The Issue Whether Petitioner has documented that he has the requisite experience to qualify to take the Class A Domestic Drinking Water Plant Operator certification examination.
Findings Of Fact Petitioner, Manuel Rodriguez, Jr., applied for and received certification from DER as a Florida Class C Domestic Drinking Water Plant Operator in 1985. The requirements for certification as a Class C Operator included three years of actual or recognized constructive experience with at least one year of actual experience in the operation, supervision, and maintenance of a drinking water plant. In the processing of this application, DER accepted Mr. Rodriguez's claimed 12.96 months of actual experience without requiring documentation of that experience. Mr. Rodriguez applied for and received certification from DER as a Class B Domestic Drinking Water Plant Operator in 1988. The requirements for certification as a Class B Operator included eight years of actual or recognized constructive experience with at least two years of actual experience in the operation, supervision, and maintenance of a drinking water plant. In the processing of this application, DER accepted Mr. Rodriguez's claimed 38.76 months of actual experience without requiring documentation of that experience. The requirements for certification as a Domestic Drinking Water Plant Operator at the A, B, and C levels of certification have not changed since 1985. DER should have required Mr. Rodriguez to document his actual experience when he applied for his C level of certification and for his B level of certification, but it did not do so. On or about May 5, 1989, Mr. Rodriguez, submitted to DER an "Application for Certification for Operators of Domestic Wastewater or Drinking Water Plants" on a DER form found at Rule 17-1.210(1), Florida Administrative Code. This application was for certification as a drinking water operator at certification level "A". The application form for certification at the "B" and "C" levels were on the same form used for the "A" level. The criteria for certification has not changed since 1982. Such an application for certification must be reviewed and accepted by DER before the applicant is permitted to sit for the requisite examination. The application submitted by Mr. Rodriguez was rejected by DER because the application failed to document that Mr. Rodriguez met the actual experience requirements for certification at the "A" level. In order to qualify to take the Class A level certification examination, an applicant must document 12 years (144 months) of total experience. Of this, 4 years (48 months) must be actual experience. DER considers 2,080 hours of experience as being equal to one year of experience. DER's application form (which has been adopted as a rule) requires an applicant to document his experience by: (a) listing the name and address of each public drinking water system at which the applicant has performed work that qualifies for actual experience credit, (b) listing the class designation of that water system, and (c) detailing the number of hours the applicant has worked at that system. On his application for his Class A Certification, Mr. Rodriguez claimed 49.85 months of actual experience for his employment with Atlantic Salt & Water Treatment, a company Mr. Rodriguez owns and operates. This company is not a water treatment plant, but provides services to residential customers and to certain public drinking water systems. The application provided no documentation as to the public drinking water systems at which Mr. Rodriguez claimed to have performed services. Mr. Rodriguez also claimed actual experience based on information on file with DER in past applications. Mr. Rodriguez was notified that his application was rejected because of his failure to document his actual experience. The Notice of Final Order of Denial, dated May 31, 1989, based the rejection of the application on the following: You have not accumulated the 4 years of satisfactory full-time on-site employment in the operation of a treatment plant, as required by Section 17-16.03, F.A.C. Your application indicates that you have only 11 years, 0 months of operational experience on the date of the application. The Notice of Final Order of Denial, dated May 31, 1989, erroneously reflected that Mr. Rodriguez had been credited with 11 years, 0 months of operational experience. This erroneous statement was caused by a computer error. Mr. Rodriguez was aware of this error and was aware that DER had credited him with having no actual experience because his application failed to document that experience. Following the rejection of his application, Mr. Rodriguez filed an amendment to his application which provided additional information regarding his work experience. This information, submitted in late June 1989, claimed 76 months of actual experience as follows: 39 months between March 1985 and June 1989 while employed as the owner and operator of Atlantic Salt (the full name of Petitioner's company was not spelled out on the amendment). This claimed experience is based on services rendered to Jones Fish Camp (twice a week) and to South Dade Storage and Industrial Park (once a week). 14 months between October 83 and December 84 while employed by Home Refinement. This claimed experience is based on services to South Dade Shopping Center (twice a week), Commercial Carriers (once a week), Dennys Restaurants Miami Beach (once a week), Dennys S. Dixie Highway (once a month), Bank of Homestead (twice a week), Tivoli Shopping Plaza (twice a week), Florida Power & Light Princeton Complex (twice a week), Florida Rock & Fill (twice a week), Florida Transport (twice a week), The Dialysis Center Homestead (once a month), and Botanical Garden (once a month). 12 months while employed by Culligan Water between October 1978 and October 1979. This claimed experience is based on services to Jackson Memorial Hospital (twice a week), Mercy Hospital (twice a week), Coral Reef Hospital (twice a week), Baptist Hospital of Miami (once a month), Howard Johnson Hotel Downtown (once a month), Americana Hotel Miami Beach (twice a month), Kings Bay Club (once a month), and Standard Concrete Plant (twice a month). 7 months while employed by Enviropact, Inc., between March 1977 and October 1978 (sic). This claimed experience is based on services to Quality Inn S. Dixie Highway (once a week). 4 months while employed by Florida Water Treatment between January 1977 and March 1977 (sic). This claimed experience is based on services to Hialeah Garden School for the Handicapped (once a week). The application, as amended, did not contain the required documentation of actual experience. There was no listing of the address of each respective water system, the class designation for each system, or the number of hours Mr. Rodriguez claimed to have worked at each water system. DER maintains a computer list which contains a complete inventory listing of all public drinking water systems recognized as such be DER, including inactive systems. DER checked the establishments for which Mr. Rodriguez claimed experience against its computer records to determine which of those establishments are DER approved public drinking water systems. Although such a computer check is not authorized by rule, this type check is routinely performed by DER and the computer records are verified for accuracy and for completeness. Mr. Rodriguez correctly contends that inclusion on the DER computer inventory should not determine whether an entity is a public drinking water system because that determination should be made by application of the pertinent DER rules. However, in the absence of documentation to the contrary, this computer check provides a reasonable means of determining whether an entity is a public drinking water system. On July 7, 1989, DER notified Mr. Rodriguez that the amendment was insufficient in a letter that provided, in part, as follows: The Department carefully reviewed your amend- ment to your application. Of the establish- ments you listed only Jones Fish Camp and Botanical Garden (Morey's Garden Center) are public drinking water systems. We estimated that you have spent approximately 200 hours over four years at these businesses. This is not sufficient to meet the criteria for an "A" level water treatment license. DER determined that at most Mr. Rodriguez has documented 200 hours of actual experience for work at Jones Fish Camp and the Botanical Garden. (It was determined after the letter of July 7, 1989, that no credit should have been given for the Botanical Garden because the entity to which Mr. Rodriguez referred was not the same Botanical Garden that appeared on the computer inventory.) DER properly awarded no actual experience credit to Mr. Rodriguez for services he rendered to any other entity he listed in his amended application because none of the other entities were on DER's computer inventory of DER approved public drinking water systems or otherwise documented by Mr. Rodriguez to have been public drinking water systems as defined by DER. Mr. Rodriguez has not provided an accurate or detailed statement as to the number of hours he has spent during the course of his employment in the operation of those entities he asserts should be considered to be public drinking water system. Mr. Rodriguez's inability to give details about the services he has provided has been impaired because his former employers are now his competitors and they refused to cooperate with him. However, there was no evidence that Mr. Rodriguez attempted to subpoena any of the records from these former employers. Mr. Rodriguez has received appropriate constructive experience credit for his education and specialized training. He has successfully completed all of the required course work for the Class A water treatment plant operator certification, and it was only his inability to document his actual experience that prevented his sitting for the Class A examination. Each level of certification is independent of each other, and a lower level certification is not necessary in order to receive a higher level. DER determined that the credit for actual experience given to Mr. Rodriguez based on his application for Class C certification and his application for Class B certification should not have been given because he did not document that experience, and did not credit him with the experience for the Class A certification to the extent he was unable to document such experience. Mr. Rodriguez failed to document that he has the requisite experience to sit for the Class A examination. While Mr. Rodriguez may in fact have such experience with public water systems, he has not documented that experience either in his application or at the formal hearing.
Recommendation Based upon the foregoing Findings of Fact and Conclusions of Law, it is recommended that a Final Order be entered which upholds the Department of Environmental Regulation determination that Petitioner, Manual Rodriguez, Jr., has failed to document that he has the actual experience required for Class A Domestic Drinking Water Plant Operator, and which upholds the rejection of his application to sit for the Class A Domestic Drinking Water Plant Operator examination. RECOMMENDED in Tallahassee, Leon County, Florida, this 13th day of February, 1991. CLAUDE B. ARRINGTON Hearing Officer Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-1550 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 13th day of February, 1991. APPENDIX TO RECOMMENDED ORDER, CASE NO. 89-4052 The following rulings are made on the proposed findings of fact submitted on behalf of the Respondent. The proposed findings of fact in paragraphs 1-5, 7-8, and 10-15 are adopted in material part by the Recommended Order. The proposed findings of fact in paragraphs 6 and 9 are rejected as being subordinate to the findings made. The proposed findings of fact in paragraph 16 are rejected as being unnecessary to the conclusions reached. COPIES FURNISHED: Calvin Fox, Esquire Elena Tauler, Esquire TAULER & FOX, P.A. 3477 S.W. Third Avenue Miami, Florida 33145 Cynthia K. Christen, Esquire Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32399-2400 Carol Browner, Secretary Department of Environmental Regulation Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32399-2400 Daniel H. Thompson General Counsel 2600 Blair Stone Road Tallahassee, Florida 32399-2400
The Issue The issue presented for decision herein is whether or not the Respondent, Department of Environmental Regulation (DER), should issue a permit to Respondent, Robert Peterson, to construct a 0.007 MGD wastewater treatment facility with effluent disposal to Dual Class V injection wells in Key Largo, Monroe County, Florida.
Findings Of Fact On January 17, 1986, Robert Peterson, doing business as Peterson's Condominiums, submitted an application to the Florida Department of Environmental Regulation (DER) to construct a 0.007 MGD wastewater treatment plant with effluent disposal to Dual Class V injection wells into G-III groundwater. The proposed site is located at Mile Marker 95.6, U.S. Highway 1, Key Largo, Florida. The sewage treatment plant is to serve a ten unit condominium with provisions for four future units. The designed population to be served is 62. (Permit Application) The Plant is designed to treat the sewage so that after treatment and disinfection, the effluent will, on average contain no more than 20 parts per million biological oxygen demand (BOD-5 day) and 20 parts per million of total suspended solids (TSS). There will be 90 percent removal of these pollutants after treatment. The effluent will be disinfected in a chlorine contact chamber, with chlorine tablets used as the disinfectant. Sludge will be removed by a licensed scavenger truck to Monroe County approved disposal sites. Noise from the plant will be controlled by a blower filter, silencers, and a weather proof hood. (Permit Application). No control is contemplated for odor or aerosol drift other than proper plant operation. No lighting will be provided at the plant. Emergency power `from a rental portable generator will be used if there is an extended power failure. Along with the sewage treatment application, Respondent Peterson also submitted two permit applications for injection of the treated effluent into 2 Class V injection wells. The total volume of treated effluent that would enter into both wells combined is 6500 gallons per day. The 6 inch diameter wells would be 65 feet deep with casing and grout down to a depth of 30 feet. Upon receipt of the permit applications, DER reviewed the application and requested an additional application including groundwater samples measuring total dissolved solids. Peterson submitted two samples, both indicating total dissolved solids significantly greater than 10,000 milligrams per liter. (DER's Exhibits 2, 3 and 4). The samples (TDS) were taken approximately 1 and 6 miles from the proposed site. Based on DER's staff review of hundreds of groundwater quality analyses from the Keys, DER's staff determined that the samples submitted were consistent with other groundwater TDS levels throughout the Keys. (Testimony of Barrone and Me1e). Use of the samples by DER was reasonable and proper. Groundwater in which the TDS is greater than 10,000 milligrams per liter (parts per millions) is classified as G-III groundwater. Such water is considered non-potable. (Testimony of Barrone and Mele; Florida Administrative Code, Rule 17-3.403(1)). After review of the application, DER issued an "intent to issue" Peterson the permits requested on March 5, 1986. (DER's Exhibit 7). The "intent to issue" as drafted by DER established certain conditions to monitor water quality and to test treated effluent before it is discharged to Class V wells. As an example, flow, pH, and chlorine residuals are to be sampled daily; BOD and total suspended solids are to be sampled monthly and fecal coliform is to be sampled once per quarter. Test results are to be submitted to DER on a monthly basis and the analysis program is conditioned to demonstrate substantial compliance with water quality standards as set forth in pertinent sections of the Florida Administrative Code. Provided the monthly reports reveal violation of DER's standards, the permittee will be required to rectify the problems. (DER's Exhibit 7, testimony of Barrone and Mele). Additionally, DER has conditioned its intent to issue on a trial or experimental basis and this project will again be subjected to review in one year. (DER's Exhibit 7, condition 12). Should the permittee fails to bring the facility into full compliance within the one year period, an operational permit will not be issued. DER imposed this condition on the subject wastewater treatment plant, based on the fact that it is a new model and DER does not have extensive experience with the monitoring of this type plant. (Testimony of Barrone and Mele). Evidence introduced reveals that the plant manufacturer, Smith and Loveless, is the largest manufacturer of factory built water and wastewater pump stations and treatment plants. The manufacturer pioneered prefabricated treatment plants with over 30 years experience. Evidence reveals that there are at least three plants in operation in Florida without any operational problems. Upon "issuing the intent to issue", DER directed the permit applicant (Peterson) to publish notice in the Key West Citizen (Peterson's Exhibit 1). Notice of this proposed agency action was published in the Key West Citizen on March 17, 1986, giving any substantially affected party 14 days from that date to file a petition for administrative proceedings with DER's Office of General Counsel. (Petitioner's Exhibit 2). On March 26, 1986, DER received a letter from Petitioner McInerny, Popp and other local citizens (C.C. Waggle) protesting the proposed project. The Objectors indicated that they had heard that the proposed agency action was advertised in the Key West Citizen but that the Key West Citizen was not available in their area. 1/ Based on these protest letters, DER afforded Objectors, including Petitioners, a new point of entry into these proceedings. Petitioners Ohi, Popp and McInery timely petitioned for an administrative hearing challenging the proposed agency action. The challenges by Petitioners, based on DER's second point of entry, were timely filed. When the proposed facility becomes operational, it will not cause foul odors or create a nuisance due to aerosol drift based on the design features. (Testimony of Barrone, Mele and Sikorski. The extended aeration facility, as proposed, is the most reliable type of sewage treatment plant for this type operation. (Testimony of Mele). The expected pollutants produced from domestic sewage are BOD, dissolved solids and to a lesser extent heavy metals, nitrates, phosphorus and bacteria. (Testimony of Mele). After treatment, the effluent from this facility is not expected to be either toxic or carcinogenic. (Testimony of Mele). The Class V wells into which the treated effluent would be placed are approximately 500 feet from the nearest shoreline, the Atlantic Ocean. This is the closest distance to any Outstanding Florida Water. As such, the treated effluent will be diluted prior to its discharge into the Atlantic Ocean. (Permit Application, Testimony of Mele). Respondent Peterson has provided Respondent DER reasonable assurances that the proposed facility, upon operation, will not violate the Department's rules relating to air, noise and water quality standards.
Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED: That Respondent, Department of Environmental Regulation enter a Final Order issuing Respondent, Robert Peterson, doing business as Peterson's Condominiums, a permit to construct a 0.007 MGD wastewater treatment plant with effluent disposal to Dual Class V injection wells with the conditions as set forth in the DER's "intent to issue" dated March 5, 1986. RECOMMENDED this 1st day of December 1986 in Tallahassee, Florida. JAMES E. BRADWELL Hearing Officer Division of Administrative Hearings The Oakland Building 2009 Apalachee Parkway Tallahassee, Florida 32301 (904) 488-9675 Filed with the Clerk of the Division of Administrative Hearings this 1st day of December 1986.
The Issue The issue in this case is whether the South Florida Water Management District (SFWMD) should modify Surface Water Management (SWM) Permit No. 50-00548-S, held by the ACME Improvement District (Acme) to authorize alternate SWM facilities within Acme Basin B primarily by: eliminating the water quality function originally provided by a 79-acre retention area known as Peacock Pond pursuant to a 1979 permit; replacing it with adequate alternate methods of water quality treatment; and authorizing an alternative pump operation schedule for the remainder of Acme Basin B. The permit should be modified only if Acme has provided reasonable assurances that the proposed modifications comply with the relevant portions of SFWMD's Environmental Resource Permit (ERP) regulations set forth in: Part IV of Chapter 373, Florida Statutes; Chapter 40E-4, Florida Administrative Code; and the Basis of Review for ERP Applications (BOR) (collectively referred to as ERP criteria).
Findings Of Fact General SFWMD is a public corporation existing by virtue of Chapter 25270, Laws of Florida, 1949, and operating pursuant to Chapter 373, Florida Statutes, and Title 40E, Florida Administrative Code, as a multipurpose water management district with its principal office in West Palm Beach, Florida. Acme is a dependent special district of the Village of Wellington, a municipality of the State of Florida. Polo is a Florida corporation and a developer in the Village of Wellington, Palm Beach County, Florida, including a 79-acre parcel of real property known as Peacock Pond, and other undeveloped property that are part of the subject of this permitting proceeding. Wellington Country Place Property Owners Association, Inc. (POA) is the property owners association for WCPPUD. Permit History 1978 Permit In 1978, SFWMD issued to Acme the original backbone SWM permit for approximately 18,000 acres, including primary drainage Basins A (to the north) and B (to the south). Pierson Road, which runs east/west, is the boundary between the two basins. (The backbone C-23 canal parallels Pierson Road to its immediate north.) Acme Basin A discharges to the C-51 canal, which flows east to the Atlantic Ocean. Acme Basin B, which consists of approximately 8,680 acres, discharges to the Loxahatchee National Wildlife Refuge (Refuge) through two Acme pump stations. The Refuge is part of what is now designated the Everglades Protection Area. The 1978 backbone permit, which modified a still earlier permit, established lower water control elevations in Basin A, which was being developed for urban use, than in Basin B, which was planned to remain largely in agricultural use. Under the 1978 permit, the maintained (regulation) stage in Basin A was set at 11' above mean sea level (msl) with discharge beginning at 12' msl during the wet season and 12' msl with discharge beginning at 13' msl during the dry season. The maintained stage in Basin B remained at 13' msl in both the wet and dry season. Under the 1978 permit, it was anticipated that routing surface water runoff in Basin A through canals and retention lakes would provide the water quality treatment required under the criteria in effect at the time (including a requirement to provide half an inch of detention over the entire Basin A for water quality treatment purposes.) At the time, planned residential development in the extreme southwest corner of Basin B was anticipated to generate only limited quantities of runoff due to the nature of typical development in 5-acre parcels; quality of runoff was expected to be better than from previous agricultural use. Presumably because there would be no change under the 1978 permit, water quality treatment in the remainder of Basin B was not addressed. 1979 Permit By 1979, Acme requested a permit modification for development of the Wellington WCPPUD, which is located entirely within Acme Basin B. The PUD's northern boundary is Pierson Road; the western boundary is the backbone C-2 canal; and the eastern boundary is the backbone C-6 canal. The north/south backbone C-4 canal divides the western third of the PUD from its eastern two-thirds; it also forms the western boundary of the area known as Peacock Pond. The southern boundary of the PUD generally follows the east/west backbone C-24 canal.2 The 1979 permit modification authorized construction and operation of water management facilities in portions of WCPPUD, including a 79-acre pumped retention area (which was to become known as Peacock Pond), pump station, and control structure. Under the 1979 permit, the maintenance stage (water control) elevation within WCPPUD only was set at 12' National Geodetic Vertical Datum (NGVD) (essentially, the same as msl) in the wet season and 13' NGVD in the dry season. The minimum road and finish floor elevations were established at elevation 16' and 17' NGVD, respectively. Without regard to seasonality, the retention area pump station was to begin operation when a stage of 13' NGVD was reached in the adjacent C-4 canal and was to discontinue operation when the system was drawn down to elevation 12' NGVD. The 1979 permit used the 79-acre area known as Peacock Pond as its central water quality feature. Runoff from WCPPUD was to be collected in roadside swales within road right-of-ways and routed by storm sewer inlets and pipe to either a proposed 12-acre lake or one of the collector swales or canals connected to the Peacock Pond site. The 1979 permit contemplated use of the Peacock Pond site as a "retention-type" surface water management facility. Generally, such a facility detains the water, allows the pollutants to settle, then slowly lets the water out. In the 1979 permit, Acme was required to construct a berm or dike around the 79-acre area to create an above-ground impoundment to serve as the retention area. A pump was required to be installed at the northwest corner of Peacock Pond to pump water from the adjacent C-4 canal into the retention area. The berm or dike was to detain water on the site until it reached the level of a gravity flashboard riser outfall structure at the southwest corner of the site, which would be set at 15' NGVD and would return the water to Acme's C-4 canal just downstream of a broad-crested weir, which would be set at 14' NGVD. Additional discharge from the system would be provided by two 72-inch gravity-flow flashboard risers with crest elevation 14' NGVD-- one to the C-4 canal and the other to the C-6 canal. Water discharged from the system would flow south and west through Acme's system of Basin B canals, eventually discharging to the Refuge through the two pump stations to the south and southwest. During a rise in stage in the C-4 from 13' to 14' NGVD, the pump station in the northwest corner of Peacock Pond would continue filling the retention area. Considering pumped inflow of 4000 gallons per minute (gpm), the retention area would take 3.3 days to reach a peak stage of 16'. At that stage, 58 acre-feet of water would be stored within the retention area. SFWMD calculated that Peacock Pond would treat approximately 200 million gallons of water a year in this way. SFWMD and Acme have taken the position in this case that the sole purpose of Peacock Pond in the 1979 permit was to serve as a water quality treatment area for the Wellington WCPPUD. It is true that the 1979 permit contemplated that flood protection for Basin B would be provided through use of the two pumps discharging into the Refuge (Pump #1 capable of pumping at the rate of 100,000 gpm, and Pump #2 capable of pumping at 120,000 gpm). But, as subsequent events showed, the Peacock Pond retention area was part of an overall SWM system for WCPPUD that maintained water stage elevations there at a lower level than in the rest of Basin B. In other words, while designed primarily to provide water quality treatment, and not designated a flood control facility, it had some residual flood control benefit within WCPPUD. Actual Operation After 1979 Permit Although Peacock Pond was critical to the functioning of the SWM system for WCPPUD and Basin B, SFWMD never obtained from the owner the legal right to use it for SWM purposes. From 1979 to 1986, SFWMD was advised that the Peacock Pond facility was in substantial conformance with the permitted conditions. But some time after property, including Peacock Pond, was transferred to Landmark Land Company of Florida, Inc., the pumps in the northwest corner of Peacock Pond stopped being used regularly.3 Instead, Acme water control structure 115 (a 48-inch culvert and 72-inch flashboard riser which replaced the broad- crested weir in the C-4 canal through a 1982 permit modification) and structure 117 (discharging to the C-6 canal) were opened so that water levels in Wellington Country Place equalized with the surrounding Acme Basin B, which was controlled by the two pump stations discharging to the Refuge to the south and southwest. The evidence indicates, for at least the last ten years, the Basin B pumps have been operated to maintain water elevations of 12' NGVD in the wet season and 13' NGVD in the dry season--the same as for the County Place PUD under the 1979 permit. Under this water elevation control regime, flooding within WCPPUD was not a problem, but the water quality treatment from the Peacock Pond facility required under the 1979 permit was not being realized. The pump operation schedule under the 1979 permit did not specify a "bleed-down" mechanism. As a result, when internal stages exceeded the specified control elevation threshold, both Basin B pumps would be operated at a combined rate of 220,000 gpm until the seasonal water control elevation was again established. This operation did not take full advantage of the nutrient removal capacity of the existing system. 1989 Equestrian Estates Permit Modification In 1989, construction and operation authorization was issued for the Equestrian Estates development located within WCPPUD west of the C-4 canal. Among other things, this modification to SWM Permit No. 50-00548-S included the construction of lakes for use as wet detention ponds and a control structure allowing discharge from Lake No. 5 (as designated in Exhibit 2 of the Staff Report, SFWMD Exhibit 5) to the C-4 Canal. However, this control structure and its associated culvert were never constructed. Peacock Pond Enforcement Proceedings Around 1997, SFWMD was informed that the Peacock Pond pump was not being operated and initially brought enforcement proceedings against Polo, which had become the owner of the property in 1993, to resume pumping into Peacock Pond. At the time, SFWMD was involved in enforcement proceedings against Polo, as owner, for unauthorized dredging and filling in Peacock Pond, and SFWMD made an incorrect assumption that Polo was the operator of the Peacock Pond facility under the 1979 permit. SFWMD subsequently realized that Acme, not Polo, was the permit holder. When Acme attempted to turn the pumps on again, Polo refused to allow Acme to do so without compensation. SFWMD then brought an enforcement action against Acme for not operating Peacock Pond in accordance with its permit. SFWMD and Acme entered into a Consent Order requiring Acme to operate Peacock Pond and the rest of the SWM system as required by the 1979 permit. Acme subsequently brought eminent domain proceedings against Polo to acquire Peacock Pond and obtained a final judgment, but the compensation required under the final judgment was prohibitive. SFWMD and the Village of Wellington then entered into a Joint Cooperation Agreement, which (among other things) required the Village of Wellington to submit an "application to modify the Peacock Pond Permit and Consent Agreement to either eliminate or substantially reduce the size of Peacock Pond [which] must provide reasonable assurances that demonstrate that the water quality treatment, water quantity and environmental benefits associated with the Peacock Pond Permit are maintained through the modified facility or by other equivalent measures." In the meantime, SFWMD ordered Acme to set control structures 115 in the C-4 canal and 117 in the C-6 canal at 14' NGVD as required by the original 1979 permit. When this was done without operation of the Peacock Pond retention area as also contemplated and required by the 1979 Permit, the water levels caused septic tank problems to some residents in WCPPUD, leading SFWMD to issue emergency authorizations to lower the crest-settings of structures 115 and 117 to 12.5' NGVD. At those settings, water levels in WCPPUD stayed between 12' and 13' NGVD, and there have been no septic tank problems in the last two years. Specifically, measured water levels in the C-4 canal north of control structure 115 generally ranged between elevation 12' NGVD and 13' NGVD from November 2001 through October 2003, with occasional variances above or below due to drought or rain periods. Proposed Modification to Eliminate Use of Peacock Pond On May 12, 2000, Acme filed an application to modify its permit. The primary purpose of this modification was to authorize alternate SWM facilities within Basin B (primarily within WCPPUD) to maintain the water quality treatment function that was assumed would be realized by Peacock Pond in the WCPPUD permit issued in 1979. Additional components of the permit modification are: installation of a 7.8 acre flow through littoral zone within the C-2 Canal for additional cleansing of Acme Basin B water; modification of the pump operation schedule for Basin B; revision of surface water management design requirements for future development within Country Place to include additional lake acreage and littoral zones; elimination of a previously permitted (but not constructed) control structure allowing discharge from Lake No. 5 to the C- 4 Canal so that water from Lake 5 continues to drain through established canals and lakes into the C-4 Canal; modification of existing flashboard riser water control structures 115 and 117 within the C-4 and C-6 Canals to crest elevations of 12’ and 13’ NGVD, respectively, so that water will be detained upstream but water from both the eastern and western ends of the Wellington WCPPUD drain toward and into the C-4 canal during low flow; and an analysis of nutrient (and phosphorus) loading, removal and export from the Country Place system During the application process, Acme submitted detailed water quality calculations analyzing and comparing the 1979 permit, based on the land uses at that time and the anticipated phosphorous loading that would be discharged from the system, and the proposed modification with current land uses and phosphorous loading now anticipated. To support its modification application, Acme recalculated the water quality treatment currently provided by existing lakes--many of which were not planned in 1979--and other water quality treatment features in WCPPUD. Acme's calculations assumed that all land owners of undeveloped tracts in Basin B, including land owners in WCPPUD, wishing to develop their properties in the future will have to provide for adequate water quality treatment or other acceptable alternatives, as required by SFWMD regulations in place at the time the future permit applications are filed. In order to meet those requirements, future developers can either create lakes on their properties, treat their water off-site on properties such as Peacock Pond, or use other equivalent alternatives. In conformance with current SFWMD criteria, Acme’s application only considered and counted as water quality treatment features water bodies with an average width of at least 100' and a size of at least 0.5 acres. SFWMD spent an enormous amount of time reviewing the data and analyses that were submitted. SFWMD then issued numerous lengthy requests for additional administrative and technical information, requiring Acme among other things to provide water level information and perform management calculations. Acme provided necessary calculations to demonstrate that flood levels within WCPPUD would not be affected by the elimination of Peacock Pond as a water quality feature. Acme's calculations demonstrated that the water quality treatment functions currently provided by existing lakes meeting SFWMD's dimensional criteria and by on-site swales, together with the 7.8-acre off-site littoral shelf to be constructed in canal C-2, would be sufficient to replace the water quality treatment functions assumed to be provided by Peacock Pond under the 1979 permit. SFWMD issued a Staff Report on April 29, 2003, recommending approval of the application to modify the SWM permit. SFWMD found that Acme had provided reasonable assurances by Acme that the applicable permit criteria would be met. On May 15, 2003, the SFWMD Governing Board approved the Staff Report to issue a modification to SWM Permit No. 50-00548- S, Application No. 000512-12. Control Elevations and Pump Operation Schedules The proposed permit modification states that there will be a change in the permitted water control elevations and pump operation schedule within Basin B. However, as set out in Finding 17, supra, in actual practice, water elevations throughout Basin B have been maintained at the levels permitted for WCPPUD under the 1979 permit for at least the last ten years, which include the time period after the Peacock Pond pumped retention area stopped being operated as required under the 1979 permit. The proposed modifications essentially would continue the historical operation of the Acme Basin B system during this time period. In essence, the changes in Basin B outside WCPPUD will simply conform the permit conditions to actual conditions for at least the last ten years. For that reason, SFWMD and Acme has referred to modification as being only "on paper." As reflected in Finding 23(e), supra, water control structures 115 and 117 would be modified in association with this permit modification so that structure 115 (located in the C-4 canal adjacent to Peacock Pond) will have a weir crest elevation of 12' NGVD and structure 117 (located adjacent to the C-6 canal) will have a weir crest elevation of 13' NGVD. As a result, when the water level in WCPPUD exceeds 12' NGVD, it would begin to "bleed down" out of structure 115 in the C-4 canal. If the water level in WCPPUD continued to rise and reached 13' NGVD, it would begin to "bleed down" out of the 117 structure in the C-6 canal as well. Under the proposed permit modification, the pump operation schedule would be revised so that no pumping would occur until Basin B stages reached 13' NGVD. Then, the pump rate will average 30,000 gpm, which equates to a "bleed down" discharge of 20 percent of the one-inch detention above 12' NGVD per day. When the stage has been brought down to 12' NGVD, all pumping would cease. During significant storm events, when the internal stages exceed 13' NGVD, the previously permitted peak discharge rate of 220,000 gpm will be maintained. If the pumps are operated as proposed in this modification, the system will be able to take full advantage of its nutrient removal capacity. At the same time, water levels will be maintained within the ranges of historical operation over at least the last ten years. The only difference is that, except for major storm events, water levels will be allowed to "bleed down" at a slower rate. Notwithstanding these facts, Petitioners believe that control elevations in WCPPUD have always been higher than in Basin B, and are concerned that the proposed "on paper" modification is in the nature of a "smoke and mirrors" trick. Petitioners are concerned the proposed modifications will cause additional water to be detained in WCPPUD to the detriment of the equine industry there. But the evidence indicated that the their concerns are not well-taken. Under the proposed modification, there will be one inch of detention over the entire Basin B water management system between the elevations of 12' NGVD and 13' NGVD. This is the same range of elevations established for WCPPUD in the 1979 SWM permit. The calculated detention volume accounts for the volume of water which is physically accommodated in the system between 12' NGVD and 13' NGVD. There is no additional detention created in the WCPPUD system through the proposed changes. The proposed Basin B pump schedule will result in the same range of water table fluctuation as required in the 1979 SWM permit. As Petitioners' witness, Mr. Straub, testified, the system has worked well as operated for the last three years. No significant changes are to be expected as a result of the proposed pump operation schedule changes designed to achieve greater water quality treatment benefits. In combination, the modification of the pump operation schedule for Basin B and the revisions to the WCPPUD system are expected to result in an improvement in flood control with lower flood stages within WCPPUD through a more efficient water management system. Acme has demonstrated that the proposed modifications will not result in a change in actual water control elevations on Petitioners' properties; will not cause water to back up and cause flooding or septic tank problems within WCPPUD; and will comply with Florida Administrative Code Rule 40E-4.301(1)(a), (b), and (c.) The undisputed expert testimony was that Acme gave reasonable assurances that the proposed permit modification will not "lower existing water table elevations." (Emphasis added.) Fla. Admin. Code R. 40E-41.363(4). Equivalent Water Quality Treatment Provided Acme provided calculations comparing the treatment which was assumed to take place within the originally permitted surface water management system of WCPPUD (which included Peacock Pond), the treatment which is currently being provided by the existing system, and the treatment that will be provided under various assumed future scenarios. Acme demonstrated that there will be an equivalent amount of water quality treatment even though the use of Peacock Pond as a water quality retention area is being eliminated. Petitioner did not provide any contrary evidence to show that the removal of Peacock Pond reduced water quality treatment in the system. As a result, reasonable assurances were given that there will be no adverse effect on the quality of receiving waters as a result of this proposed modification. Additional Wet Detention Areas Now Exist Although the 1979 permit required only 12 acres of wet retention ponds, analysis of aerial photographs and existing permits issued after 1979 indicates that 54.4 acres of wet detention lakes meeting current regulatory criteria now exist in WCPPUD. Another 33 acres of existing wet retention areas (including canals) are present but do not meet the minimum width criteria required for wet detention ponds. Approximately another 4 acres meet the dimensional requirements but are not legally encumbered for use by Acme for water quality purposes. For example, Lakes 6 and 8 meet the dimensional criteria but are not platted as water management areas or encumbered by suitable drainage easement. A similar situation exists with Lake 9, which has been assumed to provide wet detention treatment over only 15.41 acres since the northern 2.25 acres of the 17.66-acre lake are outside the platted water management area's footprint. If all lakes, ponds, and canals within WCPPUD were counted for water quality purposes, Acme calculated that there would be enough capacity to treat approximately one inch of runoff from WCPPUD. Not counting the water bodies not meeting dimensional requirements or not legally encumbered, but assuming that future development within WCPPUD will have 13% water bodies qualifying for use as wet detention areas under current criteria, Acme calculated that there would be capacity to treat one inch runoff from current and future development within WCPPUD. (Instead of 13 percent qualifying wet detention areas, alternative equivalent water quality treatment also could be used to meet applicable water quality treatment criteria.) Planted Filter Marsh Located in C-2 Canal Provides Additional Water Quality Treatment Phosphorus loading can be described as the pounds of phosphorus which are being discharged to a water body through storm water runoff. In WCPPUD today, phosphorous loading is higher than originally anticipated and calculated when the 1979 Permit was issued due to differences in the way the land has been developed over the last 20 years. The main difference is more equestrian activity and its higher phosphorus loading than anticipated in 1979. Acme submitted detailed phosphorus loading information which is included in Exhibits 7A through 7E to the Staff Report (SFWMD Exhibit 5), comparing what the original permit anticipated to what is happening today, and what would happen with the modified system. The detailed information is summarized on Exhibit 8 to the Staff Report. To address phosphorus loading, the proposed project includes construction of a 7.8-acre filter marsh within a portion of the Acme C-2 Canal right-of-way located within Basin B about a half mile west of WCPPUD. The project will extend from the intersection of the C-2 and C-23A canals southwards approximately 6,800'. The filter marsh will treat water flowing south through the C-2 canal prior to reaching the Acme pump stations discharging into the Refuge. The existing Acme C-2 canal will be expanded to a width of approximately 80' to 130' and will incorporate a meandering 40' to 60' wide constructed and planted littoral shelf at elevation 10.0' NGVD. Adjacent to the proposed littoral zone, a 25' wide section of the canal will be excavated to an elevation of approximately 6.0' NGVD. This deeper section is proposed to prevent any reduction in hydraulic capacity of the existing C-2 Canal. The 7.8-acre area will be planted with native wetland vegetation on three centers. It is anticipated that the planted vegetation will meet or exceed the eighty percent coverage requirement within two years; however, additional plants will be installed if the area fails to meet such expectations. Monitoring will occur on a monthly basis until the filter marsh achieves a 50 percent areal coverage of desirable planted and recruited wetland vegetation. Upon attainment of the 50 percent coverage criterion, the monitoring frequency will be reduced to four times per year for a period of three years. Subsequent maintenance and monitoring events will occur semi- annually. Should exotic infestation occur, herbicide and/or hand clearing will be utilized to bring the filter marsh into compliance with desired plant specie densities. Special Condition No. 12 of the Staff Report (SFWMD Exhibit 5) requires that the Acme adhere to the filter marsh maintenance plan. The proposed littoral zone construction is expected to be initiated within six months of permit issuance and completed within six months of commencement. The pollutant loading/removal spreadsheets provide an estimate that the marsh will result in the annual removal of 33 pounds of total phosphorus. At the same time, the proposed filter marsh will add the equivalent of one-half inch of water quality treatment benefits within the entirety of Basin B. As a result, with the proposed filter marsh, Acme gave reasonable assurances that the proposed permit modification would provide "an additional fifty (50) percent retention/detention water quality treatment addition to the water quality treatment volumes required in section 5.2.1. of the Basis of Review [for projects within a Water Protection Area or Area Basin]." Fla. Admin. Code R. 40E-41.363(5). Approximately half of the proposed filter marsh will extend north of the east/west C-24 Canal, and half will extend south of it. The northern half will treat water from an area of relatively intense equestrian use just west of WCPPUD; the southern half will continue to treat water flowing through the northern half of the filter marsh. However, the southern half also will treat some water from the C-4 and C-6 canals in WCPPUD, which flows south to the C-24 and then west to the C-2. Exhibit 9B of the Staff Report (SFWMD Exhibit 5) delineates the assumed contributing area of 960 acres. BMPs Provide Improvements in Water Quality Best Management practices (BMPs) are water quality treatment operational practices to prevent pollutants from ultimately entering the receiving water body. BMPs are also often referred to as source controls. Examples of BMPs include street-sweeping and cleaning out storm gutters to control pollutants at their source. BMPs are commonly considered in ERP permitting. The Village of Wellington has mandated a BMP program in Basin B, including: an ordinance dealing with phosphorus and water quality improvement; an ordinance regulating the application of fertilizer, requiring no more than two percent phosphorus content; and an equestrian BMP requiring equestrian residuals, commonly known as manure, be collected and contained in concrete covered bins. Historically, horse manure was stockpiled in the open and exposed to rainfall. Stormwater runoff from the stockpiled manure often flowed directly into the Acme canals. Stormwater runoff from equestrian residuals has been a major contributing factor to the amount of phosphorus being discharged to the Everglades from Basin B. The Village of Wellington also is implementing BMPs for its own canal maintenance and for cleaning phosphorous-laden sediments from its canals. The calculations provided to SFWMD by Acme concerning BMPs do not assume an initial 100-percent compliance. Initially, a 20-percent compliance was assumed because the ordinances are fairly new. These BMPs were not in place when the 1979 permit was issued. Under the current application, it is expected that the BMPs throughout Basin B will significantly reduce the amount of phosphorus ultimately discharged through the two Acme pump stations to the Refuge. Although there is an increase in phosphorus loading from that anticipated in 1979, the BMPs, filter marsh, amendment to the pump operation schedule, comprehensive water quality monitoring plan, and other items in the modification offset the increase. (The modifications in the proposed permit are not designed to address the overall Basin B phosphorus problems.) Comprehensive Water Quality Monitoring Program SFWMD and the Village of Wellington have implemented a comprehensive water quality monitoring program with Basin B. This program includes existing and proposed sampling points within WCPPUD shown on Exhibits 2 and 9B of the Staff Report (SFWMD Exhibit 5). This permit modification requires that Acme continue this monitoring program as specified in Special Condition No. 11 to the Staff Report. Elimination of Existing Control Structure As stated in Finding 19, supra, a 1989 modification to the 1979 authorized construction and operation of a control structure allowing discharge from Lake No. 5 (as designated in Exhibit 2 of the Staff Report, SFWMD Exhibit 5) to the C-4 Canal, which was never built. Instead, as shown on Exhibit 2 of the Staff Report, the existing SWM system for Equestrian Estates discharges to the C-4 Canal well to the north of the authorized control structure via a 100' wide canal. The proposed permit modification will eliminate the authorization for the Equestrian Estates control structure which was never constructed. This revision is necessary to ensure that discharge from the development will continue to occur upstream of Structure 115, as it does today, and that the on- site detention facilities within Equestrian Estates will function as modeled in the water quality analysis. Polo's Pending Application for Peacock Pond Polo has pending a separate application to SFWMD (Application No. 020215-10) requesting authorization for development of Peacock Pond as a polo field. Polo’s proposed water quality feature for its Peacock Pond polo fields development includes a lake on the north end of Peacock Pond. It appears that the lake would utilize lakes/canals 12 and 13, which are currently located at the north end and northeast corner of Peacock Pond, essentially enlarging those lakes/canals to the south and west into Peacock Pond. Polo's application is currently incomplete and fails to address a number of significant water resource issues. SFWMD mailed an initial Request for Additional Information (RAI) to Polo on March 15, 2002. Responses were due within thirty days. As of the date of the final hearing in this case, no response to the initial RAI had been submitted. Notwithstanding its pending application, Polo professes to believe that its undeveloped properties in WCPPUD are "vested," so that Polo should not be required to provide water quality treatment when developing its properties in the future. But the 1979 permit stated that it only permitted construction in certain parts of WCPPUD and that individual permit modifications would be required for the future development of additional phases. (SFWMD Exhibit 2 at p. 1; special conditions.) All "grand fathered" development already has taken place. No evidence or convincing legal argument was presented by Petitioners for the proposition that land owners seeking to develop their properties in Wellington WCPPUD now or in the future should be "vested" and thus subject to different water management regulations than other land owners seeking to develop their properties in Acme Basin B. SFWMD's Proposed Corrections to Staff Report At the Final Hearing, SFWMD suggested that two corrections be made to the Staff Report. The first would add "Section No. 20" on page 1 of the Staff Report (SFWMD Exhibit 5) to clarify the property is actually located in sections 20 and This type of change would be made administratively even without this proceeding. The other correction is proposed on page 4 of the Staff Report (SFWMD Exhibit 5), pertaining to the description of the water elevation within Basin B and Country Place, as follows: The water elevation within Basin B and Country Place was originally permitted with a wet season control elevation of 12.0' and a dry season control of 13.0' NGVD. The minimum road and finish floor elevations were established at elevation 16.0' and 17.0 NGVD, respectively. The water elevation within Basin B was permitted in 1978 with a schedule stage of 13' NGVD in the wet season and 13' NGVD in the dry season; however, the system has historically been operated with a control elevation of 12' NGVD in the wet season and 13' in the dry season. WCPPUD was originally permitted with a wet season control elevation of 12' NGVD and a dry season control elevation of 13' NGVD. The Country Place pump station discharging into Peacock Pond was to begin operation when water elevations reached 13' NGVD and discontinue when the system was drawn down to elevation 12' NGVD. The operational elevations authorized in this staff report are consistent with those authorized in 1979 for Country Place. The 1978 permit also established a minimum road grade elevation of 16' NGVD and a finished floor elevation of 17' NGVD for Basin B. The 1979 permit for Country Place established the same minimum road grade and finished floor elevations. This correction accurately describes the 1978 permit for Basin B; it is not a substantive change. These and other possible changes to the Staff Report were drafted shortly before the final hearing in the form of an "Addendum to Staff Report." Petitioners contended that this denied them due process. However, this Addendum (which was not introduced into evidence) was presented to propose corrections to minor errors in the original Staff Report and to suggest appropriate ways to address issues raised by Petitioners during prehearing procedures in this case in order to help clarify the intention of the Staff Report for Petitioners' benefit. SFWMD offered to withdraw the latter Addendum proposals if Petitioners so wished; Petitioners declined to request that these proposals be withdrawn, but none are considered to be necessary. Other Contentions Raised By Petitioners Alleged Elimination of Petitioners' Water Treatment Facilities Petitioners contended in their Second Amended Petition that the modification will cause "33 acres of previously permitted and constructed water management facilities to no longer be considered toward meeting water quality treatment." But the 33 acres referenced by the Petitioners were never counted for water quality treatment in the previous permits. Additionally, as discussed above, they do not meet the minimal dimensional criteria or have not been encumbered for water quality purposes. See Finding 41, supra. The only surface water management facility which has a change in its permitted status for water quality treatment is Peacock Pond. Future Development is Not Precluded from Proposing Alternative Water Quality Treatment Petitioners expressed a concern that the proposed permit modification would bind future development to the Acme's design assumptions--specifically, the assumption that, in order to meet SFWMD's criteria for new development, future development projects would include 13 percent lakes. This concern seems to spring primarily from the following statement on page 3 of 21 of the Staff Report (SFWMD Exhibit 5): "This permit modification requires that applicants adhere to the stated surface water management system assumptions for all future development." Reading the Staff Report as a whole, it was reasonably clear that Acme's assumption was made only for purposes of its permit modification application and would not bind future developers in WCPPUD. Rather, future applicants may propose any alternative methods that comply with Chapter 40E-4, Florida Administrative Code, and the BOR to demonstrate compliance with water quality requirements. For example, the Staff Report states on page 13: Future Country Place applicants are not precluded from proposing alternative means of treatment which can be demonstrated to provide an equivalent level of treatment. Further, the assumptions do not preclude the SFWMD from requiring additional treatment measures as necessary from an applicant to provide reasonable assurance that future projects will not cause or contribute to existing water quality problems in Basin B. The testimony of SFWMD witnesses confirmed this reading of the Staff Report. There is no need to further modify the Staff Report to allay Petitioners' expressed concern. Canals/Lakes 12 and/or 13 Not Affected Petitioners' Second Amended Petition questioned whether Acme's canals/lakes 12 and 13, which border Peacock Pond on the north and in the northeast corner, are properly located within Acme's easements. But Acme's application proposes no modifications to those canals/lakes. Not only are canals/lakes 12 and 13 not the subject of this permit modification, Petitioners introduced no competent, substantial evidence demonstrating improper placement of those conveyance features. In an abundance of caution, SFWMD suggested adding the following Special Condition Number 14 to address this issue: If a final determination is made by a court of competent jurisdiction that Acme does not own, have an easement or otherwise have the right to utilize the area where canal/lake Number 12 and/or canal/lake Number 13 is located, then within 30 days of such determination, Acme shall file an application with the SFWMD to move the canal/lake Number 12 and or canal/lake Number 13 to an area which is determined to be owned by Acme or over which Acme has an easement, or modify the surface water management system to discontinue use of canal/lake Number 12 and or canal/lake Number 13. Inclusion of this language would confirm that, if a court makes a final determination that Acme does not have the right or access to utilize Canals/Lakes Number 12 and/or 13, Acme would be required to modify the permit. While adding the suggested language to the Staff Report is appropriate, it is not necessary; reasonable assurances have been provided without any additional language that the permit criteria have been satisfied. If canal/lakes 12 and 13 should ever become unusable, thus preventing a discharge of the eastern half of WCPPUD into the C-4 canal, the drainage system could be split so that the western half discharges into the C-4 canal and the eastern half into the C-6 canal. In that case, a minor modification would be required to lower the weir at structure 117 to 12’ NGVD and the permit is modified. Mr. Higgins performed calculations to demonstrate that such a minor modification would be permittable under applicable criteria.4 Wetlands in Pod F Not Adversely Affected The Staff Report includes reference to wetlands located in the southeast corner of Pod F of WCPPUD. (Pod F itself is in the southeast corner of Section 20.) Petitioners seemed to take issue with the Staff Report's description of these wetlands. They also disputed whether Acme provided reasonable assurance that these wetlands would not be adversely affected by the proposed modifications. Specifically, Polo expressed concern that the proposed modifications would undermine a plan it has to restore wetlands in Pod F for use as mitigation for an after-the-fact permit to be issued to resolve a SFWMD cease and desist order imposed on Polo for activities in an adjacent polo field, and perhaps also as mitigation for wetland impacts by Polo and other future developers in the area. In taking these positions, Petitioners criticized SFWMD for not presenting expert testimony from a biologist. The Staff Report states that "the 3.74-acres of cypress wetland contained within Pod F" are the only other wetlands in WCPPUD besides Peacock Pond. These wetlands were described as being "in poor biological condition." Petitioners argued that the testimony of their expert supported a finding that the wetlands in Pod F actually are approximately 25 acres in size. However, her actual testimony was that her proposed wetlands restoration project was 25 acres in size. Part of her proposed restoration project includes the "vertical relocation" of higher ground now infested with melaleuca and other nuisance and exotic species. In addition, she admitted that she had not delineated wetlands in Pod F using the methodology adopted for that purpose by the State of Florida; instead, she used methodology adopted by the United States Army Corps of Engineers was used. Not only are the two methodologies different, the Army Corps methodology includes wetlands not included under the State of Florida methodology. Finally, Petitioners' expert admitted that less than 4 acres of the 25 acres included in her project area consisted of "cypress heads." Taken as a whole, the evidence did not demonstrate a need to revise the Staff Report's description of the size of the wetlands in Pod F. As for the Staff Report's description of the Pod F wetlands' "poor biological condition," this is consistent with the testimony of Petitioners' expert. She testified that the wetlands' hydrology was deficient, especially on the northern half of the restoration project area, and that the tract is "highly infested with exotic vegetation," leading to the need for restoration. The hydrology is better on the southern half of the restoration project area, where the cypress trees are healthy; but the cypress trees on the northern half of the tract are under stress, with lots of old world climbing vines on them and other infestation of exotic vegetation, including melaleuca. On site visits, the expert saw "wading birds, snakes, signs of raccoon [and n]umerous bird species." No endangered or threatened species were said to be using the tract at this time. One purpose of the restoration project would be to create better wildlife habitat. Petitioners' expert testified that if water levels were lowered in the proposed restoration project area, there could be an adverse impact on existing and planned wetlands. However, Petitioners' expert did not have evidence or information indicating historic or current water levels. Petitioners' expert also did not know whether the permit modification will lower or have any affect on the water levels in that area. Petitioners introduced neither competent evidence of current groundwater levels under the proposed wetlands mitigation project, nor competent evidence as to how the permit modification might change those groundwater levels. Acme and SFWMD presented evidence that the water levels in the C-4 and C-23 canals, directly adjacent to Pod F, will not be changed significantly as a result of the permit modification; that the proposed permit modification will have no effect on the groundwater levels in this wetland area; and that, as a result, no wetland impacts will occur from the permit modifications. Petitioners did not rebut the Respondents' evidence. As a result, Acme has demonstrated that not only groundwater and surface water flows and levels but also the value of wetland functions in Pod F will not be adversely impacted, as required by Rule 40E-4.301(d) and (g), Florida Administrative Code. The evidence was that SFWMD biologists visited the Pod F wetlands and prepared a report which formed the basis of statements in the Staff Report about the absence of wetland impacts. Given the finding that groundwater levels in the Pod F will not change, the testimony of expert biologists was not necessary. Assumed Commercial Acreage Through the testimony of Michael Nelson, Petitioners questioned a purported statement in the Staff Report that there are 24.4 acres of commercial acreage in WCPPUD. According to Mr. Nelson, there actually are only five acres of commercially zoned property in the PUD. Mr. Nelson stated that this, along with other alleged errors, undermine his confidence in SFWMD's entire evaluation of the proposed permit modification. In fact, the Staff Report, at page 8, states that "the original permit application (in 1979) included only two land uses: 935.6 acres of single family use . . . and 24.4 acres of commercial area." There was no statement that 24.4 acres is zoned commercial today. Past Violations Petitioners also assert that the proposed permit modification should be denied because Acme has not strictly abided by applicable permits. But Acme's most significant past violation was the failure to operate Peacock Pond as required by the 1979 Permit. As reflected in Findings 21 and 23, supra, the primary purpose of this proposed modification is to resolve the enforcement proceedings that arose out of the Peacock Pond violation. Acme also has been one of thousands of SFWMD permit holders who have not certified construction of their systems in conformance with the applicable permits, which is required to transfer the permit into operational status. For many years, SFWMD did not monitor permits for certification and did not enforce failure to certify permits. When monitoring and enforcement was initiated in 1995, it was found that over 12,000 permits were in violation for failure to submit the required certifications. SFWMD prioritized the missing certifications and began methodical follow-up. When SFWMD raised the issue with Acme, Acme responded, and the outstanding violations are being resolved. SFWMD saw no need to initiate formal enforcement proceedings and has been treating the outstanding violations as a "non-compliance" issue since it is a paperwork problem, not an environmental resource problem. At this time, the modifications to structures 115 and 117 in accordance with the several emergency authorizations to address septic tank problems have been certified. However, as indicated, the 1979 Permit itself cannot be certified so long as the Peacock Pond pumped retention area is not in place and operational. It is found that Acme has sufficient financial, legal, and administrative capabilities to ensure that water management modifications will be undertaken in accordance with the terms and conditions of the modified permit. (Since Acme is now a dependent special district of the Village of Wellington, the Village of Wellington actually will be responsible for installation, operation, and maintenance of these structures.) Notwithstanding the past violations, reasonable assurances have been given that Acme will comply with the terms of its proposed permit modification. Propriety of Petitioners’ Purpose Acme has raised the issue whether Petitioners participated in this proceeding for an "improper purpose," i.e., "primarily to harass or to cause unnecessary delay or for frivolous purpose or to needlessly increase the cost of licensing or securing the approval of an activity." § 120.595(1)(e)1, Fla. Stat. (2003). But it is found that, under the totality of circumstances, Petitioners' participation in this proceeding was not for an improper purpose, as defined by statute. Petitioners' participation in this proceeding has indeed needlessly increased Acme's cost of obtaining SFWMD's permit approval; but the evidence did not prove that this was Petitioners' primary purpose. It also is clear that Petitioners attempted to delay this proceeding through repeated requests for continuances (and other procedural and evidentiary objections) and that, while they usually based their requests for continuances in part on the alleged need for more time for more discovery, they failed to pick up voluminous copies of requested discovery documents and complained about how much money they had already spent on discovery. Nonetheless, it is found that Acme did not prove that Petitioners' primary purpose for participating in this proceeding was to delay the proceeding. It seems reasonably clear that, had Petitioners retained a competent expert engineer to evaluate its case, the expert probably would have advised Petitioners that they would not be able to successfully challenge SFWMD's proposed agency action. For that and other reasons, a reasonable person would not have raised and pursued some of the issues raised by Petitioners in this proceeding. But it cannot be found that all of the issues they raised were frivolous or that their participation in this proceeding was for an improper purpose.
Findings Of Fact As planned, Phase I of Foxwood Lake Estates will consist of 300 mobile homes, which would require treatment of up to 45,000 gallons of sewage per day. The proposed sewage treatment plant would have a capacity of 46,000 gallons per day and would be capable of expansion. It would discharge treated, chlorinated water into a completely clay-lined polishing pond that has been designed for the whole of Foxwood Lake Estates at build-out; capacity of the polishing pond would be three times the capacity necessary for Phase I by itself. From the polishing pond, water is to flow into one or both of two evaporation-percolation ponds, either of which would be big enough for all the sewage expected from Phase I. The sides of these ponds would be lined with clay and a clay plug would constitute the core of the dike on the downslope side of each pond. According to the uncontroverted evidence, effluent leaving the treatment plant for the polishing pond would have been effectively treated by the latest technology and would already have been sufficiently purified to meet the applicable DER water quality requirements. The applicant proposes to dig the triangular polishing pond in the northwest corner of the Foxwood Lake Estates property, some 400 feet east of the western property line. The evaporation-percolation ponds would lie adjacent to the polishing pond along an axis running northwest to southeast. Their bottoms would be at an elevation of 164.5 feet above mean sea level and they are designed to be three feet deep. The evaporation-percolation ponds would lie some 300 feet east of the western property line at their northerly end and some 400 feet east of the western property line at their southerly end. A berm eight feet wide along the northern edge of the northern evaporation-percolation pond would be 50 feet from the northern boundary of the applicant's property. Forrest Sawyer owns the property directly north of the site proposed for the evaporation-percolation ponds. He has a house within 210 feet of the proposed sewage treatment complex, a well by his house, and another well some 300 feet away next to a barn. Two or three acres in the southwest corner of the Sawyer property are downhill from the site proposed for the ponds. This low area, which extends onto the applicant's property, is extremely wet in times of normal rainfall. Together with his brother and his sister, Charles C. Krug owns 40 acres abutting the applicant's property to the west; their father acquired the property in 1926. They have a shallow well some 100 feet from the applicant's western property boundary, and farm part of the hill that slopes downward southwesterly from high ground on the applicant's property. Sweetgum and bayhead trees in the area are also a money crop. Charles C. Krug, whose chief source of income is from his work as an employee of the telephone company, remembers water emerging from this sloping ground in wet weather. Borings were done in two places near the site proposed for the ponds. An augur boring to a depth of six feet did not hit water. The other soil boring revealed that the water table was 8.8 feet below the ground at that point. The topsoil in the vicinity is a fine, dark gray sand about six inches deep. Below the topsoil lies a layer of fine, yellow-tan sand about 30 inches thick. A layer of coarser sand about a foot thick lies underneath the yellow-tan sand. Beginning four or five feet below the surface, the coarser sand becomes clayey and is mixed with traces of cemented sand. Clayey sand with traces of cemented sand is permeable but water percolates more slowly through this mixture than through the soils above it. The applicant caused a percolation test to be performed in the area proposed for the ponds. A PVC pipe six feet long and eight inches in diameter was driven into the ground to the depth proposed for the evaporation-percolation ponds and 50 gallons of water were poured down the pipe. This procedure was repeated on 14 consecutive days except that, after a few days, the pipe took only 36 gallons, which completely drained into the soil overnight. There was some rain during this 14-day period. Extrapolating from the area of the pipe's cross-section, Vincent Pickett, an engineer retained by the applicant, testified that the percolation rate of the soils was on the order of 103 gallons per square foot per day, as compared to the design assumption for the ponds of 1.83 or 1.87 gallons per square foot per day. Water percolating down through the bottoms of the evaporation- percolation ponds would travel in a southwesterly direction until it mixed with the groundwater under the applicant's property. It is unlikely that the ponds would overflow their berms even under hurricane conditions. Under wet conditions, however, the groundwater table may rise so that water crops out of the hillside higher up than normal. The proposed placement of the ponds makes such outcropping more likely, but it is impossible to quantify this enhanced likelihood in the absence of more precise information about, among other things, the configuration of the groundwater table.
Recommendation Upon consideration of the foregoing, it is RECOMMENDED: That DER grant the application on the conditions specified in its notice of intent to issue the same. Respectfully submitted and entered this 17th day of December, 1980, in Tallahassee, Florida. ROBERT T. BENTON, II Hearing Officer Division of Administrative Hearings Room 101, Carlton Building Tallahassee, Florida 32301 Telephone: 904/488-9675 FILED with the Clerk of the Division of Administrative Hearings this 17th day of December, 1980. COPIES FURNISHED: Andrew R. Reilly, Esquire Post Office Box 2039 Haines City, Florida 33844 Walter R. Mattson, Esquire 1240 East Lime Street Lakeland, Florida 33801 David M. Levin, Esquire Department of Environmental Regulation Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32301
The Issue The issue for consideration in this matter is whether Respondent’s license as a water well contractor should be disciplined because of the matters alleged in the Administrative Complaint and Order entered herein by the District.
Findings Of Fact At all times pertinent to the issues herein, the Southwest Florida Water Management District (SWFWMD) was the state agency responsible for the conservation, protection, management, and control of water resources within its boundaries, and consistent therewith, the licensing of water wells therein; and for the licensing and regulation of water wells and water well contractors within the district. The three wells in issue herein were within the jurisdiction of the Petitioner, and Respondent was a water well contractor licensed by the District. On June 4, 1998, Respondent signed a contract with Karen Anne Grant, to drill a four-inch domestic water well on her property located at 33442 Larkin Road, Dade City, Florida. The property, on which Ms. Grant was building a residence, was a part of a pre-existing citrus grove. After application by the Respondent, SWFWMD issued WCP No. 606175.01 to him on June 1, 1998, and Respondent began construction of the well on June 15, 1998. His application reflected the well was to be drilled using the cable-tool method. Construction was completed on the well on or about July 7, 1998, but because the well was vandalized during construction by the dropping of an unknown substance (probably a piece of casing) down the well, the well was unsatisfactory and was not used. Respondent attempted to repair the well but was unable to do so. Respondent claimed the well was unusable and he would have to drill another one. Although he did not obtain a permit to close the well, he subsequently did so. He was paid $5,375.00 to dig this Well (No. 1). Because of the failure of Well No. 1, Respondent applied to the District for and received WCP No. 613349.01 on December 9, 1998, to construct a second four-inch water well on Ms. Grant's property. This was Well No. 2. He began construction that day and completed it on January 27, 1999. From the time of its initial use, Well No. 2 produced water which contained unacceptable amounts of sediment, debris, and sand. In addition to the unsatisfactory quality of the water it produced, Well No. 2 also failed to produce a sufficient quantity of water for domestic potable water use or grove irrigation. Respondent admitted to Ms. Grant that Well No. 2 was not satisfactory for grove irrigation, and in an effort to fix the water quality problem, installed a sand filter and sedimentation tank. Well No. 2 was not properly closed. It was covered with a PVC cap instead of a tamper-resistant watertight cap or valve as required, and Respondent did not properly seal the upper terminus of the well. Without obtaining a third WCP, on February 25, 1999, Respondent started construction of a third well on the Grant property. Respondent contends WCP No. 613349.01, pulled for Well No. 2, was not for that well but for Well No. 3. He argues that the second well was so close to the first well that he did not feel another permit was required. Though Well No. 3 was completed and produces water, the water quality is poor. It contains sand, sediment, debris, and rock, which results in clogging of plumbing fixtures at the Grant home. In addition, the volume of water produced is insufficient for comfortable home use. Well No. 3 is open down to 178 feet below land surface, beyond which point it is obstructed by sand. Use of a diagnostic tool available to the District reveals that the sand seems to be coming from around the well casing. Ms. Grant initially contracted with Respondent to dig her well in June 1998. Although Petitioner disputes it, the location of the well near the new house she was building was, she claims, by mutual agreement. Respondent did not express any dissatisfaction with the location of this or either of the other wells, He said he was familiar with the area and had worked all around there. Respondent started work on Well No. 1 on June 15, 1998 and it was completed on July 2, 1998. The house was not yet completed, and electric service had not been installed, though it was being arranged for. Before the well could be put in operation, however, Respondent claimed it was vandalized and his equipment, which he had left at the site, stolen. At this point, Respondent told Ms. Grant that he had run into an obstruction which he believed was pipe which had been dropped into the well at more than 100 feet. He said he had tried to get it out, but could not, and had to drill another well. The casing of Well No. 1 was not cut off at that time. Ms. Grant later discovered it had been cut off and plugged, but she does not know who did that. Ms. Grant used Well No. 2, which was located about 20 to 30 feet west of Well No. 1, for just about two months but was never satisfied with the amount or quality of the water it produced. Not only was the water quality low, but there was also insufficient volume for grove irrigation, one of the intended uses of which she had advised Respondent. When Grant complained to Respondent about the water quality, he suggested she run hoses constantly to clear the sand out. In February, 1999, just after Ms. Grant contacted the District to complain, Respondent said he would come by to cap Well Nos. 1 and 2, and start Well No. 3. On February 25, 1999, Respondent started Well No. 3 at a site about 200 feet north of Well Nos. 1 and 2, agreed upon by the parties after some discussion, and on March 5, 1999, he completed it. Respondent billed Ms. Grant $3,271 for this well, in addition to the $5,375 paid for Well No. 1 and the $4,585 paid for Well No. 2. Whereas the builder paid for the first two wells, Ms. Grant paid for Well No. 3, but she had the same problems with Well No. 3 that she had had with the prior two wells. An irrigation company called in to see what could be done to get water to the citrus grove indicated there was too much sediment in the water and not enough flow. About a year after Well No. 3 was completed, the Grants noticed the water pressure was dropping, and when they went to the well site, they noticed the pump was constantly running. As a result, they called another well driller who pulled the pump and replaced the impellers. After that, Ms. Grant contacted Respondent about the fact that the wells he had drilled had never worked properly. All he would recommend was to keep the hoses running. He indicated he would try to develop the well to rid it of debris but when he tried, he was unsuccessful. As a result of the situation with the three wells, the Grants had no water to their home; the pumps they installed were destroyed; they were unable to irrigate their 8-acre citrus grove; they suffered a resultant loss of income; and, they were forced to drill a fourth well. When Well No. 1 was closed, the casing was cut off at or below ground level. It did not extend one foot above the land surface, nor was the casing capped or sealed with a tamper- resistant watertight cap or valve. Examination of the well site by Sharon Lee Vance, then a technician IV for the District, on May 25, 1999, based on a complaint filed by Ms. Grant, revealed that the water quality was poor - cloudy with excessive sand and rock particles. Ms. Vance tried to contact Respondent, whose name appeared on the permit as contact, by phone but always got his voice mail. Though she left messages requesting him to call back, he never did. Ms. Vance went back to the Grant site in July 1999 in the company of other District personnel. At this visit, Ms. Vance learned there were two wells. She located both and found that Well No. 1 was buried. When she first saw that well, she noted that it had been cut off below the surface, a fence post had been driven into the top, and the well had been buried. In Ms. Vance's discussions with Ms. Grant about this well, Ms. Grant categorically denied she was the one who cut off the top of Well No. 1 or buried it. She does not have access to the cutting equipment used to cut off the top of the well. Such equipment, however, is commonly used by well contractors. It was obvious to Ms. Vance that Well No. 1 had several problems. It was clearly not suitable for its intended use because it was cut off below ground level and was obstructed. It had not been properly abandoned. Though she dug down approximately one-and-a-half feet all the way around the casing, she could find no evidence of bentonite or any other approved closing medium. Even though Respondent now claims the second permit he pulled was not for Well No. 2 but for Well No. 3 instead, the permit itself appears to authorize the construction of Well No. Ms. Vance found several problems with this well, also. It was not properly sealed with bentonite or any other properly approved closure medium; a PVC cap had been applied to the top instead of a waterproof or tamperproof cap, and the PVC cap was cracked; the well was not suitable for its intended purpose because it was obstructed and produced both insufficient and poor quality water; and it was not properly abandoned. Ms. Vance observed a metal plate placed around the well top. She does not know what purpose it was to serve, but based on her experience and her examination of the site, she believes it was placed there to keep the casing from falling into the well. Notwithstanding, Ms. Vance's opinion that the second permit was for Well No. 2, Respondent contends he believed the permit for Well No. 1 was adequate to permit drilling of Well No. 2 without a new permit. Though his belief is incorrect, he admitted to obtaining a permit for Well No. 3. Therefore, it is found that Well No. 2 was not properly permitted. Well No. 3 was permitted. The water in Well No. 3 was not of good quality. She examined the sand filter which had been installed by the Respondent and found it to be full of sand. So was the settling tank. She also noted debris and unusual sediment around the well head. Based on water samples taken at the well, and the observations made, it was clear to Ms. Vance that the well was not properly seated and was pumping sand. Further, the well casing did not extend down to the static water level, and the well was not properly permitted. Ms. Vance further noted that the water from Well No. 3, in addition to the excessive sand, also had large pieces of rock and chunks of clay in it. This was unusual and indicated to her that there was a problem with the well's construction. The casing integrity as not good, which permitted an infusion of contaminant into the well. This condition is not unusual during the first day or so of a well's operation, but it usually clears up after that. In this case, it did not. Ms. Vance admits she does not know who cut Well No. 1 off below ground level. She knows the well was not properly abandoned as required by rule, however, because it was not properly grouted with neat cement grout or bentonite. She dug down beside the well for a total of two and a half feet without seeing any evidence of grout or bentonite. The fact that the well had pipe dropped into it, and the existence of the cutting off of the pipe below ground, made it inappropriate for the intended purpose of providing water for the home. Ms. Vance she does not know who cut off the pump; Ms. Grant does not know who cut off the pipe; and Respondent denies having done it. Though the work was clearly done by someone with access to well drilling tools, Respondent was not the only driller to work at the site. Therefore, it cannot be found that Respondent cut the pipe off below ground. It is clear, however, that Respondent failed to properly abandon and close Well No. 1, when he found it unusable, and it was his responsibility to do so. Well No. 2 also was not properly sealed by Respondent, according to Ms. Vance. A proper seal would include a good cap, not a cracked PVC cap, which would suffice only as a temporary cap. A proper cap would be one that is water tight and could not be readily removed. Ms. Vance admits she does not know who cracked the existing cap - only that it is cracked. This well, too, did not produce water fit for its intended purpose because of the existence of the tools which had been dropped into it. A permit was not obtained to abandon it. Under all these circumstances, Ms. Vance did not attempt to determine if it would produce sufficient water. Finally, Ms. Vance concluded that Well No. 3 was not properly seated. According to rule, the casing has to seat to or below the static water level. Based on the debris in the water drawn from this well, she was satisfied this well was not properly cased. Mack Pike, a water resources technician III for the District, does much of the well logging for the District. The equipment he uses goes to the bottom of the well and shows the diameter up to the point where the casing usually starts. Among other items, he uses a camera, which is what he used on the wells in issue here. On July 22, 1999, he went to the Grant property to look at Well Nos. 1 and 2. His first efforts to get into these wells were unsuccessful, so he stopped his effort and returned on May 10, 2000 with the camera. On May 17, 2000, he also ran the camera down all three wells. In Well No. 3 he found the pump at 176 feet. He found Well No. 1 cut off about one and a- half feet below ground level, with a log jammed into the casing top down to the level of the casing. The pipe had been cut with a torch, but the casing had not been properly sealed with bentonite. Use of the log to stuff the pipe was an improper seal. He found the well open below the log down to 128 feet, but obstructed below that. There was no water in the well. Respondent adamantly insists he used bentonite in all three wells, but since no trace of it was found in any of the wells by Mr. Pike or Ms. Vance, it is found that he did not. At Well No. 2, Mr. Pike found a welded slab around the pipe to keep the casing from falling in. The cap was cracked and was no good. The camera showed the well was closed off. He hit sand at 158 feet. The presence of sand indicated to Mr. Pike that the casing was not properly sealed. The well was unusable. Mr. Pike did not examine Well No. 3 until after he opened the sediment tank and found sand which appeared to have come from the surface. If the casing had been properly sealed, there should have been no surface sand. This means that the well was not properly seated. Respondent has been a licensed well contractor since 1989 and has drilled approximately 300 wells since that time. Though he claims he suggested alternate locations for the wells to Ms. Grant, she insisted the well be placed near her irrigation line. Respondent claims he was against this because the site was a transition area which raised the possibility of the pipe bending. Notwithstanding the advice he got from others regarding the siting of the wells, he agreed to place the well where Ms. Grant wanted it. Respondent claims he dug the first well and installed the pump, but the power was insufficient to run it. As a result, he pulled out the pump and told Ms. Grant that when she got the proper power to run it, he'd come back and reinstall the pump. It was when he returned to the site in response to her call that he found that the site of Well No. 1 had been vandalized. Though he recommended the well be abandoned, Ms. Grant did not want to do that, so he moved over 20 feet and started to drill again. He categorically denies having cut off the casing of Well No. 1 below ground level. It has been found that the evidence shows Respondent that cut the pipe on Well No. 1, is insufficient. Mr. Holt admits he did not seek a permit for this second well because his understanding was that one could drill like wells on the same premises without abandoning the pre- existing wells. He drilled the second well which, he claims, produced water for five to six months. However, it was impossible to stop the sand from infiltrating the well, and the well was not producing sufficient water to irrigate the grove. Because the water produced by Well No. 2 was insufficient in quantity to use the 5-horsepower pump called for in the contract, Respondent replaced it with a one and a-half horsepower pump. According to Respondent, he and Ms. Grant discussed where to site Well No. 3. Finally, Ms. Grant agreed to move it up the hill on which Respondent wanted to site it, as this would accommodate her irrigation system. Respondent was not comfortable with this because it was on the slope too close to the others, but he went along with it. As Well No. 3 was being constructed, Respondent discussed with Ms. Grant the need to close Well Nos. 1 and 2. She did not want to pay for the closings, so he decided to cap the existing wells. As a result, Well No. 2 is still a viable well, and though it will not irrigate the grove, it will, Respondent claims, provide sufficient water for the house. He admits placing the PVC cap on Well No. 2, but claims it was not cracked when installed. He also admits to placing the plate around the top of Well No. 2 because the drive shoe was bent. It broke off, and he was afraid if he did not reinforce the area as he had the casing would collapse when he tried to ream out the drive shoe to recover it. At the 126-foot mark of Well No. 3, Respondent hit a boulder through which the drill would not go. At that time, the hole below the casing was still good with no infusion. Respondent installed a pump and drew water, but, the pump soon began to pull sand. Respondent installed a filter, but it was insufficient. He ultimately drilled through the rock and placed the pump at 178 feet. That well is currently being used. Respondent claims that all wells in that area pull sand to some degree. He insists that Ms. Grant's wells just pull too much. He claims he could have quit, but because of his relationship with the builder, he felt obligated to drill a working well for Ms. Grant. Anthony Gilboy, who has been with the District for 20 years, is currently the District's manager of well construction. He is familiar with the statutes and the rules of the District relating to water well construction and abandonment. According to Mr. Gilboy, they are loose enough to permit some latitude in their application. There is a freedom to amend methodology where circumstances so dictate. A licensed water well contractor is required to obtain a permit to construct a water well. Once a permit is drawn, if the well needs to be changed, the permittee must apply for an amendment and then plug the old well consistent with District guidelines. Plugging is critical to prevent potential contamination of water and to preserve it. Rule 40D-3.042, Florida Administrative Code, permits multiple (up to 8) wells under a single permit for similar types of wells that have diameters of 4 inches or less, but not domestic water wells. There are different ways to drill a water well. One is by cable-tool drill in which a bit is hammered into the rock. As the casing is being driven down into the ground, it holds back the sediment. Another method involves the use of a rotary drill which employs water and bentonite to hold back sediment. It is possible to tell whether bentonite was used in the drilling process just by looking at the well. The bentonite adheres to the well casing and looks different from the surrounding soil. In fact, there is no soil appearing naturally in Florida that looks like bentonite. In the instant case, Respondent applied to use the cable-tool method. Bentonite traces were not found at the sites. When a well is drilled, the casing is to be poured in segments as drilling progresses. When a well is to be abandoned, one approved method of doing so involves the use of bentonite, a type of clay which swells to about 10 to 15 times its volume in dry form. Studies done by the District in conjunction with the University of Florida show that over all, bentonite is a better seal than natural soil, and it prevents surface water from settling down the side of the casing. Rule 40D-3.517(3), Florida Administrative Code, requires bentonite's use for this purpose, and a rule of the Department of Environmental Protection, though not specifically mentioning bentonite, requires that casings be sealed. The casing of a water well is used to seal off any unconsolidated materials. Rule 62-532, Florida Administrative Code, requires the casing be extended into the static water level at the time the well is drawn. If a well is not sealed, debris and sand can slide into the well and damage the pump and other equipment. If debris is seen, it usually means the casing was not sealed properly. After a well is completed, the rules of the District and the Department, Rules 40D-3.521(2) and 62-532.500(3)(a)4, Florida Administrative Code, respectively, require the upper part of the well to be sealed off to prevent infusion of contaminants. The seal must be tamper-proof and permanent. A fence post is not acceptable, nor is a cracked PVC cap. In addition, the upper terminus of a private well must extend at least 1 foot above the land surface. The purpose of this requirement is to allow the well to be found, and to prevent infusion of contaminant. (Rule 40D-3.53(2), Florida Administrative Code) According to Rule 62-532-500(4), Florida Administrative Code, all abandoned or incomplete wells must be plugged from top to bottom with grout (neat cement). The Rule and Stipulation 39 of the permit provide that the well drilling contractor is responsible for proper abandonment of a well. This is not conditioned on the willingness of the owner to pay. The contractor has the responsibility to do it. An abandoned well is one which the use of which has been permanently discontinued or which is so in need of repair as to be useless. These determinations must be made by the District, hence the need for the permit. In the instant case it was determined that Well Nos. 1 and 2 were not suited for their intended purpose, and they should have been properly abandoned. The process for well abandonment is not complex, but it does require the obtaining of a permit. At least 24 hours in advance of initiation of the plugging process, the contractor must advise the District that the process will be implemented. Thereafter, the well hole is filled with neat cement or bentonite grout. To abandon a well by any other method would require a variance from the District. Neither permit nor variance was sought as to Well Nos. 1 and 2. The standards adopted by the Department and the Water Management Districts are statewide in application. Construction of a water well without first obtaining a permit is classified as a major violation. The failure to properly abandon a well or the failure to use bentonite or neat cement in well closure are also major violations. Failure to construct a well so that the casing extends below the static water level is a major violation. Failure to seat or seal a casing into rock formation is a major violation. Failure to place a water-tight seal and failure to extend well casing at least one foot above the ground level are both major violations. Penalties may be assessed for these violations according to a schedule set out in the Department rules. However, these penalties may be adjusted based on such factors as the economic benefit to the contractor of his non-compliance; his history of non-compliance; the negligence or willfulness of his actions; and whether he acted in good faith. Under the circumstances of this case, Mr. Gilboy is of the opinion that the actions proposed by the District are appropriate.
Recommendation Based on the foregoing Findings of Fact and Conclusions of Law, it is recommended that Respondent, Fletcher Holt be ordered to pay an administrative fine of $4,600; that 46 points be assessed against his water well contractor's license; and that he be required to properly abandon Well Nos. 1, 2, and 3, which he drilled on the Grant property. DONE AND ENTERED this 18th day of July, 2000, in Tallahassee, Leon County, Florida. ARNOLD H. POLLOCK Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 18th day of July, 2000. COPIES FURNISHED: Onofre Cintron, Esquire 305 North Parson Avenue Brandon, Florida 33510 Margaret M. Lytle, Esquire Southwest Florida Water Management District 2379 Broad Street Brooksville, Florida 34609-6899 E. D. "Sonny" Vergara, Executive Director Southwest Florida Water Management District 2379 Broad Street Brooksville, Florida 34609-6899 Kathy C. Carter, Agency Clerk Office of General Counsel Department of Environmental Protection 3900 Commonwealth Boulevard, Mail Station 35 Tallahassee, Florida 32399-3000
The Issue The issue to be determined in this case is whether the Administrative Order issued by DEP on December 23, 2014, is a reasonable exercise of its enforcement authority.
Findings Of Fact Parties FPL is a subsidiary of NextEra Energy. It is a regulated Florida Utility providing electric service to 4.7 million customers in 35 counties. FPL owns and operates the Turkey Point Power Plant, which includes a cooling canal system (“CCS”) that is the subject of the AO at issue in this proceeding. DEP is the state agency charged with administering the Florida Electric Power Plant Siting Act (“PPSA”), chapter 403, Part II, Florida Statutes. DEP has the power and the duty to control and prohibit pollution of air and water in accordance with the law and rules adopted and promulgated by it. § 403.061, Fla. Stat. (2015). ACI is a Florida corporation and the owner of 2,598 acres of land in southeast Miami-Dade County approximately four miles west of the Turkey Point CCS. ACI is engaged in agriculture and limerock mining on the land. ACI withdraws and uses water from the Biscayne Aquifer pursuant to two SFWMD water use permits. ACI also has a Life- of-the-Mine Environmental Resource Permit issued by DEP for its mining activities. The Life-of-the-Mine permit requires that mining be terminated if monitoring data indicate the occurrence of chloride concentrations greater than 250 milligrams per liter (“mg/L”) in the mine pit. The City of Miami is a municipal corporation located about 25-miles north of Turkey Point. The City purchases water from Miami-Dade County, which withdraws the water from the Biscayne Aquifer. Turkey Point FPL’s Turkey Point property covers approximately 9,400 acres in unincorporated Miami-Dade County, along the coastline adjacent to Biscayne Bay. Five electrical generating units were built at Turkey Point. Units 1 and 2 were built in the 1960s. Unit 2 ceased operating in 2010. Units 3 and 4 are Florida’s first nuclear generating units, which FPL constructed in the 1970s. Unit 5 is a natural gas combined cycle generating unit brought into service in 2007. Units 1 through 4 pre-date the PPSA and were not certified when they were built. However, Units 3 and 4 were certified pursuant to the PPSA in 2008 when FPL applied to increase their power output, referred to as an “uprate.” Unit 5 was built after the PPSA and was certified under the Act. The CCS The Turkey Point CCS is a 5,900-acre network of canals, which provides a heat removal function for Units 1, 3, and 4, and receives cooling tower blowdown from Unit 5. FPL constructed the CCS pursuant to satisfy a 1971 consent judgment with the U.S. Department of Justice which required FPL to terminate its direct discharges of heated water into Biscayne Bay. The CCS is not a certified facility under the PPSA, but it is an “associated facility,” which means it directly supports the operation of the power plant. The CCS functions like a radiator, using evaporation, convective heat transfer, and radiated heat loss to lower the water temperature. When cooling water enters the plant, heat is transferred to the water by flow-through heat exchangers and then discharged to the “top” or northeast corner of the CCS. Circulating water pumps provide counter-clockwise flow of water from the discharge point, down (south) through the 32 westernmost canals, across the southern end of the CCS, and then back up the seven easternmost canals to the power plant intake. The full circuit through the CCS from discharge to intake takes about 48 hours and results in a reduction in water temperature of about 10 to 15 degrees Fahrenheit. The CCS canals are unlined, so they have a direct connection to the groundwater. Makeup water for the CCS to replace water lost by evaporation and seepage comes from process water, rainfall, stormwater runoff, and groundwater infiltration. When the CCS was first constructed, FPL and SFWMD’s predecessor, the Central and Southern Florida Flood Control District, entered into an agreement to address the operation and management of the CCS. The agreement has been updated from time to time. The original agreement and updates called for monitoring the potential impacts of the CCS. Operation of the CCS is also subject to a combined state industrial wastewater permit and National Pollution Discharge Elimination System (“NPDES”) permit administered by DEP. The industrial wastewater/NPDES permit is incorporated into the Conditions of Certification. Hypersaline Conditions The original salinity levels in the CCS were probably the same as Biscayne Bay. However, because the salt in saltwater is left behind when the water evaporates, and higher water temperature causes more evaporation, the water in the CCS becomes saltier. Salinity levels in the CCS are also affected by rainfall, air temperature, the volume of flow from the power plant, and the rate of water circulation. In 2008, when FPL applied for certification of the uprate of Units 3 and 4, it reported average salinity to be 50 to 60 Practical Salinity Units (“PSU”). This is a “hypersaline” condition, which means the salinity level is higher than is typical for seawater, which is about 35 PSU. Higher salinity makes water denser, so the hypersaline water in the CCS sinks beneath the canals and to the bottom of the Biscayne Aquifer, which is about 90 feet beneath the CCS. At this depth, there is a confining layer that separates the Biscayne Aquifer from the deeper Upper Floridan Aquifer. The confining layer stops the downward movement of the hypersaline “plume” and it spreads out in all directions. FPL estimated that the average daily loading of salt moving from the CCS into the Biscayne Aquifer is 600,000 pounds per day. In late 2013, salinity levels in the CCS began to spike, reaching a high of 92 PSU in the summer of 2014. FPL believes the salinity spikes in recent years are attributable in part to lower than normal rainfall and to higher turbidity in the CCS caused by algal blooms. Reductions in flow and circulation during this period associated with the retirement of Unit 2 and the uprate of Units 3 and 4 could also have contributed to increased temperatures in the CCS, more evaporation, and higher salinity. ACI presented evidence suggesting that the uprate of Units 3 and 4 could be the primary cause of recent, higher water temperatures and higher salinity. The analyses that have been conducted to date are not comprehensive or meticulous enough to eliminate reasonable disagreement about the relative influence of the factors that affect salinity in the CCS. FPL has taken action to reduce salinity within the CCS by adding stormwater from the L-31E Canal (pursuant to emergency orders), adding water from shallow saline water wells, and removing sediment build-up in the canals to improve flow. These actions, combined with more normal rainfall, have decreased salinity levels in the CCS to about 45 PSU at the time of the final hearing. Saltwater Intrusion Historical data show that when the CCS was constructed in the 1970s, saltwater had already intruded inland along the coast due to water withdrawals, drainage and flood control structures, and other human activities. The “front” or westernmost line of saltwater intrusion is referred to as the saline water interface. More specifically, the saline water interface is where groundwater with total dissolved solids (“TDS”) of 10,000 mg/L or greater meets groundwater with a lower chloride concentration. DEP classifies groundwater with a TDS concentration less than 10,000 mg/L as G-II groundwater, and groundwater with a TDS concentration equal to or greater than 10,000 mg/L as G-III groundwater, so the saline water interface can be described as the interface between Class G-II groundwater and Class G-III groundwater. In the 1980s, the saline water interface was just west of the interceptor ditch, which runs generally along the western boundary of the CCS. The interceptor ditch was installed when the CCS was first constructed as a means to prevent saline waters from the CCS from moving west of the ditch. Now, the saline water interface is four or five miles west of the CCS, and it is still moving west. The groundwater that comes from the CCS can be identified by its tritium content because tritium occurs in greater concentrations in CCS process water than occurs naturally in groundwater. CCS water has been detected four miles west of the CCS. Saline waters from the CCS have been detected northwest of the CCS, moving in the direction of Miami-Dade County’s public water supply wellfields. The hypersaline plume from the CCS is pushing the saline water interface further west. Respondents identified factors that contributed to the saltwater intrusion that occurred before the CCS was constructed. However, while saltwater intrusion has stabilized in other parts of Miami-Dade County, it continues to worsen in the area west of the CCS. Respondents made no effort to show how any factor other than the CCS is currently contributing to the continuing westward movement of the saline water interface in this area of the County. The preponderance of the record evidence indicates the CCS is the major contributing cause of the continuing westward movement of the saline water interface. Fresh groundwater in the Biscayne Aquifer in southeast Miami-Dade County is an important natural resource that supports marsh wetland communities and is utilized by numerous existing legal water uses including irrigation, domestic self-supply, and public water supply. The Biscayne Aquifer is the main source of potable water in Miami-Dade County and is designated by the federal government as a sole source aquifer under the Safe Drinking Water Act. Saltwater intrusion into the area west of the CCS is reducing the amount of fresh groundwater in the Biscayne Aquifer available for natural resources and water uses. Water Quality Violations At the final hearing, a DEP administrator testified that DEP was unable to identify a specific violation of state groundwater or surface water quality standards attributable to the CCS, but DEP’s position cannot be reconciled with the undisputed evidence that the CCS has a groundwater discharge of hypersaline water that is contributing to saltwater intrusion. Florida Administrative Code Rule 62-520.400, entitled “Minimum Criteria for Ground Water,” prohibits a discharge in concentrations that “impair the reasonable and beneficial use of adjacent waters.” Saltwater intrusion into the area west of the CCS is impairing the reasonable and beneficial use of adjacent G-II groundwater and, therefore, is a violation of the minimum criteria for groundwater in rule 62-520.400. In addition, sodium levels detected in monitoring wells west of the CCS and beyond FPL’s zone of discharge are many times greater than the applicable G-II groundwater standard for sodium. The preponderance of the evidence shows that the CCS is contributing to a violation of the sodium standard. Agency Response The 2008 Conditions of Certification included a Section X, entitled “Surface Water, Ground Water, Ecological Monitoring,” which, among other things, required FPL and SFWMD to execute a Fifth Supplemental Agreement regarding the operation and management of the CCS. New monitoring was required and FPL was to “detect changes in the quantity and quality of surface and ground water over time due to the cooling canal system.” Section X.D. of the Conditions of Certification provides in pertinent part: If the DEP in consultation with SFWMD and [Miami-Dade County Department of Environmental Resources Management] determines that the pre- and post-Uprate monitoring data: is insufficient to evaluate changes as a result of this project; indicates harm or potential harm to the waters of the State including ecological resources; exceeds State or County water quality standards; or is inconsistent with the goals and objectives of the CERP Biscayne Bay Coastal Wetlands Project, then additional measures, including enhanced monitoring and/or modeling, shall be required to evaluate or to abate such impacts. Additional measures include but are not limited to: * * * 3. operational changes in the cooling canal system to reduce any such impacts; DEP determined that the monitoring data indicates harm to waters of the State because of the contribution of CCS waters to westward movement of the saline water interface. Under the procedures established in the Conditions of Certification, this determination triggered the requirement for “additional measures” to require FPL to “evaluate or abate” the impacts. Pursuant to the Conditions of Certification, a Fifth Supplemental Agreement was executed by FPL and SFWMD, which, among other things, requires FPL to operate the interceptor ditch to restrict movement of saline water from the CCS westward of Levee 31E “to those amounts which would occur without the existence of the cooling canal system.” The agreement provides that if the District determines that the interceptor ditch is ineffective, FPL and the District shall consult to identify measures to “mitigate, abate or remediate” impacts from the CCS and to promptly implement those approved measures. SFWMD determined that the interceptor ditch is ineffective in preventing saline waters from the CCS in deeper zones of the Biscayne Aquifer from moving west of the ditch, which triggered the requirement of the Fifth Supplemental Agreement for FPL to mitigate, abate, or remediate the impacts. Following consultation between DEP and SFWMD, the agencies decided that, rather than both agencies responding to address the harm caused by the CCS, DEP would take action. DEP then issued the AO for that purpose. The AO The AO begins with 36 Findings of Fact, many of which are undisputed background facts about the history of Turkey Point and the CCS. Also undisputed is the statement in Finding of Fact 25 that “the CCS is one of the contributing factors in the western migration of CCS saline Water” and “the western migration of the saline water must be abated to prevent further harm to the waters of the state.” Findings of Fact 16-19 and 25 indicate there is insufficient information to identify the causes and relative contributions of factors affecting saltwater intrusion in the area west of the CCS. However, as found above, the preponderance of the record evidence indicates the CCS is the major contributing cause of the continuing westward movement of the saltwater interface. In the “Ordered” section of the AO, FPL is required to submit to DEP for approval a detailed CCS Salinity Management Plan. The AO explains that “[t]he primary goal of the Management Plan shall be to reduce the hypersalinity of the CCS to abate westward movement of CCS groundwater into class G-II (<10,000 mg/L TDS) groundwaters of the State.” The goal of reducing hypersalinity of the CCS to abate westward movement of CCS groundwater into class G-II groundwaters is to be demonstrated by two success criteria: (1) reducing and maintaining the average annual salinity of the CCS at a practical salinity of 34 within 4 years of the effective date of the Salinity Management Plan; and (2) decreasing salinity trends in four monitoring wells located near the CCS. Although the AO states that FPL’s proposal to withdraw 14 mgd from the Upper Florida Aquifer and discharge it into the CCS might accomplish the goal of the AO, the AO does not require implementation of this particular proposal. It is just one of the options that could be proposed by FPL in its Salinity Management Plan.1/ If the success criteria in the AO are achieved, hypersaline water will no longer sink beneath the CCS, the rate of saltwater intrusion will be slowed, and the existing hypersaline plume would begin to “freshen.” Petitioners’ Objections ACI and the City object to the AO because the success criteria do not prevent further harm to water resources. Maintaining salinity in the CCS to 34 PSU will not halt the western movement of the saline water interface. They also contend the AO is vague, forecloses salinity management options that could be effective, and authorizes FPL’s continued violation of water quality standards. For ACI, it doesn’t matter when the saline water interface will reach its property because, advancing in front of the saltwater interface (10,000 mg/L TDS) is a line of less salty water that is still “too salty” for ACI’s mining operations. Years before the saline water interface reaches ACI’s property, ACI’s mining operations will be disrupted by the arrival of groundwater with a chloride concentration at or above 250 mg/L.2/
Recommendation Based on the foregoing Findings of Fact and Conclusions of Law it is RECOMMENDED that the Department of Environmental Protection rescind the AO or amend it as described above. DONE AND ENTERED this 15th day of February, 2016, in Tallahassee, Leon County, Florida. S BRAM D. E. CANTER Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 15th day of February, 2016.
The Issue Whether Bay County has demonstrated its entitlement to the Permit?
Findings Of Fact The Ecologically Diverse Florida Panhandle With its high diversity of species and richness in endemic plants, the Florida Panhandle has been identified as one of six continental "biodiversity hot spots" north of Mexico. It has more species of frogs and snakes, for example, than any other equivalently-sized area in the United States and Canada and has botanical species that do not exist anywhere else in the Coastal Plain, one of the three floristic provinces of the North Atlantic American Region. The biodiversity stems from a number of factors. The Panhandle was not glaciated during the Pleistocene Period. Several major river systems that originate in the southern Appalachian Mountains terminate on the Panhandle's Gulf Coast. Its temperate climate includes relatively high rainfall. These factors promote or produce plentiful sources of surface and groundwater that encourage botanical and zoological life and, in turn, a diverse ecology. When compared to the rest of Florida, the Panhandle is relatively free from man-made impacts to its water resources. Until recently, the population growth rate lagged behind much of the state. Despite a rapid increase in the population in the late 1990s into the early part of the twenty-first century, it remains much less densely populated than areas in the I-4 Corridor and coastal peninsular Florida to the south. The Panhandle can be divided into physiographic areas of geological variation that are highly endemic; a substantial number of plant and animal species found in these areas are found nowhere else in the world. One of these areas is of central concern to this case. Located in southern Washington County and northern Bay County, it is known as the Sand Hill Lakes Area. The Sand Hill Lakes Area The Sand Hill Lakes Area (the "Area") is characterized by unusual geology that produces extraordinary ecological value. With few exceptions (see findings related to Dr. Keppner's flora and fauna inventories on the NTC/Knight Property below), the Area has not been extensively studied. The data on biological communities and water levels that exist, sparse as it is, has been obtained from historic aerials dating to 1941. The aerials are of some use in analyzing lakes and surface waters whose source is the Surficial Aquifer, but they are of limited value otherwise. They are not of use in determining the level in the Surficial Aquifer. Nor are they of assistance in determining river height when the banks of the river are covered by hardwood forest canopy. The resolution of the aerials is insufficient to show details of the various ecosystems. They do not show pitcher plants, for example, that exist at the site of hillside seepage bogs common in the Area. An aspect of the Area that the aerials do reveal is its many karst features on the surface of the land. Karst lakes and sinkholes dominate the Area and are a component of its highly unusual geology which is part of a larger system: the Dougherty Karst Plain. The Dougherty Karst Plain is characterized by numerous karst features: springs, caverns, sinkhole lakes, and sinkholes. Sinkholes In Florida, there are three types of sinkholes: cover subsidence, cover collapse, and "rock" or "cavern" collapse. Of the three, cover subsidence sinkholes are the most common in the state. Cover subsidence sinkholes form as the result of processes that occur on the surface. A cover subsidence sinkhole is usually a shallow pan typically not more than a few feet deep. Found throughout Central and South Florida, they are the most common type of sinkholes in most of peninsular Florida. In contrast, the other two major types of sinkholes (cover collapse and cavern collapse) occur as the result of processes below the surface that cause collapse of surface materials into the substrata. Both types of "collapse" sinkholes are found in the Area, but cover collapse is the more common. Cavern collapse sinkholes are relatively rare. Typical of the Area, cover subsidence sinkholes are not found on the NTC/Knight Property. The NTC/Knight Property The majority of the NTC/Knight Property is in Washington County, but the property straddles the county line so that a smaller part of it is in northern Bay County. All of the NTC/Knight Property is within the Area. The District recognizes that the NTC/Knight Property contains natural resources of extraordinary quality as does the Area generally. Over the three years that preceded the hearing, Dr. Keppner, an NTC/Knight expert, conducted extensive inventories of the flora and fauna on NTC/Knight Property. Dr. Keppner's inventory showed the NTC/Knight Property supports more than 500 species of vascular plants (flora with a system of tubes within the stem, phloem, and the xylem that exchange materials between the roots and leaves) and 300 species of animals. Among them are at least 28 vascular plants and six animals listed as imperiled (threatened or endangered) by state or federal agencies. At least 22 of the imperiled species of vascular plants and eight of the imperiled species of animals are located within an area expected to be affected by the Wellfield for which Bay County seeks the permit modification. For example, at Big Blue Lake alone where impacts were predicted by NTC/Knight experts to take place, the following imperiled plant species are found: Smoothbark, St. John's Wort, Kral's Yelloweyed Grass, Quilwort Yelloweyed Grass, Threadleaf Sundew, Panhandle Meadowbeauty, and Crystal Lake Nailwort. In addition to the Keppner inventory, NTC/Knight commissioned other studies to determine the nature of the sinkholes and whether they are connected to the Floridan Aquifer. NTC/Knight's experts determined that the property contains cover collapse and a few cavern collapse sinkholes that connect to the Floridan Aquifer. Despite evidence to the contrary submitted by the District and Bay County, the NTC/Knight determinations are accepted as facts for a number of reasons, including the lineup of the sinkholes and sinkhole lakes along identified photo-lineaments and the distribution of them in patterns that are not random. A District study using a dye test, moreover, confirmed conduit flow exists in the Area just east of the NTC/Knight Property. With regard to the distribution of the sinkholes and sinkhole lakes on the NTC/Knight Property, Dr. Sam Upchurch used the term "String of Pearls" to describe multiple sinkholes that exist along the edges of several lakes on the property. When sinkholes closer to the center of a lake are clogged or plugged with sediment and debris, the lakes continue to leak around the plugs which causes new sinkholes to form along the edge of the plugs. Examples of the "String of Pearls" formation on the edges of existing lakes are found at White Western and Big Blue Lakes on the NTC/Knight Property and at Crystal Lake nearby in Washington County. The multiple sinkholes bordering the edge of Big Blue Lake are examples of cover collapse sinkholes that, in geological terms, are relatively young as evidenced by their steep sides. In a karst area such as the Area, there is preferential flow in the conduits because of the difference of efficiency of transmission of water flowing through a porous medium of rock compared to that flowing though a conduit. Absent pumping in the Wellfield, the underlying aquifers are relatively stable. If the requested pumping does not take place, it is likely the stability will remain for a substantial period of time. It is not known with precision what will happen in the long term to the karst environment should pumping occur at the Wellfield at the rate the District proposes. When pumping occurs, however, water in the Area affected by the Wellfield will move toward the Wellfield. "[A]s it does[,] you may get some turbulent flow or vorticity in the water." Tr. 1391, (emphasis supplied). At some point, a change in the potentiometric surface and loss of buoyancy will most likely occur. This leads to concerns for Dr. Upchurch from two perspectives: One . . . is that if there is a[n affected] sinkhole lake [on the surface,] it may induce downward flow . . . the other . . . is that if it breaks the plug it may either create a new sinkhole or create a substantial drop in the level of water in the lake . . . which drains periodically, not necessarily because of a wellfield, but because that plug breaks. Id. In the first instance, lake levels could be reduced significantly. In the second, a new sinkhole could be created or the water level could drop dramatically as occurred at Lake Jackson in Tallahassee. Sand Hill Lakes Wetlands The Area contains a number of wetland communities. These include hillside seepage bogs, steepheads, sphagnum bogs, littoral seepage slopes around certain Sand Hill Lakes, temporary ponds, and creeks and streams in forested wetlands. A number of these wetlands occur on the NTC/Knight Property within the zone of influence in the Surficial Aquifer predicted by NTC/Knight's experts employing a model known as the "HGL Model." The wetland systems on the NTC/Knight Property are diverse, by type, plant species composition, and richness. This remarkable diversity led the District to recognize that the NTC/Knight Property contains lakes of nearly pristine quality, interconnected karst features, and endemic steephead ravines, all of which are regionally significant resources of extraordinary quality. The Area's wetlands also include many streams, among them Pine Log Creek, the majority of which is located on the NTC/Knight Property. Significant recharge to the Floridan Aquifer occurs on NTC/Knight Property. To the west, north, and east of the NTC/Knight Property are major concentrations of Floridan Aquifer springs that are crucial to the quality and character of regional surface water systems, including the Choctawhatchee River, Holmes Creek, and Econfina Creek systems. All of these surficial systems are dependent on the groundwater resources of the Area. The Area's Hillside Seepage Bogs Hillside seepage bogs are marsh-like wetland usually located on gentle slopes of the sides of valleys. They form when the Surficial Aquifer intercepts the sloping landscape allowing water to seep onto the sloped surface. The plant communities in the bogs are dominated by a great number and variety of herbaceous plants that prefer full sun. Among them are carnivorous plants. These unusual plants include the Trumpet and White-Topped pitcher plants as well as other varieties of pitcher plants. Inundation or saturation for extended periods of time is necessary for pitcher plants and most of the rest of the plant communities found in the bogs to thrive and to fend off invasion by undesirable species. Hillside seepage bogs are valued because they are among the most species-rich communities in the world. A reduction in water levels in the bogs below the root zone of associated plants will kill the plant communities that live in them and pose a threat to the continued existence of the bogs. Hillside seepage bogs were once abundant in pre- settlement Florida, but their expanse has been greatly reduced. They are now estimated to only occupy between one and five percent of their original range. On NTC/Knight Property, they have been spared to a significant degree. Numerous hillside seepage bogs continue to exist on the NTC/Knight Property primarily along the margin of Botheration Creek and its tributaries. The Area's Steepheads Steepheads are unique wetland systems. Found around the globe, they are usually regarded as a rarity. More than 50 percent of the steepheads that exist in the world are in a narrow latitudinal band that extends from Santa Rosa County in the west to Leon County in the east, a major section of the Florida Panhandle. Steepheads occur in deep sandy soils where water originating in the Surficial Aquifer carries away sand and cuts into sandy soils. The seepage emerges as a "headwater" to create a stream that conveys the water from the steephead into a river, or in some rare circumstances, into a karst lake. Over time, flow of the seepage waters results in deep, amphitheater- shaped ravines with steep valley side walls. Steepheads are important to the ecologies of the areas in which they occur. They provide habitat for a number of Florida endemic animals and plants believed to be relics of once-abundant species. Water that emerges from a steephead is perennial. Because the steep slopes of the steephead have not been disturbed over a long period of time, the water remains at a relatively constant temperature, no matter the season. Sampling of aquatic invertebrates at the Russ Pond and Tiller Mill Steepheads on the NTC/Knight Property found 41 and 33 distinct taxa, respectively, to inhabit the steepheads. Among them were a number of long-lived taxa. Their presence is consistent with the hallmark of a steephead: perennial flow of water at a relatively constant temperature. Most of the known steepheads flow into streams or rivers. Between six and ten within the Area, however, flow into Sand Hill Lakes. They have no direct connection to any surface drainage basin, thereby adding to their uniqueness. The level in the Surficial Aquifer has a direct impact on where and to what extent seepage flows from the sidewalls of a steephead. The Area's Sphagnum Bogs Sphagnum moss grows in many locations within the landscape and requires moisture. Where there is a large amount of sphagnum moss, it can form a unique community known as a sphagnum bog that is capable of supporting unique plant and animal populations. In the Area, these sphagnum bogs form along the valley sidewalls of steephead ravines and are fed by Surficial Aquifer seepage from the sidewall of the ravine. These sphagnum bogs support unique plant and animal communities, including a salamander discovered by Dr. Means that is new to science and so far only known to exist in sphagnum bogs in the Florida Panhandle. The Area's Sinkhole Lakes and their Littoral Seepage Slopes Sand Hill Lakes are nutrient poor, or "oligotrophic," receiving most of their nutrient inputs through exchange with the plant and animal communities on the adjacent littoral shelves during periods of high water levels. Fluctuating water levels in the Sand Hill Lakes allow a littoral zone with many different micro-habitats. Areas closest to the lakes are inundated regularly, but higher areas of the littoral zone are generally dry and inundated only every ten or 20 years -- just often enough to prevent encroachment of trees. In a few instances, portions of the littoral zones are inundated by seepage from the Surficial Aquifer. Above the normal low water of the Sand Hill Lakes, the littoral shelf occurs along a low gradient. As the littoral shelf transitions into the lake bottom and toward the deeper parts of the lake, there is an inflection point, where the gradient of the lake bottom becomes much steeper than the littoral shelf. If lake water levels fall below that natural inflection point, gully erosion will occur. The flow of water will be changed along the littoral shelf from seepage sheet flow over a wide expanse to water flowing down gullies in a concentrated stream. This change in flow will result in a loss of area needed by certain seepage dependent plants and animals as well as increased sedimentation from erosion. Big Blue Lake is unique because it boasts the largest known littoral zone seepage area of any Sand Hill Lake. The seepage zone along Big Blue Lake supports a number of rare plant species, including the Thread-Leaf Sundew, Smoothed Barked St. Johns Wort, and Crystal Lake Nailwort. The Area's Temporary Ponds Temporary ponds are small isolated water bodies that generally have no surface water inlet or outlet. Typically very shallow, they are sometimes wet and sometimes dry. Temporary ponds can range from basins that have continuous water for three to five years, to basins that have standing water for a month or two, every two to four years. These conditions limit their occupation by fish and, therefore, provide ideal conditions for amphibian reproduction which only occurs when water levels are maintained long enough to complete a reproductive cycle. In the Area, temporary ponds are a direct expression of the Surficial Aquifer and contain no known restrictive layer that might cause water to be "perched" above the Surficial Aquifer. Temporary ponds are critical to the viability of amphibian populations and support high amphibian biodiversity. A given pond can contain between five and eight species of salamander, and between 12 and 15 species of frogs. There has been a decline recently in the population of frogs and other amphibians that depend upon temporary ponds. The decline is due in part to ditching and other anthropogenic activities that have altered the hydrology of temporary ponds. Temporary ponds have a higher likelihood of being harmed by a drawdown than larger, connected wetlands systems. Lowered Surficial Aquifer water levels would lower water levels in temporary ponds and, thereby, threaten amphibian reproduction. Creeks/Streams in Forested Wetlands Streams are classified on the basis of the consistency of flowing water, including perennial (always flowing), intermittent (flowing part of the year), and ephemeral (flowing only occasionally during rain events). The type of stream flow is important because movement of water is essential to support aquatic systems in stream habitats. The NTC/Knight Property includes a number of stream systems, including Botheration Creek and Pine Log Creek. Botheration Creek is fed by groundwater discharge and originates, in large part, on the NTC/Knight Property. Botheration Creek flows from east to west until it intersects Pine Log Creek on the southwest part of the NTC/Knight Property. Botheration Creek provides Pine Log Creek with approximately 89 percent of Pine Log Creek's flow. From the confluence, Pine Log Creek flows south and west into the Pine Log State Forest and eventually joins the Choctawhatchee River. Botheration Creek contains high quality water and a diverse mix of aquatic invertebrates and fish. Sampling at a stage recorder located approximately two miles west of the eastern boundary of the NTC/Knight Property ("BCS-01") identified 46 taxa of macroinvertebrates, including six long- lived taxa, and mussels. The water level in Botheration Creek at BCS-01 was measured to be between 0.1 and 0.32 feet by four measurements taken from October 2010 to July 2011. Nonetheless, the presence of long-lived taxa and mussels indicates that, at BCS-01, Botheration Creek is a perennial stream. Carbon export from streams provides nutrients that feed the stream system. Headwater streams like Botheration Creek and its tributaries are essential to carbon export. For carbon export to occur, a stream must have out-of-bank flood events regularly to promote nutrient exchange with the flood plain. Bay County and its Water Supply Prior to 1961, the County obtained its public water supply from wellfields located near downtown Panama City. The wellfields drew from the Floridan Aquifer. An assessment of the pre-1961 groundwater pumping appears in a District Water Supply Assessment released in June 1998. In summary, it found that near Panama City, the potentiometric surface was substantially depressed by the pumping. Due to the threat of saltwater intrusion, the Deer Point Lake Reservoir (the "Reservoir") was constructed as an alternate water supply. A local paper mill, the city of Panama City, and Tyndall Air Force Base, all began to obtain public supply water from the Reservoir. Six years after the construction of the Reservoir, the Floridan Aquifer's water levels had rebounded to pre-pumping levels. See NTC/Knight Ex. 93 at 69. The authorization for the Reservoir began in the 1950's when the Florida Legislature passed a series of laws that granted Bay County authority to create a saltwater barrier dam in North Bay, an arm of the St. Andrews Bay saltwater estuary. The laws also allowed Panama City to develop and operate a surface freshwater reservoir to supply water for public use. The Deer Point Lake Dam (the "Dam") was built in 1961 from metal sheet piling installed across a portion of North Bay. The Dam created the Reservoir. The watershed of the Reservoir includes portions of Jackson, Calhoun, Washington, and Bay Counties and covers approximately 438 square miles. The Reservoir receives freshwater inflow from several tributaries, including Econfina Creek, Big Cedar Creek, Bear Creek/Little Bear Creek, and Bayou George Creek, totaling about 900 cubic feet per second ("cfs") or approximately 582 MGD. The volume of inflow would increase substantially, at least two-fold, during a 100-year storm event. The Dam is made of concrete and steel. Above it is a bridge and two-lane county road roughly 11.5 feet above sea level. The bridge is tied to the Dam by pylons. The top of the Dam is 4.5 feet above sea level, leaving a distance between the Dam and the bridge bottom of about seven feet. There is an additional structure above the Dam that contains gates, which swing open from the force of water on the Reservoir's side of the Dam. Capable of releasing approximately 550 MGD of freshwater into the saltwater bay, the gates keep the level of the Reservoir at about five feet above sea level. The height of the Dam and the gate structure leaves a gap between the bottom of the bridge deck and the top of the structure of "somewhere between 12 and 14 inches, a little better than a foot." Tr. 140. If storm surge from the Gulf of Mexico and St. Andrew's Bay were to top the Dam and the gate structure, the gap would allow saltwater to enter the Reservoir. The gates and the Dam structure are not designed to address storm surge. The Dam is approximately four feet thick and roughly 1,450 feet long. The 12-to-14 inch gap extends across the length of the Dam. With normal reservoir levels, the volume of water it contains is approximately 32,000-acre-feet or roughly 10.4 billion gallons. Bay County needs to drawdown the lake level for fish and wildlife purposes, the control of aquatic growth, and weed control. In winter, FWS prescribes a 45-day period of time to draw down the lake to expose the banks to kill vegetation. The last time the lake was drawn down by the County, the water level dropped approximately three feet, from five feet above sea level to two feet above sea level. This process took approximately six days and 16 hours, or approximately 53 hours/foot. Repair of the Dam and its Maintenance The Dam has been repaired three times. The last repair was following Hurricane Opal which hit the Florida Panhandle in the fall of 1995. During Hurricane Opal, "saltwater . . . entered . . . the [R]eservoir . . . [t]hat took 20-some days to flush out . . . ." Tr. 135. No evidence was presented regarding the Dam's vulnerability from the perspective of structural integrity during normal or emergency conditions. Other than the inference drawn from Mr. Lackemacher's testimony that Hurricane Opal damaged the Dam in 1995, no evidence was presented to suggest that the Dam's structure is vulnerable to damage caused by a storm surge, wave effect or other conditions caused by a storm of any magnitude. After the last of the three repairs, Bay County implemented a detailed maintenance program. Based upon the latest inspection reports, the Dam is in good condition and structurally sound. No work other than routine inspection and maintenance is currently planned. The 1991 Agreement and the WTP Bay County's current withdrawal of water from the Reservoir is based on a 1991 agreement between Bay County and the District (the "1991 Agreement"). See Joint Ex. Vol. II, Tab K. The 1991 Agreement allows Bay County after the year 2010 to withdraw 98 MGD (annual average) with a maximum daily withdrawal of 107 MGD. The 1991 Agreement, still in effect, authorizes Bay County to withdraw enough water from the Reservoir to meet its needs through 2040. Water for public supply is withdrawn from the Reservoir by a water utility pump station (the "Pump Station") located a short distance from the Dam in Williams Bayou. The water is piped to the water utility's treatment plant (the "Water Treatment Plant") five miles away. The Water Treatment Plant treats 60 MGD. Following treatment, the water is distributed to Bay County's wholesale and retail customers. The Reservoir water available to Bay County utilities is more than adequate to fulfill the water consumption demands of Bay County's system through a 20-year permit horizon. The transmission line between the Pump Station and the Water Treatment Plant has fittings that were designed to allow transmission of groundwater withdrawn from groundwater wells to be located along the transmission line to the Water Treatment Plant to provide a backup supply for the Reservoir. Bay County's Current Use of Potable Water The amount of water consumed by Bay County utility customers has declined over the last five years. Bay County's current use of water, based upon the average of the 13 months prior to the hearing, was 24.5 MGD, an amount that is only 25 percent of the water allocation authorized by the 1991 Agreement. There are approximately 560,000 linear feet of main transmission lines in Bay County with small service lines accounting for another several hundred thousand linear feet. Bay County furnishes water directly to approximately 6,000 retail customers in areas known as North Bay, Bay County, and the former Cedar Grove area, which is now part of Bay County. Wholesale customers include Panama City Beach, Panama City, Mexico Beach, Callaway, Parker, Springfield, and parts of Lynn Haven. The County also furnishes potable water to Tyndall Air Force Base. Lynn Haven does have some water supply wells; however, Bay County still supplements this water supply by approximately 30 percent. No other cities serviced by Bay County produce their own water. Bay County has a population of approximately 165,000- 170,000 permanent residents, which includes residents of the cities. The Bay County area experiences seasonal tourism. From spring break to July 4th, the population can grow to more than 300,000. The users of Bay County's drinking water supplies include hospitals, Tyndall Air Force Base, and the Naval Support Activity of Panama City ("NSA"). The County has 178 doctor's offices, 56 dental offices, 29 schools, 21 fire departments, 12 walk-in-clinics, six nursing and rehabilitation homes, six major employers, three colleges and universities, and two major hospitals, all which are provided drinking water by Bay County. Panama City Beach is the community which has the highest water use. Panama City Beach's average daily use is approximately 12 MGD. The peak day of usage for all of Bay County's customers over the 13 months prior to the hearing was 40 MGD. Bay County sells water to community water utility systems referred to as a "consecutive system." They include Panama City Beach, Panama City, and Mexico Beach. Bay County's request for 30 MGD contemplates provision of water for all essential and non-essential water uses occurring within the consecutive system. Bay County and the consecutive systems are subject to the District's regulations regarding emergency water use restrictions which typically restrict the non-essential use of water during water shortage emergencies. Hurricanes, Train Wrecks, and Post-9/11 America At the District's recommendation, Bay County has been considering a backup potable water source since the mid-1980's. Bay County's main concern is that it has inadequate alternatives to the Reservoir should it be contaminated. Contamination to date has been minimal. In the period of time after the 1961 creation of the Reservoir to the present, the Dam and the Reservoir have suffered no major damage or impacts from a tropical storm. No tropical storm since 1961 has disrupted Bay County's ability to provide potable water. Even Hurricane Opal in 1995 did not disrupt the water supply. Recent hurricane activity in the Gulf of Mexico, however, has aroused the County's fears. Should a storm of sufficient magnitude make landfall in proximity to the Dam, there is potential for saltwater contamination of the Reservoir from storm surge or loss of impounded freshwater due to damage to the Dam. Mr. Lackemacher, assistant director of the Bay County Utility Department and manager of the water and wastewater divisions of the department, has experience with other hurricanes in Palm Beach, Florida, and Hurricane Hugo in Myrtle Beach, South Carolina, during which water utilities suffered disruption of their distribution systems. The experience bolsters his concern about the damage a storm could cause Bay County's source of public water supply. Bay County's intake structure at Williams Bayou is approximately one mile away from the Dam. The location of the Pump Station puts it at risk for damage from a strong storm or hurricane. There is a rail line near the Reservoir. It runs along Highway 231 and over creeks that flow into the Reservoir, including the Econfina Creek. The rail line is known as "Bayline." Bayline's most frequent customers are the paper mill and the Port of Panama City. Not a passenger line, Bayline is used for the transport of industrial and chemical supplies. In 1978, a train derailment occurred on tracks adjacent to creeks that feed the Reservoir. The derailment led to a chlorine gas leak into the atmosphere. There was no proof offered at hearing of contamination of the Reservoir. There has never been a spill that resulted in a hazardous chemical or pollutant being introduced into the Reservoir. Bay County has not imposed restrictions on the type of vehicles that are allowed to use, or the material that may pass over, the county road on the bridge above the Dam. Nonetheless, in addition to saltwater contamination, Bay County also bases the need for an alternative water source on the possibility of a discharge into the Reservoir of toxic substances from a future train derailment. Bay County is also concerned about contamination of the Reservoir from a terrorist attack. In short, Bay County is concerned about "anything that could affect the water quality and water in Deer Point Lake." Tr. 184. The concerns led Bay County to file its application for the Wellfield on lands currently owned by the St. Joe Company. Consisting of ten wells spaced over an area of approximately ten square miles, the Wellfield would have a capacity of 30 MGD. Bay County's application was preceded by the development of the District's Region III Regional Water Supply Plan and efforts to acquire funding. Funding for the Wellfield and the Region III Regional Water Supply Plan Shortly after the commencement of the planning for the Wellfield, the District, in May 2007, authorized the use of funds from the State's Water Protection and Sustainability Trust Fund ("WPSTF"). The WPSTF is intended for development of alternative water supplies. In cooperation with the District, Bay County began drilling a test well followed by analyses to evaluate the water for potable suitability. In October of the same year, the District passed a resolution to request the Department of Environmental Protection to release $500,000 from the WPSTF to the District for local utilities in Bay and Escambia Counties for "Water Resource Development." NTC/Knight Ex. 195, p. 2. The amount was to be used "to provide funding for implementation of alternative water supply development and water resource developments projects pursuant to sections 403.890 and 373.1961, F.S." Id., p. 1. In February 2008, the District began a process to develop a regional water supply plan for Bay County. If the Wellfield were designated in the applicable regional water supply plan as "nontraditional for a water supply planning region," then it would meet the definition of "alternative water supplies" found in section 373.019(1), Florida Statutes. "In evaluating an application for consumptive use of water which proposes the use of an alternative water supply project as described in the regional water supply plan," the District is mandated "to presume that the alternative water supply is consistent with the public interest " § 373.223(5). Whether the Wellfield is to be presumed to be in the public interest depends on whether the application proposes the use of an alternative water supply project as described in the District's Region III Water (Bay County) Water Supply Plan adopted in 2008. The 2008 RWSP Pursuant to the process commenced in February, the District in August 2008 produced the Region III (Bay County) Regional Water Supply Plan (the "2008 RWSP"). In a section entitled "Identification of Alternative Water Supply Development Projects," the 2008 RWSP provides the following: "All of the water supply development projects identified in Table 4 are interrelated and considered alternative, nontraditional water supply development projects." NTC/Knight Ex. 187 at 14. Table 4 of the 2008 RWSP does not specifically identify the Wellfield. It identifies three projects in general terms. The first of the three (the only one that arguably covers the Wellfield) shows "Bay County Utilities" as the sole entity under the heading "Responsible Entities." Id. at 13. The project is: "Inland Ground Water Source Development and Water Supply Source Protection." Id. Under the heading, "Purpose/Objective," the Table states for the first project, "Develop inland alternative water supply sources to meet future demands and abate risks of salt water intrusion and extreme drought." Id. The Table shows "Estimated Quantity (MGD)" to be "10.0." Id. (In July 2008, the District's executive director informed Bay County that the Wellfield could produce 10 MGD.) The "Time Frame" is listed as 2008-12, and the "Estimated Funding" is "$5,200,000 WPSPTF" and "$7,800,000 Local, NWFWMD." Id. While not specifically identified in the 2008 RWSP, Table 4's project description supports a finding that the Wellfield is, in fact, one of the inland alternative water supply sources. The 2008 RWSP, therefore, designates the Wellfield as a "nontraditional" water supply source for Region III.4/ (The Wellfield also, therefore, meets the definition of "[a]lternative water supplies" in section 373.019(1). The demonstration of a prima facie case by Bay County and the District, however, make the applicability of the presumption a moot point. See Conclusions of Law, below.) Water Supply Assessments and Re-evaluations Development of a regional water supply plan by the governing board of each water management district is mandated "where [the governing board] determines that existing and reasonably anticipated sources of water are not adequate to supply water for all existing and future reasonable-beneficial uses and to sustain the water resources and related natural systems for the planning period." § 373.709(1), Fla. Stat. (the "Regional Water Supply Planning Statute"). The District determined in its 1998 District Water Supply Assessment ("WSA") for Region III (Bay County) that the existing and reasonably anticipated water sources are adequate to meet the requirements of existing legal users and reasonably anticipated future water supply needs of the region through the year 2020, while sustaining the water resource and related natural systems. See NTC/Knight 93 at 79. In 2003, Ron Bartel, the director of the District's Resource Management Division, issued a memorandum to the Governing Board (the "2003 Re-evaluation Memorandum"), the subject of which is "Regional Water Supply Planning Re- evaluation." NTC/Knight 95 (page stamped 42). The 2003 Re-evaluation Memorandum sets out the following with regard to when a "water supply plan" is needed: The primary test we have used for making a determination that a water supply plan was "not needed" for each region is that projected consumptive use demands for water from major water users do not exceed water available from traditional sources without having adverse impacts on water resources and related natural systems. Similarly, regional water supply planning is initiated "where it is determined that sources of water are not adequate for the planning period (20) years to supply water for all existing and reasonable-beneficial uses and to sustain the water resources and related natural systems." Id. With regard to the need for a Water Supply Plan for Bay County the 2003 Re-evaluation Memorandum states: [I]n Bay County (Region III), sufficient quantities have been allocated for surface water withdrawal from Deer Point Lake Reservoir through the District's consumptive use permitting program extending through the year 2040. In this area, the District is also scheduled to complete a minimum flow and level determination for the lake by the year 2006. This determination will be useful for deciding if additional water supply planning is needed before the permit expires in 2040. Id. (page stamped 43). The 2008 RWSP's designation of the Wellfield is justified in the minutes of the Governing Board meeting at which the 2008 RWSP's approval took place: While the reservoir has largely replaced the use of coastal public supply wells historically impacted by saltwater intrusion, there remain challenges within the region that make development and implementation of a Regional Water Supply Plan (RWSP) appropriate. Development of alternative water supplies would diversify public supply sources and help drought-proof the region through establishment of facility interconnections. Development of alternative supplies would also minimize vulnerability associated with salt water potentially flowing into the reservoir during major hurricane events. Id., p. 3 of 4. The adoption of the 2008 RWSP was followed in December 2008 by the District's 2008 Water Supply Assessment Update. The update is consistent with the earlier determinations of the adequacy of the Reservoir as a water supply source for the foreseeable future (in the case of the update, through 2030). The update also voices the concern about water quality impacts from storm surge. The update concludes with the following: In Region III, the existing and reasonably anticipated surface water resources are adequate to meet the requirements of existing and reasonably anticipated future average demands and demands for a 1-in-10 year drought through 2030, while sustaining water resources and related natural systems. However, the major concern for potential water quality impacts is that resulting from hurricane storm surge. A Regional Water Supply Plan (NWFWMD 2008) has recently been prepared for Region III to address concerns associated with existing surface water systems. NTC/Knight Ex. 101, p. 3-41. The Parties Washington County is a political subdivision of the State of Florida. Washington County is located directly north of Bay County and the Wellfield and within one mile of some of the proposed wells. Washington County includes thousands of wetlands and open water systems. Because of the hydro-geologic system in the area of the Wellfield, if there are wetland, Surficial Aquifer, and surface water impacts from the withdrawal under the Permit, it is likely that impacts will occur in Washington County. Washington County has a substantial interest in protection, preservation, and conservation of its natural resources, including lakes, springs, and wetlands, and the flora and fauna that depend on these water resources, especially endangered flora and fauna. Washington County has a substantial interest in the protection of all water resources in Washington County because of the close relationship between surface waters, groundwater, and the potable water supply used by Washington County residents. NTC/Knight is the owner of approximately 55,000 acres of land located in northern Bay County and southern Washington County. The NTC/Knight Property includes thousands of acres of wetlands and open waters, including Sand Hill Lakes, steepheads, hillside seepage bogs, sphagnum bogs, littoral seepage slopes around certain Sand Hill Lakes, temporary ponds, and forested wetlands. A large portion of the NTC/Knight Property is directly adjacent to the Wellfield and within the HGL Model projected drawdown contour. Based on the projected amount of drawdown from pumping at the proposed average rate of 5 MGD, the 0.5 projected drawdown contour predicted by the HGL Modeling Report (see Finding of Fact 121, below) extends over thousands of acres of the property. NTC/Knight has a substantial interest in the protection of the surface and groundwater directly on, under, and adjacent to its property. The water supports the numerous ecosystems of extraordinary value located on the property. James Murfee and Lee Lapensohn are individuals, who reside in Bay County on property fronting on and beneath Tank Pond approximately five miles from the Wellfield. Petitioners Murfee and Lapensohn have a well which extends into the Intermediate Aquifer. The Murfee and Lapensohn properties are within the HGL Model projected drawdown contour. Petitioners Murfee and Lapensohn have a substantial interest in the protection of their drinking water supply well and the surface waters directly on and adjacent to their properties. Bay County, the applicant, is a political subdivision of the State of Florida. The District is a water management district created by section 373.069(1). It has the responsibility to conserve, protect, manage, and control the water resources within its geographic boundaries. See § 373.069(2)(a), Fla. Stat. Section 120.569(2)(p), Florida Statutes Section 120.569(2)(p), in pertinent part, provides: For any proceeding arising under chapter 373, chapter 378, or chapter 403, if a nonapplicant petitions as a third party to challenge an agency’s issuance of a license, permit, or conceptual approval, the order of presentation in the proceeding is for the permit applicant to present a prima facie case demonstrating entitlement to the license, permit, or conceptual approval, followed by the agency. This demonstration may be made by entering into evidence the application and relevant material submitted to the agency in support of the application, and the agency’s staff report or notice of intent to approve the permit, license, or conceptual approval. Subsequent to the presentation of the applicant’s prima facie case and any direct evidence submitted by the agency, the petitioner initiating the action challenging the issuance of the license, permit, or conceptual approval has the burden of ultimate persuasion and has the burden of going forward to prove the case in opposition to the license, permit, or conceptual approval through the presentation of competent and substantial evidence. The permit applicant and agency may on rebuttal present any evidence relevant to demonstrating that the application meets the conditions for issuance. Paragraph (p) was added to section 120.569(2) in the 2011 Session of the Florida Legislature. Accordingly, the final hearing commenced with the Bay County and the District's presentation of its prima facie case by submitting the application, supporting documentation, and the District's approval of the application. Respondents also presented the testimony of four witnesses in the hearing's first phase. Phase I of the Final Hearing: Bay County's Application, Supporting Documents, the District's Approval and Supporting Testimony The Application File At the final hearing, Bay County and the District offered the "application file," marked as Joint Exhibit Binder Volumes I-IV (the "Application File") in the hearing's first phase. It was admitted into evidence. A document entitled "Alternate Water Supply Report - Bay County Water Division" dated May 20, 2008 (the "Hatch Mott MacDonald Report") is contained in the Application File. See Joint Ex. Vol. I, Tab B. The Hatch Mott MacDonald Report is a preliminary evaluation of a wellfield with 22 wells, an "initial phase . . . [of] five (5) wells producing 5 MGD and the final phase . . . [of] 17 wells, producing 25 MGD." Id. at 1. The evaluation includes the gathering of information, a recommendation for the best method of treatment, an analysis of whether individual well sites or a centralized site would be superior, a hydraulic model and analysis, and the potential construction and operation costs. The report concludes in its Executive Summary: HMM's preliminary results, based upon water analysis of Well No. 1, indicate that only disinfection will be required for potable water treatment. Additionally, the hydraulic analysis indicated that the wells are capable of providing the initial 5 MGD and future 25 MGD to the proposed connection point along Highway 388 without re-pumping. Adequate storage for fire protection should be considered at current and future service areas. The use of chlorine gas at each well site during the initial phase had the lowest present worth of $16,770,270; that is, the smallest amount of funds needed today to build, operate, and maintain the system. The use of chlorine gas at each well in the final phase had a present worth of $41,245,118, only slightly more than the present worth of $40,834,245 for on-site Id. generation of disinfectant at three (3) central facilities. The Application File contains a response to a District request for additional information (the "2009 RAI Response") submitted by the Bay County Services Utility Director and received by the District in September 2009. See Joint Ex. Vol. II, Tab K. The 2009 RAI Response contains the 1991 Agreement and numerous other documents. Among them is a report prepared by HydroGeoLogic, Inc. ("HGL") entitled "Groundwater Model Development for the Assessment of a New Wellfield in Bay County, Florida" dated September 2009 (the "2009 HGL Modeling Report"). The report predicts impacts that would be created to the surrounding aquifers as a result of the Wellfield pumping, but recommends that additional data be obtained. The Application File contains the District's Notice dated March 25, 2010. See Joint Ex. Vol. III, Tab B. Attached to the Notice is a draft of the Permit and a staff report from the District recommending approval with conditions. Condition 11 of the Permit's standard conditions obligates Bay County to mitigate any significant adverse impacts caused by withdrawals and reserves the right to the District to curtail permitted withdrawal rates "if the withdrawal causes significant adverse impact on the resource and legal uses of water, or adjacent land use, which existed at the time of the permit application." Joint Ex. Vol. III, Tab B, p. 3 of 17. Attachment A to the Permit requires conditions in addition to the standard conditions contained in the body of the Permit. Paragraph 12 of Attachment A, for example, requires that Bay County implement and maintain a water and conservation efficiency program with a number of goals. Attachment B to the Permit requires a monitoring and evaluation program and wetland monitoring of adjacent properties to determine if the pumping causes adverse impacts to wetland areas, including habitat and species utilization. The Application File contains a revised modeling report also entitled "Groundwater Model Development for the Assessment of a New Wellfield in Bay County, Florida" (the "2011 Revised HGL Modeling Report" or the "HGL Model Report"). See Joint Ex. Vol. III, Tab P. The 2011 Revised HGL Modeling Report predicts impacts of the pumping of the Wellfield on the Upper Floridan Aquifer and the Surficial Aquifer. The HGL Model is based on an adaptation of an original model first developed by the U.S. Geological Survey (USGS) and then further adapted by HGL. The adapted model is known as MODFLOW-SURFACT. The MODFLOW-SURFACT Model has been used in excess of 600 applications and is used worldwide. The HGL Model predicted impact from pumping when wellfield pumping achieves a "steady state." Steady state impact is achieved after 10-12 years of constant pumping. The impact and the area of impact is depicted on Figure 5.1b(1) of the 2011 Revised HGL Modeling Report. The predicted drawdown of the Surficial Aquifer is predicted to be six inches (0.5 ft) within the areas indicated. The Application File shows that the permit was revised twice. Ultimately, a Second Revised Notice of Proposed Agency Action dated July 22, 2011, was issued by the District. Attached to the Second Revised NOPAA is the District's Permit. See Joint Ex. Vol. IV, Tab U. A revised Staff Report from the District dated July 18, 2011, is also included in Volume IV of the joint exhibits. See id., Tab Q. The Permit as supported by the staff report allows an average daily withdrawal of 5 MGD, a maximum daily withdrawal of 30 MGD for no more than 60 days per year (with a maximum of 52 consecutive days), and a maximum monthly amount of 775 million gallons. See Joint Ex. Vol. IV, Tab U. The Permit also includes the LTEMP jointly prepared by the Applicant and the District. See id., Attachment B. The Permit requires Bay County to "mitigate any significant adverse impact caused by withdrawals . . . on the resource and legal water withdrawals and uses, and on adjacent land use, which existed at the time of the permit application." Joint Ex. Vol. IV, Tab R, p. 3 of 11. If the District receives notice of an impact from the existing legal user, it contacts the utility. "Within 72 hours [the utility has] a well contractor out there and they have determined what the problem is." Tr. 615. There are no time requirements for the resolution of the impact or any other resolution procedures in the Permit. Definitions of Emergency and Maintenance Amounts The Permit does not include a definition of when the Reservoir may be considered to be unavailable as a public water supply. That determination is left to Bay County. The Permit does not set a withdrawal limit lower than the limits detailed above for maintenance of the Wellfield. There is one set of withdrawal limits. They apply irrespective of the purpose of the withdrawals, that is, whether for backup in an emergency, maintenance, or some other purpose that falls under Public Supply or Industrial Use. Conditions and Monitoring Requirements Bay County is required to mitigate any significant adverse impacts on resources and legal water withdrawals and uses caused by the County's withdrawal from the Wellfield. In addition, the District reserves the right to curtail permitted withdrawal rates if Bay County's withdrawal causes adverse impacts on local resources and legal uses of water in existence at the time of the permit application. In the event of a declared water shortage, the Permit requires Bay County to make water withdrawal reductions ordered by the District. In addition, the District may alter, modify, or deactivate all or parts of the Permit. Attachment A to the Permit, states: The Permittee shall not exceed total, combined groundwater and surface water (authorized in Individual Water Use Permit No. 19910142) withdrawals of an average daily withdrawal of 98,000,000 gallons, a maximum daily withdrawal of 107,000,000 gallons and a maximum monthly withdrawal of 2,487,750,000 gallons. Joint Ex. Vol. IV, Tab U, p. 4 of 11. The inclusion of "surface water" in the condition covers withdrawals from the Reservoir. The combination of actual withdrawals from the Wellfield and actual withdrawals from the Reservoir, therefore, means that Bay County may not exceed the limitations of the withdrawals authorized by the 1991 Agreement. Attachment A to the Permit further explains how Bay County must mitigate harm caused by groundwater withdrawals. The Permittee, within seven days of determination or notification by the District that the authorized groundwater withdrawal is causing harm to the resources, shall cease or reduce, as directed by the District, its pumping activity. The Permittee shall retain the services of a qualified, licensed professional to investigate allegations of interference with an existing, legal groundwater use. The Permittee shall ensure their chosen contractor investigates the alleged interference within 72 hours of the allegation being made. If it is determined that the use of a well has been impaired as a result of the Permittee's operation, the Permittee shall undertake the required mitigation or some other arrangement mutually agreeable to the Permittee and the affected party. The Permittee shall be responsible for the payment of services rendered by the licensed water well contractor and/or professional geologist. The Permittee, within 30 days of any allegation of interference, shall submit a report to the District including the date of the allegation, the name and contact information of the party making the allegation, the result of the investigation made and any mitigation action undertaken. Joint Ex. Vol. IV, Tab U, Attachment A, p. 4 of 11. Bay County is also required, within two years from the Permit's issuance, to submit to the District for review and approval a contingency plan to mitigate potential impacts. The County must wait one full year prior to commencing withdrawal of groundwater for production purposes. During the one-year period, the County must complete groundwater, surface water, and wetland monitoring. The requirements of the mandatory monitoring are found in Attachment B of the Permit, LTEMP. See Joint Ex. Vol. IV, Tab U, Attachment B. The LTEMP "is designed to track trends in ecological and hydrological conditions caused by naturally occurring fluctuations in rainfall, which may affect ground and surface water hydrologic conditions; and to identify potential effects caused by wellfield pumping." Joint Ex. Vol. IV, Tab U, Attachment B at 1. If a substantive deviation occurs from predictions made by the HGL Modeling, or if any other hydrologic or ecologic changes due to the withdrawals are observed at monitoring sites, the District is required to review and, in consultation with Bay County, appropriately revise the LTEMP as necessary with the aim that the monitoring will assure that the conditions for issuance of the Permit are being met. Testimony in Support of the Application In addition to the documentary evidence offered in the first phase of the proceeding, Bay County and the District presented the testimony of several witnesses. These witnesses testified as to background and the 2008 RWSP, the vulnerability of the Reservoir to saltwater contamination from storm surge, and the basis for the District's decision. Vulnerability to Storm Surge There is a one percent chance every year of a 100- year storm event. Flood Insurance Rates Maps ("FIRMS") show that the 100-year water level (the level of storm surge in a 100-year storm event) at the Dam will reach 11 feet NAVD, two feet above the top of the gate structure above the Dam. The Federal Emergency Management Agency ("FEMA") and the National Weather Service ("NWS") have developed the Sea, Lake, and Overland Surge from Hurricanes ("SLOSH") model, which estimates storm surge depths resulting from historical, hypothetical, or predicted hurricanes. A Florida Department of Emergency Management's SLOSH model of the Panama City area shows maximum surge levels for Storm Categories 1, 2, 3, 4, and 5, in NAVD feet as 3.3, 5.8, 10.8, 14.1, and 18.1, respectively. The SLOSH model, in all likelihood, is a low estimation. It is reasonable to expect surge levels in a Category 3 hurricane that passes directly over the Dam, for example, to be higher than 10.8 feet NAVD predicted by the SLOSH model at the Dam. According to the National Oceanic and Atmospheric Administration's ("NOAA") database, 43 tropical storms and hurricanes have passed within 200 miles of the Reservoir between 1970 and 2010 and 20 have come within 100 miles. None have made landfall closer than 40 miles away from the Dam. Of the 20 storms passing within 100 miles of the Reservoir, four have reached Category 3 strength or higher: Eloise, Elena, Opal, and Dennis. In 2004, Hurricane Ivan made landfall over 100 miles to the west of the Dam and raised water levels near the Dam to nearly five feet NAVD. The following year, Hurricane Dennis made landfall 76 miles to the west of the Dam. Dennis produced a surge level of nearly four feet NAVD near the Dam. "Hurricane Eloise (1975) made landfall 40 miles west of Panama City and produced water levels 15 ft above normal at Panama City ([citation omitted]). However, the storm passed through the area quickly and does not appear to have significantly affected the dam." Bay County Ex. 1, p. 3 of 9. Hurricane Opal made landfall 86 miles west of Panama City Beach and produced water levels of about 8.3 feet NAVD near the Dam. The storm surge did not overtop the gate structure above the Dam, but the gates were jammed by debris. "[C]hloride levels rose above 50 ppm at the intake pumps and two to three times above normal background levels of 8 to 10 ppm 'almost one mile up-reservoir.'" Id. The levels of chloride were "still well within drinking water limits," tr. 434, of 250 parts-per- million (ppm). Hurricane Katrina made landfall in 2005 more than 200 miles west of the Reservoir with storm surges higher than 20 feet. Katrina produced surge levels of five feet above normal tide levels in Bay County. The rate and amount of saltwater that would enter the Reservoir depends on the height of the storm surge above the Dam. The 100-year surge levels could remain above the top of the Dam for three or more hours. Such an event would introduce approximately 56,200,000 cubic feet or 1,290 acre-feet of saltwater into the Reservoir, even if the Dam were to remain intact (undamaged) and the tide gates remain closed. The salinity levels bay-side of the dam are generally 23,000 to 33,000 ppm. It is reasonable to expect that in the event of a 100-year storm event, much of the storm surge would come directly from the Gulf of Mexico, which has higher salinity levels. With the Dam intact, the introduction of 1,290 acre- feet of saltwater at 33,000 ppm would raise the average chloride concentration in the Reservoir to at least 800 ppm, more than three times the maximum drinking water chloride level of 250 ppm. Assuming the Dam remained intact during a 100-year storm event, freshwater added over time to the lake from the streams and aquifer will dilute the elevated lake chloride level and restore the lake water to a level fit for human consumption. The USGS has measured stream flow at Deer Point Lake and estimated the lake receives an average of 600 million gallons of freshwater per day or 900 cfs. Post-Opal rates were estimated at 1,500 cfs by the District. Given the estimated volume of saltwater introduced to the lake, at an inflow rate equal to the estimated post- hurricane freshwater inflow rate, Bay County's expert, Dr. Miller, estimated it would take at least two weeks to reduce salinity in the lake to drinkable levels. The inflow rate, however, is not certain. Dr. Miller estimated it is reasonable to expect that it could take anywhere from two weeks to two months for the lake to recover from the saltwater intrusion depending on the variation in the inflow rate. Nonetheless, Dr. Miller assumed that the saltwater from storm surge entering the Reservoir would mix in a uniform matter. There would be "quite a bit of mixing in a storm," tr. 485, of saltwater topping the Dam and freshwater in the Dam. But there would also be stratification due to the sinking of denser saltwater and the rising in the water column of freshwater. The above estimations assume the bridge and Dam remain intact during a major storm. The Dam and tide gates act as a solid barrier, protecting the lake from saltwater in the bay. If rainfall rises in the lake prior to a surge, the tide gates would open to release water, becoming vulnerable to damage or jamming by debris as occurred during Hurricane Opal. In the event of storm surge bringing saltwater into the Reservoir, the opening of the tide gates will assist the Reservoir in reaching chloride levels below 250 ppm provided the tide gates operate properly. Dr. Janicki, an NTC/Knight expert, used the Environmental Fluid Dynamics Code hydrodynamic model ("EFDC Model") to simulate the effects of control structures and water withdrawals on the Reservoir. Taking into consideration the factors Dr. Janicki considered relevant, he predicted that chloride levels, in the event of storm surge from a Category 3 hurricane overtopping the Dam, would only exceed 250 ppm, the drinking water standard, for approximately 3.4 days. Dr. Janicki's prediction, however, was flawed. He added too little saltwater to the lake in the event of contamination from storm surge. He assumed that saltwater would be flushed too soon from the Reservoir following contamination. He did not account for the effects of waves in his model. His model was not in accord with data for Hurricane Opal and the chloride levels near the Dam taken by Bay County after Opal. If the bridge and Dam were severely damaged, more saltwater could enter the lake. With severe damage to the Dam, the Reservoir would be exposed to normal tides. Restoration would not begin until the Dam and bridge had been fully repaired. If an event were catastrophic, the Reservoir could be offline for a lengthy period of time. The Basis for the District's Decision Bay County's reliance on the Reservoir for water for the majority of the population led the District in the mid-1980s to encourage the County to obtain a backup supply. After the District turned down several requests for withdrawals of up to 30 MGD for every day of the year, the District ultimately approved what is reflected in the Permit. The justification for the permitted withdrawal is as a backup supply in the event the Reservoir becomes unavailable and for maintenance of the system and recoupment of its cost. With regard to maintenance, the District attempted to obtain information from Bay County as to appropriate withdrawal limitations. The attempts were abandoned. Despite repeated requests by the District, Bay County did not provide the amount of water needed to be withdrawn for maintenance since it did not have "infrastructure specifics," tr. 552, needed to provide the District with a numeric limit. In contrast to the amount needed for maintenance, the District found Bay County to have demonstrated that it needs 30 MGD when the Reservoir is offline and that it is reasonable for the County to need 30 MGD up to 60 days per year. The District determined that the Bay County's application met the requirements for the issuance of a consumptive use permit found in section 373.221(1)(a)-(c). In determining whether approval of the application is in the public interest, the District did not presume that it is in the public interest on the basis of the designation in the 2008 RWSP of an inland groundwater source as an alternative water supply. The District determined that it is in the public's interest for Bay County to have a reliable and safe water supply source as a backup to the Reservoir irrespective of the statutory presumption. Nonetheless, the District maintains in this proceeding that the presumption applies. The District also applied the 18 criteria test for finding a reasonable-beneficial use found in Florida Administrative Code Rule 62-40.410(a)-(r) and determined that the application should be approved. Petitioners' Case in Opposition Washington County (Petitioner in Case No. 10-2983), NTC/Knight (Petitioner in Case No. 10-2984), and Messrs. Murfee and Lapensohn (Petitioners in Case No. 10-10100) filed individual petitions for formal administrative hearing. Although not identical, the petitions share the similarity that, in essence, each alleges that Bay County failed to establish that the proposed use of water meets the statutory and rule criteria for obtaining a permit for the consumptive use of water. For example, among the many issues listed under the heading "Disputed Issues of Material Fact and Law" in Washington County's Petition for Formal Administrative Hearing is "[w]hether Bay County has provided reasonable assurance that its proposed use of water is a reasonable-beneficial use as defined in section 373.019, Florida Statutes." See p. 5 of the Washington County petition. In like fashion, the Washington County petition and the other two petitions allege that the issues are whether Bay County provided reasonable assurance that it meets the other statutory criteria in section 373.223, and the applicable rule criteria that must be met by an applicant in order for the District to issue a permit for the consumptive use of water. The Petitioners' cases focused on five topics: 1) the limitations of the HGL Model; 2) the likelihood of impacts to wetlands and the failure of the monitoring plan to provide reasonable assurance that the District's monitoring under the plan will succeed in detecting harm to wetlands caused by the withdrawals; 3) the reasonable-beneficial nature of the proposed use of the permit, including the vulnerability of the Reservoir; 4) interference with presently existing legal users; and 5) the feasibility of alternative sources. Bay County and the District offered evidence on rebuttal to meet the Petitioners' cases. Surrebuttal was conducted by Petitioners. Modeling Groundwater models "represent what is happening in very complex physical systems." Tr. 1495. Typically, the data used by models is not sufficient to obtain a completely accurate representation. The models depend on specific data points such as information from boreholes or water level measurements that do not reveal everything that is occurring in the complex system and, therefore, are not enough to support completely accurate model predictions. As explained by Dr. Guvanasen, Bay County and the District's expert, in order to reach a representation of the entire system when the data available from boreholes and measurements is insufficient, which is typically the case, the modeler must "extrapolate a lot of information and use other knowledge of other events." Id. The "knowledge of other events" that the HGL Model used included Dr. Scott's knowledge of the karst environment in the Panhandle of Florida, the mapping of Bay and Washington County geology by the Florida Geological Society, and Dr. Upchurch's knowledge of karst topography. The HGL results of the available data and the extrapolations were placed into a mathematical model (the HGL Model) that considered the withdrawals at issue to determine the response of the system to the additional stress of the withdrawals. Mathematical models like the HGL Model lead to "non- unique solutions" in which "no model . . . is exactly 100 percent correct . . . ." Tr. 1635. Modeling results, therefore, are subject to changes as additional data is collected that demand a better representation than the model provided prior to the data's collection and analysis. HGL Modeling for this case provides examples of non- unique solutions. HGL "built a model twice . . . and got two different sets of answers." Tr. 1633. Besides the recommendation that more data be obtained after the first HGL Model results, the model was not satisfactorily calibrated and the model was recalibrated for the Revised HGL Modeling results. Mr. Davis, NTC/Knight's expert, conducted additional modeling work (the "Davis Modeling"). Using the HGL Model and additional data concerning the NTC/Knight Property, Mr. Davis found drawdowns would occur over a similar but greater area than shown in the 2011 Revised HGL Modeling Report. (Compare NTC/Knight Ex. 31 at 2 to Joint Ex. Vol. III, Tab P, Figure 51b(1).) The Davis Modeling drawdowns, moreover, ranged up to 0.8 feet, 60 percent more than the 0.5 feet determined by the second HGL Modeling results. In the area of Big Blue Lake, for example, the drawdown contours produced by the Davis Model were either 0.6 feet or 0.7 feet, 20 to 40 percent more than the 0.5 feet produced by the second HGL Modeling results. See NTC/Knight Ex. 31 at 2. Asked to rank the modeling results between the first HGL Model run, the second HGL Model run, and his own results, Mr. Davis was unable to say which was better because of the sparseness of the data. Mr. Davis opined that he could conduct another "dozen more model runs," but without additional data he would be "hard pressed" to be able to say which run was more accurate. Tr. 1633. In Mr. Davis' opinion there remain significant uncertainties that cannot be resolved without more data. Inadequate data "precludes . . . reasonable assurance as to exactly where the impacts will travel and exactly what the magnitude of those impacts will be . . . ." Tr. 1637. Ecological Impacts Bruce A. Pruitt, Ph.D., was accepted as an expert in hydrology, soil science, fluvial geomorphology, and wetland sciences. Dr. Pruitt mapped the soil types on the NTC/Knight Property using the Natural Resource Conservation Service ("NRCS") Web Soil Survey and tested soil types by hand-auguring in wetland areas. He characterized the various soil-types on the property by drainage class (relative wetness of the soil under natural conditions) and hydraulic conductivity (permeability). Dr. Pruitt ranked the vulnerability of wetlands within the zone of drawdown predicted by the HGL Model as "very high," "high," or "moderate." The categories were based on the presence of threatened and endangered species, Florida Natural Area Inventor ("FNAI") habitat designation, and the hydrology of the wetland. He assumed that if the water level in the Surficial Aquifer were to be drawn down by 0.3 feet or 0.4 feet then the water level in the seepage bogs at Botheration Creek would be drawn down by the same amount. Wetlands with a vulnerability classification of "very high" will suffer an adverse impact at a drawdown level of 0.2 feet; those at "high" at 0.3 feet and those at "moderate" at 0.5 feet in times of drought. Dr. Pruitt calculated wetland acreage by type using the Florida Cover Classification System. He assigned vulnerability rating for the wetlands within the Surficial Aquifer drawdown contours generated by the HGL Model. Based on Dr. Pruitt's calculations, a total of approximately 4,200 acres of wetlands are likely to be harmed by the predicted drawdown. A majority of these wetlands are located in Washington County. Based on Dr. Pruitt's analysis, it is likely that the NTC/Knight Property contains 1,981 acres of "very highly" vulnerable wetlands; 1,895 acres of "highly" vulnerable wetlands; and 390 acres of "moderately" vulnerable wetlands, which are likely to be harmed by the drawdown in times of drought. In reaching his opinion about the quantification of acres of wetlands likely to be harmed, Dr. Pruitt applied the Florida Uniform Mitigation Assessment Method ("UMAM"). UMAM was designed to address compensatory mitigation in dredge and fill cases. It was not designed for consumptive water use cases. In contrast and damaging to its case of reasonable assurance that natural systems will not be significantly affected, the District did not conduct an analysis to determine loss of wetland function resulting from operation under the Permit. Nor did it determine how much drawdown the affected wetlands could tolerate before they were harmed. Rather than conducting such an analysis, the District chose to rely on implementation of the LTEMP to cure any harm that might be down by drawdown to the Surficial Aquifer. The District and Bay County's wetland scientists opined that there might be a less permeable restrictive layer maintaining water levels above the Surficial Aquifer on the NTC/Knight Property. Dr. Pruitt acknowledged that the NTC/Knight Property had scattered clay layers beneath the surface. It is possible, therefore, that some of the wetland areas he identified as subject to harm have restrictive features under them which would hold water and resist dehydration. In his hand-auguring, however, Dr. Pruitt found no evidence of a less permeable layer. The auguring only went to a depth of three feet and would have to go to a depth of two meters to be definitive. Furthermore, Dr. Pruitt found no evidence of a less permeable layer from well drillings. The District and Bay County did not prove that there is, in fact, such a restrictive layer. NTC/Knight collected water-level data from shallow hand-augured wells and stage recorders at the Botheration Creek Hillside Seepage Bog. The data demonstrate that the water level in the shallow, hand-augured wells at the Botheration Creek Bog is a direct reflection of the level of the Surficial Aquifer. The Surficial Aquifer at the Botheration Creek Bog was approximately 95.5 feet NAVD, over 35 feet higher than at Big Blue Lake and the highest measured level south of Big Blue Lake. The Botheration Creek Hillside Seepage Bog is located between the 0.3 and 0.4 foot Surficial Aquifer drawdown contours predicted by the HGL Model. Based on the HGL Model, the District and Bay County's experts estimated the Surficial Aquifer drawdown at this bog would be 0.39 feet. During the approximately one year of NTC/Knight's water-level recording, a drawdown of 0.39 feet would have reduced the frequency and duration of inundation at this bog significantly. For example, an analysis of the approximately one year of data collected by NTC/Knight shows that at the intermediate water-level recorder location in the bog, one 29-day period of inundation would have been reduced to just nine days and that further down gradient in the bog, none of the five instances when the bog was inundated would have occurred. This is consistent with Dr. Pruitt's vulnerability assessment, which finds that the vulnerability of the hillside seepage bogs to drawdown is "very high," that is, these systems are likely to be harmed in times of drought at drawdown levels in the Surficial Aquifer of 0.2 feet or greater. A drawdown of 0.3-0.4 feet in the Surficial Aquifer at the hillside seepage bog along Botheration Creek increases the likelihood that the hillside seepage bogs along Botheration Creek will be lost in times of drought. The littoral shelves of Sand Hill Lakes typically occur along a low gradient above the normal low water level of the lakes. The existence of the shelf promotes seepage sheet flow along a wide expanse. The drawdown will change the flow from seepage sheet flow to concentrated stream flow within gullies. The erosion and increased sedimentation produced by the greater force of the water in the gullies will cause a loss of area needed by certain seepage dependent plants and animals. If Big Blue Lake were to be drawn down by the 0.71 feet predicted by Mr. Davis, the location of the seepage would move down 0.71 feet vertically and an estimated 24.5 feet horizontally. The result would be a reduction in the littoral shelf conducive to seepage-dependent plant communities by approximately nine acres. The impact would likely be significant since the seepage zone is in an area of "very high" vulnerability according to Dr. Pruitt. Between October 2010 and July 2011, NTC/Knight took four measurements of water level at "BCS-01," a stage recorder in Botheration Creek. The measurements showed the water level in the creek at that point to be 0.1 to 0.32 feet. NTC/Knight also sampled for taxa of macroinvertebrates in the reach of the creek. NTC/Knight identified 46 taxa, including mussels and six long-lived taxa. The presence of the long-lived taxa and mussels indicate that the reach of the creek in the vicinity of the stage recorder should be considered to be a perennial stream. Botheration Creek is high-quality water and, as shown by NTC/Knight's sampling, it contains a diverse mix of aquatic invertebrates and fish. A drop in the level of Botheration Creek of 0.2 feet predicted by the HGL Model would have caused the creek to go dry at BCA-01 during three of the four dates on which the water level was measured. Such a drop would convert the reach of the creek in the vicinity of the stage recorder from a perennial to an intermittent stream and would eliminate the reach's viability for long-lived taxa. Similarly, upstream reaches that are intermittent would become ephemeral (streams that flow only during periods of high rainfall). If the Wellfield becomes fully operational as allowed by the Permit, there will be a reduction in the Surficial Aquifer at Botheration Creek of between 0.2 and 0.3 feet. The reduction in the aquifer will reduce flow in Botheration Creek, reduce the volume downstream, including in Pine Log Creek, and reduce out-of-bank flood frequency and duration. The result will be a reduction in nutrients delivered downstream and to the floodplain to the detriment of plants and animal life that depend on them. Additionally, other reaches of the creek that have perennial flow will be converted to intermittent streams and reaches that are intermittent will become ephemeral. The result will be the elimination of plant and animal species currently living in these portions of the creek. The impact of the HGL Model predicted drawdown to steepheads depends on the individual steephead and the drawdown contour at its location and the amount of rainfall. Four steepheads on the NTC/Knight Property could suffer impacts similar to the impact at Russ Steephead to which Dr. Pruitt assigned a high probability of impact. Russ Steephead is located on the NTC/Knight Property above Russ Pond. NTC/Knight installed Surficial Aquifer wells at Russ Steephead between the HGL Model's predicted 0.5 and 0.6 foot Surficial Aquifer drawdown contours. NTC/Knight also installed a stage recorder just downstream from the steephead. During drought, NTC/Knight observed a loss of flow from the sidewall seepage areas and in the Russ Steephead Stream. If the Surficial Aquifer at Russ Pond were to be drawn down by 0.5-0.6 feet, the sidewalls of the Russ Steephead Stream and the stream itself would lose flow in times of drought. The loss of flow would lead to oxidation and loss of organic materials in the stream channel and flood plain, resulting in soil subsidence. If the water level at the terminus of the Russ Steephead Stream were drawn down, headward down cutting in the stream channel would be induced. In such a case, in the words of Dr. Pruitt, "there is a high probability that if drawdown occurs and . . . over a long period of time," the process will make the steephead "look more like a gully . . . ." Tr. 2120. The drawdown will also reduce the frequency and duration of inundation of the sphagnum bogs in the four steepheads likely to be affected by the drawdown. The bogs and the associated animals that depend upon them would be lost. Dr. Means identified a number of temporary ponds within HGL's predicted drawdown of the Surficial Aquifer. Nine were between the 0.3 and 0.6 foot drawdown contour, and two were between the 0.6 and 0.7 foot drawdown contours. These ponds and plant and animal communities dependent upon them would likely be harmed by the drawdowns. Mr. Cantrell offered testimony to rebut the Petitioners' case on wetland impacts. His testimony was based on an evaluation of aerial photography, site visits to the Wellfield, and a one-day trip to the NTC/Knight Property. It is Mr. Cantrell's opinion that if the NTC/Knight Property were to drain, it would be because of a surface water drainage system, such as ditching, not because of drawdown in the Surficial Aquifer caused by operation of the Wellfield. Mr. Cantrell's opinion is that because the Area has been subjected to a wide range of fluctuations in water levels and the wetland systems have survived, operation of the Wellfield will not have significant impacts. Mr. Cantrell's opinion, however, overlooks the effect of constant drawdown during times of severe drought. That wetlands have survived severe drought in the past does not mean they will survive severe drought conditions exacerbated by drawdown caused by operation of the Wellfield. Monitoring Special condition 19 of the Permit requires Bay County to implement the LTEMP after the Permit is issued. The LTEMP requires Bay County to establish a monitoring network, but does not provide the location of any particular monitoring site. Sites identified in the LTEMP are recommended, but the ability to use a particular site is dependent on field verification of suitability and authorization by the landowner. Over half the area designated in the LTEMP from the HGL Model's projected 0.5 foot drawdown in the Surficial Aquifer is located on the NTC/Knight Property. It will be necessary, therefore, to include sites on the NTC/Knight Property in the ultimate environmental monitoring network. The LTEMP's recommended sites do not include monitoring of some of the most susceptible wetland systems: temporary ponds, the Botheration Creek hillside seepage bogs, and the perennial headwaters of Botheration Creek. Without this monitoring, the LTEMP will be unable to detect whether these systems are harmed by withdrawals. The Permit and LTEMP require no more than one-year of baseline data to be collected prior to initiation of water withdrawals. The proposed monitoring time is inadequate to create a sufficient record for use in determining whether a reduction in water levels is attributable to water withdrawals or natural phenomena, such as drought. Baseline monitoring should be conducted for a sufficient duration to ensure that a full range of wet and dry years is captured. The LTEMP describes the types of data that are to be collected. A missing component is sampling for frogs, salamanders, and other amphibians that are sensitive to changes in hydrologic regimes and which depend upon infrequent periods of inundation in order to breed. This type of faunal sampling is particularly important in the temporary ponds and seepage environments. Without sampling for the presence of these species, the LTEMP will be unable to determine whether these populations have been harmed by withdrawals. The LTEMP includes a number of "triggers," that if tripped, require the preparation of an auxiliary report. A number of these triggers make reference to changes in water levels at the level of "significant deviation," an undefined term. More importantly, the LTEMP fails to require any statistical analysis. Without it, the LTEMP will be inadequate to establish whether a reduction in water levels is caused by water withdrawals or another cause. Similarly, other triggers lack sufficient detail to determine when they are tripped, such as those that refer to downward movement of plants. Finally, even if one of these triggers is tripped and an auxiliary report is prepared, nothing in the Permit or LTEMP sets forth the circumstances under which withdrawals would need to be curtailed and by what amount. The purpose of the LTEMP is to determine whether withdrawals are causing harm to the wetlands within the vicinity of the Wellfield. The LTEMP fails to provide reasonable assurance that it will succeed in achieving its purpose. Reasonable-Beneficial Use Use if the Reservoir is Unavailable In the event of Reservoir unavailability, Bay County is likely to need much less than 30 MGD. The need is likely to fall between 7.42 MGD and 9.71 MGD for the current population. In 2013, the need is likely to fall between 9.40 MGD and 12.29 MGD. See NTC/Knight Ex. 5, p. 4 of 4. The Permit, however, does not limit Bay County to emergency or backup use. While Bay County might voluntarily limit withdrawals to emergency use or backup supply, it has unfettered discretion to determine what constitutes an emergency or the necessity for a backup supply. The Permit is also not restricted to essential uses. Authorization of 30 MGD provides more than Bay County's current average daily demand for potable water. If the Permit restricted the use to essential uses, the authorization would be far less than 30 MDG. The District commissioned King Engineering to assist in development of a "Coastal Water Systems Interconnect Project" (the "Interconnect Project"). On average, the utilities subject to the Interconnect Project estimated that 42 percent of the average daily demand is dedicated to essential uses with the remaining 58 percent going to non-essential uses. Consistent with the estimate, the Project set a target of 50 percent of average daily demand to be allowed for use in an emergency. None of the information from the Interconnect Project, however, was used by the District in setting the limits of withdrawal in the Permit. b. Daily Use Bay County claims the 5 MGD annual average allocation under the Permit is needed for several reasons, principally the maintenance of pumps. Bay County's justification for 5 MGD is found in testimony from Mr. Lackemacher and a document he authored entitled, "Confidential Draft for Internal Use Only 5 MGD Pumping Rate" (the "Lackemacher Confidential Draft"), admitted as Bay County Ex. 24. Mr. Lackemacher's testimony follows: A. The fact is that there are no absolute knowns when we're talking about what needs to be. Q. What do you mean? A. Well, here we have a document [Bay County Ex. 24] where I talk about rationalization for 5 million gallons a day, why we would need it, mechanical reasons, financial reasons, regulatory reasons. I always felt that it was very difficult to justify a number. I don't know. We haven't designed the system. We haven't got all of the wells in. We don't know what their specific yields are. There's unknowns here. So do we need 2 million gallons a day or 5 million gallons a day? I don't know. I don't know that. But here is the rationalization for 5 million if that's in fact what we need. We may very well find out that we don't need 5 million gallons a day. Q. Is that because you don't know the precise locations of the well and how they're going to be piped and distributed? A. That's absolutely true. Q. Well, did you in this report, Exhibit 24, did you make some reasonable assumptions? A. I based it on some of the values as you discussed or as I pointed out earlier from Hatch Mott MacDonald's preliminary design. * * * Q. And do you feel confident that your analysis supported that in the area of 5 million gallons a day is what would be needed to operate the wellfield? A. Yes. And that's why the paper was generated that [is] a justification for 5 million gallons a day, here's what we think we would need. Tr. 209-10. The Lackemacher Confidential Draft is a one-page, written justification for the 5 MGD. Based on the Hatch Mott McDonald Report, see tr. 210, it considers regulatory, mechanical and financial factors. It is not supported, however, by engineering analysis. Any financial analysis found in the Hatch Mott McDonald Report, moreover, is far from complete. The factors taken into consideration are recited in the most general of terms. For example, of four such factors, the document lists the second as: "All water pumps are designed to run - turning pumps on and off is not the best situation for the overall electrical efficiency or the mechanicals of a pump." Bay County Ex. 24. Consistent with Mr. Lackemacher's testimony, the document concludes that the amount of water needed to run each well is unknown. The financial justification is based on costs shown in the Hatch Mott MacDonald Report for construction and operation of 22 wells, ten more wells than are contained in the Wellfield and without any analysis of revenue to recoup the costs. The financial justification is a bare conclusion on the part of Mr. Lackemacher: We cannot afford to operate a well field at a financial loss, based on this fact alone we would have to pump a minimum of 4.49 MGD. Combined with the fact that we don't know what volumes of water have to be turned over to ensure water quality 5 MGD seems quite reasonable. Bay County Ex. 24. The Lackemacher Confidential Draft is dated May 17, 2011. It was not part of Bay County's Application nor was it submitted to the District prior to the decision to issue the Permit. Although the District attempted to obtain information from Bay County about what was needed for maintenance, Bay County did not provide it. As Mr. Gowans testified, "[t]hen I finally told staff, [s]top asking, we're not going to get the numbers . . . ." Tr. 552. The District performed no analysis to determine the minimum amount of water needed to maintain the Wellfield. In contrast, NTC/Knight and Washington County presented the testimony of Phillip Waller, an engineer accepted as an expert in the design and construction of potable water systems, including groundwater wells, surface water, and transmission and distribution of drinking water. Mr. Waller testified that if the wells were connected to a central treatment system, there would not be the need to flush the pipeline for disinfection prior to use of the well in an emergency. Only 2.4 million gallons per year or 6,500 gallons per day would be needed to maintain optimum operating conditions, an amount far less than 5 MGD. Mr. Waller's experience when groundwater is used as a backup, moreover, is that they are operated periodically. While prudent to periodically operate backup wells especially in advance of hurricane season, vertical pumps in wells, unlike horizontal pumps, do not have a need for frequent operation because of even force distribution. They certainly do not need to be continuously operated. "In fact, wells routinely are idle for months at a time." Tr. 1123. Interference with Existing Legal Users In its Revised Staff Report dated July 18, 2011, the District wrote: Nearby Users: Under the most intensive pumping activity, drawdown in the Upper Floridan Aquifer is predicted to be approximately 15 feet in the vicinity of the nearest private wells. Water level declines of this magnitude may cause water levels to fall below the level of the pump intake in some privately-owned wells. Joint Ex. Vol. IV, Tab Q, p. 4. The District's high estimate of the number of wells used by existing legal users that might suffer impacts approaches 900. The exact number or whether any existing legal users would be likely to suffer impacts was not proven. Alternatives Groundwater wells, if installed and attached to the fitting in the existing transmission line that delivers water from the Pump Station to the Water Treatment Plant, could serve as backup to the Reservoir. Bay County did not conduct a study of whether groundwater in the area of the transmission line was adequate to serve as an alternative. Mr. Waller, on behalf of NTC/Knight and Washington County, on the other hand, testified that the transmission line could support ten wells with a capacity of 10 MGD and could be constructed at a cost of $12 million, far less than the Wellfield. The area of the transmission line is in an area identified by the District as acceptable for the creation of potable water wells. The area does not present a significant risk of saltwater intrusion if not used continuously. The water meets the drinking water requirements for the Department of Environmental Protection and the Department of Health. The existing transmission line alternative is located near the existing raw water supply line which minimizes the need for additional piping. There is sufficient length along the existing raw water pipeline to accommodate ten wells. The existing transmission line alternative, therefore, has significant potential to succeed as a water supply backup to the Reservoir. NTC/Knight and Washington County, through Mr. Waller, also proposed another alternative: an intake at Bayou George. Near Highway 231, the main pipeline from the intake would run along public right-of-way. North of the existing intake in Williams Bayou and three miles north of the Dam, the proposed intake would be less susceptible to contamination from storm surge. Neither Bay County nor the District presented a thorough analysis of any alternative to the Wellfield. In contrast, NTC/Knight and Washington County presented the testimony of Mr. Waller that there are two alternatives that could be constructed at much less cost than the Wellfield and that have significant potential of providing backup supply.
Recommendation Based upon the foregoing Findings of Fact and Conclusions of Law, it is RECOMMENDED that the Northwest Florida Water Management District enter a final order that denies the application of Bay County for the individual water use permit at issue in this proceeding. DONE AND ENTERED this 26th day of July, 2012, in Tallahassee, Leon County, Florida. S DAVID M. MALONEY Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 26th day of July, 2012.
The Issue The issue is whether Respondent HBJ Investments, Inc. is entitled to an environmental resource permit to facilitate the construction of the Betty Jones Spa on property adjacent to property owned by Petitioner.
Findings Of Fact On November 17, 1998, Respondent HBJ Investments, Inc. (Applicant) filed an application (Application) with the South Florida Water Management District (District) for an environmental resource permit (ERP). The Application is for a Standard General (minor systems) ERP. The Application states that the proposed surface water management system is to serve a 11,564 square foot health spa with associated infrastructure improvements, such as parking, utilities, landscaping, and a stormwater detention facility. Section H of the Application responds to form questions that are intended to determine whether an application meets the requirements of a standard general ERP for a minor surface water system. Among the threshold requirements is that the proposed discharges from the site "will meet State water quality standards, and the surface water management system will meet the applicable technical criteria for stormwater management in the Basis of Review." Another threshold requirement is that the proposed activities will not cause significant adverse impacts individually or cumulatively. The Application states that the water quality treatment system will be on-line detention with effluent filtration. The Application and related documents describe the system in greater detail. The system consists of drains, inlets, a swale, an underground vault to provide effluent filtration through a sand filter and perforated pipe, an internal oil and grease skimmer, a control box, and a 15-inch diameter reinforced concrete pipe providing outfall from the vault. By Notice of Final Agency Action for Approval dated February 4, 1999, the District proposed the issuance of a "Standard General for Minor Surface Water Management Systems" ERP for the construction, operation, and maintenance of the proposed system (Permit). Permit Specific Condition 2 requires: "The discharges from this system shall meet state water quality standards as set forth in Chapter 62-302 and Rule 62-4.242, F.A.C., for class waters equivalent to the receiving waters." Permit Specific Condition 8 requires, for vault systems, that the system become dry within 72 hours after a rainfall event. Permit Specific Condition 9 requires the operation and maintenance entity to submit inspection reports for inspections to be performed every 18 months. Permit Specific Condition 10 requires a water quality monitoring program for systems, such as the proposed system, using an internal oil and grease skimmer. This condition obligates HBJ to take three samples during each of the first two annual rainy seasons following the commencement of operation of the system. The monitoring must take place immediately after rainfall events of sufficient magnitude to cause a discharge from the outfall structure. If the discharged water does not meet water quality standards for oil and grease, as established by Rule 62.302.510(3)(k), Florida Administrative Code, then the permittee must alter the system to attain compliance for this water quality parameter. The subject parcel is bounded by Fourth Avenue South on the north, First Street South on the east, Second Street South on the west, and an unnamed alley on the south. This site is just south of Al Lang Field. In its present state, the parcel is nearly entirely pervious surface. Some of the stormwater flowing onto the parcel percolates into the soils, and the remainder flows into City of Saint Petersburg stormwater sewers, from which it is carried about two city blocks to Tampa Bay, where it is discharged. The parcel was formerly used for single-family residential housing, but is now mostly cleared. The runoff from the site presently carries mostly sediments. After the proposed construction, 79 percent of the parcel would consist of impervious surface. Although small areas of the developed parcel might remain vegetated, and thus add nutrients into the runoff, the primary change in the runoff will consist of the addition of automobile-related contaminants, including, but not limited to, oil and grease. HBJ's engineer designed the proposed surface water management system to treat the first one-half inch of stormwater runoff. The engineer's report notes, in a letter dated November 13, 1998, that siltation in the vault reduces storage volume, so it is "required that cleaning be done every six (6) months." The report suggests the removal of grass clippings from the parking area, so that they are not transported to the retention vault. The report suggests that the underdrain system should be backflushed periodically, and the control structure should be checked monthly and all debris cleared. In general, the system would collect runoff from the roof downspouts and parking area. The system would provide treatment of the first 1/2 inch of runoff by capturing it in the vault, where it would filter through a layer of several cubic feet of sand before entering a perforated pipe leading to the City stormwater sewer. Runoff from rainfall in excess of the first 1/2 inch would receive little, if any, treatment. It is implicit that the first 1/2 inch of rainfall contains the first flush of contaminants from impervious surfaces. Nothing in the record specifies the efficacy of treatment provided by this standard, although it obviously is less than 100 percent efficient because of the higher standard imposed upon systems discharging into Outstanding Florida Waters (OFW). However, a pre- and post-development analysis of the runoff from the subject parcel would reveal an unknown additional volume of runoff from the developed site, due to the replacement of pervious surface with impervious surface. It is unclear whether the developed site would generate a reduced volume of sediments in this increased volume of runoff. Although little vegetated surface would exist post-development, the record does not reveal the extent to which the pre-development pervious area fails to capture the sediments prior to their entering the City stormwater system. More problematic are the automobile-related contaminants, such as oil and grease, that will be introduced into the runoff by the developed site. Presumably, the runoff from the undeveloped site contains few, if any, such contaminants. Thus, any automobile-related contaminants discharged from the surface water management system would likely be an increase from the amount of such contaminants presently discharged from the site. The runoff from the developed site would enter the City of Saint Petersburg stormwater sewer system and would be released in the nearby Tampa Bay. The record does not disclose the stormwater sewer line transporting the discharge, nor the outfall of the line into Tampa Bay. By stipulation, the parties agreed that Tampa Bay is an OFW and that discharge from the developed site would enter the City of Saint Petersburg stormwater sewer system. Tampa Bay is classified as Class II waters, which are approved for shellfish harvesting. The record does not disclose the point of discharge of the City stormwater line that would receive discharge from the developed site. However, the proximity of the site to Tampa Bay strongly suggests that the outfall would be in Tampa Bay, and it is only slightly less probable that the outfall would be at a point in the bay in the immediate vicinity of the site. The record suggests that the waters of Tampa Bay likely to receive the discharge from the site are impaired. For example, water quality conditions mandated the closing of "Lower Tampa Bay" to shellfish harvesting, for an unstated period of time, effective at sunset on July 5, 1999. Also, the Department of Environmental Protection listed two bayous in the immediate vicinity of the site as noncompliant with federal water quality standards due to excessive coliform bacteria counts and nutrients and insufficient levels of dissolved oxygen. The Basis of Review (BOR) is a document adopted by the District. It contains specific "criteria" for permitting. However, as BOR Section 1.3 explains, the goal of these criteria is to meet District water resource objectives, and the criteria are "flexible." Alternative methods of meeting "overall objectives" may be acceptable, depending upon the "magnitude of specific or cumulative impacts." The criteria, which are flexible, are the means by which the District assures that it meets its objectives, which are not flexible. BOR Section 3.1.0 recognizes that "a wide array of biological, physical and chemical factors affect the functioning of any wetland or other surface water community. Maintenance of water quality standards in applicable wetlands and other surface waters is critical to their ability to provide many of these functions." BOR Section 3.1.0 elaborates: "It is the intent of the Governing Board [of the District] that the criteria in subsections 3.2 through 3.2.8 be implemented in a manner which achieves a programmatic goal and a project permitting goal of no net loss of wetlands or other surface water functions." BOR Section 3.1.1 requires that an applicant provide "reasonable assurance" of several things. BOR Section 3.1.1(a) requires that "a regulated activity will not adversely impact the value of functions provided to fish, wildlife and listed species, including aquatic and wetland dependent species, by wetlands and other surface waters and other water related resources of the District. (paragraph 40D-4.301(1)(d), F.A.C.) (see subsection 3.2.2)." BOR Section 3.1.1(c) provides that: a regulated activity will not adversely affect the quality of receiving waters such that the water quality standards set forth in Chapters 62-3, 62-4, 62-302, 62-520, 62-522 and 62-550, F.A.C., including any antidegradation provisions of Sections 62-4.242(1)(a) and (b), 62-4.242(2) and (3), and 62-302.300 and any special standards for Outstanding Florida Waters . . . set forth in sections 62-4.242(2) and (3), F.A.C., will be violated (paragraph 40D-4.301(1)(e), F.A.C.). BOR Section 3.1.1(d) provides that "a regulated activity . . . located in close proximity to Class II waters . . . will comply with the additional criteria in subsection 3.2.5 (paragraph 40D-4.302(1)(c), F.A.C.)." BOR Section 3.1.l(f) provides that "a regulated activity will not cause adverse secondary impacts to the water resources (paragraph 40D-4.301(1)(f), F.A.C.) (see subsection 3.2.7)." BOR Section 3.1.1(g) provides that "a regulated activity will not cause adverse cumulative impacts upon wetlands and other surface waters . . . (paragraph 40D-4.302(1)(b), F.A.C.) (see subsection 3.2.8)." BOR Section 3.2.4 provides that an applicant must provide "reasonable assurance that the regulated activity will not violate water quality standards in areas where water quality standards apply. . . . The following requirements are in addition to the water quality requirements found in Chapter 5." BOR Section 3.2.4.2(c) provides that the applicant must address the long-term water quality impacts of a proposed system, including "prevention of any discharge or release of pollutants from the system that will cause water quality standards to be violated." BOR Section 3.2.5 provides: The special value and importance of shellfish harvesting waters to Florida's economy as existing or potential sites of commercial and recreational shellfish harvesting and as a nursery area for fish and shell fish is recognized by the District. In accordance with section 3.1.1.(d), the District shall: (b) deny a permit for a regulated activity in any class of waters where the location of the system is adjacent or in close proximity to Class II waters, unless the applicant submits a plan or proposes a procedure which demonstrates that the regulated activity will not have a negative effect on the Class II waters and will not result in violations of water quality standards in the Class II waters. BOR Section 3.2.7 provides that an applicant must provide "reasonable assurance" that "a regulated activity will not cause adverse secondary impacts to the water resource" as described in this section. However, this section explicitly disregards negligible or remotely related secondary impacts. BOR Section 3.2.8 provides that an applicant must provide "reasonable assurance" that "a regulated activity will not cause unacceptable cumulative impacts upon wetlands and other surface waters " BOR Section 4.2 limits off-site discharge "to amounts which will not cause adverse off-site impacts." For a proposed activity within an open drainage basin, as is the subject proposed activity, the allowable discharge is (presumably the greatest of) any amount determined in previous District permits, the legally allowable discharge at the time of the permit application, or historic discharge. Historic discharge is the peak rate at which runoff leaves a parcel of land by gravity under existing site conditions. BOR Section 5.1 requires that proposed discharges meet applicable state water quality standards. This chapter of the BOR requires that proposed systems satisfy certain quantitative criteria, depending on the type of water treatment system. However, BOR Section 5.1 warns: in certain instances a design meeting those standards may not result in compliance with the state water quality standards referenced above. Unless an applicant has provided reasonable assurance that a design will not cause or contribute to a violation of state water quality standards, the District may apply more stringent design and performance standards than are otherwise required by this chapter. Projects designed to the criteria found in this section shall be presumed to provide reasonable assurance of compliance with the state water quality standards referenced above. . . . BOR Section 5.2 sets quantitative criteria for various types of surface water management systems. The subject system is a detention, on-line treatment system. BOR Section 1.7.5 defines "detention" as the "delay of storm runoff prior to discharge into receiving waters." BOR Section 1.7.28 defines "on-line treatment system" as a "dual purpose system that collects project runoff for both water quality and water quantity requirements. Water quality volumes are recovered through percolation and evaporation while water quantity volumes are recovered through a combination of percolation, evaporation, and surface discharge." BOR Section 5.2.b applies to "[d]etention with effluent filtration system (manmade underdrains)." BOR Section 5.2.b.1 provides that proposed activities draining less than 100 acres "shall treat the runoff from . . . the first one-half inch runoff." BOR Section 5.2.b.6 adds: "Maintenance of filter includes proper disposal of spent filter material." BOR Section 5.2.c applies to "on-line treatment system[s]." This section also requires the treatment of the first one-half inch of runoff. However, BOR Section 5.2.e provides: Projects discharging directly into Outstanding Florida Waters (OFW) shall be required to provide treatment for a volume 50 percent more than required for the selected treatment system . . .. Applicant has provided reasonable assurance that the proposed surface water management system would not cause adverse water quantity impacts to receiving waters and adjacent lands and would not cause flooding. In terms of water quantity, the proposed system is designed to meet the requirements of the ten-year storm. The subject site is a short distance from Tampa Bay, and, as already noted, it is very likely that the runoff discharges into Tampa Bay at a location not far from the subject site. Thus, water quantity and flooding are irrelevant to this case. However, Applicant has not provided reasonable assurance that the proposed surface water management system would not cause adverse impacts to the value of functions provided to fish and wildlife by nonwetland surface waters and would not adversely affect the quality of receiving waters. The receiving waters of the discharge from the subject site are Class II waters that are OFW. However, these waters are also impaired sufficiently as to be in violation of certain federal water quality standards and to require the closure, at least at times, of shellfish harvesting. There are three deficiencies in the proposed permit. First, it does not specify, in clear and enforceable language, an inspection and maintenance program, which includes the undertaking by the Applicant to backwash the system at specified intervals, to replace the sand filtration medium at specified intervals, to dispose of the sand filtration medium so that the captured contaminants do not reenter waters of the state, to monitor the water discharged from the oil and grease skimmer at specified intervals following the first two years' monitoring, and generally to take any necessary action to correct deficiencies uncovered from inspections. Second, the treatment of the first 1/2 inch of runoff is insufficient for the system, which is discharging directly into an OFW. BOR Section 5.2.e raises this standard to 3/4 inch. Direct discharges requires the identification of the first receiving waters. Receiving waters are waters of the state that are classifiable as Class I-V waters. Receiving waters thus do not include waters in a stormwater sewer pipe, which are not waters of the state nor are they classifiable. Water quality determinations often require comparison of the quality of the discharged water with quality of the receiving waters. The off-site piping of the discharged water does not preclude such comparison. In such case, the analysis extends to the first receiving waters into which the pipe empties. The District's argument to the contrary invites circumvention of those provisions enacted and promulgated for the protection of OFWs. For example, several owners of land abutting an OFW could establish a jointly owned stormwater sewer line so that the point of comparison for their discharge would be the waters in the pipe rather than the OFW. Third, Applicant failed to submit a plan or propose a procedure demonstrating that the proposed activity would not have a negative effect on the Class II waters of Tampa Bay and would not result in violations of water quality standards in these Class II waters. The District failed to determine the outfall of the discharge from the subject site, so it failed to enforce the requirement of the plan required by BOR 3.2.5 for the protection of the special value of Class II waters. Although required to account for cumulative impacts, the plan will necessarily reflect the characteristics of the site--e.g., 1.6 acres contributing largely automobile-based contaminants and not nutrients--and the characteristics of the receiving waters--e.g., Tampa Bay is vast and relatively impaired, though, in the vicinity of the subject site, more likely due to excessive nutrients.
Recommendation It is RECOMMENDED that the Southwest Florida Water Management District enter a final order denying the ERP application of HBJ Investments, Inc. DONE AND ENTERED this 23rd day of December, 1999, in Tallahassee, Leon County, Florida. ROBERT E. MEALE Administrative Law Judge Division of Administrative Hearings The DeSoto Building 1230 Apalachee Parkway Tallahassee, Florida 32399-3060 (850) 488-9675 SUNCOM 278-9675 Fax Filing (850) 921-6847 www.doah.state.fl.us Filed with the Clerk of the Division of Administrative Hearings this 23rd day of December, 1999. COPIES FURNISHED: E. D. "Sonny" Vergara, Executive Director Southwest Florida Water Management District 2379 Broad Street Brooksville, Florida 34609-6899 John R. Thomas Wyckoff & Thomas, P.A. 233 Third Street North, Suite 102 Saint Petersburg, Florida 33701 Michael Jacobs Director, Legal Affairs 25 Second Street North, Suite 160 Saint Petersburg, Florida 33701 Anthony J. Mutchler Assistant General Counsel Southwest Florida Water Management District 2379 Broad Street Brooksville, Florida 34609-6899
Findings Of Fact The Petitioner, Responsible Growth Management, Inc., is a not-for- profit corporation conceived and organized for the purpose of monitoring local governments within the geographic boundaries of Lee County for compliance with the requirements of the Florida Growth Management Act. Its members are residents of Lee County. Some of its members obtain their potable water from sources protected by Lee County Ordinance No. 89-30, as amended by Ordinance 90- 40 and 90-46, collectively referred to as the Wellfield Protection Ordinance (WPO). Other members obtain their potable water from sources the Petitioner contends are not protected by the WPO. The Petitioner contends that, for several reasons, the WPO is not consistent with the Lee County comprehensive plan. The Lee Plan Goal 41 of the Lee County comprehensive plan (the Lee Plan) provides in pertinent part: GOAL 41: GROUNDWATER. To protect the county's groundwater supplies from those activites having the potential for depleting or degrading those supplies. OBJECTIVE 41.1: WELLFIELD PROTECTION. By 1990 the county shall adopt a wellfield protection ordinance to provide regulations protecting the quality of water flowing into potable water wellfields. POLICY 41.1.1: The proposed wellfield protection ordinance shall be based on reliable technical data to ensure that adequate protection is provided. POLICY 41.1.2: The wellfield protection ordinance shall be amended whenever better technical data is developed and whenever additional potable wellfields are proposed. POLICY 41.1.3: The staff hydrogeologist shall review and comment on all development applications near public utility potable water wellfields, with particular attention to proposed land uses within a 10-year travel time from the well- heads. Goal 85 of the Lee Plan provides: GOAL 85: WATER QUALITY AND WASTEWATER. To ensure that water quality is maintained or improved for the protection of the environ- ment and people of Lee County. OBJECTIVE 85.1: Maintain high water quality, meeting or ex- ceeding state and federal water quality standards. POLICY 85.1.1: Sources of water pollution shall be identi- fied, controlled, and eliminated wherever feasible. POLICY 85.1.2: New development and additions to existing development shall not degrade surface and ground water quality. POLICY 85.1.3: The design, construction, and maintenance of artifical drainage systems shall provide for retention or detention areas and vegetated swale systems that minimize nutrient loading and pollution of freshwater and estuarine systems. POLICY 85.1.4: Developments which have the potential of lower- ing existing water quality below state and federal water quality standards shall provide standardized appropriate monitoring data. POLICY 85.1.5: New developments shall demonstrate compliance with all applicable federal, state, and local water quality standards. POLICY 85.1.6: No garbage or untreated sewage shall be dis- charged into coastal and interior surface waters. POLICY 85.1.7: The county shall initiate a wellfield protec- tion program to prevent the contamination of shallow wells by pollutant generating develop- ment including surface water runoff (see Goal 41). POLICY 85.1.8: Valid permits and inspection shall be required prior and subsequent to drilling operations for wells, elevator shafts, foundation holes, and test borings. POLICY 85.1.9: The county shall participate in a program to plug improperly constructed wells which are detrimental to ground water resources. Goal 87 of the Lee Plan provides in pertinent part: GOAL 87: WATER RESOURCES. To conserve, manage, protect, and improve the natural hydrologic system of Lee County to insure continued water resource availability. OBJECTIVE 87.1: WATER SUPPLIES. Insure water supplies of sufficient quantity and quality to meet the present and projected demands of all consumers and the environment, based on the capacity of the natural systems. POLICY 87.1.1: Natural water system features which are essen- tial for retention, detention, purification, runoff, recharge, and maintenence of stream flows and groundwater levels shall be iden- tified, protected, and managed. POLICY 87.1.2: The county shall recognize and encourage water and wastewater management, provided that such management does not exceed the natural assimi- lative capacity of the environment or appli- cable health standards. Appropriate water and wastewater management includes, but is not limited to, groundwater and aquifer recharge, spray or drip irrigation, gray-water systems, agricultural production, and other recycling techniques. POLICY 87.1.3: Freshwater resources shall be managed in order to maintain adequate freshwater supplies during dry periods and to conserve water. POLICY 87.1.4: Development designs shall provide for maintain- ing surface water flows, groundwater levels, and lake levels at or above existing conditions. POLICY 87.1.5: The county shall cooperate with the United States Geological Survey, South Florida Water Management District, and state agencies to develop an area-wide water resources plan emphasizing planning and management of water resources on the basis of drainage basins; and addressing the needs of the existing and potential built environment, natural hydro- logic system requirements, and freshwater flow impacts on estuarine systems. POLICY 87.1.6: The county shall continue to support a moni- toring program of existing baseline conditions of water resources. POLICY 87.1.7: The county shall cooperate fully with emer- gency water conservation measures of the South Florida Water Management District. The WPO Lee County Ordinance 89-30 provides for potable water wellfield protection. It establishes wellfield protection zones and sets out a protection zone map: showing the location on the ground of the outer limits of protection zones for present public utility potable water supply wells and wellfields which are permitted to pump 1,000,000 gallons of water per day or more. The Florida Cities-Waterway Estates Wellfield shall not be included within the protections established by this ordinance or depicted on the Protection Zone Maps. Chapter 10 of the ordinance is a "sunset provision" confirming that the ordinance was adopted "for the purpose of providing interim protection to existing potable water wellfields which are permitted to pump one million gallons of water or more per day" and explaining: The County is engaged in the creation of a Raw Water Management Authority to insure the protection of the public potable water supply. Potable water wellfields make up a portion of the available public potable water supply. In adopting this ordinace, the Board has taken the first step toward creating such an author- ity and providing an overall program for the protection of the public water supply. The wellfield protection ordinance is conceived as a part of that program. In order to insure that the wellfield protec- tion efforts of the County are incorporated into any overall program to protect the public potable water supply this ordinance shall expire and be of no further force and effect as to any acts occurring on or after September 1, 1991. The data and analysis supporting the Lee Plan clearly was based on the assumption of a 1 MGD threshhold. 5/ Section 4.05 of the Ordinance provides: Certain existing or proposed public and quasi-public land uses and activities may be declared exempt from the provisions of this Ordinance by the Board of County Commission- ers. This exemption shall be granted only upon a finding made by the Board in a public meeting that the existing or proposed land use or activity serves a public need which overrides the intent and purpose of this Ordinance and that it would be economically impractical or scientifically impossible for the land use or activity to comply with the requirements of this Ordinance or be relo- cated to an area outside of the protection zones established by this Ordinance. When declaring such an exemption, the Board of County Commissioners shall limit it to the extent necessary to enable the existing or proposed public or quasi-public land use or activity in question to be conducted within a protection zone while still serving the intent and prupose of this Ordinance to the extent which is economically practical and scientifi- cally possible. The Board may attach any con- ditions to the grant of any exemption that it deems appropriate. Section 3.01 of the Ordinance states: Four types of Protection Zone[s] have been established using scientific criteria relating to the physical characteristics of the water supply aquifer and the transport gradients caused by either natural forces or induced pumpage of the wellfields (see Appendix A)." The transport times associated with the Pro- tection Zones are designed so as to allow adequate time to carry out mitigating proce- dures to prevent wellfield contamination in the event of spillage of any Regulated Substance. Section 3.01.A. establishes and defines Protection Zone 1 as: "All land situated between the well(s) and the water table aquifer 6-month travel time zone demarcation." Section 3.01.B. establishes and defines Protection Zone 2 as: "All land situated between the well(s) and the planar geometric union of the largest of the following three travel time zones: Water table aquifer 1-year travel time zone demarcation. Lower Tamiami 1-year travel time zone demarcation. Sandstone 1-year travel time zone demarcation. Section 3.01.C. establishes and defines Protection Zone 3 as: "All land situated between the well(s) and the planar geometric union of the largest of the following three travel time zones: Water table 1-year travel time zone demar- cation and the water table aquifer 5-year travel time zone demarcation. Sandstone aquifer 1-year travel time zone demarcation and the Sandstone aquifer 5-year travel time zone demarcation. Lower Tamiami 1-year travel time zone demarcation and the Lower Tamiami 5-year travel time zone demarcation. Section 3.01.D. establishes and defines Protection Zone 4 as: "All land situated between the well(s) and the planar geometric union of the largest of the following three travel time zones: Water table 5-year travel time zone demar- cation and the water table 10-year travel time zone demarcation. Sandstone 5-year travel time zone demarca- tion and the Sandstone 10-year travel time zone demarcation. Lower Tamiami 5-year travel time zone demar- cation and the Lower Tamiami 10-year travel time zone demarcation. Section 3.02.B. of the Ordinance provides essentially that, where the location of property and buildings is within more than one protection zone, the most restrictive protective zone applies. Section 4.04 of the Ordinance prohibits liquid waste and solid waste disposal in Protection Zones 1, 2, and 3. In those zones, it also prohibits wastewater effluent disposal, except for public access reuse of reclaimed water and land application (under the conditions set forth and as defined in Chapter 17-610, Part III, F.A.C.). As for the exception, it provides: "Where public access reuse is permitted the chloride content shall be no greater than 500 mg/l." In Protection Zones 1 and 2, it also prohibits "the use handling, production, or storage of Regulated Substances [defined in Section 4.03 of the Ordinance] associated with land uses or activities regulated by this Ordinance in quantities greater than those set forth in Section 4.02.A." and "[e]arth mining within a five hundred foot (500') radius of an existing wellhead." The only prohibition in Protection Zone 4 is against "any activity regulated by this ordinance which stores, handles, uses, or produces any Regulated Substance, in quantities greater than those set forth in Section 4.02.A., which does not obtain a valid operation permit as set forth in Section 6.02." Thus, the Ordinance does not by its terms prohibit landfills, sludge disposal or rapid rate percolation ponds in Zone 4. Section 4.03 of the Ordinance, entitled "Regulated Hazardous or Toxic Substances," defines regulated substances in part in terms of federal and state regulations that are referenced, but not reproduced, in the ordinance. Section 4.02 of the Ordinance provides that it applies only to a particular land use or activity, whether that land use or activity is classified as a residential or commercial use, when either the aggregate sum of all quantities of any one Regulated Substance, or the aggregate sum of all Regulated Substances, on a given parcel or in a certain building exceeds one hundred and ten (110) gallons if the substance is liquid, or one thousand, one hundred and ten (1,110) pounds if said substance is solid. It also provides that the Ordinance applies to all storage facilities for petroleum products which are not regulated by Section 376.317, Florida Statutes, or Chapter 17-61, Florida Administrative Code. Section 4.04 of the Ordinance also provides that, within the protection zones: "Any stormwater or surface water discharge . . . shall conform to existing S.F.W.M.D. and F.D.E.R. rules or as they may be amended or replaced." Under Section 4.04 of the Ordinance, "partially treated sewage from residential septic tank systems" are not regulated in any of the protection zones. Section 4.05.B.5. of the Ordinance provides an: Exemption for Retail Sales Activities. Retail sales establishments that store and handle Regulated Substances for resale in their original unopened containers shall be exempt from the prohibition in Sub-Sections 4.04.A.1. and 2. provided that those estab- lishments obtain an Operating Permit pursuant to Section 6.02. No operating permit is re- quired in Protection Zones 3 and 4. Other Relevant Facts The WPO's Coverage. The support documentation in support of the Lee Plan was based on the assumption of a 1 MGD threshhold. The evidence as a whole does not suggest that was it contemplated at any time prior to adoption that the Lee Plan would require a wellfield protection ordinance that protects all potable water wellfields. 6/ Although the documentation in support of the Lee Plan focuses on wellfields permitted to pump 1 MGD or more and serves an indication that the Lee Plan does not require all potable wellfields to be covered by a protection ordinance, nothing in the Lee Plan or the supporting documentation establishes a clear intention to require the same protections for all wellfields permitted to pump 1 MGD or more. The focus of the WPO is on the protection of wellfields from contamination from the ground surface. Two wellfields permitted to pump more than 1 MGD are not covered by those protections. They pump from deep aquifers. The confining layers above those aquifers protect them from contamination from the ground surface. Other parts of the WPO, and other regulatory programs, require that abandoned wells that could possibly serve as a conduit for contamination into those aquifers be properly grouted so as to prevent contamination from the ground surface. As a result, they are adequately protected. 7/ The Florida Cities-Waterway Estates wellfield pumps from both the surficial aquifer and from a deeper aquifer known as the mid-Hawthorn. The confining layers above the mid-Hawthorn aquifer protect it from contamination from the ground surface. Other parts of the WPO, and other regulatory programs, require that abandoned wells that could possibly serve as a conduit for contamination into the mid-Hawthorn be properly grouted so as to prevent contamination from the ground surface. As for the wells pumping from the surficial aquifer, no party presented evidence on which findings of fact can be made on the issue whether it is fairly debatable to exclude the Florida Cities- Waterways wellfield from the WPO's protections against contamination from the ground surface. There was no evidence on which a finding can be made as to why they were excluded from the greater protections the WPO affords to other wellfields permitted to pump 1 MGD or more. 8/ The evidence was that 90% to 95% of Lee County's potable water supply is either covered by the WPO, with its 1 MGD threshhold and exclusion of the Florida Cities-Waterway Estates wellfield, or pumps from deep aquifers that do not need the WPO's protections from contamination from the ground surface. The Department of Environmental Regulation's so-called G regulations adopted in 1986 utilize a 100,000 gallon a day threshhold for coverage. This threshhold was selected to coincide with the jurisdiction of, and to extend coverage to all wells requiring a permit from, Florida's water management districts. The G-I regulations were successfully challenged and still are not in effect. The federal Environmental Protection Agency recently has criticized the G Although it is written in general terms to leave open the possibility of other similar applications, the evidence reflects that the primary purpose of the Section 4.05 exemption for "certain existing or proposed public and quasi- public land uses and activities" is to acknowledge and permit consideration to be given to the practical impact of possible future expansion of the regional airport located in Lee County. Since there are wellfields in the vicinity that possibly could be impacted by such an expansion, the exemption acknowledges that it might be more sensible, feasible, practical and economical to replace the wellfields than to move the regional airport. If this happens and, on a case- by-case basis, the County utililizes the exemption provision, it may be necessary to phase out the wellfields and to allow some degradation of parts of the wellfield, subject to close monitoring pending complete replacement of the wellfields. Alleged Inadequate Regulation of Pollution Sources. Rock and sand mine operations, which are prohibited within 500' of a wellhead, create open, water-filled holes in the ground. As the Petitioner correctly points out, mining operations can thereby create direct conduits that can lead contaminants to underlying aquifers. But there is evidence in the record to justify the WPO's treatment of rock and sand mines on several bases: first, these mines are regulated on a case-by-case basis through a permitting process; second, mines that have been permitted are relatively shallow and reach into, but do not penetrate, the layer confining the aquifers in the vicinity of the mines that are sources of potable water; third, the County has required as a condition of these permits that the pits be prohibited from serving as storm water retention ponds in the future so as to prevent contaminants from gaining entry to the potential conduit; and, finally, the evidence provides assurances that, even if contaminants somehow find their way into the pits, their concentrations would be low enough that sufficient "head" to penetrate the confining layers would not be generated. The WPO does not prohibit "zones of discharge." A "zone of discharge" is a deliberate decision on the part of a regulatory agency to utilize a limited part of the groundwater as part of the process of diluting contaminants. There was some expert testimony that, in a general and theoretical or academic sense, the concept of a "zone of discharge" is inconsistent with wellfield protection. They are not permitted in DER's G The WPO permits landfills, sludge disposal and rapid rate infiltration ponds in Protection Zone 4 (delineated by the ten-year travel time). The evidence was that landfills, at least, are subject to Department of Environmental Regulation (DER) and other regulation and permitting requirements that would provide adequate wellfield protection. There was no evidence or argument presented by any party to clarify how the other activities--sludge disposal and rapid rate infiltration ponds--are regulated. The Petitioner's evidence in general did not address the existence or absence of regulations (both County and other regulatory agencies) pertaining to the various activities of which it complains to rule out the possibility that they might meet the objectives and policies of the Lee Plan. The WPO does not contain its own stormwater regulations. Instead, it provides: "Any stormwater or surface water discharge . . . shall conform to existing S.F.W.M.D. and F.D.E.R. rules or as they may be amended or replaced." The Petitioner offered, as evidence in support of its position that the DER and SFWMD stormwater regulations are inadequate, expert testimony to the effect that the DER and SFWMD regulations are "performance standards," not "directed to groundwater monitoring, and it's not quality impact related." A "performance standard" requires certain things to be done with stormwater in the expectation that groundwater contamination would be eliminated or minimized. The Petitioner's witnesses related that DER decided that "protection of public water supply has to be protected to above and beyond a performance standard" and opted for specific water quality criteria in its G-I groundwater. But nothing in the Lee Plan requires utilization of the G-I rule approach, and the Petitioner's expert did not opine that failure to do so would render the WPO inconsistent with the Lee Plan. The Section 4.05.B.5 retail sales exemption presents a risk of contamination of a wellfield, but the risk is low. In all likelihood, it would take a fire or some other similar catastrophe for the possibility of actual harm to a wellfield to materialize from the small risk involved. Other County Measures Relevant to the WPO. The County has several programs, other than the WPO, and in addition to the Raw Water Management Authority mentioned in the WPO, 9/ that impact wellfield protection. It has a program to encourage (and in some cases require) the reduction and elimination of the use of septic tanks and package sewage plants. It is building a new sewer district. It has taken over the from DER the function of inspecting the installation of underground storage tanks and the remediation (clean up and repair) of tanks storing liquid petroleum products in an attempt to do the job better. There also was evidence that the County has restricted density in potential future wellfield locations and their recharge areas to one unit per ten acres. (The Petitioner's own witness testified that, other than an outright ban on septic tanks, density reduction is the only way to address the problem of septic tanks.