowers, a flow meter and a totalizer would also have electrical motors. The blowers and the blower motors are to be equipped with insulated fiberglass covers and the blowers would also have intake and double outlet silencers. Four feet from the plant the noise of the motors would be comparable to that of a home air conditioning unit. At the nearest residence the noise level would scarcely exceed background noise. At hearing, Gar-Con revised its application and agreed to install an emergency generator which would also be encased in insulated housing and is to be equipped with a muffler. AEROSOL AND ODOR Unless the proposed plant loses electric power for 24 hours or longer, no offensive odors would emanate from it. The bar rack and weirs would be regularly hosed down. Against the possibility of a power failure, Gar-Con agreed at hearing to install permanently an emergency generator with sufficient capacity to keep both the wastewater treatment plant and the water treatment plant it plans to build operable. No aerosol drift is foreseen. The surface of the liquid In the aeration tanks would be 1.4 feet below the top of the rim. Walkways four feet wide along the inside perimeters of the aeration holding tanks would prevent dispersal of most of aerosol. A decorative hedge around the treatment plant, which would eventually be 15 feet high, is a final fail-safe. WELLS To the north are two shallow wells within 500 feet of the site proposed for the wastewater treatment plant. Both wells belong to Kel Fox, who wrote Gar-Con that he had no objection to their proposed wastewater treatment facility in light of Gar-Con's agreement to furnish drinking water to existing facilities on his property and reimburse him expenses incurred in disconnecting the two shallow wells. Gar-Con's Exhibit 2E. There is a deep well within 500 feet to the south. DER and Gar-Con have entered into the following stipulation, dated September 2, 1983: Existing Wells. Prior to the operation of its waste water treatment plant, Gar-Con will offer to supply drinking water at a reasonable cost to owners of property on which are located operational or approved shallow drinking water wells that are within 500 feet of Gar-Con's land application site. Gar-Con will make this offer to all such owners known to it prior to the operation of its plant. Gar-Con will further offer to provide reasonable compensation to such owners to disconnect their shallow wells. Gar-Con will endeavor to arrange for provision of drinking water to these owners and the disconnection of those wells prior to the operation of its plant. Future Wells. Should nearby individual (non-corporate) property owners propose to construct shallow drinking wells located within 500 feet of Gar-Con's land application site after Gar-Con begins operation of its waste water treatment plant, Gar-Con also will offer to supply them with drinking water at a reasonable cost and to provide reasonable compensation to them to disconnect those wells. However, Gar-Con shall have no obligation to make any such offer to owners of future wells if sampling of monitoring wells located at or near its external property line indicates that the groundwater meets the primary drinking water standards and, after July 1, 1985, the secondary drinking water standards listed in Florida Administrative Code Rule 17-22.104. Gar-Con agrees to record a master notice of restriction barring future owners of lots within the Ocean Way development, which are owned by Car-Con at the time of permit issuance, from installing shallow drinking water wells on such property or otherwise using the shallow aquifer beneath their property as a source for irrigation or for potable water, so long as use of the proposed sewage disposal system continues, and the Department has not found that this restriction is unnecessary. This restriction, which shall be a covenant running with the land, further shall require future owners to purchase water from Gar-Con or any successor owner of the development's water system if Gar-Con or the successor provides water service. These restrictions also shall be contained in all other appropriate documents of title. In addition, Gar-Con plans to create a non-profit water and sewer association to own and control the development's water and sewer system. Gar-Con will include in the Articles of Incorporation of this association a requirement that all property owners served by the system must be members of the Association. Gar-Con is entitled to a zone of discharge extending to its current property line with the exception that the zone of discharge shall not include the area contained within a 100' radius of Gar-Cons's proposed water supply wells. DER Staff concurs that the above conditions, in conjunction with the sewage treatment and disposal system and the groundwater monitoring program proposed by the applicant, to meet the requirements of Chapter 17-4, F.A.C. will provide reasonable assurance that existing and future off-site and on-site property owners will be protected from any adverse effects that might result from the operation of the proposed sewage treatment disposal system. Petitioner's Exhibit No. 10. There are to be a half dozen monitoring wells to allow sampling of the groundwater at strategic points in the shallow aquifer. NATURAL RESOURCES Turtles nest in the general vicinity but off the site of the proposed project. Construction and operation of the proposed waste water treatment facility would have no impact on the turtles apart from making it possible for more people to live closer to where they nest.

Florida Laws (1) 367.022
# 1
ALLEN T. SEGARS vs. DEPARTMENT OF ENVIRONMENTAL REGULATION, 89-003705 (1989)
Division of Administrative Hearings, Florida Number: 89-003705 Latest Update: Nov. 07, 1989

The Issue The issue presented is whether Petitioner has the requisite experience necessary for certification by Respondent as a Class A drinking water treatment plant operator.

Findings Of Fact On May 9, 1989, Petitioner, Allen T. Segars, in an attempt to enhance his professional status, applied to Respondent, Department of Environmental Regulation, for certification as a Class A drinking water treatment plant operator. Respondent reviewed Petitioner's application and denied it for failure to demonstrate the requisite twelve years of experience in the operation, supervision and maintenance of a drinking water treatment plant. Since June 30, 1969, Petitioner has been employed by the Miami-Dade Water and Sewer Authority (WASA) in several capacities each dealing with drinking water treatment. However, Petitioner has never served as a drinking water treatment plant operator nor been licensed as a drinking water treatment plant operator at any classification. WASA is composed of three regional drinking water treatment plants and nine interim plants servicing portions of South Florida with a total average production of 320 million gallons per day. From June 30, 1969 through March 21, 1982, Petitioner worked with the electrical component of WASA. For seven of those years, he worked as an electrician. He was then promoted to be an electrical supervisor which position he held for five years. His duties while working in the electrical operation involved performing preventative maintenance, installing and repairing equipment and supervising the personnel working with him in the electrical area. This experience is not in the management of a drinking water treatment plant and does not qualify as actual experience therein. On March 22, 1982, Petitioner was promoted to his current position of Water Production Superintendent to oversee the employees and the entire drinking water treatment operation of WASA. He remains on call twenty-four hours a day and is actually on the job approximately forty-five hours per week. He begins a typical day around 6:00 A.M. by contacting each of the plants to determine their capacity levels and to find out if any problems exist. If the operation is normal, Petitioner begins his daily process of visiting each plant. He begins at the Hialeah Treatment Plant which houses his office. At each stop, Petitioner goes over the operational log with the treatment plant supervisor. He inspects the facility. He collects samples and spot tests the results. If an adjustment is necessary, he prescribes the remedy or goes over it with the operator on duty. He assesses the chemical inventory and places necessary orders. Petitioner also makes repairs and adjustments; he carries his own repair tools. Petitioner performs most all of the functions of the treatment plant supervisor. Added to his responsibilities are the administrative duties of being the Water Production Superintendent. On the average, these administrative duties encumber less than eight hours of his normal forty-five four week Although Petitioner's current position is supervisory in nature, in fact, it is a technical and operational position. Petitioner participates at most all levels of the operation of the drinking water treatment process. In each position that Petitioner has held with WASA, he has been involved in onsite, on-hands activity with the facilities and equipment controlling the operation of WASA. For the seven years and one month that Petitioner has served as Water Production Superintendent, his work has been actual experience in the operation supervision and maintenance of a drinking water treatment plant. Petitioner is a high school graduate and has successfully completed 128 hours of classroom and laboratory work in a course approved by Respondent. Petitioner has also completed 16 classroom hours in a course pertaining to cross connection control in a treatment plant. These activities yield three years and five months of constructive experience. The combination of Petitioner's total experience accounts for ten years and six months of the twelve years of experience required for classification as a Class A operator. Thus, Petitioner's activity fails to meet the experience requirement necessary for certification as a class A drinking water treatment plant operator.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is: RECOMMENDED that the Department of Environmental Regulation issue a Final Order denying Petitioner's application of May 9, 1989 for certification as a Class A drinking water treatment plant operator. DONE AND ENTERED in Tallahassee, Leon County, Florida, this 7th day of November 1989. JANE C. HAYMAN Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 7th day of November 1989. APPENDIX TO RECOMMENDED ORDER CASE NO. 89-3705 Petitioner's proposed findings of fact are addressed as follows: Addressed in paragraph 5. Addressed in paragraph 1. Addressed in paragraph 1. Addressed in paragraph 1. Subordinate to the result reached. Subordinate to the result reached. Subordinate to the result reached. Subordinate to the result reached. Subordinate to the result reached. Subordinate to the result reached. Addressed in paragraphs 5 and 6. Addressed in paragraph 6. Addressed in paragraph 5. Not supported by competent and substantial evidence. Addressed in paragraph 6. Addressed in paragraphs 4 and 6. Addressed in paragraphs 3 and 8. Respondent's proposed findings of fact are addressed as follows: Addressed in paragraphs 2 and 3. Addressed in paragraphs 5 and 6. Addressed in paragraph 4.- Addressed in paragraph 9. Addressed in paragraph 1. Addressed in paragraph 1. Subordinate to the result reached. Conclusion of law. Subordinate to the result reached and addressed in paragraph 10. Addressed in paragraph 8. Subordinate to the result reached. Subordinate to the result reached. Subordinate to the result reached. Subordinate to the result reached. Subordinate to the result reached. COPIES FURNISHED: Alice Weisman, Esquire Robert A. Sugarman, Esquire Sugarman & Susskind, P.A. 5959 Blue Lagoon Drive Suite 150 Miami, Florida 33126 Cynthia K. Christen, Esquire Department of Environmental Regulation Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32399-2400 Dale H. Twachtmann, Secretary Department of Environmental Regulation Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32399-2400 Daniel H. Thompson General Counsel Department of Environmental Regulation Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32399-2400

Florida Laws (1) 120.57
# 2
OSCEOLA COUNTY vs SOUTH BREVARD WATER AUTHORITY, 91-001779 (1991)
Division of Administrative Hearings, Florida Filed:Orlando, Florida Mar. 22, 1991 Number: 91-001779 Latest Update: Jun. 12, 1992

The Issue As reflected in the parties' prehearing stipulation filed on August 28, 1991, the issue in this case is whether the St. Johns River Water Management District (SJRWMD) should approve South Brevard Water Authority's (SBWA) consumptive use permit (CUP) application. The SBWA is seeking permission to withdraw an annual average daily rate of 18.8 million gallons (mgd) and a maximum daily rate of 21.4 mgd. The District proposes to grant the permit with specified conditions. Petitioners challenge the issuance of the permit, alleging that applicable requirements of Chapter 373, F.S. and Chapter 40C-2, F.A.C. and other applicable law are not met. The standing of Petitioners, other than Osceola County, is at issue. Also at issue is whether the relevant criteria include consideration of the adequacy of existing sources of water, and the consideration of costs of utilizing existing sources versus the cost of the proposed new source of water.

Findings Of Fact The Parties The applicant, South Brevard Water Authority (SBWA) was created by special act of the legislature, Chapter 83-375, Laws of Florida. Its principal office is located in Melbourne, Brevard County, Florida. Its general mission is described in Section 1, of Chapter 83-375, Laws of Florida, as amended by Chapter 87-481, Laws of Florida: Section 1. It is hereby declared and determined by the Legislature that a regional water authority is the most responsive, efficient, and effective local government entity to secure, operate, and maintain an adequate, dependable, and safe water supply for the district and customers of the district. It is the intent of the Legislature that such regional water authority possess the full power and authority to implement, finance, and operate a single coordinated program of water supply transmission and distribution to meet the future quantity and quality needs of the district and for customers of the district. There is a paramount public need to develop a safe, reliable, and energy-efficient source of public water for the district residents and to contruct the wellfields, transmission lines, and other facilities necessary to supply such water. The St. Johns River Water Management District (SJRWMD or District) is an agency created pursuant to Chapter 373, F.S. in charge of regulating consumptive uses of water in a 19-county area of the State of Florida, including all of Brevard and part of Osceola County. The geographical boundaries of the District are described in Section 373.069(2)(c), F.S. Osceola County is a political subdivision of the state, west of, and contiguous to, south Brevard County. The Corporation of the President of the Church of Jesus Christ of Latter Day Saints (Deseret) is a Utah corporation authorized to conduct business in the State of Florida. Deseret owns real property in Osceola County to the north and east of the proposed wellfield. Deseret possesses a valid consumptive use permit authorizing the withdrawal of water for this property. East Central Florida Services (ECFS) does not own land or possess a consumptive use permit (CUP). Its purpose is to take over the water management program for the Deseret property. It has applied to the Public Service Commission for certification. Notwithstanding the parties' stipulation that "Triple E Corporation" and "Triple N Corporation" own real property in Osceola County near the proposed wellfield (prehearing stipulation, filed 8/28/91, p. 5), no such corporations are registered in the State of Florida. The lands identified as Triple E and Triple N are owned by multiple parties through trusts, primarily managed by Maury L. Carter, one of the owners. Neither Triple E nor Triple N properties have CUP's. The properties are used for agricultural purposes and the Triple N property has a well and recreational camp. The Site of the Proposed Use The proposed wellfield is located on property owned by the SJRWMD, the Bull Creek Wildlife Management Area (BCWMA), located entirely in eastern Osceola County. The BCWMA is comprised of 22,206 acres within the drainage area of the St. Johns River. The northern third of the management area is drained by Crabgrass Creek, and the southern two-thirds is drained by Bull Creek. The easternmost boundary is located approximately one mile from the Brevard County boundary. Currently all 22,206 acres of the BCWMA are under lease to the Florida Game and Fresh Water Fish Commission, which agency manages the area as a public recreation facility for hunting, fishing, hiking, horseback riding, camping and archeological studies. The sparsely populated area has historically been used for logging and cattle grazing. It was acquired for a detention area and it currently provides nonstructural flood protection. Its surface topography is relatively flat, with uplands and wetlands separated by only inches in vertical elevation. Upland communities include pine flatwoods, saw palmetto prairies, pine savannahs and sand oaks. Wetland communities include cypress domes, mixed shallow marshes, sawgrass marsh, wet prairies and transitional prairies. The BCWMA is classified as a "conservation area" in the District's current adopted Five Year Land Plan which summarizes the agency's land acquisition and management policies. A "conservation area" is defined as "...an area acquired for water resource conservation and protection in an environmentally-acceptable manner". The term includes water supply areas, including areas for public wellfield location. (Osceola Co. exhibit #33, p. 15) Facilities Associated with the Proposed Consumptive Use Although the precise siting of the wells has not been established, the wellfield will be located at the northern end of the BCWMA, east-west into a "panhandle" area, and extending south, for an inverted "L" shape. The wellfield will consist of 12 production wells in 2000 ft. intervals. Wells 1-9 will lie along an east-west axis adjacent to Crabgrass Creek, while wells 10-12 will lie along a north-south axis below well 9, the eastern-most well. The capacity of each well is designed at 3,000 gallons per minute or approximately 4.30 million gallons a day (mgd). Each well consists of 20" diameter casing pipe extending 700' below the ground surface. From there, an open hole for production will extend another 250 feet in depth. A small, 20 ft. by 30 ft., concrete building will enclose the motor and other equipment associated with each well, in order to eliminate vandalism and to baffle the noise. The wells will be sited to avoid jurisdictional wetlands. In addition to the production wells, monitoring wells will be constructed to comply with permit conditions. Because the water drawn from the proposed wellfield will exceed potable standards, reverse osmosis (RO) desalinization treatment is required. A below ground header pipeline will carry raw water from the wellfield to an RO treatment facility in Brevard County. The RO treatment facility will process 75 percent of water coming from the wellfield, 85 percent of which is recovered as finished water, and 15 percent of which is disposed of as brine by deep well injection. The 25 percent of raw water which bypasses the treatment process will be blended with the finished water to yield water which meets drinking water standards for chloride levels. The yield is anticipated to be 16.67 mgd on an average day and 18.9 mgd on a maximum day. However, the finished water yield could be higher if raw water quality permits greater blending and less reject water. On the finished water side, the water will need to be treated again to assure that it will be compatible with water from the City of Melbourne plant. Failure to balance the blended waters chemically could result in corrosion of pipes, leaching of pipes, discoloration, rusty water, and odorous water. A proper process, therefore, is essential and is highly sophisticated. From the treatment facility the water will travel in underground pipes, beneath the St. Johns River, beneath I-95 and east to the Melbourne distribution system. From there some water is anticipated to travel south to connect to the General Development Utilities (GDU) system. Hydrogeologic Characteristics of the Site For modelling purposes, the aquifer system in the region is represented by sequential layers of differing characteristics in the flow and movement of water. The SBWA model contains 6 layers; the Osceola model contains 7 layers. In both models, layer 1 corresponds to the surficial (water table) aquifer; layer 2 corresponds to the Hawthorn formation (the upper confirming layer); layer 3 is the Upper Floridan aquifer; layer 4 describes the 200 ft. thick portion of the Upper Floridan called the "production zone"; layer 5 in the SBWA model is approximately 450 ft. thick and is called a confining unit; Osceola's consultants consider this layer less permeable or semi-confirming; layer 6 is the lower Floridan; and layer 7 in the Osceola model is the bottom reaches of the lower Floridan. The surficial aquifer consists of sand and shell deposits and extends to a depth of approximately 100 feet below land surface. The surficial aquifer is capable of producing small to moderate amounts of water for domestic uses. The Hawthorn is an interbedded formation consisting of clay, limestone and phosphate. Due to its extremely low permeability, this layer restricts both the vertical and horizontal movement of water. The Hawthorn is thicker in Central Florida than in other portions of the state. At the BCWMA the thickness of the Hawthorn ranges from 240 feet in the area northwest of the management area to 80 feet in the southeastern portion of the management area. The upper Floridan Aquifer at the BCWMA, as characterized by the SBWA's consultant and based on site specific data, extends from the base of the Hawthorn to a depth of approximately 900 feet below land surface. That portion of the upper Floridan Aquifer between the bottom of the Hawthorn and 700 feet below land surface consists of fine grained limestone with relatively low permeability. This zone corresponds with layer 3 in the groundwater modeling done by the SBWA. The portion of the upper Floridan between the bottom of the Hawthorn and 700 feet below land surface is less capable of producing water than the portions below this level. That portion of the upper Floridan Aquifer between 700 feet and 900 feet of depth consists of hard dolomites. Dolomitic zones are the most productive zones of water within the Floridan in this part of the state because these formations contain solution fractures and cavities. This zone corresponds with layer 4 in the groundwater modeling done by the SBWA. Several researchers and modelers have suggested the existence of a zone, variously referred to as a semi-confining unit, a zone of lower permeability or a middle semi-confining unit, located between the upper and lower Floridan Aquifer. This area between 900 feet and 1350 feet below land surface consists largely of hard dolomites similar in nature to those in the zone immediately above it. This zone corresponds to layer 5 in the groundwater modeling done by SBWA. Previous regional modeling efforts have utilized model derived values to describe the middle semi-confining unit rather than site specific information showing the location, thickness or hydrogeological characteristics of the zone. Site specific data tends to confirm the lower permeability of this zone relative to the layers above and below it. Site specific data consists of a core sample, mineral content observed during the drilling of the test monitor well, and a Neumann-Witherspoon ratio analysis conducted during the aquifer performance test. The area between 1350 feet and 1450 feet below land surface also consists of dolomites but with greater permeability and greater transmissivity (the measure of an aquifer's ability to transmit water in a horizontal direction). This area corresponds to layer 6 in the groundwater modeling done by the SBWA. No site specific data exists beneath 1483 feet, representing the total depth of test well TM. Regional data does exist which characterizes the areas from 1500 feet below land surface to the bottom of the lower Floridan Aquifer as consisting of zones of varying lithology, and varying permeabilities. This zone which corresponds to layer 7 in the groundwater modeling done by Osceola County is not homogeneous or uniform over its entire thickness according to available regional data, consisting of geologic reports of deep wells in the east-central Florida area. All parties agree that in the area of the proposed wellfield, horizontal movement of water in the Floridan aquifer is from west, where the greatest recharge occurs along the Lake Wales Ridge, to east, where there is little or no recharge. Water quality in the upper Floridan as measured by chloride concentrations deteriorates as one moves from west to east. The Floridan aquifer beneath the BCWMA represents a transition zone between the recharge area to the west and high saline formation waters in the east. The dominant geochemical components in water beneath the BCWMA are biocarbonates. Water quality, as measured by chloride concentrations, also deteriorates with depth. Chloride concentrations, based on data derived from the drilling of well TM at the BCWMA, increase gradually from 306 milligrams per liter (mgl) at 410 feet, to 658 mgl at 1473 feet below land surface. Chloride concentrations increase abruptly to 1980 mgl in well TM at 1483 feet of depth. Evidence is inconclusive as to whether all of the proposed production wells will draw water exceeding 250 mgl in chloride concentrations. It is undisputed that most will, but chloride contours initially provided by SBWA's consultant indicate that the southernmost wells may produce water between 150 and 250 mgl. A comprehensive aquifer performance test (APT) was conducted at the BCWMA by the SBWA's consultant, Post, Buckley Schuh, and Jernigan, Inc. (PBSJ). The test was designed by the staff of the SJRWMD in consultation with the U.S. Geological Survey (USGS). This test yielded data which enabled PBSJ to calculate several aquifer characteristics for use in the groundwater modeling which was later done by SBWA's modeling consultant, Environmental Science and Engineering, Inc. (ESE). Eight wells were utilized in connection with the APT conducted at the BCWMA in January and February 1990. Three of the wells were dual zone monitoring wells capable of monitoring events in two different geologic units simultaneously. Three wells, including the test production well (TP) were open to the interval between 700 and 900 feet below land surface which was identified by the SBWA as the production zone. Typically APT's are run for 12 to 72 hours in Florida. Well TP was pumped for approximately 10 days at a rate equivalent to that expected during actual production while observations were made of water levels in all wells, including three off-site wells (the Holopaw test well, the Kempfer well and the Bruner well). All of the information the SBWA needed from the APT was obtained in the first hours of the test. Water levels in the area monitored during the APT ceased dropping due to pumpage within 1 hour after the pumping started. Three different analytical models were used to calculate a transmissivity value for the production zone, utilizing data derived during the APT. The result showed transmissivity in this zone to be approximately 2 million gallons per foot per day. This is a very high transmissivity value indicating a comparatively prolific aquifer, capable of producing the volumes of water requested in the application. As transmissivity increases, the cone of depression associated with pumpage tends to flatten out and be less steep. The cone of depression extends further out, creating a wider area of drawdown. Hydraulic conductivity is the measure of an aquifer's resistance to flow either in a vertical (KV) or horizontal (KH) direction. Two methods were used to calculate the hydraulic conductivity of the Hawthon Formation by PBSJ: laboratory analysis of a core sample taken from this unit, and a bail test (measuring an increase in water level over time) conducted on a well on site by the SJRWMD. Two different methods were used by PBSJ to calculate the hydraulic conductivity of layer 5: laboratory analysis of a core sample taken from that zone, and the Neuman-Witherspoon ratio analysis method. Porosity is the void space in porous media through which transport of particles, such as chlorides, can occur. Effective porosity has an impact on the ability of saline or dense water to move upward from depth toward a pumping well. The lower the effective porosity within an aquifer, the greater the potential for upconing of saline water within that aquifer. Effective porosity for layers 4 and 5 was calculated using two different methods, those being laboratory analysis of core samples taken from these zones, and analysis of acoustic logs generated during the APT. Each of these methods is accepted in the field of hydrogeology. Anticipated Impacts to Groundwater Levels and Flows as a Result of the Proposed Consumptive Use A numeric groundwater flow model is a computer code representing the groundwater flow process. Both SBWA and Osceola used numeric groundwater flow models developed by their consultants to predict and simulate the impacts associated with withdrawals proposed in the application. The SBWA used a finite difference model called INTERSAT for its simulations. INTERSAT is a widely used and accepted groundwater flow model. The model was run by ESE for the SBWA in the impact or drawdown mode. Drawdown or impact models simulate changes in water levels in response to a stress such as a pumping well. Drawdown models are an accepted and frequently used method to evaluate wellfield stress, particularly in association with a CUP application. ESE and PBSJ utilized several analytical models to first determine and later to verify the area to which the boundaries of their model would extend. The radius of influence of a well or wellfield is the distance from the center of pumpage extending out to where drawdowns caused by that pumpage reach zero. The boundary for a numeric groundwater model should be set at, or beyond, the radius of influence of the pumpage being simulated by the model. Based on the analytical models run by ESE and PBSJ the radius of influence of the wellfield proposed in the application is 43,000 to 45,000 feet. The approximate distances of the boundaries set in INTERSAT model from well TP were 50,000 feet to the east, 40,000 feet to the west, 40,000 feet to the north and 50,000 feet to the south. The INTERSAT model covers a total area of 320 square miles. This size falls somewhere between a regional model and a local model, and is adequate in size to address the impacts associated with the proposed withdrawals. The vertical boundary of SBWA's model extends to 1450 feet below land surface and, as stated above, is divided into 6 layers. The 1450 feet depth generally coincides with the limits of site specific data generated during the APT. The six layers in the SBWA flow model coincide with the six distinct geologic units identified by PBSJ in their APT report. The site specific data generated by the APT was utilized, along with other regional modeling studies, to arrive at a set of "conservative" aquifer parameters to be utilized in the INTERSAT model. "Conservative" parameters for purposes of this application are those which would tend to overpredict drawdown in the surficial aquifer and the production zone, while allowing for more upconing of dense water from the bottom of the model. The selection of "conservative" aquifer parameters by SBWA involved taking site specific values, comparing them with the ranges of values reported in the other available regional models and selecting values which, while still within the range of reported values used in other studies, would tend to show greater impacts for the areas of primary concern than the site specific values. Every aquifer parameter utilized in SBWA's groundwater flow model falls within the range of values reported in at least one of the groundwater modeling studies previously done in this region. The size of the grids utilized in the SBWA model were 500 feet by 500 feet within the vicinity of the wellfield. Grid sizes expand as one moves toward the outer boundaries of the model. The fineness of the grids used by ESE, particularly in the wellfield area, allows for accurate representation and resolution of surface water features, impacts in the production zone and for evaluating the effects of saltwater upcoming in the transport model also done by ESE. Within the radius of influence of the proposed wellfield, there are no existing wells in layers 5 or 6. The ESE model simulations for 18.8 mgd pumpage predict a maximum drawdown in the surficial aquifer (layer 1) of 0.14 feet centered primarily within the BCWMA. At a distance of 1 mile from the wellfield the impact drops to 0.12 feet. None of the existing legal users of water in layer 1 within the radius of influence of the proposed wellfield will suffer a ten percent or greater reduction in withdrawal capacity from their wells solely as a result of the proposed withdrawals, since 10 percent reduction would require at least 3 feet of drawdown. The ESE model simulations predict a maximum drawdown caused by the proposed pumpage of 4.5 feet in layer 3 centered along the alignment of wells and primarily within the BCWMA. At a distance of 2 miles, the drawdown drops to 2 feet. At the Brevard-Osceola County line the drawdown in layer 3 is approximately .5 feet. Petitioner Deseret's flowing wells are drilled in layer 3 and are located within the area where a drawdown of 1 foot is predicted in layer 3 by the ESE model. Deseret uses its property for a cow/calf ranching operation and has approximately 32,000 head of cows. Deseret uses 39 flowing wells east of state road 192 to irrigate pasture, water cattle and supply drinking water. Deseret possesses a valid CUP for a portion of the total flow capacity from those wells. Seasonally, the wells flow at different rates, but they are most relied upon in dry conditions when the natural flow would be decreased. It is unlikely that the proposed SBWA withdrawals will stop the flow of any of Deseret's wells; and it is unlikely that the flow will be reduced by more than 10 percent. Deseret and Osceola's consultants do predict a greater drawdown and opine that approximately 12 of Deseret's wells will cease flowing as a result of the SBWA withdraw As addressed below, the modelling by Petitioner's consultants, upon which those predictions are based, is less reliable than that of SBWA's consultants. If the effects are greater than predicted, mitigation in the form of installation of pumps is possible, albeit inconvenient and expensive. Mitigation would have to be provided by the applicant, SBWA. The drawdowns predicted by the ESE model for layer 4 are not significantly different from those for layer 3. It is anticipated that no legal user of water within the radius of influence of the proposed wellfield will suffer a 10 percent or greater reduction in withdrawal capacity for its wells, as a result of SBWA's proposed withdrawals. Petitioners' consultants, Hartman and Associates, (Hartman) modeled a significantly larger (4900 square miles) and deeper (3000 feet) area than did SBWA. The model makes its predictions based on one data point for every 49 square miles within the modeled area. Petitioners utilized much larger model grids in the wellfield area (2000 feet by 2000 feet) than did the SBWA. Grid of this size lacks the resolution necessary to evaluate wellfield impacts. Petitioners selected their aquifer parameters from another regional modeling study done in 1985 rather than using site specific data. Those parameters were then adjusted or calibrated until a match was obtained to a computer created potentiometric surface which was supposed to reflect the potentiometric surface for May 1990, an uncharacteristically dry period. The created potentiometric surface to which Hartman calibrated its model varies greatly from the potentiometric surface as reflected in the actual data points from which USGS derives its potentiometric surface maps. While no model is perfect, and actual data is preferable, in the absence of all the actual data that is needed, the ESE model is a more credible predictor of drawdowns. Anticipated Impacts to Groundwater Quality as a Result of the Proposed Consumptive Use Solute transport models are computer models designed to simulate the movement of mass, in this case -- chlorides -- through a groundwater flow system. These models are linked to, and are dependent on flow fields generated by groundwater flow models. In order to predict changes in water quality anticipated to occur as a result of its proposed withdrawals, SBWA's consultants used a solute transport model called HST3D. Developed by the USGS, this model is widely used and accepted. For simulations using the HST3D model, SBWA used the flow field and a portion of the grid generated by its INTERSAT groundwater flow model. The HST3D simulations run by ESE utilized a cross section of the INTERSAT model grid extending through row 26 of that grid, which is the row containing the line of 9 proposed wells running on an east-west axis. Use of a cross sectional grid is an appropriate method by which to examine salt water intrusion. Upconing, to the extent that it will occur as a result of the proposed pumpage, would be greatest within the cross section containing the 9 wells. The cross section extends two miles through the wellfield to the west. As chloride concentrations in water increase, the density of the water increases. Density can retard the degree of upconing when chloride concentrations are as low as 1000-2000 parts per million and becomes significant at 3000-5000 parts per million. Failure of a model to consider density effects, when appropriate, would tend to overstate upconing. HST3D does consider density effects. SBWA's consultant ran several simulations with the HST3D model to predict changes that would occur as a result of the proposed pumpage in chloride concentrations over 7, 14 and 30 year time periods. These simulations utilized the same aquifer parameters as the INTERSAT model together with the effective porosity values derived from site specific data. Assuming a starting chloride concentration of 1000 mgl at the bottom of layer 5, the measured concentration at that level in well TM on the BCWMA site, after 30 years of pumpage at 18.8 mgd, the chloride concentrations in layer 4 would increase by only 100 mgl. The simulations for 7 years of pumpage which is the duration of the proposed permit, show that the predicted increase in chloride levels would be substantially less than 100 mgl. Other HST3D simulations were run by SBWA for a pumpage rate of 35 mgd utilizing beginning chloride concentrations of 5,000 mgl and 10,000 mgl, respectively at the bottom of layers. The results did not show any significant changes in chloride concentrations in layer 4 over and above those shown when a lower starting chloride concentration was assumed. In a circumstance where, as here, the chloride concentrations in the zone from which water is proposed to be withdrawn exceeds secondary drinking water standards (250 mgl), the SJRWMD evaluates the existing legal water uses within the area that would be impacted by the proposed use. If it is determined that the increase in chloride concentrations caused by a proposed use would detrimentally affect other existing legal users or the applicant, only then is the increase deemed to be "significant". Within the layers of the aquifer which would experience increases in chloride concentrations as a result of the proposed withdrawal, layers 4, 5 and 6, no existing users of water would be detrimentally affected. Petitioner Deseret's closest wells to the proposed wellfield are in layer 3 where chloride levels will not be affected by the proposed wellfield within the 7 year duration of the proposed permit or even beyond that period. Further, the use Deseret makes of the water from the wells in closest proximity to the proposed wellfield, pasture irrigation, can tolerate significantly higher chloride concentrations than will exist even directly beneath the wellfield in level 4 after 30 years of pumping. Use of water for public supply purposes is considered by SJRWMD to be in the public interest. Utilization of the water beneath BCWMA for public supply purposes, even with some increase in chloride concentrations in the source of the water over the life of the permit, does not on balance detrimentally affect the public interest. Two different solute transport models were done by Petitioners' consultants, one a numeric model and the other an analytical model. The numeric model done by Hartman, RANDOMWALK, does not predict changes in chloride concentrations within an aquifer, but rather tracks movement of particles. RANDOMWALK does not account for density effects. The analytical model done by Prickett for the Petitioners relies on assumptions, many of which are not met in the aquifer system at BCWMA. Those assumptions relate to uniformity of the system, for example: porosity and permeabilities, and lack of regional gradients. The solute transport models utilized by the Petitioners are less reliable for predicting water quality changes resulting from the proposed pumpage than the model utilized by the SBWA. Salt water intrusion is a dramatic increase of chloride levels in an aquifer layer. The saline water encroachment which occurs from the wellfield stress will be in the lower confining unit. There will be limited degradation in the lower part of the production zone. The wellfield will not induce significant lateral intrusion from the east. There will not be any dramatic changes in chlorides. The movement of the chlorides is confined to the locality of the wellfield. Most of the movement is vertical and is of limited increase. The proposed Bull Creek withdrawals will not aggravate any currently existing salt water intrusion problems. The reject brine water from the RO treatment plant will be disposed of in deep injection wells in Brevard County. These injection wells would deposit the brine into a receiving body of water in the Oldsmar geologic formation. The brine reject will have a total dissolved solids (TDS) concentration of approximately 7,000 mgl. The receiving water into which the brine will be injected approximates sea water, with TDS concentrations in the range of 36,000 mgl. The receiving body will obviously not be further degraded. Environmental Impacts of the Proposed Consumptive Use District staff, SBWA consultants and Osceola's consultants independently conducted onsite field investigations of the BCWMA to evaluate the vegetative communities and land uses which exist on site. Each consultant prepared a habitat map identifying the various vegetative communities found at the site. While relatively pristine, the BCWMA has been logged and grazed by cattle in the past. The impacts of man's activities have been remediated by ceasing the activity. There are few permanent incursions, such as roads, canals and buildings. The area is a very diverse landscape, with a mosaic of different types of plant communities. There are various upland and wetland habitats. The variety of wetlands are forested and non-forested, deep and shallow, open and closed. These wetlands perform important functions, including water storage and purification, aquifer recharge, flood control, and provision of food sources and habitat for wildlife, and they are "factories" for producing the materials needed by many higher organisms. The wetlands on site are structurally complex and are good habitat for macro- invertebrates and the fish and higher organisms that feed on them. A number of these wetlands are shallow, isolated wetlands. During periods of inundation, when the wetlands fill up with water and interconnect with the Bull Creek drainage system, the system exports various organisms to the wetlands. Fish that are live bearers move into isolated wetlands during periods of inundation, and they and their offspring become a source of food for birds. Fish species that lay eggs can withstand desiccation (total drying out) can survive the temporary drying of wetlands, but live bearers must repopulate during periods of inundation. The mixed wetland hardwoods on site contain a diversity of bugs, crawfish, mayflies, damsel flies, midges, and snails. Some of these are important food sources for higher organisms. The apple snail, for example, is an important food source for such birds as the limpkin and the endangered snail kite, and its eggs are food for crawfish and other organisms. The biological communities that exist in the wetlands and uplands at the site are determined by a number of factors, including the depth and duration of the hydroperiod, soils, climate, temperature, and availability of sunlight. These communities and their habitats will react to changes in light, water, temperature, and many other subtle effects, causing changes in plant diversity and structure, the areal extent of certain types of habitats and wetlands, and utilization by wildlife. Natural fluctuations in the hydroperiod also cause these changes, generally from the exterior edges of a wetland to the interior. The wetlands in the BCWMA have been able to withstand the natural drought and flood periods, or they wouldn't be there today. Periodic burning is essential to the health of ecosystems such as in the Bull Creek area. Fires reduce the prevalence of species less tolerant to fire, allow other species to strengthen their presence, return organic material to the soil, and reduce the fuel available for wild fires. Originally occurring naturally as a result of lightening strikes, prescribed burns are now undertaken by agencies such as the Division of Forestry and the Game and Fresh Water Fish Commission to replicate the beneficial functions of natural periodic burning. Fire management is used as a land management technique at BCWMA and continued fire management at the BCWMA will maintain a natural ecological setting typical of Florida. Slight variations in elevation which mark the difference between wetlands and uplands can result in utilization of the areas by different animal communities. Where different types of plant communities meet, an "ecotone" is created. Where an ecotone exists, the "edge effect" of the competition between the two communities occurs. The result of the edge effect is higher plant and animal species diversity, which is extremely important to the natural community. Some animals make specific use of the ecotone for habitat and food resources. Many amphibians, frogs in particular, live in the ecotone. Some birds will not roost in the upland forests but will roost in the edge of the forest adjacent to wetlands. Wetlands in the BCWMA are connected to the remainder of the Bull Creek system through groundwater resources. Their biological and ecological communities are also connected as the same organisms move throughout the system. Isolated wetlands also exhibit a "moving edge" effect, where changes in the surface water and water table levels cause different plants, or plants at different levels of maturity, to exist in the wetland and its perimeter. This increases the productivity of the wetland by making it attractive to a wider variety of plant and animal species. If the expansion and contraction of isolated wetlands is reduced by lowered water levels, the smaller wetlands would exhibit a reduced edge effect, and the cumulative effect of this reduction over time would disrupt the functioning of the wetland-upland system. Isolated wetland systems are more sensitive to drawdowns in the surficial aquifer than connected wetland systems because the drainage area contributing water to the wetland system is smaller. Isolated herbaceous wetland communities are the most sensitive of the vegetative communities on BCWMA to drawdowns in the surficial aquifer. The surficial aquifer fluctuates naturally as much as five feet annually. Rainfall is the primary source of water for the surficial aquifer. Water levels in the surficial aquifer respond very quickly to rainfall events. Hydroperiods of the wetland systems in the BCWMA respond to rainfall and surficial aquifer levels. The wetland hydroperiods vary from year to year, and wetland ecosystems have adopted to those annual changes. But a groundwater withdrawal from the surficial aquifer in the Bull Creek area would cause a corresponding lowering of the surface water level, since the wetlands are not "perched", or separated from the aquifer by a confining layer. A drawdown would lower water levels throughout the hydroperiod, under both high water and low water conditions, with a more pronounced effect during the dry season and drought periods. Some of the over twenty threatened and endangered plant species present at Bull Creek grow in shallow, marginally wet areas. Changes in even a few inches of groundwater would cause these plant species to be retarded in growth, and their abundance would decrease or they would die out at the site. Many of the wetlands are shallow, broad, sloping areas, and groundwater elevation changes of just a few inches will cause changes in the areal extent of these wetlands. Even the .14 foot drawdown predicted by SBWA's modeling would affect shallow inundated or saturated systems by changing the moisture level at the surface, particularly by affecting the lowest water levels. Changes in the vegetative composition of wetlands will affect the macro-invertebrate characteristics of a site. For example, as water levels change, the density of the vegetation (in terms of number of plant stems per acre) can decrease, leaving fewer places for the macro-invertebrates to hide, and the populations of macro-invertebrates will decrease through predation. As food sources, habitat and breeding grounds decrease, those animal species that can relocate will attempt to do so. Relocation can adversely affect the survival of the species; for example, a wood stork unable to find a particular food upon which it is dependent at a particular interval in its life cycle may abandon its nest and its young. Animals that attempt to relocate may find that there is not a suitable similar habitat available, making their attempt to adjust to the change in their environment unsuccessful. The proposed use will not significantly affect the stages or vegetation of the upland communities at the BCWMA because they are not as dependent on saturation or inundation as a wetland community. Forested wetland systems, be they isolated or connected, will not be influenced by a drawdown of the magnitude predicted by SBWA for the surficial aquifer. Forested systems have deep root zones and the canopy provides shading to the strata below. Forested systems are able to tolerate natural changes in hydrology. The SBWA assessment does not offer any detailed cataloguing of the plant and animal communities on site, or a description of how the systems operate or interface with each other. It does not provide sufficient information to be able to assess the impacts of the proposed wellfield on these systems. There was insufficient information presented by the applicant to conclude that the environmental harm to be caused by operation of a wellfield at the BCWMA has been reduced to an acceptable level. The applicant relied on the fact that drawdowns in the surficial aquifer will be minimal, without fully considering the impact of those minimal drawdowns on a fragile wetland ecosystem during a dry period. Water Demand The SBWA was created by special act in 1983 as a dependent special district for the purpose of developing regional water supplies and transmission of water to water distribution systems. In its existence so far, its labors have been in the former, and none in the latter category. Efforts to develop a regional water supply have been frustrated by litigation, by reluctance of local public systems to give up their authority and by delays in pursuing and processing CUP applications, two of which are still pending, in addition to the instant application. The City of Melbourne's public water system provides water to Melbourne, Palm Bay and West Melbourne, and to some unincorporated areas surrounding Melbourne. It also supplies water to the area called south beaches, comprised of the Brevard County area south of Patrick Air Force Base, including Satellite Beach, Melbourne Beach, Indiatlantic and Indian Harbor Beach. The current water supply is Lake Washington, which is part of the chain of lakes on the St. Johns River. The city of Melbourne was granted a CUP on January 15, 1991, for withdrawals from Lake Washington, ranging from 27.15 million gallons maximum daily withdrawals in 1991 to 21.7 million gallons maximum daily withdrawals in 1998. In addition, Melbourne has planned a new facility and has the CUP to withdraw 8.13 million gallons a day from the Floridan Aquifer commencing in 1993. After reverse osmosis treatment, the groundwater withdrawal will yield 6.5 million gallons a day finished water, making up the difference from reduced withdrawals from Lake Washington. Approximately 56 potable water systems have been identified by SBWA in South Brevard, south of the Pineda Causeway. Almost all are small private systems. Besides Melbourne, the other major water supplier in the area is General Development Utilities (GDU), serving the City of Palm Bay. GDU's CUP expires in 1993 with an average daily withdrawal of 6.5 mgd and maximum daily withdrawal of 8.5 mgd. It has ample capacity until 1996, and beyond to the year 2000, if an additional Department of Environmental Regulation capacity rating is obtained. The total capacity of the two major existing facilities is approximately 30 mgd and total existing consumptive use quantities (including existing CUPs with expiration dates varying from 1993 to 1998) approach 40 mgd. The current SBWA water master plan assumes that existing sources need replacing. More specifically, SBWA, if this CUP is granted, seeks to replace Lake Washington as the primary source of water in the area with the groundwater obtained from the BCWMA wellfield. An agreement between the City of Melbourne and SBWA provides that the City will initially purchase 8 mgd, plus all future needs of water from the SBWA. This 8 mgd would be used by Melbourne prior to using its 6.5 mgd finished water from the RO facility, and the RO water would be used prior to withdrawals from Lake Washington. The agreement, dated January 9, 1991, acknowledges the need for, and specifically authorizes improvements to Melbourne's Lake Washington Water Treatment Plant, including the conversion of the existing high service pumping station to a low service pumping station with average daily capacity of 20 mgd and maximum capacity of 25 mgd. (SBWA Ex. 49) GDU is a private utility and currently is outside the jurisdiction of the SBWA. General Development Corporation is in receivership and the City of Palm Bay is negotiating for purchase of the utility. If the purchase is successful, the supply will become publicly owned and subject to the jurisdiction of the SBWA. The City of Palm Bay is not bound to purchase GDU at any price, and the requirement that it would shut down its newly purchased facility to receive water from SBWA is a disincentive to the acquisition. In the meantime, GDU has no incentive to reduce CUP capacity and devalue its facility. GDU's service has been uninterrupted and reliable. Contamination to the surface aquifer utilized by GDU has been successfully treated. Although septic tanks proliferate in Palm Bay, their location, as well as the presence of confining layers in the surficial aquifer, reduce the susceptibility of GDU wells to contamination from septic tanks. The applicant's concerns about unreliability and safety of Lake Washington as a continued water source are unsubstantiated by the weight of evidence in this proceeding. Surface water facilities have been used in Florida since before the turn of the century and no major facility has ever been off-line one day due to raw water contamination. Nor has any major Florida surface water plant ever been sabotaged. There is a greater chance in Florida of problems with pipeline failures, and the miles of pipes planned to transmit ground water from Bull Creek east to SBWA consumers increase the chances of those problems. Recently, the SJRWMD Upper Basin Project has significantly improved the water quality and quantity in Lake Washington through restoration of marshlands in the upper basin and capping flowing wells. Restored marsh areas will allow for additional removal of nutrients and provide an additional storage to the Lake Washington/Upper Basin system, significantly improving safe yield quantities. Comparisons of concentrations of raw water chlorides and total dissolved solids for the drought years of 1989 and 1990, show significant reductions for the latter time frame. Recent evaluations indicate that Lake Washington would be acceptable in terms of chlorides and TDS concentrations for a 35 mgd withdrawal, even during 50 and 100 year droughts. Water quality improvements to Lake Washington can be directly related to the Upper Basin project. Trihalomethanes are regulated by the Safe Drinking Water Act. They are produced by the disinfection process of treating raw water with chlorines, and they are carcinogenic. A previously experienced problem at the Melbourne plant has been corrected with operational changes. As recently as 1988, an internal staff report by SJRWMD staff provided: Lake Washington has been a reliable source of public water supply since 1960 and can remain so in the future with the continuation of sound basin planning and watershed management by the St. John's river Water Management District. The quality of the raw water from Lake Washington is subject to annual and seasonal variations that make the treatment process more difficult, and the quality of the delivered water less consistent, than would be the case with a groundwater supply. A supplemental water source near Lake Washington would improve the quality of the water delivered to the users, would increase the total volume that could be taken from the lake in times of stress, and would provide a reliable alternative in case of emergency. The upper zone of the Floridan Aquifer within south Brevard County has the potential to supply a significant portion of the area's future water needs with existing low-pressure, reverse osmosis technology at a cost that is comparable to current supplies.

Recommendation Based on the foregoing, it is hereby, recommended that the SBWA application for CUP be denied. RECOMMENDED this 12th day of March, 1992, in Tallahassee, Leon County, Florida. MARY CLARK Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904)488-9675 Filed with the Clerk of the Division of Administrative Hearings this 12th day of March, 1992. APPENDIX TO RECOMMENDED ORDER, CASE NOS. 91-1779, 91-1780, & 91-1781 The following constitute disposition of the findings of fact proposed by each party. Petitioner, Osceola County These findings have been adopted in full or in substantial part in the recommended order submitted herewith: 1-5, 7-8, 14, 21-22, 24-25, 27-28, 30, 32, 35, 62-65, 73, 104, 113, 116-125, 127, 129-130, 132-138, 140, 154, 157-158, 164, 167-168, 183, 186, 189, 191-195, 197-200, 202-204, 209, 212. These findings are rejected as contrary to or unsupported by the weight of evidence: 37-38, 48, 51, 53, 56, 66, 79-81, 84-90, 92-94, 102-103, 105-107, 110-112, 115, 128, 171-172, 212(d), (f) and (g), 213-214. These findings are rejected as cumulative, unnecessary or irrelevant: 6, 9- 13, 15-20, 23, 26, 29, 31, 33-34, 36, 39-47, 49-50, 52, 54-55, 57-61, 67-72, 74- 78, 82-83, 91, 95-101, 108-109, 114, 126, 131, 139, 141-153, 155-156, 159-163, 165-166, 169-170, 173-182, 184-185, 190, 196, 201, 205-208, 210-211, 212(e), 215. Petitioners, Triple E, Triple N, East Central Florida Services, Inc., and Deseret These findings have been adopted in full or in substantial part in the recommended order submitted herewith: 1-6, 8-9, 16-20, 22-25, 27-28, 30-31, 50- 56, 59-60. These findings are rejected as contrary to or unsupported by the weight of evidence: 7, 12, 32, 34-37, 40, 42, 44, 48, 49, 58. These findings are rejected as cumulative, unnecessary or irrelevant: 10- 11, 13-15, 21, 26, 29, 33, 38-39, 41, 43, 45-47, 57, 61-63. Respondent, South Brevard Water Authority These findings have been adopted in full or in substantial part in the recommended order submitted herewith: 1-6, 9-11, 13, 16-24, 28, 30-34, 36, 38, 46-48, 61, 64, 70, 72-74, 90-91, 94-98, 105-108, 110-111, 113, 115-116, 121, 126-129, 133, 149, 152, 157, 169, 179, 181-190, 192-194. These findings are rejected as contrary to or unsupported by the weight of evidence: 41, 130-132, 156, 158, 167, 174, 177. These findings are rejected as cumulative, unnecessary or irrelevant: 7-8, 12, 14-15, 25-27, 29, 35, 37, 39-40, 42-45, 49-60, 62-63, 65-69, 71, 75-89, 92- 93, 100-104, 109, 112, 114, 117-120, 122-125, 134-148, 150-151, 153-155, 159- 166, 168, 170-173, 175-176, 178, 180, 191. Respondent, St. Johns River Water Management District These findings have been adopted in full or in substantial part in the recommended order submitted herewith: 1-8, 10-22, 24-36, 38-44, 47-62, 64-88, 90, 92-116, 118-122, 124-130, 132-142, 144-151, 159-160, 164, 166-167, 169, 171, 174-175, 177, 193-196, 198, 202, 206. These findings are rejected as contrary to or unsupported by the weight of evidence: 131 (the conclusion), 153-154, 156-157, 161-162, 197, 204, 207. These findings are rejected as cumulative, unnecessary or irrelevant: 9, 23, 37, 45-46, 63, 89, 91, 117, 123, 143, 150, 152, 155, 158, 163, 165, 168, 170, 172-173, 176, 178-192, 199-201, 203, 208-210. COPIES FURNISHED: Segundo J. Fernandez, Esquire Scott Shirley, Esquire OERTEL, HOFFMAN, FERNANDEZ & COLE, P.A. Post Office Box 6507 Tallahassee, FL 32314-6507 Douglas P. Manson, Esquire BLAIN & CONE, P.A. 202 Madison Street Tampa, FL 33602 Clifton A. McClelland, Esquire POTTER, McCLELLAND, MARKS & HEALY, P.A. Post Office Box 2523 Melbourne, FL 32902-2523 Wayne Flowers, Esquire Nancy B. Barnard, Esquire St. Johns River Water Management District Post Office Box 1429 Palatka, FL 32178-1429 Neal D. Bowen, County Attorney Osceola County Room 117 17 South Vernon Avenue Kissimmee, FL 32741 Carol Browner, Secretary Dept. of Environmental Regulation Twin Towers Office Building 2600 Blair Stone Road Tallahassee, FL 32399-2400 Daniel H. Thompson, General Counsel Dept. of Environmental Regulation Twin Towers Office Building 2600 Blair Stone Road Tallahassee, FL 32399-2400

Florida Laws (7) 120.52120.5727.15373.019373.042373.069373.223 Florida Administrative Code (1) 40C-2.301
# 3
MIAKKA COMMUNITY CLUB vs. ELJOBEAN PHILHARMONIC GROUP, INC., AND SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT, 89-001176 (1989)
Division of Administrative Hearings, Florida Number: 89-001176 Latest Update: Aug. 09, 1989

Findings Of Fact At all times pertinent to the issues herein, the Southwest Florida Water Management District had permitting authority for the issuance of consumptive use permits in the area in which Respondent, El Jobean, proposes to sink its irrigation well. On December 12, 1988, El Jobean submitted a consumptive use permit application to sink a new well for the purpose of irrigation of a golf course to be developed on the property it owns in Sarasota County. The well is to be located in the NE 1/4 of the NE 1/4 of Section 32, Township 365, Range 20R, in Sarasota County, Florida near the southern boundary of an irregularly shaped piece of property consisting of approximately 855 acres, owned by the applicant, which extends over Sections 28, 29, 32 and 33, Township 365, Range 20E. Respondent proposed to sink a 10 inch diameter well to a total depth of approximately 900 feet with casing in the well now to extend down to 300 feet, with a pump capacity of 1,000 GPM. The golf course to be irrigated is to encompass approximately 190 acres. The applicant requested authority to withdraw an average of 600,000 GPD with a limitation of a maximum of 1,440,000 GPD. The application was properly staffed by the District. In the staff report on the application, the average daily use limitation was expanded to 707,000 GPD; consumptive use was raised from 0 to 139,000 GPD; and maximum daily consumption was reduced from 1,440,000 GPD to 1,240,000 GPD. These changes were due to correction of arithmetic errors in the application and were accepted by the applicant. The ultimate recommendation of the staff was for approval of a 6 year permit, subject to certain conditions outlined in subparagraph I of the staff report. These special conditions require the provision and use of flow measuring devices to maintain an accurate record of the water withdrawn; the maintenance of flow records and the providing of periodic reports to the District; the collection and analyzing of water quality of samples taken from the well to measure the appropriate parameters for chlorides, sulfates, and total dissolved solids; the reporting of the results of these samplings and a description of the sampling and analytical methodologies employed; and a requirement that the permittee investigate the feasibility of supplementing and/or substituting drawn water with treated sewage affluent. After the staff report was submitted, proper notice of the District's intent to issue the permit was published. Based on that notice, protests were filed both by Miakka and Mr. Bishop. The area in question is located within the Manasota Basin which, itself, is located within the Southern West-Central Florida Ground Water Basin, (SWCFGWB), which encompasses all of Pasco, Hillsborough, Manatee, Sarasota, Polk, Hardee, and DeSoto Counties, and parts of Lee, Glades, Charlotte and Highlands Counties. The SWCFGWB sits atop several aquifers which include the Floridian Aquifer, two Intermediate aquifers, and the Surficial Aquifer. The Floridian Aquifer is the deepest and the Surficial Aquifer is on the top. The Miakka Community Club is a Florida corporation made up of residents of the pertinent area whose primary function is to preserve and conserve the rural nature and spirit of the Northeast section of Sarasota County. The club performs this function through educational programs, community activities, and participation in the legislative process. Miakka urges denial of the permit sought by El Jobean based on its membership's belief that the property owners whose property is in the immediate vicinity of the proposed well will be adversely affected if El Jobean is permitted to sink its well and withdraw water from it. The club membership believes that approval of El Jobean's well will result in contamination of existing personal water wells due to excessive use by El Jobean; potential contamination of Sarasota County's future drinking water sources which include the capital Ringling,/MacArthur tract and the Myakka River; reduction of property values; and destruction of personal resources. Petitioner also urges that since the proposed golf course will be a part of a private club for the use of members only, in which membership will be limited, there is no public benefit derived from the approval of and sinking of the well in question. Petitioner also contends that during the periods of severe water shortage as are being currently experienced, permission to sink a well of this size to draw water in of the magnitude expressed in the application, would be counterproductive and detrimental to the interests of the other property owners in the area. In support of its claim, Petitioner presented the testimony of two homeowners from the area, Mr. Richardson and Ms. Mustico. Mr. Richardson, whose well is 183 feet deep, has had several problems with his well even without the instant drilling. In 1974, and subsequent thereto, he has had to go deeper with a suction pipe because the water has dropped below the level of the tail pipe. Ms. Mustico's 160 foot deep well, with 80 feet of casing, is used to supply water for the home. She also has other wells for watering her lawn and for livestock, one of which goes down 500 feet. She is concerned that the well proposed by El Jobean will adversely impact her ability to draw water from her wells because, she believes, the water level from which her water is drawn will drop. In the past, her primary well has gone dry and the wells of several neighbors have gone dry as well. Through maps and other documentation taken from the Ground Water Resource Availability Inventory for Sarasota County, Florida, prepared by the District in March 1988, Petitioner has established that areas of significant groundwater withdrawal within the SWCFGWB occur in Hillsborough, Manatee, Polk, Hardee, DeSoto and Highlands Counties. With the exception of an extremely small portion of Sarasota County located contiguous to Manatee County, there appear to be no areas of major ground water withdrawal currently existing in Sarasota County. The majority of the major municipal well fields within the pertinent basin that are located within Sarasota County, extend down to the Intermediate and Surficial Aquifers with only 3 extending through the lower Intermediate into the Floridan Aquifer. These include the Verna well field located in the northeast corner of Sarasota County where it abuts Manatee County; the Sarasota County well field located in northwest Sarasota County near the Manatee County line; and the Sorrento Utility, Inc., well field which is located near the Gulf Coast, approximately two-fifths of the way down between the Manatee and Charlotte County lines. With the exception of the Verna well field, all the municipal well fields in Sarasota County appear to be reverse osmosis systems and as of 1987, there were 28 reverse osmosis systems located within Sarasota County. Most are relatively small in their output measured in millions of gallons per day. With the exception of 3 public supply wells, 2 of which are permitted an average annual pumpage greater than 100,000 GPD and 1 of which is permitted less, all of the permitted public supply well fields in Sarasota County are located west and south of 1-75 as it extends from the Manatee County line in the north to the Charlotte County line in the south. The El Jobean well would be located east of the line, in that area occupied by the 3 public supply wells. Generalized recharge areas for the upper Floridan Aquifer in the groundwater basin in issue here have been categorized from "high", with a rate of more than 10 inches per year, to "Generally none", with a recharge rate at 0. In 1980, the high recharge rates existed in the north-central part of Pasco, the eastern part of Polk County, and the northeastern part of Highlands County. Sarasota County is in an area wherein the recharge rate was either very low or generally none. In September 1986, the high recharge rate was found in a very small area of northeastern Pasco County, and small areas in both Polk and Highlands Counties. Sarasota County, for the most part, was classified as having no recharge. In May 1987, the high recharge rates were, again, a small area in eastern Pasco County, a small area in northeastern Hillsborough County, a small area in southeastern Polk and northwestern Highlands Counties, and a minuscule area in central Pinellas County. Again, Sarasota County had a recharge rate of 0. Generalized estimated, calibrated, model-derived recharge and discharge values for the upper Floridan Aquifer in the ground water basin in issue here, as they pertain to Sarasota County, reflect positive 2 recharge to negative 1 discharge inches per year. Historically, however, the northeast portion of Sarasota County, where the El Jobean well in question would be located, evaluated by various individuals or agencies periodically from 1980 through 1988, reflects a recharge of anywhere from 0 to 2 inches per year. None of this documentation was supplemented, however, by direct testimony by an individual knowledgeable in this area, and Petitioner's main thrust appears to be an unsubstantiated fear that the sinking of El Jobean's well will have a negative impact on its membership's wells. Admittedly, the residents in the area in question all rely on private wells for the majority of their water supply, other than through the catchment of rainwater, which is insignificant. It was also established that the area has been undergoing a severe water shortage and that conservation measures have been mandated. On the other hand, El Jobean presented the testimony of a hydrogeologist, Mr. Moresi, who has extensive experience with the modeling process used to determine water consumption and recharge in southwest Florida and Sarasota County. The aquifer system in Florida is made up of water bearing limestone layers below the surficial sand base. This aquifer system underlays the various zones throughout the state and reflects a surficial aquifer extending from ground level down approximately 70 feet to a confining bed which separates it from the lower strata. This top confining bed is approximately 20 feet thick, and below it is the Tamiami-Upper Hawthorn Aquifer, which is between 100 and 200 feet deep and which rests on another confining bed somewhat thicker than the upper one. Below the second confining bed is the Lower Hawthorn-Upper Tampa Aquifer which extends approximately from the 250 foot to the 450 foot level at the Manatee County line, and between the 320 foot and the 710 foot level at the Charlotte County line. Another confining bed lays between this aquifer and the Floridan Aquifer which starts at the 500 foot level and goes down well below the 900 foot level in the north and extends from the 730 foot level down in the south. The confining bed below the surficial aquifer is made up of a clay material which retards the movement of water from one aquifer to another. The surficial aquifer is porous and saturated with water from the water table down. Since the confining beds are far less porous than the aquifers they separate, water moves much more slowly through them. The lower aquifers are made up of limestone and are also porous and contain water. The Tamiami-Upper Hawthorn formation consists of limestone and clay, but is water bearing. The Lower Hawthorn-Upper Tampa formation is similar and both make up the intermediate aquifer below which is the lower confining bed followed by the Floridan aquifer. Respondent's well would be cased in steel down to an area approximately 100 feet into the Floridan Aquifer, through the Lower Hawthorn- Upper Tampa Aquifer and through the lower confining bed. Since the well would be cased to well below the lower confining bed, water existing in the upper aquifers, would be prevented from being drawn down by operation, of the Respondent's well either directly or by settling down to replace the water drawn out. Generally, the deeper a well is drilled, the worse the quality of the water, and it becomes less potable. The Floridan Aquifer produces far more copious quantities of water than do the intermediate aquifers. However, since it is cheaper to drill to the intermediate zones as the wells need not be so deep, and since the water there is better, most domestic wells go no deeper than these aquifers. They go down approximately 150 to 180 feet. The pressure in each level is separate from and different from that in the other aquifers. The upper intermediate system generally has a lower pressure than the lower intermediate system. As a result, water from the lower intermediate system tends to leak upward toward the upper intermediate aquifer, rather than the reverse. In addition, a recent survey tends to show that the Floridan aquifer also tends to leak upward into the lower intermediate level. It also shows that leakage through the confining beds amounts to .002 GPD per cubic foot of aquifer. Petitioner claims that since the lower water is of lesser quality, and since withdrawal of water from the upper layers would promote leakage upward, thereby adding lower grade water to the better grade upper water, there could be a diminishment in upper level water quality as a result of water being drawn from the upper levels. However, according to Mr. Moresi, the .002 figure is so small it would result in an infinitesimally small drawdown of water level from the upper intermediate level aquifer and the potential for compromise of the water quality therein is remote. Clearly, this is not the result of drawing water from the Floridan Aquifer as the well in question would do but more the result of the residential wells extending into the upper levels. The District ran a model for the proposed El Jobean well (a Jacob- Hantush model) which showed that drawdown at the wellhead would be just over 2 feet. This means that use of the Respondent's well would reduce the water level in the Floridan Aquifer at the well head by 2 feet. However, this drawdown is shown to decrease rapidly out to where, at distance, it is almost immeasurable. In fact, drawdown of the Floridan Aquifer at 24,000 feet from the well head (approximately 4.5 miles) would be .1 feet, slightly or 1 inch. The .1 foot drawdown relates to the lowest (Floridan) aquifer and the resultant drawdown in the upper intermediate aquifer, into which the majority of residential wells are sunk, would be relatively undetectable. Since the Petitioner's wells, at their deepest, go only into the upper intermediate level, and would be separated by 2 confining beds from the Floridan Aquifer, the impact on the domestic wells at 2 miles from the El Jobean wellhead would be immeasurable. Even at 1 mile, there would be minimal drawdown in the Floridan Aquifer and almost none in the upper intermediate aquifer. The potentiometric surface of the intermediate layer would not be adversely affected, nor would that of the surface water. Recognizing the potential for saltwater intrusion which occurs all along the coast, based on his studies, Mr. Moresi concluded that the well in question here would not induce significant saltwater intrusion. He concluded as well that the permit is consistent with the requirements of the District rule; that the amount permitted for the use of irrigation of the golf course is reasonable, assuming a golf course is a reasonable and appropriate use of water; that the withdrawal by the well in issue would not have an adverse impact on users outside the property on which the well was located; that it would not impact existing users; that there is no other water available for the purpose intended; that the water taken from the Floridan Aquifer under this permit may be potable but is of poor quality; and that the applicant met rule standards. Mr. Moresi also discussed the possible cumulative impact of the proposed well when operated along with the currently existing wells. If there are other drawdowns from the same cone into which El Jobean's well would be sunk, the withdrawals would be cumulative. However, as best he can determine, the only other significant drawdown from the cone pertinent here is that of the Verna well field. In his opinion, that well field's drawdown, which is from the northeast, would not be significant even when considered with the El Jobean well. Mr. Moresi was also satisfied that while the confining bed separating the surficial aquifer from the next lower level might be disturbed, the deeper one goes, the less likely there is to be mixing of aquifers. The only instance where water could move from one level to another as a result of the well is where there is no casing on the bore hole. In the instant case, plans call for, and permit conditions require, the well to be cased to below the lowest confining bed. Consequently, there should be no upward or downward flow of water as a result of the bore. Mr. Tyson, who worked on the evaluation of El Jobean's application for permit, was of the opinion that the amount of water requested by El Jobean in its application was appropriate for a golf course. This does not mean that a golf course is an appropriate use of the property. The special conditions imposed on the granting of the permit by the District are designed to reduce any impact possibly caused by the permitted activity. The Jacob-Hantush model used in analysis of the instant application is considered to be a conservative tool and showed minimal drawdown at all property boundaries. The use of other models in this case was considered neither necessary nor appropriate. Mr. Tyson considers the proposed permit a reasonable beneficial use as defined in the Florida Administrative Code and statutes because it proposes use of reasonable amounts of water and the models indicate no unfavorable impact. Based on the past practice of permitting golf courses with subdivisions, he feels the proposed use is reasonable. He concludes, therefore, that it is in the public interest to grant this permit. In his opinion, the permit will not interfere with legal existing uses and meets all statute and rule requirements. Considering the evidence as a whole, it is found that petitioner has presented insufficient evidence to support its claim that approval and operation of El Jobean's well as proposed would have an adverse impact on the property owners. It's concerns are no doubt sincere, but these concerns are not sufficiently confirmed by evidence of record. At the hearing, the parties stipulated that if the permit were granted, it would be modified by the addition of two conditions: The proposed well shall be constructed with a minimum of 600 feet of casing so as to prevent the unauthorized interchange of water between water bearing zones in order to prevent the deterioration of water quality in the shallower zones. If the well cannot be properly completed to prevent such an unauthorized interchange of water, the well shall be abandoned and plugged in accordance with Rule 17-21.10(2)(c), F.A.C.. Upon completion of the well, a copy of the well construction completion report shall be sent to the District. The permittee shall line the bottom of the pond that will be used as the irrigation source, with clay to a thickness equal to 1.5 feet.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is, therefore: RECOMMENDED that the Southwest Florida Water Management District enter a Final Order issuing Consumptive Use Permit Number 209458, as modified by the conditions stipulated to at the hearing held herein on June 7, 1989, and outlined in Finding of Fact Number 27 herein, to El Jobean Philharmonic Group, Inc. RECOMMENDED this 9th day of August, 1989 at Tallahassee, Florida. ARNOLD H. POLLOCK, Hearing Officer Division of Administrative Hearings 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of Division of Administrative Hearings this 9th day of August, 1989. APPENDIX TO RECOMMENDED ORDER IN CASE NO. 88-1176 The following constitutes my specific rulings pursuant to Section 120.59(2), Florida Statutes, on all of the Proposed Findings of Fact submitted by the parties to this case. For the Petitioner: Not a Finding of Fact but a statement of the ultimate issue of fact. Accepted and incorporated herein. 3-6. Accepted and incorporated herein. 7-12. Accepted and incorporated herein. Accepted as indicating original conditions. The parties stipulated to additional conditions at the hearing. Accepted. 15 & 16. Accepted and incorporated herein. 17-33. Accepted and incorporated herein as pertinent. 34 & 35. Accepted. 36 & 37. Accepted. 38 & 39. Redundant. 40-43. Accepted. 44. Accepted. 45-51. Accepted. 52 & 53. Accepted. 54-56. Accepted. 57 & 58. Accepted and incorporated herein. 59-66. Accepted. 67-75. Accepted and incorporated herein. 76 & 77. Accepted and incorporated herein. 78. Accepted. 79-84. Accepted. Accepted and incorporated herein. Rejected. 87 & 88. Accepted. 89-93. Accepted and incorporated herein. Accepted. Accepted in the natural source sense suggested by Petitioner. 96-99. Accepted and incorporated herein. 100 & 101. Accepted and incorporated herein. 102-105. Accepted and incorporated herein. 106. Accepted. 107 & 108. Accepted. 109 & 110. Accepted. For the Respondents: 1 & 2. Stipulation between the parties accepted and incorporated herein. 3-6. Accepted and incorporated herein. Not a Finding of Fact but a comment on the evidence except for the second sentence which is incorporated herein as a Finding of Fact. Not a Finding of Fact but a comment on the evidence. 9-11. Accepted and incorporated herein. 12. Accepted. 13-16. Accepted and incorporated herein. 17. Accepted and incorporated herein. 18 & 19. Accepted and incorporated herein. Accepted and incorporated herein. Accepted. 22-26. Accepted and incorporated herein. 27 & 28. Accepted and incorporated herein. 29. Accepted. 30-32. Accepted and incorporated herein. 33-40. Accepted and incorporated herein. Accepted and incorporated herein. Accepted and incorporated herein. Accepted and incorporated herein. Accepted and incorporated herein. Not a Finding of Fact but a Conclusion of Law. COPIES FURNISHED: Becky Ayech Personal Representative Miakka Community Club 421 Verna Rd. Sarasota, Florida 34240 Douglas Manson, Esquire Blain & Cone, P.A. 202 Madison Street Tampa, Florida 33602 Edward B. Helvenston, Esquire Assistant General Counsel Southwest Florida Water Management District 2379 Broad Street Brooksville, Florida 34609-6899 Peter G. Hubbell Executive Director Southwest Florida Water Management District 2379 Broad Street Brooksville, Florida 34609 6899

Florida Laws (9) 120.57373.019373.044373.069373.203373.217373.223373.233373.249 Florida Administrative Code (1) 40D-2.301
# 4
ANTHONY F. KOPP AND LA CASA DEL SOL vs DEPARTMENT OF ENVIRONMENTAL REGULATION, 90-007520 (1990)
Division of Administrative Hearings, Florida Filed:Lakeland, Florida Nov. 29, 1990 Number: 90-007520 Latest Update: Mar. 14, 1991

The Issue The issues in this case essentially are whether the Respondent, the Department of Environmental Regulation (DER), should reimburse Anthony F. Kopp, Owner, La Casa Del Sol, for the difference between the cost to him of the DER's remedy for the EDB contamination of the drinking water supply at La Casa Del Sol and the remedy that is least costly to the Petitioner, together with the cost of a new irrigation system, engineering and attorney fees, and other incidental costs to the Petitioner.

Findings Of Fact The Petitioner, Anthony F. Kopp, is the owner of La Casa Del Sol (La Casa), a 40-acre development at 1255 U.S. Highway 27 North, Davenport, Florida. La Casa is divided into 309 mobile home lots, a clubhouse and five acres of common green space. In January, 1987, the Petitioner received a permit for construction of a water supply system for both drinking water and irrigation needs at La Casa. The construction permit was granted with the proviso that, when La Casa's population reached 350, a second backup drinking water well, six inches in diameter at 410 feet, with a casing to 366 feet, and an auxiliary power source would have to be installed. It would cost La Casa approximately $65,000 to install the backup well and auxiliary power source. La Casa did not reach a population of 350 until January, 1991. The St. Johns River Water Management District permitted the construction of the backup well, but the well never was constructed, and the construction permit now has expired. The auxiliary power source also was not installed. The main water supply system for La Casa was installed during the summer of 1987. It included a well and a system of lines for carrying water to each of the 309 lots. It also included hose bibs (faucets) at each lot so that the water also could be used for irrigation at each lot. The system also supplied water for irrigation of the common green space. Although all of the lots at La Casa were connected to the water supply system in the manner described, not all the lots had homes on them. During the summer of 1989, only about 175 of the lots had homes on them; by January, 1991, 198 lots had homes on them. Although not all of the lots were occupied, the entire water supply system was permitted, and no additional permits were required to provide water to the lots. However, when La Casa's population reached 350, the backup well and auxiliary power source would have to be installed under the permit conditions. In about May, 1988, DER tests showed that the La Casa water supply system was contaminated with ethylene dibromide (EDB) at levels in excess of the maximum allowable for drinking water. In October, 1988, the Petitioner completed and filed a Grant Application for EDB Clean-Up Funds. As part of the application, the Petitioner agreed that DER could: arrange for the purchase and installation of appropriate filters and inhibitors; provide a new well; or arrange for the connection of [the Petitioner's] well to an existing public supply system, whichever is more cost-effective as determined by the Department of Environmental Regulation. DER contracted with Continental Water Systems to provide a temporary carbon filter system for La Casa's water supply system to remove the EDB and supply uncontaminated drinking water to the development, pending a permanent solution to the EDB contamination. The temporary filter system was designed to provide 100 gallons per minute of water, which should have been adequate for drinking water needs at La Casa. However, water pressure problems arose due to algal growth and the use of the system for irrigation purposes in addition to the drinking water purposes for which it was designed. DER is a member of the Ground Water Task Force, which met biweekly or monthly to discuss, among other things, potable wells contaminated with EDB. Other member agencies are the Department of Heath and Rehabilitative Services, the Department of Agriculture and Consumer Services, the Department of Transportation and the Department of Community Affairs. The Task Force discussed the La Casa contamination problem and agreed that the possibility of having La Casa connected to an existing water supply should be explored. DER began negotiating both with Polk County and with Haines City for a water line connection. Connection with the Polk County line would have been more expensive, and Polk County was not particularly interested in extending its line. Negotiations continued with Haines City. Negotiations with Haines City progressed to the point that DER was able to present for consideration by the Task Force cost figures for a permanent filter system at La Casa, with ten years of projected cost of operation and maintenance, as compared to the cost of extending the Haines City line. The Task Force agreed with DER that extending the Haines City line north to La Casa and connecting La Casa to it was the most cost-effective use of state funds to remedy the EDB problem at La Casa, particularly in view of other EDB-related drinking water supply problems in the area and anticipated future drinking water supply problems in the area. The Petitioner was not invited to participate in the negotiations with Polk County and Haines City and did not participate in them. Nor was the Petitioner invited to participate in either the DER or the Task Force decision- making process, and the Petitioner did not participate in those processes, either. However, the Petitioner, through his engineering consultant, was made aware in early 1989 that DER was exploring options to have La Casa connected to an existing water supply. DER paid approximately $400,000 for the Haines City water line extension and La Casa connection. This included $90,000 for Haines City impact fees to cover the 175 then existing mobile homes at La Casa (DER actually paid $450 per unit for 200 units), as well as the plumbing contractor fees for connecting La Casa to the extended city water line. It also includes the cost of installing a water meter at La Casa. The ten-year cost to the DER to solve just the La Casa drinking water problem using an EDB filter system would have been less than the cost to the DER of extending the Haines City line and connecting La Casa to it. But the evidence is clear that, in the long run, and taking into consideration other EDB-related drinking water supply problems in the area, and anticipated future drinking water supply problems in the area, the most cost-effective use of state funds to remedy the problem was to extend the Haines City line and connect La Casa to it. (Even the Petitioner's expert witness agreed that the Haines City extension and connection was the most cost-effective use of state funds to remedy the area's EDB problem.) DER advised the Petitioner of its agreement with Haines City in approximately May or June, 1989. By letter dated July 27, 1989, DER explained to the Petitioner the details of the agreement, specifically what DER would pay and what DER would not pay. By the fall of 1989, the Petitioner knew that work was beginning. At the time, the extension of the Haines City line and connection to La Casa was projected for completion in January, 1990, but there were delays, and the city water supply was not ready to be connected to La Casa until August, 1990. By this time, a dispute had arisen between the Petitioner and DER as to the cost to the Petitioner of connecting to the city water, and actual connection was further delayed. Finally, by letter dated October 11, 1990, DER gave the Petitioner an ultimatum: either be connected to the city water supply; or forfeit any state contribution to the cost of remedying the EDB contamination of the Petitioner's water supply. Faced with the prospect of having to open the winter peak season without any drinking water, the Petitioner agreed, under protest, to be connected to the city water supply, and initiated formal administrative proceedings to challenge DER's intended decision to limit the extent to which the DER would cover the Petitioner's costs. There was evidence that the plumbing contractor hired by DER may have caused damage to the landscaping and one mobile home that has not yet been repaired. However, DER acknowledged its responsibility for the damage and intends to have the plumbing contractor repair the damage. There also was evidence that the Petitioner received a bill from Haines City for the installation of a water meter at La Casa. But the evidence also was that DER may already have paid the bill. In any event, DER acknowledges its responsibility for the cost of the water meter as part of the cost of connecting La Casa to the extended city water line. Although DER had the Haines City water line extended in response to the Petitioner's Grant Application for EDB Clean-Up Funds, two commercial properties south of La Casa were connected because of EDB contamination, and the line also was extended north of La Casa in preparation to address anticipated future EDB contamination problems. Under the DER's response to the Petitioner's Grant Application, each additional mobile home unit over 200 connected to the city water supply will require the payment of a $450 impact fee. In addition, Haines City will charge monthly water fees of $1.80 1/ per 1000 gallons for the use of water at La Casa, with a $1,000 minimum charge per month. 2/ Based on current occupancy of 200 lots, the Petitioner estimates water fees of $42,000 per year, figured at approximately $5,000 per month for six peak months (based on a recent peak season monthly bill) and $2,000 per month for six off-peak months. However, it is not clear whether some of that estimated usage includes irrigation. If, in order to save gallonage fees, the Petitioner puts in a separate irrigation system supplied by its well, it will have to put in a separate distribution system since the current system is being used to bring city water to the lots. This would cost approximately $90,000. The Petitioner has paid approximately $2,100 in engineering fees to assess the problem with the temporary filter and to propose solutions, to estimate the cost of installing a separate irrigation system, and to estimate the cost to the Petitioner of connecting to the Haines City water supply. There was no evidence as to the reasonableness of those fees. The Petitioner also has paid approximately $4,500 in attorney fees to negotiate with the DER for payment of a larger portion of the Petitioner's cost of connecting to the Haines City water supply. There was no evidence as to the reasonableness of the attorney fees.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is recommended that the Department enter a final order dismissing the Amended Petition for Formal Hearing in this case. RECOMMENDED this 14th day of March, 1991, in Tallahassee, Florida. J. LAWRENCE JOHNSTON Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 14th day of March, 1991.

Florida Laws (3) 120.57376.30376.307
# 5
SOUTHWEST FLORIDA REGIONAL PLANNING COUNCIL vs FLETCHER HOLT, 00-001201 (2000)
Division of Administrative Hearings, Florida Filed:Tampa, Florida Mar. 20, 2000 Number: 00-001201 Latest Update: Sep. 05, 2000

The Issue The issue for consideration in this matter is whether Respondent’s license as a water well contractor should be disciplined because of the matters alleged in the Administrative Complaint and Order entered herein by the District.

Findings Of Fact At all times pertinent to the issues herein, the Southwest Florida Water Management District (SWFWMD) was the state agency responsible for the conservation, protection, management, and control of water resources within its boundaries, and consistent therewith, the licensing of water wells therein; and for the licensing and regulation of water wells and water well contractors within the district. The three wells in issue herein were within the jurisdiction of the Petitioner, and Respondent was a water well contractor licensed by the District. On June 4, 1998, Respondent signed a contract with Karen Anne Grant, to drill a four-inch domestic water well on her property located at 33442 Larkin Road, Dade City, Florida. The property, on which Ms. Grant was building a residence, was a part of a pre-existing citrus grove. After application by the Respondent, SWFWMD issued WCP No. 606175.01 to him on June 1, 1998, and Respondent began construction of the well on June 15, 1998. His application reflected the well was to be drilled using the cable-tool method. Construction was completed on the well on or about July 7, 1998, but because the well was vandalized during construction by the dropping of an unknown substance (probably a piece of casing) down the well, the well was unsatisfactory and was not used. Respondent attempted to repair the well but was unable to do so. Respondent claimed the well was unusable and he would have to drill another one. Although he did not obtain a permit to close the well, he subsequently did so. He was paid $5,375.00 to dig this Well (No. 1). Because of the failure of Well No. 1, Respondent applied to the District for and received WCP No. 613349.01 on December 9, 1998, to construct a second four-inch water well on Ms. Grant's property. This was Well No. 2. He began construction that day and completed it on January 27, 1999. From the time of its initial use, Well No. 2 produced water which contained unacceptable amounts of sediment, debris, and sand. In addition to the unsatisfactory quality of the water it produced, Well No. 2 also failed to produce a sufficient quantity of water for domestic potable water use or grove irrigation. Respondent admitted to Ms. Grant that Well No. 2 was not satisfactory for grove irrigation, and in an effort to fix the water quality problem, installed a sand filter and sedimentation tank. Well No. 2 was not properly closed. It was covered with a PVC cap instead of a tamper-resistant watertight cap or valve as required, and Respondent did not properly seal the upper terminus of the well. Without obtaining a third WCP, on February 25, 1999, Respondent started construction of a third well on the Grant property. Respondent contends WCP No. 613349.01, pulled for Well No. 2, was not for that well but for Well No. 3. He argues that the second well was so close to the first well that he did not feel another permit was required. Though Well No. 3 was completed and produces water, the water quality is poor. It contains sand, sediment, debris, and rock, which results in clogging of plumbing fixtures at the Grant home. In addition, the volume of water produced is insufficient for comfortable home use. Well No. 3 is open down to 178 feet below land surface, beyond which point it is obstructed by sand. Use of a diagnostic tool available to the District reveals that the sand seems to be coming from around the well casing. Ms. Grant initially contracted with Respondent to dig her well in June 1998. Although Petitioner disputes it, the location of the well near the new house she was building was, she claims, by mutual agreement. Respondent did not express any dissatisfaction with the location of this or either of the other wells, He said he was familiar with the area and had worked all around there. Respondent started work on Well No. 1 on June 15, 1998 and it was completed on July 2, 1998. The house was not yet completed, and electric service had not been installed, though it was being arranged for. Before the well could be put in operation, however, Respondent claimed it was vandalized and his equipment, which he had left at the site, stolen. At this point, Respondent told Ms. Grant that he had run into an obstruction which he believed was pipe which had been dropped into the well at more than 100 feet. He said he had tried to get it out, but could not, and had to drill another well. The casing of Well No. 1 was not cut off at that time. Ms. Grant later discovered it had been cut off and plugged, but she does not know who did that. Ms. Grant used Well No. 2, which was located about 20 to 30 feet west of Well No. 1, for just about two months but was never satisfied with the amount or quality of the water it produced. Not only was the water quality low, but there was also insufficient volume for grove irrigation, one of the intended uses of which she had advised Respondent. When Grant complained to Respondent about the water quality, he suggested she run hoses constantly to clear the sand out. In February, 1999, just after Ms. Grant contacted the District to complain, Respondent said he would come by to cap Well Nos. 1 and 2, and start Well No. 3. On February 25, 1999, Respondent started Well No. 3 at a site about 200 feet north of Well Nos. 1 and 2, agreed upon by the parties after some discussion, and on March 5, 1999, he completed it. Respondent billed Ms. Grant $3,271 for this well, in addition to the $5,375 paid for Well No. 1 and the $4,585 paid for Well No. 2. Whereas the builder paid for the first two wells, Ms. Grant paid for Well No. 3, but she had the same problems with Well No. 3 that she had had with the prior two wells. An irrigation company called in to see what could be done to get water to the citrus grove indicated there was too much sediment in the water and not enough flow. About a year after Well No. 3 was completed, the Grants noticed the water pressure was dropping, and when they went to the well site, they noticed the pump was constantly running. As a result, they called another well driller who pulled the pump and replaced the impellers. After that, Ms. Grant contacted Respondent about the fact that the wells he had drilled had never worked properly. All he would recommend was to keep the hoses running. He indicated he would try to develop the well to rid it of debris but when he tried, he was unsuccessful. As a result of the situation with the three wells, the Grants had no water to their home; the pumps they installed were destroyed; they were unable to irrigate their 8-acre citrus grove; they suffered a resultant loss of income; and, they were forced to drill a fourth well. When Well No. 1 was closed, the casing was cut off at or below ground level. It did not extend one foot above the land surface, nor was the casing capped or sealed with a tamper- resistant watertight cap or valve. Examination of the well site by Sharon Lee Vance, then a technician IV for the District, on May 25, 1999, based on a complaint filed by Ms. Grant, revealed that the water quality was poor - cloudy with excessive sand and rock particles. Ms. Vance tried to contact Respondent, whose name appeared on the permit as contact, by phone but always got his voice mail. Though she left messages requesting him to call back, he never did. Ms. Vance went back to the Grant site in July 1999 in the company of other District personnel. At this visit, Ms. Vance learned there were two wells. She located both and found that Well No. 1 was buried. When she first saw that well, she noted that it had been cut off below the surface, a fence post had been driven into the top, and the well had been buried. In Ms. Vance's discussions with Ms. Grant about this well, Ms. Grant categorically denied she was the one who cut off the top of Well No. 1 or buried it. She does not have access to the cutting equipment used to cut off the top of the well. Such equipment, however, is commonly used by well contractors. It was obvious to Ms. Vance that Well No. 1 had several problems. It was clearly not suitable for its intended use because it was cut off below ground level and was obstructed. It had not been properly abandoned. Though she dug down approximately one-and-a-half feet all the way around the casing, she could find no evidence of bentonite or any other approved closing medium. Even though Respondent now claims the second permit he pulled was not for Well No. 2 but for Well No. 3 instead, the permit itself appears to authorize the construction of Well No. Ms. Vance found several problems with this well, also. It was not properly sealed with bentonite or any other properly approved closure medium; a PVC cap had been applied to the top instead of a waterproof or tamperproof cap, and the PVC cap was cracked; the well was not suitable for its intended purpose because it was obstructed and produced both insufficient and poor quality water; and it was not properly abandoned. Ms. Vance observed a metal plate placed around the well top. She does not know what purpose it was to serve, but based on her experience and her examination of the site, she believes it was placed there to keep the casing from falling into the well. Notwithstanding, Ms. Vance's opinion that the second permit was for Well No. 2, Respondent contends he believed the permit for Well No. 1 was adequate to permit drilling of Well No. 2 without a new permit. Though his belief is incorrect, he admitted to obtaining a permit for Well No. 3. Therefore, it is found that Well No. 2 was not properly permitted. Well No. 3 was permitted. The water in Well No. 3 was not of good quality. She examined the sand filter which had been installed by the Respondent and found it to be full of sand. So was the settling tank. She also noted debris and unusual sediment around the well head. Based on water samples taken at the well, and the observations made, it was clear to Ms. Vance that the well was not properly seated and was pumping sand. Further, the well casing did not extend down to the static water level, and the well was not properly permitted. Ms. Vance further noted that the water from Well No. 3, in addition to the excessive sand, also had large pieces of rock and chunks of clay in it. This was unusual and indicated to her that there was a problem with the well's construction. The casing integrity as not good, which permitted an infusion of contaminant into the well. This condition is not unusual during the first day or so of a well's operation, but it usually clears up after that. In this case, it did not. Ms. Vance admits she does not know who cut Well No. 1 off below ground level. She knows the well was not properly abandoned as required by rule, however, because it was not properly grouted with neat cement grout or bentonite. She dug down beside the well for a total of two and a half feet without seeing any evidence of grout or bentonite. The fact that the well had pipe dropped into it, and the existence of the cutting off of the pipe below ground, made it inappropriate for the intended purpose of providing water for the home. Ms. Vance she does not know who cut off the pump; Ms. Grant does not know who cut off the pipe; and Respondent denies having done it. Though the work was clearly done by someone with access to well drilling tools, Respondent was not the only driller to work at the site. Therefore, it cannot be found that Respondent cut the pipe off below ground. It is clear, however, that Respondent failed to properly abandon and close Well No. 1, when he found it unusable, and it was his responsibility to do so. Well No. 2 also was not properly sealed by Respondent, according to Ms. Vance. A proper seal would include a good cap, not a cracked PVC cap, which would suffice only as a temporary cap. A proper cap would be one that is water tight and could not be readily removed. Ms. Vance admits she does not know who cracked the existing cap - only that it is cracked. This well, too, did not produce water fit for its intended purpose because of the existence of the tools which had been dropped into it. A permit was not obtained to abandon it. Under all these circumstances, Ms. Vance did not attempt to determine if it would produce sufficient water. Finally, Ms. Vance concluded that Well No. 3 was not properly seated. According to rule, the casing has to seat to or below the static water level. Based on the debris in the water drawn from this well, she was satisfied this well was not properly cased. Mack Pike, a water resources technician III for the District, does much of the well logging for the District. The equipment he uses goes to the bottom of the well and shows the diameter up to the point where the casing usually starts. Among other items, he uses a camera, which is what he used on the wells in issue here. On July 22, 1999, he went to the Grant property to look at Well Nos. 1 and 2. His first efforts to get into these wells were unsuccessful, so he stopped his effort and returned on May 10, 2000 with the camera. On May 17, 2000, he also ran the camera down all three wells. In Well No. 3 he found the pump at 176 feet. He found Well No. 1 cut off about one and a- half feet below ground level, with a log jammed into the casing top down to the level of the casing. The pipe had been cut with a torch, but the casing had not been properly sealed with bentonite. Use of the log to stuff the pipe was an improper seal. He found the well open below the log down to 128 feet, but obstructed below that. There was no water in the well. Respondent adamantly insists he used bentonite in all three wells, but since no trace of it was found in any of the wells by Mr. Pike or Ms. Vance, it is found that he did not. At Well No. 2, Mr. Pike found a welded slab around the pipe to keep the casing from falling in. The cap was cracked and was no good. The camera showed the well was closed off. He hit sand at 158 feet. The presence of sand indicated to Mr. Pike that the casing was not properly sealed. The well was unusable. Mr. Pike did not examine Well No. 3 until after he opened the sediment tank and found sand which appeared to have come from the surface. If the casing had been properly sealed, there should have been no surface sand. This means that the well was not properly seated. Respondent has been a licensed well contractor since 1989 and has drilled approximately 300 wells since that time. Though he claims he suggested alternate locations for the wells to Ms. Grant, she insisted the well be placed near her irrigation line. Respondent claims he was against this because the site was a transition area which raised the possibility of the pipe bending. Notwithstanding the advice he got from others regarding the siting of the wells, he agreed to place the well where Ms. Grant wanted it. Respondent claims he dug the first well and installed the pump, but the power was insufficient to run it. As a result, he pulled out the pump and told Ms. Grant that when she got the proper power to run it, he'd come back and reinstall the pump. It was when he returned to the site in response to her call that he found that the site of Well No. 1 had been vandalized. Though he recommended the well be abandoned, Ms. Grant did not want to do that, so he moved over 20 feet and started to drill again. He categorically denies having cut off the casing of Well No. 1 below ground level. It has been found that the evidence shows Respondent that cut the pipe on Well No. 1, is insufficient. Mr. Holt admits he did not seek a permit for this second well because his understanding was that one could drill like wells on the same premises without abandoning the pre- existing wells. He drilled the second well which, he claims, produced water for five to six months. However, it was impossible to stop the sand from infiltrating the well, and the well was not producing sufficient water to irrigate the grove. Because the water produced by Well No. 2 was insufficient in quantity to use the 5-horsepower pump called for in the contract, Respondent replaced it with a one and a-half horsepower pump. According to Respondent, he and Ms. Grant discussed where to site Well No. 3. Finally, Ms. Grant agreed to move it up the hill on which Respondent wanted to site it, as this would accommodate her irrigation system. Respondent was not comfortable with this because it was on the slope too close to the others, but he went along with it. As Well No. 3 was being constructed, Respondent discussed with Ms. Grant the need to close Well Nos. 1 and 2. She did not want to pay for the closings, so he decided to cap the existing wells. As a result, Well No. 2 is still a viable well, and though it will not irrigate the grove, it will, Respondent claims, provide sufficient water for the house. He admits placing the PVC cap on Well No. 2, but claims it was not cracked when installed. He also admits to placing the plate around the top of Well No. 2 because the drive shoe was bent. It broke off, and he was afraid if he did not reinforce the area as he had the casing would collapse when he tried to ream out the drive shoe to recover it. At the 126-foot mark of Well No. 3, Respondent hit a boulder through which the drill would not go. At that time, the hole below the casing was still good with no infusion. Respondent installed a pump and drew water, but, the pump soon began to pull sand. Respondent installed a filter, but it was insufficient. He ultimately drilled through the rock and placed the pump at 178 feet. That well is currently being used. Respondent claims that all wells in that area pull sand to some degree. He insists that Ms. Grant's wells just pull too much. He claims he could have quit, but because of his relationship with the builder, he felt obligated to drill a working well for Ms. Grant. Anthony Gilboy, who has been with the District for 20 years, is currently the District's manager of well construction. He is familiar with the statutes and the rules of the District relating to water well construction and abandonment. According to Mr. Gilboy, they are loose enough to permit some latitude in their application. There is a freedom to amend methodology where circumstances so dictate. A licensed water well contractor is required to obtain a permit to construct a water well. Once a permit is drawn, if the well needs to be changed, the permittee must apply for an amendment and then plug the old well consistent with District guidelines. Plugging is critical to prevent potential contamination of water and to preserve it. Rule 40D-3.042, Florida Administrative Code, permits multiple (up to 8) wells under a single permit for similar types of wells that have diameters of 4 inches or less, but not domestic water wells. There are different ways to drill a water well. One is by cable-tool drill in which a bit is hammered into the rock. As the casing is being driven down into the ground, it holds back the sediment. Another method involves the use of a rotary drill which employs water and bentonite to hold back sediment. It is possible to tell whether bentonite was used in the drilling process just by looking at the well. The bentonite adheres to the well casing and looks different from the surrounding soil. In fact, there is no soil appearing naturally in Florida that looks like bentonite. In the instant case, Respondent applied to use the cable-tool method. Bentonite traces were not found at the sites. When a well is drilled, the casing is to be poured in segments as drilling progresses. When a well is to be abandoned, one approved method of doing so involves the use of bentonite, a type of clay which swells to about 10 to 15 times its volume in dry form. Studies done by the District in conjunction with the University of Florida show that over all, bentonite is a better seal than natural soil, and it prevents surface water from settling down the side of the casing. Rule 40D-3.517(3), Florida Administrative Code, requires bentonite's use for this purpose, and a rule of the Department of Environmental Protection, though not specifically mentioning bentonite, requires that casings be sealed. The casing of a water well is used to seal off any unconsolidated materials. Rule 62-532, Florida Administrative Code, requires the casing be extended into the static water level at the time the well is drawn. If a well is not sealed, debris and sand can slide into the well and damage the pump and other equipment. If debris is seen, it usually means the casing was not sealed properly. After a well is completed, the rules of the District and the Department, Rules 40D-3.521(2) and 62-532.500(3)(a)4, Florida Administrative Code, respectively, require the upper part of the well to be sealed off to prevent infusion of contaminants. The seal must be tamper-proof and permanent. A fence post is not acceptable, nor is a cracked PVC cap. In addition, the upper terminus of a private well must extend at least 1 foot above the land surface. The purpose of this requirement is to allow the well to be found, and to prevent infusion of contaminant. (Rule 40D-3.53(2), Florida Administrative Code) According to Rule 62-532-500(4), Florida Administrative Code, all abandoned or incomplete wells must be plugged from top to bottom with grout (neat cement). The Rule and Stipulation 39 of the permit provide that the well drilling contractor is responsible for proper abandonment of a well. This is not conditioned on the willingness of the owner to pay. The contractor has the responsibility to do it. An abandoned well is one which the use of which has been permanently discontinued or which is so in need of repair as to be useless. These determinations must be made by the District, hence the need for the permit. In the instant case it was determined that Well Nos. 1 and 2 were not suited for their intended purpose, and they should have been properly abandoned. The process for well abandonment is not complex, but it does require the obtaining of a permit. At least 24 hours in advance of initiation of the plugging process, the contractor must advise the District that the process will be implemented. Thereafter, the well hole is filled with neat cement or bentonite grout. To abandon a well by any other method would require a variance from the District. Neither permit nor variance was sought as to Well Nos. 1 and 2. The standards adopted by the Department and the Water Management Districts are statewide in application. Construction of a water well without first obtaining a permit is classified as a major violation. The failure to properly abandon a well or the failure to use bentonite or neat cement in well closure are also major violations. Failure to construct a well so that the casing extends below the static water level is a major violation. Failure to seat or seal a casing into rock formation is a major violation. Failure to place a water-tight seal and failure to extend well casing at least one foot above the ground level are both major violations. Penalties may be assessed for these violations according to a schedule set out in the Department rules. However, these penalties may be adjusted based on such factors as the economic benefit to the contractor of his non-compliance; his history of non-compliance; the negligence or willfulness of his actions; and whether he acted in good faith. Under the circumstances of this case, Mr. Gilboy is of the opinion that the actions proposed by the District are appropriate.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is recommended that Respondent, Fletcher Holt be ordered to pay an administrative fine of $4,600; that 46 points be assessed against his water well contractor's license; and that he be required to properly abandon Well Nos. 1, 2, and 3, which he drilled on the Grant property. DONE AND ENTERED this 18th day of July, 2000, in Tallahassee, Leon County, Florida. ARNOLD H. POLLOCK Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 18th day of July, 2000. COPIES FURNISHED: Onofre Cintron, Esquire 305 North Parson Avenue Brandon, Florida 33510 Margaret M. Lytle, Esquire Southwest Florida Water Management District 2379 Broad Street Brooksville, Florida 34609-6899 E. D. "Sonny" Vergara, Executive Director Southwest Florida Water Management District 2379 Broad Street Brooksville, Florida 34609-6899 Kathy C. Carter, Agency Clerk Office of General Counsel Department of Environmental Protection 3900 Commonwealth Boulevard, Mail Station 35 Tallahassee, Florida 32399-3000

Florida Laws (1) 120.57 Florida Administrative Code (5) 40D-3.04140D-3.04240D-3.51740D-3.52162-532.500
# 6
ROBERT STARR, JIM DUFF, BETTY BRENNEMAN, MICHELE D`AMOUR, RICHARD BOSSEY, AND JANE BOSSEY vs BOCILLA UTILITIES COMPANY AND DEPARTMENT OF ENVIRONMENTAL PROTECTION, 95-001577 (1995)
Division of Administrative Hearings, Florida Filed:Port Charlotte, Florida Mar. 31, 1995 Number: 95-001577 Latest Update: Jan. 17, 1996

The Issue The issue in this case is whether Bocilla Utilities, Inc. is entitled to a public drinking water construction permit for the expansion of an existing reverse-osmosis water plant located on Don Pedro Island.

Findings Of Fact Bocilla Utilities, Inc. (Applicant) was incorporated in the mid-1980s for the purpose of supplying water to a residential development being developed by some or all of the principals of the water utility. The residential development is on a bridgeless barrier island in Charlotte County. Applicant initially proposed locating the plant on the mainland with submerged pipes to the island. This proposal was approved by the Army Corps of Engineers and Department of Environmental Regulation, but the Trustees of the Internal Improvement Trust Fund denied Applicant's request for an easement across submerged state lands. After failing to obtain a submerged land easement, Applicant obtained the permits to build a reverse-osmosis (RO) water plant at its present location on the barrier island. Included among the permits was a permit from the Department of Natural Resources dated September 11, 1985, allowing Applicant to construct the water treatment plant, two underground concrete water storage tanks, and a tennis court on top of the tanks up to 100 feet seaward of the coastal construction control line. Applicant is a certificated utility that, since September 1994, has been regulated by the Public Service Commission. It was previously regulated by Charlotte County. By Application for a Public Drinking Water Facility Construction Permit filed January 26, 1995 (Application), Applicant requested a permit to expand the treatment capacity of its water plant from 30,000 gallons per day (gpd) to 120,000 gpd. By installing the new treatment equipment in two stages, the plant would have an immediate capacity of 60,000 gpd. Applicant proposes no material changes to the existing water storage tanks, distribution system, or the size or location of the building that houses the existing and proposed water treatment equipment. The Application form asks Applicant to identify any well construction permits obtained from the water management district and to provide a map showing any sanitary hazards within 500 feet of each proposed well. The Application form requires Applicant's professional engineer to attest that the project complies with Chapter 62-555, Florida Administrative Code. The Engineering Report attached to the completed Application supplies the requested information, but explains that Applicant's hydrogeologist had not, as of the date of the report, obtained the well-construction permits from the water management district. By Intent to Issue dated February 27, 1995, the Department of Environmental Protection (DEP) gave notice of its intent to issue the requested permit. Noting that it has permitting jurisdiction under Section 403.861(9), Florida Statutes, and that the project is not exempt, DEP determined that a public drinking water construction permit is required for the proposed work. The Intent to Issue is based on DEP's belief that reasonable assurances have been provided to indicate that the proposed project will not adversely impact water quality and the proposed project will comply with the appropriate provisions of Florida Administrative Code Rules 62-4, 62-550, 62- 555 and 62-699. Petitioners timely objected to the issuance of the proposed permit. Petitioners reside in Applicant's certificated area on the barrier island. They presently obtain their water from private wells or cisterns, rather than Applicant. If the permit were granted so as to expand Applicant's production capacity, Petitioners would be more likely required to obtain water from Applicant due to Charlotte County's mandatory hookup ordinance. About a week before filing the Application, Applicant applied on January 20, 1995, to the Southwest Florida Water Management District (SWFWMD) for permits for the construction of the two wells included in the draft permit. SWFWMD granted these permits on February 8, 1995, about three weeks after receiving the applications. Consistent with its normal practice in granting well-construction permits, SWFWMD did not provide interested persons with a point of entry to challenge the permits. The SWFWMD permits provide in part: Compliance with state and local county health regulations as per Chapter 17-555, Florida Administrative Code (F.A.C.), is required via the Drinking Water System Permit. Compliance with Chapters 17-532 and 17- 555, F.A.C., on construction standards and grouting procedures for Public Supply Wells shall be followed. * * * This well site has been judged as satisfactory based on the location and information provided to [SWFWMD] at the time of the well site inspection. . . . * * * Public Supply Wells must meet certain setback requirements from all potential sources of contamination. To obtain and retain your Drinking Water System Permit, please coordinate any future development of the surrounding property within 200' of your well site with the Charlotte County Health Department. * * * By letter dated February 14, 1995, from a SWFWMD representative to Applicant's hydrogeological consultant, SWFWMD acknowledged that it granted Applicant a setback variance of 100 feet from nearby septic systems in permitting the two new wells. The letter states that the "variance is based upon the known geohydrology of the area and the proposed construction of the wells," as well as an understanding that the "existing public system is working out with no problems." A month later, a letter from a DEP engineer identifies various types of sanitary hazards and implicitly ratifies the setback variance granted by SWFWMD. By letter dated March 14, 1995, Gary Maier identified sanitary hazards as septic tank systems, sewer lines, swimming pools and associated chemicals, pet excretions, and residential chemicals such as pesticides, fertilizers, paints, oils, and solvents. Mr. Maier's letter acknowledges that SWFWMD had granted a variance from 200 feet to 100 feet "due to geologic and treatment conditions," but cautions that "any further decrease in setbacks for sanitary hazards would be imprudent." Applicant's water plant is located on Don Pedro Island, which is part of an island chain consisting, from north to south, of Knight Island, Don Pedro Island, and, usually, Little Gasparilla Island. The low-lying island chain fronts the Gulf of Mexico on the west. The northern end of the island chain abuts Lemon Bay on the east. Over the years, storms have opened and closed passes at various points along the island chain. The island chain is vulnerable to flooding, and some areas are more vulnerable than others. One of the historic passes is Bocilla Pass. The plant site area is about a half mile south of this now-closed pass. The Gulf beaches on either side of the point at which the Bocilla Pass emptied into the Gulf have suffered considerable erosion in recent years, to the point that recently built homes have been inundated by water and had to be removed or razed. The plant site area includes the building housing the water treatment and other equipment, two 50,000-gallon storage tanks immediately to the west of the building, the existing water supply well located just east of the building, and the two proposed water supply wells located a short distance east and south of the building. The existing storage tanks, which mark the westernmost extent of the plant site area, are about 235 feet east of a pronounced erosion line along the Gulf shore and are separated from the Gulf by South Gulf Boulevard. Immediately adjacent to the tanks is the building housing the water treatment equipment. The two proposed wells would be located about 200 and 450 feet south of the tanks. The plant site area is much closer to water on the east. The southerly proposed well is about 12 feet west of the mean high water line of Bocilla Lagoon, and the northerly proposed well is about 16 feet west of the mean high water line of Bocilla Lagoon. The building housing the water treatment equipment is further away from the water, but still less than 50 feet. Bocilla Lagoon is a long and narrow waterway that was dredged in a north-south direction parallel to the Gulf shoreline. Bocilla Lagoon is closed off by land less than a quarter of a mile south of the plant site area. The lagoon runs to the north to connect to what remains of Bocilla Pass, which then runs easterly a short distance to a dredged extension of Lemon Bay. The building housing the water treatment equipment and the storage tanks are not located in the vulnerable FEMA V[elocity] zone. However, the record does not establish the location of the proposed wells relative to the V- zone. Testimony concerning the location of the V-zone relative to the water plant establishes only that the building, not the two proposed wells, are safely outside the V-zone. Nothing in the record establishes contour lines on the barrier island in the vicinity of the plant site area or the elevation of the land at the site of the two proposed wells. Applicant has recently upgraded the security of the storage tanks through the addition of locks to the manholes. The installation of fences is impractical and unnecessary because the tanks are topped by a six-inch, reinforced slab of concrete that also serves as tennis courts. The proposed wells would be well constructed. They would extend 167 feet into a confined artesian aquifer. The concrete pressurized grouting coupled with a potentiometric surface of seven feet make it unlikely that the wells would be vulnerable to contaminants. During severe-storm conditions, pumping would cease, leaving the system in its naturally pressurized state, so that surface water could not easily flow down into the well. Additionally, the RO filtration technology is one of the most effective at eliminating contaminants from drinking water. However, failing to have shown that the two proposed wells are outside the V-zone, Applicant has also failed to provide reasonable assurances that the two proposed wells would be protected from damage from the velocity wave action associated with the V-zone. Applicant has constructed and operated the water plant in an exemplary fashion. Applicant has at all times met or exceeded applicable standards for water quality, safety, and operations. Original construction exceeded minimum requirements and added to the durability of the fixtures. The building housing the water treatment equipment and hydropneumatic tank has been issued a floodproofing certificate by a registered engineer. The certificate states that, with human intervention in the form of bolting predrilled plywood boards over openings, the plant is waterproofed to an elevation of 14 feet NGVD, which is one foot higher than the FEMA-supplied base flood elevation of 13 feet NGVD. Applicant employs an operations manager with a Class A license rather than one with merely a Class C license, even though only a Class C operator is required for a water plant of this size. Also, Applicant maintains a low-level chlorine indicator, even though not required to do so due to the small size of the utility. The relevant sewage flows from the quantity of water that would be drawn by each proposed well would be greater than 2000 gpd. Near the proposed wells are single- and multi-family residences served by on-site sewage disposal systems, the above- described road, a swimming pool on the other side of the road, an injection well, and the treatment plant at which Applicant stores anti-scaling agents, ammonia, chlorine, and acid. However, Applicant has shown that none of these items is within 100 feet of the proposed wells. Bocilla Lagoon is not a sanitary hazard at this time. The two deficiencies in Applicant's proof relate solely to the susceptibility of the proposed wells to a significant risk of damage from flooding and other disasters and the location of the proposed wells relative to areas least subject to localized flooding. In all other respects, such as fire flow and security, Applicant has provided reasonable assurances that the applicable criteria would be satisfied or that the proposed work would have no bearing on the issue raised by Petitioners.

Recommendation It is RECOMMENDED that the Department of Professional Regulation enter a final order denying the application of Bocilla Utilities, Inc. for a public water supply construction permit. ENTERED on August 25, 1995, in Tallahassee, Florida. ROBERT E. MEALE Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings on August 25, 1995. APPENDIX Rulings on Respondents' Proposed Findings 1-4: adopted or adopted in substance. 5: rejected as irrelevant and repetitious. 6-7 (except last sentence): adopted or adopted in substance. (last sentence): rejected as unsupported by the appropriate weight of the evidence and legal argument. (except last sentence): rejected as subordinate, recitation of testimony, and irrelevant. 8 (last sentence): adopted or adopted in substance. 9: rejected as irrelevant. 10: adopted or adopted in substance, except to extent of legal argument as to effect of action of SWFWMD in granting variance. 11-12: rejected as irrelevant. 13 (except last sentence): adopted or adopted in substance. 13 (last sentence): rejected as irrelevant. 14-17 (except last sentence): adopted or adopted in substance. 17 (last sentence): rejected as legal argument. 18-21: adopted or adopted in substance. 22: rejected as unnecessary. 23: adopted or adopted in substance as to protection from only sanitary hazards. 24-26: adopted or adopted in substance as to description of aquifer, proposed well construction, and efficiency of RO filtration process, but not as reasons in support of Paragraph 23. 27 (first sentence): adopted or adopted in substance. 27 (remainder): rejected as unnecessary. 28: adopted or adopted in substance. 29: rejected as unnecessary. 30-31: adopted or adopted in substance. 32: rejected as irrelevant. 33-40: rejected as unsupported by the appropriate weight of the evidence. COPIES FURNISHED: Virginia B. Wetherell, Secretary Department of Environmental Protection Twin Towers Office Building 2600 Blair Stone Road Tallahassee, FL 32399-2400 Kenneth Plante, General Counsel Department of Environmental Protection Twin Towers Office Building 2600 Blair Stone Road Tallahassee, FL 32399-2400 Robert Starr P.O. Box 5337 Grove City, FL 34224 Betty Brenneman P.O. Box 67 Placida, FL 33946 Jim Duff P.O. Box 41 Placida, FL 33946 M. Christopher Bryant Oertel Hoffman P.O. Box 6507 Tallahassee, FL 32314-6507 Thomas I. Mayton, Jr. Assistant General Counsel Department of Environmental Protection 2600 Blair Stone Road Tallahassee, FL 32399-2440

USC (1) 44 CFR 59.1 Florida Laws (6) 120.52120.57120.68373.308403.853403.861 Florida Administrative Code (8) 40D-1.60340D-3.50562-555.31062-555.31262-555.31562-555.36062-555.52062-555.530
# 7
CYNTHIA VALENCIC vs DEPARTMENT OF ENVIRONMENTAL PROTECTION AND SARASOTA COUNTY, 01-003535 (2001)
Division of Administrative Hearings, Florida Filed:Sarasota, Florida Sep. 06, 2001 Number: 01-003535 Latest Update: Jun. 07, 2004

The Issue The issue is whether Sarasota County's application for a permit authorizing the construction of a Class V, Group 3 aquifer storage and recovery well system at the Central County Water Reclamation Facility in Sarasota, Florida, should be approved.

Findings Of Fact Based upon all of the evidence, the following findings of fact are determined: Background On September 14, 1999, the County, through its Utilities Department, filed with the Department an application for a permit to construct a Class V, Group 3 aquifer storage and recovery (ASR) test well and monitor well system at its Central County Water Reclamation Facility, 79005 South McIntosh Road, Sarasota, Florida. The Department is charged with the responsibility of issuing such permits. On July 19, 2001, the Department issued its Notice of Intent to issue Permit No. 160882-001-UC. The permit authorizes the County to construct one test well to determine the feasibility for the storage and recovery of reclaimed water from the Suwannee Limestone of the Upper Floridan aquifer system at a depth of between 500 and 700 feet below land surface. Also, the County is authorized to construct three monitor wells, one into the target storage zone, the second into the first overlying transmissive unit, and the last into the overlying Arcadia Formation. The storage capacity of the test well is projected to be between one and two million gallons per day. On August 10, 2001, Petitioner, who is a citizen of the State of Florida, resides in Tallahassee, and is a long- time employee of Legal Environmental Assistance Foundation, Inc., filed her verified Petition for Formal Administrative Hearing (Petition) under Sections 120.569, 120.57(1), and 403.412(5), Florida Statutes. In her Petition, she generally contended that the permitting would have the effect of impairing, polluting, or otherwise injuring the water of the State because the proposed injectate (being placed in the well) will not meet primary and secondary drinking water standards, may be harmful to human health, and will violate the minimum criteria for groundwater. She also contends that the permit application was not signed by the proper signatory and that the Department failed to require the County to first drill an exploratory well (as opposed to a test well). While these allegations were not sufficient to demonstrate that Petitioner's substantial interests were affected by the proposed permitting, they were deemed sufficient (subject to proof at final hearing) to satisfy the pleading requirements of Section 403.412(5), Florida Statutes. Water Reuse Generally Water reuse is the use of reclaimed water for a beneficial purpose. Because of Florida's continuing population growth and occasional water shortage, the use of reclaimed water is an important conservation tool. Indeed, in 2002 the Legislature showed strong support for water conservation and reuse by amending Section 403.064(1), Florida Statutes, and adding language which states that "the reuse of reclaimed water is a critical component of meeting the state's existing and future water supply needs while sustaining natural systems." To this end, the County has filed its application for the purpose of using reclaimed water for such lesser uses as irrigation so that the existing high quality fresh groundwater can be used for higher and better purposes such as drinking water for the general public. The Southwest Florida Water Management District (District) has also encouraged the use of reclaimed water by providing funding for this type of program to induce utilities to move forward with reuse programs. In addition, the Department has been proactive in promoting the reuse of water throughout the State in order to conserve water resources. Aquifer Storage and Recovery Aquifer storage and recovery (ASR) is a reuse program encouraged by the Legislature, Department, and District. It involves the storage of water underground in a suitable formation, through a well, during times when water is available to put into the well, and then recovery of that stored water from the well during times when it is needed for some beneficial purpose. Put another way, an ASR operates like an underground storage tank. Water is placed into the ASR wells (by means of pumping) during recharge periods when it is raining and there is no demand for reclaimed water. When the water is pumped into the well, a stored water bubble is created by using buffer zones made of water with more salinity than the stored water. These buffer zones are designed so that there can be full recovery of the stored water. The recovery rate is generally around 100 percent. There are three ways to store reclaimed water: surface ponds, storage tanks, and ASR. The ASR storage method is the most efficient method of storing reclaimed water, and it has significant environmental, utility, and economic benefits. The ASR method has no impact on wetlands and ecosystems, and unlike pond storage (and to a lesser degree storage tanks), it does not require the use of large surface areas and is not affected by evapotranspiration and seepage. (There is typically a 60 percent loss of water due to evaporation in surface storage areas.) It also results in cost savings (up to a 50 percent reduction in capital costs) and avoidance of wetlands impacts. One of the goals of the County's Comprehensive Plan is to maximize the use of reclaimed water for irrigation purposes. Because other storage methods have proved to be inefficient, ASR is the County's preferred storage method to meet this goal. At the time of the final hearing (August 2002), there were at least fifty-six ASR systems operating outside the State of Florida (and around one hundred more in various stages of development) and eleven ASR systems successfully operating in the State, the first one having been established in 1983. At that time, there were also two ASR test programs underway in the area, including one in the Englewood Water District, a few miles to the south of the proposed project, and the Northwest Hillsborough ASR program, which is located just north of the County. Also, ASR systems are located in Manatee County and near the Peace River, which is in the same storage area being proposed here. Therefore, the County has the benefit of drawing upon twenty years of experience with this type of system. The Permit The County began an informal water reuse program in 1988, when it first used effluent disposal for irrigation purposes at a local golf course. A formal program (the Reuse Master Plan) was commenced in 1994; however, the County still lacks the storage capacity to meet the seasonal demands of its reuse customers.3 Without storage, any excess water must be discharged and lost. In order to meet the County's goal of maximizing reclaimed water use, it must be able to adequately store reclaimed water. Due to projected population growth and issues concerning management of limited resources, in 1997 the County began considering the use of ASR as a means to better manage its reclaimed water supply and demand for those facilities which serve the North County Reuse System. If all necessary permits are obtained, the County intends to use reclaimed water from its Central County wastewater facility. Currently, that effluent receives advanced tertiary treatment with deep bed filtration and high level disinfection. The proposed test well will be approximately 700 feet deep; at that depth, the injection (or storage) zone will consist of the Suwannee Limestone formation of the Upper Floridan aquifer system. The storage zone is brackish, with the water quality or salinity having about six times the acceptable degree of salinity for a drinking water source. It is anticipated that the total dissolved solids (TDS) concentration in the injection zone will be greater than 3,000 TDS. If water quality at the proposed injection zone is greater than 3,000 TDS, this fact will be revealed during the construction of the test injection well and during the various tests to be conducted during construction. (Assuming this level of TDS is found, then at that point the County would have to provide reasonable assurance that the water reclamation facility is providing full or principal treatment to the domestic waste.) The evidence establishes that there is some level of transmissivity in the confining layer overlying the proposed injection zone. That is to say, there is some small degree of connectivity between the proposed injection zone and the aquifer above it. The actual level of transmissivity will be determined based upon tests run during the construction of the first monitor well. The effluent produced from the County's water reclamation facility meets drinking water standards. If the plant is unable to produce effluent that meets or exceeds the applicable water quality standards, this issue is an operational concern which can be addressed in a permit modification authorizing operational testing. Under the Department's permit process, if the construction permit is approved, the County will construct a monitor well to obtain more site-specific information concerning such things as the geology, hydrology, and water quality at the site. (At this point, while the County has published literature sources and regional geologic information from two nearby ASR systems using the same storage area to rely upon, it has no specific data for the very small parcel where the well will be constructed.) Once the information is obtained, an engineering report is prepared and submitted to the Department. That report contains a wide array of technical data, including construction data, hydrogeologic data, formation samples, water quality samples, hydraulic data, core data, Packer data, and geophysical data. This information is then used by the Department (and a special advisory committee called the Technical Advisory Committee) to evaluate whether the site can be authorized for cycle testing and later for operational purposes. If cycle testing is appropriate, the County must then request a modification to its construction permit to authorize cycle testing of its ASR well. That modification, and any others that may be warranted by the new information, are "final agency action subject to the procedural safeguards contained in Chapter 120, F.S." Fla. Admin. Code R. 62- 528.100(2). When the test injection well is constructed and eventually placed into operation, monitor wells will be used to monitor background water in both the injection zone and in the two aquifers overlying the proposed injection zone. However, until further Department approval is obtained, no injection of reclaimed water is authorized; the permit being sought here authorizes only the construction of the well itself. Finally, Florida Administrative Code Rule 62- 528.640(1)(a) requires that the County obtain a separate operation permit after the construction permit has been issued and testing completed. Criteria and Standards for a Class V Well Florida Administrative Code Chapter 62-528 governs all injection wells defined as Class I, III, IV, or V wells. (In Class II wells, the injected fluids are used in connection with oil and natural gas production and are regulated by the Florida Geological Survey under Chapter 377, Florida Statutes.) The category of wells in which the County seeks a permit is a Class V, Group 3 permit, which includes all domestic wastewater wells. See Fla. Admin. Code R. 62- 528.300(1)(e)3. A Group 3 well involves the injection of fluids that have been processed through a permitted domestic wastewater treatment plant. Even though the County is requesting a permit for a Class V well, at the request of the Department, it submitted a different (and more stringent) type of application (a "900" application) since the Department has the authority to apply "any of the criteria for Class I wells" if it believes that the well may cause or allow fluids to migrate into an underground source of drinking water which may cause a violation of primary or secondary drinking water standards. See Fla. Admin. Code R. 62-528.605(2). (A Class I well is a well used to inject hazardous waste below the lowermost formation containing an underground source of drinking water.) In this case, the Department opted to apply certain Class I construction standards for the well, in addition to the normal standards for Class V wells. Those standards are found in Florida Administrative Code Rule 62-528.400. This means that the County will be held to a higher standard than a general underground injection control permit. Florida Administrative Code Rule 62-528.605 contains the Class V well construction standards. For the following reasons, the County has given reasonable assurance that all criteria will be met. Subsection (1) of the rule requires that "a well shall be designed and constructed for its intended use, in accordance with good engineering practices, and the design and construction shall be approved by the Department with a permit." The evidence clearly establishes that good engineering practices have been followed by the County for the design and construction of the well. Subsection (2) requires that an applicant design and construct the well so that it will not "cause or allow fluids to migrate into an underground source of drinking water which may cause a violation of a primary or secondary drinking water standard . . . or may cause fluids of significantly differing water quality to migrate between underground sources of drinking water." Subsection (3) is also directed at the migration of fluids. The evidence shows that the migration of fluids between aquifers will be prevented as a part of the design and construction of the ASR well program. The design chosen by the County has been proven to prevent migration of fluids between aquifers, and it will preserve the integrity of the confining beds. The combination of steel casing and cementing prevents the migration of fluids along the borehole. The well will be constructed by a Florida licensed contractor, as required by Subsection (4). The remaining criteria in the rule will be satisfied during the construction process. Florida Administrative Code Rule 62-528.620 contains reporting requirements for Class V wells. All of these requirements are included in the draft permit and will be met by the County. The Department has also included Special Condition 1(h) in the draft permit, which provides that nothing will be injected into the well that does not meet the Federal Primary Drinking Water Standard. This condition is drawn from Florida Administrative Code Rule 62-528.307, which specifies general conditions to be included in underground injection control permits. In accordance with this condition, the County will monitor the movement of fluid to ensure that there are no violations. The County has also demonstrated that there will be no hazardous waste injection, as prohibited by Florida Administrative Code Rule 62-528.600(1)(a). Finally, the requirements of Florida Administrative Code Rule 62-528.630(3) do not apply at this time since the proposed permit is only for construction of a well, and not the injection of water. Class I Well Construction Standards Because the Department has imposed more stringent construction standards on the County, the Class I well construction standards found in Florida Administrative Code Rule 62-528.410(1) come into play. The County has demonstrated that it has complied with the requirement that the well be cemented and cased. In addition, the County has considered corrosion protection in the cementing and casing of the proposed well. Because the casing will be cemented, coating is not required. Finally, there will be no open annulus (spacing between the casings and the bore hole) in the ASR test well. Other Requirements Drilling Geophysical surveys will be conducted during the pilot hole drilling stages to collect hydrogeologic information. Further, drill stem tests will be conducted throughout the drilling, and a driller's log will be maintained. See Fla. Admin. Code R. 62-528.410(3). Casing Steel casing will be used, taking into consideration the possible corrosion of steel. The life expectancy of the well was considered, as required by Florida Administrative Code Rule 62-528.410(4)(a), and was determined to be unknown. Cement Type 2 cement will be used, which is sulfate resistant and is specifically designed for use in regions such as Florida. Testing Geophysical logs will be used during the construction and testing of the well to verify the physical conditions of the well and confirm that construction is proceeding according to the plan. Also, geophysical surveys will be conducted during pilot hole drilling stages to collect subsurface hydrogeologic information. Environmental concerns Once a drilling contractor is selected, the location for the disposal of drilling fluids will be submitted for Department approval in accordance with Special Condition 1(b) in the draft permit. Monitor well construction standards The monitor well will meet all construction requirements under Florida Administrative Code Rule 62- 528.420. (The same standards that are applied to Class V wells are also applied to monitor wells.) General design considerations Exploratory pilot hole drilling stages will be conducted to collect hydrogeologic information, and complete sets of geophysical surveys will be performed. Because cement generates heat, temperature surveys will be run as a part of the construction sequence to verify coverage of the cement. This means that tools will be lowered into the hole after each cementing stage to verify coverage. Monitoring requirements Florida Administrative Code Rule 62-528.425(1)(d) requires that an applicant perform "a demonstration of mechanical integrity . . . at least once every five years during the life of the well." Details to accomplish this are found in both the application and the draft permit. Florida Administrative Code Rule 62-528.425(1)(f) requires that the background water quality of the injection zone and monitoring zone be determined prior to injection. The County will perform this task before injection occurs. Florida Administrative Code Rule 62-528.425(1)(g) requires that monitor wells be installed above the injection zone near the project. The County will construct three wells, as required by the rule. They will also be placed at a sufficient distance from the project, as required by Florida Administrative Code Rule 62-528.425(1)(h), and the specific monitoring intervals are detailed in the draft permit. Reporting requirements The Department requires periodic data reports and progress reports regarding eight separate types of information. See Fla. Admin. Code R. 62-528.430(1)(a). These reporting requirements will be performed and followed. Because a Class V well may be required to be plugged and abandoned, the Department requires a plugging and abandonment report. See Fla. Admin. Code R. 62-528.625. All requirements under this rule have been met, and the County has the financial resources to accomplish this task, when required. General Class I permitting requirements Florida Administrative Code Rule 62-528.440 sets forth general permitting requirements for Class I and III wells. Because the Department has opted to impose certain Class I criteria on the County's application, some of the criteria in this rule apply. They include special conditions 1(a), (c), and (e) in the permit for well construction, system modification, and fluid injection, all of which have been, or will be, met by the County. In addition, the duration for the operation permit cannot exceed five years, and the County was required to submit an application for a permit which conformed with the requirements of the rule. As a part of its application, the County established an area of review for the construction permit, taking into account the zone of endangering influence. See Fla. Admin. Code R. 62-528.300(4). (An area of review is the area surrounding an injection well, including the area of possible endangering influence.) This requirement was met because the established area of review is one mile even though the predicted area of influence is expected to be no more than 400 feet. As a part of the preceding analysis, the County also conducted an area of review study, as required by Florida Administrative Code Rule 62-528.440(6)(a). In doing so, the County evaluated the impact on the ASR well, and the impact the ASR well would have on the surrounding area. That evaluation determined that there are no water supply wells within the area of review. Because the construction permit only has a duration of five years, and given the County's supporting information submitted with the area of influence study, the Department has not required that the County provide a corrective action plan. See Fla. Admin. Code R. 62-528.300(5)(a). Class I well construction permit criteria All guidelines for constructing the well have been followed, and the construction of the well will not be a source of pollution. The County has provided reasonable assurance that the project will function in accordance with the requirements of Florida Administrative Code Chapter 62- 528. Hydrological modeling Finally, Florida Administrative Code Rule 62-528.405 specifies criteria for evaluating the geologic and hydrologic environment of Class I wells. The County has satisfied all criteria in the rule. Other Issues Exploratory well Petitioner contends that the Department should require the County to construct an exploratory well, as defined in Florida Administrative Code Rule 62-528.603(1), rather than a test well. That rule defines an exploratory well as one being "drilled for the specific purpose of obtaining information to determine the feasibility of underground injection at the proposed site." However, Florida Administrative Code Rule 62-528.450(1)(b) requires an exploratory well only "for those projects located in an area where available information is lacking concerning geologic or hydraulic confinement or existing information indicates that geologic or hydraulic confinement may be poor or lacking." For example, an exploratory well would be required in a remote area (such as certain parts of Polk County) where the Department had insufficient literature, studies, or prior history concerning the general geology across and around the site. In this case, two nearby ASR systems are located in the Englewood Water District and near the Peace River and use the same storage zone as that proposed by the County. Those systems have been operating for a number of years, and the County and Department can draw upon that experience. Given this significant regional geologic information, an exploratory well is not required. More importantly, the requirement for an exploratory well applies only to Class I well construction, and not Class V wells, and the Department properly exercised its discretion to not apply that requirement to the County's Class V application. Signature on the application and other documents Florida Administrative Code Rule 62-528.340(1)(c) requires that all permit applications by a local government be signed by "either a principal executive officer or ranking elected official." Also, subsection (2) of the same rule requires that "reports required by permits and other information requested by the Department shall be signed by a person described in subsection (1) of this section [a principal executive officer or the highest ranking elected official], or by a duly authorized representative of that person." Petitioner contends that these requirements were not met. The County's application was signed by James E. Caldwell, who was then the Manager of Sarasota County Utilities. At that time, Mr. Caldwell had overall responsibility for the County's utility operations. On August 27, 2002, James L. Ley, the County Administrator (and principal executive officer of the County), also executed the original copy of the application. (That is, on that date he signed the original application underneath Mr. Caldwell's signature.) By doing so, Mr. Ley cured any previous technical deficiency in the application. Responses to requests for additional information which were submitted to the Department during the review process were signed by one of the County's outside consultants. However, on January 13, 2002, Mr. Ley submitted a letter to the Department authorizing various County employees and agents to act on his behalf in processing the instant application. Accordingly, the outside consultant was a duly-authorized representative of the chief executive and was authorized to sign those documents. Satisfaction of injection criteria Petitioner also contends that before a construction permit may be issued, the County must meet all principal treatment and disinfection requirements, as required by Florida Administrative Code Rules 62-610.466 and 62-528.563. However, those rules apply to permits which authorize the injection of reclaimed water into the groundwater. Here, the requested permit does not authorize injection, and therefore those requirements do not apply. Groundwater criteria Even though Petitioner conceded at hearing that the issue of whether the construction of the proposed wells would harm the environment was not raised in her Petition, the County provided reasonable assurance that this was not an issue of concern. Adequacy of permit conditions Petitioner also suggested at hearing that the proposed conditions in the permit are insufficient. However, she failed to show in what respect they were insufficient or how they should be amended. Water quality concerns Florida Administrative Code Rule 62-528.605(3) requires that a Class V well be constructed so that its intended use does not violate the applicable water quality standards. On this issue, the evidence establishes that the construction of the proposed test well and monitor system will not discharge, emit, or cause pollution. Indeed, a well and monitor station does not emit or discharge pollution and, if constructed according to the technical requirements of Florida Administrative Code Chapter 62-528, does not cause pollution. Therefore, the County's compliance with the technical requirements of the Department's regulations is reasonable assurance that the proposed system will not cause pollution. I. Request for Attorney's Fees and Costs In its Proposed Recommended Order, the County has requested an award of attorney's fees and costs on the theory that Petitioner is a non-prevailing party who has participated for a "frivolous, meritless, and improper purpose" within the meaning of Section 120.595(1), Florida Statutes. This argument is based on the assertion that Petitioner is a non- prevailing party, that is, she failed to substantially change the outcome of the proposed final agency action which is the subject of this proceeding, and she "failed to produce any witnesses or evidence to support [her] claim that the proposed permit that was the subject of this proceeding should not be issued." While it is true that Petitioner is a non-prevailing party, she attempted to utilize the testimony of three expert witnesses previously retained by the City of Venice, a former party in Case No. 01-3516. Those subpoenas, however, were quashed on August 16, 2002, and that ruling was memorialized in an Order dated August 19, 2002, or just before the final hearing began. Without those witnesses, Petitioner's presentation was obviously limited in some respects.4 Further, until the final hearing, Petitioner assumed that evidence in support of her allegation that the injectate would harm the water quality would be admissible and relevant. (As this Recommended Order clearly points out, however, not a single drop of water can be injected into the well until a modification of the permit is obtained, and therefore such evidence is irrelevant.) During the course of the hearing, the undersigned sustained objections by the County and Department to the introduction of such evidence. This ruling had the effect of limiting the scope of the issues to be tried. Despite these limitations, her participation cannot be described as being frivolous or meritless, as claimed by the County, and it is found that she did not participate for an improper purpose.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the Department of Environmental Protection enter a final order granting Permit No. 160882-001- UC authorizing the County to construct one Class V, Group 3 aquifer storage and recovery injection well and monitor well system in Sarasota County, Florida. DONE AND ENTERED this 19th day of April, 2004, in Tallahassee, Leon County, Florida. S DONALD R. ALEXANDER Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 19th day of April, 2004.

Florida Laws (6) 120.569120.57120.595403.064403.0881403.412
# 8
TOWN OF INDIAN RIVER SHORES AND LOST TREE VILLAGE vs. CENTRAL AND SOUTH FLORIDA FLOOD CONTROL DISTRICT, 76-001348 (1976)
Division of Administrative Hearings, Florida Number: 76-001348 Latest Update: Jan. 13, 1977

The Issue Whether application 23181 for a consumptive use water permit should be granted, pursuant to Chapter 383, Florida Statutes. Prior to the hearing, 16 individuals in the Wabasso, Florida, community petitioned to intervene as parties in this proceeding. By Order, dated August 26, 1976, intervention was granted. Thereafter, counsel for the Wabasso Citizens Association, a private, unincorporated association that included the 16 prior intervenors, requested that intervention include all members of the association. There being no objection to the foregoing request, intervention was granted accordingly. The public hearing in this matter included 22 exhibits and the testimony of 21 witnesses, nine of whom were members of the public. Lists of the exhibits and public witnesses are attached hereto. On January 8, 1975, the Town of Indian River Shores, Florida (hereinafter "Town"), and Lost Tree Village Corporation, Indian Rivers Shores, Florida (hereinafter "Lost Tree"), filed application 23181 for a consumptive use water permit with the Central and Southern Florida Flood Control District (hereinafter "District"). The application requested a permit for the withdrawal of 393 acre feet per year of groundwater from two wells located on a parcel of land owned by Lost Tree at Wabasso, Florida. The requested use was for irrigation of two golf courses located on land owned by Lost Tree known as John's Island, a residential community located within the Town, and as an emergency public water supply for the Town. It was proposed that the water be transported by pipeline owned by Lost Tree from Wabasso to John's Island, a distance of several miles. Although the matter was set for public hearing to be held on February 4, 1975, an unfavorable staff report of the District, dated January 30, 1975, resulted in an indefinite postponement of the hearing. A hydrogeological report was prepared for Lost Tree by a consulting firm on February 12, 1976, and submitted by the applicant to the District. A subsequent staff report of the District was prepared on July 28, 1976. Thereafter, the matter was noticed for hearing to be held August 31, 1976. Pursuant to the request of intervenors, a continuance was granted until September 29, 1976. (Exhibits 5,6,7,8,19)

Findings Of Fact The Town is a municipality that was incorporated in 1953. It is located east of the Indian River on an island and extends from the north boundary of Vero Beach for over 4 miles along the Atlantic ocean. In 1969, Lost Tree commenced developing a 3,000-acre tract of land located within the Town as a residential community. Prior to the initiation of this project, there had been very little development in the Town. In order to attract residents to John's Island, two 36-hole golf courses were constructed on the property, known as the North and South Courses, covering approximately 180 acres. At the present time, John's Island comprises over 600 residences, consisting of single and multiple family units, ranging in price from $65,000 to $500,000. The Town has a population of about 1,200, with 65 percent residing at John's Island. The present assessed value of property located in the Town is about $160,000,000 of which almost $66,000,000 is attributable to property in John's Island. The private golf club at John's Island has approximately 500 members, including about 150 from Vero Beach. The golf courses are considered to be the "heart" and "life-blood" of the community (Testimony of Ecclestone, Miller; Exhibits 5,11,12). The water supply of the Town comes from the water system of the City of Vero Beach, pursuant to contract, via a 16" water main which crosses the Indian River and ends at the northern boundary of Vero Beach. There, it is tied into a 12" water main of the Town. The Town has a one million gallon capacity underground storage tank and a 100,000 gallon overhead tank. The 16" main is the only waterline that crosses the Indian River and, in the event of a rupture, the Town would be limited to its stored supplies (Testimony of Miller, Little, Exhibits 5,17). The John's Island golf courses require irrigation of approximately 70 acres. In the past, irrigation water has been obtained from a system of shallow wells on the property, treated sewage effluent from the surrounding community, and stormwater, all of which is discharged into two ponds located on the courses. Additionally, treated potable water is obtained from the City of Vero Beach through two two-inch water meters that were installed in 1975. Prior to that time, an undisclosed amount of city water was obtained for irrigation and other purposes through city meters installed on fire hydrants in the area. The use of city water was required in order to supplement the resources available on the John's Island property. During the period May, 1975, through August, 1976, the amount of water obtained from the City of Vero Beach that was used for golf course irrigation totaled 54,057,000 gallons, an average of some 110,000 gallons per day. At the present time there is no water problem, insofar as irrigation is concerned, on the South Course which obtains irrigation water from sewage effluent and a number of shallow wells. However, test samplings over the years have shown a gradual increase in the amount of chlorides in the water and it is questionable whether such water will continue to be suitable for irrigation in the foreseeable future. Recent tests show the chloride content of the water at 450 ppm. The type of Bermuda grass on the golf courses can grow satisfactorily with water containing not more than 1,000 ppm. City water is used only on the North Course. The water obtained from the shallow wells in that area is highly saline in content. A recent water test showed a chloride content of 3,800 ppm. Additionally, immediately before an eight inch rainfall which lowered the chloride content to the foregoing figure, the greens on the North Course tested at 6,300 ppm in chloride content (Testimony of Luke, Little, Exhibits 6,7). During periods of drought, the City of Vero Beach has requested John's Island and other water users to either curtail or stop the use of city water for non-domestic purposes. Such requests have been received approximately six times during the past year. In April, 1976, the city water used for golf course irrigation at John's Island was shut off for a period of eight days as a result of a request from officials of Vero Beach. If insufficient irrigation water is not received for a period of 10 days to two weeks, it is extremely probable that a golf course would have to be replanted at an approximate cost of $60,000.00 to $80,000.00 and would require a period of six months for suitable growth. Both the Town and John's Island always cooperated fully with the requests of Vero Beach to curtail water use (Testimony of Luke, Miller, Little, Exhibit 17). At the time irrigation water sources were being explored at John's Island, a test well was drilled to a depth of 2020 feet into the Floridan aquifer underlying the property, but an inadequate quantity of water was developed. Lost Tree owns some 25 acres of land at Winter Beach, Florida, which is located west of John's Island across the Indian River. Although test wells there produced satisfactory water, it was not feasible to use this source due to prohibitions against excavation for such purposes in the Indian River. Due primarily to economic considerations of the high cost of using treated city water for golf course irrigation, and the inconvenience and possible hazards of water interruptions from that source, Lost Tree decided to supplement its resources from water withdrawn from wells to be located on a 4.869 acre tract of land it purchased in Wabasso. Although a deep well was considered at that site, state agencies advised that the Floridan aquifer was overloaded in that area to a degree of 200 percent. Accordingly, in 1973, two ninety-foot deep wells were constructed on the site approximately 500 feet apart into the underlying shallow aquifer. Pump tests showed that the chloride content was within satisfactory limits. Thereafter, Lost Tree in its own name and that of The Town, obtained necessary rights-of-way and permits for the placement of a system of pipes for transportation of water from the Wabasso wells to John's Island. These consisted of a 16" water line from the Wabasso site east over a newly constructed bridge and several existing bridges to Highway A1A where the size of the line south to John's Island was decreased to twelve inches. An agreement was entered into between Lost Tree and the Town on December 19, 1974 whereby the former agreed to supply emergency needs of the Town from water obtained from the Wabasso wells. About that same time, the pipe system was completed and the present application filed with the District (Testimony of Lloyd, Ecclestone, Exhibits 2,6,9). The area immediately surrounding Lost Tree's land in Wabasso consists primarily of residences, groves, and trailer parks. The residents of the unincorporated Wabasso area depend solely upon the shallow aquifer for their domestic water needs since there are no utility services in the area. Grove irrigation normally is accomplished by deep wells to the Floridan aquifer. After the application herein was filed in January, 1975, numerous letters of objection to the proposed withdrawal were filed with the District by residents of the Wabasso community and from local organizations. These objections, for the most part, expressed apprehension that the applicants would be withdrawing far more water from the well field than their fair share based on the size of Lost Tree's land in Wabasso. The objectors also claimed that the requested withdrawal would have a serious detrimental effect on existing users. They further protested the concept of extracting potable water from one area and transporting it to another area for irrigation use on recreational facilities. The initial Staff Report of the District on January 30, 1975, took such objections into consideration and recommended denial of the application based on the unsuitability of the well field site. It found that withdrawal of the requested water for golf course irrigation was not a reasonable and beneficial use because it greatly exceeded the water budget for the site, harmed existing legitimate users in the area by creating drawdowns of several feet which would increase the possibility of potable water supply wells running dry, harming potential future legitimate users by lowering the water table and exporting the water that they might have utilized, and because it threatened to harm such users and the resource itself by "upconing" saline water from the bottom of the aquifer into the fresh water producing zone of the aquifer. Although the report stated that there would be no objection to permitting an allocation on the order of 7.5 acre feet per year, which was the equivalent to the water crop, it was not recommended because such an allocation would do little to meet the applicant's needs for irrigation water (Exhibit 6, Composite Exhibit 20). Recognizing the need for further studies to support its application, Lost Tree hired a firm of consulting groundwater geologists and hydrologists to conduct an investigation of potential sources of irrigation water for both the John's Island and the Wabasso sites. The study confirmed prior conclusions that it was not practicable or feasible to develop the necessary irrigation water from sources available at John's Island. As to the Wabasso area, the report found that the shallow aquifer was not being fully utilized and that extraction of the proposed quantity of water would not exceed the capacity of the aquifer to provide it. It also determined that the presence of a continuous layer of impermeable clay within the Hawthorn formation effectively separates the Floridan from the shallow aquifer. No interference in the water levels of the Floridan aquifer should occur nor is it likely there would be salt water intrusion into the shallow aquifer. However, based on the formulation of a "mathematical model," it was predicted that the proposed withdrawal could adversely affect existing shallow wells within a few hundred feet of the applicant's well field by "drawdown" which could lessen the pumping ability of centrifugal pumps. Nearby existing wells, such as those located in a trailer park immediately west of Lost Tree's well field, could lose suction in pumping and thereby owners might experience delay in extracting water from the wells (Testimony of Amy, Exhibits 4, 8). Although one Wabasso resident who owns property near Lost Tree's wells has experienced a decrease in pressure in her well and poor quality water, and another nearby resident's well went dry, there is no clear evidence that Lost Tree's drilling of its two wells and consequent testing thereof caused these problems. Testimony of other Wabasso residents expressed their apprehension as to possible salt water intrusion and unavailability of water in the shallow aquifer if the requested withdrawal is approved. Other residents and public witnesses challenged the fairness of permitting one land owner to deplete local water supplies by withdrawals for transport to another area for recreational purposes (Testimony of Chesser, McPherson R., Pangburn R., Jackson, Mrs. S.B., Kale, Stout, Wintermute, Pangburn, K., Bidlingmayer, Willey, Gertzen). The District Staff Report, dated July 28, 1976, as supplemented by an addendum, dated August 30, 1976, reviewed the hydrogeological study submitted by the applicants and concluded that withdrawal of a specified amount of water from Lost Tree's Wabasso wells would represent a reasonable and beneficial use of the resource that did not appear to harm either the resource or existing users. It calculated the "crop requirement" for the golf courses on the basis of 135 acres. Testimony at the hearing established that the area required to be irrigated was only 70 acres. Consequently, the report's recommendation as to the annual water allocation for golf course irrigation was scaled down accordingly. Recommendations as to daily withdrawals were based upon the maximum billing by the City of Vero Beach for a 22-day period in January and February, 1975, plus a 20 percent allowance to provide a reasonable degree of operational flexibility. The conclusion of the staff that the withdrawal would not harm existing users is questionable in the light of the applicant's own hydrogeological study and testimony of its experts (Testimony of Winter, Exhibits 6,7,22). The Staff Report recommended that certain conditions be imposed upon any issuance of the requested permit. The following findings are made as to the reasonableness of such proposed conditions: Annual allocation of no more than 51.044 million gallons. FINDING: Reasonable. This permit shall expire 5 years after permit issuance. FINDING: Reasonable. The use may require reevaluation based upon developing needs of the area of withdrawal for higher priority uses of the resource. The total maximum monthly withdrawal from the two wells in Wabasso shall not exceed 6.931 million gallons. FINDING: Reasonable. The total daily withdrawal from the two wells in Wabasso shall not exceed 378,000 gallons. FINDING: Reasonable. Daily pumpage on a monthly basis shall be reported to the District during the following month. This data must be obtained through the use of an in line totalizing meter or meters at the well field. FINDING: Reasonable. Prior to the initiation of any pumping from the wells in Wabasso the permittee must survey all existing wells (with the owners' permission) located within 800 feet of each of these wells. Should it be determined that the permittee's pumping as recommended may adversely affect an existing well the permittee is to be held responsible for making timely corrective measures as deemed necessary at no expense to the owner, in order to preserve the water supply capability of that facility. A complete and detailed report of the survey and corrective measures taken by the permittee shall be submitted to the District. The District will then issue a notice authorizing the permittee to begin pumping as required. FINDING: Unreasonable. Although it is conceded by the applicants that adverse effects upon nearby wells may well occur, attempts to make determinations as to actual effects prior to full operation of Lost Tree's wells would only be speculative in nature. It is noteworthy in this regard that upon issuance of a temporary authorization to Lost Tree to withdraw water commencing in August, 1976, a similar precondition was imposed with a report of a survey and corrective measures taken to be submitted to the District prior to authorization to begin pumping. A cursory survey was performed by a representative of Lost Tree that consisted merely of attempting to locate surrounding wells by off-premises observation. No attempt was made to contact well owners or to obtain information as to the types of pumps on the wells. Such a survey is patently inadequate for the purposes desired by the District and it is considered impracticable and onerous to saddle the applicant with the burden of such a condition. Although withdrawals of water under the temporary permit commenced on September 18, 1976, and continued thereafter, there is no evidence that any complaints were registered by adjacent well owners as a result of the withdrawals (Testimony of Pearson, Exhibits 13, 14). For a period of 18 months after the first full week of operation in which no substantive complaints of adverse impact are received by the District, the permittee must assume full responsibility for taking the appropriate corrective to rectify any adverse impact their withdrawals create on any existing users within the area influenced by their withdrawal. Upon receiving a substantive complaint of adverse impact upon an existing user, the Executive Director of the District will issue a notice prohibiting any further withdrawals from the wells in Wabasso until corrective measures are taken by the permittee at no expense to the existing user, or until the permittee proves that their withdrawal is not the cause of the problem. The Executive Director of the District will issue a notice to resume withdrawals when the District has been satisfied that the situation is remedied. FINDING: Reasonable in part. The condition should be modified to extend the period of the permittee's responsibility for corrective action as to adverse impact on existing users to the entire life of the permit rather than for a period of only 18 months. Further, the District's prohibition of withdrawals after the receipt of a complaint is arbitrary and inconsistent with the method of administrative enforcement procedures as specified in Section 373.119(1), Florida Statutes. To help define the actual impact of the permittee's withdrawal a total of at least seven observation wells shall be installed. The observation wells shall be located between the permittee's wells and Indian River, two shall be located to the west and the remaining two shall be located either to the north or south of the permittee's wells. The locations and depths of these wells shall halve District concurrence. A continuous water level recording device shall be installed on one off these wells. FINDING: Reasonable. Although the installation and monitoring of a number of observation wells imposes a financial burden on the applicants, it is considered a proper requirement to assist in determining the impact of any withdrawal. The time for installation and specifications thereof should be set forth in any permit issued. Hydrographs from the recording device on one of the observation wells and from weekly hand measured water levels on the remaining observation wells shall be submitted to the District on a monthly basis. This data shall be submitted in the month following the period of record. All water level data shall be measured and recorded to the nearest hundredth of a foot and referenced to mean sea level. FINDING: Reasonable. By acceptance of this permit the permittee acknowledges that this permit confers no prior right to the permittee for the use of water in the amount allocated and for the purpose stated. FINDING: Unreasonable. The condition is ambiguous and involves legal aspects that are not proper for determination at this time. Any future application involving the use of the withdrawal facilities permitted herein, shall be considered as an application for a new use and it shall be reviewed accordingly. FINDING: Unreasonable. See comment in I above. All existing Floridan wells located on the applicant's properties must be abandoned in accordance with the current applicable standards of the Department of Environmental Regulation. Abandonment procedures must be carried out within 6 months of the date of issuance of this permit. FINDING: Unreasonable. The abandonment of existing Floridan wells involves subject matter not embraced within the application. An officer of the Lost Tree Village Corporation shall submit with each report required by the District a sworn and acknowledged affidavit that the report reflects the actual measurements or readings taken. FINDING: Reasonable. The Permittee shall obtain a water sample from a pumping well at the Wabasso well field site once a month, within five days of the end of the month. This sample shall be analyzed for chloride content, and the results reported to the District within 14 calendar days after collection. Should the District determine that a significant change has occurred in the chloride content of the water being withdrawn from the Wabasso well field, the District shall initiate a new review of the application. FINDING: Reasonable. Upon installation of the observation wells, a water sample shall be obtained from these wells and analyzed for the following parameters: Chloride Total Dissolved Solids Conductivity Sulfate Calcium Magnesium Sodium Bicarbonate This analysis shall be submitted to the District within 14 days after collection. During the last five days of the months of May and November of each year, during the duration of this permit, the permittee shall obtain one water sample from each of the installed observation wells. These samples shall be analyzed for Chloride content, and the results reported to the District within 14 days after collection. FINDING: Reasonable. If the permittee can demonstrate to the satisfaction of the District that the groundwater withdrawn by the south golf course well point system is no longer suitable for the irrigation of the golf course, the annual allocation shall be increased to 82.942 million gallons. FINDING: Unreasonable. Future needs should be the subject of modification of permit terms at an appropriate time, pursuant to section 373.239, F.S. An emergency authorization was issued to the applicants by the governing board of the District on August 30, 1976. This authorization contains certain special conditions including a requirement to conduct and submit a preauthorization survey and report concerning existing wells located within 800 feet of the applicant's wells. In addition, a condition of the authorization was that no withdrawals shall be made unless the City of Vero Beach had ordered the applicant to stop the use of water from its system for golf course irrigation. The evidence shows that neither of these conditions was met by the applicant, but yet withdrawals were made during the month of September, 1976 without District authorization (Testimony of Winter, Rearson, Exhibit 13). The applicant's disregard of these requirements indicates the need for a further special condition if a permit is granted, to ensure that adjacent land owners are protected in the event of adverse effects upon their water supply. To accomplish that, it is found that the following additional condition is reasonable and necessary: P. The Board shall require the applicant to furnish a bond in an appropriate amount, as authorized by Rule 16K-1.061, F.A.C. It is found that insufficient evidence has been presented to determine the merits of the request of the Town of Indian River Shores for an emergency water supply from the Wabasso wells.

Recommendation That a consumptive water use permit, with conditions as specified herein, be issued to applicant Lost Tree Village Corporation for the irrigation of its two golf courses at John's Island. DONE and ENTERED this 9th day of November, 1976, in Tallahassee, Florida. THOMAS C. OLDHAM Hearing Officer Division of Administrative Hearings Room 530, Carlton Building Tallahassee, Florida 32304 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 9th day of November, 1976. COPIES FURNISHED: John H. Wheeler, Esquire Post Office Box V West Palm Beach, Florida Sherman N. Smith, Jr., Esquire Post Office Box 1030 Vero Beach, Florida 32960 William T. McCluan, Esquire 65 East Nasa Boulevard Post Office Box 459 Melbourne, Florida 32901 =================================================================

Florida Laws (6) 373.019373.119373.219373.223373.239373.243
# 9
CITY OF LAKELAND vs SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT, 07-000564 (2007)
Division of Administrative Hearings, Florida Filed:Lakeland, Florida Feb. 01, 2007 Number: 07-000564 Latest Update: Apr. 07, 2008

The Issue The issue is whether the Southwest Florida Water Management District (District) should issue water use permit (WUP) No. 2004912.006 to the City of Lakeland (City), and if so, how much water should be allocated under the permit and what conditions should be imposed on the allocation, particularly in regard to withdrawals from the City's Northeast Wellfield (NEWF).

Findings Of Fact Introduction This is an unusual case in that the District gave notice of its intent to issue a permit that the City does not want and that the District staff testified that the City is not even entitled to based upon the information submitted prior to and at the final hearing. That said, there is no disagreement between the parties that a permit should be issued to the City. Indeed, despite the District Staff's testimony that the City failed to provide “reasonable assurances” prior to or at the final hearing on a variety of issues, the District takes the position in its PRO that a permit should be issued to the City, subject to various conditions and limitations. There is also no disagreement between the parties that the permit should include an allocation of 28.03 mgd from the City’s Northwest Wellfield (NWWF). The main areas of disagreement between the District and the City are the duration of the permit; the total allocation of water under the permit; and, perhaps most significant, the total allocation from the NEWF. Parties The City is an incorporated municipality located in Polk County. The City is within the boundaries of the District and is within the Southern Water Use Caution Area (SWUCA) designated by the District. The City is the applicant for the WUP at issue in this case, No. 20004912.006. The City operates a public water utility that provides potable water and wastewater services to customers in and around the City. The utility’s water service area extends beyond the City limits into surrounding unincorporated areas of Polk County. The District is the administrative agency responsible for conservation, protection, management and control of the water resources within its geographic boundaries pursuant to Chapter 373, Florida Statutes, and Florida Administrative Code Rule Chapter 40D. The District is responsible for reviewing and taking final agency action on the WUP at issue in this case. Stipulated Facts The parties stipulated that the City’s substantial interests have been adversely affected by the District’s intent to issue the proposed permit, and that the proposed permit is different from the permit that the City applied for. The parties also stipulated that there is reasonable assurance that the City’s proposed water use will not interfere with a reservation of water as set forth in Florida Administrative Code Rule 40D-2.302; that the proposed use will not significantly induce saline water intrusion; that the proposed use will incorporate the use of alternative water supplies to the greatest extent practicable; and that the proposed use will not cause water to go to waste. The City’s Wellfields Overview The City obtains the water that its water utility provides to its customers from two wellfields, the NWWF and the NEWF. The NWWF is located north of Lake Parker in close proximity to Interstate 4 and Kathleen Road. It provides water to the Williams Water Treatment Plant, from which the water is distributed throughout the City water utility’s service area. The NWWF is located on the Lakeland Ridge, which is a geographic feature that is approximately 250 to 260 feet above sea level. The Lakeland Ridge has a thick clay intermediate confining unit that isolates the surficial aquifer from the underlying aquifers. The NEWF is located to the north of Interstate 4, adjacent to Old Polk City Road. It provides water to the Combee Water Treatment Plant (Combee), from which the water is distributed throughout the City water utility’s service area. The NEWF is located at an elevation of approximately 135 feet above sea level. The surficial aquifer at the NEWF is relatively thin, and the intermediate confining unit at the NEWF is not as thick as it is at the NWWF. The Upper Floridan Aquifer (UFA) begins at approximately 65 below land surface at the NEWF. The City’s water treatment plants are traditional lime softening plants and are not able to treat brackish groundwater or surface water to the extent necessary for human consumption. It would be cost-prohibitive to implement a process to treat brackish water at the plants. Relevant Permitting History The City’s water utility has been in operation for more than 100 years, and the NWWF has been in operation since at least the early 1980’s. The earliest permit for the NWWF contained in the record is permit No. 204912, which was issued by the District in January 1987. The permit authorized average annual withdrawals of 28.3 mgd, and had an expiration date of January 1993. The NEWF was first permitted by the District in December 1989. The permit, No. 209795.00, authorized the City to pump an average of 9.0 mgd from the NEWF. The permit had a six-year duration, with a December 1995 expiration date. The permits for the NWWF and the NEWF were combined into a single permit in October 1993. The permit, No. 204912.03, authorized the City to pump a total of 28.1 mgd, with 9.0 mgd from the NEWF. The permit had a 10-year duration, with an October 2003 expiration date. In December 2002, the City's WUP was administratively modified pursuant to the District’s SWUCA rules. The modified permit, No. 20004912.004, did not change the permitted quantities at the NEWF or the 2003 expiration date, but the total allocation was reduced to 28.03 mgd. In October 2003, prior to the expiration of the existing permit, the City submitted an application to renew and modify its WUP permit. The application requested a 20-year permit with a total allocation of 32.8 mgd, with up to 16.0 mgd from the NEWF. During the permit review process, the City amended its application to increase the requested total allocation by 4.0 mgd (from 32.8 mgd to 36.8 mgd) and to decrease the requested duration of the permit by five years (from 2023 to 2018). The 36.8 mgd requested by the City was to be allocated between the NWWF (28.03 mgd) and the NEWF (8.77 mgd). The City supplemented its application during the permit review process in response to multiple requests for additional information and clarification from the District. The information provided by the City in support of the application is extensive; the “permit file” received into evidence consisted of approximately 2,500 pages, and the entire file is approximately twice that size.2 The review process culminated in what the District staff considered to be a “negotiated permit”3 that would initially authorize pumping of 33.03 mgd, with 28.03 from the NWWF, 1.5 mgd from the NEWF, and 3.5 mgd from a production well to be constructed at Combee. The proposed permit includes a phasing schedule that would allow for increased withdrawals -- up to 35.03 mgd total and 4.0 mgd from the NEWF4 -- if the City is able to demonstrate to the District’s satisfaction that the increased pumping will not cause adverse environmental impacts. The District gave notice of its intent to issue the proposed permit on December 29, 2006, and the permit was placed on the “consent agenda” for the District Governing Board’s meeting on January 30, 2007. On January 23, 2007, before the proposed permit was considered by the Governing Board,5 the City timely filed a petition challenging the proposed permit. The petition alleges that the proposed permit does not allocate sufficient water to meet the City's projected population demands in 2018 and that it does not allocate water quantities from the NEWF and the NWWF in the manner requested by the City. The NEWF The NEWF is approximately 880 acres in size. Wetlands comprise approximately half of the site. The NEWF is located within the boundaries of the Green Swamp, which is an area of critical state concern (ACSC) designated under Chapter 380, Florida Statutes. The Green Swamp is a hydrologically and environmentally important feature of central Florida encompassing thousands of acres of cypress wetlands, marshes, and forests. In 1992, a task force recommended that public water supply wellfields “of capacity greater than 1.8 mgd (average 3.6 mgd maximum)” from the UFA be discouraged in the Green Swamp ACSC in favor of wells from the Lower Floridan Aquifer in order to “mitigate drawdown impacts to the surficial aquifer system and resulting dehydration of wetlands . . . .” There is no evidence of that recommendation being formally adopted by the District or any other governmental agency, and the District does not have more stringent permitting criteria for WUP applications in the Green Swamp, except that it considers potential adverse impacts to all isolated wetlands and not just those larger than one-half acre in size.6 The City installed five 16-inch production wells at the NEWF, along with a number of associated monitoring wells. The production wells, which are cased to approximately 120 feet with a total depth of approximately 750 feet, pump water from the UFA. Pumping at the NEWF started in October 2005. The City has been pumping 4.0 mgd from the NEWF since that time. The City has spent over $34 million to bring the NEWF into service. The costs directly related to the acquisition of the NEWF site and the installation of the wells at the site account for approximately $7.6 million of that amount; the remainder of the costs are for associated infrastructure, such as the installation of water lines from the NEWF site and the construction of Combee. The wetlands on the NEWF site are predominantly isolated cypress wetlands, although there are some connected systems. Isolated wetlands are more susceptible to impacts from water deprivation than are connected wetland systems. The uplands on the NEWF site consist primarily of open pasture and fields and areas of planted pines. Extensive drainage improvements were constructed on the NEWF site between 1941 and 1980 when the site was being used as improved pastureland for cattle grazing and managed woodland for logging and silviculture. The improvements included the construction of a network of drainage ditches, culverts, roads, a grass landing strip, and a gas pipeline. The intent and effect of the drainage improvements was to remove surface water from the onsite wetlands. Historical aerial photographs show that these efforts were successful. The wetlands on the NEWF were adversely impacted by the drainage improvements, but for the most part, they are still functioning, albeit low-quality wetlands. The extensive ditching on the NEWF site continues to have an adverse impact on the wetlands even though the ditches have not been maintained and do not function as efficiently as they once did. The planted pine trees on the NEWF site may also be adversely affecting the wetlands through increased evapotranspiration from the surficial aquifer. However, the evidence was not persuasive regarding the extent of the impact from evapotranspiration. The present condition of the wetlands at the NEWF is not the result of recent activity. The biological indicators in the wetlands (e.g., adventitious roots on cypress trunks, large oak trees in the wetlands, red maple trees in areas that had at one time been dominated by cypress trees) show that the degraded condition of the wetlands dates back decades. The progressive draining and degradation of the wetlands caused by the ditching and other drainage improvements constructed on the NEWF site is apparent in the historic aerial photographs of the site. The size of the wetlands and the “hydrologic signatures” (e.g., standing water around the rims of wetlands and across the site, extensive cypress canopies, etc.) visible on earlier aerial photographs are less visible or non- existent in more recent aerial photographs. The wetlands on the NEWF site have shown no biological indicators of impacts from the pumping at the NEWF that started in October 2005. This does not necessarily mean that the pumping is not impacting the wetlands because the parties' experts agree that it can take many years for such biological indicators to appear. The more persuasive evidence establishes that the historical drainage improvements on the NEWF site were the primary cause of the degraded condition of the wetlands.7 The more persuasive evidence also establishes that unless altered, the drainage improvements on the NEWF site will continue to have an adverse effect on the wetlands. The City proposed a conceptual Wetland Improvement Plan (WIP) that is designed to restore and enhance the wetlands on the NEWF. A central component of the WIP is the reengineering and alteration of the drainage features by installing “ditch blocks” in some areas and culverts in other areas. The WIP also includes not replanting the pine trees on the NEWF site once the existing planted pines are harvested. The ditch blocks and other modifications to the drainage features are intended to hold water on the NEWF site and redirect it to the wetlands. This will help to hydrate the wetlands, increase soil moisture levels, and allow more water to percolate into the surficial aquifer following rain events. The District staff expressed some concerns with the City’s WIP at the final hearing, but acknowledged that the plan’s “conception . . . has a lot of merit.” Indeed, in its PRO, the District recommends the “installation of ditch blocks and similar measures at the [NEWF] site.” The WIP, if properly implemented, has the potential to enhance the wetlands by returning them to a more natural condition. The City will likely need an Environmental Resource Permit (ERP) from the District before any system of ditch blocks can be installed. The details of the WIP can be worked out during the ERP permitting process.8 A good monitoring plan is part of providing reasonable assurances. The parties agree that a monitoring plan should be included as a permit condition, and the EMMPs attached to the parties’ respective PROs appear to be materially the same. The City has monitored the wetlands at the NEWF since 1994, pursuant to a specific condition in the 1993 WUP permit. The methodology used by the City to monitor the wetlands was approved by the District, and despite the fact that the City has submitted biannual monitoring reports to the District for almost 14 years, the District expressed no concerns regarding the methodology or results of the monitoring until recently. The District commenced its own wetland assessment procedure at the NEWF in May 2007, which included setting “normal pools” in several of the wetlands. “Normal pool” describes the level at which water stands in a wetland in most years for long enough during the wet season to create biological indicators of the presence of water. The establishment of normal pools was part of the District’s efforts to establish the “existing natural system” against which any post-withdrawal adverse impacts at the NEWF would be measured in accordance with Section 4.2 of the Basis of Review for Water Use Permit Applications (BOR).9 Normal pools could not be established in several of the wetlands because there was no measurable standing water above the surface in the wetland. District staff observed similar conditions –- i.e., no standing water in the wetlands –- on at least one occasion following a significant rain event prior to the start of pumping at the NEWF. The District does not have a rule governing the setting of normal pools, but the City’s experts did not take issue with the normal pools set by the District or the methodology used by the District to set the normal pools. The EMMP proposed by the City is an extensive monitoring plan that incorporates a series of onsite monitoring wells, wetland monitoring stations for vegetation and hydrogeology, monitoring of pumping rates and pumping data, and monitoring of rainfall data. The EMMP will make use of the extensive data that has been collected on the NEWF site since the 1990’s as well as the normal pools set by the District, and if properly implemented, the EMMP will detect any potential adverse impacts as they occur to allow for remedial mitigation. The District staff acknowledged at the final hearing that the EMMP proposed by the City “with some minor modifications” is an appropriate plan to monitor changes in the wetlands at the NEWF. The necessary "minor modifications" were not explained at the final hearing, and as noted above, there does not appear to be any material difference in the EMMPs attached to the parties’ respective PROs. The Green Swamp is generally viewed as a “leaky” area, with little or no confinement between the surficial aquifer and the Floridan aquifer. Regional data, including studies by the United States Geologic Survey (USGS) and the District, reflect that the NEWF is located in a “transitional area” between areas of little or no confinement to the north, northwest, and east of the NEWF and areas of thicker confinement to the south. However, at least one study (published in 1977 USGS report) shows the NEWF in an area designated as "poor" for its relative potential for downward leakage. Regional data may be used to gain knowledge about the aquifer properties at a potential well site, but such data is not a valid substitute site-specific data. Indeed, the location of the NEWF in a “transitional area” makes site-specific data even more important. The City used geologic cross-sections (e.g., soil borings and core samples) at the NEWF to determine the site’s lithologic characteristics. By contrast, the District relied primarily on USGS reports and other regional data to postulate as to the lithologic characteristics of the NEWF. As a result, the City’s position regarding the lithologic characteristics of the NEWF was more persuasive than the District’s position. The lithology of the NEWF site consists of a shallow, sandy surficial aquifer, which extends to a depth of 3 to 5 feet, proceeding downward to sandy clay and clay sand semi- confining layers, alternating with impermeable clay units, interspersed with an intermediate aquifer composed of sandy clays and clay sands that contain water, proceeding downward to the limestone of the UFA. The presence of clay layers between the intermediate aquifer and the UFA, together with clay layers between the intermediate aquifer and the surficial aquifer, provide two layers of protection between the pumped aquifer and the surficial aquifer and wetlands, and serve to ameliorate any impacts to the surficial aquifer caused by withdrawals from the UFA. “Leakance” is a measure of vertical conductivity that describes the rate at which water flows through a confining unit. As a result, leakance is one of the most important factors to consider when modeling surficial aquifer impacts and potential wetland impacts from groundwater pumping. Generally, a higher leakance value is an indication of a “leakier” system with less confinement between the surficial aquifer and the UFA. The “leakier” the system, the greater the impacts of pumping on the surficial aquifer will be. The District contends that the confining unit underlying the NEWF is “leaky” and that the pumping at the NEWF is likely to directly and adversely affect the onsite wetlands. However, the more persuasive evidence establishes that the lower leakance value derived by the City based upon the site-specific lithology of the NEWF and the data from the aquifer performance tests (APTs) conducted at the NEWF is more accurate than the higher leakance value urged by the District. The purpose of an APT is to determine the hydrologic parameters of an aquifer. In particular, an APT is used to determine the transmissivity, leakance, and storage values of the aquifer. Transmissivity is a measure of how easily water flows through the ground, and storage is a measure of the amount of water in the porous spaces of the aquifer. Generally, a higher transmissivity value and a lower storage value indicate better confinement. There have been three APTs conducted at the NEWF. The first APT (APT-1) was conducted in 1989 as part of the initial permitting of the NEWF. A high transmissivity value and a low storage value were calculated in APT-1. A leakance value was not calculated. The results of APT-1 were presented to the District to justify the City’s request to pump 9.0 mgd from the NEWF, which the District approved. The 1993 permit combining the NWWF and the NEWF required the City to conduct a long-term APT in order to “determine the leakance parameter between the surficial and intermediate aquifers and the leakance parameter between the intermediate and Upper Floridan aquifers.” The permit stated that if the hydrologic parameters obtained in the APT were different from those used in the model submitted in support of the initial WUP, the City would have to revise the model and, if necessary, modify the WUP to reduce withdrawals. This second APT (APT-2) was a seven-day test conducted by the City in January 2001 in accordance with a methodology approved by the District. An “exceedingly low” leakance value of 4.5 x 10-4 gallons per day per cubic foot was calculated in APT-2. The transmissivity and storage values calculated in APT- 2 were essentially the same as the values calculated in APT-1. The District expressed concerns with the results of APT-2, and in December 2001, the District advised the City that it should “proceed with caution during the planning of infrastructure (pipelines) for the [NEWF]” because the “wellfield may not be able to produce the volume of water the City has stated that would like from the wellfield, without causing adverse impacts.”10 Based upon these concerns, the District conducted an APT (APT-3) at the NEWF in April and May 2003. The parties’ experts agree that data from APT-3 is reliable, but the experts disagree in their interpretation of the data, particularly in regards to the leakance value. The City’s experts calculated a leakance value of 1.4 x 10-4 feet per day per foot, which is a low leakance value. The expert presented by the District, Dann Yobbi, calculated a higher leakance value of 3.4 x 10-3 feet per day per foot, which suggests relatively “leaky” aquifer. The leakance value calculated by the City’s experts is more persuasive than the value calculated by Mr. Yobbi because Mr. Yobbi did not “de-trend” the data from APT-3 based upon the general declines in water levels occurring at the time of APT-3. Indeed, Mr. Yobbi testified that he is in the process of revising his report on APT-3 to address this issue and he acknowledged that the surficial aquifer showed only a “slight response” to the pumping during APT-3. The leakance value calculated by the City’s experts in APT-3 is consistent with the leakance value calculated in APT-2. The transmissivity and storage values calculated in APT-3 are also consistent with the values calculated in APT-1 and APT-2. The reliability of the leakance values and other aquifer parameters calculated by the City’s experts for the NEWF is confirmed by water level data compiled by the City pursuant to the monitoring requirements in the existing WUP. The water level data was collected from monitoring wells at the NEWF in the surficial aquifer, the intermediate aquifer, and the UFA. The City began collecting this data in 1994 and it continues to collect and report the data to the District as required by the existing WUP. The water level monitoring data reflects that the surficial aquifer at the NEWF responds almost immediately to rain events. By contrast, the intermediate aquifer and UFA show a more subdued response to rainfall events, which is indicative of good confinement, especially between the UFA and the surficial aquifer. The water level monitoring data shows that rainfall or lack of rainfall is the major controlling factor relative to the rate of surficial aquifer recharge at the NEWF. The water level monitoring data since pumping began at the NEWF shows that the pumping at 4.0 mgd is having a minimal impact on the surficial aquifer at the NEWF. Indeed, the more persuasive evidence establishes that the general decline in water levels that has been observed in the monitoring wells at the NEWF over the past several years is more likely than not attributable to the severe drought in the area and the onsite drainage features, and not the pumping at the NEWF.11 Moreover, the more persuasive evidence shows that following the start of pumping at the NEWF in October 2005, the water levels in the surficial, intermediate, and Floridan aquifers returned to the historic patterns of up and down response to rainfall events shown throughout the thirteen-year period of record: the surficial aquifer fills quickly (as it receives the rainwater directly) and empties quickly (through a combination of surface drainage, evapotranspiration, evaporation, and leakage), while the UFA responds with more gradual rising and falling (as water enters the aquifer through recharge areas and slowly percolates into the aquifer through more confined areas). The analysis of the water level data collected during APT-3 showed a similar trend in the rates of decline in the surficial aquifer as were reflected in the hydrographic record of the monitoring well data collected by the City since 1994. The natural, post-rainfall rate of decline under non-pumping conditions was consistent with the rate of decline observed during pumping conditions in APT-3. In sum, the interpretation of the water level data by the City’s experts was more persuasive than the interpretation by the District’s experts. Modeling of Predicted Drawdowns and Impacts The City utilized two different models to predict drawdowns from the proposed pumping at the NWWF and NEWF: the USGS “Mega Model” and the District’s District-Wide Regulation Model (DWRM). The models incorporated regional data published by the USGS and the District as well as site-specific data from the NEWF, including the lithologic information collected through soil borings and the hydrologic parameters of the aquifers calculated in APT-3. The models were calibrated and de-trended to remove “background conditions” (e.g., regional water level declines) so that the models would only show the predicted effects of the pumping. Once the calibration was complete, the models were run to simulate the effect of the pumping on the groundwater flows in the area. The models produced contour maps that showed the predicted drawdowns in the surficial aquifer as a result of the pumping. The USGS Mega Model predicted that pumping the NEWF at 8.77 mgd would result in drawdowns of approximately 0.5 foot in the surficial aquifer in and around the NEWF. The DWRM model predicted a 0.18 foot drawdown in the surficial aquifer in and around the NEWF when pumping the NEWF at 4.0 mgd, and a drawdown of 0.4 foot when pumping at 8.77 mgd. The same models were used to predict the “cumulative” drawdowns by taking into account pumping by existing legal users as well as the pumping at the NWWF. The cumulative models assumed pumping of 36.8 mgd from the City’s wellfields. The USGS Mega Model predicted that cumulative drawdowns in the surficial aquifer in and around the NEWF would be an additional 0.3 feet, with 8.77 mgd of pumping at the NEWF. The DWRM model predicted that the cumulative drawdowns in the surficial aquifer in and around the NEWF would be 0.4 foot with 4.0 mgd of pumping at the NEWF, and 0.6 foot at 8.77 mgd of pumping at the NEWF. The City utilized the 1995 data set of existing legal users in its cumulative DWRM modeling because that was the data set provided by the District. The difference between the 1995 data set and the more current 2002 data set is on the order of 20 mgd, which is inconsequential in comparison to the 1.1 billion gallons per day of withdrawals included in the model that are spread over the geographic extent of the District. The predicted drawdowns in the surficial aquifers in and around the NEWF would be considerably greater if the hydrologic parameters calculated by Mr. Yobbi were used in the DWRM model. For example, the District’s modeling predicted drawdowns between 1.0 and 1.2 feet in the surficial aquifer in and around the NEWF when pumping 1.5 mgd from the NEWF, 3.5 mgd from Combee, and 28.03 mgd from the NWWF. The wetlands experts presented by the parties agreed that the level of drawdown predicted by the City at the NEWF has the potential to adversely impact the wetlands on the site. The experts also agreed that there is no bright line as to the amount of drawdown that will adversely impact the wetlands. The City’s expert, Dr. Michael Dennis, testified that drawdowns in the surficial aquifer between 0.18 foot and 0.5 foot “probably” would not affect the wetlands at all, or at least “not measurably.” He also testified that drawdowns between 0.5 foot and one foot “are the drawdowns that you need to be concerned about.” The District’s expert, John Emery, testified that a drawdown in the surficial aquifer of 0.4 foot “could” adversely affect the wetlands if no mitigation is provided, but that a drawdown of 0.2 to 0.3 foot might not.12 The WIP is expected to increase the amount of water that gets to the wetlands on the NEWF site. However, the extent to which the WIP will increase the water levels in the wetlands and offset the predicted drawdowns in the surficial aquifer is unknown at this point. Limiting pumping at the NEWF to 4.0 mgd is reasonable and prudent based upon the uncertainty regarding the effectiveness of the WIP and the experts’ testimony regarding the level of drawdowns that likely would, and would not, adversely affect the wetlands at the NEWF. In sum, the more persuasive evidence establishes that the drawdown predicted at 4.0 mgd of pumping –- 0.18 foot (individually) and 0.4 feet (cumulatively) –- is not likely to adversely impact the already significantly degraded wetlands at the NEWF, particularly if the WIP is properly implemented. Demand Projections The City did not use the full 28 mgd allocated under its existing WUP. It pumped only 21 mgd in the 12 months preceding October 2003, when the permit was scheduled to expire; it pumped only 26 mgd in 2006; and the pumping for 2007 was expected to be approximately 1 mgd lower than the pumping in 2006. The City's WUP application contained population and demand projections for different years in the future. For 2014 (the permit expiration date proposed by the District), the “functional population”13 of the service area was projected to be 183,264 and the average demand was projected to be 29.5 mgd; for 2023 (the original permit expiration date requested by the City), the projections were 203,721 people and 32.8 mgd; and for 2018 (the permit expiration date now requested by the City), the projections were 192,176 people and 30.9 mgd. The projections in the WUP application were prepared in 2003, and City's primary consultant, Charles Drake, testified that the data was “accurate” and “reliable.” However, more recent data shows that the population projections in the WUP application were slightly understated. The more recent data is contained in the “Water Services Territory Population Estimates and Projections” reports prepared by the City's utility department in March 2006 and March 2007. The reports include estimates of the functional population for prior years, and projections of the functional population for future years. The estimates reflect the “actual” population for a given year in the past, whereas the projections reflect the “expected” population for future years. The estimates and projections in these reports, like the projections in the WUP application, were prepared in accordance with the methodology contained in the BOR. The District did not take issue with the projections in the reports or the WUP application. The estimated functional population of the service area in 2003, 2004, 2005, and 2006 exceeded the population projected for those years in the WUP application. On average, the projected populations for each year understated the “actual” populations by approximately 3,500 persons.14 Likewise, the population projections for future years in the March 2007 report are higher than the population projections for the same years in the WUP application. For example, the report projects that the functional population of the service area in 2014 will be 191,208 (as compared to 183,264 in the WUP application), and that population in 2018 will be 203,247 (as compared to 192,176 in the WUP application). The City presented “revised” population projections at the final hearing in City Exhibit 140. The revised projections were based on the projections in the March 2006 report, but also included data from the “water allocation waiting list” that is part of the City’s concurrency management system that was created by the City in response to legislation passed in 2005 requiring local governments to allocate and approve requests for water for new development. The population projections in City Exhibit 140 are 234,959 in 2014; 247,390 in 2018; and 264,556 in 2023. These projections include an additional 43,471 persons related to new development in the concurrency management system, as well as the additional 2,600 to 3,000 persons projected per year in the WUP application and the March 2006 report. The City failed to establish the reasonableness of the revised population projections. Indeed, among other things, the evidence was not persuasive that the additional population attributed to the new development in the concurrency management system is not already taken into account, at least in part, in the annual population increases projected in the March 2006 report.15 The most reasonable population projections for the service area of the City's utility are those in the March 2007 report.16 The record does not contain demand projections directly related to the population projections in the March 2007 report. However, demand projections for those population projections can be inferred from the WUP application (City Exhibit 1(a)(2), at 0036) and City Exhibit 140 (at page 0015). The 2014 projected population of 191,208 in the March 2007 report roughly corresponds to the projected population for 2018 in the WUP application (192,176) for which the projected demand was 30.9 mgd; and it also roughly corresponds to the projected population for 2008 in City Exhibit 140 (193,001), for which the projected demand was 28.7. Thus, in 2014, it is reasonable to expect that demand will be between 28.7 and 30.9 mgd. The 2018 projected population of 203,247 in the March 2007 report roughly corresponds to the projected population for 2023 in the WUP application (203,721) for which the projected demand was 32.8 mgd; and it also roughly corresponds to the projected population for 2009 in City Exhibit 140 (201,983), for which the projected demand was 30.2 mgd. Thus, in 2018, it is reasonable to expect that demand will be between 30.2 and 32.8 mgd. The demand projections in the WUP for 2014 (29.5 mgd) and 2018 (30.9 mgd) fall within the range inferred for the populations in the March 2007 report. Thus, even though the population projections in the WUP application for 2014 and 2018 are understated, the demand projections for those years in the WUP are still reasonable. The demand projections in City Exhibit 140 –- 35.3 mgd in 2014 and 36.6 mgd in 2018 –- are overstated as a result of unreliable population projections upon which they are based. Other Issues Duration of Permit The 1987 permit for the NWWF had a six-year duration, as did the original 1989 permit for the NEWF. The 1993 permit had a 10-year duration, but that permit did not increase the amount of authorized withdrawals; it simply combined the authorizations for the NWWF and the NEWF into a single permit. In this case, the City is requesting a permit that expires in 2018, which was a 15-year duration at the time the application was filed, but now is a 10-year duration. The District is proposing a permit with a six-year duration, expiring in 2014. The District is authorized to approve a WUP with a duration of up to 50 years. The District’s rules provide that the duration of the permit is to be determined based upon “the degree and likelihood of potential adverse impacts to the water resource or existing users.” The District’s rules require that in order for the District to approve a permit with a duration of more than 10 years, the applicant is required to present sufficient facts to demonstrate that such a permit is “appropriate.” Section 1.9 of the BOR provides “guidelines” regarding the duration of permits. The guidelines in the BOR are not binding on the District, but the nearly identical language in Florida Administrative Code Rule 40D-2.321 is binding on the District. The BOR provides that a six-year permit is to be issued for renewal permits “with modification to increase the quantity withdrawn by more than or equal to 100,000 gpd or 10% or more of the existing permitted quantities, whichever is greater.” The BOR and Florida Administrative Code Rule 40D- 2.321(2)(b) also provide that a six-year permit is to be issued “where the potential for significant adverse impacts are predicted.” The renewal permit that the City is seeking requests an increase of 8.7 mgd (from 28.1 mgd to 36.8 mgd) over the existing permitted quantities, which exceeds the 10 percent threshold in Section 1.9 of the BOR. Moreover, there is a potential for significant adverse impact from the renewal permit that the City is seeking. Accordingly, a six-year permit is appropriate under the District’s rules and the guidelines in the BOR. The City failed to demonstrate why a longer permit duration is appropriate under the circumstances of this case. District staff testified at the final hearing that the permit term should be calculated from the date the permit is issued, which will be some point in 2008. Therefore, the permit should have an expiration date of 2014. Offsite Impacts The City used the modeling described above to predict the drawdown in the UFA from the proposed pumping in order to determine whether there will be any adverse impacts on existing legal users. The predicted drawdown in the UFA in the vicinity of the NEWF ranges from 1.6 feet to 2.4 feet with 4.0 mgd of pumping at the NEWF, and between 3.4 feet and 5 feet with pumping at 8.77 mgd. The predicted drawdown in the UFA in the vicinity of the NWWF ranges from 10.0 to 14.0 feet, with 28.03 mgd of pumping at the NWWF.17 These predicted drawdowns are not expected to have any adverse impacts on existing legal users that have wells in the UFA. Most permitted wells in the UFA use vertical turbine pumps, which can easily accommodate fluctuations in water levels of five feet or more. The City has not received any complaints from existing users since it began pumping 4.0 mgd at the NEWF in October 2005. The pumping at the NWWF, which has been ongoing for more than 20 years, has not caused any adverse impacts to existing legal users. The City is required under the existing WUP to respond to any adverse impact complaints from existing legal users, and it is required to implement mitigation, as needed. In short, City is required to do whatever is necessary (e.g., relocating or increasing capacity of pump, lowering pipes) to return any well impacted by the pumping to its prior function. The City did not evaluate the potential impacts of its proposed pumping on unpermitted wells because the District does not maintain a database of unpermitted wells. However, the City acknowledges that if its pumping impacts an unpermitted well, it will be obligated to mitigate those impacts in the same manner that it is required to mitigate impacts to existing permitted users. The predicted drawdowns for water bodies in the vicinity of the NWWF and the NEWF that have designated Minimum Flows and Levels (MFLs) -- Lake Bonny, Lake Bonnett, and the Cone Ranch wetlands -- are minimal, on the order of 0.1 foot. The City evaluated the impacts of pumping on contaminated sites listed by the Department of Environmental Protection (DEP) in the vicinity of the NWWF and NEWF. Based upon the results of the modeling conducted by the City, there is no reason to expect that pumping at the NWWF and/or NEWF will have any measurable impact on those sites or lead to pollution of the aquifer. Potential Impacts of NWWF Pumping The only concern expressed by the District with respect to the pumping at the NWWF relates to the potential environmental impacts of the pumping on Lake Bonny and Lake Bonnett. The City agreed to include those lakes in its EMMP. Combee Combee is located approximately four miles south of the NEWF. There is a relatively thick clay confining unit at Combee, which, according to the District, makes it a better location for water withdrawals than the NEWF. The District conducted an APT at Combee in 2006. The hydrologic parameters derived from the APT, and the “preliminary modeling” performed by the District show that the City may be able to withdraw at least 3.0 mgd from wells at Combee. The proposed permit authorized pumping of 3.5 mgd from Combee. The proposed permit also included a phasing schedule pursuant to which pumping at Combee would be decreased to 3.0 mgd if pumping at the NEWF reached 4.0 mgd. The City expressed an interest in obtaining water from Combee throughout the permitting process. However, the City represented at the outset of the final hearing that the Combee well is “off the table because the City wishes to maximize the withdrawal allocation from [the NEWF].” The City stated in its PRO that it is “willing to consider permitting a production well at [Combee] as a potential mitigation resource, should unexpected adverse impacts require the City to divert production to a back-up resource.” The District stated in its PRO that the Combee well is “available for mitigation purposes," and that the City “should be encouraged to apply for a WUP for withdrawals from Combee up to 3.0 mgd to provide additional mitigation for pumping from the [NEWF].” Pump rotation Rotation of pumping between the wells in a wellfield is a standard practice, and it can be an effective mitigation technique. The City utilizes well rotation programs at the NWWF and the NEWF in order to minimize the stress on the production aquifers. Rotating pumping between the production wells at the NEWF is particularly appropriate because several of the wells are located in very close proximity to wetlands. Rotating the pumping will help to minimize the potential for adverse impacts to the wetlands. The actual rotation schedule is an operational decision that is made based upon observed conditions at the wellfield site, rather than something that is typically included in the WUP. Conservation and Reuse The City has a four-tiered conservation rate structure, modeled after the District’s graduated water-rates prototype. The rate structure imposes higher unit costs as individual consumption increases, thereby discouraging wasteful uses of water. The City has a comprehensive leak detection program aimed at preventing the loss of water within the City’s water distribution system. This program has helped to reduce the per- capita per-day consumption rate for the City by reducing the volume of water that is wasted before it is delivered to the consumer. The City has implemented irrigation restrictions aimed at reducing the quantities of water used by domestic customers for lawn and garden watering. The per capita rate of water consumption is a measure of the effectiveness of a water conservation program; the lower the figure, the better. The City’s per capita rate has increased in recent years, but its adjusted gross per capita rate has decreased. The adjusted gross per capita rate takes into account “significant users,” which are defined as non-residential customers other than golf courses that use more than 25,000 gallons per day or that represent more than five percent of the utility’s annual water use.18 The City’s per capita rate in 2005 was 145.69 gallons per day, and its adjusted gross per capita rate in that year was 132.01 gallons per day. The adjusted gross per capita rate may not exceed 150 gallons per day within the SWUCA. Thus, the City will be required to continue its conservation programs (and implement additional programs, if necessary) to ensure that its adjusted gross per capita rate does not exceed 150 gallons per day over the life of the permit. A portion of the City’s treated wastewater is reused for cooling at the City’s McIntosh Power Plant pursuant to a permit from DEP under Chapter 403, Florida Statutes. The DEP permit, No. FL0039772 (Major), states in pertinent part: Industrial Reuse: Effluent is reused . . . as a non-contact cooling water at the City of Lakeland McIntosh Power Generating Plant. The volume of water used on a daily basis fluctuates on an as needed basis. There are no restrictions on the volume that can be routed to the reuse system. The power plant evaporates water in the cooling process or returns cooling water into the Glendale WWTP for final treatment in the manmade wetlands treatment system. The reuse in the power plant is not required as effluent disposal. . . . . The remainder of the City’s treated wastewater is “blended” with the water used at the power plant in order to meet the conductivity standards in the DEP permit and the conditions of certification for the power plant and/or directly discharged into an artificial wetland system that ultimately discharges to the Alafia River. Section 3.1 of the BOR (at page B3-2) provides that “Water Use Permittees within the SWUCA who generate treated domestic wastewater are encouraged to demonstrate that . . . 50% of the total annual effluent flows is beneficially reused.” (Emphasis supplied). The BOR lists a number of uses of treated wastewater that are considered to be beneficial reuse. The list includes “industrial uses for cooling water, process water and wash waters” and “environmental enhancement, including discharges to surface water to replace withdrawals.” The City’s use of treated wastewater for cooling at the McIntosh Power Plant is a beneficial reuse under the BOR. The treated wastewater directly discharged by the City into the artificial wetland system is not a beneficial reuse under the BOR because it is not replacing surface water withdrawals. The BOR requires all users within the SWUCA to investigate the feasibility of reuse, and requires the implementation of reuse “where economically, environmentally and technically feasible.” The City has not recently undertaken a study or otherwise evaluated the feasibility of increasing its reuse. The draft permit attached to the District's PRO includes a specific condition requiring the City to "provide a comprehensive study of reuse opportunities encompassing the [City's] water, wastewater, and electrical utilities systems" by January 1, 2009.

Recommendation Based upon the foregoing findings of fact and conclusions of law, it is RECOMMENDED that the District issue WUP No. 2004912.006 with the terms and conditions contained in the draft permit attached to the District’s PRO, except that: The 2014 population referenced in the permit shall be 191,208; The adjusted gross per capita rate shall not exceed 150 gallons per day; Special Condition No. 2 shall be amended to authorize withdrawals from the NEWF at 4.0 mgd annual average and 4.8 mgd peak month, and the quantities listed in the Withdrawal Point Table for the NEWF wells shall be adjusted accordingly; Special Condition No. 4 shall be replaced with a reference to the EMMP and the conceptual WIP attached to the City’s PRO, and the list of monitoring stations in the EMMP shall be amended to include Lake Bonny and Lake Bonnet; and An additional specific condition shall be added encouraging the City to pursue a WUP for the Combee site for future water needs and/or for additional mitigation of the impacts of pumping at the NEWF. DONE AND ENTERED this 4th day of January, 2008, in Tallahassee, Leon County, Florida. S T. KENT WETHERELL, II Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 4th day of January, 2008.

Florida Laws (7) 120.569120.57132.0128.0335.03373.019373.223 Florida Administrative Code (5) 40D-2.09140D-2.30140D-2.30240D-2.32140D-2.381
# 10

Can't find what you're looking for?

Post a free question on our public forum.
Ask a Question
Search for lawyers by practice areas.
Find a Lawyer