The Issue Whether Petitioner Ross has standing to challenge the issuance of the WUP? Whether the District should approve the Application and enter a final order that issues the WUP?
Findings Of Fact The Parties Petitioner Ross Petitioner Ross is a resident of Pinellas County, (referred to by him at hearing as "the most urbanized county in the State of Florida"). Besides residing there, Petitioner Ross operates a farm on his property in the County. The City's experts reasonably projected and mapped a 0.5 foot drawdown contour surrounding the well field that is the subject of this proceeding. The contour defines "the cone of depression" associated with the well field. See Tr. 136. Mr. Ross' property is outside the cone of depression, to its south and west. The overall groundwater gradient in the area of the well field is from the east to the west. The water pumped from the well field does not pull water from the west because the pumping withdrawal will not reduce the potentiometric surface gradient enough to reverse the current gradient. Mr. Ross' property and the well on his property are "way outside," tr. 138, the well field and the 0.5 drawdown contour surrounding the well field. Based on the amount of drawdown reasonably projected by the well field, the effect on Mr. Ross' property could not be measured because it would be so slight. If the water in his well were to rise after the WUP is implemented, it would be impossible to tell whether the water rose "because the pump's turned off or because it rained the day before." Tr. 163. The District The District is the administrative agency charged with the responsibility to conserve, protect, manage, and control the water resources within its geographic boundaries. The District administers and enforces chapter 373, and the rules promulgated pursuant thereto. Among those rules are those that relate to the consumptive use of water found in chapter 40D-2. The City The City of Tarpon Springs is the applicant for the WUP that is the subject of this proceeding. The City's application seeks to modify an existing permit. The Existing Permit The City has an existing Water Use Permit (the "Existing Permit") from the District. Originally granted in 1976, it allows for withdrawal of fresh groundwater for public supply. The Existing Permit was last renewed in October of 2005 for a ten-year period. It expires in October of 2015. Under the Existing Permit, the withdrawal capacity is 1.38 million gallons per day annual average and allows for seven production wells. The Application and its Modification The City submitted the Application in July, 2008. The Application at that time was for 25 wells in a brackish water well field for a proposed brackish groundwater reverse osmosis plant that the City plans to build. The City's intent originally was to apply for a permit separate from the Existing Permit.1/ In September of 2009, however, the City requested that the Application be considered a modification of the Existing Permit. In honoring the request, the District changed the number assigned to the Application to "20000742.010."2/ The Application was also modified with regard to the number of production wells in the brackish well field. The number was reduced from 25 to 22, "due to land acquisition efforts indicating that the maximum number of wells . . . required for the project would be 22." Tr. 54. The Application contains an introduction that summarized the City's water supply system and its water supply plans, a completed Individual Water Use Permit Application form, a completed Public Supply Supplemental form, and an Impact Analysis Report (the "Report"). The Report states that the ground-water flow model "MODFLOW"3/ was used to perform the impact analysis. Assessment of average annual and peak month withdrawal impacts in the Upper Floridan and surficial aquifers used the SWFWMD District Wide Regulation Model Version 2 ("DWRM2"). One of the enhancements the DWRM2 offers over earlier model versions is "integrated focused telescopic mesh refinement (FTMR) which allows the model grid user to refine the model grid spacing to focus on specific areas within the District."4/ The Report included the FTMR model grid, total drawdown scenarios in the Upper Floridan Aquifer and the surficial aquifer, and a peak month drawdown scenario. The Application also included a summary of the regional hydro-geology, a summary of the City's wastewater system, a description of the City's potable water supply, an historical operating protocol and a proposed well field management plan for the City's new brackish water well field, a service area and well field location aerial, a table showing the general hydrostratigraphy in northern Pinellas County, a summary of seasonal fluctuations which addressed the conditions for issuance of a permit as set forth in rule 40D-2.381, a summary of the City's reclaimed water system, well location maps, wetland maps, Water Use Permit maps and schedules, the City's well field protection ordinance, maps pertaining to the proposed service areas, a water conservation letter, and water conservation information. The 22 new production wells in the brackish water well field will provide enough water once treated at the proposed reverse osmosis membrane treatment plant to enable the City to supply the anticipated potable water demand for all of the City's customers through the year 2015. Installation of the additional production wells will increase the annual average quantity of groundwater pumpage to 4,200,000 gallons per day ("gpd") and the peak month quantity to 6,300,000 gpd. Review of the Application by the District led to four requests by the District for additional information. The City responded to each. The responses included a well construction and aquifer testing program report, a Water Quality/Water Level Well Impact Mitigation Plan, a Water Quality Action Plan, a revised Water Quality/Water Level Well Impact Mitigation Plan, a revised Water Quality Action Plan and a second revision of the Water Quality Action Plan, a second Water Quality/Water Level Well Impact Mitigation Plan, a proposed Environmental Monitoring Plan, a third revised Water Quality Action Plan, a third revised Water Quality/Water Level Well Impact Mitigation plan, and the final Environmental Monitoring Plan. Draft Water Use Permit On October 8, 2010, the District gave notice of its intent to issue a permit that would modify the City's Existing Permit for public supply use. Attached to the notice is a Draft WUP. The modification includes the development of a brackish water well field with 22 additional production wells to allow the City to self-supply the anticipated potable water demand in 2015 for a customer base of approximately 34,259 persons. The annual average quantity authorized by the WUP is 4,200,000 gpd and the permitted peak month quantity increases to 6,300,000 gpd.5/ Special conditions of the Draft WUP require the City to maintain meters on existing and proposed withdrawal points; record and report monthly meter readings; confirm meter accuracy every five years; monitor and report the water quality and aquifer water levels; maintain an adjusted per capita rate of 150 gpd or less; conduct and report water audits; submit annual reports of residential water use, reclaimed water supplied, per capita water use rates, and well field operations; investigate withdrawal-related well complaints; conduct a well field inventory prior to the activation of the proposed production wells; comply with the environmental monitoring plan; set water quality concentration limits prior to the activation of the proposed production wells; and submit an Annual Water Quality Report and an annual Well Field Report. Criteria in Rule for Issuance of WUPs The District utilizes rule 40D-2.381 (the "Rule") in its review of water use permit applications. The Rule opens with the following: In order to obtain a Water Use Permit, an Applicant must demonstrate that the water use is reasonable and beneficial, is consistent with the public interest, and will not interfere with any existing legal use of water . . . Rule 40D-2.381(1), Tab 1 of the Binder Containing the Matters Officially Recognized, pp. 7-8. The Rule requires that the applicant make the required demonstrations through the provision of "reasonable assurances, on both an individual and a cumulative basis that the water use," id., will meet 14 conditions listed in subsections (a) through (n).6/ Condition (a) Condition (a) requires that the City demonstrate that the water use is necessary to fulfill a certain reasonable demand. To meet this condition, the City provided a population estimate through the end of the permit term and also provided a per capita rate that the City had used in the last five years. Calculations set forth in a table prepared at the request of the City show the population projections and projected water demands over a period from 2008 through 2030. These calculations provide reasonable assurances that the proposed water use meets Condition (a). Condition (b) Condition (b) requires that the City must demonstrate that the water use will not cause quantity or quality changes that adversely affect the water resources, including both surface water and groundwater. The City provided a groundwater model showing the anticipated groundwater drawdowns within the Upper Floridan and surficial aquifers. The City also completed a study on the wells within the sections of the actual proposed well field. Based upon the modeling, the drawdowns are not large enough to cause any impacts to quantity or quality of the water in the area. The City has a Water Quality/Water Level Well Impact Mitigation Plan, should there be any complaints of impact, to correct any problems after implementation of the WUP. The well field is designed with 22 supply wells. All 22 wells need not be operated at the same time to meet the water demand. Wells beyond those needed by demand have been designed into the well field so that there can be rotational capacity. Pumping at lower rates from among the 22 wells on a rotational basis is a management tool for protecting the resource and minimizing the effects of the withdrawals. The City's monitoring program provides for the collection of water levels from a large number of wells either on a monthly or quarterly basis to assess water level fluctuations in the Upper Floridan and surficial aquifers. The City also has numerous wells that will sample for chloride sulfates, total dissolved solids (TDS) and other water quality constituents on a monthly and quarterly basis to ensure that the conditions of issuance continue to be met. The City will submit groundwater pumping data on a monthly basis from all the production wells so that the District can determine that the City is indeed adhering to the quantities reflected in the WUP. Groundwater in the Upper Floridan Aquifer flows in a westward direction towards the Gulf of Mexico. The location of the proposed wells is in an urban land use area near the Gulf Coast. The wells will capture brackish groundwater that would otherwise flow westward into the Gulf. Brackish groundwater from the City's service area is the lowest quality water available for public supply in the area. The City plans to construct a reverse osmosis facility to utilize available brackish groundwater. The brackish groundwater pumped from the well field is an alternative supply source. Isolated from the regional system, it will be used for public supply in the service area. The high number of low-capacity wells will provide rotational ability for the City to manage the quantity and quality of the water resource in the area of the well field. Maximum drawdown within the well field area due to the average annual withdrawal is approximately 3 feet, with an additional 1.5 feet during peak month withdrawal. This amount of drawdown is not likely to impact other wells in the area. Condition (c) Condition (c) requires the City to demonstrate that water use will comply with the provisions of 4.2 of the WUP Basis of Review, incorporated by reference in rule 40D-2.091, regarding adverse impacts to wetlands, lakes, streams, estuaries, fish and wildlife or other natural resources. The Anclote River and associated wetlands are tidally influenced and will not be adversely impacted by the proposed withdrawal. Other wetlands in the well field area examined by a District biologist identified several isolated wetlands of concern. Isolated wetlands are generally more sensitive to withdrawal of groundwater than wetlands connected to larger basins. Initially, the City's proposed drawdowns were deemed to be unacceptable to the District because of the impact to the isolated wetlands of concern. As a first step, the City reduced the quantities of water to be withdrawn. Subsequently, an extensive Wetland Monitoring Plan was developed that included a mitigation plan if adverse impacts did occur to wetlands. Storm-water runoff will be the primary factor controlling the functions of the wetland areas. Mitigation measures, should any adverse impact become too great, include reduction of well field pumping, augmentation with well water, potable water and other feasible sources, and the purchase of mitigation credits. Condition (d) Condition (d) requires the City to demonstrate that the water use will not interfere with a reservation of water as set forth in rule 40D-2.302. The groundwater modeling that the City provided the District indicates that there are no adverse impacts to the minimum flows and levels ("MFLs") in the Anclote River or the water level at the Tarpon Road Deep Well. There are, therefore, no impacts to reservations of water. Condition (e) Condition (e) requires the City to demonstrate that the water use will comply with the provisions of 4.3 of the WUP Basis of Review,7/ regarding MFLs. The closest MFL site is the Upper Floridan Aquifer monitoring well called Tarpon Road Deep, located approximately 2.4 miles southeast of the well field. The impact analysis model results show that at the annual average withdrawal rate of 4.20 million gallons per day ("mgd") approximately 0.1 feet of drawdown at this MFL site is currently projected to occur, assuming static pumping conditions in all other regional groundwater withdrawals. This amount of drawdown will not cause the water level at the Tarpon Road Deep Well to fall below its minimum level. The District is in the process of setting an MFL for the Anclote River. Based on the operation of the new well field and the City's continued operation of their freshwater discharge to the Anclote River from their reclaimed water facility, there will be no impact to the Anclote River. Condition (f) Condition (f) requires the City to demonstrate that the water use will utilize the lowest water quality the City has the ability to use, provided that its use does not interfere with the recovery of a water body to its established MFL and it is not a source that is either currently or projected to be adversely impacted. The City is using brackish water, the lowest water quality available to be used for public supply. The City will be treating it at a reverse osmosis water treatment plant. Water of this quality is not available for others to use without special treatment. Based upon the modeling provided by the City, there are no anticipated impacts to MFLs or any other water body resources. Condition (g) Condition (g) requires the City to demonstrate that the water use will comply with section 4.5 of the WUP Basis of Review,8/ regarding saline intrusion. Groundwater in the Upper Floridan Aquifer in the area of the well field is brackish. The well field's design allowing well rotation minimizes changes in water quality during operation. The amount of drawdown and the fact that water levels will remain above sea level suggests that saline water intrusion will not occur. The reported potentiometric surface in the area of the well is approximately five feet NGVD while the land surface is roughly five feet higher at approximately ten feet NGVD. The City's monitoring and mitigation programs will address adverse impacts from saline intrusion should they occur. Condition (h) Condition (h) requires the City to demonstrate that the water use will not cause the pollution of the aquifer. Soil and groundwater contamination is documented at the Stauffer Management Company site located approximately 3,000 feet west of the well field. The drawdown from the well field is calculated to be about one foot at the Stauffer site. That level of drawdown will not induce migration of contaminants because the upward head differential from the Upper Floridan Aquifer to the surficial aquifer will be altered and the Stauffer site is down gradient of the well field. Testimony from Mr. Wiley established that the aquifers should not be contaminated by the City's withdrawals despite the presence of the Stauffer site: [T]here is a known source of contamination approximately 3,000 feet from the new well field to the west, Stauffer Chemical Company. With the small amount of drawdown that's caused in the Upper Floridan aquifer and the surficial aquifer, there's no potential for the withdrawals to cause pollution of the aquifer. Tr. 254-55. Mr. Wiley's opinion was reached primarily based on the use of the groundwater flow model to determine the drawdown at the Stauffer site and through review of groundwater levels in the Floridan and the surficial aquifers. The United States Environmental Protection Agency (the "EPA") is in charge of managing the contamination at the Stauffer site. A remediation plan has been developed based, in part, on EPA records. The remediation plan includes the construction of a barrier wall in the subsurface around the contaminated area to prevent contaminated groundwater from migrating. The City's groundwater monitoring wells will detect movement of contaminants toward the well field. The monitoring of the wells and the mitigation plan will assist in preventing pollution of the aquifers. Condition (i) Condition (i) requires the City to demonstrate that the water use will not adversely affect offsite land uses existing at the time of the application. Primary existing land uses within the City's service area are residential, commercial, and light industrial. The proposed withdrawal will not adversely impact these land uses as shown in Figure 10 of the City Exhibit 1. Five sink holes are known to exist in the general area around the well field. The closest is approximately 1,000 feet from a proposed well location. Maximum drawdown at the distance is approximately 2 feet. This amount of drawdown does not significantly increase the potential for sinkhole activity. Condition (j) Condition (j) requires that the City demonstrate the water use will not adversely impact an existing legal withdrawal. The Pasco County Utilities' wells located to the north of the well field are listed on the WUP as plugged. Wells owned by Crest Ridge Utility Corp. are located within 0.5 to 0.8 miles of the well field. Drawdown at these wells, due to the average annual withdrawal, is approximately one foot, with an additional 0.4 feet during peak month withdrawal. This amount of drawdown will not create a water level impact at these wells. Maximum drawdown at domestic wells in the area due to the average annual withdrawal is approximately three feet, with an additional 1.5 feet during peak month withdrawal. This amount of drawdown is not likely to impact other wells in the area. The City's mitigation plan addresses any adverse impact that might occur from the City's withdrawal. Condition (k) Condition (k) requires the City to demonstrate that the water use will incorporate water conservation measures. The existing per capita use rate for the City's service area is 110 gpd. Its position well below the district goal of 150 gpd per person demonstrates that the City's water conservation measures are effective. The City uses an inclined block rate structure which encourages water conservation. It also encourages water conservation through a reclaimed water system that encourages conservation of public water supply. It currently uses a little over one million gallons per day of reclaimed water. The City also conserves water through a leak protection program, a water loss audit program, adherence to the District's watering restrictions and provision of a low-flow toilet rebate program through the County, a landscape code, and the provision of educational materials to users. Condition (l) Condition (l) requires the City to demonstrate that the water use will incorporate the use of alternative water supplies to the greatest extent possible. The City has an extensive reclaimed water program. It provides reclaimed water for its golf course, for residential irrigation, for public parks and recreation, and for public schools. The City expanded its reclaimed water storage system recently by doubling the amount of reclaimed water that it is able to store for redistribution. Condition (m) Condition (m) requires the City to demonstrate that the water use will not cause water to go to waste. The City performs an unaccounted-for water audit of its system as required by a special condition of its existing WUP. The unaccounted-for water use is approximately 4 percent, well below the District guidelines. Furthermore, the City's per capita use rate of 110 gpd is well within the District's goal of 150 gpd per person. The City also has an extensive reclaimed water system which offsets potable water supply and prohibits wasted drinking water as an irrigation source. Condition (n) Condition (n) requires that the City demonstrate that the water use will not otherwise be harmful to the water resources within the District. Facts found above support a conclusion that the City has provided reasonable assurances that it meets this condition. In addition, the water that is pumped locally by the City will offset the need for ground water that would have otherwise been obtained from elsewhere in the region. Notices The District published its Notice of Proposed Agency Action in the Tampa Tribune on October 22, 2010. The District published its Notice of Proposed Agency Action in the St. Petersburg Times on October 24, 2010.
Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is recommended that the Southwest Florida Water Management District enter a Final Order determining that Petitioner Ross lacks standing and that his Petition, therefore, be dismissed. Should it be determined in a Final Order that Petitioner Ross has standing, it is recommended that the Southwest Florida Water Management District enter a Final Order that issues Water Use Permit No. 20000742.010 to the City of Tarpon Springs. DONE AND ENTERED this 14th day of April, 2011, in Tallahassee, Leon County, Florida. S DAVID M. MALONEY Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 14th day of April, 2011.
Findings Of Fact Ed Smith is the President of Riverside Village Mobile Home Park, Inc., which in turn is the owner of the mobile home park in question in this case. The mobile home park is located in Ruskin, Hillsborough County, Florida. Petitioner was served with an Administrative Complaint alleging that the chlorine residual in the park water supply distribution system was inadequate and that this constituted a violation of Chapter 513 and Section 386.041(1)(f), Florida Statutes, as well as Rule 10D-26.67(1), Florida Administrative Code. Specifically, the Administrative Complaint alleges violations occurring between July 16, 1986 and July 29, 1986, and seeks the imposition of a civil penalty in the amount of $500 per day which "shall be calculated when this complaint is received by the (Petitioner), and will run until the violation has been corrected." Petitioner requested a hearing to contest these allegations, and his request was filed with Respondent's Clerk on October 8, 1986. It was not established by competent substantial evidence when Petitioner "received" the Administrative Complaint which is the subject of this action. The only evidence of any violation occurring between July 16 and July 29, 1986 was the testimony of Harry Messick who signed an Official Notice and Notice of Intended Action which were both dated July 16, 1986, and which alleged that "chlorine reading found at time of inspection (was) between 0.1 ppm and (a) trace." However, Messick did not perform any test to either produce or confirm this result. He testified that someone else performed the field test, but there was no testimony from anyone else who may have actually conducted a test on Petitioner's water supply system on July 16, 1986. Therefore, it has not been established by competent substantial evidence that Petitioner's water supply system on July 16, 1986, was in violation of the requirement that .2 mg/1 of free chlorine residual be maintained. Testimony from Respondent's other witnesses, Norman Vik and Neil R. Schobert, indicates Vik was not even at Petitioner's mobile home park between July 16 and 29, 1986, and the only test conducted by Schobert found that Petitioner's water supply system was in compliance on July 24, 1986. Design modifications in Petitioner's water supply distribution system were approved by the Hillsborough County Health Department on July 9, 1986.
Recommendation Based on the foregoing, it is recommended that Respondent enter a Final Order DISMISSING the Administrative Complaint filed against Petitioner. DONE AND ENTERED this 19th day of February 1987 in Tallahassee, Florida. DONALD D. CONN Hearing Officer Division of Administrative Hearings The Oakland Building 2009 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 19th day of February 1987. APPENDIX (DOAH Case No. 86-4094) Rulings on Respondent's Proposed Findings of Fact: 1. Adopted in Finding of Fact 1. 2-3. Rejected in Findings of Fact 4, 5. COPIES FURNISHED: James A. Sheehan, Esquire Florida Federal Building One Fourth Street North Suite 800 St. Petersburg, Florida 33701 Carol M. Dittmar, Esquire 4000 West Buffalo Avenue Suite 520 Tampa, Florida 33614 Gregory L. Coler Secretary Department of Health and Rehabilitative Services 1323 Winewood Blvd. Tallahassee, Florida 32301 John Miller, Esquire General Counsel Department of Health and Rehabilitative Services 1323 Winewood Blvd. Tallahassee, Florida 32301 =================================================================
Findings Of Fact Application No. 76-00360 is for a new consumptive water use involving one well. The application seeks withdrawal of 1.29 million gallons per day average daily withdrawal and 2.59 million gallons per day maximum daily withdrawal. The water will be withdrawn from the Floridan Aquifer for the irrigation of tomatoes. The amount of water sought to be consumptively used will exceed the water crop as defined, by the district because approximately 25 percent of the water will be discharged off site. The land which is the subject of this application is being leased by the applicant for the purpose of growing tomatoes. Applicant's lease terminates in September, 1978 with an option to renew. Except as otherwise set forth above, the applied for consumptive use will not violate any of the conditions set forth in Subsections 16J-2.11(2), (3) or (4), F.A.C. The Southwest Florida Water Management District's staff recommends granting of the subject permit in the amounts requested with the following conditions: The applicant reduce runoff to 4.6 percent of the amount pumped by January 1, 1978. The district be allowed to install flowmeters and be allowed to go on the property to read these meters. The permit shall terminate on September 30, 1978, unless permitee seeks an extension. That the applicant give written notice of his intention to renew the lease if he so intends.
Recommendation It is hereby RECOMMENDED that Application No. 76-00360 be granted subject to the conditions set forth in paragraph 5 above. ENTERED this 26th day of May, 1976, in Tallahassee, Florida. CHRIS H. BENTLEY Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 COPIES FURNISHED: Jay T. Ahern, Esquire Ralph Williford Staff Attorney Glisson and Williford Farms, Inc. Southwest Florida Water Post Office Box 911 Management District Ruskin, Florida 33570 Post Office Box 457 Brooksville, Florida 33512
The Issue The issue for consideration in this matter is whether Respondent’s license as a water well contractor should be disciplined because of the matters alleged in the Administrative Complaint and Order entered herein by the District.
Findings Of Fact At all times pertinent to the issues herein, the Southwest Florida Water Management District (SWFWMD) was the state agency responsible for the conservation, protection, management, and control of water resources within its boundaries, and consistent therewith, the licensing of water wells therein; and for the licensing and regulation of water wells and water well contractors within the district. The three wells in issue herein were within the jurisdiction of the Petitioner, and Respondent was a water well contractor licensed by the District. On June 4, 1998, Respondent signed a contract with Karen Anne Grant, to drill a four-inch domestic water well on her property located at 33442 Larkin Road, Dade City, Florida. The property, on which Ms. Grant was building a residence, was a part of a pre-existing citrus grove. After application by the Respondent, SWFWMD issued WCP No. 606175.01 to him on June 1, 1998, and Respondent began construction of the well on June 15, 1998. His application reflected the well was to be drilled using the cable-tool method. Construction was completed on the well on or about July 7, 1998, but because the well was vandalized during construction by the dropping of an unknown substance (probably a piece of casing) down the well, the well was unsatisfactory and was not used. Respondent attempted to repair the well but was unable to do so. Respondent claimed the well was unusable and he would have to drill another one. Although he did not obtain a permit to close the well, he subsequently did so. He was paid $5,375.00 to dig this Well (No. 1). Because of the failure of Well No. 1, Respondent applied to the District for and received WCP No. 613349.01 on December 9, 1998, to construct a second four-inch water well on Ms. Grant's property. This was Well No. 2. He began construction that day and completed it on January 27, 1999. From the time of its initial use, Well No. 2 produced water which contained unacceptable amounts of sediment, debris, and sand. In addition to the unsatisfactory quality of the water it produced, Well No. 2 also failed to produce a sufficient quantity of water for domestic potable water use or grove irrigation. Respondent admitted to Ms. Grant that Well No. 2 was not satisfactory for grove irrigation, and in an effort to fix the water quality problem, installed a sand filter and sedimentation tank. Well No. 2 was not properly closed. It was covered with a PVC cap instead of a tamper-resistant watertight cap or valve as required, and Respondent did not properly seal the upper terminus of the well. Without obtaining a third WCP, on February 25, 1999, Respondent started construction of a third well on the Grant property. Respondent contends WCP No. 613349.01, pulled for Well No. 2, was not for that well but for Well No. 3. He argues that the second well was so close to the first well that he did not feel another permit was required. Though Well No. 3 was completed and produces water, the water quality is poor. It contains sand, sediment, debris, and rock, which results in clogging of plumbing fixtures at the Grant home. In addition, the volume of water produced is insufficient for comfortable home use. Well No. 3 is open down to 178 feet below land surface, beyond which point it is obstructed by sand. Use of a diagnostic tool available to the District reveals that the sand seems to be coming from around the well casing. Ms. Grant initially contracted with Respondent to dig her well in June 1998. Although Petitioner disputes it, the location of the well near the new house she was building was, she claims, by mutual agreement. Respondent did not express any dissatisfaction with the location of this or either of the other wells, He said he was familiar with the area and had worked all around there. Respondent started work on Well No. 1 on June 15, 1998 and it was completed on July 2, 1998. The house was not yet completed, and electric service had not been installed, though it was being arranged for. Before the well could be put in operation, however, Respondent claimed it was vandalized and his equipment, which he had left at the site, stolen. At this point, Respondent told Ms. Grant that he had run into an obstruction which he believed was pipe which had been dropped into the well at more than 100 feet. He said he had tried to get it out, but could not, and had to drill another well. The casing of Well No. 1 was not cut off at that time. Ms. Grant later discovered it had been cut off and plugged, but she does not know who did that. Ms. Grant used Well No. 2, which was located about 20 to 30 feet west of Well No. 1, for just about two months but was never satisfied with the amount or quality of the water it produced. Not only was the water quality low, but there was also insufficient volume for grove irrigation, one of the intended uses of which she had advised Respondent. When Grant complained to Respondent about the water quality, he suggested she run hoses constantly to clear the sand out. In February, 1999, just after Ms. Grant contacted the District to complain, Respondent said he would come by to cap Well Nos. 1 and 2, and start Well No. 3. On February 25, 1999, Respondent started Well No. 3 at a site about 200 feet north of Well Nos. 1 and 2, agreed upon by the parties after some discussion, and on March 5, 1999, he completed it. Respondent billed Ms. Grant $3,271 for this well, in addition to the $5,375 paid for Well No. 1 and the $4,585 paid for Well No. 2. Whereas the builder paid for the first two wells, Ms. Grant paid for Well No. 3, but she had the same problems with Well No. 3 that she had had with the prior two wells. An irrigation company called in to see what could be done to get water to the citrus grove indicated there was too much sediment in the water and not enough flow. About a year after Well No. 3 was completed, the Grants noticed the water pressure was dropping, and when they went to the well site, they noticed the pump was constantly running. As a result, they called another well driller who pulled the pump and replaced the impellers. After that, Ms. Grant contacted Respondent about the fact that the wells he had drilled had never worked properly. All he would recommend was to keep the hoses running. He indicated he would try to develop the well to rid it of debris but when he tried, he was unsuccessful. As a result of the situation with the three wells, the Grants had no water to their home; the pumps they installed were destroyed; they were unable to irrigate their 8-acre citrus grove; they suffered a resultant loss of income; and, they were forced to drill a fourth well. When Well No. 1 was closed, the casing was cut off at or below ground level. It did not extend one foot above the land surface, nor was the casing capped or sealed with a tamper- resistant watertight cap or valve. Examination of the well site by Sharon Lee Vance, then a technician IV for the District, on May 25, 1999, based on a complaint filed by Ms. Grant, revealed that the water quality was poor - cloudy with excessive sand and rock particles. Ms. Vance tried to contact Respondent, whose name appeared on the permit as contact, by phone but always got his voice mail. Though she left messages requesting him to call back, he never did. Ms. Vance went back to the Grant site in July 1999 in the company of other District personnel. At this visit, Ms. Vance learned there were two wells. She located both and found that Well No. 1 was buried. When she first saw that well, she noted that it had been cut off below the surface, a fence post had been driven into the top, and the well had been buried. In Ms. Vance's discussions with Ms. Grant about this well, Ms. Grant categorically denied she was the one who cut off the top of Well No. 1 or buried it. She does not have access to the cutting equipment used to cut off the top of the well. Such equipment, however, is commonly used by well contractors. It was obvious to Ms. Vance that Well No. 1 had several problems. It was clearly not suitable for its intended use because it was cut off below ground level and was obstructed. It had not been properly abandoned. Though she dug down approximately one-and-a-half feet all the way around the casing, she could find no evidence of bentonite or any other approved closing medium. Even though Respondent now claims the second permit he pulled was not for Well No. 2 but for Well No. 3 instead, the permit itself appears to authorize the construction of Well No. Ms. Vance found several problems with this well, also. It was not properly sealed with bentonite or any other properly approved closure medium; a PVC cap had been applied to the top instead of a waterproof or tamperproof cap, and the PVC cap was cracked; the well was not suitable for its intended purpose because it was obstructed and produced both insufficient and poor quality water; and it was not properly abandoned. Ms. Vance observed a metal plate placed around the well top. She does not know what purpose it was to serve, but based on her experience and her examination of the site, she believes it was placed there to keep the casing from falling into the well. Notwithstanding, Ms. Vance's opinion that the second permit was for Well No. 2, Respondent contends he believed the permit for Well No. 1 was adequate to permit drilling of Well No. 2 without a new permit. Though his belief is incorrect, he admitted to obtaining a permit for Well No. 3. Therefore, it is found that Well No. 2 was not properly permitted. Well No. 3 was permitted. The water in Well No. 3 was not of good quality. She examined the sand filter which had been installed by the Respondent and found it to be full of sand. So was the settling tank. She also noted debris and unusual sediment around the well head. Based on water samples taken at the well, and the observations made, it was clear to Ms. Vance that the well was not properly seated and was pumping sand. Further, the well casing did not extend down to the static water level, and the well was not properly permitted. Ms. Vance further noted that the water from Well No. 3, in addition to the excessive sand, also had large pieces of rock and chunks of clay in it. This was unusual and indicated to her that there was a problem with the well's construction. The casing integrity as not good, which permitted an infusion of contaminant into the well. This condition is not unusual during the first day or so of a well's operation, but it usually clears up after that. In this case, it did not. Ms. Vance admits she does not know who cut Well No. 1 off below ground level. She knows the well was not properly abandoned as required by rule, however, because it was not properly grouted with neat cement grout or bentonite. She dug down beside the well for a total of two and a half feet without seeing any evidence of grout or bentonite. The fact that the well had pipe dropped into it, and the existence of the cutting off of the pipe below ground, made it inappropriate for the intended purpose of providing water for the home. Ms. Vance she does not know who cut off the pump; Ms. Grant does not know who cut off the pipe; and Respondent denies having done it. Though the work was clearly done by someone with access to well drilling tools, Respondent was not the only driller to work at the site. Therefore, it cannot be found that Respondent cut the pipe off below ground. It is clear, however, that Respondent failed to properly abandon and close Well No. 1, when he found it unusable, and it was his responsibility to do so. Well No. 2 also was not properly sealed by Respondent, according to Ms. Vance. A proper seal would include a good cap, not a cracked PVC cap, which would suffice only as a temporary cap. A proper cap would be one that is water tight and could not be readily removed. Ms. Vance admits she does not know who cracked the existing cap - only that it is cracked. This well, too, did not produce water fit for its intended purpose because of the existence of the tools which had been dropped into it. A permit was not obtained to abandon it. Under all these circumstances, Ms. Vance did not attempt to determine if it would produce sufficient water. Finally, Ms. Vance concluded that Well No. 3 was not properly seated. According to rule, the casing has to seat to or below the static water level. Based on the debris in the water drawn from this well, she was satisfied this well was not properly cased. Mack Pike, a water resources technician III for the District, does much of the well logging for the District. The equipment he uses goes to the bottom of the well and shows the diameter up to the point where the casing usually starts. Among other items, he uses a camera, which is what he used on the wells in issue here. On July 22, 1999, he went to the Grant property to look at Well Nos. 1 and 2. His first efforts to get into these wells were unsuccessful, so he stopped his effort and returned on May 10, 2000 with the camera. On May 17, 2000, he also ran the camera down all three wells. In Well No. 3 he found the pump at 176 feet. He found Well No. 1 cut off about one and a- half feet below ground level, with a log jammed into the casing top down to the level of the casing. The pipe had been cut with a torch, but the casing had not been properly sealed with bentonite. Use of the log to stuff the pipe was an improper seal. He found the well open below the log down to 128 feet, but obstructed below that. There was no water in the well. Respondent adamantly insists he used bentonite in all three wells, but since no trace of it was found in any of the wells by Mr. Pike or Ms. Vance, it is found that he did not. At Well No. 2, Mr. Pike found a welded slab around the pipe to keep the casing from falling in. The cap was cracked and was no good. The camera showed the well was closed off. He hit sand at 158 feet. The presence of sand indicated to Mr. Pike that the casing was not properly sealed. The well was unusable. Mr. Pike did not examine Well No. 3 until after he opened the sediment tank and found sand which appeared to have come from the surface. If the casing had been properly sealed, there should have been no surface sand. This means that the well was not properly seated. Respondent has been a licensed well contractor since 1989 and has drilled approximately 300 wells since that time. Though he claims he suggested alternate locations for the wells to Ms. Grant, she insisted the well be placed near her irrigation line. Respondent claims he was against this because the site was a transition area which raised the possibility of the pipe bending. Notwithstanding the advice he got from others regarding the siting of the wells, he agreed to place the well where Ms. Grant wanted it. Respondent claims he dug the first well and installed the pump, but the power was insufficient to run it. As a result, he pulled out the pump and told Ms. Grant that when she got the proper power to run it, he'd come back and reinstall the pump. It was when he returned to the site in response to her call that he found that the site of Well No. 1 had been vandalized. Though he recommended the well be abandoned, Ms. Grant did not want to do that, so he moved over 20 feet and started to drill again. He categorically denies having cut off the casing of Well No. 1 below ground level. It has been found that the evidence shows Respondent that cut the pipe on Well No. 1, is insufficient. Mr. Holt admits he did not seek a permit for this second well because his understanding was that one could drill like wells on the same premises without abandoning the pre- existing wells. He drilled the second well which, he claims, produced water for five to six months. However, it was impossible to stop the sand from infiltrating the well, and the well was not producing sufficient water to irrigate the grove. Because the water produced by Well No. 2 was insufficient in quantity to use the 5-horsepower pump called for in the contract, Respondent replaced it with a one and a-half horsepower pump. According to Respondent, he and Ms. Grant discussed where to site Well No. 3. Finally, Ms. Grant agreed to move it up the hill on which Respondent wanted to site it, as this would accommodate her irrigation system. Respondent was not comfortable with this because it was on the slope too close to the others, but he went along with it. As Well No. 3 was being constructed, Respondent discussed with Ms. Grant the need to close Well Nos. 1 and 2. She did not want to pay for the closings, so he decided to cap the existing wells. As a result, Well No. 2 is still a viable well, and though it will not irrigate the grove, it will, Respondent claims, provide sufficient water for the house. He admits placing the PVC cap on Well No. 2, but claims it was not cracked when installed. He also admits to placing the plate around the top of Well No. 2 because the drive shoe was bent. It broke off, and he was afraid if he did not reinforce the area as he had the casing would collapse when he tried to ream out the drive shoe to recover it. At the 126-foot mark of Well No. 3, Respondent hit a boulder through which the drill would not go. At that time, the hole below the casing was still good with no infusion. Respondent installed a pump and drew water, but, the pump soon began to pull sand. Respondent installed a filter, but it was insufficient. He ultimately drilled through the rock and placed the pump at 178 feet. That well is currently being used. Respondent claims that all wells in that area pull sand to some degree. He insists that Ms. Grant's wells just pull too much. He claims he could have quit, but because of his relationship with the builder, he felt obligated to drill a working well for Ms. Grant. Anthony Gilboy, who has been with the District for 20 years, is currently the District's manager of well construction. He is familiar with the statutes and the rules of the District relating to water well construction and abandonment. According to Mr. Gilboy, they are loose enough to permit some latitude in their application. There is a freedom to amend methodology where circumstances so dictate. A licensed water well contractor is required to obtain a permit to construct a water well. Once a permit is drawn, if the well needs to be changed, the permittee must apply for an amendment and then plug the old well consistent with District guidelines. Plugging is critical to prevent potential contamination of water and to preserve it. Rule 40D-3.042, Florida Administrative Code, permits multiple (up to 8) wells under a single permit for similar types of wells that have diameters of 4 inches or less, but not domestic water wells. There are different ways to drill a water well. One is by cable-tool drill in which a bit is hammered into the rock. As the casing is being driven down into the ground, it holds back the sediment. Another method involves the use of a rotary drill which employs water and bentonite to hold back sediment. It is possible to tell whether bentonite was used in the drilling process just by looking at the well. The bentonite adheres to the well casing and looks different from the surrounding soil. In fact, there is no soil appearing naturally in Florida that looks like bentonite. In the instant case, Respondent applied to use the cable-tool method. Bentonite traces were not found at the sites. When a well is drilled, the casing is to be poured in segments as drilling progresses. When a well is to be abandoned, one approved method of doing so involves the use of bentonite, a type of clay which swells to about 10 to 15 times its volume in dry form. Studies done by the District in conjunction with the University of Florida show that over all, bentonite is a better seal than natural soil, and it prevents surface water from settling down the side of the casing. Rule 40D-3.517(3), Florida Administrative Code, requires bentonite's use for this purpose, and a rule of the Department of Environmental Protection, though not specifically mentioning bentonite, requires that casings be sealed. The casing of a water well is used to seal off any unconsolidated materials. Rule 62-532, Florida Administrative Code, requires the casing be extended into the static water level at the time the well is drawn. If a well is not sealed, debris and sand can slide into the well and damage the pump and other equipment. If debris is seen, it usually means the casing was not sealed properly. After a well is completed, the rules of the District and the Department, Rules 40D-3.521(2) and 62-532.500(3)(a)4, Florida Administrative Code, respectively, require the upper part of the well to be sealed off to prevent infusion of contaminants. The seal must be tamper-proof and permanent. A fence post is not acceptable, nor is a cracked PVC cap. In addition, the upper terminus of a private well must extend at least 1 foot above the land surface. The purpose of this requirement is to allow the well to be found, and to prevent infusion of contaminant. (Rule 40D-3.53(2), Florida Administrative Code) According to Rule 62-532-500(4), Florida Administrative Code, all abandoned or incomplete wells must be plugged from top to bottom with grout (neat cement). The Rule and Stipulation 39 of the permit provide that the well drilling contractor is responsible for proper abandonment of a well. This is not conditioned on the willingness of the owner to pay. The contractor has the responsibility to do it. An abandoned well is one which the use of which has been permanently discontinued or which is so in need of repair as to be useless. These determinations must be made by the District, hence the need for the permit. In the instant case it was determined that Well Nos. 1 and 2 were not suited for their intended purpose, and they should have been properly abandoned. The process for well abandonment is not complex, but it does require the obtaining of a permit. At least 24 hours in advance of initiation of the plugging process, the contractor must advise the District that the process will be implemented. Thereafter, the well hole is filled with neat cement or bentonite grout. To abandon a well by any other method would require a variance from the District. Neither permit nor variance was sought as to Well Nos. 1 and 2. The standards adopted by the Department and the Water Management Districts are statewide in application. Construction of a water well without first obtaining a permit is classified as a major violation. The failure to properly abandon a well or the failure to use bentonite or neat cement in well closure are also major violations. Failure to construct a well so that the casing extends below the static water level is a major violation. Failure to seat or seal a casing into rock formation is a major violation. Failure to place a water-tight seal and failure to extend well casing at least one foot above the ground level are both major violations. Penalties may be assessed for these violations according to a schedule set out in the Department rules. However, these penalties may be adjusted based on such factors as the economic benefit to the contractor of his non-compliance; his history of non-compliance; the negligence or willfulness of his actions; and whether he acted in good faith. Under the circumstances of this case, Mr. Gilboy is of the opinion that the actions proposed by the District are appropriate.
Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is recommended that Respondent, Fletcher Holt be ordered to pay an administrative fine of $4,600; that 46 points be assessed against his water well contractor's license; and that he be required to properly abandon Well Nos. 1, 2, and 3, which he drilled on the Grant property. DONE AND ENTERED this 18th day of July, 2000, in Tallahassee, Leon County, Florida. ARNOLD H. POLLOCK Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 18th day of July, 2000. COPIES FURNISHED: Onofre Cintron, Esquire 305 North Parson Avenue Brandon, Florida 33510 Margaret M. Lytle, Esquire Southwest Florida Water Management District 2379 Broad Street Brooksville, Florida 34609-6899 E. D. "Sonny" Vergara, Executive Director Southwest Florida Water Management District 2379 Broad Street Brooksville, Florida 34609-6899 Kathy C. Carter, Agency Clerk Office of General Counsel Department of Environmental Protection 3900 Commonwealth Boulevard, Mail Station 35 Tallahassee, Florida 32399-3000
The Issue Whether a consumptive use permit for the quantities of water as applied for should be granted.
Findings Of Fact Application No. 7500112 requested water from three (3) wells for the purpose of industrial use. This application is for a new use. The center of withdrawals will be located at Latitude 27 degrees 38' 58" North, Longitude 81 degrees 48' 21" West, in Hardee County, Florida. The application is for the use of not more than 470 million gallons of water per year and not more than 2,592,000 gallons of water during any single day to be withdrawn from the Florida Aquifer. Application received as Exhibit 1. Notice was published in a newspaper of general circulation, to-wit: The Herald Advocate, published weekly in Wauchula, Florida, on August 7 and 14, 1975, pursuant to Section 373.146, Florida Statutes. Notices of said public hearing were duly sent by certified mail as required by law. The affidavit of publication was received without objection and entered into evidence as Exhibit 2. Letters of objection were received from the following: Mr. Joseph F. Smith, Route 1, Box 238, Wauchula, Florida 33273. Mr. Smith states that in his opinion such withdrawal of water will severely damage his property. He is developing a mobile home park on eight (8) acres and is fearful that the amount of water requested in this application will diminish his supply of water for his project. A letter from Mr. and Mrs. A. H. Van Dyck, written on August 16, 1975, Route 2, Box 657, Wauchula, Florida 33873. They are fearful that the large amount of water American Orange Corporation proposes to pump each day will affect their shallow well which provides water for their home. They would like to see some type of agreement whereby American Orange Corporation would be willing to pay for replacement of the well if the corporation should cause their well to go dry. Mr. Stanley H. Beck, Counselor at Law, wrote a letter in behalf of his client, Harold Beck, requesting information as to the applicable statutes and regulations which affect the matter of the consumptive use permit. A telegram was sent by Harold Beck of Suite 1021, Rivergate Plaza, Miami 33131, stating that he objected to the application of American Orange Corporation's withdrawal of water or the reason that it would reduce the property value. The witness for the permittee is Barbara Boatwright, hydrologist, who was duly sworn and agreement was reached on each point enumerated as required by Rule 16J-2.11, Rules of the Southwest Florida Water Management District and Chapter 373, Florida Statutes. The staff hydrologist recommended that the permit be granted with two (2) conditions. One was that each of the wells be metered and two, that the District receive monthly reports from each meter. The applicant has consented.
The Issue Whether Respondent Sarasota County Public Utilities Department (Sarasota County) has provided reasonable assurances pursuant to Rule 17- 555.530(1)(a), Florida Administrative Code, that its proposed water treatment plant will comply with each applicable water quality standard contained in Part III, Chapter 17-550, Florida Administrative Code. Whether Respondent Sarasota County has provided reasonable assurance pursuant to Rule 17-555.530(1)(b), Florida Administrative Code, that its proposed water treatment plant meets adequate engineering design complying with the applicable engineering principles established in Rules 17-555.310 through 17-555.160, Florida Administrative Code.
Findings Of Fact Upon consideration of the oral and documentary evidence adduced at the hearing, the following relevant findings of fact are made: STIPULATED FACTS Sarasota County Utilities Department is a department established by Sarasota County, a political subdivision of the State of Florida and operates a public utility department which is charged with meeting, among other things, potable water needs of the residents of Sarasota County. At all times pertinent to the issues herein, HRS was responsible for receiving applications and issuing permits for the construction of water treatment plants and the accompanying well field. Petitioner, Charles P. Page, is a resident of Sarasota County and resides at 259 Glen Oak Road, Venice, Florida. Sarasota County filed an Application for a Water Treatment Plant Construction Permit with HRS seeking to construct a well water collection system and a 12 mgd - electrodialysis treatment plant having an auxiliary power system to provide power for the well field and water treatment plant. Sarasota County has previously obtained a water use permit from the Southwest Florida Water Management District (SWFWMD) #208836.00, restricting Sarasota County to feed water for the water treatment plant to 7,303,000.00 gallons average daily withdrawal and 9,625,000.00 gallons peak monthly withdrawal. Sarasota County has received permits for the eleven (11) production wells from HRS. It was the duty of HRS to review the plans and specifications and all supporting documentation to assure that they address and meet every requirement listed in Rule 17-555, Florida Administrative Code, for the issuance of a construction permit.
Recommendation Based upon the foregoing Findings of Fact and Conclusions of Law, it is, accordingly, RECOMMENDED: That a final order be entered issuing permit No. PATS No. 204307 & WC No. 1591-91-036 to Respondent Sarasota County, as set forth in the Notice of Intent To Issue dated February 20, 1992, provided that the grant of the subject permit shall include the general and specific conditions in the Intent To Issue with the further recommendation that the third required specific condition found on page 1 of the Specific Conditions be modified as follows: Construction of the electrodialysis reversal water treatment plant covered by this permit shall not begin prior to the issuance of a permit as required by State of Florida Department of Environmental Regulation for the EDR concentrate discharge facility. DONE and ENTERED this 21st day of October, 1992, at Tallahassee, Florida. WILLIAM R. CAVE Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 21st day of October, 1992. APPENDIX TO RECOMMENDED ORDER IN CASE NO. 92-2002 The following constitutes my specific rulings pursuant to Section 120.59(2), Florida Statute, on all of the Proposed Findings of Fact submitted by the parties in this case. Rulings on Proposed Findings of Fact Submitted by the Petitioner 1. The following proposed findings of fact are adopted in substance as modified in the Recommended Order. The number in parenthesis is the Finding(s) of Fact which so adopts the proposed finding(s) of fact: 1(1); 22(47); 23(48); 24(19-20) 29(49); 38(5); 39(19); 42-43(19,20); and 51(49). 2. Proposed finding(s) of fact 2,3,5,6,7,11,14,15,16,18, 19,20,21,25,26,30,31,35,40,45,46,47,49,and 50 are neither material nor relevant to this proceeding or the conclusion reached in the Recommended Order. Proposed finding(s) of fact 4,8,9,10,12,13,17,27,28,and 41 are rejected as not being supported by competent substantial evidence in the record. Proposed finding(s) of fact 32,33,34,36,37, and 48 are unnecessary. Proposed finding of fact 44 is rejected as not being the "opinion" of the Hearing Officer. The transcript will show that the Hearing Officer was only restating the testimony of Judith Richtar. But see Finding of Fact 49. Rulings on Proposed Findings of Fact Submitted by the Respondent Sarasota County The following proposed findings of fact are adopted in substance as modified if the Recommended Order. The number in parenthesis is the Finding(s) of Fact which so adopts the proposed finding(s) of fact: 1 - 20(1) - 20, respectively); 21(27); 22 - 26(22 - 26, respectively); 27(28); 28(29); 29(31); and 30 - 44(32 - 46, respectively). For proposed findings of fact 45 through 65 see Findings of Fact 51 and 52. Proposed findings of fact 66 through 68 are unnecessary. Rulings on Proposed Findings of Fact Submitted by the Respondent Department of Environmental Regulation The Respondent Department of Environmental Regulation adopted Sarasota County's proposed findings of fact 1 through 44, 63 and 64, and 66 with modification. Therefore, the rulings on the Department's proposed findings of fact would be the same as the previous rulings on Sarasota County's proposed findings of fact adopted by the Department. COPIES FURNISHED: Bruce Wheeler Pitzer, Esquire 546 47th Street Sarasota, FL 34234 William A. Dooley, Esquire Nelson, Hesse, Cyril, et al. 2070 Ringling Blvd. Sarasota, FL 33237 Joseph W. Landers, Esquire Landers & Parsons 310 W. College Avenue, 3rd Floor Tallahassee, FL 32301 W. Douglas Beason, Esquire Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, FL 32399-2400 Carol Browner, Secretary Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, FL 32399-2400 Daniel H. Thompson, General Counsel Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, FL 32399-2400
The Issue The issue is whether Sarasota County's application for a permit authorizing the construction of a Class V, Group 3 aquifer storage and recovery well system at the Central County Water Reclamation Facility in Sarasota, Florida, should be approved.
Findings Of Fact Based upon all of the evidence, the following findings of fact are determined: Background On September 14, 1999, the County, through its Utilities Department, filed with the Department an application for a permit to construct a Class V, Group 3 aquifer storage and recovery (ASR) test well and monitor well system at its Central County Water Reclamation Facility, 79005 South McIntosh Road, Sarasota, Florida. The Department is charged with the responsibility of issuing such permits. On July 19, 2001, the Department issued its Notice of Intent to issue Permit No. 160882-001-UC. The permit authorizes the County to construct one test well to determine the feasibility for the storage and recovery of reclaimed water from the Suwannee Limestone of the Upper Floridan aquifer system at a depth of between 500 and 700 feet below land surface. Also, the County is authorized to construct three monitor wells, one into the target storage zone, the second into the first overlying transmissive unit, and the last into the overlying Arcadia Formation. The storage capacity of the test well is projected to be between one and two million gallons per day. On August 10, 2001, Petitioner, who is a citizen of the State of Florida, resides in Tallahassee, and is a long- time employee of Legal Environmental Assistance Foundation, Inc., filed her verified Petition for Formal Administrative Hearing (Petition) under Sections 120.569, 120.57(1), and 403.412(5), Florida Statutes. In her Petition, she generally contended that the permitting would have the effect of impairing, polluting, or otherwise injuring the water of the State because the proposed injectate (being placed in the well) will not meet primary and secondary drinking water standards, may be harmful to human health, and will violate the minimum criteria for groundwater. She also contends that the permit application was not signed by the proper signatory and that the Department failed to require the County to first drill an exploratory well (as opposed to a test well). While these allegations were not sufficient to demonstrate that Petitioner's substantial interests were affected by the proposed permitting, they were deemed sufficient (subject to proof at final hearing) to satisfy the pleading requirements of Section 403.412(5), Florida Statutes. Water Reuse Generally Water reuse is the use of reclaimed water for a beneficial purpose. Because of Florida's continuing population growth and occasional water shortage, the use of reclaimed water is an important conservation tool. Indeed, in 2002 the Legislature showed strong support for water conservation and reuse by amending Section 403.064(1), Florida Statutes, and adding language which states that "the reuse of reclaimed water is a critical component of meeting the state's existing and future water supply needs while sustaining natural systems." To this end, the County has filed its application for the purpose of using reclaimed water for such lesser uses as irrigation so that the existing high quality fresh groundwater can be used for higher and better purposes such as drinking water for the general public. The Southwest Florida Water Management District (District) has also encouraged the use of reclaimed water by providing funding for this type of program to induce utilities to move forward with reuse programs. In addition, the Department has been proactive in promoting the reuse of water throughout the State in order to conserve water resources. Aquifer Storage and Recovery Aquifer storage and recovery (ASR) is a reuse program encouraged by the Legislature, Department, and District. It involves the storage of water underground in a suitable formation, through a well, during times when water is available to put into the well, and then recovery of that stored water from the well during times when it is needed for some beneficial purpose. Put another way, an ASR operates like an underground storage tank. Water is placed into the ASR wells (by means of pumping) during recharge periods when it is raining and there is no demand for reclaimed water. When the water is pumped into the well, a stored water bubble is created by using buffer zones made of water with more salinity than the stored water. These buffer zones are designed so that there can be full recovery of the stored water. The recovery rate is generally around 100 percent. There are three ways to store reclaimed water: surface ponds, storage tanks, and ASR. The ASR storage method is the most efficient method of storing reclaimed water, and it has significant environmental, utility, and economic benefits. The ASR method has no impact on wetlands and ecosystems, and unlike pond storage (and to a lesser degree storage tanks), it does not require the use of large surface areas and is not affected by evapotranspiration and seepage. (There is typically a 60 percent loss of water due to evaporation in surface storage areas.) It also results in cost savings (up to a 50 percent reduction in capital costs) and avoidance of wetlands impacts. One of the goals of the County's Comprehensive Plan is to maximize the use of reclaimed water for irrigation purposes. Because other storage methods have proved to be inefficient, ASR is the County's preferred storage method to meet this goal. At the time of the final hearing (August 2002), there were at least fifty-six ASR systems operating outside the State of Florida (and around one hundred more in various stages of development) and eleven ASR systems successfully operating in the State, the first one having been established in 1983. At that time, there were also two ASR test programs underway in the area, including one in the Englewood Water District, a few miles to the south of the proposed project, and the Northwest Hillsborough ASR program, which is located just north of the County. Also, ASR systems are located in Manatee County and near the Peace River, which is in the same storage area being proposed here. Therefore, the County has the benefit of drawing upon twenty years of experience with this type of system. The Permit The County began an informal water reuse program in 1988, when it first used effluent disposal for irrigation purposes at a local golf course. A formal program (the Reuse Master Plan) was commenced in 1994; however, the County still lacks the storage capacity to meet the seasonal demands of its reuse customers.3 Without storage, any excess water must be discharged and lost. In order to meet the County's goal of maximizing reclaimed water use, it must be able to adequately store reclaimed water. Due to projected population growth and issues concerning management of limited resources, in 1997 the County began considering the use of ASR as a means to better manage its reclaimed water supply and demand for those facilities which serve the North County Reuse System. If all necessary permits are obtained, the County intends to use reclaimed water from its Central County wastewater facility. Currently, that effluent receives advanced tertiary treatment with deep bed filtration and high level disinfection. The proposed test well will be approximately 700 feet deep; at that depth, the injection (or storage) zone will consist of the Suwannee Limestone formation of the Upper Floridan aquifer system. The storage zone is brackish, with the water quality or salinity having about six times the acceptable degree of salinity for a drinking water source. It is anticipated that the total dissolved solids (TDS) concentration in the injection zone will be greater than 3,000 TDS. If water quality at the proposed injection zone is greater than 3,000 TDS, this fact will be revealed during the construction of the test injection well and during the various tests to be conducted during construction. (Assuming this level of TDS is found, then at that point the County would have to provide reasonable assurance that the water reclamation facility is providing full or principal treatment to the domestic waste.) The evidence establishes that there is some level of transmissivity in the confining layer overlying the proposed injection zone. That is to say, there is some small degree of connectivity between the proposed injection zone and the aquifer above it. The actual level of transmissivity will be determined based upon tests run during the construction of the first monitor well. The effluent produced from the County's water reclamation facility meets drinking water standards. If the plant is unable to produce effluent that meets or exceeds the applicable water quality standards, this issue is an operational concern which can be addressed in a permit modification authorizing operational testing. Under the Department's permit process, if the construction permit is approved, the County will construct a monitor well to obtain more site-specific information concerning such things as the geology, hydrology, and water quality at the site. (At this point, while the County has published literature sources and regional geologic information from two nearby ASR systems using the same storage area to rely upon, it has no specific data for the very small parcel where the well will be constructed.) Once the information is obtained, an engineering report is prepared and submitted to the Department. That report contains a wide array of technical data, including construction data, hydrogeologic data, formation samples, water quality samples, hydraulic data, core data, Packer data, and geophysical data. This information is then used by the Department (and a special advisory committee called the Technical Advisory Committee) to evaluate whether the site can be authorized for cycle testing and later for operational purposes. If cycle testing is appropriate, the County must then request a modification to its construction permit to authorize cycle testing of its ASR well. That modification, and any others that may be warranted by the new information, are "final agency action subject to the procedural safeguards contained in Chapter 120, F.S." Fla. Admin. Code R. 62- 528.100(2). When the test injection well is constructed and eventually placed into operation, monitor wells will be used to monitor background water in both the injection zone and in the two aquifers overlying the proposed injection zone. However, until further Department approval is obtained, no injection of reclaimed water is authorized; the permit being sought here authorizes only the construction of the well itself. Finally, Florida Administrative Code Rule 62- 528.640(1)(a) requires that the County obtain a separate operation permit after the construction permit has been issued and testing completed. Criteria and Standards for a Class V Well Florida Administrative Code Chapter 62-528 governs all injection wells defined as Class I, III, IV, or V wells. (In Class II wells, the injected fluids are used in connection with oil and natural gas production and are regulated by the Florida Geological Survey under Chapter 377, Florida Statutes.) The category of wells in which the County seeks a permit is a Class V, Group 3 permit, which includes all domestic wastewater wells. See Fla. Admin. Code R. 62- 528.300(1)(e)3. A Group 3 well involves the injection of fluids that have been processed through a permitted domestic wastewater treatment plant. Even though the County is requesting a permit for a Class V well, at the request of the Department, it submitted a different (and more stringent) type of application (a "900" application) since the Department has the authority to apply "any of the criteria for Class I wells" if it believes that the well may cause or allow fluids to migrate into an underground source of drinking water which may cause a violation of primary or secondary drinking water standards. See Fla. Admin. Code R. 62-528.605(2). (A Class I well is a well used to inject hazardous waste below the lowermost formation containing an underground source of drinking water.) In this case, the Department opted to apply certain Class I construction standards for the well, in addition to the normal standards for Class V wells. Those standards are found in Florida Administrative Code Rule 62-528.400. This means that the County will be held to a higher standard than a general underground injection control permit. Florida Administrative Code Rule 62-528.605 contains the Class V well construction standards. For the following reasons, the County has given reasonable assurance that all criteria will be met. Subsection (1) of the rule requires that "a well shall be designed and constructed for its intended use, in accordance with good engineering practices, and the design and construction shall be approved by the Department with a permit." The evidence clearly establishes that good engineering practices have been followed by the County for the design and construction of the well. Subsection (2) requires that an applicant design and construct the well so that it will not "cause or allow fluids to migrate into an underground source of drinking water which may cause a violation of a primary or secondary drinking water standard . . . or may cause fluids of significantly differing water quality to migrate between underground sources of drinking water." Subsection (3) is also directed at the migration of fluids. The evidence shows that the migration of fluids between aquifers will be prevented as a part of the design and construction of the ASR well program. The design chosen by the County has been proven to prevent migration of fluids between aquifers, and it will preserve the integrity of the confining beds. The combination of steel casing and cementing prevents the migration of fluids along the borehole. The well will be constructed by a Florida licensed contractor, as required by Subsection (4). The remaining criteria in the rule will be satisfied during the construction process. Florida Administrative Code Rule 62-528.620 contains reporting requirements for Class V wells. All of these requirements are included in the draft permit and will be met by the County. The Department has also included Special Condition 1(h) in the draft permit, which provides that nothing will be injected into the well that does not meet the Federal Primary Drinking Water Standard. This condition is drawn from Florida Administrative Code Rule 62-528.307, which specifies general conditions to be included in underground injection control permits. In accordance with this condition, the County will monitor the movement of fluid to ensure that there are no violations. The County has also demonstrated that there will be no hazardous waste injection, as prohibited by Florida Administrative Code Rule 62-528.600(1)(a). Finally, the requirements of Florida Administrative Code Rule 62-528.630(3) do not apply at this time since the proposed permit is only for construction of a well, and not the injection of water. Class I Well Construction Standards Because the Department has imposed more stringent construction standards on the County, the Class I well construction standards found in Florida Administrative Code Rule 62-528.410(1) come into play. The County has demonstrated that it has complied with the requirement that the well be cemented and cased. In addition, the County has considered corrosion protection in the cementing and casing of the proposed well. Because the casing will be cemented, coating is not required. Finally, there will be no open annulus (spacing between the casings and the bore hole) in the ASR test well. Other Requirements Drilling Geophysical surveys will be conducted during the pilot hole drilling stages to collect hydrogeologic information. Further, drill stem tests will be conducted throughout the drilling, and a driller's log will be maintained. See Fla. Admin. Code R. 62-528.410(3). Casing Steel casing will be used, taking into consideration the possible corrosion of steel. The life expectancy of the well was considered, as required by Florida Administrative Code Rule 62-528.410(4)(a), and was determined to be unknown. Cement Type 2 cement will be used, which is sulfate resistant and is specifically designed for use in regions such as Florida. Testing Geophysical logs will be used during the construction and testing of the well to verify the physical conditions of the well and confirm that construction is proceeding according to the plan. Also, geophysical surveys will be conducted during pilot hole drilling stages to collect subsurface hydrogeologic information. Environmental concerns Once a drilling contractor is selected, the location for the disposal of drilling fluids will be submitted for Department approval in accordance with Special Condition 1(b) in the draft permit. Monitor well construction standards The monitor well will meet all construction requirements under Florida Administrative Code Rule 62- 528.420. (The same standards that are applied to Class V wells are also applied to monitor wells.) General design considerations Exploratory pilot hole drilling stages will be conducted to collect hydrogeologic information, and complete sets of geophysical surveys will be performed. Because cement generates heat, temperature surveys will be run as a part of the construction sequence to verify coverage of the cement. This means that tools will be lowered into the hole after each cementing stage to verify coverage. Monitoring requirements Florida Administrative Code Rule 62-528.425(1)(d) requires that an applicant perform "a demonstration of mechanical integrity . . . at least once every five years during the life of the well." Details to accomplish this are found in both the application and the draft permit. Florida Administrative Code Rule 62-528.425(1)(f) requires that the background water quality of the injection zone and monitoring zone be determined prior to injection. The County will perform this task before injection occurs. Florida Administrative Code Rule 62-528.425(1)(g) requires that monitor wells be installed above the injection zone near the project. The County will construct three wells, as required by the rule. They will also be placed at a sufficient distance from the project, as required by Florida Administrative Code Rule 62-528.425(1)(h), and the specific monitoring intervals are detailed in the draft permit. Reporting requirements The Department requires periodic data reports and progress reports regarding eight separate types of information. See Fla. Admin. Code R. 62-528.430(1)(a). These reporting requirements will be performed and followed. Because a Class V well may be required to be plugged and abandoned, the Department requires a plugging and abandonment report. See Fla. Admin. Code R. 62-528.625. All requirements under this rule have been met, and the County has the financial resources to accomplish this task, when required. General Class I permitting requirements Florida Administrative Code Rule 62-528.440 sets forth general permitting requirements for Class I and III wells. Because the Department has opted to impose certain Class I criteria on the County's application, some of the criteria in this rule apply. They include special conditions 1(a), (c), and (e) in the permit for well construction, system modification, and fluid injection, all of which have been, or will be, met by the County. In addition, the duration for the operation permit cannot exceed five years, and the County was required to submit an application for a permit which conformed with the requirements of the rule. As a part of its application, the County established an area of review for the construction permit, taking into account the zone of endangering influence. See Fla. Admin. Code R. 62-528.300(4). (An area of review is the area surrounding an injection well, including the area of possible endangering influence.) This requirement was met because the established area of review is one mile even though the predicted area of influence is expected to be no more than 400 feet. As a part of the preceding analysis, the County also conducted an area of review study, as required by Florida Administrative Code Rule 62-528.440(6)(a). In doing so, the County evaluated the impact on the ASR well, and the impact the ASR well would have on the surrounding area. That evaluation determined that there are no water supply wells within the area of review. Because the construction permit only has a duration of five years, and given the County's supporting information submitted with the area of influence study, the Department has not required that the County provide a corrective action plan. See Fla. Admin. Code R. 62-528.300(5)(a). Class I well construction permit criteria All guidelines for constructing the well have been followed, and the construction of the well will not be a source of pollution. The County has provided reasonable assurance that the project will function in accordance with the requirements of Florida Administrative Code Chapter 62- 528. Hydrological modeling Finally, Florida Administrative Code Rule 62-528.405 specifies criteria for evaluating the geologic and hydrologic environment of Class I wells. The County has satisfied all criteria in the rule. Other Issues Exploratory well Petitioner contends that the Department should require the County to construct an exploratory well, as defined in Florida Administrative Code Rule 62-528.603(1), rather than a test well. That rule defines an exploratory well as one being "drilled for the specific purpose of obtaining information to determine the feasibility of underground injection at the proposed site." However, Florida Administrative Code Rule 62-528.450(1)(b) requires an exploratory well only "for those projects located in an area where available information is lacking concerning geologic or hydraulic confinement or existing information indicates that geologic or hydraulic confinement may be poor or lacking." For example, an exploratory well would be required in a remote area (such as certain parts of Polk County) where the Department had insufficient literature, studies, or prior history concerning the general geology across and around the site. In this case, two nearby ASR systems are located in the Englewood Water District and near the Peace River and use the same storage zone as that proposed by the County. Those systems have been operating for a number of years, and the County and Department can draw upon that experience. Given this significant regional geologic information, an exploratory well is not required. More importantly, the requirement for an exploratory well applies only to Class I well construction, and not Class V wells, and the Department properly exercised its discretion to not apply that requirement to the County's Class V application. Signature on the application and other documents Florida Administrative Code Rule 62-528.340(1)(c) requires that all permit applications by a local government be signed by "either a principal executive officer or ranking elected official." Also, subsection (2) of the same rule requires that "reports required by permits and other information requested by the Department shall be signed by a person described in subsection (1) of this section [a principal executive officer or the highest ranking elected official], or by a duly authorized representative of that person." Petitioner contends that these requirements were not met. The County's application was signed by James E. Caldwell, who was then the Manager of Sarasota County Utilities. At that time, Mr. Caldwell had overall responsibility for the County's utility operations. On August 27, 2002, James L. Ley, the County Administrator (and principal executive officer of the County), also executed the original copy of the application. (That is, on that date he signed the original application underneath Mr. Caldwell's signature.) By doing so, Mr. Ley cured any previous technical deficiency in the application. Responses to requests for additional information which were submitted to the Department during the review process were signed by one of the County's outside consultants. However, on January 13, 2002, Mr. Ley submitted a letter to the Department authorizing various County employees and agents to act on his behalf in processing the instant application. Accordingly, the outside consultant was a duly-authorized representative of the chief executive and was authorized to sign those documents. Satisfaction of injection criteria Petitioner also contends that before a construction permit may be issued, the County must meet all principal treatment and disinfection requirements, as required by Florida Administrative Code Rules 62-610.466 and 62-528.563. However, those rules apply to permits which authorize the injection of reclaimed water into the groundwater. Here, the requested permit does not authorize injection, and therefore those requirements do not apply. Groundwater criteria Even though Petitioner conceded at hearing that the issue of whether the construction of the proposed wells would harm the environment was not raised in her Petition, the County provided reasonable assurance that this was not an issue of concern. Adequacy of permit conditions Petitioner also suggested at hearing that the proposed conditions in the permit are insufficient. However, she failed to show in what respect they were insufficient or how they should be amended. Water quality concerns Florida Administrative Code Rule 62-528.605(3) requires that a Class V well be constructed so that its intended use does not violate the applicable water quality standards. On this issue, the evidence establishes that the construction of the proposed test well and monitor system will not discharge, emit, or cause pollution. Indeed, a well and monitor station does not emit or discharge pollution and, if constructed according to the technical requirements of Florida Administrative Code Chapter 62-528, does not cause pollution. Therefore, the County's compliance with the technical requirements of the Department's regulations is reasonable assurance that the proposed system will not cause pollution. I. Request for Attorney's Fees and Costs In its Proposed Recommended Order, the County has requested an award of attorney's fees and costs on the theory that Petitioner is a non-prevailing party who has participated for a "frivolous, meritless, and improper purpose" within the meaning of Section 120.595(1), Florida Statutes. This argument is based on the assertion that Petitioner is a non- prevailing party, that is, she failed to substantially change the outcome of the proposed final agency action which is the subject of this proceeding, and she "failed to produce any witnesses or evidence to support [her] claim that the proposed permit that was the subject of this proceeding should not be issued." While it is true that Petitioner is a non-prevailing party, she attempted to utilize the testimony of three expert witnesses previously retained by the City of Venice, a former party in Case No. 01-3516. Those subpoenas, however, were quashed on August 16, 2002, and that ruling was memorialized in an Order dated August 19, 2002, or just before the final hearing began. Without those witnesses, Petitioner's presentation was obviously limited in some respects.4 Further, until the final hearing, Petitioner assumed that evidence in support of her allegation that the injectate would harm the water quality would be admissible and relevant. (As this Recommended Order clearly points out, however, not a single drop of water can be injected into the well until a modification of the permit is obtained, and therefore such evidence is irrelevant.) During the course of the hearing, the undersigned sustained objections by the County and Department to the introduction of such evidence. This ruling had the effect of limiting the scope of the issues to be tried. Despite these limitations, her participation cannot be described as being frivolous or meritless, as claimed by the County, and it is found that she did not participate for an improper purpose.
Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the Department of Environmental Protection enter a final order granting Permit No. 160882-001- UC authorizing the County to construct one Class V, Group 3 aquifer storage and recovery injection well and monitor well system in Sarasota County, Florida. DONE AND ENTERED this 19th day of April, 2004, in Tallahassee, Leon County, Florida. S DONALD R. ALEXANDER Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 19th day of April, 2004.
Findings Of Fact The parties stipulated, and it is so found, that Petitioner, DER, has jurisdiction over both the issues and the Respondents Dey and KWC. KWC owns and operates a water system which supplies water to both residential and commercial customers in the City of Keystone Heights, Florida. Virginia Key is the President of KWC, a member of the Board of Directors of the corporation, and one of the five stockholders. The other stockholders are her sisters. The five sisters are the daughters of the late G. E Wiggins, and inherited the company from him at his death in 1969. Mr. Wiggins developed the water company in the 1920's and operated it until his death. KWC came under the jurisdiction of the Florida Public Service Commission (PSC) just prior to Mr. Wiggins' death. At that time, pursuant to a PSC requirement, it was assessed and valued at a sum in excess of $250,000.00 by a consultant firm hired for the purpose. As of late November, 1984, KWC served approximately 752 residential customers which, when multiplied by an average 2.5 persons per family factor, results in a total of approximately 1,880 residential inhabitants served by the water system. In addition, the system serves 105 commercial customers. It is impossible to estimate with any reasonable degree of accuracy the number of individuals involved in the commercial service. The system consists of three wells drilled in 1940, 1946, and 1960 to a depth of 350, 450, and 492 feet respectively. Total yield from the three wells is normally 1,350 gallons per minute. The wells are generally well protected against surface water infusion, are normally not subject to inundation, and have had no salt water infiltration problems in the past. At the present time, well number 2, drilled in 1946, with a 350 gpm yield is out of service. The water, when pumped from the ground, is stored in two tanks-one with a 60,000 gallon capacity and the other with a capacity of 800 gallons. Both tanks are steel. Chlorine is added to the water in each storage situation by a hyper-chlori- nation system before the water is sent to the storage tank. The distribution system is made up of 6" and 2" diameter pipe. In March, 1984, two different inspections of the water system, done by, in one case, an environmental specialist and in the other, an Engineer I with DER, revealed several deficiencies in the maintenance and operation of the system all of which constitute violations of DER rules. Specifically, these include (1) failure to provide an auxiliary power source in the event the main pumping capability of the system is lost, (Rule 17-22.106 (3)(a); (2) failure to utilize for the system an operator certi- fied by the state with a Class C license, (Rule 17-22.107(3)(b); (3) failure to maintain a free chlorine residual in the water of at least 0.2 ppm in the system, (Rule 17-22.106(3)(c); (4) failure to maintain a minimum pressure of 20 ppi in the distribution system, (Rule 17-22.106(3)(f); (5) failure to have a gas chlorination facility, (Rule 17-22.106(3)(d); and (6) failure to obtain proper permits to expand the distribution system, (Rule 17-22.108 (1)(b) Rule 17-22, F.A.C., sets up requirements for safe drinking water and was designed to establish guidelines and standards for facilities and water and to bring water into compliance with the Federal Act. Twenty ppi of pressure in the system was adopted as a standard minimum for residual pressure to protect against outside contaminants getting into the water system. Such contaminants could come from ground water, leaks, and water in storage tanks attached to the system such as toilet tanks, being aspirated into the system. Also a certain amount of pressure is required to operate appliances. Normally minimum pressure is found in areas at the edge of the system and in those areas where inadequate chlorination is located. They interact and both pressure and chlorinization are required. Chlorine can be injected into the system generally in two ways: the first is through gas chlori- nation and the second, through hyper-chlorinization as is used in the instant system. The effectiveness of hyper-chlorinization is limited, however, by the size of the system. Basically, hyper- chlorinization is effective when the demand in the system for pressure is no more than 10 ppi. Above this, gas chlorinization is necessary. As late as January 4, 1985, Mr. Dykes went to Keystone Heights to test the system. His tests showed that 11.9 ppi is the average daily flow per 24 hours for the last 12 months. Since this figure is above 10 ppi, in his opinion, a gas chlorinization system would be needed. Chlorine is used to purify water because it has been shown, through long use, to prevent disease. The requirement for a residual chlorine level in water, therefore, is consistent with that concept to insure chlorine is always in the water in sufficient quantity to prevent disease. Respondent's plant has less than the 0.2 residual that is required under the rule. This insufficiency is caused by the inadequate chlorinization system which has insufficient capacity to provide the appropriate amount of chlorine. At the current level, it is providing only approximately 60 percent of the needed chlorine. To correct this deficiency Mr. Dykes recommends installation of a gas chlorinization system. In addition, the pneumatic tank storing the water from the number 3 well does not give sufficient detention time to allow for appropriate reaction of the chlorine contained in the water before the water is released into the distribution system. Another factor relating to the lack of adequate pressure in the system is the fact that, in Mr. Dykes' opinion, too much of the system is made up of 2" diameter water line. A line of this small diameter prevents the maintenance of adequate pressure especially in light of the fact that there are numerous old lines in the system some with corrosion and scale in them which tends to reduce pressure. This latter factor would be prevalent even in the 6" lines. The current plant manager, Mr. Cross, who has been with Respondent for approximately 4 years is, with the exception of one part time employee, the only operations individual associated with the plant. As such, he repairs the meters and the lines, checks the pumps, the chlorinator, and checks and refills the chlorine reservoir on a seven day a week basis. Be learned the operation of the plant from his precedessor, Mr. Johnson, an unlicensed operator who was with the company for 10 years. Mr. Cross has a "D" license which he secured last year after being notified by DER that a license was required. It was necessary for him to get the "D" license before getting the required "C" license. At the present time, he is enrolled to take courses leading toward the "C" license. At the present time, however, he is not, nor is anyone else associated with KWC, holding a license as required. The rule regarding auxiliary power provides that all community systems serving 350 or more persons shall have standby pumping capability or auxiliary power to allow operation of the water treatment unit and pumping capability of approximately one-half the maximum daily system demand. Respondent has admitted that the system is not equipped with an auxiliary power source and it has already been established that more than 350 persons are served by the system. Respondent also admits that subsequent to November 9, 1977, it constructed main water lines for the system which required the obtaining of a permit from either the Petitioner or the county health unit. Respondent admits that it did not obtain or possess a permit to do the additional construction referenced above from either DER or the Clay County Health Department prior to the construction of the water lines referenced. The inspections referenced above, which identified the problems discussed herein, were accomplished by employees of Petitioner, DER, at a stipulated cost of $898.10. Respondent contends, and there is no evidence to the contrary, that there have been no complaints of contaminated water and that the monthly water samples which Mr. Cross forwards to the Clay County Health Department have been satisfactory. Mr. Cross also indicates that a September, 1983 DER analysis of water samples taken from the system was satisfactory. However, bacteriological analysis reports on water collected from Respondent's system on July 11 and 27, 1983, reflect unsatisfactory levels of either coliform or non-coliform bacteria in the water requiring resubmission of test samples. Respondent also contends that no one has ever gotten sick or died from the water furnished by the system and there is, in fact, no evidence to show this is not true. Even though so far as is known, no one has ever been made sick from the water in the system, in Mr. Dykes' opinion, the risk is there. As a result of the defects identified in this system, insufficient chlorine is going into the system to meet reasonable health standards. Though this does not mean that the water is now bad, it does mean that at any time, given a leak or the infusion of some contaminant, the water could become bad quickly, and the standard established by rule is preventive, designed to insure that even in the case of contamination, the water will remain safe and potable. Respondent does not deny that it is and has been in violation of the rules as set out by the Petitioner. It claims, however, that it does not have sufficient funds available to comply with the rules as promulgated by DER. Respondent has recently filed a request for variance under Section 403.854, Florida Statutes, setting forth as the basis for its request that it does not have the present financial ability to comply with any of the suggested or recommended corrective actions to bring its operation into compliance with the rules. Mr. Protheroe, the consulting engineer who testified for Respondent has not evaluated the system personally. His familiarity with it is a result of his perusal of the records of the company and the Petitioner. Based on his limited familiarity with the system, he cannot say with any certainty if it can be brought into compliance with, for example, the 20 ppi requirement. There are too many unknowns. If, however, the central system was found to be in, reasonably good shape, in his opinion, it would take in excess of $100,000.00 to bring it within pressure standards. To do so would require replacement of the 2" lines, looping the lines, and cleaning and replacing some central system lines as well. In his opinion, it would take three months to do a complete and competent analysis of the system's repair needs. Once that was done, he feels it would take an additional three months to bring the plant into compliance with DER requirements. Other repairs, such as those to the lines outside the plant, would take longer because some are located in the downtown area and have interfaced with other utilities. This could take from three to four months if the money were available to start immediately. Here, however, it has been shown that it is not. Consequently, to do the study and then, if possible, procure the funds required, could take well in excess of six months or so. Mr. Protheroe contends, and there is little if any evidence to indicate to the contrary, that to replace the current system with a new one entirely as it is currently constituted would cost at least $250,000.00. However, in his opinion, no one would ever put in a new system similar to the one currently there. He cannot say how much it would cost to buy the system and make the necessary corrections to it to rectify the deficiencies. His familiarity with the system is not sufficiently complete to do this. He cannot say exactly how much the system is worth in its current state, but he is satisfied that it is worth more than $65,000.00. In that regard, Mrs. Dey indicated that in her opinion, the fair market value of the system is currently at $250,000.00. At the present time, there are current outstanding loans in excess of $9,000.00 at 16 percent interest. This current loan basis has been reduced from a higher figure. In 1977, the company borrowed $15,000.00 at 9 percent. In 1981, it borrowed $5,000.00 more at 18 percent. In 1982, the loans were consolidated at an increased rate of 16 percent and the officers have been advised by their current creditors that they cannot borrow any more money for the system in its current state. They would sell the system if a reasonable price could be realized. However, any inquiries on prospective purchases have been chilled by a low rate base assigned by the PSC. In that regard, the City of Keystone Heights offered to purchase the system for $59,000.00. This offer was declined as being unreasonable. Nonetheless, in light of the low rate base assigned by the PSC in its order issued on December 21, 1981 of slightly over $53,000.00 the offer by the city of $59,000.00 is not completely out of line. A certified public accountant, in KWC's December 31, 1983 financial report assigned a valuation of approximately $62,000.00, again a figure only slightly higher than that offered by the city, but substantially less than the $175,000.00 price asked of the city by Respondent Dey and her sisters. Mrs. Dey indicated that to the best of her knowledge the PSC denied rate increases for the purposes of improvements. In the presentation before the commission, respondents relied exclusively on the services of their attorney and accountant. Evidence from Mr. Lowe, of the PSC, however, indicates that KWC has never requested a rate increase to finance any of the improvements called for here. In the PSC order referred to above, Respondent was awarded a 12.25 percent rate of return on its rate base. This figure was an amalgam of a more than 13 percent rate on equity and a lesser figure for cost of doing business, including debt. At the time of that hearing, however, the debt cost was based on a 9 percent interest figure. The 16 percent interest figure came afterwards and no hearing has been requested based on the higher interest rate and it is so found.
Recommendation Based on the foregoing findings of fact and conclusion of law, it is, therefore: RECOMMENDED that Respondents Virginia W. Day and the Keystone Water Company be ordered to comply with the Orders for Corrective Action previously filed herein to bring the water system in question in compliance with the Florida Safe Water Drinking Act without delay or suffer the penalties for non- compliance called for by statute and, in addition, pay costs of investigation in the amount of $898.16. RECOMMENDED in Tallahassee, Florida this 19th day of February, 1985. ARNOLD H. POLLOCK Hearing Officer Division of Administrative Hearings The Oakland Building 2009 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 19th day of February, 1987. COPIES FURNISHED: Debra A. Swim, Esquire Assistant General Counsel Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32301 John E Norris, Esquire 10 North Columbia Street Lake City, Florida 32055 Victoria Tschinkel, Secretary Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32301
The Issue The issue for consideration at the hearing was whether the Respondent, Roger Harloff, should be issued a consumptive use permit to withdraw and use ground water from the wells on his property, and if so, in what amount and under what conditions.
Findings Of Fact Respondent, Roger Harloff, owns several farms in southeastern Manatee County, Florida which, taken together, make up an irregular 8,500 acre tract located approximately 2 1/2 miles north of the City of Sarasota's Verna Wellfield. Mr. Harloff grows vegetables on much of this tract, of which approximately 1,500 acres is devoted to tomatoes. This tomato crop is the prime crop produced by Mr. Harloff, and provides the raw material for the Harloff packing plant which is dependent upon the tomato crop in order to stay in business. Mr. Harloff also operates a plant nursery at which he produces many if not most of the seedling plants utilized in his vegetable growing operations. In order to be economically feasible and remain operative, Mr. Harloff must farm approximately 3,800 acres during the Spring growing season and approximately 3,000 acres during the Fall. These acres are made up of tomatoes and other vegetables. The packing plant and the plant nursery are dependent upon the farm operation and without adequate water, the farm operation cannot be successfully carried on. In September 1988, Mr. Harloff applied to the District for a consumptive use permit to withdraw water from twelve wells located on his property, requesting an annual average rate of 12,995,606 gpd, and a maximum daily rate of 47,520,000 gpd. The consumptive use permit application filed by Mr. Harloff was assigned District Number 204467.04. After evaluation of the application in conjunction with its needs and policies, the District issued a staff report and proposed agency action on the application which recommended issuance of the permit authorizing water to be drawn from the 12 wells at a rate approximating that requested in the application. Thereafter, the City of Sarasota, which operates the nearby Verna Wellfield, considering that the proposed withdrawal would have a substantial adverse impact on its wellfield operations, filed a Petition for Formal Administrative Hearing objecting to the issuance of the permit to Mr. Harloff. Though Mr. Harloff has owned much of the property which make up the 8,500 acre tract in question here, at the time of his application, he did not own, but had under contract, a substantial portion. He closed on the purchase of that remainder after he received notice of the District's intention to issue the permit in question but prior to the City's filing its Petition For Formal Hearing. The purchase price of the property in question was $9,000,000.00 which carries an interest payment on the financed portion of $52,000.00 per month. The wells pertinent to the issues in this proceeding are as follows: # Cons. Depth Cas. Lin. Diam. Cap. Loc. 1 1978 1185' 200' 220-490' 12" 2000 gpm SE 2. 1988 1320' 210' 210-480' 16" 3000 gpm SE 9. 1974 1130' 390' 16" 3000 gpm C 10. 1976 1232' 231' 283-400' 16" 3000 gpm NW 11. 1979 1120' 210' 260-480' 12" 2000 gpm NW 12. 1976 1180' 480' 12" 2000 gpm SW 3. 1989 1434' 460' 16" 3000 gpm SE 5. 1989 1374' 610' 16" 3000 gpm W 8. 1989 1292' 548' 16" 3000 gpm NW 13. 1989 1310' 635' 16" 2000 gpm NE Well No. 8 was used as the pump test well for the constant rate discharge test and Well No. 13 was the deep observation well for that test. Wells 1, 2, 9, 10, 11, and 12 have all been previously permitted by the District and No's 1, 2, 9 and 10 are currently permitted under two other permits, while 11 and 12 were permitted under a different permit. Wells No. 3, 5, 8 and 13 have been authorized for construction but not, as yet, to produce water. Wells 4, 6 and 7 have not yet been constructed. The intention is to drill them to a depth of 1,300 feet and case them to 600 feet. Each will have a pump capacity of 3,000 gpm. Number 4 will be in the southeast portion of the tract, number 6 in the central portion, and number 7 will be located just north of number 6. Wells 1, 2, 9, and 10 currently have a combined permitted maximum daily rate of 13,680,000 gallons under permits number 204467.03 for 1 and 2, and 204630 for 9 and 10. The former was issued on December 29, 1987 and will expire on December 29, 1993, and the latter, issued on October 7, 1981, will expire on that same day in 1991. The permit previously issued for wells 11 and 12 authorized withdrawal at a maximum daily rate of 2,160,000 gallons. That permit, number 204374, expired on September 9, 1986 and was not renewed. After the City filed its Petition challenging Mr. Harloff's proposed permit, Mr. Harloff, on June 26, 1989, filed an amended application to withdraw water at an average annual rate of 10.99 mgd and a maximum daily rate of 48.96 million gallons. This amended application refers to an additional proposed well, Number 13. The District, however, had previously approved wells 3 - 8 and 13, and pursuant to this authorization, wells 3, 5, 8, and 13 were built. Mr. Harloff submitted additional amendments to his application on August 7 and 9, 1989. The former requests a seasonal average daily rate of 25.34 mgd and a seasonal maximum daily rate of 32.79 mgd. The latter requests a seasonal average rate of 26.18 mgd, an annual average rate of 15.18 mgd, and a seasonal maximum rate of 31.56 mgd. In that regard, a seasonal rate is the same as an annual rate, (average or maximum) when applied to a growing season as opposed to a year. The additional amendments to the application were evaluated by District staff who, on August 18, 1989, issued a revised staff report and a proposal to issue to Mr. Harloff a consumptive use permit authorizing an average annual withdrawal of 11.1. mgd, an average seasonal withdrawal of 15.6 mgd, and a seasonal maximum withdrawal of 20.1 mgd. The proposed permit also contains terms and conditions which, the District contends, will, inter alia, permit Mr. Harloff to withdraw more water than he is currently authorized without additional adverse impact on the City's Verna Wellfield. It is to some of these terms and conditions that Mr. Harloff objects. Since the issuance of the revised staff report and intent to issue, the parties have negotiated on the various terms and conditions in question and have agreed to some and the amendment of others. Mr. Harloff has no objection to conditions number 1, 2, 3, 7 - 14, 23, 24, 26, 28 - 30, 32, and 34 & 35. The parties agree that other conditions, as indicated herein, should be amended as follows: Condition 19, on the third line, should be changed to read, " up to 20 inches tapering to 12 inches." Condition 22, on the second line, should be changed from "30 days" to "10 days". Condition 25, on the first line, should be changed from "within 60 days" to within 120 days". Condition 31, on the third line, starting with "following month" should be changed to "following months: January, April, July and October". Also, under Sampling Frequency, "Monthly" should be changed to "Quarterly". Condition 33, on the ninth line, insert the work "economically" before the word "feasible" in the phrase "specific operation and irrigation improvements are feasible". Mr. Harloff objects to conditions 4, 5, 15 - 17, 20 & 27. He does not object to the proposed new standards for new wells. Taken together, the parties then disagree only on the requirement for abandonment or refurbishment of existing wells and the quantities of water Mr. Harloff will be allowed to draw. The City supports the District's position on both issues. The City of Sarasota owns and operates a public water system to serve between 50 to 75 thousand people located in Sarasota County. The primary source of water for this system is the Verna Well field which is also owned by the City and which accounts for approximately 60 percent of the City's water needs. The City also operates a reverse osmosis, (R.O.) water desalinization facility, and has back-up wells at St. Armond Key and at the Bobby Jones Wellfield. The Verna Wellfield is located about 17 miles east of the Sarasota city limits on approximately 2,000 acres of land in northeastern Sarasota County. It consists of two tracts of land: Part "A", which is approximately 1/2 mile wide by 4 miles long; and Part "B", which is approximately 1 mile square located about 500 feet southeast of Part "A". The Verna Wellfield's permitted allocation is based on whether the R.O. facility is producing at capacity. If it is, the Verna daily allocation is 7 mgd, and if not, 9.5 mgd. The R.O. facility's capacity is 4.5 mgd and the backup wells have a capacity of 1.7 mgd. The wellfield contains 39 permitted production wells, 30 of which are in Part "A" and 9 of which are in Part "B." One of them, well 30, is currently inactive. The wellfield has been in operation as a part of the City's public water system since September 1966. When the Verna Wellfield was constructed in 1965-1966, its original design specified casing on most wells down to 140 feet with pump bowl settings at 125 feet. Each pump was to have a total dynamic head, (TDH) of 200 feet. Over the years, the City has decreased the TDH of the pumps at Verna from 200 feet to 175 feet. This has resulted in a reduction of the pumps' ability to produce water with sufficient pressure to carry it to the discharge point. This decline has been caused by an increase in withdrawal of water regionally, and not solely because of withdrawals from the Verna Well field. Verna is impacted by the use of water outside the boundaries of the wellfield. The City has an ongoing program calling for the refurbishment of 2 to 3 wells per year at the Verna Wellfield. It is the City's intent to convert the pumps to 200 feet TDH on all well refurbishments in the future. In August 1977, a program requiring permits for the consumptive use of water was implemented in both Sarasota and Manatee Counties. At that time, the Verna Wellfield had a production rate of 6.9 mgd annual average daily rate. On January 6, 1978, the City applied for a permit for Verna and on April 3, 1979, the District issued permit number 27804318 to allow the City to draw water from the Verna Wellfield. The City applied for a renewal of that permit in October 1983 and thereafter, in January 1985, the District authorized the continued withdrawal of water from Verna by the issuance of permit 204318 which, at Condition 18, placed limitations on the City's use of water from the wellfield. Specifically, the permit limited withdrawals from Verna to: ...6,000,000 gallons per day average and 7,000,000 gallons per day maximum, except during those times when ... [the R.O. process is reduced or to facilitate maintenance or repairs]. At such times, ... [withdrawals) may be increased to provide additional supplies not to exceed 8,000,000 gallons per day average annual and 9,500,000 gallons per day maximum. This condition clearly provides for additional supplies to be drawn to increase the Verna Well field production to a total of 8,000,000 and 9,500,000 mgd, respectively, not in addition to the regular permitted amount, by those quantities. The City's permit has been neither suspended nor revoked nor is any violation enforcement action currently under way. The current permit expires January 9, 1991. The water pumped from the Verna wells is held in a 1,000,000 gallon reservoir at the wellfield. This reservoir, which is topped at approximately 22 to 23 feet, electronically controls the pumping activity at the well field by turning on and shutting off pumps, in series, as the water level in the reservoir rises and falls. The water, when needed, is transmitted to another reservoir near the City's treatment plant in downtown Sarasota by gravity flow through a 30" diameter, 92,000 foot long pipe. The flow rate is approximately 5,000 gpm normally. When the treatment plant needs more water, a pump at the well field forces the flow at a rate of between 7,200 to 8,200 gpm, depending upon the level of water in the receiving reservoir. A flow of 8,200 gpm would draw 11.8 mgd from the wellfield. The operating capacity of the Verna Wellfield, in August 1988, was 17.9 mgd. Harloff's experts assert, and there is no concrete evidence to rebut it, that if all wells at Verna were pumping during a 24 hour period in May 1989, the reservoir could have been maintained at full level. However, though there is a manual override of the automatic reservoir/pump control system, it is unrealistic and unwise to expect full production on a 24 hour basis for any lengthy time period. Water under both Mr. Harloff's property and the Verna Well field is found at various levels known by different names. These include, in order of descent, the Surficial Aquifer, the Intermediate Aquifer, the Upper Floridan Aquifer, and the Lower Floridan Aquifer. The Surficial Aquifer extends from the surface down to between 20 and 60 feet below the surface. A 20 foot thick bed of clay separates the water in this aquifer from that in the aquifer immediately below it, the Intermediate Aquifer, which extends from approximately 80 feet down to approximately 420 feet below the surface. In the lower part of the Intermediate Aquifer, permeability decreases until a confining unit separating the bottom of the Intermediate Aquifer from the top of the Upper Floridan Aquifer is formed. There is such a confining unit between 420 and 500 feet. There is no well-defined confining unit between the Upper and Lower Floridan Aquifers. There is, however, a substantial difference in the transmissivity in each zone. "Transmissivity" is defined as the amount of water that will exist through a section of the aquifer that is the same width from the top to the bottom. The lower the transmissivity rate, the deeper the cone and the narrower the radius of effect. The higher the rate, the shallower the cone and the broader the radius. The Lower Floridan Aquifer has an extremely high transmissivity. Its top is found at a range of from 1,050 to 1,200 feet below the surface on Mr. Harloff's property. The water from the Upper Floridan Aquifer is of higher quality than that in the Lower. It is more readily usable for drinking than that in the Lower, but the Lower water is quite acceptable for agricultural purposes. What confining layer exists between the Upper and Lower Floridan Aquifers is made up of relatively impermeable anhydrides and gypsum. Because of this, there is little likelihood of the highly mineralized water from the Lower Floridan Aquifer rising into the better quality water in the Upper. If, therefore, water for agricultural purposes is drawn from the Lower Floridan Aquifer, with its high transmissivity and narrower cone radius, and if the wells utilized to procure this water are cased down to within the Lower aquifer, there is little chance of a negative impact on the better quality water, used for drinking by the City, within the Upper Floridan and Intermediate Aquifers. Mr. Hardin, an expert geologist and hydrogeologist testifying for Mr. Harloff, concluded, utilizing certain commonly accepted computer models, that Mr. Harloff's requested additional withdrawals would not have a significant effect on the Verna Wellfield's ability to produce water sufficient for the City's needs. This conclusion was based on 1989 seasonal use figures including an average rate of 21.95 mgd, a maximum rate of 27.04 mgd, and a maximum rate of 29 mgd under a "run time" calculation and the fact that during that period, the City was able to pump at least its permitted quantity from its wells at Verna. The City and the District do not accept this conclusion as reasonable, however, because, they claim, the withdrawal figures cited are not meter readouts but estimates based on the number of acres farmed and the number of pump operating hours during the period in question. The City's experts contend the data used by Hardin and Prochaska in their opinions is not that which other experts in the field would reasonably rely upon. They do not appear to be unrealistic, however, and, therefore, Mr. Hardin's opinion is accepted as but one factor to be considered. On the other hand, Mr. Anderson, also a Harloff expert hydrogeologist, claims the requested withdrawals would result in only an additional 1.7 foot drawdown in the Upper Floridan Aquifer underlying the Northeast corner of the Verna Well field. To be sure, this is only one small portion of the wellfield in issue. There has, however, been a continuing history of declining groundwater levels in this area over the past several years. After the 1975 drought, the City started to experience declining water levels at Verna which, because of the reduction in ability to produce water, required a lowering of the pump elements in some wells, and also caused the City to develop an R.O. facility in an effort to reduce dependence on well water. This drop in capability occurred again during the 1985 drought and this time the City modified the pump motors to shut off prior to cavitation and initiated a schedule of operating times for wells, so that water is drawn from different and geographically separated areas in a sequence designed to allow periodic regeneration of an area's supply. Nevertheless, water supply remains a concern at Verna, and the problems previously experienced continue to occur during periods of drought. In May 1989, the Verna Wellfield was periodically "unable" to meet it's short term peak demands at times even though all operating wells were pumping. This means that at the times in question, more water was being drawn from the Verna reservoir than could be replaced by pumping activities. It does not mean that the reservoir ran dry and water could not be furnished to the treatment plant. However, this condition is serious and indicative of a more serious shortage in the future unless appropriate safeguards are instituted. Mr. Balleau, the City's expert in hydrology and hydrogeology, and the District's experts all believe the Verna Wellfield is in trouble. It is operating well beyond its design range and the imposition of additional demands on it would seriously and adversely affect its ability to produce water. This position is supported by the facts and found to be accurate. There appear to be several options open to the City to contend with the Verna problem potential. These include: drill deeper wells at Verna to tap the Lower Floridan Aquifer. (This will produce the lower quality water found there and require additional treatment facilities. construct a linear wellfield along the pipeline from Verna to the treatment facility. (This will require additional permitting to draw the water, high construction and operating costs, and still result in low quality water requiring treatment. redevelop the downtown wells currently supplying the R.O. facility. (This will require satisfaction of regulatory issues, adversely impact on the users of the upper aquifers, possibly result in poor water quality and in contamination from nearby landfills.) develop a new well field southeast of Verna. (This will experience regulatory issues and high construction costs, with an unknown water quality result.) buy water from Manatee County. (This is expensive, may result in transmission and compatibility problems, and would be only a short term solution. lower pump assemblies; replace existing pumps and modify the pump circuits. (These are all unreliable, short term solutions of minimal benefit.) Mr. Harloff and the City/District disagree on the appropriate amount of water needed for the successful growing of the crops produced by his operations. Both agree, however, that the heaviest demands for water come in the spring growing season including April and May. Tomatoes require the most water. Peppers require nearly as much. This is because the short root systems require a higher water table in the soil to supply needed moisture. In its analysis of Mr. Harloff's application, the District, referring to tables developed for the purpose of allocation and relating to Harloff's watering history during the period from August 15, 1988 to June 7, 1989, subtracted the fall season recorded application of 20.7 acre-inches from the total 10 month figure of 50.92 acre-inches and concluded he would need 30.22 acre-inches for peppers during the spring, 1989 season. Unless shown to be totally unreasonable, however, (not the case here), the applicant's water need figures should be accepted. Mr. Harloff's operation constitutes an important part of Manatee County's agricultural economy, and agriculture utilizes 68.9 percent of the land in the county. Agricultural products sold in Manatee County in 1987 were valued at $145,655,000.00, which ranked Manatee County third among all Florida counties in vegetable production. Agriculture is the fourth largest employer in Manatee County, employing an average of 4,692 people per month. Through his farm operation alone, Harloff employes as many as 1,050 people, with 200 employed on a full-time basis. Experts estimate that the loss of the Harloff operation would cause a reduction of between 16 and 18 million dollars in agricultural sales in the county with an additional loss in jobs and income to his suppliers. This estimate is not at all unreasonable. Florida produces approximately 95 percent of all tomatoes grown in this country for the fresh tomato market during the winter growing season. Tomatoes are the single largest vegetable crop grown in the state and accounted for 39.7 percent of the total value of vegetables produced in Florida during the 1987-1988 growing season. Mr. Harloff produced 4.8 percent of the total shipment of tomatoes from this state during that period. Water, primarily through irrigation, is an indispensable portion of the farming operation for this crop. Mr. Harloff currently irrigates the majority of his non-citrus crops by use of a "semi-closed ditch irrigation system", as opposed to a "drip system." The drip system is considerably more efficient than the semi-closed system having an efficiency rating, (amount of water actually used by the plants) of between 80 to 90 percent, as opposed to 40 to 60 percent for the other. While Mr. Harloff could reduce his water needs considerably and achieve substantial savings on pump fuel by conversion to a drip system for all or a part of his crops, such an undertaking would be quite costly. One of the conditions proposed by the District for the approval of Harloff's permit, as amended, is the refurbishment of several of the existing wells utilized by Mr. Harloff to make them more efficient and to promote the withdrawal of water from the Lower Floridan Aquifer, in which there appears to be adequate water and from which the Verna Well field does not draw. Currently, Mr. Harloff has seven wells which do not meet the standards of this proposed condition. They are not drilled to 1,300 feet below mean sea level and are not cased to 600 feet. To bring these wells into compliance, they would have to be drilled to the 1,300 foot level, or to a level which has a specific capacity of 400 gpm, and the casings in each would have to be extended to 600 feet. Extending the casings would be a complicated procedure and Harloff's experts in the area cannot guarantee the procedure would successfully achieve the desired end. Assuming the retrofit was successful, the cost of the entire process would be approximately $15,000.00 to $16,000.00 per well. In addition, the process would, perforce, require reducing the diameter of the well from 10 to 8 inches, thereby necessitating increasing the pump capacity to produce sufficient water. The cost of this is substantial with an appropriate new pump costing somewhere between $10,000.00 and $15,000.00 each. Consequently, the anticipated cost of bringing the existing wells up to condition standards would be between $25,000.00 to $31,000.00 per well, while the cost of constructing a new well is between $40,000.00 and $50,000.00 per well. Mr. Harloff feels it would be more prudent for him to replace the existing wells rather than to retrofit them. This may be correct. Harloff experts also claim that extending the casings on the existing wells down to 600 feet would not provide a significant benefit to the aquifer nor cause any significant reduction in drawdown impact at Verna. The District and City experts disagree and, taken on balance, caution and the interests of the public indicate that a conservative approach is more appropriate. While Mr. Harloff proposes to convert the areas served by wells 1, 9, 11, and 12 to the growing of citrus which requires much less water than tomatoes, this would not be sufficient mitigation to offset the need for some modification if large amounts of water will still be drawn. The entire area under the District's jurisdiction has been experiencing a water shortage due to a lack of rainfall. As a result, in June 1989, the District adopted a resolution identifying an area, including the area in question here, as a "water use caution area." This was done because the Floridan Aquifer has been subjected to large seasonable drawdowns of the potientiometric surface, the level to which water in a confined aquifer can rise in a well which penetrates that acquifer. This drawdown is directly related to increased water use in the area, much of which is for agricultural purposes. As a result of the District's action, special conditions on well construction for consumptive use applicants have been imposed on a permit by permit basis to insure, as much as possible, that the applicant uses the lowest quality water appropriate for his intended purpose. These conditions are not unreasonable. While accepting the District's and City's conclusion that his wells, if permitted, would have some impact on the Verna Wellfield, Mr. Harloff does not concede that the impact is significant. Specifically, the difference in impact resulting from an increase from his currently permitted use of 13.68 mgd seasonal maximum and his requested use of 31.56 mgd seasonal maximum for wells 1, 2, 9, and 10 would be a maximum increased drawdown of 1.1 feet at the Intermediate aquifer and 1.8 feet at the Upper Floridan Aquifer. Both figures relate to that portion of the wellfield found in the northeast corner of Part A. If the anticipated usage for crops predicted by Mr. Harloff's experts for the spring of 1989 is accurate, the drawdown would be 0.2 feet for the intermediate aquifer and 0.4 feet for the Upper Floridan Aquifer measured at the northeast corner of Part B of the Verna We1lfield. Harloff's experts contend that additional impacts for the spring of 1989 included, the increased usage will not have a significant effect on Verna's ability to produce its permitted daily maximum withdrawal of 9.5 mgd. While this is an educated speculation, it should be noted that during May 1989, the Verna field was able to produce up to 8.3 mgd without using all wells during any 24 hour period. This does not consider, however, the problems encountered by the City as indicated by the wellfield personnel, and the fact that some of the City wells are not pumping water.
Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is, therefore: RECOMMENDED that Roger Harloff be issued a consumptive use permit, No. 204467.04, as modified, to reflect authorization to draw 15.18 mgd annual average, not to exceed 31.56 mgd seasonal maximum, conditioned upon compliance with the conditions found in the conditions portion of the permit, as modified to conform to the quantities as stated herein, and to include those requirements as to acre-inch and crop-acre limitations, well usage and abandonment schedules, well modification standards, and record keeping, as are contained therein. RECOMMENDED this 5th day of December, 1989, in Tallahassee, Florida. ARNOLD H. POLLOCK, Hearing officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 5th day of December, 1989. APPENDIX TO RECOMMENDED ORDER IN CASE No. 89-0574 The following constitutes my specific rulings pursuant to s. 120.59(2), Florida Statutes, on all of the proposed Findings of Fact submitted by the parties to this case. FOR THE PETITIONER: City of Sarasota, joined by the District 1 & 2. Accepted and incorporated herein. 3. Accepted and incorporated herein. 8-12. Accepted and incorporated herein. 13. Accepted and incorporated herein. 14-22. Accepted and incorporated herein. 23-25. Accepted and incorporated herein. 26. Accepted and incorporated herein. 27 & 28. Accepted and incorporated herein. 29-33. Accepted and incorporated herein. Not a Finding of Fact but a statement of party position. & 36. Accepted. 37. & 38. Accepted and incorporated herein. Accepted. Accepted and incorporated herein. Not a Finding of Fact but a comment on opponent's satisfaction of its burden of proof. 42-44. Accepted and incorporated herein. Accepted and incorporated herein. Rejected as a misstatement of fact. Water service was never interrupted. The deficiency was in the City's inability to keep its wellfield reservoir filled. 47-54. Accepted and incorporated herein. Accepted and incorporated herein. Rejected for the reasons outlined in 41. 57-62. Accepted and incorporated herein. 63. Rejected for the reasons outlined in 41. 64-66. Accepted and incorporated herein. Rejected for the reasons outlined in 41. Rejected. & 70. Accepted and incorporated herein. 71. & 72. Accepted and incorporated herein. 73. Accepted and incorporated herein. 74 & 75. Accepted and incorporated herein. Accepted. Not a Finding of Fact but a statement of party position. Rejected. Accepted. Irrelevant. 81-84. Rejected. 85. & 86. Accepted and incorporated herein. 87 & 88. Accepted and incorporated herein. 89. Accepted and incorporated herein. 90 & 91. Accepted and incorporated herein. 92. & 93. Accepted and incorporated herein. FOR THE RESPONDENT: Roger Harloff 1-9. Accepted and incorporated herein. 10-13. Accepted and incorporated herein. 14 & 15. Accepted and incorporated herein. 16-25. Accepted and incorporated herein. 26-28. Accepted and incorporated herein. 29 & 30. Accepted. Accepted and incorporated herein. Accepted. Accepted and incorporated herein. Not proven. 35 & 36. Accepted and incorporated herein. 37 & 38. Accepted and incorporated herein. 39-41. Accepted and incorporated herein. 42 & 43. Accepted and incorporated herein. 44. Accepted. 45 & 46. Accepted and incorporated herein. 47 & 48. Accepted and incorporated herein. 49. Accepted. 50 & 51. Accepted and incorporated herein. Accepted. Accepted. Accepted. & 56. Accepted and incorporated herein. 57. Accepted. 58-60. Accepted and incorporated herein. 61 & 62. Accepted and incorporated herein. Rejected as unproven. Accepted. Accepted and incorporated herein. Accepted. 67-68. Accepted. Not a Finding of Fact but an interpretation of party po Accepted. Rejected. 72 & 73. Accepted. COPIES FURNISHED: Edward P. de la Parte, Jr., Esquire de la Parte, Gilbert and Gramovot, P.A. 705 East Kennedy- Blvd. Tampa, Florida 33602 Edward B. Helvenston, Esquire SWFWMD 2379 Broad Street Brooksville, Florida 34609-6899 Douglas P. Manson, Esquire Blain & Cone, P.A. 202 Madison Street Tampa, Florida 33602 Peter G. Hubbell Executive Director SWFWMD 2379 Broad Street Brooksville, Florida 34609-6899