Elawyers Elawyers
Washington| Change
Find Similar Cases by Filters
You can browse Case Laws by Courts, or by your need.
Find 49 similar cases
GLEN SPRINGS PRESERVATION ASSOCIATION, INC., AND ELIZABETH T. FURLOW vs LUTHER E. BLAKE, JR.; IRENE BLAKE CAUDLE; AND ST. JOHNS RIVER WATER MANAGEMENT DISTRICT, 01-003798 (2001)
Division of Administrative Hearings, Florida Filed:Gainesville, Florida Sep. 26, 2001 Number: 01-003798 Latest Update: Oct. 11, 2019

The Issue The issue is whether an Environmental Resource Permit should be issued to Luther E. Blake, Jr. and Irene Blake Caudle authorizing the construction of a stormwater management system to serve a single-family development known as Walnut Creek, Phases I and II, in Gainesville, Florida.

Findings Of Fact Based upon all of the evidence, the following findings of fact are determined: Background In this environmental permitting dispute, Respondent, St. Johns River Water Management District (District), proposes to issue an Environmental Resource Permit to Respondents, Luther E. Blake, Jr. and Irene Blake Caudle (Applicants), authorizing the construction of a stormwater management system to serve Phases I and II of a single-family development known as Walnut Creek Subdivision in Gainesville, Florida. The system will be located on a 31-acre, L-shaped parcel of undeveloped, forested land. The proposed system includes a 135-lot single family subdivision, internal roadways with curb and gutter, a storm sewer system, and five dry retention ponds. The project site is located west of Northwest 13th Street (Highway 441) in the northwestern portion of the City of Gainesville between Northwest 39th Avenue (State Road 222) and Northwest 31st Boulevard, west of Palm Grove Subdivision, and east of Hidden Pines Subdivision. Petitioner, Glen Springs Preservation Association, Inc. (Association), is a corporation made up of an undisclosed number of persons, at least one of whom resides adjacent to or near the proposed project site. Petitioner, Elizabeth T. Furlow (Furlow), who did not indicate that she is a member, also resides with her husband near the project site. As set forth in the parties' Prehearing Stipulation, Petitioners contend that the proposed system fails to meet certain design and performance criteria, that the Applicants have failed to submit the appropriate documentation to satisfy the operation and maintenance entity requirements, and that the Applicants have failed to provide reasonable assurance that the system meets the general requirements for issuance of a permit. More specifically, they contend that the requirements of Rules 40C-42.023(1)(a)-(c), 40C-42.025(1), (3), (4), (5), (6), (7), (8), and (10), 40C-42.026(1)(a), (c), and (d), and 40C- 42.027, Florida Administrative Code, have not been met.2 On these technical issues, the parties have presented conflicting expert testimony, and the undersigned has accepted the more credible and persuasive testimony, as set forth in the findings below. Respondents have not stipulated to Petitioners' standing. Through the testimony of Furlow's husband, it was established that the Furlows live just south of the project site, approximately 100 yards north of Northwest 31st Boulevard near a creek known as Glen Springs Creek (Creek). The Furlows fear that if a permit is issued, runoff from the project site will cause further erosion of the Creek's banks and flooding during rainfall events. Although three persons who live adjacent to or near the project site appeared as witnesses, only one (Bonnie O'Brien) indicated that she is a member of the Association. Ms. O'Brien has lived just west of the Creek since 1969, around one-half mile from the project site. Over the years, and due to erosion caused by increasing development in the area, much of which began before the District began permitting stormwater systems, the Creek's banks have increased in depth from around a foot or so to as much as six feet. During large storm events, the Creek's waters rise up to as much as five feet in depth. Like the Furlows, Ms. O'Brien fears that runoff from the project will go into the Creek and adversely affect her property. There was, however, no evidence concerning the Association's interests, whether the Association is a Florida corporation, the number of members in the Association, and except for Ms. O'Brien, whether any of its members are substantially affected by the proposed activity.3 Design and performance criteria The Applicants propose to use a dry retention system consisting of five dry retention ponds ranging in depth from three to four and one-quarter feet which will be located mainly along the western boundaries of the project site. In general terms, stormwater runoff from the residential lots will sheet flow to roadways and alleys, will be collected by curbs and gutters, and then will be conveyed to the five ponds for water quality treatment. Rule 40C-42.025(1) requires that "[e]rosion and sediment control best management practices shall be used as necessary during construction to retain sediment on-site." The more persuasive evidence shows that the applicants have done so, and that the best management practices used by the Applicants are generally utilized throughout the development community. Therefore, the requirements of this rule have been met. Rule 40C-42.025(3) provides that unless applicable local regulations are more restrictive, "[n]ormally dry basins designed to impound more than two feet of water or permanently wet basins shall be fenced or otherwise restricted from public access." The proposed retention basins that have three-to-one (horizontal: vertical) side slopes will be fenced to prevent public access. The evidence also shows that there are no applicable, more restrictive local regulations. Under Rule 40C-42.025(4), "[a]ll stormwater basin side slopes shall be stabilized by either vegetation or other materials to minimize erosion and sedimentation of the basins." As to this requirement, the evidence establishes that all of the stormwater basin side slopes will be stabilized by vegetation to minimize erosion and sedimentation of the basins, as required by the rule. Further, the proposed retention basin side slopes are four-to-one and three-to-one. Slopes of this dimension are typically stable and will not easily erode. Rule 40C-42.025(5) requires that the systems be designed so that they "accommodate maintenance equipment access" and "facilitate regular operational maintenance." The evidence shows that the Applicants own the entire project site, and each of the five retention ponds can be accessed from roads and alleys within the project site. Rule 40C-42.025(6) requires that an applicant "obtain sufficient legal authorization as appropriate prior to permit issuance for stormwater management systems which propose to utilize offsite areas to satisfy the requirement in subsection 40C-42.023(1), F.A.C." Because the Applicants are not proposing to use any offsite areas for the system, and the system is located entirely on the project site, no "legal authorization" from other persons is required. Under Rule 40C-42.025(7), the system "shall provide gravity or pumped discharge that effectively operates under . . . [m]aximum stage in the receiving water resulting from the mean annual 24-hour storm." Calculations performed by the Applicants, and verified by the District's independent calculations, show that the system is designed to retain all of the runoff from the mean annual 24-hour storm event. Therefore, this rule has been satisfied. Rule 40C-42.025(8) provides that if a system serves a new construction area with greater than 50 percent impervious surface, an applicant is required to demonstrate that "post- development peak rate of discharge does not exceed the pre- development peak rate of discharge" for the mean annual 24-hour storm event. If the system serves a new construction area with less than 50 percent impervious surface, however, the requirements of this rule do not apply. The evidence shows that the proposed retention system will serve a new construction area (around 12 acres) with less than 50 percent impervious area. Therefore, the rule does not apply. Even so, the Applicants demonstrated that the post- development peak rate of discharge from the project site will not exceed the pre-development peak rate of discharge for the 24-hour storm event. In fact, the post-development peak rate of discharge from the project site during the 24-hour mean annual storm event will be zero. Finally, Rule 40C-42.025(10) requires in part that the construction plans and supporting calculations be "signed, sealed, and dated by an appropriate registered professional." The evidence shows that the final set of plans submitted in January 2002 by the Applicants was signed and sealed by H. Jerome Kelly, a professional engineer.4 Specific design and performance criteria Rule 40C-40.026(1)(a) requires that the retention system provide retention of stormwater runoff in one of four ways. Here, the Applicants have designed the system to provide "[o]n-line retention of an additional one half inch of runoff from the drainage area over the volume specified in subparagraph 1. above." Subparagraph 1. requires "[o]ff-line retention of the first one half of runoff or 1.25 inches of runoff from the impervious area, whichever is greater[.]" Because the system will provide on-line retention of a minimum of one inch of runoff from the project area, plus 1.25 inches of runoff from the impervious soil in the project/drainage area, it is found that the capacity of the proposed retention system is more than adequate to capture the quantity of stormwater runoff required by this rule. Under Rule 40C-42.026(1)(c), the system must be designed to "[p]rovide the capacity for the appropriate treatment volume of stormwater specified in paragraphs (a) and (c) above, within 72 hours following the storm event assuming average antecedent moisture conditions." To assure compliance with this rule, and to demonstrate that the system meets the required recovery of the water quality treatment volume, the District performed modeling to predict the vertical infiltration rate and the groundwater mounding effects of the proposed retention system. For the reasons stated below, it is found that the system will provide the required amount of treatment volume capacity within 72 hours of a storm event assuming average antecedent moisture conditions, as required by the rule. The District used one of the latest versions of the MODRET computer modeling program, a methodology routinely used by the District to support an application for this type of retention system. That program takes into account vertical percolation into the soil; once the water reaches the water table, the model then takes into account the lateral or horizontal movement of the water out of the pond. The model is used to determine whether the required water quality treatment volume, which is significantly less than the storage volume in the ponds, will draw down within three days. The modeling confirmed that this requirement will be satisfied. Data from the Applicants' on-site soil survey was used in the model to establish the depth below ground surface of the seasonal high water table level. This resulted in a conservative assumption of an above-normal average antecedent moisture condition beneath the retention ponds. The Applicants also collected soil samples from the project site, including those areas where the retention ponds will be located, and they performed laboratory tests in accordance with ASTM D2434 to calculate the vertical hydraulic conductivity and the horizontal hydraulic conductivity for those soils. The results of both tests fall within accepted ranges as stated in the published soils texts and governmental soils surveys for the project area. In addition, the Applicants conducted an independent test to determine the mean seasonal high water table on the project site. Based on visual observations of the soil samples, the Applicants determined that the mean seasonal high water table is between six and seven feet below ground surface. The visual observation of the soil samples is compatible with the results of Petitioners' soil augers obtained off the project site. As noted earlier, the proposed retention ponds will have a depth of three to four and one-quarter feet, which places the bottom of the ponds above the mean high water table as determined by the Applicants' calculations and as stated in the soils survey for Alachua County. Therefore, the dry retention ponds should not be considered impervious surfaces. Finally, Rule 40C-42.026(1)(d) requires that the retention system "[b]e stabilized with pervious material or permanent vegetation cover." The evidence shows that the proposed retention system will be stabilized with permanent vegetative cover. Other requirements and concerns Runoff from other developed properties in the vicinity of the proposed project site discharges into the Creek, contributing to erosion in the Creek. Not all of these existing developments have stormwater management systems on-site, since some of the older properties were built before the District assumed regulation over this activity. The proposed system can be effectively operated and maintained without causing or exacerbating the erosion problems that currently exist within the Creek system. This is because once the system is built, the amount of runoff leaving the site will be less than what is now present in the pre-development state. Thus, the project, as now designed, will not adversely affect drainage and flood protection on adjacent or nearby properties. Through the submission of a copy of the Articles of Incorporation and Declaration of Covenants for the Walnut Creek Homeowner's Association, the Applicants demonstrated that the District's requirements regarding the operation and maintenance of the proposed system after completion of construction will be met, as required by Rule 40C-42.027(4).

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the St. Johns River Water Management District enter a final order granting application number 42-001- 71000-1 of Luther E. Blake, Jr. and Irene Blake Caudle for an Environmental Resource Permit. DONE AND ENTERED this 14th day of February, 2002, in Tallahassee, Leon County, Florida. ___________________________________ DONALD R. ALEXANDER Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 14th day of February, 2002.

Florida Laws (3) 120.569120.57120.68 Florida Administrative Code (2) 40C-42.02340C-42.025
# 1
ARLINGTON EAST CIVIC ASSOCIATION, ET AL. vs. JACKSONVILLE TRANSPORTATION AUTHORITY AND DEPARTMENT OF ENVIRONMENTAL REGULATION, 78-001875 (1978)
Division of Administrative Hearings, Florida Number: 78-001875 Latest Update: May 14, 1979

Findings Of Fact The proposed project is a six-lane, combination low and high level bridge crossing Mill Cove and the St. John's River in Duval County, Florida. The project entails construction of approximately 6,000 feet of low level trestle-type bridge structure and approach spans beginning on the south side of Mill Cove and extending across the Cove to the northern edge of Quarantine Island, an artificial spoil island; 3,000 feet of high level bridge crossing the main channel of the St. John's River; and northern approach spans touching down on Dame Point on the northern shore of the St. John's River. In order to construct the proposed project, JTA is required to obtain a water quality permit and certification from DER. JTA filed its application with DER, accompanied by supporting data, including several studies performed by professional consultants. After review of the application, DHR filed notice of its intent to issue the requested water quality permit and certification, and Petitioners filed a timely request for a hearing pursuant to Section 120.57(1) Florida Statutes, to oppose the issuance of the permit and certification. Petitioners are various groups and individuals concerned about water quality in the St. John's River and the Jacksonville area. Petitioners' standing to seek relief in this proceeding was stipulated by all parties. Construction of the project will result in: filling of approximately .07 acres of wetlands to construct the south abutment on the shore of Mill Cove; dredging of approximately 185,000 cubic yards of material from Mill Cove to create a 4,400 foot long, 190 foot wide barge access channel, with a five foot navigation control depth parallel to the low level portion of the project; temporary filling of approximately .3 acres of wetlands above mean high water on the south shore of Quarantine Island to provide construction access to the island, which area is to be restored upon completion of construction; construction of a diked upland spoil containment site approximately 31 acres in size above mean high water on Quarantine Island to retain all dredge spoil associated with the project; construction of a temporary dock at the northern end of Quarantine Island for access and staging purposes, which is to be removed on project completion; and filling of approximately 16,000 cubic feet of material waterward of mean high water for rip-rap protection around main piers in the St. John's River. Dredged materials will be removed by hydraulic dredges. The St. John's River and its tributaries have been designated Class III waters by DER in the project area. The project involves dredging below mean high water and filling above mean high water, and is a dredge-and-fill project for purposes of Chapters 403 and 253, Florida Statutes, and Chapters 17-3 and 17-4, Florida Administrative Code, and is regulated by DER. The project is an element in a proposed eastern bypass around the City of Jacksonville. It is expected that, as a result of the project, existing area industry will receive more efficient transportation service, commuter trip miles from southeastern Jacksonville to northern Jacksonville will be reduced, transportation routes to education facilities will be improved, and tourist traffic will be routed around downtown Jacksonville, reducing miles traveled to nearby beach resorts and thereby relieving downtown congestion. The benefits to costs ratio of the project appears positive and beneficial to Duval County and Jacksonville, in that for every dollar spent to construct the project, $2.80 could be returned to the community in the form of increased economic activity and more efficient transportation. Testimony clearly established that the state waters in the project area are currently severely degraded and are not likely to meet Class III water quality standards. Violations of Class III standards for dissolved oxygen and some heavy metals, such as mercury, presently exist as background conditions in the St. John's River and Mill Cove. Further, a water quality analysis performed by DER in the project area indicates high background concentrations of heavy metals and PCB's in both the water column and sediments in the project area. When the pro posed project is analyzed within the context of these existing background water quality conditions, it appears highly unlikely that any impact from the project will further degrade existing conditions. The project as currently designed includes plans for total containment of spoil material resulting from dredging activity on the upland portions of Quarantine Island. There will be no direct discharge of dredge $materials from this containment area into the receiving waters of the state. JTA performed a water and sediment analysis of the project area, the purpose of which was to determine the existence and concentrations of specific pollutants that could adversely impact Class III waters if reintroduced into the aquatic system. JTA employed a consultant whose analytical program was designed in consultation with DER and complied with all standard testing procedures required by Rule 17-3.03, Florida Administrative Code. This analysis identified three primary-project activities where control of toxic and deleterious materials was critical: turbidity control; upland spoil containment; and direct discharge of spoil water to state waters. Sediments in the Mill Cove area are extremely fine and may be resuspended in the water column in quantities that could violate state water quality standards if dredging is done improperly. It appears from the evidence that any turbidity problem can be avoided by employing silt curtains and hydraulic dredging during channel excavation. Silt curtains should adequately retain turbidity below levels which would violate state water quality standards, in view of the fact that the JTA study hypothesized a "worst-case" condition for projecting turbidity and pollutant concentration by assuming no upland spoil containment, silt curtains or reasonable mixing zone. Although use of silt curtains and hydraulic dredging cannot absolutely guarantee zero-discharge of suspended sediments from the dredging area, the proposed system of turbidity control is adequate to provide reasonable assurance of non-violation of state water quality standards. Due to the existing toxic background conditions in Mill Cove, DER imposed a permit condition requiring spoil from dredging activities to be completely contained in an upland landfill-type site, with no overflow that could allow effluent to return to waters of the state. The upland dike system proposed in the project application is designed to retain all spoil material and water without direct discharge into state waters. Testimony established that the proposed dike system is designed to hold far more spoil material than the proposed project will generate. Although the dike system is to be constructed from dredged material previously deposited on Quarantine Island, it appears from the testimony that these materials were dredged from the main channel of the St. John's River and are cleaner and sandier in character than sediments in the Mill Cove area. The dike system, in conjunction with natural percolation and evaporation, is adequately designed to retain dredge spoil on the upland portion of Quarantine Island, and can reasonably be expected not to release toxic and deleterious substances into receiving waters of the state. It is also significant that a condition of the requested permit requires project water quality monitoring to afford continuing assurance that the project will not violate standards contained in Chapter 17-3, Florida Administrative Code. These standards and the conditions required to achieve them have been included in DER's letter of intent to issue the permit for this project. It is specifically concluded from the evidence that project dredging will not release toxic and deleterious substances into Class III waters in violation of state water quality standards, and that project dredging in Mill Cove incorporates reasonable safeguards for spoil disposal and turbidity control so as to assure non-violation of state water quality standards. JTA plans to use a direct discharge method to dispose of storm water from the bridge. Storm water will fall through 4-inch screened holes called "scuppers" placed at regular intervals along the bridge surface directly into either Mill Cove or the St. John's River. JTA was required to provide in its application reasonable assurance that storm water runoff from the Project would not exceed applicable state standards for turbidity, BOD, dissolved solids, zinc, polychlorinated biphenols, lead1 iron, oils or grease, mercury, cadmium and coliform. To this end, JTA submitted a study entitled Effect of Rainfall Runoff from Proposed Dame Point Bridge on Water Quality of St. John's River. This study analyzed the chemical composition of storm water runoff from an existing bridge, comparable in both size and design, to the proposed project, which crosses the St. John's River south of the City of Jacksonville. This study adequately established that storm water runoff into the St. John's River across the length of the proposed bridge will not degrade the water quality of the St. John's River below current water quality standards. All but three of the parameters tested in the study were within standards contained in Chapter 17-3, Florida Administrative Code. The remaining three pollutants were either not automobile-related, or would not violate applicable water quality standards after a reasonable opportunity" for mixing with receiving waters. One of these pollutants, mercury, is not automobile-related, and the concentration of mercury discovered in bridge runoff test samples was essentially the same as that measured in rainfall samples. The sampling for mercury was performed using the ultrasensitive "atomic absorption" method, which is capable of measuring tenths of a part per billion of mercury. Another method, the "Dithizone" method, is a technique recognized as effective by DER, and would have, if utilized, yielded a result within the "none detectable" standard contained in Rule 17-3.05(2) , Florida Administrative Code. As to the remaining two pollutants, coliform and lead, testimony established that a dilution rate of 400 to 1, after mixing with receiving waters, would not result in violation of applicable Class III water standards. Testimony also clearly established that water circulation in the project area would result in the requisite dilution ratio of approximately 400 to 1. The storm water runoff study was performed on a bridge similar in all important characteristics to the proposed project, and therefore validates the scientific methodology utilized to determine the expected impact of runoff from the proposed project on water quality in the St. John's River. The applicant has provided in its permit application the best practicable treatment available to protect state waters in the design of both the low and high level portions of the proposed bridge. Extensive research and analysis of design alternatives for both the low and high level portions of the bridge were undertaken by JTA and its consultants prior to selecting the proposed design for the bridge. JTA prepared and submitted to DER, as part of the application process, a document entitled Summary of Construction Techniques in Mill Cove, Dame Point Expressway. This document analyzed and summarized the available construction and design alternatives for the low level trestle portions of the project. The analysis included consideration of overhead construction, construction from a temporary wooden structure parallel to the project, and construction from barges using a shallow channel parallel to the project. The design chosen will cost more than one million dollars less than the next alternative, and will cut construction time by two years over the next alternative design. Given the demonstrated need for the proposed project, the already degraded water quality in the project area, the safeguards for water quality contained-in the project design, and the savings to be realized in both cost and time of construction, the design presently contained in the application is the best practicable. Both Petitioners and JTA have submitted proposed findings of fact. Petitioners' Proposed Findings of Fact numbered 1 through 4 have been substantially adopted herein. JTA's Proposed Findings of Fact numbered 1 through 7 have also been substantially adopted. To the extent that proposed findings of fact submitted by either Petitioners or JTA are not adopted in the Recommended Order, they have been specifically rejected as being either irrelevant to the issues in this cause, or as not having been supported by the evidence.

Florida Laws (5) 120.54120.57403.021403.061403.087
# 2
JOSEPH L. CUTTER vs DEPARTMENT OF ENVIRONMENTAL PROTECTION AND DEPARTMENT OF HEALTH AND REHABILITATIVE SERVICES, 96-000602 (1996)
Division of Administrative Hearings, Florida Filed:Perry, Florida Jan. 31, 1996 Number: 96-000602 Latest Update: May 07, 1997

Findings Of Fact Mr. Cutter has resided in Taylor County, Florida since 1974. His home is approximately 8,000 feet southwest of the Fenholloway River on the north side of Courtney Grade Road. DEP is responsible for administrating the Water Quality Assurance Trust Fund. DEP's responsibilities include the undertaking of water supply restoration projects in appropriate circumstances. In administering this trust fund, DEP determines whether specific ground water supplies are contaminated. This determination generally requires DEP to evaluate whether a given water supply meets primary drinking water quality standards. A primary drinking water standard is a regulatory criterion adopted by the state pursuant to delegated federal authority. Such a standard refers to a certain maximum level for a given contaminant which, if exceeded, represents a health risk. If DEP finds that a primary drinking water standard is violated, it performs a cost analysis to determine the appropriate means of restoring or replacing a water supply source. In the late 1980's, DHRS received complaints from Taylor County residents that water from their private wells looked, smelled, and tasted bad. DHRS asked DEP to investigate those complaints. DEP's initial investigation of ground water quality did not reveal a public health threat. Nevertheless, DEP decided to proceed on the assumption that industrial effluent in the Fenholloway River could represent a public health threat. DEP first considered the potential of conducting chemical analysis of ground water to detect the presence of chemical markers that would indicate the presence of water from the Fenholloway River. In order to do this, DEP would have to isolate a chemical compound from the industrial effluent in the Fenholloway River that would serve as a "marker" for contaminated effluent. DEP attempted to determine the influence of the Fenholloway River using a test measuring non-purgeable total organic halides, or NPTOX, as a chemical marker. DEP's projections relying upon NPTOX as an indicator for river water proved to be unreliable. DEP correctly rejected the use of NPTOX as a chemical marker because it occurs naturally and does not provide a clear indication as to whether river water influences ground water. Moreover, DEP identified laboratory quality assurance problems for tests using this chemical. DEP's scientists do not know of any practical chemical marker that can identify mill effluent in river water. Research is emerging which may identify a chemical test which will reveal the presence of effluents from kraft paper mills. However, the academic community has not yet validated their use. After the shortcomings of chemical analysis became evident, DEP decided to conduct a ground water study to reach conservative findings regarding the extent to which water from the Fenholloway River could potentially impact ground water supplies in a worst case scenario. DHRS agreed to certify that it would be in the interest of public health to connect homes to a public water system if DEP could identify a corridor where river water influenced ground water. As a result of the ground water study, DEP prepared and adopted the 1995 report titled "Delineation of Ground and Surface Water Areas Potentially Impacted by an Industrial Discharge to the Fenholloway River of Taylor County, Florida" (1995 Report). The 1995 Report identified a conservative potentially impacted corridor within which water from the Fenholloway River might interact with ground water in the adjoining aquifers as well as the potential impact of river flood waters on ground water. Buckeye is a softwood kraft pulp specialty mill that has been in operation in Taylor County since 1954. It discharges treated effluent into the Fenholloway River in accordance with permits from DEP. The mill discharges effluent upstream of U.S. 19 Bridge. This discharge creates a mounding effect, i.e. an artificial high level within the river. Because the river downstream of the discharge point is maintained at an artificially high level during drought conditions, a "mound" of water forms where the water level in the aquifer connects to the river. During a dry season, this discharge will be maintained, but the aquifer on both sides of the river will continue to drop due to a lack of recharge from rainfall. The river generally runs from east to west through Taylor County. It starts in the San Pedro Bay at 100 feet above sea level and ends at the Gulf of Mexico at sea level. Ground water (subsurface water) moves from higher to lower elevations of the water table. Elevations (contours) of equal ground water levels can be mapped just as elevations of land surfaces are mapped. Ground water contour lines (sometimes called equipotential lines) depict points of equal ground water elevation. Direction of ground water flow is always at right angles to the contour lines. Ground water is a dynamic system impacted by rainfall, which adds water to the system, and discharge points, which take water from the system. Water is constantly entering (recharging) or leaving (discharging) the aquifer, which causes the ground water levels to be continually changing. The Floridian aquifer system underlies all of Florida, including the study area of the 1995 Report. The aquifer at issue here is unconfined from San Pedro Bay to the coast. Potentiometric (aquifer water level) elevations of the Floridian aquifer in the study area of 1995 Report show that ground water moves southwesterly. The dominant direction of the ground water flow in this area is parallel to the river. Under normal conditions, with normal rainfall, the river is a focal point for ground water discharge. In this situation, rain recharges the shallow aquifer so that the water level elevations in the aquifer are higher than the water level elevations of the river. Consequently, ground water moves into the river, making it a "gaining stream." In periods of drought when the rainfall is deficient, the recharge is deficient and the water level in the aquifer can decline to points that are lower than the elevation of the water level in the river. In that instance, water can leave the river. If water migrates from the river into the ground water, the river is called a "losing stream." When water leaves the river and migrates outward, it will be influenced by the dominant regional flow that is parallel to the river and downstream. River water can migrate outward a limited distance before it becomes influenced by the regional flow and migrates back to the river. Migration back to the river occurs when water level elevations in the aquifer are higher than they are in the river and the river becomes a "gaining stream." The purpose of the 1995 Report was to define a potential corridor of river influence, using the worst case scenarios in all hydrogeologic conditions. It relied primarily on potentiometric (aquifer water level) studies, as opposed to a chemical analysis of ground water quality. DEP's report relied on differences in water elevations in the river and ground waters. The 1995 Report also relied upon United States Geological Survey (U.S.G.S.)/ U.S. Department of Housing and Urban Development flood prone area maps to delineate the extent of river water flooding on surrounding land surfaces. The area of the study was from east of the mill to County Road 356 in the west, including U.S. 98 to the north and Courtney Grade Road to the south. DEP has not discriminated against certain residents of Taylor County by not extending the geographic boundaries of the study area. The study did not end at Golf Course Road. In order to prepare the MODFLOW model which ultimately led to the MODPATH model, DEP installed additional monitor wells to the west of Golf Course Road. These additional wells provided DEP with ample water level data to perform the models. The monitor wells were more concentrated near the discharge point of Buckeye's mill. However, there were greater fluctuations in water levels in that area. DEP's decision to limit the study to the area depicted in the report was based on technical and policy considerations. Water levels in the areas to the west of the study do not fluctuate very much. Additionally, the influence of the tide from the Gulf of Mexico decreases the impact of river water on ground water south and southwest of the study area. The population in these areas was relatively low. Because the population of Taylor County is dispersed, it is not cost-effective or feasible for DEP to consider the extension of water lines beyond the boundaries of the study area. Mr. Cutter lacks standing to claim that the study did not extend far enough to the west. The western portion of the river beyond the limit of the study could not adversely impact ground water supplying the well on Mr. Cutter's property. DEP collected sufficient data and made an appropriate analysis of the total area depicted in the 1995 Report. The 1995 Report did not use water quality data as a primary or sole indicator of effluent extent. However, it did consider some supplemental chemical concentrations to evaluate water quality. These concentrations were always at or below normal background levels and therefore were consistent with the conclusions in the report. DEP used three techniques to determine the furthest lateral distance that river water could potentially migrate into ground water in the adjoining aquifers. Two techniques (cross-section model and steady-state ground water model) were used to determine the extent of migration during the worst case dry season scenario. The third technique (flood season map) was used to determine the extent of influence on ground water during the worst case river flooding scenario. The cross-section technique used to model the worst case dry season scenario relied upon historical data from the driest period on record (using data from Suwannee River Water Management District, U.S.G.S. and Buckeye monitoring wells), which was April 2, 1989. Using this data, DEP prepared a potentiometric map. A computer program interprets data from a contour map and, given horizontal and vertical axes at given points, produces cross-sections. The cross-sections are made at various angles of the river to determine "stagnation" points," i.e. points where the ground water gradient between the aquifer and the river is zero. DEP staff connected the stagnation points revealed by the cross- section method and transposed them onto a potentiometric map for May 25, 1994 (a dry period where sufficient data was available). This process allowed DEP to define the total area where the river would impact the aquifer during the dry season. The results of the cross-section technique showed that the migration of river water into ground water occurs during dry seasons almost entirely on the north side of the river. It confirmed the analyses of the MODFLOW and MODPATH models discussed below. DEP used a steady-state simulation flow mode as one of the three study techniques in the 1995 Report; it was based on the worst case dry season scenario of April 25, 1989. This model allowed computer tracking of simulated particles (representing river water) in a portion of the 17-mile (north-south) by 20-mile (east-west) grid used in the model. The computer model shows how simulated particles during the worst case dry season conditions: (1) enter the aquifer when the river is higher than the ground water; (2) move away from the river when the river elevation is higher than water level elevations in the adjacent aquifer; (3) reach a "stagnation point" where the elevation of river water that has entered the aquifer is equal to that of the unaffected portion of the aquifer; and (4) subsequently flow parallel with the river and eventually back to the river. The objective of the steady-state ground water flow model (MODFLOW) is to incorporate the best available data so that calibration of model parameters can be accomplished by using measured ground water heads for a specific "snap shot" in time. Once an acceptable calibration of the model is obtained by minimizing the residuals of modeled versus measured heads, then the water budget is decreased by a recharge package so that the model heads closely reflect an observed "worst case" dry season head distribution. After an acceptable dry season head match is obtained, a particle tracking program (MODPATH) is used to delineate effluent migration from the river-to-aquifer and from the aquifer-to- river. U.S.G.S. developed MODFLOW which is a reliable numerical ground water model. DEP used MODFLOW to simulate water levels and to depict hydraulic conditions in the subject area. In the instant case, DEP first examined available data such as water levels, rainfall, and hydraulic conductivity, to develop a conceptual model. The conceptual model determines the size of the model and presents a hypothesis regarding how the area of interest will operate. The development of the conceptual model includes the determination of boundary conditions. Boundary conditions are mathematical instructions which the modeler uses to simplify the model. They reflect the conditions at the geographical limits of the model. DEP used "no-flow" boundary conditions for the north, east and south boundaries. These conditions represent areas where water outside the boundaries flows away from the model. DEP used a "constant head" boundary condition for the western boundary of the model, i.e. a determination that the ground water level does not fluctuate substantially in that area. In developing the conceptual model, DEP also considered relative recharge throughout the area, relative hydraulic conductivity, and drainage conditions. "Calibration" refers to a process where a modeler adjusts factors within the model to minimize the difference between measured water levels and simulated water levels. DEP initially calibrated the MODFLOW model to simulate hydrologic conditions on May 11, 1994. Next, DEP calibrated the MODFLOW model to simulate hydrologic conditions on April 25, 1989 which represents a worst case scenario for a dry season in the study area. U.S.G.S. also developed MODPATH. It is a computer model which uses MODFLOW head (water level) data to simulate the direction of ground water flow. The software simulates where a particle of water would flow based on head data provided by the MODFLOW model. In this case, the MODPATH model yielded a conservative projection of areas where ground water could be impacted by water from the Fenholloway River in a worst case dry season scenario. DEP used a flood season map to delineate the worst case flood season scenario. Historical data indicates that the worst surface river flood on record was Hurricane Dora on September 10 - 13, 1964. DEP used a U.S.G.S. flood prone area map to show the extent of river flooding during Hurricane Dora. DEP conservatively assumed that river flood waters could affect the ground water in the area flooded by the river during this storm. The flood prone map shows areas of inundation flooding from the river and areas of drainage flooding experienced during Hurricane Dora in 1964. The term inundation flooding refers to water that has been in the river which is transported to a certain distance as it floods out of the river banks. The term drainage flooding refers to rainfall which accumulates in a depressed area. Drainage flooding is influenced by the intensity and duration of rainfall and the slope of the depressed area. Since 1955 the U.S.G.S has compiled river water level data in the subject area. Hurricane Dora represents a conservative worst case scenario for a wet season or flood because the water levels resulting from that storm were higher than the levels at any other time in recorded history. Areas outside of the delineated corridor may be flooded from time to time. However, they represent isolated wetlands which are not connected to the Fenholloway River. Therefore, there is no need to include them in the corridor of potentially impacted areas. The corridor in DEP's 1995 Report includes: (a) the entire river flood plain inundated by Hurricane Dora during the worst case flood scenario; (b) the potential extent of river influence during the worst case dry season scenario; and (c) all areas where simulated particles in the steady-state simulation flow computer model computer model migrated from river to ground water, including areas of very low potential. DEP based the computer modeling in the 1995 Report on reliable data from historical records and from the network of monitoring wells in the study area. DEP had sufficient data from the monitoring wells to develop valid ground water elevation maps in the study area for the computer modeling. U.S.G.S. topographic maps are reliable as to elevation numbers. They are commonly relied upon by geologist to determine the direction of surface water flow. U.S.G.S. flood prone area maps depict areas that are impacted by river inundation and are commonly relied upon by geologists. DEP geologists reasonably relied upon the U.S.G.S. flood prone area map of the river. U.S.G.S. river elevation recording station data (from bridges at U.S. 27, U.S. 19 and Route 356 near Hampton Springs) are commonly relied upon by geologist. DEP used proper methods to determine how river water moves during flood conditions. DEP properly excluded from consideration areas that were flooded during Hurricane Dora by local rainfall as opposed to river water. The corridor identified by the 1995 Report correctly reflects a conservative depiction of an area where the river water could influence the ground water in the worst case dry season scenarios, both actual and simulated; it also conservatively depicts the area where the river water could influence surface and ground waters in the worst case flood scenario. The 1995 Report appropriately concluded that there was no potential for areas beyond the defined corridor to be impacted by the industrial waste discharged into the river. Mr. Cutter's property is located within the study area of the 1995 Report but outside the corridor delineated in the report. His property is about one mile from the edge of the 1964 worst case scenario river flood plain. It is situated close to monitoring well number PM02. State agencies have tested Mr. Cutter's well water on several occasions. They have never found any violations of drinking water standards or any exceedances of health advisory levels. Based on the steady-state simulated computer model, river water will not impact Mr. Cutter's property during a dry season worst case scenario. During dry seasons, it is not possible for river water to migrate 8000 feet to Mr. Cutter's land because ground water in the shallow aquifer on the south side of the river is moving from higher to lower elevations toward the river. Consequently, there is no potential for Mr. Cutter's land to be affected by river water during a dry season. River water did not effect Mr. Cutter's property during the 1964 worst case flood scenario, as revealed by the recorded extent of river flooding and the elevation of his land. During Hurricane Dora, the flood elevation of the river was 25 feet above sea level at the nearest point to Mr. Cutter's land which is at least 27-28 feet above sea level. The differences in these elevations makes it impossible for river water to Mr. Cutter's land during the worst case flood scenario. During the 1984 storm, Mr. Cutter's land was about 7-8 feet higher than the recorded maximum river flood waters. The greater weight of the evidence indicates that any flooding on Mr. Cutter's land at that time was the result of drainage or rainfall flooding and not the result of inundation from the Fenholloway River. In the 1994 storm, Mr. Cutter drove from Waldo Springs near the river to his home through less than 18 inches of water. The water was deep enough to reach the floorboard of his vehicle. Mr. Cutter acknowledges that if the topographic maps relied upon by DEP are correct, he would have driven through five feet of water in order for flood water from the river to have reached his land. He stated that the water at his house or in the area between his house and the river was not five feet deep. There are isolated sloughs in the area of Mr. Cutter's land. However, there are no sloughs that continuously extend from the river to Mr. Cutter's property. Therefore, flood water from the river cannot reach Mr. Cutter's land by running through sloughs. Natural conditions, including the decay of organic matter, can cause surface and ground water discoloration. If a well is located near a slough or wetlands, percolation from the slough or wetlands can result in brown well water. There is no persuasive evidence that the discoloration of Mr. Cutter's well water is the result of contaminated river water. The high ground water elevations between Waldo Springs and Mr. Cutter's property act as a barrier to any ground water movement to the southwest in the direction of Mr. Cutter's property. One resident witness testified that his well was contaminated by ethyl dibromide (EDB), a pesticide with no link to river water or kraft pulp mill effluent. EDB is a nematicide commonly used in crops such as citrus and soybeans. It is also used in turf management for golf courses and landscaping projects. Buckeye's mill in Foley, Florida produces fluff wood pulp that is used in products like diapers. It also produces special dissolving wood pulps that are used by the filter industry (including air and oil filters) and the filament industry (including rayon clothing and specialty rayon products used in tire cords). In the kraft pulp mill process, the mill withdraws about 47-50 million gallons per day (MGD) of ground water from the wellfield and discharges about 50 MGD of treated effluent from an aeration pond into the river. The mill has a sewer system that captures the effluent from the manufacturing process. It also has about 150 acres of aerated treatment lagoons. During the time that DEP was studying the issue that resulted in the 1995 Report, Buckeye spent about $2 million providing free bottled water to Taylor County residents and paying the City of Perry to run water lines to homes of people who complained about their well water. Buckeye has a monitoring network of wells around the mill. It maintains liners under its lagoons. Buckeye's interest in this proceeding is: (a) to ensure that it can continue to discharge under its permits from DEP; and (b) to support the 1995 Report of DEP even though Buckeye takes the position that the corridor in that report should be narrower. Buckeye has provided a sufficient basis to support its status as intervenor.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is recommended that the Department of Environmental Protection enter a Final Order dismissing the Amended Petition. DONE AND ENTERED this 5th day of December, 1996, in Tallahassee, Florida. SUZANNE F. HOOD Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (904) 488-9675 SUNCOM 278-9675 Fax Filing (904) 921-6847 Filed with the Clerk of the Division of Administrative Hearings this 5th day of December, 1996. COPIES FURNISHED: Jeffrey Brown, Esquire Department of Environmental Protection 3900 Commonwealth Boulevard Tallahassee, FL 32399-3000 Joseph L. Cutter Route 1 Box 1130 Perry, FL 32347 Terry Cole, Esquire Patricia A. Renovitch, Esquire Oertel, Hoffman, et al. Post Office Box 6507 Tallahassee, FL 32314-6507 Virginia B. Wetherell, Secretary Department of Environmental Protection Doulgas Building 3900 Commonwealth Boulevard Tallahassee, FL 32399-3000 Perry Odom, Esquire Department of Environmental Protection Douglas Building 3900 Commonwealth Boulevard Tallahassee, FL 32399-3000

Florida Laws (3) 120.57376.30376.307
# 3
FRIENDS OF FORT GEORGE, INC., ET AL. vs. FAIRFIELD COMMUNITIES, INC., AND ST. JOHNS RIVER WATER MANAGEMENT DISTRICT, 85-003537 (1985)
Division of Administrative Hearings, Florida Number: 85-003537 Latest Update: Oct. 06, 1986

Findings Of Fact The following findings of fact are based on the evidence presented and relate both to Fairfield's MSSW and CUP applications: Fort George Island is an approximately 900 acre island located northeast of the City of Jacksonville in Duval County, Florida. It is bounded to the north and east by the Fort George River, to the west by an extensive salt marsh, and to the south by Batten Island and the St. Johns River. The island is separated from the Atlantic Ocean by Little Talbot Island. There are presently approximately 16 homes on Fort George Island, an existing 18-hole golf course with clubhouse, the Kingsley Plantation State Park in the north and the Rollins site surface waters on the northern two-thirds of the island are Class II waters, while the waters to the south are Class III. The following factors concerning Fort George Island are of ecological significance: Existence of a large area of coastal hammock; Value of the coastal hammock for scientific research and as a food source for migrating song birds; Fact that the Island is located in an aquatic preserve; Salt marshes on the western side of the Island which are a food source for wading birds; State lands on the Island which are utilized as wildlife and plant preserve, as well as for historical purposes; Estuaries on the western side of the Island which function as primary nursery areas for commercial and sport fishery species, as well as for shrimp, oysters and crabs; Existence of commercial oyster leases on the western side of the Island; and Public use of the Island's shoreline for oystering and clamming. Fairfield owns approximately 757.5 acres on Fort George Island which it proposes to develop into a "planned unit development" of 1,343 dwelling units, a 27 hole golf course, and approximately 80,000 square feet of commercial development. The approximate density of the development will be 1.8 units per acre. Approximately 80% of Fairfield's property is currently forested, and after development approximately 35% will remain undisturbed habitat. The City of Jacksonville approved the "planned unit development" on January 10, 1983. Because the Department of Community Affairs had determined on August 11, 1982, that this development was a "development of regional impact," Fairfield submitted an Application for Development Approval to the Department, the Northeast Florida Regional Planning Council, and the City of Jacksonville, which subsequently approved the proposed development in an Amended Development Order. On January 25, 1984, the Florida Land and Water Adjudicatory Commission approved the Amended Development Order (ADO). In addition to approving the development of maximum of 1,343 units, 80,000 square feet of commercial area, two 18 hole golf courses (one already in existence), and a marina with not more than 50 slips, the ADO required Fairfield to conduct a 12 month study and prepare a Master Resource Management Plan prior to development. Specifically, Fairfield was required to demonstrate that there is a sufficient supply of potable ground water to serve the entire development without adverse effects on the Floridan Aquifer and other existing legal users; establish the ambient conditions of the water surrounding Fort George Island and the ambient climatic conditions of the Island and Rollins Sanctuary through a 12 month monitoring program; identify all endangered, threatened, unique, rare, notable and "species of special concern" and determine their habitat requirements; address surface water quality and quantity, terrestrial and wetlands biology, and ground water quality and quantity for the entire project; and submit a revised Master Land Use Plan, consistent with the Master Resource Management Plan, to the City of Jacksonville's Planning Commission for its approval. Further, the ADO required Fairfield to demonstrate that it could retain the 100 year, 24-hour storm (calculated to be 11.04 inches of rain in 24 hours), and prevent degradation of the established ambient conditions of the waters surrounding Fort George. Finally, the ADO required Fairfield to submit its Master Resource Management Plan to the City, Regional Planning Council, Department of Community Affairs, Department of Environmental Regulation, Department of Natural Resources, Game and Fresh Water Fish Commission, and the District, for their, review, comment, and in some cases approval. After review and comment by these agencies, the City of Jacksonville Planning Commission approved the Master Resource Management Plan on January 29, 1986, from which no appeal was taken. Case Number 85-3537 (MSSW) The following findings of fact are based upon the stipulation of the parties and relate to Fairfield's MSSW application: The District, a special taxing district and agency, created by Chapter 373, is charged with the statutory responsibility of the administration and enforcement of permitting programs pursuant to Sections 373.413 and 373.416, Florida Statutes, and Chapter 40C-4, Florida Administrative Code. The District is the agency involved in this proceeding. The District has assigned Fairfield's conceptual MSSW permit application the permit number 4-031-002AC. Fairfield is a Delaware corporation authorized to do business in Florida. Its address is 3520 Piedmont Road, N.E., Atlanta, Georgia 30305. The proposed MSSW will serve Fairfield's development on Fort George Island, located in Duval County at Section 34, Township 15, Range 29 East. Petitioner Friends of Fort George, Inc., is a not-for- profit Florida Corporation, whose principal office for the transaction of business is located at 11251 Fort George Road, East, Jacksonville, Florida 32226. Petitioner in Intervention Southeastern Fisheries Association is a Florida not-for profit corporation whose address is 312 East Georgia Street, Tallahassee, Florida 32301. Petitioner in Intervention Logan Diving, Inc., is a Florida corporation whose address is 5731 St. Augustine Road, Jacksonville, Florida 32207. Petitioners in Intervention Florida Audubon Society and Duval Audubon Society are not-for-profit Florida corporations whose principal offices for the transaction of business are located at 1101 Audubon Way, Maitland, Florida 32751 and 2°65 Forest Circle, Jacksonville, Florida 32217. Individual Petitioners William E. Arnold, Jr., William M. Bliss, Doris B. Chappelle, Leo E. Chappelle, Mr. & Mrs. Rhodes Gay, Dr. & Mrs. William J. Knauer, Jr., Camillus S. Lengle, Jr., and Mr. & Mrs. J. W. Lucas are natural persons and citizens of the State of Florida who are owners of real property on Fort George Island. On August 27, 1985, the District gave Notice of its intent to deny MSSW application No. 4-031-002AC. On September 23, 1985, the District determined to recommend issuance of MSSW Application No. 4-031-002AC, as then modified, with conditions. Fairfield had originally contemplated in both its original Master Resource Management Plan (MRMP) and the referenced MSSW application that its proposed development for Fort George Island would have a 36-hole golf course facility. Fairfield subsequently reduced its proposed golf course facility from 36 holes to 27 holes. The City of Jacksonville's Planning Commission approved the MRMP with conditions, including the condition that the golf course be reduced, on January 29, 1986. Because of the reduction in size of Fairfield's proposed golf course facility from 36 to 27 holes Fairfield's total requirements for water for irrigation were reduced. By pleading dated April 7, 1986, Fairfield moved to amend its conceptual MSSW approval application. On April 10, 1986, the motion was granted pursuant to Stipulation of all the parties. The motion was granted by written Order of the Hearing Officer on April 17, 1986. The Petitioners' original Petition for Formal Administrative Proceedings was timely filed within fourteen (14) days of receipt of the District's proposed agency action of September 23, 1985. A number of the members of Friends of Fort George, Inc. own real property on Fort George Island, reside on the Island, and engage in recreational activities on the Island and its adjacent waters and environs. The subject matter of the proposed agency action challenged by Petitioners and Intervenors concerns the natural resources on Fort George Island. Protection of this resource falls within-the general purpose and objectives of Friends of Fort George, Inc., namely, the preservation, conservation, and restoration of Fort George Island and surrounding environs. The relief requested in this proceeding by Petitioners and Intervenors is denial of the conceptual management and storage of surface waters permit. The water storage ponds proposed in the project will intersect with the surficial aquifer on Fort George Island. Petitioners, Friends of Fort George, Inc. and Intervenors, Florida Audubon Society and Duval Audubon Society have standing pursuant to Section 403.412(5), Florida Statutes, to bring this action. During the hearing, the parties stipulated that Logan Diving, Inc., has standing in this proceeding since it is the holder of oyster and clam harvesting leases from the Department of Natural Resources for beds located in Class II waters adjacent to Fort George Island and it derives substantial income from harvesting of these beds. Closure or reclassification of these waters to limit or preclude shellfish harvesting would impair the value of Logan Diving's shellfish leases, or render them worthless. The following findings of fact relating to Fairfield's MSSW application are based upon the evidence presented, including the demeanor and credibility of witnesses who testified: Southeastern Fisheries Association, Inc., established at the hearing that it is a not-for-profit incorporated association of seafood producers, packers, canners, processors, wholesalers, retailers and others substantially involved in the seafood and fishing industries. Based upon the testimony of Robert P. Jones, 200 to 250 of the Association's 350 members shrimp in waters in the vicinity of Fort George Island, 26 of its members are residents of Duval or Massau Counties and 6 are residents of Fort George Island. Thus, a significant number of the Association's members harvest and transport seafood from the waters in the area of Fort George Island, and others also pack and process seafood from these waters. They would be substantially affected if the quality of these waters was degraded, or if the waters were closed to shellfish harvesting as a result of destruction to the nursery areas or reduction in quality or quantity of fish or shellfish which are harvested in these waters, or which utilize these waters as nursery areas. The objectives and purposes of the Association include promoting the general welfare of the fisheries industry and enhancing its economic progress. In contrast, the Florida Wildlife Federation was allowed to participate in this hearing but failed to offer any evidence in support of its verified Petition at the hearing. Fairfield's MSSW application is for conceptual approval, pursuant to District rule, and if conceptual approval is obtained Fairfield will then have to re-apply for construction, operation and maintenance MSSW permits. Although this is an application for conceptual approval, the documentation and information submitted by Fairfield to the District in support of its application is more thorough and complete than almost any other application for conceptual approval received by the District, and is actually superior to the documentation and information received from most applicants for construction permits. According to District staff, more sampling and testing results are presented in this conceptual application than they ever get. After initial review of its MSSW application by District staff following submission on January 5, 1984, Fairfield received a request for additional information. In responding to this request, Fairfield developed a plan of study which was approved by District staff and which focused on the water supply potential of the surficial aquifer, and the ability of a stormwater management and control system to retain stormwater on-site in compliance with the ADO and the District's permitting rules. Fairfield's study was comprehensive, and was completed in a very competent, professional manner. It included the collection of data through soil borings, installation of monitoring wells, conducting permeability and percolation tests, collecting rainfall data' and sampling of water quality. A water budget model was developed, and approved by the District, to compare existing conditions to proposed developed conditions and to specifically determine the water supply potential of the surficial aquifer, assess the availability of water for irrigation after development, assess changes in recharge to the surficial aquifer after development, and generally to determine how the development would impact the existing hyrologic cycle on the Island. Considering all of the evidence presented, it is specifically found that Fairfield utilized correct and appropriate input parameters in its water budget model to determine that currently 17.5 inches per year of freshwater is flowing from the Island to the surrounding estuary under average annual rainfall conditions, and after development approximately 16 inches per year of freshwater will flow from the Island to the estuary--less than a 10% change in ground- water flowing to the estuary. Therefore, the subject development will not adversely impact the overall water balance on Fort George Island. Utilizing the water budget model, under developed conditions it is shown that in a one-in-ten dry year there will be slightly more fresh water flow from the Island, and in a one-in-ten wet year there will be slightly less freshwater flow to the estuary than currently exists. This further demonstrates that overall water balance will be maintained. Total recharge will be greater post-development in average, wet and dry years. Fairfield's stormwater management system consists of a series of golf course fairway retention areas, and also includes four ponds in the north of the island which are interconnected, and one in the south, into which storm water will flow. The retention ponds comprise an area of approximately 32 acres. The fairway retention areas maximize percolation or infiltration, and water that remains to enter these ponds will be used for golf course irrigation through pumping. Generally, 95% of golf course need will be met by such pumping from the ponds, with the remaining need being met by withdrawals from the Floridan Aquifer. Under dry conditions, the need to withdraw from the Floridan Aquifer will be greater and could approach 49% of golf course irrigation requirements. The fairway retention areas and the five storage ponds comprise an on-line treatment system which will retain the first one-half inch of runoff, as well as additional runoff. Fairfield's on-line system is equivalent to an off-line system required by Rule Chapter 40C-42, Florida Administrative Code, for discharges to Outstanding Florida Waters (OFW) such as those that surround Fort George Island. Thus, the "first flush" containing a higher level of pollutants will be received by the retention areas and ponds in this on-line system and will primarily be removed through percolation in the retention areas. Pollutants should not be discharged into the estuaries, even in emergencies or when conditions exceed design capacity. Pond retention time will be approximately two months and surficial runoff will account for 5%-10% of the water in the ponds, with the rest coming from ground-water in-flow. Fairfield's storm water management system is operational and maintainable. It will be able to retain the 100 year, 24 hour storm event and otherwise meet the District's requirement that post-development discharge not exceed pre- development peak discharge. Surface discharges from the system will occur infrequently, perhaps every 80 years. Currently there is about one-half inch of direct surface runoff annually. Since surface runoff is a primary source of pollutant transport, the elimination of this runoff will have a beneficial effect on the estuary. The system will not degrade the quality of surrounding estuaries or the OFW since discharges to the estuaries will not occur from the ponds except under extreme conditions, and also because of the high level of treatment which will be provided by the ponds. Reasonable assurance has been given that water in the ponds will meet Class III standards, as well as the "free from" standards in Chapter 17-3, Florida Administrative Code, in the immediate future. The proposed ponds will be an improvement over existing borrow pits and bogs on the Island which have drastic side slopes and very long residence times, such as the Osmunda Bog, and will be a better habitat for fish and drinking water source for wildlife than the existing pits. It will also result in an improvement to Blue Pond, with better vegetation and habitat than currently exists, and with wildlife access being insured through preservation areas. A recognized and accepted ground-water flow model was used by Fairfield, and was approved by the District for use in this situation. The surficial aquifer system was correctly modeled as a single layer unit. Clay which underlies the Island is not a significant feature since, at minus 18 feet mean sea level, it is well into the saturated zone of the surficial aquifer and well below the surface water table, and since water levels actually observed in test wells could not be predicted when the top of the clay layer was used in the model as the bottom of the surficial aquifer. When the depth of the surficial aquifer was set at the top of the Hawthorne layer, the model accurately predicted water levels, as correlated against actual measured levels. Surface waters around Fort George Island have been classified as OFW since 1979. No significant development has taken place on the Island since 1979, and therefore ambient water conditions in 1978 and 1979 could reasonably be expected to have been what they are today. The stormwater management system will create a ground- water divide around the retention ponds. Any water falling inside the divide will flow toward the ponds; water falling outside the divide will percolate to the water table and then flow to the estuary. While under existing conditions nutrient pollutants that reach the water table simply flow to the estuary, after development half of the water falling on the golf course will be inside the divide and will therefore flow to the ponds. Therefore, after development there will be less nutrients and other pollutants reaching the estuary than under current conditions. Fairfield's stormwater management system is designed in a manner to ensure that the first 1 1/2 inches of rainfall will be retained or detained from an OFW. In fact, it appears that the system will actually retain runoff from the first 11 inches of rainfall. After analyzing data for metals, nutrients and coliform bacteria, it is found that the ambient water quality of the estuary will not be degraded by Fairfield's proposed development, and in fact there will actually be a net improvement in the quality of water reaching it from the Island. As a result of pollutant removal through filtration, sedimentation, absorption, precipitation, biological activity and dilution, it can reasonably be expected that ground-water seepage from the fairways and ponds to the OFW will meet primary and secondary drinking water standards, as well as Class II standards, and will not degrade the ambient water quality of the estuary. Infrequent surface discharges to the estuary also will not violate Class III standards. Total loading of nutrients to the OFW under developed conditions will be less than under existing conditions, and coliforms reaching the OFW via ground- water will be eliminated. Freshwater surface flow from the developed areas of the Island to the sloughs on the western side of the Island will be virtually eliminated. This elimination will not be detrimental to either salinities or particulate flows to these sloughs. Since there is an average of 50 inches of rainfall on the estuary per year, as opposed to less than 1/2 inch of freshwater runoff, and since the tidal flow is the forcing function in the estuary and not fresh surface water runoff, the salinity levels in the estuary will be largely unchanged. Particulate material will continue to be readily available to the sloughs from the marshlands, and from perimeter buffers which will be preserved by Fairfield around the Island. An undeveloped, preserved buffer zone is retained between the project and the surrounding waters as well as Rollins Sanctuary. This buffer zone is not intruded upon by the retention ponds contouring or berms associated with the development. In addition to the buffer zone, an undisturbed area will also be retained in the development, and the total acreage of the buffer and undisturbed areas will be 226 acres. The buffer and undisturbed areas will be more than adequate to protect the rare, notable, endangered or threatened plant and wildlife species identified on the Island when these areas are considered in relation to Rollins Sanctuary and other properties on the Island in state ownership. There will also be no construction activity in the saltmarsh off the western side of the Island. Extensive surveys conducted by Fairfield identified 26 species of plants and 16 species of wildlife on the Island. The habitat for all but one wildlife species, the gopher tortoise, is the saltmarsh to the west of the Island which will be undisturbed. Two national champion trees were identified and will be preserved. There will be no adverse impacts on notable plants in Rollins Sanctuary or other preservation areas since a 30 meter buffer is provided on the northern boundary of the Sanctuary and no development at all will take place to the west! of the Sanctuary. Woodstorks, the only endangered species identified in the survey, have been observed resting in trees at the western side of the Island in the saltmarsh. They are not nesting on Fort George Island, but return to the D-Dot Ranch south of Jacksonville every night to nest. The western area of the Island will remain undisturbed habitat in a buffer area from 250 to 450 feet wide, as will the southwestern portion of the Island. Woodstorks appear to be using the tidal sloughs for feeding, and development should have no adverse impact on these sloughs. A heron and egret rookery exists on the northern side of the Island, primarily off of Fairfield's property. Approximately 20 nesting pairs of great blue herons and great egrets use this rookery, which appears to be a satellite of regional rookeries. These are not notable species, but Fairfield will provide up to a 600 foot buffer. The gopher tortoise is the only notable terrestrial species on the Island and is a "species of special concern." The undisturbed natural habitat of a major concentration of gopher tortoise on Fairfield's property will be preserved. While the habitat for non-notable species such as bobcat, grey fox, owls and songbirds will be reduced, they will not be extirpated. Significant archaeological sites on Fairfield's property will be preserved and protected, including Mission San Juan del Puerto, the Grave Robbers Mound, the Sugar Mill site, and the Crypt site. If additional sites are found during development, a mitigation plan will be developed for approval by the State Division of Archives, with an evaluation by a professional archaeologist. Indian middens, or trash piles, have been deemed insignificant and will not be preserved. Surface water table draw-downs which will result from Fairfield's system due to pumping from the surficial aquifer will have no adverse impact on either wildlife or plant life on the Island. Such draw-downs will be limited and localized primarily around the ponds. In fact, the water table on the western side of the Island may increase slightly. The draw-down within Rollins Sanctuary or at Rollins Creek will be less than one foot and therefore should not have any adverse impact. Rollins Creek is approximately five feet wide. A fifty foot buffer around the Creek is provided. Only EPA approved chemicals will be used for weed control associated with the ponds, and aeration will be used to assist the production of oxygen in the ponds. Nutrients, nitrates and phosphorous, will be continually analyzed so that immediate corrective action in fertilizer application can be taken if necessary. Fairfield will utilize an integrated pest management program under a plan which must be approved by the District and which will actually reduce the need for chemical pesticides. Only EPA approved pesticides will be used. As for fertilizers, Fairfield will apply fertilizers more frequently, but in lesser amounts, than on the existing golf course. This ensures a better uptake of nitrates and phosphates, thereby reducing unabsorbed nutrients that might flow to the ponds or estuary. A full-time resource manager will be employed to ensure proper operation of the entire stormwater management system. Once the system is in place, Fairfield will conduct a long-term monitoring program of the water quality in the MWBZ, surficial aquifer, the ponds, and any surface water discharges to ensure permit compliance and also to provide a data base for further activities. Such a data base will represent a positive public benefit. Additional beneficial results of the project, after construction permits are obtained, include stabilization of the northern shoreline of the Island which has had notable marshland erosion, and re-aligning a road on the western side of in the Island to eliminate a point where it crosses Big Slough and thereby open the Slough up to additional sheetflow. Middle and Northern Sloughs will be preserved. Mitigation will be required for any disturbance of a small wetland area on the west side of the Island which is approximately 3/4 of an acre in size. Eliminating marsh erosion, and removing vehicle traffic and flow restrictions in the area of Big Slough are clearly in the public interest, as is the preservation of other wetland areas. The District staff originally recommended that Fairfield's MSSW application be denied but after modifications to the application were made, the District staff has recommended approval with conditions to ensure generally that Fairfield: Monitors water quality in the five ponds in accordance with a plan approved by the District, as well as the quantity and quality of all surface water discharges. Monitors water levels in surficial aquifer wells and reports such data to the District Recalibrates its surficial aquifer and water budget models every five years using the actual monitoring data it has collected and reported to the District in the preceding years, and if such recalibration indicates more than a 50% increase in the volume or frequency of surface water discharges, the stormwater management system must be altered, with District approval, to prevent such increases Submits a pesticide management plan for District approval. Submits a mitigation plan for District approval, at the time of application for construction permits, that will mitigate for any loss to off-site aquatic and wetland dependent species associated with project development in the area of the tidal sloughs on the west coast of the Island. A total of fourteen specific conditions which the District staff recommends be placed on the conceptual approval of the MSSW permit are contained in the Management and Storage of Surface Waters Summary Sheet, dated May 1986, which is hereby incorporated by reference and found to be reasonable in its entirety. Case Number 85-3596 (CUP) The following findings of fact are based upon the stipulation of the parties and relate to Fairfield's CUP application: The District, a special taxing district and agency, created by Chapter 373, is charged with the statutory responsibility for the administration and enforcement of permitting programs pursuant to Sections 373.219 and 373.223, Florida Statutes, and Chapter 40C-2, Florida Administrative Code. The District is the agency involved in this proceeding. The District has assigned Fairfield's CUP application the permit number 2-031-0021AN. Findings of Fact 10, 11, 14 and 15 which are set forth above are hereby readopted and incorporated herein. On December 1, 1983, Fairfield, through its then-agent George Register, III, submitted to the District the subject CUP application. The application was assigned No. 2-031-0021AN. On August 23, 1985, the District gave notice of its intent to deny CUP application No. 2-031-0021AN. On September 23, 1985, the District determined to recommend issuance of CUP application No. 2-031-0021AN, as then modified, with conditions. Fairfield had originally contemplated in both its original Master Resource Management Plan (MRMP) and the referenced CUP application that its proposed development for Fort George Island would have a 36-hole golf course facility. Fairfield subsequently reduced its proposed golf course facility from 36 holes to 27 holes. The City of Jacksonville's Planning Commission approved the MRMP with conditions, including the condition that the golf course be reduced, on January 29, 1986. Because of the reduction in size of Fairfield's proposed golf course facility form 36 to 27 holes, Fairfield's total requirements for irrigation water were reduced. By pleading dated February 28, 1986, Fairfield moved to amend its application. The motion was granted by the Hearing Officer on March 11, 1986. In light of this amended application, the District issued a revised "Consumptive Uses of Water Summary Sheet," dated March-24, 1986, to reflect this amended request and to recommend issuance of the CUP. The Petitioners' original Petition For Formal Administrative Proceedings was timely filed within fourteen (14) days of receipt of the District's proposed agency action of September 23, 1985. A number of the members of Friends of Fort George, Inc. own real property on Fort George Island, reside on the Island, and possess drinking water wells on the Island and engage in recreational activities on the Island and its adjacent waters and environs. The subject matter of the proposed agency action challenged by Petitioners and Intervenors concerns the water resources on Fort George Island, including its drinking water supply. Protection of this resource falls within the general purpose and objectives of Friends of Fort George, Inc., namely, the preservation, conservation and restoration of Fort George Island and surrounding environs. The relief requested in this proceeding by Petitioner and Intervenor is denial of the proposed consumptive use permit. The water storage ponds proposed in the project will intersect with the surficial aquifer on Fort George Island. The residential value of Petitioners' property on Fort George Island would decrease if the property had absolutely no access to potable water. Petitioners and Intervenors have standing pursuant to Section 403.412(5), Florida Statutes, to bring this action. The following findings of fact relating to Fairfield's CUP application are based upon the evidence presented, including the demeanor and credibility of witnesses who testified: Following review of Fairfield's CUP application, District staff requested additional information on January 11, 1984; Fairfield developed a plan of study to supply the requested additional information, and the plan of study was approved by District staff. The plan of study sought to find out the nature and characteristics of an anomaly in the northeastern part of the Island, and also to determine if Fairfield's proposed usage would have any affect on existing legal users. As part of the study, Fairfield conducted a well inventory and survey, water quality survey, water level measurements, and vertical investigations. The study also examined three alternatives to obtaining water from the various water bearing zones under Fort George Island, including drilling a test well (TP-2) into the Middle Water Bearing Zone after obtaining appropriate permits. The Floridan Aquifer below Fort George Island consists of three zones--The Upper Water Bearing Zone (UWBZ), Middle Water Bearing Zone (MWBZ) and Lower Water Bearing Zone (LWBZ). The bottom of the Hawthorne formation separating the surficial and Floridan aquifers occurs at about 400 feet below mean sea level. The UWBZ exists from of depth of approximately 520 feet to 1000 feet. Below the UWBZ is an upper semiconfining zone from a depth of approximately 1000 to 1200 feet. The MWBZ is generally 100 feet thick and exists from a depth of approximately 1200 to 1700 feet, below which is a lower semiconfining zone from a depth of approximately 1700 to 2000 feet. The MWBZ is a single water producing zone with interconnected channels or flow zones. The LWBZ exists from a depth of approximately 2000 to 2100 feet, below which is a lower confining unit. The confining zones are saturated with water but are less permeable than any of the water bearing zones. Regional ground-water flow in the Floridan Aquifer at Fort George Island is from the west to the east, northeast and southeast. Water quality to a depth of approximately 1900 feet is generally good, with chloride concentrations of less than 50 milligrams per liter (mgl). In the UWBZ chloride concentrations are generally 10-15 mgl. However, in the north eastern part of the Island chloride concentrations are approximately ten times higher, although still considered potable, due to an anomaly which exists in this area with a radius of approximately 1000 feet, and which allows the flow of water directly from the LWBZ to theMWBZ and LWBZ. While the potentiometric surface or pressure for most of the Island is 39 feet, at the anomaly it is 43 feet above mean sea level. The anomaly was caused either by a sinkhole or fault and acts as a localized conduit or coins source of lower quality water from the LWBZ to the UWBZ. No other point sources of lower quality water exist on the island. The Hawthorne formation was found to exist approximately fifty feet deeper in the area of the anomaly than on the rest of the Island. Existing users on Fort George Island draw water from the UWBZ. Fairfield proposes to draw its water from the MWBZ at a rate of 101.11 million gallons per year in an average year, and 181.04 million gallons per year in a 1 in 10 dry year, and will be the only user of water from the MWBZ on the Island. Household use consumption is projected to be 129.3 gallons per capita which is below the District average of 150 gallons per capita. Based upon pump tests already conducted by Fairfield, the MWBZ will produce more than enough water to meet Fairfield's needs for its project and such pumping will have no adverse impact on the UWBZ or existing users. Pumping from the MWBZ will also have no adverse impact on the MWBZ. Specifically, salt water intrusion from the surrounding estuary or from the tWBZ to the MWBZ will not significantly increase, chloride levels will not increase and potentiometric levels will not decrease in the MWBZ due to this pumping. The MWBZ will produce an adequate Supply of potable water for 15 to 30 years. Fairfield does propose to use well P-1 in the UWBZ in emergency situations but such usage will have no adverse impact on the quality of the UWBZ or its existing users. Use of the MWBZ will be minimized by maximum utilization of the surface water management system ponds for irrigation needs. Well TP-2 is approximately a mile from the anomaly in a south-southwesterly direction. It was constructed by Fairfield, after obtaining necessary permits, with casing to a depth of 771 feet all the way through the UWBZ and into the underlying confining bed. Pump tests were conducted on the MWBZ using TP-2, which is the only well on the Island in the MWBZ. No separate monitoring well in the MWBZ was required by the District, and none was utilized by Fairfield because the flow off 2,000 gallons per minute from TP-2 was so strong that a separate monitoring well was not necessary. When TP-2 was pumped, there was no measurable change in nearby UWBZ wells. This confirms that the MWBZ is hydrologically separate from the UWBZ, other than at the anomaly, and pumping from one will not affect wells in the other. In response to a request from the District, Fairfield utilized conservative factors in applying a mathematical model to determine the effects of its proposed pumping on the Floridan Aquifer. Using the USGS contaminant transport model, which is professionally accepted and appropriate for use in this case, and after proper calibration to reproduced observed conditions, it was determined that chloride concentrations in the MWBZ will not be adversely affected, nor will potentiometric surfaces of the UWBZ or MWBZ when pumping is conducted from TP-2 in the MWBZ over a thirty year period. At most, pumping from TP-2 could result in a slight increase of flow from the anomaly into the MWBZ, with a minimal increase in chloride concentrations. Fairfield has agreed to install a monitoring well in the MWBZ and to monitor several wells in the UWBZ in order to constantly test and monitor chloride levels. Currently chloride levels in the MWBZ are 25 mgl and the limit for potable water is 250 mgl. The monitoring well will be approximately 550 feet northeast of well TP-2, and will detect any changes in chloride levels with sufficient lead time for Fairfield to initiate action to drill another well into the MWBZ further from the chloride source. It is estimated that such lead time could reasonably be as much as ten years. Even without Fairfield's pumping from the MWBZ, water quality in the UWBZ would be expected to degrade, as it has historically, as a result of regional pumping which has caused a regional decline in water quality and 37 SO as a result of flow from the anomaly. Existing users may actually benefit from Fairfield's pumping from the MWBZ and the decline in the quality of the UWBZ may be slowed due to Fairfield's elimination of golf course irrigation which currently comes from the UMBZ at a rate of approximately 175,000 gallons per day, accounting for approximately 90% of all current water usage on the Island. Pumping from the Floridan Aquifer will be conducted to supplement irrigation from the stormwater management system. Fairfield will use up to 580,000 gallons per day for golf course irrigation in dry years. However, even in a dry year the primary source for golf course irrigation will still be from the stormwater management system. In an average year, approximately 95% of irrigation needs will be met by the surface water management system ponds. In a wet year there should be no need to pump from the Aquifer. The District staff originally recommended denial of Fairfield's CUP application when it was for a 36 hole golf course, anad for withdrawal of potable water from the UWBZ with only golf course irrigation being from the MWBZ. Fairfield has modified its application and now proposes a 27 golf course with all water needs coming from the MWBZ, except in an emergency when well P-1 in the UWBZ may be used. The District staff has now recommended approval, with a total of twenty conditions contained in the "Consumptive Uses of Water Summary Sheet," which are hereby incorporated by reference and which ensure generally that Fairfield: Mitigates any adverse impact caused by withdrawals permitted herein on existing legal uses of water; the District may curtail any withdrawal if there are adverse impacts on existing legal users. Mitigates any adverse impacts caused by withdrawals permitted herein on existing adjacent land uses; the District may curtail any withdrawal if there are adverse impacts on existing adjacent land uses. Must reapply for another CUP after seven years from issuance. Begins irrigating the existing 18 hole golf course from the MWBZ by March 1, 1987, with existing UWBZ irrigation wells only to be used thereafter for fire protection. Institutes a sampling program for existing wells in the UWBZ and MWBZ. Supplies all potable and supplemental irrigation requirements from the MWBZ, and keeps monthly records of such withdrawals. Drills and maintains a monitoring well in the MWBZ approximately 550 feet northeast of its MWBZ potable and supplemental irrigation well, and provides long term water quality samples to the District from the monitoring well. The District staff's recommended conditions are found to be reasonable in their entirety.

Recommendation Based on the foregoing, it is recommended that the St. John's River Water Management District issue to Fairfield Communities, Inc., conceptual approval of MSSW permit number 4- 031-002AC with conditions set forth in the District's Management and Storage of Surface Waters Summary Sheet, dated May 1986, and also issue to Fairfield Communities, Inc., CUP number 2-031- 3021AN with conditions set forth in the District's Consumptive Uses of Water Summary Sheet. Further, it is recommended that the Florida Wildlife Federation be dismissed as a party in this proceeding. DONE and ENTERED this 6th day of October, 1986, at Tallahassee, Florida. DONALD D. CONN, Hearing Officer Division of Administrative Hearings The Oakland Building 2009 Apalachee Parkway Tallahassee, Florida 32399 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 6th day of October, 1986. COPIES FURNISHED: Henry Dean, Executive Director St. Johns River Water Management Post Office Box 1429 Palatka, FL 32078-1429 Segundo J. Fernandez, Esquire Post Office Box 6507 Tallahassee, FL 32314 Thomas G. Pelham, Esquire Post Office Drawer 11300 Tallahassee, FL 32302-3300 Kathryn L. Mennella, Esquire Post Office Box 1429 Palatka, FL 32087-1429 Charles Lee Senior Vice President Florida Audubon Society 1101 Audubon Way Maitland, FL 32751 Jeffrey R. Lugwig, Esquire One Independent Square Jacksonville, FL 32276 Stephen O'Hara, Jr., Esquire 1500 American Heritage Life Building Jacksonville, FL 32202 APPENDIX Rulings on Petitioners' and Intervenors' Proposed Findings of Fact: 1. Adopted in Findings of Fact 9-27, 58-73. 2-7. Rejected as irrelevant and unnecessary 8. Adopted in Findings of Fact 36, 42. 9-10. Rejected as irrelevant and unnecessary 11. Adopted in part in Findings of Fact 4, 77, but otherwise rejected as irrelevant and unnecessary 12-24. Adopted in Finding of Fact 15, but otherwise rejected as unnecessary or not based on competent substantial evidence. 25-27. Rejected as irrelevant and unnecessary 28-39. Adopted and rejected in Finding of Fact 76, but otherwise rejected as irrelevant and unnecessary 40-45. Rejected in Findings of Fact 25, 77, 78 and otherwise not based on competent substantial evidence. Rejected in Finding of Fact 76. Rejected as irrelevant. 48-50. Rejected in Findings of Fact 77, 78 and otherwise not based on competent substantial evidence. 51-52. Rejected as unnecessary. 53. Rejected as not based on competent substantial evidence. 54-55. Rejected in Findings of Fact 77, 78. 56. Adopted in Finding of Fact 56. 57-63. Rejected in Finding of Fact 79 and otherwise not based on competent substantial evidence. 64-66. Rejected as irrelevant and unnecessary. 67-75. Rejected as irrelevant, unnecessary and otherwise not based on competent substantial evidence. 76-79. Rejected in Finding of Fact 79, and otherwise not based on competent substantial evidence. 80-83 Rejected in Finding of Fact 75, and otherwise irrelevant and not based on competent substantial evidence. Rejected in Finding of Fact 78 Rejected as irrelevant and unnecessary. 86-87. Rejected in Finding of Fact 75. 88-107. Adopted and rejected in part in Findings of Fact 75, 78, and otherwise irrelevant and not based on competent substantial evidence. 108. Rejected in Finding of Fact 79. 109-111. Rejected in Findings of Fact 76, 80. Adopted in Finding of Fact 80. Rejected as irrelevant and unnecessary. 114-116. Adopted in Finding of Fact 80. 117-120. Rejected as irrelevant and not based on competent substantial evidence. 121-136. Rejected in Finding of Fact 37 and otherwise unnecessary and not based on competent substantial evidence. Rejected as not based on competent substantial evidence. Rejected as unnecessary and cumulative. 139-141. Rejected as not based on competent substantial evidence. 142-144. Rejected as unnecessary and cumulative. 145-147. Rejected as not based on competent substantial evidence. Rejected in Findings of Fact 36, 37. Rejected as unnecessary and cumulative. Rejected as not based on competent substantial evidence 151-161. Rejected as unnecessary, cumulative and not based on competent substantial evidence. 162-164. Rejected in Finding of Fact 37 and otherwise not based on competent substantial evidence. 165-169. Rejected as unnecessary and cumulative. 170. Rejected in Findings of Fact 34, 39, 41. 171-173. Rejected as unnecessary and cumulative. 174-177. Rejected in Findings of Fact 36, 37. 178-179. Rejected in Findings of Fact 50, 51. 180. Adopted in Finding of Fact 39. 181-186. Rejected as not based on competent substantial evidence and otherwise unnecessary. 187-189. Rejected in Finding of Fact 32, and otherwise not based on competent substantial evidence. 190-193. Rejected as unnecessary and cumulative. 194-195. Rejected as not based on competent substantial evidence. 196. Rejected as unnecessary. 197-200. Rejected as not based on competent substantial evidence. 201-205. Rejected in Findings of Fact 32, 33 and otherwise not based on competent substantial evidence. 206-210. Rejected in Findings of Fact 32, 33, 36, 37. 211-268. Rejected in Findings of Fact 35, 36, 39-41, 52-54 and otherwise unnecessary and contrary to competent substantial evidence. 269-278. Adopted in part in Finding of Fact 3, but otherwise rejected as unnecessary. 279-297. Rejected in Findings of Fact 32, 33, 35, 36, 41, 42 and otherwise as unnecessary. 298. Rejected as irrelevant and unnecessary. 299-300. Adopted in part in Finding of Fact 3. Rejected as unnecessary. Rejected in Finding of Fact 44. Adopted and rejected in part in Findings of Fact 45-47. 304-305. Adopted in Finding of Fact 4. 306-312. Rejected in Findings of Fact 44-48 and otherwise not based on competent substantial evidence. Rejected in Findings of Fact 43, 45. Rejected in Finding of Fact 48. 315-321. Rejected as unnecessary and not based on competent substantial evidence. 322-323. Adopted and rejected in part in Finding of Fact 50. 324. Rejected as unnecessary. 325-329. Adopted and rejected in part in Finding of Fact 28. 330. Rejected as unnecessary. Rulings on Respondent Fairfield Communities' Proposed Findings of Fact: Adopted in Findings of Fact 9, 58. Adopted in Findings of Fact 10, 59. Adopted in Findings of Fact 11, 59. Adopted in Findings of Fact 15, 59. Adopted in Finding of Fact 12. Adopted in Findings of Fact 13, 27. Adopted in Findings of Fact 14, 59. Rejected as unnecessary based on Finding of Fact 28 Adopted in Findings of Fact 30, 60. Adopted in Findings of Fact 16, 17, 61, 62. Adopted in Findings of Fact 4, 6, 18, 19 Adopted in Findings of Fact 20, 65. Adopted in Finding of Fact 26. Adopted 1n Findings of Fact 21, 67. Adopted and rejected in Finding of Fact 28 Adopted in Finding of Fact 28. Adopted in Finding of Fact 1. Adopted in Finding of Fact 2. Adopted in Finding of Fact 3. 20-22. Adopted in Finding of Fact S. 23-24. Adopted in Finding of Fact 6. Adopted in Finding of Fact 7. Adopted in Finding of Fact 8. Adopted in Finding of Fact 77, 81. 28-30. Adopted in Finding of Fact 74. Adopted in Finding of Fact 75. Adopted in Findings of Fact 75, 76 Adopted in Finding of Fact 76. Adopted 1n Findings of Fact 75, 76. Rejected as unnecessary. 36-37. Adopted in Finding of Fact 75. 38. Adopted in Finding of Fact 77, but otherwise rejected 39-40. Adopted in Finding of Fact 76 evidence. 41-43. Adopted in Findings of Fact 76-80, but otherwise rejected as cumulative and unnecessary. 44-47. Adopted in Finding of Fact 74 48-50. Adopted in Finding of Fact 78 51-55 Adopted in Finding of Fact 79. Rejected as unnecessary. Adopted in Findings of Fact 77, 80. Adopted in Findings of Fact 77, 83. Adopted in Finding of Fact 80. Adopted in Findings of Fact 78, 79. Adopted in Finding of Fact 79. 62-63. Adopted in Finding of Fact 81. 64-65. Adopted in Finding of Fact 77 Adopted in Findings of Fact 4; 77. Adopted in Finding of Fact 82. Adopted in Finding of Fact 82, but otherwise rejected as unnecessary. 69-70. Rejected as unnecessary and cumulative 71-72. Adopted in Finding of Fact 30. 73-75. Adopted in Finding of Fact 31 76-84. Adopted in Findings of Fact 31, 32, but otherwise rejected as unnecessary 85-88. Adopted in Finding of Fact 33. 89-92. Adopted in Findings of Fact 36, 37, but otherwise rejected as unnecessary. Adopted in Finding of Fact 34. Adopted in Finding of Fact 82, but otherwise rejected as unnecessary. Rejected as unnecessary Adopted in Finding of Fact 43 Adopted in Finding of Fact 36 Adopted in Findings of Fact 4i, 42 Adopted in Findings of Fact 2, 38 Adopted in Findings of Fact 41, 42. 101-102. Adopted in Finding of Fact 39 Adopted in Finding of Fact 40. Adopted in Finding of Fact 35. 105-105. Adopted in Finding of Fact 41. 110-115. Adopted in Finding of Fact 42 116-117. Adopted in Findings of Fact 36, 42, but otherwise rejected as unnecessary. 118-121. Adopted in Finding of Fact 50, but otherwise rejected as unnecessary 122. Rejected as unnecessary, cumulative and inaccurate. 123-125. Rejected as cumulative and unnecessary. Adopted in Findings of Fact 29, 31. Adopted in Finding of Fact 43. 128-131. Adopted in Finding of Fact 56. 132-133. Adopted in Finding of Fact 36. 134-135. Adopted in Finding of Fact 56, but otherwise rejected as unnecessary. 136. Adopted in Finding of Fact 51. 137-138. Adopted in Finding of Fact 35. Adopted in Finding of Fact 36. Adopted in Finding of Fact 52. Adopted in Findings of Fact 52, 53. Adopted in Finding of Fact 54. Adopted in Finding of Fact 55. 144-148. Adopted in Finding of Fact 44, but otherwise rejected as unnecessary. 149. Adopted in Findings of Fact 4, 43, 44, but otherwise rejected as unnecessary. 150-151. Adopted in Finding of Fact 45. Rejected as unnecessary. Adopted in Finding of Fact 45. 154-155. Adopted in Finding of Fact 46. Adopted in Finding of Fact 47. Adopted in Finding of Fact 48. 158-160. Adopted in Finding of Fact 49. Rulings on Respondent St. John's River Water Management District's Proposed Findings of Fact: (The District's proposal was not timely filed, and the District did not seek permission from the Hearing Officer for late filing. It also consists of serial, unnumbered paragraphs from pages 18 to 48 despite specific instruction of the Hearing Officer to the parties to number paragraphs in proposed findings in order to allow specific rulings to be made. Despite these failures, a ruling will be made on the District's proposals, after having consecutively numbered each unnumbered paragraph, since counsel for the District indicates counsel for Petitioners has no objection to this late-filing, and in fact no Motion to Strike has been filed on behalf of Petitioners.) Adopted in Finding of Fact 1. Adopted in Finding of Fact 2. Adopted in Finding of Fact 4. Adopted in Finding of Fact 75. Adopted in Finding of Fact 76. Adopted in Findings of Fact 77, 81. Adopted in Finding of Fact 60. Adopted in Finding of Fact 30.47 Adopted in Findings of Fact 16, 17. Adopted in Finding of Fact 18. Adopted in Finding of Fact 6. Adopted in Findings of Fact 66, 83. Adopted in Finding of Fact 83. Adopted in Finding of Fact 20. 15-16. Adopted in Finding of Fact 57. 17. Adopted in Findings of Fact 21, G7. 18-21. Adopted in Finding of Fact 74. Adopted in Findings of Fact 74-76. Adopted in Finding of Fact 74. 24-26. Rejected as irrelevant and unnecessary. 27. Adopted in Finding of Fact 77. 28-35. Adopted in Finding of Fact 76. 36-41. Adopted in Finding of Fact 78. 42. Adopted in Finding of Fact 80. 43-45. Adopted in Finding of Fact 79. Adopted in Finding of Fact 75. Adopted in Findings of Fact 75, 79. Adopted in Finding of Fact 79. 49-50. Adopted in Finding of Fact 81. 51-52. Adopted in Finding of Fact 79. Adopted in Finding of Fact 80. Adopted in Finding of Fact 79. Adopted in Finding of Fact 77. Adopted in Finding of Fact 81. 57-58. Adopted in Finding of Fact 77. Adopted in Findings of Fact 34, 82. Rejected as unnecessary. Adopted in Finding of Fact 77. Rejected as unnecessary and cumulative. Adopted in Finding of Fact 78. 64-65. Adopted in Finding of Fact 30. 66. Adopted in Findings of Fact 34, 39. 67-72. Adopted in Finding of Fact 31. 73-81. Adopted in Finding of Fact 32. 82. Adopted in Findings of Fact 36, 42. 83-84. Adopted in Findings of Fact 32, 33. 85-87. Adopted in Finding of Fact 33. 88-94. Rejected as unnecessary. 95. Adopted in Finding of Fact 37. 96-98. Adopted in Finding of Fact 36, but otherwise rejected as unnecessary. Adopted in Finding of Fact 54. Adopted in Findings of Fact 34-36. 101-102. Rejected as unnecessary and cumulative. Adopted in Findings of Fact 2, 38. Rejected as unnecessary and cumulative. Adopted in Findings of Fact 36, 39. Adopted in Finding of Fact 39. Adopted in Findings of Fact 41. Adopted in Finding of Fact 35. Rejected as unnecessary. 110-118. Adopted in Finding of Fact 41, but otherwise rejected as unnecessary. Adopted in Finding of Fact 53. Adopted in Findings of Fact 52, 53, but otherwise rejected as unnecessary. Adopted in Finding of Fact 55. Adopted in Finding of Fact 42. 124-128. Adopted in Findings of Fact 32, 36, 42, but otherwise rejected as unnecessary. Adopted in Findings of Fact 35, 42, but otherwise rejected as unnecessary. Rejected as unnecessary. 131-134. Adopted in Finding of Fact 50, but otherwise rejected as unnecessary. 135. Adopted in Findings of Fact 42, 43. 136-138. Adopted in Finding of Fact 56. 139. Adopted in Findings of Fact 36, 56. 140-141. Adopted in Finding of Fact 56. 142. Adopted in Finding of Fact 51. 143-144. Adopted in Finding of Fact 35. Adopted in Finding of Fact 36. Rejected as cumulative, unnecessary and incorrect. Adopted and rejected in part in Finding of Fact 28. Adopted in Finding of Fact 28. ================================================================ AGENCY FINAL ORDER ================================================================ IN THE ST. JOHNS RIVER WATER MANAGEMENT DISTRICT FRIENDS OF FORT GEORGE, INC., Petitioners, and LOGAN DIVING, INC., SOUTHEASTERN FISHERIES ASSOCIATIONS, INC., THE FLORIDA AUDUBON SOCIETY, THE DOAH Case No. 85-3537 DUVAL AUDUBON SOCIETY, and THE (Management and Storage FLORIDA WILDLIFE FEDERATION, of Surface Waters) SJRWMD Case No. 85-3948 Intervenors, v. FAIRFIELD COMMUNITIES, INC., and ST. JOHNS RIVER WATER, MANAGEMENT DISTRICT, Respondents. / FRIENDS OF FORT GEORGE, INC., et al., Petitioners, and THE FLORIDA AUDUBON SOCIETY DOAH Case No. 85-3596 and THE DUVAL AUDUBON SOCIETY, (Consumptive Use Permit) SJRWMD Case No. 85-394A Intervenors, v. FAIRFIELD COMMUNITIES, INC., and ST. JOHNS RIVER WATER MANAGEMENT DISTRICT, Respondents. /

Florida Laws (11) 120.57373.019373.042373.086373.114373.219373.223373.413373.416373.617403.412 Florida Administrative Code (4) 40C-2.30140C-4.09140C-4.30140C-42.025
# 4
DEFENDERS OF CROOKED LAKE, INC., AND PHILLIP AND PRISCILLA GERARD vs KRISTA HOWARD AND DEPARTMENT OF ENVIRONMENTAL PROTECTION, 17-005328 (2017)
Division of Administrative Hearings, Florida Filed:Lakeland, Florida Sep. 22, 2017 Number: 17-005328 Latest Update: Aug. 16, 2018

The Issue The issue is whether Respondent, Krista Howard,2/ is entitled to issuance of the Consolidated Environmental Resource Permit and Recommended Intent to Grant Sovereignty Submerged Lands Authorization, Permit No. 53-0351424-001-EI, as announced by Respondent, Department of Environmental Protection, in the Consolidated Notice of Intent to Issue Environmental Resource Permit and Lease to Use Sovereignty Submerged Lands issued on July 28, 2017, and subsequently amended on January 11, 2018.3/

Findings Of Fact The Parties Petitioner Defenders is a Florida non-profit corporation that has been in existence since the mid-1980s or earlier. Defenders' primary purpose is to protect and preserve Crooked Lake so that it may remain an Outstanding Florida Water ("OFW") for all members of the public to use and enjoy. Defenders has more than 25 members who reside in Polk County, Florida. Its membership consists of approximately 100 family memberships, mostly comprised of persons who live on or near Crooked Lake. Petitioners Gerards are riparian landowners on Crooked Lake, whose property is located immediately adjacent to, and slightly to the northwest of, Respondent Howard's property. The Gerards' home address is 1055 Scenic Highway North, Babson Park, Florida 33827. Respondent Howard is the applicant for the Consolidated Authorization for the Dock. Howard's property, which is riparian to Crooked Lake, is located at 1045 Scenic Highway North, Babson Park, Florida 33827. Respondent DEP is the administrative agency of the State of Florida statutorily charged with, among other things, protecting Florida's water resources. As part of DEP's performance of these duties, it administers and enforces the provisions of chapter 373, part IV, Florida Statutes, and the rules adopted pursuant to that statute. Pursuant to that authority, DEP determines whether to issue or deny applications for ERPs. Pursuant to section 253.002, Florida Statutes, DEP also serves as staff to the Board of Trustees of the Internal Improvement Trust Fund ("Board of Trustees") and, in that capacity, reviews and determines whether to issue or deny, applications for approval to use sovereignty submerged lands.5/ DEP Review of the Application The Dock is proposed to be located on sovereignty submerged lands and in surface waters subject to State of Florida regulatory jurisdiction. Therefore, an environmental resource permit and a sovereignty submerged lands lease are required. On or about February 14, 2017, Todd Rickman, Howard's professional contractor who designed the Dock, filed an Application for a Sovereignty Submerged Lands Lease for Existing Structures and Activities6/ ("Application") with DEP's Southwest District Office, seeking approval to construct and operate the Dock. On or about March 15, 2017, DEP requested additional information regarding the project. Howard submitted the requested items, and the Application was determined complete on May 30, 2017. Notice of DEP's receipt of the Lease portion of the Application was provided as required by section 253.115. The comment period commenced on June 15, 2017, and ended on July 6, 2017. As previously noted, on July 28, 2017, DEP issued the Consolidated Notice of Intent, proposing to issue the Consolidated Authorization to construct and operate the Dock. On January 11, 2018, DEP amended the Consolidated Notice of Intent to accurately reflect the "clearly in the public interest" permitting standard for the ERP portion of the Consolidated Authorization, which is applicable to projects proposed in OFWs. Background Crooked Lake Crooked Lake (also, "Lake") is an approximately 4,247-acre freshwater lake in Polk County, Florida. It is an irregularly shaped karst lake roughly resembling an inverted "L," with the longer axis running north to south. It is located on the Lake Wales Ridge. Crooked Lake is designated an OFW by Florida Administrative Code Rule 62-302.700(9)(i)9.7/ The Lake is classified as a Class III waterbody pursuant to Florida Administrative Code Rule 62-302.400(15).8/ The elevations and bottom contours in Crooked Lake vary substantially throughout the Lake. Thus, water depths may, and generally do, vary substantially from one location to another throughout the Lake. The water levels in Crooked Lake fluctuate frequently and, at times, dramatically, depending on rainfall frequency and amounts. A graph prepared by Petitioners' Witness James Tully, using Southwest Florida Water Management District ("SWFWMD") historical water level data for Crooked Lake measured in National Geodetic Vertical Datum of 1929 ("NGVD") shows water levels historically fluctuating from as low as approximately 106 feet in or around 1991, to as high as 123 feet NGVD in or around 1951, 1961, and 2004. Rickman generated a water level graph using the Polk County Water Atlas ("Atlas") website. This graph, which covers the period of 2008 through mid-2017, shows that the water levels in Crooked Lake, for this most recent ten-year period, fluctuated approximately five feet, with the lowest levels falling slightly below 114 feet NGVD for relatively short periods in 2012 and 2013, and the highest level rising to approximately 119 feet NGVD in mid-2017. The competent, credible evidence shows that although water levels in Crooked Lake may occasionally rise to levels at or around 123 feet NGVD, those conditions have been associated with extreme weather events such as hurricanes, are atypical, and are relatively short-lived. The maximum water level in Crooked Lake is subject to control by a weir located south of the Lake. Discharge from the weir occurs at a control elevation of 120 feet NGVD. As such, the water level in parts of Crooked Lake may, at times, temporarily exceed 120 feet NGVD, but will eventually decrease to 120 feet NGVD as the water flows south and is discharged through the weir. To the extent rainfall does not recharge the Lake, water levels may fall below 120 feet NGVD. The ordinary high water line ("OHWL"), which constitutes the boundary between privately-owned uplands and sovereignty submerged lands, has been established at 120.0 feet NGVD for Crooked Lake. Crooked Lake is used for recreational activities such as fishing, swimming, boating, and jet ski use, and there are public and private boat ramps at various points on the lake that provide access to the Lake. There is no marina having a fueling station on the Lake. The credible evidence shows that the northeast portion of the Lake, where the Dock is proposed to be located, experiences a substantial amount of boat and jet ski traffic. This portion of the Lake also is used for swimming, water- skiing, wakeboarding, the use of "towables" such as inner tubes, and for other in-water recreational uses. The Proposed Dock Howard holds fee title by warranty deed to parcel no. 333028-000000-033140 located at 1045 Scenic Highway, Babson Park, Florida.9/ This parcel has approximately 110 linear feet of riparian shoreline on Crooked Lake. The Dock is proposed to be constructed and operated on sovereignty submerged lands adjacent to this riparian upland parcel, which is located on the eastern shore of the northeastern portion of Crooked Lake. The Dock, as proposed, is a private single-family residential dock that will be used by Howard for water-dependent recreational purposes, such as specifically, boating, fishing, swimming, and sunbathing. The Dock is not proposed to be constructed or used by, or to otherwise serve, commercial or multifamily residential development. The Dock is configured as a "T," supported by pilings and consisting of a 4-foot-wide by 152-foot-long access walkway, and an approximately 1,983-square-foot terminal platform comprised of a lower-level platform having four vessel slips and a flat platform roof. Two sets of stairs lead from the lower level of the terminal platform to the platform roof, which will be elevated eight feet above the lower-level platform and will have a railed perimeter. The platform roof will function as a roof for the boat storage area below and a sundeck. The four slips on the Dock's lower-level platform will be used for permanent mooring for up to six watercraft: a 23-foot-long ski boat,10/ a 20-foot-long fishing boat, and four jet skis. As proposed, the Dock will occupy a total area of approximately 2,591 square feet. The lower platform of the Dock is proposed to be constructed at an elevation of 121 feet NGVD. The roof/upper platform will be constructed eight feet above that, at an elevation of 129 feet NGVD. The pilings supporting the Dock will be wrapped in an impervious material to prevent leaching of metals and other pollutants into the water. Pursuant to the Specific Purpose Field Survey ("Survey") for the Lease submitted as part of the Application, the Lease will preempt approximately 2,591 square feet, and closely corresponds to the footprint of the Dock. The submerged lands surrounding the Dock that are not occupied by the footprint of the Dock, including the area between terminal platform and the shoreline, are not included in the preempted area of the Lease.11/ The Survey shows "approximate riparian lines" which delineate Howard's riparian area oriented to the center of the waterbody and to the primary navigation channel in the northeast portion of Crooked Lake. As shown on the version of the Survey initially filed as part of the Application, the Dock was proposed to be located approximately 4.7 feet, at its closest point, from the southern riparian line. However, in response to DEP's request for additional information, the Survey was modified in April 2017, to shift the Dock northward within Howard's riparian area. The Dock is now proposed to be located 25.1 feet, at its closest point, from the southern riparian line, and 29.4 feet, at its closest point, from the northern riparian line. The walkway of the Dock will commence at an approximate elevation of 120 feet NGVD, which corresponds to the OHWL established for Crooked Lake. As previously noted above, the walkway will extend waterward approximately 152 feet, where it will intersect with the terminal platform. The terminal platform will extend another 52 feet waterward. In total, the Dock is proposed to extend waterward approximately 204 feet from the OHWL. Although the Dock would be one of the longest and largest docks on Crooked Lake, the credible evidence establishes that there are several other docks of similar size and/or length on the Lake. Rickman testified that he obtained approvals for, or was otherwise aware of, several docks over 2,000 square feet on the Lake. Additionally, the evidence showed that eight other docks on the Lake are longer than the proposed Dock.12/ Rickman testified that most of the larger docks on Crooked Lake have roofs, and that most of these roofs are pitched, rather than flat.13/ As noted above, the water level in Crooked Lake frequently and, at times, extensively fluctuates. As a result, there are periods during which water depths in parts of the Lake are extremely shallow. Rickman testified that the Dock was designed to extend far enough out into Crooked Lake to reach sufficient water depth to enable Howard to maximize the use of the Dock for boating throughout the year. The Dock is designed to extend out to the point at which the bottom elevation of the Lake is approximately 109.9 feet NGVD. Based on the Atlas' ten-year water level graph for Crooked Lake referenced above, Rickman projected that at this point, the water depth typically would be sufficient to allow Howard to operate her largest vessel, the 23-foot ski boat. The ski boat has a 25-inch draft.14/ The boat will be stored out of the water on a boat lift on the Dock, attached by cables to a sub-roof immediately beneath the platform roof. When being lowered into or hoisted from the water, the boat will be placed in a boat cradle consisting of two containment railings approximately 18 inches high each on either side, and a "V" shaped aluminum bottom with bunks on which the boat is cradled. The aluminum bottom of the cradle was estimated to be two to three inches thick. Although the boat cradle is approximately 18 to 21 inches in "total height,"15/ the cradle does not have to be completely lowered its entire 18- to 21-inch height into the water when used. Steven Howard explained, credibly, that the cradle needs to be lowered into the water only a few inches lower than the ski boat's 25-inch draft to enable the boat to float into or out of the cradle. To that point, Rickman testified that taking into account the 25-inch draft of the ski boat and the "total height" of the boat cradle, between 40 and 44 inches of water depth would be required when the cradle is used in order to avoid coming into contact with the Lake bottom. Based on the Atlas graph showing the lowest water levels for the previous ten-year period at approximately 114 feet NGVD, Rickman designed the Dock to extend out to the 109.9-foot NGVD bottom elevation point. At this point, the projected water depth would be slightly more than four feet during periods of the lowest projected water levels for Crooked Lake. For the Dock to be able to wharf out to 109.9 feet NGVD bottom elevation, it must extend a total of approximately 204 feet waterward into the Lake. The credible evidence establishes that while Howard's ski boat is one of the largest, it is not the largest boat operated on Crooked Lake. Impacts Assessment for Environmental Resource Permit Water Quality Impacts As noted above, Crooked Lake is a Class III waterbody. Accordingly, the surface water quality standards and criteria applicable to Class III waters in Florida codified in rule 62-302.300 apply to Crooked Lake. The Dock, as proposed to be constructed and operated, is not anticipated to adversely affect or degrade water quality in Crooked Lake. Specifically, as required by the Consolidated Authorization, a floating turbidity curtain will be installed around the boundary of the construction area before construction commences, and it must be left in place until construction is complete and turbidity levels in the work area have returned to background levels. Additionally, as noted, the pilings supporting the Dock must be wrapped in an impervious material to prevent leaching of metals and other pollutants into the water over the life of the structure. The Consolidated Authorization also prohibits the installation and use of fueling equipment at the Dock; prohibits the discharge of sewage or other waste into the water; prohibits liveaboards; prohibits fish cleaning or the installation of fish cleaning stations unless sufficient measures such as sink screens and waste receptacles are in place; and prohibits repair and maintenance activities involving scraping, sanding, painting, stripping, recoating, and other activities that may degrade water quality or release pollutants into the water. Although the Consolidated Authorization imposes a specific condition requiring, for all vessels using the Dock, a minimum 12-inch clearance between the deepest draft of the vessel (with motor in the down position) and the top of submerged resources, it does not specifically address circumstances where the use of the boat cradle, rather than the vessel itself, may come into contact with the Lake bottom. DEP's witness acknowledged that if the boat cradle were to come into contact with the Lake bottom, water quality standards may be violated. Given the information presented at the final hearing regarding the operation of the boat lift and the need for sufficient clearance between the bottom of the boat cradle and the lake bottom, the undersigned recommends that a specific condition be included in the Consolidated Authorization prohibiting contact of the Lake bottom by the boat cradle. This recommended condition is set forth in paragraph 73.A., below. Upon consideration of the conditions imposed by the Consolidated Authorization discussed above, including imposing a specific condition that prohibits contact of the boat cradle with the Lake bottom, the undersigned finds that the Dock will not adversely affect or degrade the water quality of Crooked Lake. Water Quantity Impacts The Dock, as proposed, is a piling-supported structure that will not impound, store, or impede the flow of surface waters. As such, the Dock will not cause adverse flooding to on-site or offsite property, will not result in adverse impacts to surface water storage and conveyance capabilities, and will not result in adverse impacts to the maintenance of surface or ground water levels. Impacts to Fish, Wildlife, and Listed Species and Habitat The Application states, in section 5, question 6, that there is no vegetation on Howard's riparian shoreline. However, the Survey depicts an area of emergent grasses approximately 60 feet wide and extending diagonally approximately 70 feet waterward into the Lake. The Survey depicts this grassed area as straddling the riparian line between Howard's property and the adjacent parcel to the south. The Survey shows the Dock as being located a significant distance waterward of the grassed area, such that no portion of the Dock will be located on or near this grassed area. Additionally, an aerial photograph of Howard's property and the Lake waterward of Howard's property shows a smaller patch of what appears to be emergent grasses further offshore. This grassed area is not shown on the Survey, and it cannot definitively be determined, by examining the Survey and the aerial photograph, whether this grassed area is growing in an area that will be impacted by the Dock. Steven Howard acknowledged that this smaller grassed area may be located at or near the jet ski slip on the southeastern side of the Dock. An environmental assessment of this smaller grassed area was not performed or submitted as part of the Application. Thus, any value that this area may have as fish and wildlife habitat was not assessed as part of DEP's determination that the Dock will not adversely impact the value of functions provided to fish, wildlife, and to listed species and their habitat. In order to provide reasonable assurance that the Dock will not adversely impact the value of functions provided to fish, wildlife, and to listed species and their habitat, the undersigned recommends including a specific condition in the Consolidated Authorization requiring this smaller grassed area to be completely avoided during construction and operation of the Dock, or, if avoidance is not feasible, that an environmental assessment be performed prior to construction so that the value of this grassed area, if any, to fish, wildlife, and listed species can be evaluated to determine whether minimization and compensatory mitigation should be required. This recommended condition is set forth in paragraph 73.B., below. As previously noted, the Consolidated Authorization contains a specific condition requiring a minimum 12-inch clearance between the deepest draft of the vessel (with the motor in the down position) and the top of submerged resources for all vessels that will use the docking facility. Compliance with this condition will help ensure that the value of functions provided to fish and wildlife and to listed species and their habitat of any such submerged resources is not adversely impacted by vessels using the Dock. The Consolidated Authorization also contains a specific condition requiring handrails to be installed on the Dock to prevent mooring access to portions of the Dock other than the wetslips. This will help protect submerged resources in shallower areas in the vicinity of the Dock. Fish populations in the immediate area of the Dock site may temporarily be affected during construction of the Dock; however, those impacts are not anticipated to be permanent. Additionally, as previously discussed, the Dock pilings must be wrapped with an impervious material to prevent leaching of pollutants into the water, and once installed, the pilings may provide habitat for fish and a substrate for benthic organisms. Provided that the conditions set forth in the draft Consolidated Authorization, as well as the recommendation regarding the smaller grassed area, are included in the final version of the Consolidated Authorization, it is determined that the construction and operation of the Dock will not adversely impact the value of functions provided to fish, wildlife, or to listed species or their habitat.16/ Impact on Navigation Petitioners assert that the Dock will constitute a hazard to navigation in the northeast portion of Crooked Lake. Specifically, they assert that because the Dock will extend out approximately 204 feet into the Lake, it necessarily will create a navigational hazard to boaters in the vicinity. As support, Petitioners presented evidence consisting of Steven Howard's testimony that an inner tube on which his nephew was riding, that was being pulled behind a motor boat, collided with the Gerards' 84-foot-long floating dock adjacent to Howard's riparian area. Petitioners argue that if an 84-foot-long dock creates a navigational hazard, a 204-foot-long dock would create an even greater navigational hazard. The undersigned does not find this argument persuasive. The portion of Crooked Lake on which the Dock is proposed to be located is approximately a mile and a half to two miles long and one-half to three-quarters of a mile wide. Although this portion of Crooked Lake experiences substantial boat traffic, the evidence shows that the Lake is sufficiently large in this area, even with the Dock in place, to allow safe navigation. To this point, it is noted that there are two other longer docks in the northeastern portion of Crooked Lake, extending 220 and 244 feet into the Lake from the shoreline. There was no evidence presented showing that either of these docks constitutes a navigational hazard.17/ Petitioners also assert that during periods of high water in this portion of Crooked Lake, the Dock will be underwater and thus will present a navigational hazard. In support, they presented photographs taken on October 30, 2017—— approximately six weeks after Hurricane Irma struck central Florida——showing ten docks, out of the 109 docks on Crooked Lake, that were partially or completely submerged.18/ When the photographs were taken, the approximate water elevation was 119.2 feet NGVD. All or a portion of the submerged docks had been constructed at or below the 119.2-foot NGVD elevation. The docks without roofs were mostly or completely invisible under the water. However, for the roofed docks, the roofs remained visible above the water even when their docking platforms were submerged. Here, although the walkway and lower platform of Howard's Dock is proposed to be constructed at an elevation of 121 feet NGVD, the roof will be constructed at an elevation of 129 feet NGVD. Thus, even during the relatively infrequent periods19/ during which the water level in Crooked Lake may exceed 121 feet NGVD, the platform roof will still be visible to vessels navigating in this portion of the Lake. Additionally, the Consolidated Authorization contains a specific condition requiring the waterward end of the Dock to be marked with a sufficient number of reflectors to be visible from the water at night by reflected light. This condition provides additional assurance that the Dock will not present a navigational hazard. For these reasons, it is determined that the Dock will not adversely affect navigation. Other ERP-Related Issues The evidence did not show that the Dock is proposed to be located in or proximate to a "work of the District," as defined in section 373.019(28). The only "work of the District" about which evidence was presented is the weir located south of Crooked Lake. This structure is many thousands of feet south of the Dock. There was no evidence presented showing that the Dock would have any impact on this weir. The Dock, as proposed, was designed by an experienced professional contractor who has designed and installed many docks on Crooked Lake, and, as such, is anticipated to function as proposed. The Dock must be built according to engineering diagrams to the Consolidated Authorization, and as-built drawings must be submitted when Dock construction is complete so that DEP can confirm that the Dock is constructed in accordance with the approved design. The evidence establishes that Howard, as the applicant, and Rickman, as the professional contractor in charge of construction, are financially, legally, and administratively capable of ensuring that the activity will be undertaken in accordance with the terms and conditions of the Consolidated Authorization. No evidence to the contrary was presented. The Dock will be located in the waters of Crooked Lake and will be affixed to the submerged bottom. The Department of State, Division of Historical Resources ("DHR"), did not provide any comments indicating that historical or archaeological resources are anticipated to be impacted by the project. Additionally, the Consolidated Authorization contains a general condition requiring subsurface activity associated with construction of the Dock to immediately cease, and DHR to be contacted, if any prehistoric or historic artifacts, such as pottery or ceramics, stone tools or implements, dugout canoes, or other physical remains that could be associated with Native American cultures or early colonial or American settlements are encountered at any time within the project site area. Additional Recommended Conditions Based on the foregoing, the undersigned recommends that the following specific conditions be included in the Consolidated Authorization, Permit No. 53-0351424-001-EI: A minimum six-inch clearance shall be maintained between the top of all submerged resources and the deepest draft of the cradle of the boat lift while in use. For purposes of this condition, submerged resources consist of the bottom sediment and/or any submerged grasses or other aquatic organisms. Any emergent grasses in the permittee's riparian area shall be avoided during the construction and operation of the Dock. If it is not feasible to avoid these grasses, an environmental assessment of the grassed area shall be performed and submitted to the Department prior to commencing construction, so that the value of this grassed area, if any, to fish, wildlife, and listed species can be evaluated and the extent to which minimization and/or compensatory mitigation is appropriate can be determined. Clearly in the Public Interest Florida Administrative Code Rule 62-4.070, Standards for Issuing or Denying Permits, states in pertinent part: A permit shall be issued to the applicant upon such conditions as the Department may direct, only if the applicant affirmatively provides the Department with reasonable assurance based on plans, test results, installation of pollution control equipment, or other information, that the construction, expansion, modification, operation, or activity of the installation will not discharge, emit, or cause pollution in contravention of Department standards or rules. In addition to the foregoing permitting requirements, because the Dock is proposed to be located in an OFW, Howard also must provide reasonable assurance that the Dock meets the "clearly in the public interest" standard. The "clearly in the public interest" standard does not require the applicant to demonstrate need for the project or a net public benefit from the project. Rather, this standard requires the applicant to provide greater assurances, under the circumstances specific to the project, that the project will comply with the applicable permitting requirements.20/ For the reasons discussed above, and with the inclusion of the additional recommended conditions in paragraphs 73.A. and 73.B., it is determined that the proposed Dock meets the applicable permitting requirements and the "clearly in the public interest" standard for issuance of the ERP. Impacts Assessment for Sovereignty Submerged Lands Lease Water-Dependency of the Proposed Dock A water-dependent activity is one which can only be conducted in, on, over, or adjacent to water areas because the activity requires direct access to the water body or sovereignty submerged lands for specified activities, including recreation, and where the use of water or sovereignty submerged lands is an integral part of the activity. See Fla. Admin. Code R. 18-21.003(71). Petitioners argue that the Dock will not constitute a water-dependent activity because the depth of water in the slips may, at times, be insufficient to allow operation of Howard's vessels while complying with the requirement that a minimum 12- inch clearance be maintained between the lowest draft of the vessel and submerged resources. The undersigned finds this argument unpersuasive. The Dock is being constructed specifically for the purpose of enabling Howard to use her vessels for boating——a recreational activity for which use of the water indisputably is an integral part. The Dock's primary purpose is to moor vessels that will be used for the water-dependent recreational activities of boating and fishing, and other water-dependent recreational uses of the Dock include fishing, swimming and sunbathing. Case law interpreting the Florida Administrative Code Chapter 18-21 makes clear that because docks are used for mooring vessels or conducting other in-water recreational uses, they are "water-dependent" activities for purposes of the rules.21/ Thus, even if water depths in the Dock's slips are at times insufficient for vessel mooring or launching,22/ this does not render the Dock not a "water-dependent activity." Resource Management Requirements The preempted area of the Lease is proposed to be used for a Dock that will be used for boating, fishing, and swimming. These traditional in-water recreational uses are consistent with the management purposes of sovereignty submerged lands as described in rule 18-21.004(2)(a). With the inclusion of the conditions currently proposed in the draft Consolidated Approval, as well as the recommended conditions in paragraphs 73.A. and 73.B., the undersigned determines that the Dock will not result in adverse impacts to sovereignty submerged lands and associated resources. With the inclusion of the conditions currently proposed in the draft Consolidated Approval, as well as the recommended conditions in paragraphs 73.A. and 73.B., the undersigned determines that the Dock is designed to minimize or eliminate impacts to fish and wildlife habitat and submerged resources. With the inclusion of the currently proposed conditions in the draft Consolidated Authorization, as well as the recommended conditions set forth in paragraphs 73.A. and 73.B., it is determined that the Dock, as designed and constructed, will minimize or eliminate cutting, removal, or destruction of wetland vegetation. Additionally, as discussed above, the proposed Consolidated Approval requires the avoidance of adverse impacts to historic and cultural resources. Riparian Rights Consistent with rule 18-21.004(3)(d), the Dock is proposed to be constructed in Howard's riparian area and will be set back more than 25 feet from the northerly and southerly riparian lines shown on the Survey. Rule 18-21.004(3)(a) prohibits activities authorized under chapter 18-21 from being implemented in a manner that would unreasonably infringe on traditional common law riparian rights, as defined in section 253.141, of upland owners adjacent to sovereignty submerged lands. Similarly, rule 18-21.004(3)(c) requires all structures and activities to be designed and conducted in a manner that will not unreasonably restrict or infringe upon the riparian rights of adjacent riparian owners. Collectively, these provisions prohibit an activity that will occur on sovereignty submerged lands from unreasonably infringing on or unreasonably restricting the riparian rights of upland riparian owners. Riparian rights are rights appurtenant to, and inseparable from, riparian land that borders on navigable waters. § 253.141, Fla. Stat.; Broward v. Mabry, 50 So. 830 (Fla. 1909). At common law, riparian rights include the rights of navigation, fishing, boating, and commerce. Hayes v. Bowman, 91 So. 2d 795 (Fla. 1957). The right of navigation necessarily includes the right to construct and operate a dock to access navigable waters. Belvedere Dev. Corp. v. Dep't of Transp., 476 So. 2d 649 (Fla. 1985); Shore Vill. Prop. Owners' Ass'n v. Dep't of Envtl. Prot., 824 So. 2d 208, 211 (Fla. 4th DCA 2002). Common law riparian rights also include the right to an obstructed view. Lee Cnty v. Kiesel, 705 So. 2d 1013 (Fla. 2d DCA 1998). Many of these common law riparian rights have been statutorily codified in section 253.141. Statutory riparian rights include the "rights of ingress, egress, boating, bathing, and fishing and such others as may be or have been defined by law." § 253.141(1), Fla. Stat. At issue in this case are the competing riparian rights of next-door neighbors——i.e., Howard's right to wharf out to navigable waters for purposes of boating and other water- dependent recreational activities, and the Gerards' right to an unobstructed view. The question is whether Howard's proposed construction and operation of a dock of sufficient length to enable her to use her boats would unreasonably infringe on or unreasonably restrict the Gerards' right to an unobstructed view of the Lake. By virtue of the riparian rights appurtenant to Howard's riparian property, she is entitled to wharf out to water deep enough to enable her to navigate. She owns two boats, one of which pulls a draft of 25 inches, and the other, a draft of 20 inches, which she uses to navigate the Lake. Thus, an essential aspect of Howard's riparian right of navigation is her ability to construct and operate a dock long enough to enable her to reach water depths sufficient to use these boats. However, as noted above, this right is not unfettered. Howard's exercise of her riparian navigation right cannot unreasonably infringe on Gerard's right to an unobstructed view. Florida case law holds that the right to an "unobstructed" view does not entail a view free of any infringement or restriction whatsoever by neighboring structures or activities. In Hayes, the court defined the right as "a direct, unobstructed view of the [c]hannel and as well a direct, unobstructed means of ingress and egress . . . to the [c]hannel." Id. at 801 (emphasis added). The court then prescribed the rule that "in any given case, the riparian rights of an upland owner must be preserved over an area 'as near as practicable' in the direction of the [c]hannel so as to distribute equitably the submerged lands between the upland and the [c]hannel." Id. (emphasis added). To the extent there is no channel in this portion of the Lake, Hayes dictates that riparian rights must be apportioned equitably, so that a riparian owner's right to an unobstructed view can extend only from the owner's property in the direction of the center of the Lake. Kling v. Dep't of Envtl. Reg., Case No. 77-1224 (Fla. DOAH Oct. 6, 1977; Fla. DER Nov. 18, 1977) at ¶¶ 11-12 (emphasis added). Here, no evidence was presented showing that the Dock——which will be located immediately south and east of the Gerards' riparian property and attendant riparian area——will present an obstruction to the Gerards' view of the Lake channel. Additionally, the evidence did not establish that Howard's Dock would obstruct the Gerards' view of the center of the northeast portion of Crooked Lake, which is located west and slightly south of their property.23/ Administrative precedent in Florida provides additional support for the determination that the Dock will not unreasonably infringe on the Gerards' right to an unobstructed view. In O'Donnell v. Atlantic Dry Dock Corporation, Case No. 04-2240 (Fla. DOAH May 23, 2005; Fla. DEP Sept. 6, 2005), riparian owners challenged the proposed approval of expansions of sovereignty submerged lands leases authorizing Atlantic Dry Dock, a neighboring commercial shipyard, to expand its shipyard facilities and install new docking facilities. The administrative law judge noted that although the expanded shipyard would further encroach on the riparian owners' already somewhat-restricted view from their property, it would not substantially and materially obstruct the Petitioners' view to the channel. He commented: "it [their view] may be further obstructed to the west in the direction of the Atlantic Marine yard, but not in the direction of the channel." To that point, he found that although "any lateral encroachment on the Petitioners' line-of-sight to the channel by the large eastern dry dock proposed will be an annoyance, . . . [it] will not rise to the level of a substantial and material interference or obstruction of the Petitioners' view to the channel." Id. at ¶ 119. He found that "there is no 'special riparian right' to a view of the sunset, just as there was no right to a particular object of view . . . by the riparian owners complaining in the Hayes case." Id. at ¶ 120. Castoro v. Palmer, Case Nos. 96-0736, 96-5879 (Fla. DOAH Sept. 1, 1998; Fla. DEP Oct. 19, 1998), also is instructive. In Castoro, neighboring riparian owners challenged the proposed issuance of an environmental approval and sovereignty submerged lands lease for a 227-foot-long dock having a terminal platform with boat lift. The owners contended that due to the dock's length, it would impermissibly obstruct their views of the water. The administrative law judge rejected that contention, distinguishing the circumstances from those in Lee County v. Kiesel, 705 So. 2d 1013 (Fla. 2d DCA 1998), in which the construction of a bridge that blocked 80 percent of the riparian owners' view of the channel was held to constitute a "substantial and material" obstruction to the riparian right of view. The ALJ noted that although the dock would have "some impact on the neighbors' views" and their use of the waterbody, it did not unreasonably impact their riparian rights to an unobstructed view or to use of the waterbody. Id. at ¶¶ 73-74. In Trump Plaza of the Palm Beaches Condominium v. Palm Beach County, Case No. 08-4752 (Fla. DOAH Sept. 24, 2009; Fla. DEP Oct. 8, 2009), a condominium association challenged the proposed issuance of a sovereignty submerged lands use approval to fill in a dredged area and create mangrove islands in the Lake Worth Lagoon, alleging, among other things, that the creation of the mangrove islands would unreasonably infringe on their riparian right to an unobstructed view. In rejecting this position and recommending issuance of the submerged lands use approval, the ALJ noted that the area obstructed by the mangrove islands would be negligible compared to the remaining expanse of the view, and further noted that the owners' real concern was directed at the aesthetics of the project——specifically, they did not want to view mangrove islands. The ALJ stated: "[t]he evidence supports a finding that while the project will undoubtedly alter the view of the water from [the riparian owners' property], the impact on view is not so significant as to constitute an unreasonable infringement of their riparian rights." Id. at ¶ 86. Applying these case law principles, it is determined that the Dock will not unreasonably infringe on or unreasonably restrict the Gerards' riparian right to an unobstructed view. To that point, the cases make clear that the right to an "unobstructed" view is not an unfettered right to a view of the water completely free of any lateral encroachment, but, instead is the right of a view toward the channel or the center of a lake without unreasonable infringement or restriction. Here, although the Dock will laterally encroach on the Gerards' full panoramic view of the Lake——and, as such, may even constitute an annoyance, the evidence did not show that the Dock will obstruct or otherwise restrict their view to the channel or the center of the Lake. Moreover, to the extent the Gerards have expressed concern about the Dock interfering with their view of the south shore of the Lake, O'Donnell makes clear the desire to have a particular object of view——here, the south shore of the Lake——is not a legally protected riparian right. It is also found that the Dock will not unreasonably interfere with the Gerards' riparian rights of ingress, egress, boating, or navigation. As previously noted, the Dock will be located at least 25 feet inside the riparian lines established for Howard's upland property, and, it will not be constructed in a location or operated in a manner that will obstruct, interfere with, or restrict the Gerards' access to the Lake or to sufficient water depths to enable navigation.24/ The evidence also did not establish that the Dock will restrict or otherwise interfere with the Gerards' use of their riparian area for ingress and egress, boating, fishing, bathing, or other riparian uses. In sum, it is concluded that the Dock will not unreasonably infringe on or restrict the riparian rights of adjacent upland riparian owners. Accordingly, it is determined that the Dock will meet the requirements and standards in rule 18-21.004(3) regarding riparian rights. Navigational Hazard For the reasons discussed in paragraphs 63 through 67, it is determined that the Dock will not constitute a navigational hazard in violation of rule 18-21.004(7)(g). Not Contrary to the Public Interest Rule 18-21.004(1)(a) requires an applicant to demonstrate that an activity proposed to be conducted on sovereignty submerged lands will not be contrary to the public interest. To meet this standard, it is not necessary that the applicant show that the activity is affirmatively in the "public interest," as that term is defined in rule 18-21.003(51). Rather, it is sufficient that the applicant show that there are few, if any, "demonstrable environmental, social, and economic costs" of the proposed activity. Castoro, at ¶ 69. For the reasons discussed above, and with the inclusion of the additional recommended conditions in paragraphs 73.A. and 73.B., it is determined that the proposed Dock meets the "not contrary to the public interest" standard required for issuance of the Lease. Demonstration of Entitlement to ERP Howard met her burden under section 120.569(2)(p) to present a prima facie case of entitlement to the ERP by entering into evidence the Application, the Notice of Intent, and supporting information regarding the proposed Dock. She also presented credible, competent, and substantial evidence beyond that required to meet her burden under section 120.569(2)(p) to demonstrate prima facie entitlement to the ERP. The burden then shifted to Petitioners to demonstrate, by a preponderance of the competent substantial evidence, that the Dock does not comply with section 373.414 and applicable ERP rules. For the reasons discussed above, it is determined that Petitioners did not meet their burden of persuasion under section 120.569(2)(p) in this proceeding. Accordingly, for the reasons addressed above, it is determined that Howard is entitled to issuance of the ERP for the Dock. Demonstration of Entitlement to Lease As previously discussed, Howard bore the burden of proof in this proceeding to demonstrate, by a preponderance of the evidence, that the Dock meets all applicable statutory and rule requirements for issuance of the Lease for the Dock. For the reasons discussed above, it is determined that Howard met this burden, and, therefore, is entitled to issuance of the sovereignty submerged lands lease for the Dock. Petitioners' Standing Defenders' Standing As stipulated by the parties and noted above, Defenders is an incorporated non-profit entity created for the primary purpose of protecting and preserving Crooked Lake so that it may remain an OFW for all members of the public to enjoy. Defenders has been in existence since at least the mid- 1980s. Robert Luther, the president of Defenders, testified that the organization's purpose also entails providing education and promoting public awareness in order to preserve the natural beauty, water quality, ecological value, and quality of life around Crooked Lake. As stipulated by the parties and noted above, Defenders has more than 25 members. Luther testified that Defenders has approximately 100 family members, most of whom live on or around Crooked Lake. He noted that many of Defenders' members own boats, which they park at a local boat landing on the Lake. Based on this testimony, it is inferred that these members operate their boats on Crooked Lake. After receiving the public notice of the project, Defenders' board of directors voted to oppose issuance of the Consolidated Authorization for the Dock. Luther testified that the board's decision was based on the determination that "it was clearly within the public interest" to oppose the Dock. Gerards' Standing The Gerards reside at 1055 Scenic Highway, Babson Park, Florida. Their riparian property is immediately adjacent to, and northwest of, Howard's property. The Gerards own a floating dock that is located within their riparian area.25/ The dock consists of two 4-foot- wide by 30-foot-long ramps attached to a 24-foot-long by 8-foot- wide pontoon boat. Priscilla Gerard testified that she enjoys spending time sitting and reading books on the beach in front of her property, and that having that area to sit and read is a significant aspect of her enjoyment of her lakefront property. Ms. Gerard observed that extensive boating activities in the northeast portion of the Lake on weekends is disruptive, and interferes with her use of her beach for relaxing and reading. She particularly noted that boats operating very close to the shore cause waves to splash up on her beach, interfering with her ability to sit and read close to the shore. She did not contend that Howard's use of the Dock for boating would contribute to the disruptive nature of existing boat traffic in the vicinity. Ms. Gerard has viewed the plans for the proposed Dock and is very concerned that due to its size, her view of the south side of the Lake will be completely blocked. She acknowledged, and other competent, credible evidence showed, that there are other docks on the Lake in the vicinity of her riparian property. The evidence shows that existing docks having lengths of 145 feet and 170 feet are located in the vicinity of, and are visible from, the Gerards' property. She testified that an existing dock and tiki hut block her view of the Lake to the north. She acknowledged that although Howard's Dock, if constructed as proposed, may somewhat obstruct her view to the left (south) of her property, it would not block her view straight out into the Lake. Phillip Gerard testified that he has boated extensively on Crooked Lake in a variety of vessel types. He further testified that he has observed a range of boating practices on Crooked Lake, including seeing water skiers and persons being towed behind motorized vessels on inner tubes and other types of "towables." He testified that, based on his personal observations, persons being towed do not have independent control of the speed or direction of the "towable"; thus, depending on the direction in which the towing vessel turns, the towable may be slung to the left or the right. Gerard commented that such lack of control could result in a person riding on a towable colliding with a dock, and he noted that Howard's nephew, who was riding on an inner tube being towed by a boat, was involved in such a collection with his (Mr. Gerard's) own dock. Mr. Gerard did not testify that the Dock would present a navigational hazard to, or otherwise interfere with, the Gerards' riparian right of ingress and egress. Neither of the Gerards testified that the Dock would impact their ability to access navigable waters in the Lake. Mr. Gerard acknowledged that if Howard's Dock were constructed, boats that currently travel very close to the shoreline of his property would be forced to swing further out in the Lake, away from his riparian shoreline, in order to avoid the Dock.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the Department of Environmental Protection enter a final order approving the issuance of Consolidated Environmental Resource Permit and Recommended Intent to Grant Sovereignty Submerged Lands Authorization, Permit No. 53-0351424-001-EI, on the terms and conditions set forth in the Consolidated Notice of Intent and attached draft of Permit No. 53-0351424-001-EI, as modified to include the Additional Recommended Conditions set forth in paragraphs 73.A. and 73B. DONE AND ENTERED this 5th day of July, 2018, in Tallahassee, Leon County, Florida. S CATHY M. SELLERS Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 5th day of July, 2018.

Florida Laws (21) 120.52120.569120.57120.6820.331253.001253.002253.115253.141267.061373.019373.042373.086373.4132373.414373.421373.427403.031403.061403.41290.202 Florida Administrative Code (5) 18-21.00318-21.00462-302.40062-4.00162-4.070
# 5
ROBERT C. ERNEST vs. DEPARTMENT OF ENVIRONMENTAL REGULATION, 85-004243 (1985)
Division of Administrative Hearings, Florida Number: 85-004243 Latest Update: Apr. 16, 1986

Findings Of Fact The Florida Department of Transportation (DOT) is currently engaged in widening State Road (SR) 5, the Overseas Highway, to four lanes on Marathon Key. To handle surface water runoff from a portion of the project, DOT received approval from the South Florida Water Management District for a surface water management system which included two retention ponds (west pond and east pond) to be located on Marathon Airport.1 On May 23, 1985, DOT filed an application with DER for authorization to construct four Class V, group five stormwater drainage wells within the retention ponds on Marathon Airport. DOT proposed to locate three wells within the west pond and one well within the east pond to comply with a Federal Aviation Administration (FAA) request that water levels be minimized to deter the attraction of birds which could present a hazard to aircraft navigation. By letter dated August 12, 1985, DER forwarded to DOT permit number US44-104852, dated July 26, 1985, for construction of the subject wells. Upon its receipt of the permit, DOT let the contracts for the widening of SR 5; however, neither DER nor DOT published notice of DER's intent to issue the requested permit. On November 29, 1985, a few days after he received actual notice that the permit had been issued, Robert C. Ernst filed a request for hearing with DER contesting its issuance. Mr. Ernst owns a home which lies atop the groundwaters to be impacted by the subject permit and which abuts Dodge Lake, a Class III surface water body; Mr. Ernst uses the waters of Dodge Lake for swimming, fishing, and other recreational pursuits. On December 20, 1985, Mr. Ernst and others, on behalf of Neighbors for Clean Canals (NCC), filed a request for hearing challenging the same permit. NCC was alleged to be a neighborhood association, formed December 17, 1985, to represent the interests of property owners affected by the proposed project; however, no such proof was offered at hearing. The retention ponds proposed by DOT are designed to accommodate the first inch of stormwater runoff.2 Significantly, the first 1/2" of runoff from a highway system contains the bulk of pollutants. By retaining this runoff, and permitting it to evaporate or percolate through the soils underlying the retention ponds, any adverse impact to the ground waters is minimized. DOT's proposal to install four injection wells within the ponds will deprive them of their retention capability. These wells will, within a 12-20 hour period, inject the first 1/2" of runoff (over 1 million gallons) directly into the groundwaters. Therefore, evidence of the nature of the pollutants, the quality of the receiving waters, and the geologic and hydrologic qualities of the area are significant. Highway runoff contains high concentrations of pollutants ranging from toxic mutagenic and carcinogenic substances such as heavy metals (primarily lead and zinc), pesticides, and herbicides to oxygen consuming materials and solids which cause damages such as siltation and eutrophication. These pollutants, including oils, greases, and copper, can have significant adverse effects upon the quality of the receiving waters and the life forms it supports. Underlying the proposed retention ponds is an aquaclude which extends from the surface to a depth of 30-40 feet. This aquaclude, a hard layer formation with very poor percolation qualities, will preclude any waters injected below it from returning to the surface and will direct their flow laterally. Since the maximum depths of Dodge Lake and the 100th Street Canal are 13' and 21' respectively, injection of the stormwater runoff at 50', well below the existing aquaclude, provides reasonable assurances that these water bodies will not be adversely impacted by the proposed project. However, the impacts to the groundwater and other water bodies is not so clear. Other than sampling the groundwater to establish its character as Class III groundwater,3 DOT and DER did not perform any water quality analysis. Accordingly, the existing quality of the receiving groundwaters was not shown. Further, there was no showing of the hydrologic characteristics of the area. Therefore, there was no evidence of the mixing or dilution of the contaminants which would be injected, or of their ultimate point(s) of discharge into the surface waters surrounding Marathon Key.4 DOT and DER assert that "specific conditions" #4 and #5 attached to the subject permit will provide assurances that injection of the stormwater runoff will not cause or contribute to a violation of water quality standards. Those conditions provide: The following parameters shall be sampled at Well W-2 Florida Department of Transportation drawing sheet 3 of 5 and Well E-1 Florida Department of Transportation drawing sheet 4 of 5 and reported quarterly to the Department ninety (90) days following certification and placement of this facility in operation. The parameters to be sampled are: Napthalene, Lead and volatile organic compounds including: Trichloroethylene, Tetrachloroethylene, Carbon Tetrachloride, Vinyl Chloride, 1,1,1,-Trichloroethane, 1,2- Dichloroethane, Benzene, and Ethylene Dibromide. The discharge authorized by this permit shall be consistent at all times with the water quality standards set forth in Chapter 17-3, Florida Administrative Code. Should conditions in the receiving stream warrant, the Permittee may be required by the Department to upgrade, reduce, or cease the discharge approved by this permit and adopt an alternative method of disposal within a reasonable period of time. Under specific condition #4, the ground waters will be sampled at one injection well within each of the retention ponds. Without evidence of the mixing and flow characteristics of the groundwater, the reliability of the proposed monitoring program is questionable since it was not shown where, transitionally or ultimately, the pollutants would settle. Absent such proof, there is no evidence that the wells are sited so as to detect any water quality violations. Therefore, specific conditions #4 and #5 do not provide reasonable assurances that the proposed project will not cause or contribute to a violation of water quality standards.

Conclusions The Division of Administrative Hearings has jurisdiction over the parties to, and the subject matter of, these proceedings. Petitioners, Robert C. Ernst and Neighbors for Clean Canals (NCC), pursuant to Section 120.57, Florida Statutes, contest the decision of DER to issue a permit to DOT to construct four Class v, group five-stormwater drainage wells. Pertinent to this proceeding, Section 120.57 provides: The provisions of this section apply in all proceedings in which the substantial interests of a party are determined by an agency. When standing is resisted, as it is in this proceeding, the burden is on the protestant to prove standing. State, Department of Health and Rehabilitative Services, v. Alice P., 367 So. 2d 1045 (Fla. 1st DCA 1979). Chapter 120, Florida Statutes, does not attempt to define substantially affected persons. The Florida courts have, however, adopted the federal "injury-in-fact" and "zone of interest" tests governing standing. Montgomery v. Department of Health and Rehabilitative Services, 468 So. 2d 1014 (Fla. 1st DCA) 1985). Under this two-prong test, a person is substantially affected if he can demonstrate that he will suffer "injury-in- fact" which is of sufficient immediacy to entitle him to relief and the injury is of a type or nature which the proceeding is designed to protect (the "zone of interest"). Where, as here, an association institutes a proceeding on behalf of its members, it can be accorded standing only when it demonstrates that a substantial number of its members, although not necessarily a majority, are substantially affected by the proposed agency action, the nature of the injury is of a type which the proceeding is designed to protect: and, the relief requested is of a type appropriate for an association to receive on behalf of its members. See Florida Home Builders Assoc. v. Department of Labor and Employment Security, 412 So. 2d 351 (Fla. 1982). Mr. Ernst has demonstrated his standing to maintain this action. His home lies atop the groundwaters to be impacted by the proposed project and he uses the waters proximate to the proposed wells which could be adversely impacted if the wells were not properly constructed or sited. NCC failed, however, to demonstrate its standing since it failed to offer any evidence that a substantial number of its members could be substantially affected by the proposed project or that the interest sought to be protected was within the association's general scope of interest and purpose. Although Mr. Ernst has demonstrated standing, DOT asserts that his petition was untimely since it was filed more than three months after DOT received its permit. DOT's assertion is without merit. It is established law that persons whose substantial interests may be affected by proposed agency action must be accorded a point of entry into the proceedings. See Capeletti Brothers, Inc. v. Department of Transportation, 362 So. 2d 346 (Fla. 1st DCA 1978). Until accorded notice, actual or constructive, such person has not been offered a point of entry. Rule 17-103.150, F.A.C., provides a method to assure constructive notice is given to all substantially affected persons, and to limit the time within which a request for an administrative hearing may be filed. That rule provides that each person who filed an application for a DER permit may publish a notice of proposed agency action in a newspaper of general circulation in the county in which the activity will be located. If notice is published, a person whose substantial interests might be affected by the proposed action must file his request for hearing within 14 days of the date of publication. Significantly, the rule also provides: Since persons whose substantial interests are affected by a Department decision on a permit application may petition for an administrative proceeding within fourteen (14) days after receipt of notice and since, unless notice is given or published as prescribed in this rule, receipt of notice can occur at any time, the applicant or persons benefiting from the Department's action cannot justifiably rely on the finality of the Department's decision without the notice having been duly given or published. DOT elected not to publish notice under the provisions of Rule 17-103.150, F.A.C., and cannot justifiably rely on the finality of DER's decision. Mr. Ernst's petition for hearing, filed within a few days of his receipt of notice, was timely. 5 DER has jurisdiction over the permitting of the proposed four Class V, group five-stormwater drainage wells pursuant to Section 403.087, Florida Statutes, and Chapters 17-4 and 17-28, F.A.C. A party seeking approval to inject stormwater drainage into Class G-III water must provide reasonable assurances that the project will not violate water quality standards set forth in Rule 17-3.402(1), F.A.C. That rule provides: All ground water shall at all places and at all times be free from domestic, industrial, agricultural, or other man-induced non- thermal components of discharges in concentrations which, alone or in combination with other substances, or components of discharges (whether thermal or non-thermal): Are harmful to plants, animals, or organisms that are native to the soil and responsible for treatment or stabilization of the discharge relied upon by Department permits or Are carcinogenic, mutagenic, teratogenic, or toxic to human beings, unless specific criteria are established for such components in Rule 17-3.404: or Are acutely toxic to indigenous species of significance to the aquatic community within surface waters affected by the ground water at the point of contact with surface waters or Pose a serious danger to the public health, safety, or welfare; or Create or constitute a nuisance or Impair the reasonable and beneficial use of adjacent waters. DOT has failed to provide reasonable assurances that the proposed stormwater discharge will not cause or contribute to a violation of the groundwater standards set forth in Rule 17-3.402(1), Florida Administrative Code. Based on the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the Department of Environmental Regulation enter a Final Order: Dismissing the petition for hearing filed by Neighbors for Clean Canals, and Denying the issuance of permit number US44-104852 to the Department of Transportation. DONE AND ENTERED this 16th day of April, 1986, at Tallahassee, Florida. WILLIAM J. KENDRICK Hearing Officer Division of Administrative Hearings The Oakland Building 2009 Apalachee Parkway Tallahassee, Florida 32301 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 16th day of April, 1986.

Florida Laws (3) 120.57120.60403.087
# 6
ROBERT FOSTER, FLOY SAWYER, ET AL. vs. SAM RODGERS AND DEPARTMENT OF ENVIRONMENTAL REGULATION, 80-001440 (1980)
Division of Administrative Hearings, Florida Number: 80-001440 Latest Update: Jan. 19, 1981

Findings Of Fact As planned, Phase I of Foxwood Lake Estates will consist of 300 mobile homes, which would require treatment of up to 45,000 gallons of sewage per day. The proposed sewage treatment plant would have a capacity of 46,000 gallons per day and would be capable of expansion. It would discharge treated, chlorinated water into a completely clay-lined polishing pond that has been designed for the whole of Foxwood Lake Estates at build-out; capacity of the polishing pond would be three times the capacity necessary for Phase I by itself. From the polishing pond, water is to flow into one or both of two evaporation-percolation ponds, either of which would be big enough for all the sewage expected from Phase I. The sides of these ponds would be lined with clay and a clay plug would constitute the core of the dike on the downslope side of each pond. According to the uncontroverted evidence, effluent leaving the treatment plant for the polishing pond would have been effectively treated by the latest technology and would already have been sufficiently purified to meet the applicable DER water quality requirements. The applicant proposes to dig the triangular polishing pond in the northwest corner of the Foxwood Lake Estates property, some 400 feet east of the western property line. The evaporation-percolation ponds would lie adjacent to the polishing pond along an axis running northwest to southeast. Their bottoms would be at an elevation of 164.5 feet above mean sea level and they are designed to be three feet deep. The evaporation-percolation ponds would lie some 300 feet east of the western property line at their northerly end and some 400 feet east of the western property line at their southerly end. A berm eight feet wide along the northern edge of the northern evaporation-percolation pond would be 50 feet from the northern boundary of the applicant's property. Forrest Sawyer owns the property directly north of the site proposed for the evaporation-percolation ponds. He has a house within 210 feet of the proposed sewage treatment complex, a well by his house, and another well some 300 feet away next to a barn. Two or three acres in the southwest corner of the Sawyer property are downhill from the site proposed for the ponds. This low area, which extends onto the applicant's property, is extremely wet in times of normal rainfall. Together with his brother and his sister, Charles C. Krug owns 40 acres abutting the applicant's property to the west; their father acquired the property in 1926. They have a shallow well some 100 feet from the applicant's western property boundary, and farm part of the hill that slopes downward southwesterly from high ground on the applicant's property. Sweetgum and bayhead trees in the area are also a money crop. Charles C. Krug, whose chief source of income is from his work as an employee of the telephone company, remembers water emerging from this sloping ground in wet weather. Borings were done in two places near the site proposed for the ponds. An augur boring to a depth of six feet did not hit water. The other soil boring revealed that the water table was 8.8 feet below the ground at that point. The topsoil in the vicinity is a fine, dark gray sand about six inches deep. Below the topsoil lies a layer of fine, yellow-tan sand about 30 inches thick. A layer of coarser sand about a foot thick lies underneath the yellow-tan sand. Beginning four or five feet below the surface, the coarser sand becomes clayey and is mixed with traces of cemented sand. Clayey sand with traces of cemented sand is permeable but water percolates more slowly through this mixture than through the soils above it. The applicant caused a percolation test to be performed in the area proposed for the ponds. A PVC pipe six feet long and eight inches in diameter was driven into the ground to the depth proposed for the evaporation-percolation ponds and 50 gallons of water were poured down the pipe. This procedure was repeated on 14 consecutive days except that, after a few days, the pipe took only 36 gallons, which completely drained into the soil overnight. There was some rain during this 14-day period. Extrapolating from the area of the pipe's cross-section, Vincent Pickett, an engineer retained by the applicant, testified that the percolation rate of the soils was on the order of 103 gallons per square foot per day, as compared to the design assumption for the ponds of 1.83 or 1.87 gallons per square foot per day. Water percolating down through the bottoms of the evaporation- percolation ponds would travel in a southwesterly direction until it mixed with the groundwater under the applicant's property. It is unlikely that the ponds would overflow their berms even under hurricane conditions. Under wet conditions, however, the groundwater table may rise so that water crops out of the hillside higher up than normal. The proposed placement of the ponds makes such outcropping more likely, but it is impossible to quantify this enhanced likelihood in the absence of more precise information about, among other things, the configuration of the groundwater table.

Recommendation Upon consideration of the foregoing, it is RECOMMENDED: That DER grant the application on the conditions specified in its notice of intent to issue the same. Respectfully submitted and entered this 17th day of December, 1980, in Tallahassee, Florida. ROBERT T. BENTON, II Hearing Officer Division of Administrative Hearings Room 101, Carlton Building Tallahassee, Florida 32301 Telephone: 904/488-9675 FILED with the Clerk of the Division of Administrative Hearings this 17th day of December, 1980. COPIES FURNISHED: Andrew R. Reilly, Esquire Post Office Box 2039 Haines City, Florida 33844 Walter R. Mattson, Esquire 1240 East Lime Street Lakeland, Florida 33801 David M. Levin, Esquire Department of Environmental Regulation Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32301

# 7
SIERRA CLUB, INC., AND ST. JOHNS RIVERKEEPER, INC. vs SLEEPY CREEK LANDS, LLC AND ST. JOHNS RIVER WATER MANAGEMENT DISTRICT, 14-002608 (2014)
Division of Administrative Hearings, Florida Filed:Palatka, Florida Jun. 03, 2014 Number: 14-002608 Latest Update: Oct. 24, 2016

The Issue The issue to be determined is whether Consumptive Use Permit No. 2-083-91926-3, and Environmental Resource Permit No. IND-083-130588-4 should be issued as proposed in the respective proposed agency actions issued by the St. Johns River Water Management District.

Findings Of Fact The Parties Sierra Club, Inc., is a national organization, the mission of which is to explore, enjoy, and advocate for the environment. A substantial number of Sierra Club’s 28,000 Florida members utilize the Silver River, Silver Springs, the Ocklawaha River, and the St. Johns River for water-based recreational activities, which uses include kayaking, swimming, fishing, boating, canoeing, nature photography, and bird watching. St. Johns Riverkeeper, Inc., is one of 280 members of the worldwide Waterkeepers Alliance. Its mission is to protect, restore, and promote healthy waters of the St. Johns River, its tributaries, springs, and wetlands -- including Silver Springs, the Silver River, and the Ocklawaha River -- through citizen- based advocacy. A substantial number of St. Johns Riverkeeper’s more than 1,000 members use and enjoy the St. Johns River, the Silver River, Silver Springs, and the Ocklawaha River for boating, fishing, wildlife observation, and other water-based recreational activities. Karen Ahlers is a native of Putnam County, Florida, and lives approximately 15 miles from the Applicant’s property on which the permitted uses will be conducted. Ms. Ahlers currently uses the Ocklawaha River for canoeing, kayaking, and swimming, and enjoys birding and nature photography on and around the Silver River. Over the years, Ms. Ahlers has advocated for the restoration and protection of the Ocklawaha River, as an individual and as a past-president of the Putnam County Environmental Council. Jeri Baldwin lives on a parcel of property in the northeast corner of Marion County, approximately one mile from the Applicant’s property on which the permitted uses will be conducted. Ms. Baldwin, who was raised in the area, and whose family and she used the resources extensively in earlier years, currently uses the Ocklawaha River for boating. Florida Defenders of the Environment (FDE) is a Florida corporation, the mission of which is to conserve and protect and restore Florida's natural resources and to conduct environmental education projects. A substantial number of FDE’s 186 members, of which 29 reside in Marion County, Florida, use and enjoy Silver Springs, the Silver River, and the Ocklawaha Aquatic Preserve, and their associated watersheds in their educational and outreach activities, as well as for various recreational activities including boating, fishing, wildlife observation, and other water-based recreational activities. Sleepy Creek Lands, LLC (Sleepy Creek or Applicant), is an entity registered with the Florida Department of State to do business in the state of Florida. Sleepy Creek owns approximately 21,000 acres of land in Marion County, Florida, which includes the East Tract and the North Tract on which the activities authorized by the permits are proposed. St. Johns River Water Management District (SJRWMD or District) is a water-management district created by section 373.069(1). It has the responsibility to conserve, protect, manage, and control the water resources within its geographic boundaries. See § 373.069(2)(a), Fla. Stat. The Consumptive Use Permit The CUP is a modification and consolidation of two existing CUP permits, CUP No. 2-083-3011-7 and CUP No. 2-083- 91926-2, which authorize the withdrawal of 1.46 mgd from wells located on the East Tract. Although the existing CUP permits authorize an allocation of 1.46 mgd, actual use has historically been far less, and rarely exceeded 0.3 mgd. The proposed CUP modification will convert the authorized use of water from irrigation of 1,010 acres of sod grass on the East Tract, to supplemental irrigation of improved pasture for grass and other forage crops (approximately 97 percent of the proposed withdrawals) and cattle watering (approximately three percent of the proposed withdrawals) on the North Tract and the East Tract. An additional very small amount will be used in conjunction with the application of agricultural chemicals. CUP No. 2-083-3011-7 is due to expire in 2021. CUP No. 2-083-91926-2 is due to expire in 2024. In addition to the consolidation of the withdrawals into a single permit, the proposed agency action would extend the term of the consolidated permit to 20 years from issuance, with the submission of a compliance report due 10 years from issuance. Sleepy Creek calculated a water demand of 2.569 mgd for the production of grasses and forage crops necessary to meet the needs for grass-fed beef production, based on the expected demand in a 2-in-10 drought year. That calculation is consistent with that established in CUP Applicant’s Handbook (CUP A.H.) section 12.5.1. The calculated amount exceeds the authorized average allocation of 1.46 mgd. Mr. Jenkins testified as to the District’s understanding that the requested amount would be sufficient, since the proposed use was a “scaleable-type project,” with adjustments to cattle numbers made as necessary to meet the availability of feed. Regardless of demand, the proposed permit establishes the enforceable withdrawal limits applicable to the property. With regard to the East Tract, the proposed agency action reduces the existing 1.46 mgd allocation for that tract to a maximum allocation of 0.464 mgd, and authorizes the irrigation of 611 acres of pasture grass using existing extraction wells and six existing pivots. With regard to the North Tract, the proposed agency action authorizes the irrigation of 1,620 acres of pasture and forage grain crops using 15 center pivot systems. Extraction wells to serve the North Tract pivots will be constructed on the North Tract. The proposed North Tract withdrawal wells are further from Silver Springs than the current withdrawal locations. The proposed CUP allows Sleepy Creek to apply the allocated water as it believes to be appropriate to the management of the cattle operation. Although the East Tract is limited to a maximum of 0.464 mgd, there is no limitation on the North Tract. Thus, Sleepy Creek could choose to apply all of the 1.46 mgd on the North Tract. For that reason, the analysis of impacts from the irrigation of the North Tract has generally been based on the full 1.46 mgd allocation being drawn from and applied to the North Tract. The Environmental Resource Permit As initially proposed, the CUP had no elements that would require issuance of an ERP. However, in order to control the potential for increased runoff and nutrient loading resulting from the irrigation of the pastures, Sleepy Creek proposes to construct a stormwater management system to capture runoff from the irrigated pastures, consisting of a series of vegetated upland buffers, retention berms and redistribution swales between the pastures and downgradient wetland features. Because the retention berm and swale system triggered the permitting thresholds in rule 62-330.020(2)(d) (“a total project area of more than one acre”) and rule 62-330.020(2)(e) (“a capability of impounding more than 40 acre-feet of water”), Sleepy Creek was required to obtain an Environmental Resource Permit for its construction. Regional Geologic Features To the west of the North Tract is a geologic feature known as the Ocala Uplift or Ocala Platform, in which the limestone that comprises the Floridan aquifer system exists at or very near the land surface. Karst features, including subterranean conduits and voids that can manifest at the land surface as sinkholes, are common in the Ocala Uplift due in large part to the lack of consolidated or confining material overlaying the limestone. Water falling on the surface of such areas tends to infiltrate rapidly through the soil into the Floridan aquifer, occasionally through direct connections such as sinkholes. The lack of confinement in the Ocala Uplift results in few if any surface-water features such as wetlands, creeks, and streams. As one moves east from the Ocala Uplift, a geologic feature known as the Cody Escarpment becomes more prominent. In the Cody Escarpment, the limestone becomes increasingly overlain by sands, shell, silt, clays, and other less permeable sediments of the Hawthorn Group. The North Tract and the East Tract lie to the east of the point at which the Cody Escarpment becomes apparent. As a result, water tends to flow overland to wetlands and other surface water features. The Property The North and East Tracts are located in northern Marion County near the community of Fort McCoy. East Tract Topography and Historic Use The East Tract is located in the Daisy Creek Basin, and includes the headwaters of a small creek that drains directly to the Ocklawaha River. The historic use of the East Tract has been as a cleared 1,010-acre sod farm. The production of sod included irrigation, fertilization, and pest control. Little change in the topography, use, and appearance of the property will be apparent as a result of the permits at issue, but for the addition of grazing cattle. The current CUPs that are subject to modification in this proceeding authorize groundwater withdrawals for irrigation of the East Tract at the rate of 1.46 mgd. Since the proposed agency action has the result of reducing the maximum withdrawal from wells on the East Tract to 0.464 mgd, thus proportionately reducing the proposed impacts, there was little evidence offered to counter Sleepy Creek’s prima facie case that reasonable assurance was provided that the proposed East Tract groundwater withdrawal allocation will meet applicable CUP standards. There are no stormwater management structures to be constructed on the East Tract. Therefore, the ERP permit discussed herein is not applicable to the East Tract. North Tract Topography and Historic Use The North Tract has a generally flat topography, with elevations ranging from 45 feet to 75 feet above sea level. The land elevation is highest at the center of the North Tract, with the land sloping towards the Ocklawaha River to the east, and to several large wet prairie systems to the west. Surface water features on the North Tract include isolated, prairie, and slough-type wetlands on approximately 28 percent of the North Tract, and a network of creeks, streams, and ditches, including the headwaters of Mill Creek, a contributing tributary of the Ocklawaha River. A seasonal high groundwater elevation on the North Tract is estimated at 6 to 14 inches below ground surface. The existence of defined creeks and surface water features supports a finding that the North Tract is underlain by a relatively impermeable confining layer that impedes the flow of water from the surface and the shallow surficial aquifer to the upper Floridan and lower Floridan aquifers. If there was no confining unit, water going onto the surface of the property, either in the form of rain or irrigation water, would percolate unimpeded to the lower aquifers. Areas in the Ocala Uplift to the west of the North Tract, where the confining layer is thinner and discontiguous, contain few streams or runoff features. Historically, the North Tract was used for timber production, with limited pasture and crop lands. At the time the 7,207-acre North Tract was purchased by Sleepy Creek, land use consisted of 4,061 acres of planted pine, 1,998 acres of wetlands, 750 acres of improved pasture, 286 acres of crops, 78 acres of non-forested uplands, 20 acres of native forest, 10 acres of open water, and 4 acres of roads and facilities. Prior to the submission of the CUP and ERP applications, much of the planted pine was harvested, and the land converted to improved pasture. Areas converted to improved pasture include those proposed for irrigation, which have been developed in the circular configuration necessary for future use with center irrigation pivots. As a result of the harvesting of planted pine, and the conversion of about 345 acres of cropland and non-forested uplands to pasture and incidental uses, total acreage in pasture on the North Tract increased from 750 acres to 3,938 acres. Other improvements were constructed on the North Tract, including the cattle processing facility. Aerial photographs suggest that the conversion of the North Tract to improved pasture and infrastructure to support a cattle ranch is substantially complete. The act of converting the North Tract from a property dominated by planted pine to one dominated by improved pasture, and the change in use of the East Tract from sod farm to pasture, were agricultural activities that did not require a permit from the District. As such, there is no impropriety in considering the actual, legal use of the property in its current configuration as the existing use for which baseline conditions are to be measured. Petitioners argue that the baseline conditions should be measured against the use of the property as planted pine plantation, and that Sleepy Creek should not be allowed to “cattle-up” before submitting its permit applications, thereby allowing the baseline to be established as a higher impact use. However, the applicable rules and statutes provide no retrospective time-period for establishing the nature of a parcel of property other than that lawfully existing when the application is made. See West Coast Reg’l Water Supply Auth. v. SW Fla. Water Mgmt. Dist., Case No. 95-1520 et seq., ¶ 301 (Fla. DOAH May 29, 1997; SFWMD ) (“The baseline against which projected impacts conditions [sic] are those conditions, including previously permitted adverse impacts, which existed at the time of the filing of the renewal applications.”). The evidence and testimony in this case focused on the effects of the water allocation on the Floridan aquifer, Silver Springs, and the Silver River, and on the effects of the irrigation on water and nutrient transport from the properties. It was not directed at establishing a violation of chapter 373, the rules of the SJRWMD, or the CUP Applicant’s Handbook with regard to the use and management of the agriculturally-exempt unirrigated pastures, nor did it do so. Soil Types Soils are subject to classifications developed by the Soil Conservation Service based on their hydrologic characteristics, and are grouped into Group A, Group B, Group C, or Group D. Factors applied to determine the appropriate hydrologic soil group on a site-specific basis include depth to seasonal high saturation, the permeability rate of the most restrictive layer within a certain depth, and the depth to any impermeable layers. Group A includes the most well-drained soils, and Group D includes the most poorly-drained soils. Group D soils are those with seasonal high saturation within 24 inches of the soil surface and a higher runoff potential. The primary information used to determine the hydrologic soil groups on the North Tract was the depth to seasonal-high saturation, defined as the highest expected annual elevation of saturation in the soil. Depth to seasonal-high saturation was measured through a series of seven hand-dug and augered soil borings completed at various locations proposed for irrigation across the North Tract. In determining depth to seasonal-high saturation, the extracted soils were examined based on depth, color, texture, and other relevant characteristics. In six of the seven locations at which soil borings were conducted, a restrictive layer was identified within 36 inches of the soil surface. At one location at the northeastern corner of the North Tract, the auger hole ended at a depth of 48 inches -- the length of the auger -- at which depth there was an observable increase in clay content but not a full restrictive layer. However, while the soil assessment was ongoing, a back-hoe was in operation approximately one hundred yards north of the boring location. Observations of that excavation revealed a heavy clay layer at a depth of approximately 5 feet. In each of the locations, the depth to seasonal-high saturation was within 14 inches of the soil surface. Based on the consistent observation of seasonal-high saturation at each of the sampled locations, as well as the flat topography of the property with surface water features, the soils throughout the property, with the exception of a small area in the vicinity of Pivot 6, were determined to be in hydrologic soil Group D. Hydrogeologic Features There are generally five hydrogeologic units underlying the North Tract, those units being the surficial aquifer system, the intermediate confining unit, the upper Floridan aquifer, the middle confining unit, and the lower Floridan aquifer. In areas in which a confining layer is present, water falling on the surface of the land flows over the surface of the land or across the top of the confining layer. A surficial aquifer, with a relatively high perched water table, is created by the confinement and separation of surface waters from the upper strata of the Floridan aquifer. Surface waters are also collected in or conveyed by various surface water features, including perched wetlands, creeks, and streams. The preponderance of the evidence adduced at the final hearing demonstrates that the surficial aquifer exists on the property to a depth of up to 20 feet below the land surface (bls). Beneath the surficial aquifer is an intermediate confining unit of dense clay interspersed with beds of sand and calcareous clays that exists to a depth of up to 100 feet bls. The clay material observed on the North Tract is known as massive or structureless. Such clays are restrictive with very low levels of hydraulic conductivity, and are not conducive to development of preferential flow paths to the surficial or lower aquifers. The intermediate confining unit beneath the North Tract restricts the exchange of groundwater from the surficial aquifer to the upper Floridan aquifer. The upper Floridan aquifer begins at a depth of approximately 100 feet bls, and extends to a depth of approximately 340 feet bls. At about 340 feet bls, the upper Floridan aquifer transitions to the middle confining unit, which consists of finely grained, denser material that separates the interchange of water between the upper Floridan aquifer and the lower Floridan aquifer. Karst Features Karst features form as a result of water moving through rock that comprises the aquifer, primarily limestone, dissolving and forming conduits in the rock. Karst areas present a challenging environment to simulate through modeling. Models assume the subsurface to be a relatively uniform “sand box” through which it is easier to simulate groundwater flow. However, if the subsurface contains conduits, it becomes more difficult to simulate the preferential flows and their effect on groundwater flow paths and travel times. The District has designated parts of western Alachua County and western Marion County as a Sensitive Karst Area Basin. A Sensitive Karst Area is a location in which the porous limestone of the Floridan aquifer occurs within 20 feet of the land surface, and in which there is 10 to 20 inches of annual recharge to the Floridan aquifer. The designation of an area as being within the Sensitive Karst Area Basin does not demonstrate that it does, or does not, have subsurface features that are karstic in nature, or that would provide a connection between the surficial aquifer and the Floridan aquifer. The western portion of the North Tract is within the Sensitive Karst Area Basin. The two intensive-use areas on the North Tract that have associated stormwater facilities -- the cattle unloading area and the processing facility -- are outside of the Sensitive Karst Area Basin. The evidence was persuasive that karst features are more prominent to the west of the North Tract. In order to evaluate the presence of karst features on the North Tract, Mr. Andreyev performed a “desktop-type evaluation,” with a minimal field survey. The desktop review included a review of aerial photographs and an investigation of available data, including the Florida Geological Survey database of sinkhole occurrence in the area. The aerial photographs showed circular depressions suggestive of karst activity west and southwest of the North Tract, but no such depressions on the North Tract. Soil borings taken on the North Tract indicated the presence of layers of clayey sand, clays, and silts at a depth of 70 to 80 feet. Well-drilling logs taken during the development of the wells used for an aquifer performance test on the North Tract showed the limestone of the Floridan aquifer starting at a depth below ground surface of 70 to 80 feet. Other boring data generated on the North Tract suggests that there is greater than 100 feet of clay and sandy clay overburden above the Floridan aquifer on and in the vicinity of the North Tract. Regardless of site-specific differences, the observed confining layer separating the surficial aquifer from the Floridan aquifer is substantial, and not indicative of a karst environment. Aquifer performance tests performed on the North Tract were consistent in showing that drawdown in the surficial aquifer from the tests was minimal to non-detectable, which is strong evidence of an intact and low-permeability confining layer. The presence of well-developed drainage features on the North Tract is further evidence of a unit of confinement that is restricting water from going deeper into the subsurface, and forcing it to runoff to low-lying surface water features. Petitioners’ witnesses did not perform any site- specific analysis of karst features on or around the Sleepy Creek property. Their understanding of the nature of the karst systems in the region was described as “hypothetical or [] conceptual.” Dr. Kincaid admitted that he knew of no conduits on or adjacent to the North Tract. As a result of the data collected from the North Tract, Mr. Hearn opined that the potential for karst features on the property that provide an opening to the upper Floridan aquifer “is extremely remote.” Mr. Hearn’s opinion is consistent with the preponderance of the evidence in this case, and is accepted. In the event a surface karst feature were to manifest itself, Sleepy Creek has proposed that the surface feature be filled and plugged to reestablish the integrity of the confining layer. More to the point, the development of a surficial karst feature in an area influenced by irrigation would be sufficient grounds for the SJRWMD to reevaluate and modify the CUP to account for any changed conditions affecting the assumptions and bases for issuance of the CUP. Silver Springs, the Silver River, and the Ocklawaha River The primary, almost exclusive concern of Petitioners was the effect of the modified CUP and the nutrients from the proposed cattle ranch on Silver Springs, the Silver River, and the Ocklawaha River. Silver Springs Silver Springs has long been a well-known attraction in Florida. It is located just to the east of Ocala, Florida. Many of the speakers at the public comment period of this proceeding spoke fondly of having frequented Silver Springs over the years, enjoying its crystal clear waters through famous glass-bottomed boats. For most of its recorded history, Silver Springs was the largest spring by volume in Florida. Beginning in the 1970s, it began to lose its advantage, and by the year 2000, Rainbow Springs, located in southwestern Marion County, surpassed Silver Springs as the state’s largest spring. Silver Springs exists at the top of the potentiometric surface of the Floridan aquifer. Being at the “top of the mountain,” when water levels in the Floridan aquifer decline, groundwater flow favors the lower elevation springs. Thus, surrounding springshed boundaries expand to take more water to maintain their baseflows, at the expense of the Silver Springs springshed, which contracts. Rainbow Springs shares an overlapping springshed with Silver Springs. The analogy used by Dr. Knight was of the aquifer as a bucket with holes at different levels, and with the Silver Springs “hole” near the top of the bucket. When the water level in the bucket is high, water will flow from the top hole. As the water level drops below that hole, it will preferentially flow from the lower holes. Rainbow Springs has a vent or outlet from the aquifer, that is 10 feet lower in elevation than that of Silver Springs. Coastal springs are lower still. Thus, as groundwater levels decline, the lower springs “pirate flow” from the upper springs. Since the first major studies of Silver Springs were conducted in the 1950s, the ecosystem of Silver Springs has undergone changes. The water clarity, though still high as compared to other springs, has been reduced by 10 to 15 percent. Since the 1950s, macrophytic plants, i.e., rooted plants with seeds and flowers, have declined in population, while epiphytic and benthic algae have increased. Those plants are sensitive to increases in nitrogen in the water. Thus, Dr. Knight’s opinion that increases in nitrogen emerging from Silver Springs, calculated to have risen from just over 0.4 mg/l in the 1950s, to 1.1 mg/l in 2004, and to up to 1.5 mg/l at present,1/ have caused the observed vegetative changes is accepted. Silver River Silver Springs forms the headwaters for the Silver River, a spring run 5 1/2 miles in length, at which point it becomes a primary input to the Ocklawaha River. Issues of water clarity and alteration of the vegetative regime that exist at Silver Springs are also evident in the Silver River. In addition, the reduction in flow allows for more tannic water to enter the river, further reducing clarity. Dr. Dunn recognized the vegetative changes in the river, and opined that the “hydraulic roughness” caused by the increase in vegetation is likely creating a spring pool backwater at Silver Springs, thereby suppressing some of the flow from the spring. The Silver River has been designated as an Outstanding Florida Water. There are currently no Minimum Flows and Levels established by the District for the Silver River. Ocklawaha River The Ocklawaha River originates near Leesburg, Florida, at the Harris Chain of Lakes, and runs northward past Silver Springs. The Silver River is a major contributor to the flow of the Ocklawaha River. Due to the contribution of the Silver River and other spring-fed tributaries, the Ocklawaha River can take on the appearance of a spring run during periods of low rainfall. Historically, the Ocklawaha River flowed unimpeded to its confluence with the St. Johns River in the vicinity of Palatka, Florida. In the 1960s, as part of the Cross-Florida Barge Canal project, the Rodman Dam was constructed across the Ocklawaha River north of the Sleepy Creek property, creating a large reservoir known as the Rodman Pool. Dr. Knight testified convincingly that the Rodman Dam and Pool have altered the Ocklawaha River ecosystem, precipitating a decline in migratory fish populations and an increase in filamentous algae. At the point at which the Ocklawaha River flows past the Sleepy Creek property, it retains its free-flowing characteristics. Mill Creek, which has its headwaters on the North Tract, is a tributary of the Ocklawaha River. The Ocklawaha River, from the Eureka Dam south, has been designated as an Outstanding Florida Water. However, the Ocklawaha River at the point at which Mill Creek or other potential surface water discharges from the Sleepy Creek property might enter the river are not included in the Outstanding Florida Water designation. There are currently no Minimum Flows and Levels established by the District for the Ocklawaha River. The Silver Springs Springshed A springshed is that area from which a spring draws water. Unlike a surface watershed boundary, which is fixed based on land features, contours, and elevations, a springshed boundary is flexible, and changes depending on a number of factors, including rainfall. As to Silver Springs, its springshed is largest during periods of more abundant rainfall when the aquifer is replenished, and smaller during drier periods when groundwater levels are down, and water moves preferentially to springs and discharge points that are lower in elevation. The evidence in this case was conflicting as to whether the North Tract is in or out of the Silver Springs springshed boundary. Dr. Kincaid indicated that under some of the springshed delineations, part of the North Tract was out of the springshed, but over the total period of record, it is within the springshed. Thus, it was Dr. Kincaid’s opinion that withdrawals anywhere within the region will preferentially impact Silver Springs, though he admitted that he did not have the ability to quantify his opinion. Dr. Knight testified that the North Tract is within the Silver Springs “maximum extent” springshed at least part of the time, if not all the time. He did not opine as to the period of time in which the Silver Springs springshed was at its maximum extent. Dr. Bottcher testified that the North Tract is not within the Silver Springs springshed because there is a piezometric rise between North Tract and Silver Springs. Thus, in his opinion, withdrawals at the North Tract would not be withdrawing water going to Silver Springs. Dr. Dunn agreed that the North Tract is on the groundwater divide for Silver Springs. In his view, the North Tract is sometimes in, and sometimes out of the springshed depending on the potentiometric surface. In his opinion, the greater probability is that the North Tract is more often outside of the Silver Springs springshed, with seasonal and year—to—year variation. Dr. Dunn’s opinion provides the most credible explanation of the extent to which the North Tract sits atop that portion of the lower Floridan aquifer that feeds to Silver Springs. Thus, it is found that the groundwater divide exists to the south of the North Tract for a majority of the time, and water entering the Floridan aquifer from the North Tract will, more often than not, flow away from Silver Springs. Silver Springs Flow Volume The Silver Springs daily water discharge has been monitored and recorded since 1932. Over the longest part of the period of record, up to the 1960s, flows at Silver Springs averaged about 800 cubic feet per second (cfs). Through 1989, there was a reasonable regression between rainfall and springflow, based on average rainfalls. The long-term average rainfall in Ocala was around 50 inches per year, and long-term springflow was about 800 cfs, with deviations from average generally consistent with one another. Between 1990 and 1999, the relationship between rainfall and springflow declined by about 80 cubic feet per second. Thus, with average rainfall of 50 inches per year, the average springflow was reduced to about 720 cfs. From 2000 to 2009, there was an additional decline, such that the total cumulative decline for the 20-year period through 2009 was 250 cfs. Dr. Dunn agreed with Dr. Knight that after 2000, there was an abrupt and persistent reduction in flow of about 165 cfs. However, Dr. Dunn did not believe the post-2000 flow reduction could be explained by rainfall directly, although average rainfall was less than normal. Likewise, groundwater withdrawals did not offer an adequate explanation. Dr. Dunn described a natural 30-year cycle of wetter and drier periods known as the Atlantic Multidecadal Oscillation (AMO) that has manifested itself over the area for the period of record. From the 1940s up through 1970, the area experienced an AMO wet cycle with generally higher than normal rainfall at the Ocala rain station. For the next 30-year period, from 1970 up to 2000, the Ocala area ranged from a little bit drier to some years in which it was very, very dry. Dr. Dunn attributed the 80 cfs decline in Silver Springs flow recorded in the 1990s to that lower rainfall cycle. After 2000, when the next AMO cycle would be expected to build up, as it did post—1940, it did not happen. Rather, there was a particularly dry period around 2000 that Dr. Dunn believes to have had a dramatic effect on the lack of recovery in the post-2000 flows in the Silver River. According to Mr. Jenkins, that period of deficient rainfall extended through 2010. Around the year 2001, the relationship between rainfall and flow changed such that for a given amount of rainfall, there was less flow in the Silver River, with flow dropping to as low as 535 cfs after 2001. It is that reduction in flow that Dr. Knight has attributed to groundwater withdrawals. It should be noted that the observed flow of Silver Springs that formed the 1995 baseline conditions for the North Central Florida groundwater model that will be discussed herein was approximately 706 cfs. At the time of the final hearing in August 2014, flow at Silver Springs was 675 cfs. The reason offered for the apparent partial recovery was higher levels of rainfall, though the issue was not explored in depth. For the ten-year period centered on the year 2000, local water use within Marion and Alachua County, closer to Silver Springs, changed little -- around one percent per year. From a regional perspective, groundwater use declined at about one percent per year for the period from 1990 to 2010. The figures prepared by Dr. Knight demonstrate that the Sleepy Creek project area is in an area that has a very low density of consumptive use permits as compared to areas adjacent to Silver Springs and more clearly in the Silver Springs springshed. In Dr. Dunn’s opinion, there were no significant changes in groundwater use either locally or regionally that would account for the flow reduction in Silver Springs from 1990 to 2010. In that regard, the environmental report prepared by Dr. Dunn and submitted with the CUP modification application estimated that groundwater withdrawals accounted for a reduction in flow at Silver Springs of approximately 20 cfs as measured against the period of record up to the year 2000, with most of that reduction attributable to population growth in Marion County. In the March 2014, environmental impacts report, Dr. Dunn described reductions in the stream flow of not only the Silver River, but of other tributaries of the lower Ocklawaha River, including the upper Ocklawaha River at Moss Bluff and Orange Creek. However, an evaluation of the Ocklawaha River water balance revealed there to be additional flow of approximately 50 cfs coming into the Ocklawaha River at other stations. Dr. Dunn suggested that changes to the vent characteristics of Silver Springs, and the backwater effects of increased vegetation in the Silver River, have resulted in a redistribution of pressure to other smaller springs that discharge to the Ocklawaha River, accounting for a portion of the diminished flow at Silver Springs. The Proposed Cattle Operation Virtually all beef cattle raised in Florida, upon reaching a weight of approximately 875 pounds, are shipped to Texas or Kansas to be fattened on grain to the final body weight of approximately 1,150 pounds, whereupon they are slaughtered and processed. The United States Department of Agriculture has a certification for grass—fed beef which requires that, after an animal is weaned, it can only be fed on green forage crops, including grasses, and on corn and grains that are cut green and before they set seed. The forage crops may be grazed or put into hay or silage and fed when grass and forage is dormant. The benefit of grass feeding is that a higher quality meat is produced, with a corresponding higher market value. Sleepy Creek plans to develop the property as a grass- fed beef production ranch, with pastures and related loading/unloading and slaughter/processing facilities where calves can be fattened on grass and green grain crops to a standard slaughter weight, and then slaughtered and processed locally. By so doing, Sleepy Creek expects to save the transportation and energy costs of shipping calves to the Midwest, and to generate jobs and revenues by employing local people to manage, finish, and process the cattle. As they currently exist, pastures proposed for irrigation have been cleared and seeded, and have “fairly good grass production.” The purpose of the irrigation is to enhance the production and quality of the grass in order to maintain the quality and reliability of feed necessary for the production of grass-fed beef. East Tract Cattle Operation The East Tract is 1,242 acres in size, substantially all of which was previously cleared, irrigated, and used for sod production. The proposed CUP permit authorizes the irrigation of 611 acres of pasture under six existing center pivots. The remaining 631 acres will be used as improved, but unirrigated, pasture. Under the proposed permit, a maximum of 1,207 cattle would be managed on the East Tract. Of that number, 707 cattle would be grazed on the irrigated paddocks, and 500 cattle would be grazed on the unirrigated improved pastures. If the decision is made to forego irrigation on the East Tract, with the water allocation being used on the North Tract or not at all, the number of cattle grazed on the six center pivot pastures would be decreased from 707 cattle to 484 cattle. The historic use of the East Tract as a sod farm resulted in high phosphorus levels in the soil from fertilization, which has made its way to Daisy Creek. Sleepy Creek has proposed a cattle density substantially below that allowed by application of the formulae in the Nutrient Management Plan in order to “mine” the phosphorus levels in the soil over time. North Tract Cattle Operation The larger North Tract includes most of the “new” ranch activities, having no previous irrigation, and having been put to primarily silvicultural use with limited pasture prior to its acquisition by Sleepy Creek. The ranch’s more intensive uses, i.e., the unloading corrals and the slaughter house, are located on the North Tract. The North Tract is 7,207 acres in size. Of that, 1,656 acres are proposed for irrigation by means of 15 center- pivot irrigation systems. In addition to the proposed irrigated pastures, the North Tract includes 2,382 acres of unirrigated improved pasture, of which approximately 10 percent is wooded. Under the proposed permit, a maximum of 6,371 cattle would be managed on the North Tract. Of that number, 3,497 cattle would be grazed on the irrigated paddocks (roughly 2.2 head of cattle per acre), and 2,374 cattle would graze on the improved pastures (up to 1.1 head of cattle per acre). The higher cattle density in the irrigated pastures can be maintained due to the higher quality grass produced as a result of irrigation. The remaining 500 cattle would be held temporarily in high-concentration corrals, either after offloading or while awaiting slaughter. On average, there will be fewer than 250 head of cattle staged in those high-concentration corrals at any one time. In the absence of irrigation, the improved pasture on the North Tract could sustain about 4,585 cattle. Nutrient Management Plan, Water Conservation Plan, and BMPs The CUP and ERP applications find much of their support in the implementation of the Nutrient Management Plan (NMP), the Water Conservation Plan, and Best Management Practices (BMPs). The NMP sets forth information designed to govern the day to day operations of the ranch. Those elements of the NMP that were the subject of substantive testimony and evidence at the hearing are discussed herein. Those elements not discussed herein are found to have been supported by Sleepy Creek’s prima facie case, without a preponderance of competent and substantial evidence to the contrary. The NMP includes a herd management plan, which describes rotational grazing and the movement of cattle from paddock to paddock, and establishes animal densities designed to maintain a balance of nutrients on the paddocks, and to prevent overgrazing. The NMP establishes fertilization practices, with the application of fertilizer based on crop tissue analysis to determine need and amount. Thus, the application of nitrogen- based fertilizer is restricted to that capable of ready uptake by the grasses and forage crops, limiting the amount of excess nitrogen that might run off of the pastures or infiltrate past the root zone. The NMP establishes operation and maintenance plans that incorporate maintenance and calibration of equipment, and management of high-use areas. The NMP requires that records be kept of, among other things, soil testing, nutrient application, herd rotation, application of irrigation water, and laboratory testing. The irrigation plan describes the manner and schedule for the application of water during each irrigation cycle. Irrigation schedules for grazed and cropped scenarios vary from pivot to pivot based primarily on soil type. The center pivots proposed for use employ high-efficiency drop irrigation heads, resulting in an 85 percent system efficiency factor, meaning that there is an expected evaporative loss of 15 percent of the water before it becomes available as water in the soil. That level of efficiency is greater than the system efficiency factor of 80 percent established in CUP A.H. section 12.5.2. Other features of the irrigation plan include the employment of an irrigation manager, installation of an on-site weather station, and cumulative tracking of rain and evapotranspiration with periodic verification of soil moisture conditions. The purpose of the water conservation practices is to avoid over application of water, limiting over-saturation and runoff from the irrigated pastures. Sleepy Creek has entered into a Notice of Intent to Implement Water Quality BMPs with the Florida Department of Agriculture and Consumer Services which is incorporated in the NMP and which requires the implementation of Best Management Practices.2/ Dr. Bottcher testified that implementation and compliance with the Water Quality Best Management Practices manual creates a presumption of compliance with water quality standards. His testimony in that regard is consistent with Department of Agriculture and Consumer Services rule 5M-11.003 (“implementation, in accordance with adopted rules, of BMPs that have been verified by the Florida Department of Environmental Protection as effective in reducing target pollutants provides a presumption of compliance with state water quality standards.”). Rotational Grazing Rotational grazing is a practice by which cattle are allowed to graze a pasture for a limited period of time, after which they are “rotated” to a different pasture. The 1,656 acres proposed for irrigation on the North Tract are to be divided into 15 center-pivot pastures. Each individual pasture will have 10 fenced paddocks. The 611 acres of irrigated pasture on the East Tract are divided into 6 center-pivot pastures. The outer fence for each irrigated pasture is to be a permanent “hard” fence. Separating the internal paddocks will be electric fences that can be lowered to allow cattle to move from paddock to paddock, and then raised after they have moved to the new paddock. The NMP for the North Tract provides that cattle are to be brought into individual irrigated pastures as a single herd of approximately 190 cattle and placed into one of the ten paddocks. They will be moved every one to three days to a new paddock, based upon growing conditions and the reduction in grass height resulting from grazing. In this way, the cattle are rotated within the irrigated pasture, with each paddock being used for one to three days, and then rested until each of the other paddocks have been used, whereupon it will again be used in the rotation. The East Tract NMP generally provides for rotation based on the height of the pasture grasses, but is designed to provide a uniform average of cattle per acre per year. Due to the desire to “mine” phosphorus deposited during the years of operation of the East Tract as a sod farm, the density of cattle on the irrigated East Tract pastures is about 30 percent less than that proposed for the North Tract. The East Tract NMP calls for a routine pasture rest period of 15 to 30 days. Unlike dairy farm pastures, where dairy cows traverse a fixed path to the milking barn several times a day, there will be minimal “travel lanes” within the pastures or between paddocks. There will be no travel lanes through wetlands. If nitrogen-based fertilizer is needed, based upon tissue analysis of the grass, fertilizer is proposed for application immediately after a paddock is vacated by the herd. By so doing, the grass within each paddock will have a sufficient period to grow and “flush up” without grazing or traffic, which results in a high—quality grass when the cattle come back around to feed. Sleepy Creek proposes that rotational grazing is to be practiced on improved pastures and irrigated pastures alike. The rotational practices on the improved East Tract and North Tract pastures are generally similar to those practiced on the irrigated pastures. The paddocks will have permanent watering troughs, with one trough serving two adjacent paddocks. The troughs will be raised to prevent “boggy areas” from forming around the trough. Since the area around the troughs will be of a higher use, Sleepy Creek proposes to periodically remove accumulated manure, and re-grade if necessary. Other cattle support items, including feed bunkers and shade structures are portable and can be moved as conditions demand. Forage Crop Production The primary forage crop on the irrigated pastures is to be Bermuda grass. Bermuda grass or other grass types tolerant of drier conditions will be used in unirrigated pastures. During the winter, when Bermuda grass stops growing, Sleepy Creek will overseed the North Tract pastures with ryegrass or other winter crops. Due to the limitation on irrigation water, the East Tract NMP calls for no over-seeding for production of winter crops. Crops do not grow uniformly during the course of a year. Rather, there are periods during which there are excess crops, and periods during which the crops are not growing enough to keep up with the needs of the cattle. During periods of excess, Sleepy Creek will cut those crops and store them as haylage to be fed to the cattle during lower growth periods. The North Tract management plan allows Sleepy Creek to dedicate one or more irrigated pastures for the exclusive production of haylage. If that option is used, cattle numbers will be reduced in proportion to the number of pastures dedicated to haylage production. As a result of the limit on irrigation, the East Tract NMP does not recommend growing supplemental feed on dedicated irrigation pivot pastures. Direct Wetland Impacts Approximately 100 acres proposed for irrigation are wetlands or wetland buffer. Those areas are predominantly isolated wetlands, though some have surface water connections to Mill Creek, a water of the state. Trees will be cut in the wetlands to allow the pivot to pass overhead. Tree cutting is an exempt agricultural activity that does not require a permit. There was no persuasive evidence that cutting trees will alter the fundamental benefit of the wetlands or damage water resources of the District. The wetlands and wetland buffer will be subject to the same watering and fertigation regimen as the irrigated pastures. The application of water to wetlands, done concurrently with the application of water to the pastures, will occur during periods in which the pasture soils are dry. The incidental application of water to the wetlands during dry periods will serve to maintain hydration of the wetlands, which is considered to be a benefit. Fertilizers will be applied through the irrigation arms, a process known as fertigation. Petitioners asserted that the application of fertilizer onto the wetlands beneath the pivot arms could result in some adverse effects to the wetlands. However, Petitioners did not quantify to what extent the wetlands might be affected, or otherwise describe the potential effects. Fertigation of the wetlands will promote the growth of wetland plants. Nitrogen applied through fertigation will be taken up by plants, or will be subject to denitrification -- a process discussed in greater detail herein -- in the anaerobic wetland soils. The preponderance of the evidence indicated that enhanced wetland plant growth would not rise to a level of concern. Since most of the affected wetlands are isolated wetlands, there is expected to be little or no discharge of nutrients from the wetlands. Even as to those wetlands that have a surface water connection, most, if not all of the additional nitrogen applied through fertigation will be accounted for by the combined effect of plant uptake and denitrification. Larger wetland areas within an irrigated pasture will be fenced at the buffer line to prevent cattle from entering. The NMP provided a blow-up of the proposed fencing related to a larger wetland on Pivot 8. Although other figures are not to the same scale, it appears that larger wetlands associated with Pivots 1, 2, 3, and 12 will be similarly fenced. Cattle would be allowed to go into the smaller, isolated wetlands. Cattle going into wetlands do not necessarily damage the wetlands. Any damage that may occur is a function of density, duration, and the number of cattle. The only direct evidence of potential damage to wetlands was the statement that “[i]f you have 6,371 [cattle] go into a wetland, there may be impacts.” The NMP provides that pasture use will be limited to herds of approximately 190 cattle, which will be rotated from paddock to paddock every two to three days, and which will allow for “rest” periods of approximately 20 days. There will be no travel lanes through any wetland. Thus, there is no evidence to support a finding that the cattle at the density, duration, and number proposed will cause direct adverse effects to wetlands on the property. High Concentration Areas Cattle brought to the facility are to be unloaded from trucks and temporarily corralled for inspection. For that period, the cattle will be tightly confined. Cattle that have reached their slaughter weight will be temporarily held in corrals associated with the processing plant. The stormwater retention ponds used to capture and store runoff from the offloading corral and the processing plant holding corral are part of a normal and customary agricultural activity, and are not part of the applications and approvals that are at issue in this proceeding. The retention ponds associated with the high-intensity areas do not require permits because they do not exceed one acre in size or impound more than 40 acre-feet of water. Nonetheless, issues related to the retention ponds were addressed by Petitioners and Sleepy Creek, and warrant discussion here. The retention ponds are designed to capture 100 percent of the runoff and entrained nutrients from the high concentration areas for a minimum of a 24—hour/25—year storm event. If rainfall occurs in excess of the designed storm, the design is such that upon reaching capacity, only new surface water coming to the retention pond will be discharged, and not that containing high concentrations of nutrients from the initial flush of stormwater runoff. Unlike the stormwater retention berms for the pastures, which are to be constructed from the first nine inches of permeable topsoil on the property, the corral retention ponds are to be excavated to a depth of six feet which, based on soil borings in the vicinity, will leave a minimum of two to four feet of clay beneath the retention ponds. In short, the excavation will penetrate into the clay layer underlying the pond sites, but will not penetrate through that layer. The excavated clay will be used to form the side slopes of the ponds, lining the permeable surficial layer and generally making the ponds impermeable. Organic materials entering the retention ponds will form an additional seal. An organic seal is important in areas in which retention ponds are constructed in sandy soil conditions. Organic sealing is less important in this case, where clay forms the barrier preventing nutrients from entering the surficial aquifer. Although the organic material is subject to periodic removal, the clay layer will remain to provide the impermeable barrier necessary to prevent leakage from the ponds. Dr. Bottcher testified that if, during excavation of the ponds, it was found that the remaining in-situ clay layer was too thin, Sleepy Creek would implement the standard practice of bringing additional clay to the site to ensure adequate thickness of the liner. Nutrient Balance The goal of the NMP is to create a balance of nutrients being applied to and taken up from the property. Nitrogen and phosphorus are the nutrients of primary concern, and are those for which specific management standards are proposed. Nutrient inputs to the NMP consist generally of deposition of cattle manure (which includes solid manure and urine), recycling of plant material and roots from the previous growing season, and application of supplemental fertilizer. Nutrient outputs to the NMP consist generally of volatization of ammonia to the atmosphere, uptake and utilization of the nutrients by the grass and crops, weight gain of the cattle, and absorption and denitrification of the nutrients in the soil. The NMP, and the various models discussed herein, average the grass and forage crop uptake and the manure deposition to match that of a 1,013 pound animal. That average weight takes into account the fact that cattle on the property will range from calf weight of approximately 850 pounds, to slaughter weight of 1150 pounds. Nutrients that are not accounted for in the balance, e.g., those that become entrained in stormwater or that pass through the plant root zone without being taken up, are subject to runoff to surface waters or discharge to groundwater. Generally, phosphorus not taken up by crops remains immobile in the soil. Unless there is a potential for runoff to surface waters, the nutrient balance is limited by the amount of nitrogen that can be taken up by the crops. Due to the composition of the soils on the property, the high water table, and the relatively shallow confining layer, there is a potential for surface runoff. Thus, the NMP was developed using phosphorus as the limiting nutrient, which results in nutrient application being limited by the “P-index.” A total of 108 pounds of phosphorus per acre/per year can be taken up and used by the irrigated pasture grasses and forage crops. Therefore, the total number of cattle that can be supported on the irrigated pastures is that which, as a herd, will deposit an average of 108 pounds of phosphorus per year over the irrigated acreage. Therefore, Sleepy Creek has proposed a herd size and density based on calculations demonstrating that the total phosphorus contained in the waste excreted by the cattle equals the amount taken up by the crops. A herd producing 108 pounds per acre per year of phosphorus is calculated to produce 147 pounds of nitrogen per acre per year. The Bermuda grass and forage crops proposed for the irrigated fields require 420 pounds of nitrogen per acre per year. As a result of the nitrogen deficiency, additional nitrogen-based fertilizer to make up the shortfall is required to maintain the crops. Since phosphorus needs are accounted for by animal deposition, the fertilizer will have no phosphorus. The NMP requires routine soil and plant tissue tests to determine the amount of nitrogen fertilizer needed. By basing the application of nitrogen on measured rather than calculated needs, variations in inputs, including plant decomposition and atmospheric deposition, and outputs, including those affected by weather, can be accounted for, bringing the full nutrient balance into consideration. The numeric values for crop uptakes, manure deposition, and other estimates upon which the NMP was developed were based upon literature, values, and research performed and published by the University of Florida and the Natural Resource Conservation Service. Dr. Bottcher testified convincingly that the use of such values is a proven and reliable method of developing a balance for the operation of similar agricultural operations. A primary criticism of the NMP was its expressed intent to “reduce” or “minimize” the transport of nutrients to surface waters and groundwater, rather than to “negate” or “prevent” such transport. Petitioners argue that complete prevention of the transport of nutrients from the property is necessary to meet the standards necessary for issuance of the CUP and ERP. Mr. Drummond went into some detail regarding the total mass of nutrients expected to be deposited onto the ground from the cattle, exclusive of fertilizer application. In the course of his testimony, he suggested that the majority of the nutrients deposited on the land surface “are going to make it to the surficial aquifer and then be carried either to the Floridan or laterally with the groundwater flow.” However, Mr. Drummond performed no analysis on the fate of nitrogen through uptake by crops, volatization, or soil treatment, and did not quantify the infiltration of nitrogen to groundwater. Furthermore, he was not able to provide any quantifiable estimate on any effect of nutrients on Mill Creek, the Ocklawaha River, or Silver Springs. In light of the effectiveness of the nutrient balance and other elements of the NMP, along with the retention berm system that will be discussed herein, Mr. Drummond’s assessment of the nutrients that might be expected to impact water resources of the District is contrary to the greater weight of the evidence. Mr. Drummond’s testimony also runs counter to that of Dr. Kincaid, who performed a particle track analysis of the fate of water recharge from the North Tract. In short, Dr. Kincaid calculated that of the water that makes it as recharge from the North Tract to the surficial aquifer, less than one percent is expected to make its way to the upper Floridan aquifer, with that portion originating from the vicinity of Pivot 6. Recharge from the other 14 irrigated pastures was ultimately accounted for by evapotranspiration or emerged at the surface and found its way to Mill Creek. The preponderance of the competent, substantial evidence adduced at the final hearing supports the effectiveness of the NMPs for the North Tract and East Tract at managing the application and use of nutrients on the property, and minimizing the transport of nutrients to surface water and groundwater resources of the District. North Central Florida Model All of the experts involved in this proceeding agreed that the use of groundwater models is necessary to simulate what might occur below the surface of the ground. Models represent complex systems by applying data from known conditions and impacts measured over a period of years to simulate the effects of new conditions. Models are imperfect, but are the best means of predicting the effects of stresses on complex and unseen subsurface systems. The North Central Florida (NCF) model is used to simulate impacts of water withdrawals on local and regional groundwater levels and flows. The NCF model simulates the surficial aquifer, the upper Floridan aquifer, and the lower Floridan aquifer. Those aquifers are separated from one another by relatively impervious confining units. The intermediate confining unit separates the surficial aquifer from the upper Floridan aquifer. The intermediate confining unit is not present in all locations simulated by the NCF model. However, the evidence is persuasive that the intermediate confining unit is continuous at the North Tract, and serves to effectively isolate the surficial aquifer from the upper Floridan aquifer. The NCF model is not a perfect depiction of what exists under the land surface of the North Tract or elsewhere. It was, however, acknowledged by the testifying experts in this case, despite disagreements as to the extent of error inherent in the model, to be the best available tool for calculating the effects of withdrawals of water within the boundary of the model. The NCF model was developed and calibrated over a period of years, is updated routinely as data becomes available, and has undergone peer review. Aquifer Performance Tests In order to gather site-specific data regarding the characteristics of the aquifer beneath the Sleepy Creek property, a series of three aquifer performance tests (APTs) was conducted on the North Tract. The first two tests were performed by Sleepy Creek, and the third by the District. An APT serves to induce stress on the aquifer by pumping from a well at a high rate. By observing changes in groundwater levels in observation wells, which can be at varying distances from the extraction well, one can extrapolate the nature of the subsurface. In addition, well-completion reports for the various withdrawal and observation wells provide actual data regarding the composition of subsurface soils, clays, and features of the property. The APT is particularly useful in evaluating the ability of the aquifer to produce water, and in calculating the transmissivity of the aquifer. Transmissivity is a measure of the rate at which a substance passes through a medium and, as relevant to this case, measures how groundwater flows through an aquifer. The APTs demonstrated that the Floridan aquifer is capable of producing water at the rate requested. The APT drawdown contour measured in the upper Floridan aquifer was greater than that predicted from a simple run of the NCF model, but the lateral extent of the drawdown was less than predicted. The most reasonable conclusion to be drawn from the combination of greater than expected drawdown in the upper Floridan aquifer with less than expected extent is that the transmissivity of the aquifer beneath the North Tract is lower than the NCF model assumptions. The conclusion that the transmissivity of the aquifer at the North Tract is lower than previously estimated means that impacts from groundwater extraction would tend to be more vertical than horizontal, i.e., the drawdown would be greater, but would be more localized. As such, for areas of lower than estimated transmissivity, modeling would over-estimate off-site impacts from the extraction. NCF Modeling Scenarios The initial NCF modeling runs were based on an assumed withdrawal of 2.39 mgd, an earlier -- though withdrawn - - proposal. The evidence suggests that the simulated well placement for the 2.39 mgd model run was entirely on the North Tract. Thus, the results of the model based on that withdrawal have some limited relevance, especially given that the proposed CUP allows for all of the requested 1.46 mgd of water to be withdrawn from North Tract wells at the option of Sleepy Creek, but will over-predict impacts from the permitted rate of withdrawal. A factor that was suggested as causing a further over-prediction of drawdown in the 2.39 mgd model run was the decision, made at the request of the District, to exclude the input of data of additional recharge to the surficial aquifer, wetlands and surface waters from the irrigation, and the resulting diminution in soil storage capacity. Although there is some merit to the suggestion that omitting recharge made the model results “excessively conservative,” the addition of recharge to the model would not substantially alter the predicted impacts. A model run was subsequently performed based on a presumed withdrawal of 1.54 mgd, a rate that remains slightly more than, but still representative of, the requested amount of 1.46 mgd. The 1.54 mgd model run included an input for irrigation recharge. The simulated extraction points were placed on the East Tract and North Tract in the general configuration as requested in the CUP application. The NCF is designed to model the impacts of a withdrawal based upon various scenarios, identified at the hearing as Scenarios A, B, C, and D. Scenario A is the baseline condition for the NCF model, and represents the impacts of all legal users of water at their estimated actual flow rates as they existed in 1995. Scenario B is all existing users, not including the applicant, at end-of-permit allocations. Scenario C is all existing users, including the applicant, at current end-of-permit allocations. Scenario D is all permittees at full allocation, except the applicant which is modeled at the requested (i.e., new or modified) end-of-permit allocation. To simulate the effects of the CUP modification, simulations were performed on scenarios A, C, and D. In order to measure the specific impact of the modification of the CUP, the Scenario C impacts to the surficial, upper Floridan, and lower Floridan aquifers were compared with the Scenario D impacts to those aquifers. In order to measure the cumulative impact of the CUP, the Scenario A actual-use baseline condition was compared to the Scenario D condition which predicts the impacts of all permitted users, including the applicant, pumping at full end-of-permit allocations. The results of the NCF modeling indicate the following: 2.39 mgd - Specific Impact The surficial aquifer drawdown from the simulated 2.39 mgd withdrawal was less than 0.05 feet on-site and off- site, except to the west of the North Tract, at which a drawdown of 0.07 feet was predicted. The upper Floridan aquifer drawdown from the 2.39 mgd withdrawal was predicted at between 0.30 and 0.12 feet on-site, and between 0.30 and 0.01 feet off-site. The higher off-site figures are immediately proximate to the property. The lower Floridan aquifer drawdown from the 2.39 mgd withdrawal was predicted at less than 0.05 feet at all locations, and at or less than 0.02 feet within six miles of the North Tract. 2.39 mgd - Cumulative Impact The cumulative impact to the surficial aquifer from all permitted users, including a 2.39 mgd Sleepy Creek withdrawal, was less than 0.05 feet on-site, and off-site to the north and east, except to the west of the North Tract, at which a drawdown of 0.07 feet was predicted. The cumulative impact to the upper Floridan aquifer from all permitted users, including a 2.39 mgd Sleepy Creek withdrawal, ranged from 0.4 feet to 0.8 feet over all pertinent locations. The cumulative impact to the lower Floridan aquifer from all permitted users, including a 2.39 mgd Sleepy Creek withdrawal, ranged from 1.0 to 1.9 feet over all pertinent locations. The conclusion drawn by Mr. Andreyev that the predicted impacts to the lower Floridan are almost entirely from other end-of-permit user withdrawals is supported by the evidence and accepted. 1.54 mgd - Specific Impact The NCF model runs based on the more representative 1.54 mgd withdrawal predicted a surficial aquifer drawdown of less than 0.01 feet (i.e., no drawdown contour shown) on the North Tract, and a 0.01 to 0.02 foot drawdown at the location of the East Tract. The drawdown of the upper Floridan aquifer from the CUP modification was predicted at up to 0.07 feet on the property, and generally less than 0.05 feet off-site. There were no drawdown contours at the minimum 0.01 foot level that came within 9 miles of Silver Springs. The lower Floridan aquifer drawdown from the CUP modification was predicted at less than 0.01 feet (i.e., no drawdown contour shown) at all locations. 1.54 mgd - Cumulative Impact A comparison of the cumulative drawdown contours for the 2.36 mgd model and 1.54 mgd model show there to be a significant decrease in predicted drawdowns to the surficial and upper Floridan aquifers, with the decrease in the upper Floridan aquifer drawdown being relatively substantial, i.e., from 0.5 to 0.8 feet on-site predicted for the 2.36 mgd withdrawal, to 0.4 to 0.5 feet on-site for the 1.54 mgd model. Given the small predicted individual impact of the CUP on the upper Floridan aquifer, the evidence is persuasive that the cumulative impacts are the result of other end-of-permit user withdrawals. The drawdown contour for the lower Floridan aquifer predicted by the 1.54 mgd model is almost identical to that of the 2.36 mgd model, thus supporting the conclusion that predicted impacts to the lower Floridan are almost entirely from other end-of-permit user withdrawals. Modeled Effect on Silver Springs As a result of the relocation of the extraction wells from the East Tract to the North Tract, the NCF model run at the 1.54 mgd withdrawal rate predicted springflow at Silver Springs to increase by 0.15 cfs. The net cumulative impact in spring flow as measured from 1995 conditions to the scenario in which all legal users, including Sleepy Creek, are pumping at full capacity at their end-of-permit rates for one year3/ is roughly 35.4 cfs, which is approximately 5 percent of Silver Springs’ current flow. However, as a result of the redistribution of the Sleepy Creek withdrawal, which is, in its current iteration, a legal and permitted use, the cumulative effect of the CUP modification at issue is an increase in flow of 0.l5 cfs. Dr. Kincaid agreed that there is more of an impact to Silver Springs when the pumping allowed by the CUP is located on the East Tract than there is on the North Tract, but that the degree of difference is very small. Dr. Knight testified that effect on the flow of Silver Springs from relocating the 1.46 mgd withdrawal from the East Tract to the North Tract would be “zero.” The predicted increase of 0.15 cfs is admittedly miniscule when compared to the current Silver Springs springflow of approximately 675 cfs. However, as small as the modeled increase may be -- perhaps smaller than its “level of certainty” -- it remains the best evidence that the impact of the CUP modification to the flow of Silver Springs will be insignificant at worst, and beneficial at best. Opposition to the NCF Model Petitioners submitted considerable evidence designed to call the results generated by the District’s and Sleepy Creek’s NCF modeling into question. Karst Features A primary criticism of the validity of the NCF model was its purported inability to account for the presence of karst features, including conduits, and their effect on the results. It was Dr. Kincaid’s opinion that the NCF model assigned transmissivity values that were too high, which he attributed to the presence of karst features that are collecting flow and delivering it to springs. He asserted that, instead of assuming the presence of karst features, the model was adjusted to raise the overall capacity of the porous medium to transmit water, and thereby match the observed flows. In his opinion, the transmissivity values of the equivalent porous media were raised so much that the model can no longer be used to predict drawdowns. That alleged deficiency in the model is insufficient for two reasons. First, as previously discussed in greater detail, the preponderance of the evidence in this case supports a finding that there are no karst features in the vicinity of the North Tract that would provide preferential pathways for water flow so as to skew the results of the NCF model. Second, Dr. Kincaid, while acknowledging that the NCF model is the best available tool for predicting impacts from groundwater extraction on the aquifer, suggested that a hybrid porous media and conduit model would be a better means of predicting impacts, the development of which would take two years or more. There is no basis for the establishment of a de facto moratorium on CUP permitting while waiting for the development of a different and, in this case, unnecessary model. For the reasons set forth herein, it is found that the NCF model is sufficient to accurately and adequately predict the effects of the Sleepy Creek groundwater withdrawals on the aquifers underlying the property, and to provide reasonable assurance that the standards for such withdrawals have been met. Recharge to the Aquifer Petitioners argued that the modeling results showing little significant drawdown were dependent on the application of unrealistic values for recharge or return flow from irrigation. In a groundwater model, as in the physical world, some portion of the water extracted from the aquifer is predicted to be returned to the aquifer as recharge. If more water is applied to the land surface than is being accounted for by evaporation, plant uptake and evapotranspiration, surface runoff, and other processes, that excess water may seep down into the aquifer as recharge. Recharge serves to replenish the aquifer and offset the effects of the groundwater withdrawal. Dr. Kincaid opined that the NCF modeling performed for the CUP application assigned too much water from recharge, offsetting the model's prediction of impacts to other features. It is reasonable to assume that there is some recharge associated with both agricultural and public supply uses. However, the evidence suggests that the impact of recharge on the overall NCF model results is insignificant on the predicted impacts to Silver Springs, the issue of primary concern. Mr. Hearn ran a simulation using the NCF model in which all variables were held constant, except for recharge. The difference between the “with recharge” and “without recharge" simulations at Silver Springs was 0.002 cfs. That difference is not significant, and is not suggestive of adverse impacts on Silver Springs from the CUP modification. Dr. Kincaid testified that “the recharge offset on the property is mostly impacting the surficial aquifer,” and that “the addition of recharge in this case didn't have much of an impact on the upper Floridan aquifer system.” As such, the effect of adding recharge to the model would be as to the effect of groundwater withdrawal on wetlands or surface water bodies, and not on springs. As previously detailed, the drawdown of the surficial aquifer simulated for the 2.39 mgd “no recharge” scenario were less than 0.05 feet on-site and off-site, except for a predicted 0.07 foot drawdown to the west of the North Tract. The predicted drawdown of the surficial aquifer for the 1.54 mgd “with recharge” scenario was 0.02 feet or less. The preponderance of the evidence supports a finding that drawdowns of either degree are less than that at which adverse impacts to wetlands or surface waters would occur. Thus, issues related to the recharge or return flows from irrigation are insufficient to support a finding or conclusion that the NCF model failed to provide reasonable assurance that the standards for issuance of the CUP modification were met. External Boundaries The boundaries of the NCF model are not isolated from the rest of the physical world. Rather, groundwater flows into the modeled area from multiple directions, and out of the modeled area in multiple directions. Inflows to the model area are comprised of recharge, which is an assigned value, and includes water infiltrating and recharging the aquifer from surface waters; injection wells; upward and downward leakage from lower aquifers; and flow across the external horizontal boundaries. Outflows from the model area include evapotranspiration; discharge to surface waters, including springs and rivers; extraction from wells; upward and downward leakage from lower aquifers; and flow against the external model boundaries. Dr. Kincaid testified that flow across the external model boundary is an unknown and unverifiable quantity which increases the uncertainty in the model. He asserted that in the calibrated version of the model, there is no way to check those flows against data. His conclusion was that the inability of the NCF model to accurately account for external boundary flow made the margin of error so great as to make the model an unreliable tool with which to assess whether the withdrawal approved by the proposed CUP modification will increase or decrease drawdown at Silver Springs. The District correlates the NCF model boundaries with a much larger model developed by the United States Geological Survey, the Peninsula of Florida Model, more commonly referred to as the Mega Model, which encompasses most of the State of Florida and part of Southeast Georgia. The Mega Model provides a means to acknowledge that there are stresses outside the NCF model, and to adjust boundary conditions to account for those stresses. The NCF is one of several models that are subsets of the Mega Model, with the grids of the two models being “nested” together. The 1995 base year of the NCF model is sufficiently similar to the 1993-1994 base year of the Mega Model as to allow for a comparison of simulated drawdowns calculated by each of the models. By running a Mega Model simulation of future water use, and applying the change in that use from 1993 base year conditions, the District was able to come to a representative prediction of specific boundary conditions for the 1995 NCF base year, which were then used as the baseline for simulations of subsequent conditions. In its review of the CUP modification, the District conducted a model validation simulation to measure the accuracy of the NCF model against observed conditions, with the conditions of interest being the water flow at Silver Springs. The District ran a simulation using the best information available as to water use in the year 2010, the calculated boundary conditions, irrigation, pumping, recharge, climatic conditions, and generally “everything that we think constitutes that year.” The discharge of water at Silver Springs in 2010 was measured at 580 cfs. The discharge simulated by the NCF model was 545 cfs. Thus, the discharge predicted by the NCF model simulation was within six percent of the observed discharge. Such a result is generally considered in the modeling community to be “a home run.” Petitioners’ objections to the calculation of boundary conditions for the NCF model are insufficient to support a finding that the NCF model is not an appropriate and accurate tool for determining that reasonable assurance has been provided that the standards for issuance of the CUP modification were met. Cumulative Impact Error As part of the District’s efforts to continually refine the NCF, and in conjunction with a draft minimum flows and levels report for Silver Springs and the Silver River, the cumulative NCF model results for the period of baseline to 2010 were compared with the simulated results from the Northern District Model (NDF), a larger model that overlapped the NCF. As a result of the comparison, which yielded different results, it was discovered that the modeler had “turned off” not only the withdrawal pumps, but inputs to the aquifer from drainage wells and sinkholes as well. When those inputs were put back into the model run, and effects calculated only from withdrawals between the “pumps-off” condition and 2010 pumping conditions, the cumulative effect of the withdrawals was adjusted from a reduction in the flow at Silver Springs of 29 cfs to a reduction of between 45 and 50 cfs, an effect described as “counterintuitive.” Although that result has not undergone peer review, and remains subject to further review and comparison with the Mega Model, it was accepted by the District representative, Mr. Bartol. Petitioners seized upon the results of the comparison model run as evidence of the inaccuracy and unreliability of the NCF model. However, the error in the NCF model run was not the result of deficiencies in the model, but was a data input error. Despite the error in the estimate of the cumulative effect of all users at 2010 levels, the evidence in this case does not support a finding that the more recent estimates of specific impact from the CUP at issue were in error. NCF Model Conclusion As has been discussed herein, a model is generally the best means by which to calculate conditions and effects that cannot be directly observed. The NCF model is recognized as being the best tool available for determining the subsurface conditions of the model domain, having been calibrated over a period of years and subject to peer review. It should be recognized that the simulations run using the NCF model represent the worst—case scenario, with all permittees simultaneously drawing at their full end-of-permit allocations. There is merit to the description of that occurrence as being “very remote.” Thus, the results of the modeling represent a conservative estimate of potential drawdown and impacts. While the NCF model is subject to uncertainty, as is any method of predicting the effects of conditions that cannot be seen, the model provides reasonable assurance that the conditions simulated are representative of the conditions that will occur as a result of the withdrawals authorized by the CUP modification. Environmental Resource Permit The irrigation proposed by the CUP will result in runoff from the North Tract irrigated pastures in excess of that expected from the improved pastures, due in large measure to the diminished storage capacity of the soil. Irrigation water will be applied when the soils are dry, and capable of absorbing water not subject to evaporation or plant uptake. The irrigation water will fill the storage space that would exist without irrigation. With irrigation water taking up the capacity of the soil to hold water, soils beneath the irrigation pivots will be less capable of retaining additional moisture during storm events. Thus, there is an increased likelihood of runoff from the irrigated pastures over that expected with dry soils. The increase in runoff is expected to be relatively small, since there should be little or no irrigation needed during the normal summer wet season. The additional runoff may have increased nutrient levels due to the increased cattle density made possible by the irrigation of the pastures. The CUP has a no—impact requirement for water quality resulting from the irrigation of the improved pasture. Thus, nutrients leaving the irrigated pastures may not exceed those calculated to be leaving the existing pre-development use as improved pastures. Retention Berms The additional runoff and nutrient load is proposed to be addressed by constructing a system of retention berms, approximately 50,0004/ feet in length, which is intended to intercept, retain, and provide treatment for runoff from the irrigated pasture. The goal of the system is to ensure that post—development nutrient loading from the proposed irrigated pastures will not exceed the pre—development nutrient loading from the existing improved pastures. An ERP permit is required for the construction of the berm system, since the area needed for the construction of the berms is greater than the one acre in size, and since the berms have the capability of impounding more than 40 acre-feet of water. The berms are to be constructed by excavating the top nine inches of sandy, permeable topsoil and using that permeable soil to create the berms, which will be 1 to 2 feet in height. The water storage areas created by the excavation will have flat or horizontal bottoms, and will be very shallow with the capacity to retain approximately a foot of water. The berms will be planted with pasture grasses after construction to provide vegetative cover. The retention berm system is proposed to be built in segments, with the segment designed to capture runoff from a particular center pivot pasture to be constructed prior to the commencement of irrigation from that center pivot. A continuous clay layer underlies the areas in which the berms are to be constructed. The clay layer varies from 18 to 36 inches below the ground surface, with at least one location being as much as five feet below the ground surface. As such, after nine inches of soil is scraped away to create the water retention area and construct the berm, there will remain a layer of permeable sandy material above the clay. The berms are to be constructed at least 25 feet landward of any jurisdictional wetland, creating a “safe upland line.” Thus, the construction, operation, and maintenance of the retention berms and redistribution swales will result in no direct impacts to jurisdictional wetlands or other surface waters. There will be no agricultural activities, e.g., tilling, planting, or mowing, within the 25-foot buffers, and the buffers will be allowed to establish with native vegetation to provide additional protection for downgradient wetlands. As stormwater runoff flows from the irrigated pastures, it may, in places, create concentrated flow ways. Redistribution swales will be built in those areas to spread any remaining overland flow of water and reestablish sheet flow to the retention berm system. At any point at which water may overtop a berm, the berm will be hardened with rip—rap to insure its integrity. The berms are designed to intercept and collect overland flow from the pastures and temporarily store it behind the berms, regaining the soil storage volume lost through irrigation. A portion of the runoff intercepted by the berm system will evaporate. The majority will infiltrate either through the berm, or vertically into the subsurface soils beneath it. When the surficial soils become saturated, further vertical movement will be stopped by the impermeable clay layer underlying the site. The runoff water will then move horizontally until it reemerges into downstream wetland systems. Thus, the berm system is not expected to have a measurable impact on the hydroperiod of the wetlands on the North Tract. Phosphorus Removal Phosphorus tends to get “tied up” in soil as it moves through it. Phosphorus reduction occurs easily in permeable soil systems because it is removed from the water through a chemical absorption process that is not dependent on the environment of the soil. As the soils in the retention areas and berms go through drying cycles, the absorption capacity is regenerated. Thus, the retention system will effectively account for any increase in phosphorus resulting from the increased cattle density allowed by the irrigation such that there is expected to be no increase in phosphorus levels beyond the berm. Nitrogen Removal When manure is deposited on the ground, primarily as high pH urine, the urea is quickly converted to ammonia, which experiences a loss of 40 to 50 percent of the nitrogen to volatization. Soil conditions during dry weather conditions are generally aerobic. Remaining ammonia in the manure is converted by aerobic bacteria in the soil to nitrates and nitrites. Converted nitrates and nitrites from manure, along with nitrogen from fertilizer, is readily available for uptake as food by plants, including grasses and forage crops. Nitrates and nitrites are mobile in water. Therefore, during rain events of sufficient intensity to create runoff, the nitrogen can be transported downstream towards wetlands and other receiving waters, or percolate downward through the soil until blocked by an impervious barrier. During storm events, the soils above the clay confining layer and the lower parts of the pervious berms become saturated. Those saturated soils are drained of oxygen and become anaerobic. When nitrates and nitrites encounter saturated conditions, they provide food for anaerobic bacteria that exist in those conditions. The bacteria convert nitrates and nitrites to elemental nitrogen, which has no adverse impact on surface waters or groundwater. That process, known as denitrification, is enhanced in the presence of organic material. The soils from which the berms are constructed have a considerable organic component. In addition to the denitrification that occurs in the saturated conditions in and underlying the berms, remaining nitrogen compounds that reemerge into the downstream wetlands are likely to encounter organic wetland-type soil conditions. Organic wetland soils are anaerobic in nature, and will result in further, almost immediate denitrification of the nitrates and nitrites in the emerging water. Calculation of Volume - BMPTRAINS Model The calculation of the volume necessary to capture and store excess runoff from the irrigated pastures was performed by Dr. Wanielista using the BMPTRAINS model. BMPTRAINS is a simple, easy to use spreadsheet model. Its ease of use does not suggest that it is less than reliable. The model has been used as a method of calculating storage volumes in many conditions over a period of more than 40 years. The model was used to calculate the storage volumes necessary to provide storage and treatment of runoff from fifteen “basins” that had a control or a Best Management Practice associated with them. All of the basins were calculated as being underlain by soils in poorly-drained hydrologic soil Group D, except for the basin in the vicinity of Pivot 6, which is underlain by the more well-drained soil Group A. The model assumed about percent of the property to have soil Group A soils, an assumption that is supported by the evidence. Soil moisture conditions on the property were calculated by application of data regarding rainfall events and times, the irrigation schedule, and the amount of irrigation water projected for use over a year. The soil moisture condition was used to determine the amount of water that could be stored in the on-site soils, known as the storage coefficient. Once the storage coefficient was determined, that data was used to calculate the amount of water that would be expected to run off of the North Tract, known as the curve number. The curve number is adjusted by the extent to which the storage within a soil column is filled by the application of irrigation water, making it unable to store additional rainfall. As soil storage goes down, the curve number goes up. Thus, a curve number that approaches 100 means that more water is predicted to run off. Conversely, a lower curve number means that less water is predicted to run off. The pre-development curve number for the North Tract was based on the property being an unirrigated, poor grass area. A post-development curve number was assigned to the property that reflected a wet condition representative of the irrigated soils beneath the pivots. In calculating the storage volume necessary to handle runoff from the basins, the wet condition curve number was adjusted based on the fact that there is a mixture of irrigated and unirrigated general pasture within each basin to be served by a segment of the retention berm system, and by the estimated 15 percent of the time that the irrigation areas would be in a drier condition. In addition, the number was adjusted to reflect the 8 to 10 inches of additional evapotranspiration that occurs as a result of irrigation. The BMPTRAINS model was based on average annual nutrient-loading conditions, with water quality data collected at a suitable point within Reach 22, the receiving waterbody. The effects of nutrients from the irrigated pastures on receiving waterbodies is, in terms of the model, best represented by average annual conditions, rather than a single highest-observed nutrient value. Pre-development loading figures were based on the existing use of the property as unirrigated general pasture. The pre-development phosphorus loading figure was calculated at an average event mean concentration (EMC) of 0.421 milligrams per liter (mg/l). The post—condition phosphorus loading figure was calculated at an EMC of 0.621 mg/l. Therefore, in order to achieve pre-development levels of phosphorus, treatment to achieve a reduction in phosphorus of approximately 36 percent was determined to be necessary. The pre-development nitrogen loading figure was calculated at an EMC of 2.6 mg/l. The post—condition nitrogen loading figure was calculated at an EMC of 3.3 mg/l. Therefore, in order to achieve pre-development levels of nitrogen, treatment to achieve a reduction in nitrogen of approximately 25 percent was determined to be necessary. The limiting value for the design of the retention berms is phosphorus. To achieve post-development concentrations that are equal to or less than pre-development concentrations, the treatment volume of the berm system must be sufficient to allow for the removal of 36 percent of the nutrients in water being retained and treated behind the berms, which represents the necessary percentage of phosphorus. In order to achieve the 36 percent reduction required for phosphorus, the retention berm system must be capable of retaining approximately 38 acre—feet of water from the 15 basins. In order to achieve that retention volume, a berm length of approximately 50,000 linear feet was determined to be necessary, with an average depth of retention behind the berms of one foot. The proposed length of the berms is sufficient to retain the requisite volume of water to achieve a reduction in phosphorus of 36 percent. Thus, the post-development/irrigation levels of phosphorus from runoff are expected to be no greater than pre-development/general pasture levels of phosphorus from runoff. By basing the berm length and volume on that necessary for the treatment of phosphorus, there will be storage volume that is greater than required for a 25 percent reduction in nitrogen. Thus, the post-development/irrigation levels of nitrogen from runoff are expected to be less than pre- development/general pasture levels of nitrogen from runoff. Mr. Drummond admitted that the design of the retention berms “shows there is some reduction, potentially, but it's not going to totally clean up the nutrients.” Such a total clean-up is not required. Rather, it is sufficient that there is nutrient removal to pre-development levels, so that there is no additional pollutant loading from the permitted activities. Reasonable assurance that such additional loading is not expected to occur was provided. Despite Mr. Drummond’s criticism of the BMPTRAINS model, he did not quantify nutrient loading on the North Tract, and was unable to determine whether post-development concentrations of nutrients would increase over pre-development levels. As such, there was insufficient evidence to counter the results of the BMPTRAINS modeling. Watershed Assessment Model In order to further assess potential water quantity and water quality impacts to surface water bodies, and to confirm stormwater retention area and volume necessary to meet pre-development conditions, Sleepy Creek utilized the Watershed Assessment Model (WAM). The WAM is a peer-reviewed model that is widely accepted by national, state, and local regulatory entities. The WAM was designed to simulate water balance and nutrient impacts of varying land uses. It was used in this case to simulate and provide a quantitative measure of the anticipated impacts of irrigation on receiving water bodies, including Mill Creek, Daisy Creek, the Ocklawaha River, and Silver Springs. Inputs to the model include land conditions, soil conditions, rain and climate conditions, and water conveyance systems found on the property. In order to calculate the extent to which nutrients applied to the land surface might affect receiving waters, a time series of surface water and groundwater flow is “routed” through the modeled watershed and to the various outlets from the system, all of which have assimilation algorithms that represent the types of nutrient uptakes expected to occur as water goes through the system. Simulations were performed on the North Tract in its condition prior to acquisition by Sleepy Creek, in its current “exempted improved pasture condition,” and in its proposed “post—development” pivot-irrigation condition. The simulations assessed impacts of the site conditions on surface waters at the point at which they leave the property and discharge to Mill Creek, and at the point where Mill Creek merges into the Ocklawaha River. The baseline condition for measuring changes in nutrient concentrations was determined to be that lawfully existing at the time the application was made. Had there been any suggestion of illegality or impropriety in Sleepy Creek’s actions in clearing the timber and creating improved pasture, a different baseline might be warranted. However, no such illegality or impropriety was shown, and the SJRWMD rules create no procedure for “looking back” to previous land uses and conditions that were legally changed. Thus, the “exempted improved pasture condition” nutrient levels are appropriate for comparison with irrigated pasture nutrient levels. The WAM simulations indicated that nitrogen resulting from the irrigation of the North Tract pastures would be reduced at the outflow to Mill Creek at the Reach 22 stream segment from improved pasture levels by 1.7 percent in pounds per year, and by 0.6 percent in milligrams per liter of water. The model simulations predicted a corresponding reduction at the Mill Creek outflow to the Ocklawaha River of 1.3 percent in pounds per year, and 0.5 percent in milligrams per liter of water. These levels are small, but nonetheless support a finding that the berm system is effective in reducing nitrogen from the North Tract. Furthermore, the WAM simulations showed levels of nitrogen from the irrigated pasture after the construction of the retention berms to be reduced from that present in the pre- development condition, a conclusion consistent with that derived from the BMPTRAINS model. The WAM simulations indicated that phosphorus from the irrigated North Tract pastures, measured at the outflow to Mill Creek at the Reach 22 stream segment, would be reduced from improved pasture levels by 3.7 percent in pounds per year, and by 2.6 percent in milligrams per liter of water. The model simulations predicted a corresponding reduction at the Mill Creek outflow to the Ocklawaha River of 2.5 percent in pounds per year, and 1.6 percent in milligrams per liter of water. Those levels are, again, small, but supportive of a finding of no impact from the permitted activities. The WAM simulations showed phosphorus in the Ocklawaha River at the Eureka Station after the construction of the retention berms to be slightly greater than those simulated for the pre-development condition (0.00008 mg/l) -- the only calculated increase. That level is beyond miniscule, with impacts properly characterized as “non- measurable” and “non-detectable.” In any event, total phosphorus remains well below Florida’s nutrient standards. The WAM simulations were conducted based on all of the 15 pivots operating simultaneously at full capacity. That amount is greater than what is allowed under the permit. Thus, according to Dr. Bottcher, the predicted loads are higher than those that would be generated by the permitted allocation, making his estimates “very conservative.” Dr. Bottcher’s testimony is credited. During the course of the final hearing, the accuracy of the model results was questioned based on inaccuracies in rainfall inputs due to the five-mile distance of the property from the nearest rain station. Dr. Bottcher admitted that given the dynamics of summer convection storms, confidence that the rain station rainfall measurements represent specific conditions on the North Tract is limited. However, it remains the best data available. Furthermore, Dr. Bottcher testified that even if specific data points simulated by the model differ from that recorded at the rain station, that same error carries through each of the various scenarios. Thus, for the comparative purpose of the model, the errors get “washed out.” Other testimony regarding purported inaccuracies in the WAM simulations and report were explained as being the result of errors in the parameters used to run alternative simulations or analyze Sleepy Creek’s simulations, including use of soil types that are not representative of the North Tract, and a misunderstanding of dry weight/wet weight loading rates. There was agreement among witnesses that the WAM is regarded, among individuals with expertise in modeling, as an effective tool, and was the appropriate model for use in the ERP application that is the subject of this proceeding. As a result, the undersigned accepts the WAM simulations as being representative of comparative nutrient impacts on receiving surface water bodies resulting from irrigation of the North Tract. The WAM confirmed that the proposed retention berm system will be sufficient to treat additional nutrients that may result from irrigation of the pastures, and supports a finding of reasonable assurance that water quality criteria will be met. With regard to the East Tract, the WAM simulations showed that there would be reductions in nitrogen and phosphorus loading to Daisy Creek from the conversion of the property to irrigated pasture. Those simulations were also conservative because they assumed the maximum number of cattle allowed by the nutrient balance, and did not assume the 30 percent reduction in the number of cattle under the NMP so as to allow existing elevated levels of phosphorus in the soil from the sod farm to be “mined” by vegetation. Pivot 6 The evidence in this case suggests that, unlike the majority of the North Tract, a small area on the western side of the North Tract drains to the west and north. Irrigation Pivot is within that area. Dr. Harper noted that there are some soils in hydrologic soil Group A in the vicinity of Pivot 6 that reflect soils with a deeper water table where rainfall would be expected to infiltrate into the ground. Dr. Kincaid’s particle track analysis suggested that recharge to the surficial aquifer ultimately discharges to Mill Creek, except for recharge at Pivot 11, which is accounted for by evapotranspiration, and recharge at Pivot 6. Dr. Kincaid concluded that approximately 1 percent of the recharge to the surficial aquifer beneath the North Tract found its way into the upper Floridan aquifer. Those particle tracks originated only on the far western side of the property, and implicated only Pivot 6, which is indicative of the flow divide in the Floridan aquifer. Of the 1 percent of particle tracks entering the Floridan aquifer, some ultimately discharged at the St. John’s River, the Ocklawaha River, or Mill Creek. Dr. Kincaid opined, however, that most ultimately found their way to Silver Springs. Given the previous finding that the Floridan aquifer beneath the property is within the Silver Springs springshed for less than a majority of the time, it is found that a correspondingly small fraction of the less than 1 percent of the particle tracks originating on the North Tract, perhaps a few tenths of one percent, can reach Silver Springs. Dr. Bottcher generally agreed that some small percentage of the water from the North Tract may make it to the upper Floridan aquifer, but that amount will be very small. Furthermore, that water reaching the upper Floridan aquifer would have been subject to the protection and treatment afforded by the NMP and the ERP berms. The evidence regarding the somewhat less restrictive confinement of the aquifer around Pivot 6 is not sufficient to rebut the prima facie case that the CUP modification, coupled with the ERP, will meet the District’s permitting standards. Public Interest The primary basis upon which Sleepy Creek relies to demonstrate that the CUP is “consistent with the public interest” is that Florida's economy is highly dependent upon agricultural operations in terms of jobs and economic development, and that there is a necessity of food production. Sleepy Creek could raise cattle on the property using the agriculturally-exempt improved pastures, but the economic return on the investment would be questionable without the increased quality, quantity, and reliability of grass and forage crop production resulting from the proposed irrigation. Sleepy Creek will continue to engage in agricultural activities on its properties if the CUP modification is denied. Although a typical Florida beef operation could be maintained on the property, the investment was based upon having the revenue generation allowed by grass-fed beef production in order to realize a return on its capital investment and to optimize the economic return. If the CUP modification is denied, the existing CUP will continue to allow the extraction of 1.46 mgd for use on the East Tract. The preponderance of the evidence suggests that such a use would have greater impacts on the water levels at Silver Springs, and that the continued use of the East Tract as a less stringently-controlled sod farm would have a greater likelihood of higher nutrient levels, particularly phosphorus levels which are already elevated.

Recommendation Based on the foregoing Findings of Fact and Conclusions of Law set forth herein it is RECOMMENDED that the St. Johns River Water Management District enter a final order: approving the issuance of Consumptive Use Permit No. 2-083-91926-3 to Sleepy Creek Lands, LLC on the terms and conditions set forth in the complete Permit Application for Consumptive Uses of Water and the Consumptive Use Technical Staff Report; and approving the issuance of Environmental Resource Permit No. IND-083-130588-4 to Sleepy Creek Lands, LLC on the terms and conditions set forth in the complete Joint Application for Individual and Conceptual Environmental Resource Permit and the Individual Environmental Resource Permit Technical Staff Report. DONE AND ENTERED this 29th day of April, 2015, in Tallahassee, Leon County, Florida. S E. GARY EARLY Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 29th day of April, 2015.

Florida Laws (27) 120.54120.569120.57120.60120.68373.016373.019373.036373.042373.0421373.069373.079373.175373.223373.227373.229373.236373.239373.246373.406373.413373.4131373.414403.067403.087403.9278.031 Florida Administrative Code (12) 28-106.10828-106.21740C-2.30140C-2.33140C-44.06540C-44.06662-302.30062-330.05062-330.30162-4.24062-4.24262-40.473
# 8
FREDERICK B. SPIEGEL vs. DEPARTMENT OF ENVIRONMENTAL REGULATION, 78-000233 (1978)
Division of Administrative Hearings, Florida Number: 78-000233 Latest Update: Apr. 06, 1979

Findings Of Fact Collier Development Corporation, Naples, Florida, owns a triangular tract of land consisting of approximately 16 acres in Naples, Florida. In 1958, the Trustees of the Internal Improvement Fund conveyed by quitclaim deed to Collier Development Corporation all its interests in the property. A 1958 affidavit of Collier's surveyor who prepared the legal description of the land was filed in the Collier County public records and states that the land conveyed by the quitclaim deed was "high land" erroneously shown as bay bottom land according to the original government survey, and that the deed was executed in exchange for the conveyance of certain parcels of bay bottom land in Naples Bay to the Trustees. (Exhibits 1-2) In 1976, Petitioner executed an option agreement with Collier Development Corporation to purchase the land in question, contingent upon certain conditions including a requirement to obtain any required fill permits. On December 27, 1976, Petitioner assigned the option agreement to Michael S. Spiegel and himself as joint tenants. On March 14, 1977, a "short form" application was filed by Petitioner, as authorized by Collier Development Corporation, with Respondent to fill the land above the mean high water line to building grade for future residential, multi-family, or commercial uses. The application reflected that 400 cubic yards of rock riprap would be placed at least five feet upland of the designated mean high water line along the boundary of the property that faced the Gordon River and Rock Creek. The riprap revetment is designed to provide a method of containing upland fill material. The application contemplates that a fabric-like material "Mirafi" will be placed on the ground and wrapped over the riprap barrier. The application further provides that approximately 90,000 pounds of fill material will be trucked into the site and placed behind the riprap material to fill the land to a minimum elevation of four feet. It is also proposed to slope the fill material behind the riprap and plant grass seed thereon. In October, 1977, Petitioner filed a "long form" application which merely amplified the original application. The mean high water line was established by a survey performed under standard procedures and which utilized the existing bulkhead line as a point of reference. The survey was conducted in 1977 and 1978, and the procedures used were approved by and the survey filed in the Department of Natural Resources on June 26, 1978. (Testimony of Park, Lawson, Exhibits 4, 6, 8, 11) By letter dated January 26, 1978, Respondent provided notice of its intent to deny the permit application pursuant to Chapters 253 and 403, Florida Statutes, and Public Law 92-500. The reasons stated for the proposed denial generally were that filling the land would destroy mangrove vegetation which provides a major input of organic material to estuarine tropic webs, and filters and assimilates pollutants from upland runoff. It was stated that the proposed project would eliminate approximately 15 acres of submerged lands and transition zones, as defined in Chapter 17-4, Florida Administrative Code, which would reduce the quality and quantity of the state's marine resources adjacent to Class II waters and "tend to cause degradation of water quality conditions." Thereafter, on January 25, 1978, Petitioner submitted a petition for hearing wherein the jurisdiction of the Respondent in the matter and its grounds for the proposed denial were challenged. (Exhibit 5) The land in question is located south and adjacent to the confluence of the Gordon River and Rock Creek along the north side of U.S. Highway 41. The Gordon River and Rock Creek are tributaries of Naples Bay and all are Class II waters. The area is vegetated by red mangroves with a lesser number of white and black mangroves. A pond of about one-half acre surrounded by red mangroves is located in the southern section of the tract which occasionally overflows into a ditch running parallel to U.S. 41 located within the highway right-of- way. There is a berm alongside the ditch designed to prevent highway runoff from flowing onto Petitioner's land. During high tides, most of the land is inundated to varied depths ranging from two to eight inches. Certain marine vegetational species are present on portions of the land, such as sea grape, sea purslane, sea daisy, and button wood. Certain marine animal life is present in the mangrove area, including coffee bean snails, ribbed mussels, marsh clams, mangrove crabs, fiddler crabs, and mosquito fish. Other marine species, such as common oysters, scorched mussels, and barnacles inhabit the Rock Creek shore line. There is sparse bird population on Petitioner's land that may in part be due to the proximity of Naples Airport. (Testimony of Lawson, Park, Carroll, Fields, M. Spiegel, Exhibits 3, 7, 10) The quality of water in the Gordon River and Rock Creek is adversely effected to some degree by receipt of sewage plant effluent, discharge from nearby canals and runoff from residential and commercial areas. As a result of high bacterial count in these waters, shell fishing and swimming is not permitted. The mangrove forest on Petitioner's property is in a stressed condition as evidenced by the thinness of the canopy. It is probable that this condition was caused primarily by the introduction of fresh water from canals into the surrounding waters. (Testimony of Carroll, Fields, Erwin, Yokel) Mangrove wetlands are an important component of the estuarine ecosystem which provide nutrient stabilization and transformation in the supply of an organic base to the estuarine food chain, filtration of upland runoff, and storage of storm waters. They are a nursery for fish and invertebrate species, and a fish and wildlife habitat. The mangrove system on Petitioner's property is productive and contributing to the needs of marine life in the Naples Bay area. In this respect, most of the detritus produced by the mangrove system occurs below the mean high water line. However, the tidal flow during storm conditions at certain times of the year can release accumulated organic matter from the higher areas. This generally occurs in late summer and early fall when feeding demands of organisms are high. (Testimony of Erwin, Yokel) Although no system for containing surface water runoff was set forth in Petitioner's permit application, it is planned that such runoff will be retained on the site by a site drainage plan that would be accomplished by grading and the use of the existing pond or other means of retention, in addition to the natural percolation into the sandy fill material. (Testimony of Park) The application did not specify the precise distance from the mean high water line at which fill would be placed, but Petitioner clarified this point at the hearing. Fill material will not be placed closer than 100 feet upland of the mean high water line. The mangrove area left intact below that point will enable the ecological system to survive. However, due to the fact that the Naples Bay area does not produce sufficient organic matter to fully support animal life in the area, the loss of a substantial portion of mangroves will impact on the detrital food chain to some extent. (Testimony of Carroll, Yokel)

Recommendation That Respondent issue the requested permit to Petitioner, subject to the modification thereto made at the hearing with regard to the 100' setback as set forth in paragraph 8 of the foregoing Findings of Fact. DONE AND ORDERED in Tallahassee, Leon County, Florida, this 20th day of February, 1979. THOMAS C. OLDHAM Hearing Officer Division of Administrative Hearings 530 Carlton Building Tallahassee, Florida 32304 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 20th day of February, 1979. COPIES FURNISHED: H. Ray Allen, Esquire Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32301 Howard Horowitz, Esquire 3550 Biscayne Boulevard Suite 402 Miami, Florida 33137 William Blackwell, Esquire 3003 North Miami Trail Naples, Florida

# 9
FLORIDA AUDUBON SOCIETY vs SOUTH FLORIDA WATER MANAGEMENT DISTRICT, 90-002402 (1990)
Division of Administrative Hearings, Florida Filed:West Palm Beach, Florida Feb. 24, 1992 Number: 90-002402 Latest Update: Aug. 23, 1996

The Issue The issue is whether the 100 foot separation of respondents/applicants sewage treatment plant from the surface water management system is adequate.

Findings Of Fact Based upon all of the evidence, the following supplemental findings of fact are determined: Background Respondents/applicant, John D. Remington and Bolton S. Drackett (applicants), are the owners of record of approximately two thirds, or around 2,700 acres, of Keewaydin Island (Key Island), which lies just south of the mainland portion of the City of Naples, Florida. In conjunction with a planned luxury development of forty-two homes on Key Island, applicants have filed an application with respondent, South Florida Water Management District (District), seeking the issuance of a permit authorizing the construction and operation of a surface water management system (system) through which stormwater runoff from the project will be directed and controlled. Petitioner, Florida Audubon Society (FAS), has initiated this proceeding to contest the issuance of a permit. In an earlier and separate proceeding (DOAH Case No. 90-2415), applicants applied for a permit from the Department of Environmental Regulation (DER) to construct a wastewater treatment plant (plant) to serve the planned development. The permit was issued on January 2, 1990, and because all appeals by FAS in Case No. 90-2415 have been concluded, that proceeding is now final. Although the wastewater treatment plant has not yet been constructed, the parties agree that it will be situated more than one hundred feet from the surface water management system. This distance (100 feet) is the minimum amount of space allowed by District rule between the plant and system. Even so, the purpose of the remand proceeding is to determine whether that amount of separation is adequate. Thus, the factual issue here is whether the treated wastewater from the plant and filter fields will enter the surface water management system and cause a violation of applicable water quality standards and other relevant District criteria. In support of their respective positions on this issue, the parties have presented the testimony of a number of experts. In resolving the conflict in their testimony, the undersigned has accepted the more credible and persuasive testimony which is embodied in the findings below. A Brief Description of the Development and System The proposed development and surface water management system were described in detail in the prior recommended order entered in this case. For purposes of this Supplemental Recommended Order, it need only be noted that Key Island now has a lodge, guest quarters and recreation facilities, all presently served by septic tanks. Access to the island is provided by motor launch from an existing shore station. Subaqueous utility crossings from the mainland provide electric power and potable water to the island. The planned development includes the construction of forty-two large luxury homes and an expansion of the lodge facilities to accommodate the needs of the new residents. The homes will be built in phases with approximately ten to be built in the first year. The entire project may take as long as seven or eight years to complete. The proposed surface water management system was designed to handle a seventy-five residential unit development. However, by virtue of a reduction in size imposed by the City of Naples, the project has been reduced to forty-two homes. Even so, the capacity of the system has not been downsized. Therefore, the system as designed will more than accommodate all proposed development on the island. The development area has been divided into seven surface water management basins based upon seven existing natural water sheds on the upland portion of the project. Each basin will have a system of inlets, culverts and swales which will direct runoff to control structures. The dry swales are approximately one foot deep and five to ten feet wide and run parallel on both sides of the cart paths that link the various portions of the project. The cart paths, which will be at an elevation of 5.5 feet above mean sea level (NGVD), will have culverts running underneath to aid in maintaining the natural flow of water and limit impounding of water. The swale bottoms are designed to be one foot below the cart path elevation, or at 4.5 feet NGVD, and will be dry, except during significant rain events, because they are designed so that the bottom of the swale is at least one foot above the average wet season water table. Both the cart paths and swale system utilize a design system that is common to residential developments. Once the water reaches a specified height, it goes over the control structure and is discharged downstream into spreader swales from which the water is dispersed into either interior, low wetland areas or into two artificial lakes (7.3 and 1.0 acres in size) created for wet detention. Basins one, two, three, four and seven are designed to treat water quality by the dry detention method, that is, by the unlined swales that parallel cart paths, while water quality is accomplished in basins five and six by best management practices and wet retention, that is, the two artificial lakes. The Wastewater Treatment Plant The DER permit was issued on January 2, 1990, and carries an expiration date of January 2, 1995. It authorizes applicants to: construct a 0.035 MGD extended aeration process wastewater treatment plant with reclaimed water to dual absorption fields located at the project site as depicted on Wilson, Miller, Barton, Soll & Peek, Inc. design drawings, project number 6270, sheets 1 thru 5 of 5, dated March 20, 1989, revised October 16, 1989 and received October 19, 1989. The design drawings were submitted in support of construction application, engineering report, hydrologeolic characteristics and hydraulic modeling for effluent disposal report and related documents, dated March 20, 1989. The hydraulic capacity of the plant is limited to 0.030 MGD based on the reclaimed water disposal system. The collection system shall not exceed the 0.030 MGD hydraulic capacity as well. The wastewater treatment plant is designed to meet all DER water quality, health and safety standards. For example, the plant must achieve 90% removal of biological oxygen demand (BOD) and 90% removal of total suspended solids from the raw wastewater, or effluent levels below 20 parts per million for BOD and 10 parts per million suspended solids, whichever is more stringent. The plant must also have twenty-four hour detention in the aeration chamber and four hours detention in the clarifer. Further, a chlorine chamber contact time of fifteen minutes is required. In addition, DER has issued the permit with certain specific conditions. Among others, these include standards as to effluent chlorine residuals, the requirement that a professional engineer inspect the construction, operation requirements, sampling schedules, defined perameter levels, and the establishment of a hydraulic plant load (permitted maximum daily flow) at 30,000 gallons per day. By issuing the permit, DER has concluded that up to 30,000 gallons per day of sewage effluent can be treated and disposed of by the plant filter fields without violation of applicable DER water quality, health and safety standards. The wastewater treatment plant will be located on a centralized utility site within basin seven of the system. There are also gravity sand filters and a drainfield effluent disposal system located in basin six, which is the northeastern corner of the project. The plant will provide a high degree of treatment and disinfection for the effluent before it is discharged to the filter field. The filtered (treated) effluent will flow by gravity main to the filter fields located in an adjacent basin. Two filter fields will be used in disposing of the treated wastewater effluent. Constructed as sand mounds at a grade level of two or three feet above the existing island elevation, each filter will have dimensions of twenty feet wide and four hundred feet long. The filter fields will be constructed as a bed of gravel wrapped in filter cloth and placed within a mound of soil. A perforated four-inch pipe will be installed within the gravel bed at 5.5 feet NGVD to distribute the effluent through the filter beds. The effluent will then percolate downward and laterally away from the bed and into the groundwater table. At that point, the effluent will become indistinguishable from the groundwater Because the total daily flow will be pumped alternately into one part of the two sections of the drainfield, this allows one filter field to "rest" for a seven-day period during the use of the other filter field, thereby avoiding saturation. Therefore, the average theoretical maximum input into a filter field over a one year period at the plant's maximum capacity is 15,000 gallons per day. The plant was designed and permitted for maximum daily flows at all times of the year. However, the actual operating conditions will reflect significantly less flows due to the seasonality of the population and occupancy levels. More specifically, the plant was designed and permitted for seventy- five dwelling units and ancillary uses with an estimated maximum design flow of 28,450 gallons per day. The approved planned development will contain only forty-two dwelling units and ancillary uses with a maximum design flow of 21,200 gallons per day. Therefore, the permitted plant will treat the wastewater to a higher level due to the reserve capacity, and the plant will rarely be used at over fifty percent of its available capacity. Revised projected wastewater flows will range from daily loads of 2,325 gallons per day during the months of August and September to a high of 15,137 gallons per day during the month of February. This projected usage is consistent with historical occupancy and usage trends in the Naples area which show that occupancy of homes is at its peak during the dry season (the cooler winter months) and substantially lower during the wet season (the hot summer months). Applicants' projected wastewater flows are found to be reasonable and are hereby accepted. In making this finding, the undersigned has rejected the contention by FAS that the daily wastewater flows will be higher than that projected by the applicants and the plant will operate at maximum capacity for sustained periods of time. The system plans reflect that there will be swales within basin six located between one hundred ten and one hundred twenty feet to the west of the filter fields. These swales run parallel along a cart path and flow to the north discharging into an artificial lake at the north end of the project. The swales in this basin have a bottom elevation of 4.5 feet NGVD and decrease to an elevation of 3.5 feet NGVD at the point of discharge into the artificial lake. Adequacy of Separation Between Plant and System Rule 40E-4.091, Florida Administrative Code, adopts and incorporates by reference a document known as the "Basis for Review for Surface Water Management Permit Applications within the South Florida Water Management District - September 1989" (Basis for Review). Section 3.2.2.8 of the Basis for Review reads as follows: Sewage treatment percolation ponds. Above ground pond dikes shall not be within 200 feet of water bodies or 100 feet of dry detention/ detention areas. Additional calculations by the applicant may be necessary in unusual cases requiring deviations from these dimensions. The purpose of the above section is to provide adequate separation between above-ground percolation ponds and surface water management systems in case the percolation pond dike fails. For example, above grade percolation ponds contain large volumes of sewage treatment plant effluent. If a pond dike should fail, a large portion of effluent would be quickly released into the adjacent ground. The minimum 100-foot separation is designed to provide adequate distance for percolation into the ground prior to infiltrating the surface water management system. However, filter fields contain lesser volumes of effluent than do percolation ponds, and should a filter field fail, the effluent will trickle out the side of the field with a much lower rate of effluent release than from a failed pond dike. In accordance with the District rule, applicants have proposed to locate the surface water management system more than one hundred feet from the wastewater treatment plant and filtration beds. Even though the rule standards have been met, the purpose of this remand proceeding is to determine whether that amount of separation is adequate to prevent adverse impacts to the water quantity and water quality functions of the system from the operation and location of the filter fields. The Computer Models As a part of their application filed with DER in 1989, applicants' witness Missimer prepared and submitted a report known as "Hydrogeologic Characteristics and Hydraulic Modeling for Effluent Disposal at Keewaydin Club". The report was based on a computer model known as "Modflow" and was designed to show the increase in elevation of the water table for a loading rate of 30,000 gallons per day alternating between the two filtration beds. The purpose of the modeling analysis filed with DER was to investigate whether the plant would continue to discharge effluent to the drainfields under the most extreme conditions. The model demonstrated that the effluent discharge would not be impaired even under conditions that are beyond any reasonable or probable operating conditions. After reviewing the model, DER accepted those results and issued a permit. Utilizing in large part the underlying assumptions and parameters of the Missimer model, and without performing any independent field evaluation on the site, FAS witness Chin ran the model to investigate the impact of the operation of the plant on the system. Because the model used by Dr. Chin was not constructed for the design of a surface water management system, but rather was constructed for the purpose of designing an adsorption field, without modification it provided a more than worst case scenario of impacts associated with the operation of a plant. In this case, Dr. Chin utilized the ultra- conservative assumptions used in designing the adsorption field and made no revisions to the model. Thus, it is found that the model as used by Dr. Chin, and any conclusions drawn from the model alone, are not a sufficient or reasonable basis for evaluating the impact of the plant on the system. The model used by Dr. Chin is not representative of the natural occurring conditions on the island or the reasonably expected plant flow rates. Moreover, in developing the worst case scenario, as opposed to reasonable expectations, both the Chin and Missimer models incorporated the simultaneous occurrence of certain conservative assumptions including an impermeable flow boundary, a year round wet season water table elevation, a conservative rate of transmissivity, and a constant rate of evapotranspiration. The use of these assumptions caused the model output to grossly overstate the effects of the plant on the system in the following manner. First, by assuming a flow barrier on the island, the model had the effect of overestimating the height of the groundwater mound from operation of the plant than would occur if no boundary were used. Second, the assumption of a year-round wet season groundwater level is unrealistic since groundwater levels fluctuate seasonally, receding to near zero NGVD on the island during the dry season. Thus, the model overestimated the height of the groundwater level. Further, by using only the upper ten feet of the water table aquifer in calculating the rate of transmissivity, the model incorporated a much lower rate than would be attained had the entire thickness (74 feet) of the aquifer been used. This also resulted in an over-estimation in the height of the mound from the operation of the plant. Finally, by assuming a constant rate of evapotranspiration, the model "grossly exaggerated" the impact to the groundwater level from operation of the plant. In reality, as the water table increases, the loss of water from evapotranspiration increases significantly and constitutes a major output of a water budget. Besides the foregoing assumptions, the Chin model also assumed a continuous loading rate of 30,000 gallons per day for a period of up to one year. While the District should properly consider the permitted flow rate of the plant in evaluating a worst case of potential impact, there was no evidence substantiating any likelihood of the plant actually producing 30,000 gallons per day for 365 consecutive days in conjunction with all other conservative assumptions discussed above. The more reasonable and accepted method of analyzing the impact of plant flows is to examine the peak month's average day flow over a six-month period. As noted earlier, for the proposed forty-two units, the peak day flow is estimated to be approximately 21,200 gallons per day. Therefore, it is highly probable that actual flow rates will be much lower than the maximum plant capacity of 30,000 gallons per day. By failing to use the more reasonable and realistic reduced flow rates, the Chin model overestimated the elevation of the groundwater level from the operation of the plant. In contrast, the Missimer analysis demonstrates that it is extremely unlikely that the plant output will ever elevate groundwater to the extent that it would reach the system swales by either surface water or groundwater flow. The foregoing modeling assessments, including the criticisms of the Chin model, were concurred in by the District expert. Water Quantity Impacts There is no credible evidence to support a finding that the operation of the plant will adversely impact the ability of the system to provide adequate flood protection and drainage. Indeed, the more credible evidence shows that an alteration of existing drainage patterns will not occur by virtue of the operation of the plant, and the post-development discharge rates will not exceed the pre-development discharge rates. Therefore, the undersigned's previous finding that applicants have provided reasonable assurance that the the system provides adequate protection and drainage is not altered after considering the operation and location of the plant. There is insufficient credible evidence to support a finding that the plant's operation will adversely impact the system functions in such a way as to cause adverse water quantity impacts on receiving waters and adjacent lands. Indeed, the post-development discharge rate approximates the pre-development discharge rate on receiving waters, the ultimate receiving water body (the Gulf of Mexico) has an infinite capacity to receive water, and there are no adjacent lands subject to flooding from discharge of the system regardless of whether there is any impact of the plant on the system. There is no credible evidence to support a finding that the plant will cause the system to have an adverse impact on surface and groundwater levels and flows. Rather, the more persuasive evidence shows that the plant's operation will not result in groundwater elevation in the area of the system that would cause the impoundment of water or prevent the percolation of water into the soil. In addition, the overflow levels for control structures will operate as designed to insure against over-drainage or flooding. Finally, the operation of the filter fields will not cause adverse impacts on surface and groundwater levels and flows. Water Quality Impacts The operation of the plant will not impair the water quality functions of the system. This is because the swales will continue to detain the first flush of run-off allowing the majority of the suspended solids and other pollutants to settle out regardless of the operation of the plant. Further, in the unlikely event the treated wastewater effluent reached the system, it would be indistinguishable from the stormwater or rainfall due to the high level of treatment from the plant, the filter fields and dilution from groundwater and rainfall. The operation of the plant will not cause adverse water quality impacts on the receiving waters. In making this finding, the undersigned notes initially that the plant is permitted by DER, and therefore it is assumed to comply with all DER water quality standards. Second, there is no evidence that the system will impact the operation of the plant. In the event the groundwater mixed with treated effluent resurfaces, there would be no adverse impact to the surface water quality. This is because the treated effluent from the plant exceeds state water quality standards. Once the treated effluent becomes a part of the groundwater, it is unlikely that it will resurface again in the areas of the swales, which are more than one hundred ten feet away. Indeed, in order for the groundwater with effluent to travel that distance, it would have been in the groundwater system for at least one hundred days. This period of time is more than sufficient for the denitrification and adsorption processes to remove all nutrients. Even if the worst case scenario became a reality and the groundwater reached the swale bottoms, it would only result in a wetting of the ground and would not be of sufficient quantity to create a flow of water in the swale to travel off-site impacting a receiving water. In any event, at that point, any groundwater resurfacing that distance away would no longer be effluent. Finally, during abnormal conditions, such as a hurricane or large storm event, the groundwater may rise to the surface and mix with the surface water and enter the system. However, any effluent already significantly diluted under normal circumstances would be indistinguishable from the stormwater or rainfall. Adverse Environmental Impacts There is no credible evidence that the operation of the plant filter fields will adversely impact the system in such a manner as to cause an adverse environmental impact. In so finding, the undersigned rejects the contention that the system will act as a conduit for treated effluent to travel off-site to the ponds, marsh, mangrove areas or receiving waters. The evidence shows that the design of the filter fields and high permeability of the island soils will prevent the surface flow of effluent to the system swales. The elevation of the swales above the groundwater table level will prevent the introduction of effluent into the swale system. In the unlikely event the groundwater reaches the bottom elevation of the swale, there would be no significant environmental impact because the quality of effluent would be indistinguishable from the groundwater due to the high level of treatment and dilution, and such water would still be further treated by the system before discharge to receiving bodies. The location of the plant and system will not have an adverse impact on the gopher tortoise population on the island. Rather, the system should enhance the gopher tortoise population by providing mananged land with vegetation suitable for gopher consumption. Further, the general development on the island will reduce the number of raccoons which prey on gopher eggs and young gophers. Miscellaneous During the remand hearing, FAS presented evidence concerning the impact of tides and mean sea level rise and saline lakes on the island. This evidence was essentially the same as that presented in the prior hearing and was rejected in favor of the more credible evidence presented by the applicants on this issue. Nothing was presented during the remand hearing which would alter these prior findings. During the hearing, and in response to a question by District counsel, witness Missimer agreed it would not be unreasonable to install a few monitoring wells to insure that the system is operating properly. Because this requirement is not unreasonable, will serve a valuable purpose, and has been utilized by the District as a special condition on numerous prior occasions, it should be incorporated into the permit conditions. Even though the evidence clearly shows that seasonal tidal fluctuations would not have an adverse impact on the functioning of the system, if such a tidal incursion were to occur, the placement of a check valve device on the water control structures would prevent sea water from flowing back into the system. Such a device would be a minor addition to the system, would not otherwise affect its design, and if deemed necessary by the District, should be incorporated into the permit conditions. Prior to hearing, the District retained the services of an outside consultant to assist it in preparation for trial. The consultant did not testify at final hearing and prepared no reports. He did make several computer runs, none of which are a part of this record. Among other things, District witness Rogers relied upon the computer runs in formulating his opinion on the issue presented on remand.

Recommendation Based on the foregoing findings of fact and conclusions of law, it is RECOMMENDED that a final order be entered granting the requested permit in accordance with the agency's proposed agency action dated March 28, 1990. DONE and ENTERED this 22 day of March, 1991, in Tallahassee, Florida. DONALD R. ALEXANDER Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, FL 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 22 day of March, 1991.

Florida Laws (3) 120.57373.403373.413 Florida Administrative Code (2) 40E-4.09140E-4.301
# 10

Can't find what you're looking for?

Post a free question on our public forum.
Ask a Question
Search for lawyers by practice areas.
Find a Lawyer